
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Quantifying the Effect of Code Smells on
Maintenance Effort

Dag I.K. Sjøberg, Member, IEEE, Aiko Yamashita, Student Member, IEEE, Bente Anda,
Audris Mockus, Member, IEEE and Tore Dybå, Member, IEEE

Abstract—Context: Code smells are assumed to indicate bad design that leads to less maintainable code. However, this
assumption has not been investigated in controlled studies with professional software developers. Aim: This paper investigates
the relationship between code smells and maintenance effort. Method: Six developers were hired to perform three maintenance
tasks each on four functionally equivalent Java systems originally implemented by different companies. Each developer spent
three to four weeks. In total, they modified 298 Java files in the four systems. An Eclipse IDE plug-in measured the exact
amount of time a developer spent maintaining each file. Regression analysis was used to explain the effort using file properties,
including the number of smells. Results: None of the 12 investigated smells was significantly associated with increased effort
after we adjusted for file size and the number of changes; Refused Bequest was significantly associated with decreased effort.
File size and the number of changes explained almost all of the modeled variation in effort. Conclusion: The effects of the 12
smells on maintenance effort were limited. To reduce maintenance effort, a focus on reducing code size and the work practices
that limit the number of changes may be more beneficial than refactoring code smells.

Index Terms—Maintainability, object-oriented design, product metrics, code churn

—————————— ——————————

1 INTRODUCTION
major challenge in the modern information society is
ensuring the maintainability of increasingly large
and complex software systems. Many measures have

been proposed to predict software maintainability [37],
but the empirical quantification linking maintainability
and measurable attributes of software, such as code
smells, remains elusive.

 The concept of code smell was introduced as an
indicator of problems within the design of software [16].
Detection of code smells have become an established
method to indicate software design issues that may cause
problems for further development and maintenance [16],
[24], [31]. Consequently, the consensus is that code with
smells should be refactored to prevent or reduce such
problems [29]. However, refactoring entails both costs
and risks. Thus, empirical evidence quantifying the
relationship between code smells and software
maintenance effort is needed to weigh the risks and
benefits.

A recent systematic review [46] found only five studies
that investigated the impact of code smells on
maintenance. Most of the studies on code smells that
were identified in the review focused on tools and
methods used to detect such smells automatically. In this

article, we extend that review by considering a longer
time span and more sources. Overall, the results from
these studies are inconclusive; little evidence exists for the
extent to which and under what circumstances various
code smells are harmful.

Furthermore, we are unaware of any controlled in vivo
studies with professional developers on the effect of code
smells on maintenance effort. Therefore, we conducted a
controlled study to quantify the relationship between
code smells and maintenance effort in an industrial
setting with professional developers. Our particular
research question focused on the extent to which the
following 12 code smells affect the maintenance effort:
Data Class, Data Clump, ”Duplicated code in conditional
branches”, Feature Envy, God Class, God Method,
Interface Segregation Principle (ISP) Violation, Misplaced
Class, Refused Bequest, Shotgun Surgery, “Temporary
variable used for several purposes” and “Implementation
used instead of interface”. These smells are described
briefly in Table 9 of the Appendix. A detailed description
of most of these smells can be found in [8] and [16].

This study was conducted on four different but
functionally equivalent (with the same requirements
specifications) web-based information systems originally
implemented (primarily in Java) by different contractors
[3]. A study on the maintainability of these four systems
compared structural measures and expert assessments [2]
before the systems became operational.

The four systems were operated in parallel once they
were completed. The internal and external users were
automatically assigned to one of the systems. Every time
a particular user logged in, he or she was given access to
the same system based on the IP address of the user's

xxxx-xxxx/0x/$xx.00 © 2012 IEEE

A

————————————————
Dag I.K. Sjøberg is with the Department of Informatics, University of Oslo,
PO Box 1080 Blindern, NO-0316, Oslo, Norway. E-mail: dagsj@ifi.uio.no.
Aiko Yamashita is with the Department of Informatics, University of Oslo,
Norway. E-mail: aiko@simula.no.
B.C.D. Anda is with the Department of Informatics, University of Oslo,
Norway. E-mail: bentea@ifi.uio.no.
A. Mockus is with Avaya Labs Research, Basking Ridge, NJ 07920. E-mail:
audris@avaya.com.
Tore Dybå is with the Department of Informatics, University of Oslo and
SINTEF, Norway. E-mail: tore.dyba@sintef.no.

Digital Object Indentifier 10.1109/TSE.2012.89 0098-5589/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 2

computer. However, after two years of operation, changes
in the underlying platform required adaptive changes in
all four systems to continue operation in the new
environment. We used these adaptive maintenance tasks
and a request for a new functionality as an opportunity to
quantify the relationship between code smells and
maintenance effort. Six developers were hired to conduct
three maintenance tasks each on one system and then

repeat the same tasks on a second system. A plug-in to an
Eclipse IDE measured the duration of time (effort) that a
developer spent on each file. We investigated how this
duration was affected by the code smells that were
present in the Java files before the start of the
maintenance tasks.

We also investigated the degree to which the effort
was explained by file size and the number of changes

TABLE 1
STUDIES ON THE EFFECTS OF CODE SMELLS ON MAINTAINABILITY

Code
Smell Study Findings Method

Duplicated
Code

1. Monden et
al., 2002 [32]

The modules with duplicated code were more reliable but less
maintainable than the modules without such code.

Descriptive analysis of one COBOL
legacy system with 2000 modules

2. Kim et al.
2005 [22]

36 percent of the duplicated code needed to be changed consistently;
the remainder of the duplicated code did not need to be changed in the
same direction.

Descriptive analysis of the two medium-
sized Java OSSs Carol and dnsjava

3. Lozano et
al., 2008 [27]

At least 50 percent of the methods with duplicated code required more
change effort (partly significant) than the methods without such code.

Nonparametric hypothesis testing of the
OSSs GanttProj, jEdit, Freecol, Jboss

4. Kapser et
al., 2008 [21]

Some of the duplicated code was considered beneficial. Consequently,
the authors suggest that not all duplicated code requires refactoring.

Academic experts judged whether
Duplicated Code was harmful in pieces of
the OSSs Apache and Gnumeric

5. Jürgens et
al.2009 [19]

In the Java and C# code, the inconsistently changed duplicated code
contained more faults than average code. In the COBOL code,
inconsistent changes did not lead to more faults.

Descriptive analysis of 3 industrial C#
systems, 1 OSS Java system and 1
industrial COBOL system

6. Rahman et
al. 2010 [36]

Most of the defective code was not significantly associated with
duplicated code. The code that was duplicated less frequently across
the system was more error-prone than the code that was duplicated
more frequently.

Descriptive analysis and nonparametric
hypothesis testing of code and bug
tracker in the OSSs Apache httpd,
Nautilus, Evolution and Gimp

God Class

7. Deligiannis
et al., 2003 [10]

A design (not code) without a God Class was judged and measured to
be better (in terms of time and quality) than a design for the same
system with a God Class.

Observational case study with four
academics as participants

8. Deligiannis
et al., 2004 [11]

A design (same the design in Study 7) without a God Class had better
completeness, correctness and consistency than a design with a God
Class.

Controlled experiment over 1.5 hours
with 22 undergraduate students as
participants

9. Olbrich et
al., 2009 [34]

The God Classes and classes with Shotgun Surgery were changed
more frequently (indicating more maintenance effort) than the other
classes. The God Classes had larger churn size, whereas the Shotgun
Surgery classes had smaller churn size.

Post-development analysis of the OSSs
Lucene and Xerces

10. Olbrich et
al., 2010 [35]

The God Classes and Brain Classes were changed less frequently and
had fewer defects (indicating less maintenance effort) than the other
classes.

Nonparametric hypothesis testing of the
code and bug-tracker information in the
OSSs Lucene, Xerces and Log4j

God
Method

11. Abbes et
al., 2011 [1]

The God Classes and God Methods alone had no effect, but compared
with the code without both of these smells, the code with the
combination of God Class and God Method had a statistically
significant increase in effort and a statistically significant decrease in
the percentage of correct answers.

