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Abstract—Context: Code smells are assumed to indicate bad design that leads to less maintainable code. However, this 
assumption has not been investigated in controlled studies with professional software developers. Aim: This paper investigates 
the relationship between code smells and maintenance effort. Method: Six developers were hired to perform three maintenance 
tasks each on four functionally equivalent Java systems originally implemented by different companies. Each developer spent 
three to four weeks. In total, they modified 298 Java files in the four systems. An Eclipse IDE plug-in measured the exact 
amount of time a developer spent maintaining each file. Regression analysis was used to explain the effort using file properties, 
including the number of smells. Results: None of the 12 investigated smells was significantly associated with increased effort 
after we adjusted for file size and the number of changes; Refused Bequest was significantly associated with decreased effort. 
File size and the number of changes explained almost all of the modeled variation in effort. Conclusion: The effects of the 12 
smells on maintenance effort were limited. To reduce maintenance effort, a focus on reducing code size and the work practices 
that limit the number of changes may be more beneficial than refactoring code smells. 

Index Terms—Maintainability, object-oriented design, product metrics, code churn 

—————————— —————————— 

1 INTRODUCTION
major challenge in the modern information society is 
ensuring the maintainability of increasingly large 
and complex software systems. Many measures have 

been proposed to predict software maintainability [37], 
but the empirical quantification linking maintainability 
and measurable attributes of software, such as code 
smells, remains elusive. 

 The concept of code smell was introduced as an 
indicator of problems within the design of software [16]. 
Detection of code smells have become an established 
method to indicate software design issues that may cause 
problems for further development and maintenance [16], 
[24], [31]. Consequently, the consensus is that code with 
smells should be refactored to prevent or reduce such 
problems [29]. However, refactoring entails both costs 
and risks. Thus, empirical evidence quantifying the 
relationship between code smells and software 
maintenance effort is needed to weigh the risks and 
benefits. 

A recent systematic review [46] found only five studies 
that investigated the impact of code smells on 
maintenance. Most of the studies on code smells that 
were identified in the review focused on tools and 
methods used to detect such smells automatically. In this 

article, we extend that review by considering a longer 
time span and more sources. Overall, the results from 
these studies are inconclusive; little evidence exists for the 
extent to which and under what circumstances various 
code smells are harmful. 

Furthermore, we are unaware of any controlled in vivo 
studies with professional developers on the effect of code 
smells on maintenance effort. Therefore, we conducted a 
controlled study to quantify the relationship between 
code smells and maintenance effort in an industrial 
setting with professional developers. Our particular 
research question focused on the extent to which the 
following 12 code smells affect the maintenance effort: 
Data Class, Data Clump, ”Duplicated code in conditional 
branches”, Feature Envy, God Class, God Method, 
Interface Segregation Principle (ISP) Violation, Misplaced 
Class, Refused Bequest, Shotgun Surgery, “Temporary 
variable used for several purposes” and “Implementation 
used instead of interface”. These smells are described 
briefly in Table 9 of the Appendix. A detailed description 
of most of these smells can be found in [8] and [16]. 

This study was conducted on four different but 
functionally equivalent (with the same requirements 
specifications) web-based information systems originally 
implemented (primarily in Java) by different contractors 
[3]. A study on the maintainability of these four systems 
compared structural measures and expert assessments [2] 
before the systems became operational.  

The four systems were operated in parallel once they 
were completed. The internal and external users were 
automatically assigned to one of the systems. Every time 
a particular user logged in, he or she was given access to 
the same system based on the IP address of the user's 
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computer. However, after two years of operation, changes 
in the underlying platform required adaptive changes in 
all four systems to continue operation in the new 
environment. We used these adaptive maintenance tasks 
and a request for a new functionality as an opportunity to 
quantify the relationship between code smells and 
maintenance effort. Six developers were hired to conduct 
three maintenance tasks each on one system and then 

repeat the same tasks on a second system. A plug-in to an 
Eclipse IDE measured the duration of time (effort) that a 
developer spent on each file. We investigated how this 
duration was affected by the code smells that were 
present in the Java files before the start of the 
maintenance tasks.  

We also investigated the degree to which the effort 
was explained by file size and the number of changes 

TABLE 1 
STUDIES ON THE EFFECTS OF CODE SMELLS ON MAINTAINABILITY 

Code 
Smell Study Findings Method 

Duplicated 
Code 

1. Monden et 
al., 2002 [32] 

The modules with duplicated code were more reliable but less 
maintainable than the modules without such code. 

Descriptive analysis of one COBOL 
legacy system with 2000 modules 

2. Kim et al. 
2005 [22] 

36 percent of the duplicated code needed to be changed consistently; 
the remainder of the duplicated code did not need to be changed in the 
same direction.  

Descriptive analysis of the two medium-
sized Java OSSs Carol and dnsjava 

3. Lozano et 
al., 2008 [27] 

At least 50 percent of the methods with duplicated code required more 
change effort (partly significant) than the methods without such code. 

Nonparametric hypothesis testing of the 
OSSs GanttProj, jEdit, Freecol, Jboss 

4. Kapser et 
al., 2008 [21] 

Some of the duplicated code was considered beneficial. Consequently, 
the authors suggest that not all duplicated code requires refactoring. 