Experiment in which 24 students and
professionals were asked questions
about the code in the OSSs YAMM,
JVerFileSystem, AURA, GanttProject,
JFreeChart and Xerces

Feature
Envy

12. D’Ambros
et al., 2010 [9]

Feature Envy was not consistently correlated with defects across
systems.

Nonparametric hypothesis testing of the
code in the OSSs Lucene, Maven, Mina,
CDT, PDE, UI, Equinox

13. Li et al.,
2007 [26] Feature Envy was not associated significantly with software faults. Analysis of the code and bug-tracker

information in the OSS Eclipse

Shotgun
Surgery

12. D’Ambros
et al., 2010 [9]

Shotgun Surgery was not consistently correlated with defects across
systems. See above

13. Li et al.,
2007 [26]

Shotgun Surgery was positively associated with software faults.

See above Data Class Data Class was not associated significantly with software faults.

Refused
Bequest Refused Bequest was not associated significantly with software faults.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 3

(revisions), which we use to operationalize task quality.
Furthermore, given that the number of changes and code
churn (the sum of the lines added, deleted or modified)
are used as surrogates for effort in software engineering
(e.g., in [9] and [10] but not in our study), we also provide
correlations between effort and these surrogates.

Another study on the same maintenance tasks was
earlier carried out to investigate whether commonly used
maintenance metrics are consistent among themselves
and the extent to which they predict maintenance effort at
the entire system level [41].

The remainder of this article is organized as follows.
Section 2 describes related work. Section 3 describes the
design of the study. Section 4 reports the results. Section 5
interprets the results and outlines their implications for
research and practice. Section 6 discusses limitations, and
Section 7 concludes.

2 RELATED WORK
This section reviews previously published studies on the
effect of code smells. A systematic literature review on
code smells and refactoring covered papers published by
IEEE and six leading software engineering journals from
January 2000 to June 2009 [46]. That review found that
only three empirical studies have investigated the
claimed effects of code smells. Nearly half of the 39
identified papers described methods or tools used to
detect code smells. One-third examined the
understanding of code smells, and six papers examined
the understanding of refactoring.

Given our focus on empirical studies that investigate
the effect of code smells only (i.e., not refactoring), we
complemented this systematic review by using the search
engines ACM Digital Library and ISI Web of Knowledge
in addition to IEEE Xplore. We also extended the time
span by more than two years (i.e., to October 2011). Table
1 shows the studies identified in the systematic review
(Studies 1, 4 and 13) and the ones resulting from our
additional search (Studies 2, 3 and 5-12).

The overall findings were as follows. Four studies on
Duplicated Code (Studies 1-4) found that, although some
duplicated code led to more change effort and less
maintainable code, much of the copied code did not affect
effort. Nevertheless, Study 5 stated that, on average, the
duplicated code that was inconsistently maintained led to
more defects than the remaining code. However, Study 6
found no strong evidence associating duplicated code
with defective code.

Studies 7 and 8 found that God Classes had negative
effects, whereas Study 10 found positive effects. Study 11
studied God Classes and God Methods (denoted “Blob”
and “Spaghetti code”, respectively, by the authors). This
study concluded that their presence alone did not affect

comprehension but that their combination tended to
increase the developers’ effort on comprehension tasks.
Studies 12 and 13 found that Feature Envy was not
significantly associated with defects. Study 13 found that
Data Classes were not associated with significantly more
faults than the other classes. Study 13 also found that
Refused Bequest was not positively associated with faults.
Study 12 found that Shotgun Surgery was not associated
with faults, whereas Study 13 found that it was associated
with faults.

Consequently, the existing studies give no clear
indications about whether any of the code smells are
harmful. Some studies have contradictory conclusions
(e.g., Studies 7-8 vs. Study 10 on God Class and Study 12
vs. Study 13 on Shotgun Surgery), and confirmatory
studies are scarce (with the exception of the results on the
COBOL systems from Studies 1 and 5). A potential reason
for the inconclusive results is the variation in the
dependent (outcome) variables and in the level of control
over the relationships among them.

Existing studies have two primary categories of
dependent variables: effort (the amount of time spent to
finish the tasks) and quality of the resulting product.
Only Studies 7 and 11 measured effort directly; that is, the
actual amount of time spent was recorded (Study 7 used
video recordings, whereas Study 11 used IDE
instrumentation). Studies 3, 9 and 10 purported to
measure effort, but because of the lack of direct
measurements, they used surrogates. Study 3 used
change likelihood (the ratio between the number of
revisions to the method and the number of revisions to
the overall system) and change impact (the average
percentage of the number of co-changed methods).
Studies 9 and 10 used change frequency (in terms of the
number of revisions) and change size (in terms of code
churn size). These studies did not reference earlier work
that had validated these measures as surrogates for effort.
To help interpret the results from these earlier studies, we
report the correlations between these measures and the
implementation effort in our context in Section 4.3.

TABLE 2
VARIABLES INVOLVED IN THE STUDY

Type Variables

Dependent variable Effort (seconds spent maintaining a file)

Independent variable Number of smells of 12 types in the files on
which the developers worked on during the
maintenance tasks.

Control variables System, Developer, Round, File size (LOC),
Revisions (predictor of quality)

Context variables Task, Density of smells (no. of smells per
KLOC of code)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 4

The quality measures also varied substantially among
the studies (see Table 1). Studies 7, 8 and 11 assessed
quality in terms of correctness. Studies 7 and 8 also
defined completeness and consistency as part of quality.
The remaining studies measured the number of defects,
faults or errors per class or line. Study 1 used the number
of revisions as a dependent variable that represented
quality. That study argued that a module is, on average,
less maintainable the more times that the module has
been revised.

Other reasons for the inconsistent results in the
existing work may be the variations in the context [12]
and in the rigor of the research method [23]. The context
variations include the domain and size of the systems, the
type and size of the tasks, the subjects conducting these
tasks and the smell detection procedures. The research
methods for the studies in Table 1 include two controlled
experiments (Study 8 lasted one and a half hours and was
conducted with students, whereas Study 11 was
conducted with students and professionals who were
given a few questions related to the comprehension of
code; each question took 2-5 minutes to answer), one case
study (Study 7), two studies that analyzed existing code
in commercial systems (Studies 1 and 5) and nine studies
of OSS (Studies 2-4, 6 and 9-13). To clarify some of the
inconsistencies in the extant literature, we conducted the
study reported in this article.

3 STUDY DESIGN
We hired six developers who performed three
maintenance tasks each on two of four functionally

equivalent but independently developed Java systems.
The maintenance tasks were two adaptive ones (platform
adjustments) and one perfective one (functionality for
tailored reports). The amount of time that each developer
spent on each file was recorded automatically. We
analyzed whether the number of smells in the file affected
effort. Hence, the unit of analysis was the Java file. In
total, 298 of the 379 distinct Java files in the four systems
were modified by at least one developer during the
course of the maintenance tasks. Table 2 shows the
variables in the study. The remainder of this section
describes the variables that we measured and analyzed,
the tools that we selected for smell detection, the practical
context of the study and our modeling approach.

3.1 Dependent, Independent and Control Variables
To measure the exact amount of time (effort) that a
developer spent maintaining each file, we instrumented
Eclipse with a plug-in called Mimec [25], which can
capture various IDE events, including editing, executing,
navigating, reading and searching.

Note that many factors unrelated to code smells may
affect the effort to implement a modification to a file.
Some systems may be more difficult to understand than
others, some developers might be faster than others, and
developers may be faster in the second round than in the
first round. Therefore, we included System, Developer
and Round as variables to control for their potential
confounding effects.

Maintaining larger units of software generally requires
more effort. Thus, it would not be surprising to find that a
developer spends more time on larger files. Because of

TABLE 3
NUMBER AND DENSITY OF CODE SMELLS PER TYPE IN THE SYSTEMS

LEGEND: THE DARKER SHADING, THE HIGHER SMELL DENSITY

System
Number of Java files

Java LOC

A B C D Total
63 168 29 119 379

8205 LOC 26679 LOC 4983 LOC 9960 LOC 49827 LOC
Code smell N Density N Density N Density N Density N Density
Feature Envy 37 4.51 34 1.27 17 3.41 25 2.51 113 2.27
Data Class 12 1.46 32 1.20 9 1.81 24 2.41 77 1.55
Temporary variable used for several purposes 12 1.46 31 1.16 6 1.20 4 0.40 53 1.06
Shotgun Surgery 7 0.85 17 0.64 0 0.00 13 1.31 37 0.74
ISP Violation 7 0.85 8 0.30 1 0.20 11 1.10 27 0.54
God Method 4 0.49 14 0.52 3 0.60 5 0.50 26 0.52
Refused Bequest 17 2.07 8 0.30 0 0.00 1 0.10 26 0.52
Data Clump 8 0.98 2 0.07 3 0.60 8 0.80 21 0.42
God Class 1 0.12 5 0.19 3 0.60 2 0.20 11 0.22
Duplicated code in conditional branches 1 0.12 4 0.15 2 0.40 2 0.20 9 0.18
Implementation used instead of interface 5 0.61 4 0.15 0 0.00 0 0.00 9 0.18
Misplaced Class 0 0.00 2 0.07 0 0.00 2 0.20 4 0.08

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 5

the way most smells are defined, larger files are also more
likely to contain (more) smells. In fact, one of the systems
(System C, Table 3) had a few large files with much
functionality in each file, whereas the remaining systems
distributed the same functionality across many smaller
files. Of course, these larger files generally had more
smells than the smaller files. Files with at least one smell
were, on average, twice as long as files without any smell.
The Spearman correlation between file size and the 12
smells was 0.53, on average, in the four systems.

Furthermore, code smells are measures that are
specific to object-oriented languages, whereas the size of a
code unit can be defined more generally. Consequently, it
makes little sense to consider the code smells as
predictors of effort without first adjusting for a more
fundamental predictor such as file size. Therefore, we
included file (class) size as a control variable. A further
discussion on the effect of file (class) size on code metrics
can be found in [15]. Note that the notion of smell density
was also introduced to adjust the number of smells with
respect to code size; see Tables 2 and 3.

A particular task may be implemented with varying
levels of quality, which may affect the effort it takes to
complete the task. In general, an individual may sacrifice
quality to complete a task sooner; that is, more time spent
on a task may increase the quality of the result. However,
given that the task may be implemented in different
ways, less optimal implementations are more likely to be
both more difficult and more fault-prone. For example, if
the initial approach does not work, a developer may need
to reimplement it. Reimplementation leads to more effort
and leaves less time to ensure that the working
implementation is thoroughly verified. (See [7] for a
further discussion of the relationship between time and
quality in software engineering.) Therefore, we adjusted
for work quality to ensure that the impact of smells does
not simply reflect variations in the quality of a
developers’ work.

Perhaps the most commonly used quality attribute in
software engineering is the number of defects. However,
the acceptance tests showed few defects in the systems
after the maintenance tasks had been performed.
Therefore, it was not meaningful to use defects as a
quality indicator at the file level. Instead, we used the
number of changes completed in the course of the task as
a quality indicator. The number of changes is typically
found to be a good predictor of later defects, with more
changes increasing fault-proneness [17], [33], [13].
Consequently, we also included the number of changes
(revisions) performed to implement the tasks as the last
control variable. The numbers were calculated using
SVNKit [44], which is a Java library for obtaining
information from the Subversion version control system.
The developers were asked to commit at least once a day

and ensure that the revision would compile without
errors before the commit.

3.2 Tools for Smell Detection
As noted above, a large fraction of research on code
smells is devoted to methods and tools that detect the
smells. Consequently, available tools often operationalize
the same smell differently. For the smell detection in this
study, we aimed to find tools that reveal how they detect
the smells and, preferably, tools that implement the
strategies for smell detection that are described by
Marinescu and Lanza in their comprehensive work in this
area [28] [24].

We found and used the tools InCode [18] and Borland
Together™ [8]. The 12 smells investigated in this study
were those that these tools detected in the four Java
systems used in our study. InCode detects the smells Data
Class, Feature Envy and God Class and found all of them
in our systems.

Borland’s Together detected these smells as well (and
returned results that were consistent with those of
InCode) but also detected the other nine smells listed in
Table 9 in the Appendix. The other smells that Together
can detect but did not find in our systems were Long
Message Chain, Switch Statements, “Subclasses Differ
only in Methods returning Constant values" and
"Subclasses have the Same Member".

InCode is provided by the company Intooitus
(Marinescu is a co-founder) and can be downloaded for
free. Borland’s Together license cost us 700 euros.
Consequently, using the same tools in replications of our
work should be straightforward.

3.3 Context
The cost of developing the four systems varied widely:
€18,000, €25,000, €52,000 and €61,000 [3]. The systems also
varied in size and in the number and density of smells
(Table 3). Table 3 is sorted by the number of occurrences
of each smell. Feature Envy is at the top with 113
occurrences and Misplaced Class is at the bottom with
only four occurrences. Feature Envy and Data Class are
the most common smells in all of the systems. In contrast,
Refused Bequest has 17 and 8 occurrences in Systems A
and B, respectively, but only one and no occurrences in
Systems C and D, respectively.

Three developers from a software company in the
Czech Republic and another set of three developers from
a software company in Poland were hired to perform the
maintenance tasks. The developers were recruited from a
pool of 65 participants in an earlier study on
programming skill [6], which also included maintenance
tasks. Based on the results of that study, these six
developers were selected because they could program
reliably at medium to high levels of performance,
reported high levels of motivation to participate in the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 6

study and were available to take part in new studies. In
this case, the results of the former study became the pre-
test measures for our study. In general, using pre-test
measures to maximize interpretability of the results is
recommended [20].

The developers implemented two adaptive tasks that
were needed to allow the systems to become operational
again. Additionally, the developers implemented a third
task requested by the users. Each developer conducted
the same three tasks on two different systems. There were
two reasons for having the same developer maintain two
systems. First, the relative impact of a system could be
separated from the impact of the developer. Second, we
could observe the developers’ learning process when they
implemented the same tasks the second time. These two
rounds also correspond to two different settings
commonly found in maintenance work: maintainers who
are newcomers to a system and maintainers who are
already familiar with the system. We could then observe
the relative impacts of developer/system/round.
Although the systems were assigned randomly to each
developer, the four systems had to be maintained the
same number of times (two) by each developer, and all of
the systems had to be maintained at least once in each
round; see Table 4. Note that, although Developer 6 was
allocated to System B in the second round, the developer
did not manage to finish all of the tasks in the second
round. Thus, the corresponding measures were excluded,
resulting in a total of 11 Developer x System
combinations.

One or two of the authors were physically present
during the maintenance work, which lasted three to four
weeks in the Czech Republic and three weeks in Poland.
The second author conducted an acceptance test once all
the tasks were completed for one system. The set of test
cases was based on different scenarios that considered the
following aspects: functionality, performance, browser
compatibility and security. The following checklist was

used for each scenario to ensure correct functioning of the
system: internal/external links, absence of broken links,
field validation, error message for wrong input,
validation of mandatory fields, database integrity,
database volume robustness (e.g., large attachment files),
access to functionality according to the user role and
browser compatibility (Internet Explorer, Firefox and
Safari).

3.4 Modeling Approach
We used a multiple linear regression model to represent
the relationship between the hypothesized predictor and
response (cf. the independent and dependent variables in
Table 2). The control variables were added to the
regression model as covariates.

Software engineering data is often highly skewed, and
a few outlier observations may substantially affect the
results. Our data was not an exception. Therefore, we
applied the natural logarithm to the number of smells,
effort, file size and the number of changes to render the
data suitable for multiple regression analysis. Using the
natural logarithm reduces the skew of the response and
predictors (linear regression assumptions include normal
distribution of the residuals). Also, the effort models are,
by their nature, multiplicative (e.g., COCOMO), and the
logarithmic transformation converts them into additive
models suitable to be fit via linear regression. All
statistical analyses were performed using R [43].

3.5 Qualitative Data
To track the progress and to record any difficulties
encountered during the maintenance tasks, we conducted
daily interviews (20-30 minutes) with each developer and
longer interviews (60 minutes) after they had finished the
tasks for one system. The developers did not recognize or
formulate problems in terms of code smells, but the
problems that they reported related to factors that may be
associated with various smells. Note that identifying the

TABLE 4
NUMBER OF FILES AND EFFORT (HOURS)

System Round Developer Modified files Read files Created files Total
N Effort N Effort N LOC Effort N Effort

A
1 1 28 19.2 (73%) 18 0.5 (2%) 9 588 6.6 (25%) 55 26.3
1 6 46 3.1 (21%) 4 0.6 (4%) 50 2425 10.9 (75%) 100 14.6
2 2 37 7.5 (86%) 2 0.0 (0%) 8 2080 1.1 (13%) 47 8.7

B 1 2 46 24.1 (60%) 63 6.1 (15%) 17 1947 9.8 (25%) 126 40.0
2 5 53 9.7 (58%) 42 0.5 (3%) 30 2860 6.6 (39%) 125 16.8

C
1 3 9 4.1 (38%) 9 0.1 (1%) 15 537 6.6 (61%) 33 10.8
1 5 24 8.5 (48%) 0 0 (0%) 14 829 9.3 (52%) 38 17.8
2 4 10 5.4 (92%) 6 0.0 (0%) 5 450 0.5 (8%) 21 5.9

D
1 4 26 9.5 (60%) 36 1.2 (8%) 19 1439 5.3 (33%) 81 15.9
2 1 76 15.9 (75%) 8 0.1 (0.5%) 24 1167 5.1 (24%) 108 21.1
2 3 20 7.1 (62%) 46 1.5 (13%) 22 1188 2.9 (25%) 88 11.5
Total 375 114.1 (60%) 234 10.6 (6%) 213 15510 64.6 (34%) 822 189.4

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 7

effect of individual smells may be difficult because
several smells are often lumped together in the same file.
The analysis and discussion of the qualitative interview
data is reported in another paper [45].

4 RESULTS

4.1 Distribution of Effort
During the work on the maintenance tasks, some existing
files in the system were modified, and some files were
only looked at. Additionally, new files were created.
Table 4 shows the number of files and the amount of
effort spent on the files in each of these categories. The
highest effort ratio for two developers who worked on the
same system in the same round was almost two; that is,
one developer spent almost twice the time of another
developer.

The table also reveals that the developers used
different strategies with respect to the relative effort spent
on the various file categories. For example, on System A
in Round 1, Developer 1 spent 73 percent of the effort on

modifying the existing files, whereas Developer 6 spent
21 percent of the effort doing the same. The average
percent of effort spent on modifying the existing files
ranged from 21 to 76 percent. Only two developers spent
more than 10 percent of their time reading the existing
files without modifying them. No correlation was
observed between the overall effort and the proportion of
effort spent on modifying files or on creating new files.
On average, the effort declined by approximately 40
percent from the first round to the second round.

Table 4 also shows that the number of created files
varied from 5 to 50. The reason for this substantial
variation was partly driven by the developers’
programming style. At the extreme was Developer 2, who
created eight new files in System A with an average size
of 260 LOC, and Developer 3, who created 15 files in
System C with an average of 36 LOC.

4.2 Regression Analysis
Table 5 shows the four regression models that we fitted in
this study. Model 0 tries to explain the maintenance effort
based on our control variables: Developer, System and

TABLE 5
RESULTS OF REGRESSION ANALYSIS

Measure Model 0 Model 1 Model 2 Model 3

Developer (p-value for F-statistic) 1.5e-08*** 2.7e-11*** 1.7e-12*** 3.9e-17***

System (p-value for F-statistic) .0004*** 2.7e-05*** 8e-06*** 7e-08***

Round (p-value for F-statistic) .0071** .002** .0011** .00013***

File size§ NA NA .76 .12(7e-10)*** .58 .1(4e-8)***

Changes (Revisions)§ NA NA NA 2.2 .19(2e-27)***

Data Class§ NA .25 .21(.24) .21 .2(.31) .25 .17(.15)

Data Clump§ NA .2 .34(.55) .083 .32(.8) -.28 .28(.3)

Duplicated code in conditional branches§ NA .25 .4(.53) .57 .38(.14) .19 .33(.56)

Feature Envy§ NA .72 .18(7e-5)*** .37 .18(.041)* .02 .16(.9)

God Class§ NA 1.4 .44(.002)** .71 .43(.1) .57 .36(.12)

God Method§ NA .0085 .3(.98) -.18 .28(.52) -.32 .24(.18)

ISP Violation§ NA .37 .36(.3) .07 .34(.84) .0015 .29(1)

Misplaced Class§ NA -.71 .87(.42) -.46 .82(.58) -.3 .7(.67)

Refused Bequest§ NA -.76 .31(.015)* -.81 .29(.0057)** -.65 .25(.0089)**

Shotgun Surgery§ NA .66 .33(.05)* .57 .32(.074) .11 .27(.7)

Temporary variable used for several purposes§ NA .56 .28(.046)* .12 .27(.67) .012 .23(.96)

Implementation used instead of interface§ NA .71 .36(.048)* .61 .34(.072) .54 .29(.064)
Model fit (adjusted R2) .15 .36 .42 .58
Legend: “***” indicates α = .001, “**“ α = .01 and “*“ α = .05

§If applicable, for each model, estimate | stdev(significance) is shown
(+) A positive estimate indicates that more effort is required
(–) A negative estimate indicates that less effort is required

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 8

Round. An R2 of only 0.15 indicates that these
variables do not fully explain the maintenance effort. In
turn, this finding suggests that developer performance
and differences among the systems and rounds were
insufficient to explain the observed variations in effort.
This result is not particularly surprising, because the
developers were selected based on their pre-test scores,
which suggests that they had relatively similar skills, and
all of the systems had the same functionality.
Furthermore, the model was fit at the file level, and the
variations among the files may have been more important
for explaining the variation in maintenance effort than the
variation among the systems; that is, if the file properties
are known, the additional information about the system
to which the file belongs may not be important.

Model 1 introduces the effect of the various code
smells (with Developer, System and Round as co-
variates). The table shows that Feature Envy and, to some
extent, God Class were associated with more effort. To a
lesser extent, the same was also true for “Temporary
variable used for several purposes”, “Implementation
used instead of interface” and Shotgun Surgery. In
contrast, the Refused Bequest classes indicated a small
decrease in effort. Note that we essentially performed a
multiple comparisons test by including all of the smells in
the model. In other words, after a suitable Bonferroni
correction, the predictors at the α = 0.05 level will no
longer be statistically significant. Furthermore, the R2
was not high at 0.36.

We included the results of Model 1 to allow for
comparisons with earlier work that did not consider file
size or any quality indicator as a predictor of maintenance
effort. The relatively low of Model 1 suggests that
code smells have limited impacts on maintenance effort.

Model 2 adds file size to Model 1 and improved the
model fit (= 0.42). However, the negative effect of
the smells was reduced. Feature Envy was now
significant at α = 0.05, and God Class, “Temporary
variable used for several purposes”, “Implementation
used instead of interface” and Shotgun Surgery appeared
to have no effect. However, the positive effect (decrease
in effort) for classes with Refused Bequest was now
significant at α = 0.01.

Model 3 adjusted for file size and the number of
changes and substantially improved the fit (= 0.58).
We were concerned that the larger files would have lower
quality, which would manifest itself in a greater number
of changes, but the collinearity measured via Variance
Inflation Factor (VIF) was only 1.6. Only Refused Bequest
was still a significant predictor of effort at α = 0.01 in
Model 3. Hence, the interpretation is that if we keep file
size and the number of changes constant, then only the
Refused Bequest smells in the file will significantly affect
the effort needed to maintain the file but in a positive

direction: effort will decrease.
If we exclude the smells from Model 3, the

remains at 0.58. This finding implies that the model fit
does not increase by adding smell measures to file size
and quality. In other words, code smells are not needed to
explain the maintenance effort if we adjust for file size
and the number of changes. If we exclude the smells and
the changes from Model 3 (i.e., only file size remains), the

 becomes 0.38. This result indicates that a single
predictor of file size achieves a better fit than all of the
smell predictors. We argued above for including file size
and the number of changes (as an indicator of quality) in
the regression model, and our analysis confirmed that file
size and the number of changes were both significant (α =
0.001) predictors of effort; see Models 2 and 3. Thus, code
smells need to add explanatory power even after
adjusting for these more fundamental parameters to be
relevant. In our study, this did not happen.

The regression diagnostics did not show surprises: A
QQ plot showed approximately normal residuals, the
largest VIF was 2.98 for ISP Violation (well below 10,
which is considered to indicate a serious collinearity
issue), and the residual plot did not reveal patterns or a
suggestion of a non-constant variance. The only
Spearman correlations above 0.5 in Model 3 were
between ISP Violation and Shotgun Surgery (0.68) and
between God Method and God Class (0.64).

4.3 Churn and Revisions as Surrogates for Effort
Many studies in software engineering use code churn or
revisions as surrogate measures of effort (e.g., Studies 3, 9
and 10 in Table 1). However, we found only two studies
that investigated the association between effort and code
churn or effort and revisions at the file (module) level.
Specifically, El Emam [14] analyzed 98 corrective
maintenance tasks in a 40 KSLOC systems application
written in C. He found a moderate, significant correlation
(Spearman's = 0.36) between maintenance effort and
code churn. Mockus and Votta [30] investigated 170 tasks
in a very large commercial system. They found that churn
(added and deleted lines), duration and type of the task
were needed to explain effort with large and corrective
tasks requiring more effort. Our study found a large
correlation (Spearman's = 0.59); see Table 6.

TABLE 6
CORRELATION EFFORT AND CHURN/REVISIONS

Files Variable by Variable ρ Prob>|ρ|
Modified Effort Code churn 0.59 <.0001*
(N=375) Effort Revisions 0.47 <.0001*

Revisions Code churn 0.65 <.0001*
New Effort Code churn 0.66 <.0001*
(N=213) Effort Revisions 0.53 <.0001*

Revisions Code churn 0.56 <.0001*

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 9

One reason for the difference among the studies may
be that the maintenance tasks were corrective in study
[14], whereas they were adaptive and perfective in our
study and of all types in study [30]. It may generally be
the case that the number of lines changed per unit of
effort is smaller for corrective maintenance tasks than for
adaptive and perfective maintenance tasks [30]. For the
changes in the new files, we found an even higher
correlation between effort and code churn (0.66).

Based on his result, Emam stated that “analysts should
be discouraged from using surrogate measures, such as
code churn, unless there is evidence that they are indeed
good surrogates” [14]. We agree that one should be
cautious when using surrogates for effort, but given the
lack of real effort data, our results indicate that code
churn may be a reasonable surrogate for non-corrective
maintenance effort.

5 DISCUSSION
After adjusting for file size and the number of changes,
we found that among the 12 common code smells, none
of them were associated with more effort. In contrast,
Refused Bequest was associated with less effort. Only
minor improvements in model fit were due to code
smells. Just two predictors, file size and the number of
changes, explained approximately twice as much of the
variance in the regression models as the code smells with
12 predictors did. Therefore, if Occam’s razor approach is
used (i.e., ceteris paribus, choose a simpler explanation
rather than a complex one), the 12 code smells that we
investigated appear to be superfluous for explaining
maintenance effort. Consequently, although some code
smells appear to measure aspects of “bad design“ beyond
what file size and file size in combination with the
number of changes can capture, our results indicate that
the present focus in research and industry on “bad
design” as operationalized by code smells may be
misdirected.

5.1 Large Class and Long Method
Our results indicate that size is an important driver of
effort. There is a medium to large, significant (p < 0.01)
correlation between size (LOC) of files and effort (System
A: ρ = 0.37; System B: ρ = 0.61; System C: ρ = 0.58; System
D: ρ = 0.48). One might then argue that it is likely that the
smells Large Class and Long Method [16] would be
significantly associated with effort. We did not
investigate those smells because the tools we used
(InCode and Borland Together) do not support them.
Instead, these tools support God Class and God Method.
Conceptually, a Large Class is defined to have many
instance variables and many long methods [16], whereas
a God Class controls much of the processing in a system
[38]. God Classes may be detected by the use of metrics

such as Weighted Method Count (WMC), Tight Class
Cohesion (TCC) and Access To Foreign Data (ATFD) [24].
In practice, God Classes are often large, and The Borland
Together White Sheet rephrases Marinescu’s statement
that the design problem represented by God Classes “can
be partially assimilated with Fowler’s Large Class bad-
smell” [28].

The difference between God Method and Long
Method is similar to the difference between God Class
and Large Class. Long Methods have a large number of
lines of code. In addition to being long, God Methods
have many branches and use many attributes, parameters
and local variables.

Nevertheless, we found that the aspects of God Classes
unrelated to size are not associated with increased effort.
Therefore, at least in our context, the corresponding size-
only-defined smells Large Class and Long Methods
would probably be good indicators of code that requires
more effort to maintain.

5.2 Smell Addition and Removal During
Maintenance Tasks

After conducting the regression analysis, we investigated
whether the developers increased or reduced the number
of smells while implementing their maintenance tasks.
Table 8 shows the increase in percentage in LOC, the total
number of smells and the four smells that were indicated
with an effect (even small) in Model 3 of Table 5. A minus
indicates a reduction. Note that the developers
themselves initiated all refactoring during the projects
and were not aware that the study was concerned with
the effect of smells on maintenance effort.

A six percent reduction in the number of smells was
observed. The smell that had the highest association with
increased effort (Feature Envy) in Models 1 and 2 was
also the smell that was subject to the most refactoring
(reduced by 26 percent on average). Interestingly, there
were large differences between the systems. Besides
System A, the developers who modified the same system
consistently increased or reduced the number of smells.
For example, the total number of smells in the whole
system increased from 111 to 133 (a 19 percent average
increase in each file) in System C but declined from 172 to
116 (35 percent average decrease in each file) in System D.
(Feature Envy increased by 21 percent in C and decreased
by 94 percent in D.)

Moreover, a medium to large correlation (Spearman ρ
= 0.5) was observed between the number of changes
(revisions) and the increase in the total number of smells.
This finding indicates that the developers who revised
most often also introduced the most smells. However,
there were great variations among the systems. No
correlation was observed in System D between the
number of revisions and increase in smells.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 10

Hence, in future work, we will explore in more detail
how various smells may affect the way maintenance is
conducted over time. In particular, we will investigate
how the relationship between the various code smells, file
size and system size affects refactoring strategies.

5.3 Implications for Research
After adjusting for size, the results of our study contrast
with most of the results in other empirical studies on the
effect of code smells on effort. For example, the significant
effect for God Classes and the small effect for Shotgun
Surgery disappeared when we adjusted for file size.

Without accounting for the size of the software unit,
many studies on code smells have found that large
systems, classes and methods (e.g., God Classes, Brain
Classes and God Methods) are subject to more effort,
changes and defects than smaller systems, classes and
methods. The fact that the effort, change frequency and
the number of defects measured in absolute terms (i.e.,
not per size unit, such as LOC and function points) are
higher in larger units than in smaller ones is a trivial
result. Therefore, to determine the incremental effect of a
code smell (or any other code metrics), researchers should
use a measure of size as a covariate [39].

Given the focus on code smells and refactoring within
the context of agile methods, we call for replications of
our study in other controlled industrial settings.
Furthermore, given the impact of file size on maintenance
effort, we also encourage research on methods,
techniques and tools to reduce code size without
compromising other aspects of quality (e.g., avoid
reducing the size of large files by creating smaller
additional files or by reducing functionality or
comprehensibility).

5.4 Implications for Practice
Our analyses indicate that refactoring classes with the 12
investigated code smells is unlikely to reduce effort.
Consequently, developers should not be concerned with
these smells in their code for the purpose of reducing
effort. Instead, effort may decrease by reducing file size
(which is a basic file property that is always available)
and improving work processes to reduce the number of
revisions. Of course, the methods by which developers
should achieve these tasks are not trivial. For example,
reducing the amount of functionality in one file (for
example, refactoring a God Class) will also lead to a
higher number of total files or larger other files. At the
system level, the increased risks caused by creating more
files in a system may offset the savings achieved by
reducing the size of a large file. The distribution of the
same functionality over more files may also fail to reduce
maintenance effort. Although large files may be
eliminated, many more files will be created, with each file
requiring a smaller amount of maintenance effort. These

smaller efforts may add up to a greater amount of total
effort than the larger efforts needed for a few large files.
Note that whether centralization or delegation is more
beneficial may depend on developer skill level. In an
experiment on the effect of a centralized versus delegated
control style, the former was better for the junior and
intermediate consultants, whereas the latter was better for
the senior consultants [5].

This tradeoff can be illustrated by comparing Systems
C and D. Table 7 shows that the system with the most
LOC in total (System B) required the most effort, whereas
the one with the fewest LOC (System C) required the least
amount of effort. (Table 7 pertains to the files in all of the
used languages, not only Java. The effort in the last
column was adjusted to account for the fact that some
systems had more second round developers than other
systems. This disparity led to an imbalance in the
measured effort.) Table 7 also shows that, although
Systems C and D had approximately the same number of
LOC in total, the files in System C were twice as large as
those in System D. In this case, it seemed better to have
fewer but larger files.

6 Limitations

6.1 External Effects
This study analyzed the relationship between the amount
of effort spent on maintaining a file and the presence of
code smells in that file. However, developers may work
around smelly files; that is, instead of modifying a smelly
file, developers could find it easier to duplicate code
fragments of the file. If a piece of code is copied into a
new file and the modified functionality is implemented
there, the effort for the modification would be associated
with the new file instead of the smelly one. To investigate
this potential threat, we identified the code that was
copied across files in the four systems by using the Simian
tool [40]. We found that the probability of such copying
was independent of the smell density in the file (i.e., only
file size mattered). Additionally, no correlation existed
between the size or number of code fragments copied
from a file and the smell density of that file. Furthermore,
we suspect that the developers did not work around
high-smell files because the number of smells in the files

TABLE 7
LOC AND EFFORT IN THE FOUR SYSTEMS

System # Files
total

LOC
per
File

Total
LOC

Mean Total
Effort
(hours)

Effort
adj. wrt
round

A 107 149 15943 22 24
B 161 189 30429 31 39
C 58 180 10440 16 17
D 127 89 11303 19 28

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 11

was mostly reduced as a result of the maintenance work;
see Section 5.2.

The effect of some smells may be restricted to the
particular file in which the smell occurs (e.g., God Class).
Conversely, other types of smells may hinder
maintenance outside of a particular file’s scope. For
example, a file with Feature Envy uses more data in
another file (class) than that particular file does. However,
measuring the effort on a file that may be due to a smell
in another file is far from trivial.

6.2 Detection of Code Smells
Operationalizing the definitions of the various code
smells to render them automatically detectable is a
subjective exercise. A discussion of such
operationalizations is beyond the scope of this article. In
this study, we utilized the tools InCode [18] and Borland
Together™ [8] to compute the number of each type of
smell in each Java file. These tools do not provide
parameter settings by the user. Although this makes the
tool developers fully in charge of the threshold values for
detecting smells, the given values for detection would be
consistent for all researchers who want to use the same
tools (and same version) in replications of our work.
Using other tools with other operationalizations of smell
definitions and other strategies for smell detection might
have produced different results.

6.3 Smells versus Maintained Code
We found that the effort to change code with smells was
not significantly higher than the effort to change code
without smells. However, an issue is whether the specific
maintenance tasks required mostly changes to code
without smells by chance or whether the developers
chose to work around code with smells. First, we consider
smells defined at the class (file) level. Our analysis
includes only files on which developers spent some effort.
Some of these files were modified, and some were only
read. While 70 percent of the modified files had at least
one smell, only 47 percent of all read but not modified
files had at least one smell. The fractions were
significantly different (Fisher test p-value = 0.006), which
suggests that among the worked-on files, the files with
smells were more likely to be modified. On average, 61
percent of the smelly files were modified during the
maintenance tasks, whereas 43 percent of the non-smelly
files were modified. This means that the developers did
not work around smells but, in fact, were more likely to
work on files with smells.

However, this analysis may be too simplistic, because
files with smells were larger and larger files had more
smells. Thus, we may obtain the result that files with
smells were more likely to be modified but only to the
extent that they were larger. The proportion of code in
worked-on files that had smells was 75 percent. The

proportion of code in worked-on files that were modified
was 77 percent. Consequently, if we adjust for size, the
files with smells do not appear to be more (or less) likely
to be modified because these two code proportions are
very similar.

Our infrastructure did not allow measuring the effort
of changing a single method for smells defined at the
level of method, only the effort of changing the entire
class (file). Consequently, it is conceivable that the
changes in classes with smelly methods were
concentrated on the non-smelly methods; thus, not
leading to higher effort and indicating a threat to validity
of the results concerning method-level smells.

Nevertheless, we believe that it is unlikely that the
well-defined, comprehensive maintenance tasks
systematically required less change to parts of classes
containing methods without smells. Furthermore, if
developers managed to perform the given tasks
efficiently by avoiding code with smells, one may
nevertheless argue that the smells may not be that
harmful.

6.4 Long-Term Effects of Code Smells
The maintenances tasks performed in this study were the
first major changes to the code base after the systems
became operational. Therefore, the software had not had
a chance to “decay” at the time when we investigated the
effect of smells. We cannot exclude the possibility that the
effect of smells may manifest itself only after multiple
rounds of maintenance.

6.5 Subjects, Tasks, System and Smells
We selected developers who had relatively similar skill
levels to reduce the likelihood that skill would affect the
results. Still, the external validity would have been
greater with a larger sample of subjects. However, almost
all other studies of this kind used convenience sampling.
In contrast, we sampled six developers from a pool of 65
developers based on a single criterion. We hired the
selected developers for a total cost of approximately
50,000 euros. Increasing the number of subjects would
have increased the costs beyond the available funds.

Similar to using professional developers, we wanted
the tasks that they perform to represent “typical” tasks in
the industry [4]. However, no well-defined way of
identifying representative or typical tasks exists in
software engineering. Additionally, no standard
taxonomy for classifying task complexity is available [42].
Nevertheless, in our study, we did not need to look for
(artificial) representative tasks. We used real tasks. The
two adaptive tasks had to be performed to allow the
systems to become operational again, and the third task
was requested by users of the systems.

Furthermore, the scope of this study was real, albeit
small, web-based information systems primarily

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 12

implemented in Java. The 12 smells identified in these
systems constitute a subset of all the smells defined in the
literature. Whether the results of this study are valid for
other developers, tasks (including corrective and
preventive maintenance tasks) and systems with other
smells must be explored in other studies.

7 CONCLUSIONS
We conducted the first empirical study on the effect of
code smells on software maintenance effort in a
controlled industrial setting. We used multiple linear
regression analysis in which all of the smells were
investigated in the same model. We found that without
any adjustments, files with Feature Envy and God Class
(to a lesser extent) and (to an even lesser extent)
“Temporary variable used for several purposes”,
“Implementation used instead of interface” and Shotgun
Surgery were associated with more effort than files
without these smells. The smell Refused Bequest was
associated with a small reduction in effort.

However, after adjusting for file size and the number
of changes (revisions) as quality predictor, we found that
none of the code smells remained a significant driver of
effort. In contrast, the code smell Refused Bequest
contributed significantly to less effort. File size and the
number of revisions were responsible for almost all of the
variance explained by the model.

Given that refactoring software is a time-consuming
and error-prone activity, one should investigate when
refactoring is beneficial. In our study, the 12 types of code
smells turned out to be harmless with respect to effort.
Other types of smells and the same 12 types in other
settings may still be harmful.

Overall, if more follow-up studies with professionals
as subjects support our results, it may be questioned
whether the present focus in research and industry on

“bad design” as operationalized by code smells is
misdirected. Focusing more on code size and the work
practices that limit the number of changes may prove
more beneficial for reducing maintenance effort.

APPENDIX

The 12 code smells investigated in this study are
explained in Table 9.

ACKNOWLEDGMENTS
The authors thank G. Bergersen for providing useful
discussions and support in selecting the developers, H.C.
Benestad for providing technical support during the
planning stage of the study and the anonymous referees
for their comments. This study was partly funded by the
Research Council of Norway through the projects AGILE,
grant 179851/I40, and TeamIT, grant 193236/I40.

REFERENCES

[1] M. Abbes, F. Khomh, Y-C. Gueheneuc and G. Antoniol, “An
Empirical Study of the Impact of Two Antipatterns Blob and
Spaghetti Code on Program Comprehension”, Proc. European
Conf. Softw. Maint. and Reengineering, pp. 181-190, 2011.

[2] B. Anda, “Assessing Software System Maintainability using
Structural Measures and Expert Assessments”, Proc. Int'l Conf.
Softw. Maint., pp. 204-213, 2007.

[3] B. Anda, D.I.K. Sjøberg and A. Mockus, “Variability and
Reproducibility in Software Engineering: A Study of Four
Companies that Developed the Same System”, IEEE Trans.
Softw. Eng., 35(3): pp. 407-429, 2009.

[4] E. Arisholm and D.I.K. Sjøberg, “Towards a Framework for
Empirical Assessment of Changeability Decay”, J. Syst. Softw.,
53(1): pp. 3-14, 2000.

[5] E. Arisholm and D. I. K. Sjøberg, “Evaluating the Effect of a
Delegated versus Centralized Control Style on the
Maintainability of Object-Oriented Software”, IEEE Trans.

TABLE 8
INCREASE IN LOC AND NUMBER OF SMELLS IN PERCENT BETWEEN INITIAL SYSTEM AND AFTER MAINTENANCE

System Round Developer Avg. Changes
(Revisions) per file

LOC Total #
smells

Feature
Envy

ISPV Data
Clump

God
Class

A 1 1 2.7 7 14 3 100 0 100
6 2.2 -20 -22 -34 -17 -20 0

2 2 2.3 -2 -7 -10 17 0 0
B 1 2 1.8 -2 -5 -9 13 200 0

2 5 1.6 7 -3 -20 25 100 0

C 1 3 2.1 -1 24 25 100 150 0
5 3.0 12 24 31 100 67 0

2 4 2.7 4 8 6 0 0 0
D 1 4 2.1 5 -38 -90 0 0 -100

2 1 2.0 9 -25 -95 27 -17 -100
3 1.7 2 -41 -96 0 0 -100

Total average 2.2 2 -6 -26 33 44 -18

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 13

Softw. Eng., 30(8): pp. 521-534, 2004.
[6] G.R. Bergersen and J.E. Gustafsson, “Programming Skill,

Knowledge and Working Memory Among Professional
Software Developers from an Investment Theory Perspective”,
J. Individual Differences, 32(4): pp. 201-209, 2011.

[7] G.R., Bergersen, J.E. Hannay, D.I.K. Sjøberg, T. Dybå and A.
Karahasanovic, “Inferring Skill from Tests of Programming
Performance: Combining Time and Quality”, Proc. Int‘l Symp.
Emp. Softw. Eng. and Measurement, pp. 305–314, 2011.

[8] Borland Together 2008 [cited 2008 September]. Available:
http://www.borland.com/us/products/together

[9] M. D'Ambros, A. Bacchelli and M. Lanza, “On the Impact of
Design Flaws on Software Defects”, Proc. Int'l Conf. Quality
Softw., pp. 23-31, 2010.

[10] I. Deligiannis, M. Shepperd, M. Roumeliotis and I. Stamelos,
“An Empirical Investigation of an Object-Oriented Design
Heuristic for Maintainability”, J. Syst. Softw., 65(2): pp. 127-139,
2003.

[11] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis and M.
Shepperd, “A Controlled Experiment Investigation of an
Object-Oriented Design Heuristic for Maintainability”, J. Syst.
Softw., 72(2): pp. 129-143, 2004.

[12] T. Dybå, D.I.K. Sjøberg and Daniela S. Cruzes, “What Works for
Whom, Where, When, and Why? On the Role of Context and
Contextualization in Empirical Software Engineering”, Proc.

Int’l Symp. on Emp. Softw. Eng. and Measurement, 2012.
[13] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron and A. Mockus,

“Does code decay? Assessing the Evidence from Change
Management Data,” IEEE Trans. Softw. Eng., 27(7): pp. 1-12,
2001.

[14] K. El Emam, A Methodology for Validating Software Product
Metrics, Technical Report NRC 44142, Nat’l Research Council
of Canada, June 2000.

[15] K. El Emam, S. Benlarbi, N. Goel and S.N. Rai, “The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics”, IEEE Trans. Softw. Eng., 27(7): pp. 630-650,
2001.

[16] M. Fowler, “Refactoring: Improving the Design of Existing
Code”. 1999. Addison-Wesley.

[17] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, “A
Systematic Review of Fault Prediction Performance in Software
Engineering”, IEEE Trans. Softw. Eng., 2011 (preprint).

[18] Intooitus. “InCode 2.0.7”. 2009 [Cited 2010 July 5]. Available:
http://www.intooitus.com/inCode.html.

[19] E. Jürgens, F. Deissenboeck, B. Hummel and S. Wagner, “Do
Code Clones Matter?”, Proc. Int'l Conf. Softw. Eng., pp. 485-495,
2009.

[20] V.B. Kampenes, T. Dybå, J.E. Hannay and D.I.K. Sjøberg, “A
Systematic Review of Quasi-Experiments in Software
Engineering”. Inf. and Softw. Tech., 51: pp. 71-82, 2009.

TABLE 9
DESCRIPTION OF 12 CODE SMELLS PARTLY BASED ON [8] AND [16]

Code Smell Description
Data Class Classes with only data fields and/or access methods.

Data Clump
Clumps of data items that are always found together within classes or between classes. It may be
better if the clump forms a new (small) class.

Duplicated code in conditional branches Conditional statements in which both branches have the same code.

Feature Envy
A method that seems more interested in the attributes of another class than in the attributes of its own
class. It may be better to move the method to the class that contains most of the attributes that the
method needs.

God Class
A God Class takes too many responsibilities relative to the classes with which it is coupled.
Centralizing the system functionality into God Classes contradicts the design principle of
decomposition.

God Method
God Methods are much larger than the other methods in the same class; the functionality of the class
is centralized in God Methods.

Interface Segregation Principle (ISP) Violation
The Interface Segregation Principle states that many client-specific interfaces are better than one
general-purpose interface; that is, clients should not be forced to depend on methods that they do not
use because this dependency creates unnecessary coupling.

Misplaced Class
A class is misplaced if it depends more on the classes in another package than on those in its own
package.

Refused Bequest Subclasses do not want or need everything that they inherit; the class hierarchy may be inappropriate.

Shotgun Surgery
Implementing a single change in a coherent manner requires making a number of small changes to a
number of different areas in the code.

Temporary variable used for several purposes
Instead of using the same temporary variable for several different purposes, developers should use
the variable for only one purpose.

Implementation used instead of interface
To increase the abstraction level of the code, developers should invoke methods by using interfaces
instead of the classes implemented by these interfaces.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 14

[21] C. Kapser and M. Godfrey, ““Cloning Considered Harmful”
Considered Harmful: Patterns of Cloning in Software”,
Empirical Softw. Eng., 13(6): pp. 645-692, 2008.

[22] M. Kim, V. Sazawal, D. Notkin and G. Murphy, “An Empirical
Study of Code Clone Genealogies”, Proc. European Conf. Softw.
Eng., pp. 187-196, 2005.

[23] B.A. Kitchenham, “What's up with Software Metrics? – A
Preliminary Mapping Study”, J. Syst. and Softw. 83(1): pp. 37-51.
2010.

[24] M. Lanza and R. Marinescu, “Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evaluate and
Improve the Design of Object-Oriented Systems”. Springer
2006.

[25] L.M. Layman, L.A. Williams and R.S. Amant, “MimEc:
Intelligent User Notification of Faults in the Eclipse IDE”, Proc.
Int'l Ws. Cooperative and Human Aspects of Softw. Eng., pp. 73-76,
2008.

[26] W. Li and R. Shatnawi, “An Empirical Study of the Bad Smells
and Class Error Probability in the Post-Release Object-Oriented
System Evolution”, J. Syst. Softw., 80(7): pp. 1120-1128, 2007.

[27] A. Lozano and M. Wermelinger, “Assessing the Effect of Clones
of Changeability”, Proc. Int'l Conf. Softw. Maint., pp. 227-236,
2008.

[28] R. Marinescu, “Measurement and Quality in Object-Oriented
Design”, Ph.D. dissertation, Politehnica University of Timisoara,
June 2002.

[29] T. Mens and T. Tourwé, “A Survey of Software Refactoring”,
IEEE Trans. Softw. Eng., 30(2): pp. 126-139, 2004.

[30] A. Mockus and L.G. Votta. “Identifying Reasons for Software
Change using Historic Databases”, Proc. Int’l Conf. on Softw.
Maint., pp. 120–130, 2000.

[31] N. Moha, Y-G. Gueheneuc, L. Duchien and A-F. Le Meur,
“DECOR: A Method for the Specification and Detection of
Code and Design Smells”, IEEE Trans. Softw. Eng., 36(1): pp. 20-
36, 2010.

[32] A. Monden, D. Nakae, T. Kamiya, S. Sato and K. Matsumoto,
“Software Quality Analysis by Code Clones in Industrial
Legacy Software”, Proc. Int'l Symp. Softw. Metrics, pp. 87-94,
2002.

[33] N. Nagappan and T. Ball, “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study”, Proc. Int'l Symp. Emp. Softw. Eng. and Measurement, pp.
364-373, 2007.

[34] S. Olbrich, D.S. Cruzes, V. Basili and N. Zazworka, “The
Evolution and Impact of Code Smells: A Case Study of two
Open Source Systems”, Proc. Int'l Symp. Emp. Softw. Eng. and
Measurement, pp. 390-400, 2009.

[35] S. Olbrich, D.S. Cruzes and D.I.K. Sjøberg, “Are all Code Smells
Harmful? A Study of God Classes and Brain Classes in the
Evolution of three Open Source Systems”, Proc. Int'l Conf. Softw.
Maint., pp. 1-10, 2010.

[36] F. Rahman, C. Bird and P. Devanbu. “Clones: What is that
Smell?”, Proc. 7th IEEE Working Conf. on Mining Softw.

Repositories, pp. 72-81, 2010.
[37] M. Riaz, M. Mendes and E.D. Tempero. “A Systematic Review

of Software Maintainability Prediction and Metrics,” Proc 3rd
Int'l Symp. Emp. Softw. Eng. and Measurement, pp. 367-377, 2009.

[38] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley,
1996.

[39] J. Rosenberg, “Some Misconceptions About Lines of Code”,
Proc. Int'l Symp. Softw. Metrics, pp. 137-142, 1997.

[40] “Simian”. [2012 January 5]. Available:
http://www.harukizaemon.com/simian/index.html

[41] D.I.K. Sjøberg, B. Anda and A. Mockus, “Questioning Software
Maintenance Metrics: A Comparative Case Study”, Proc. Int’l
Symp. on Emp. Softw. Eng. and Measurement, pp. 107-110, 2012.

[42] D.I.K. Sjøberg, T. Dybå and M. Jørgensen, “The Future of
Empirical Methods in Software Engineering Research”, Proc.
Future of Software Engineering, pp. 358-378, 2007.

[43] The-R-Foundation. “The R Project for Statistical Computing”.
2011 [Cited 2011 August, 29]. Available: http://www.r-
project.org/index.html.

[44] TMate-Sofware. “SVNKit - Subversioning for Java”. 2010 [Cited
June 2010]; Available from: http://svnkit.com/.

[45] A. Yamashita and L. Moonen. “Do Code Smells Reflect
Important Maintainability Aspects?”, Proc. Int’l Conf. on Softw.
Maint. pp. 306-315, 2012.

[46] M. Zhang, T. Hall and N. Baddoo, “Code Bad Smells: A Review
of Current Knowledge”, J. Softw. Maint. 23(3): pp. 179–202,
2011.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D.I.K. SJØBERG, A. YAMASHITA, B. ANDA, A. MOCKUS, T. DYBÅ: QUANTIFYING THE EFFECT OF CODE SMELLS ON MAINTENANCE EFFORT 15

Dag Sjøberg received the MSc
degree in computer science
from the University of Oslo in
1987 and the PhD degree in
computing science from the
University of Glasgow in 1993.
He has five years of industry
experience as a consultant and
group leader. He is professor of
software engineering in the
Department of Informatics,
University of Oslo. In 2001 he

founded the Software Engineering Department at Simula
Research Laboratory and was its leader until 2008, when
it was number 1 in a ranking by the Journal of Systems and
Software. He was on the editorial board of Empirical
Software Engineering from 2002 to 2009. Since 2010, he has
been on the editorial board IEEE Transactions on Software
Engineering. Among his research interests are agile and
lean processes, software quality and empirical research
methods.

Aiko Yamashita received the
MSc degree from University of
Gothenburg in 2007 and the
PhD degree from the
Department of Informatics,
University of Oslo in 2012. She
has worked five years as a
software engineer and
consultant in Costa Rica, USA,
Sweden and Norway within
diverse organizations. Her
research interests include

empirical software engineering, software quality,
psychology of programming, HCI and agile methods.
She is an IEEE Student Member.

Bente Anda received her MSc in
1991 and her PhD in 2003, both
from the Department of
Informatics, University of Oslo.
From 2002 to 2008 she worked
as research scientist at Simula
Research Laboratory, Norway.
She also has several years
industry experience as
consultant. Currently she works
as senior advisor at the
Norwegian Tax Administration
and as adjunct professor in the

Department of Informatics, University of Oslo. Her

research interests include empirical software engineering,
requirements engineering, effort estimation, software
quality and software process improvement

Audris Mockus studies
software developers' culture
and behavior through the
recovery, documentation,
and analysis of digital
remains. These digital traces
reflect projections of
collective and individual
activity. He reconstructs the
reality from these
projections by designing
data mining methods to

summarize and augment these digital traces, interactive
visualization techniques to inspect, present, and control
the behavior of teams and individuals, and statistical
models and optimization techniques to understand the
nature of individual and collective behavior. Audris
Mockus received B.S. and M.S. in Applied Mathematics
from Moscow Institute of Physics and Technology in
1988. In 1991 he received M.S. and in 1994 he received
Ph.D. in Statistics from Carnegie Mellon University. He
works at Avaya Labs Research. Previously he worked at
Software Production Research Department of Bell Labs.

Tore Dybå received the Msc
degree in electrical engineering
and computer science from the
Norwegian Institute of
Technology in 1986 and the Dr.
Ing. degree in computer and
information science from the
Norwegian University of Science
and Technology in 2001. He is
Chief Scientist at SINTEF ICT
and Professor at the University

of Oslo. He has eight years of industry experience from
Norway and Saudi Arabia. His research interests include
evidence-based software engineering, software process
improvement, and agile software development. Dr. Dybå
is the author and coauthor of more than 100 refereed
publications appearing in international journals, books,
and conference proceedings. He is associate editor-in-
chief of IEEE Software and member of the editorial boards
of Empirical Software Engineering and Information and
Software Technology. He is a member of the IEEE and IEEE
Computer Society.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