Academic experts judged whether 
Duplicated Code was harmful in pieces of 
the OSSs Apache and Gnumeric 

5. Jürgens et 
al.2009 [19] 

In the Java and C# code, the inconsistently changed duplicated code 
contained more faults than average code. In the COBOL code, 
inconsistent changes did not lead to more faults. 

Descriptive analysis of 3 industrial C# 
systems, 1 OSS Java system and 1 
industrial COBOL system 

6. Rahman et 
al. 2010 [36] 

Most of the defective code was not significantly associated with 
duplicated code. The code that was duplicated less frequently across 
the system was more error-prone than the code that was duplicated 
more frequently. 

Descriptive analysis and nonparametric 
hypothesis testing of code and bug 
tracker in the OSSs Apache httpd, 
Nautilus, Evolution and Gimp 

God Class 

7. Deligiannis 
et al., 2003 [10] 

A design (not code) without a God Class was judged and measured to 
be better (in terms of time and quality) than a design for the same 
system with a God Class. 

Observational case study with four 
academics as participants 

8. Deligiannis 
et al., 2004 [11] 

A design (same the design in Study 7) without a God Class had better 
completeness, correctness and consistency than a design with a God 
Class. 

Controlled experiment over 1.5 hours 
with 22 undergraduate students as 
participants 

9. Olbrich et 
al., 2009 [34] 

The God Classes and classes with Shotgun Surgery were changed 
more frequently (indicating more maintenance effort) than the other 
classes. The God Classes had larger churn size, whereas the Shotgun 
Surgery classes had smaller churn size.  

Post-development analysis of the OSSs 
Lucene and Xerces 

10. Olbrich et 
al., 2010 [35] 

The God Classes and Brain Classes were changed less frequently and 
had fewer defects (indicating less maintenance effort) than the other 
classes. 

Nonparametric hypothesis testing of the 
code and bug-tracker information in the 
OSSs Lucene, Xerces and Log4j 

God 
Method 

11. Abbes et 
al., 2011 [1] 

The God Classes and God Methods alone had no effect, but compared 
with the code without both of these smells, the code with the 
combination of God Class and God Method had a statistically 
significant increase in effort and a statistically significant decrease in 
the percentage of correct answers. 

Experiment in which 24 students and 
professionals were asked questions 
about the code in the OSSs YAMM, 
JVerFileSystem, AURA, GanttProject, 
JFreeChart and Xerces 

Feature 
Envy 

12. D’Ambros 
et al., 2010 [9] 

Feature Envy was not consistently correlated with defects across 
systems.  

Nonparametric hypothesis testing of the 
code in the OSSs Lucene, Maven, Mina, 
CDT, PDE, UI, Equinox 

13. Li et al., 
2007 [26] Feature Envy was not associated significantly with software faults. Analysis of the code and bug-tracker 

information in the OSS Eclipse 

Shotgun 
Surgery 

12. D’Ambros 
et al., 2010 [9] 

Shotgun Surgery was not consistently correlated with defects across 
systems. See above 

13. Li et al., 
2007 [26] 

Shotgun Surgery was positively associated with software faults. 

See above Data Class Data Class was not associated significantly with software faults. 

Refused 
Bequest Refused Bequest was not associated significantly with software faults. 
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(revisions), which we use to operationalize task quality. 
Furthermore, given that the number of changes and code 
churn (the sum of the lines added, deleted or modified) 
are used as surrogates for effort in software engineering 
(e.g., in [9] and [10] but not in our study), we also provide 
correlations between effort and these surrogates. 

Another study on the same maintenance tasks was 
earlier carried out to investigate whether commonly used 
maintenance metrics are consistent among themselves 
and the extent to which they predict maintenance effort at 
the entire system level [41]. 

The remainder of this article is organized as follows. 
Section 2 describes related work. Section 3 describes the 
design of the study. Section 4 reports the results. Section 5 
interprets the results and outlines their implications for 
research and practice. Section 6 discusses limitations, and 
Section 7 concludes. 

2 RELATED WORK
This section reviews previously published studies on the 
effect of code smells. A systematic literature review on 
code smells and refactoring covered papers published by 
IEEE and six leading software engineering journals from 
January 2000 to June 2009 [46]. That review found that 
only three empirical studies have investigated the 
claimed effects of code smells. Nearly half of the 39 
identified papers described methods or tools used to 
detect code smells. One-third examined the 
understanding of code smells, and six papers examined 
the understanding of refactoring.  

Given our focus on empirical studies that investigate 
the effect of code smells only (i.e., not refactoring), we 
complemented this systematic review by using the search 
engines ACM Digital Library and ISI Web of Knowledge 
in addition to IEEE Xplore. We also extended the time 
span by more than two years (i.e., to October 2011). Table 
1 shows the studies identified in the systematic review 
(Studies 1, 4 and 13) and the ones resulting from our 
additional search (Studies 2, 3 and 5-12). 

The overall findings were as follows. Four studies on 
Duplicated Code (Studies 1-4) found that, although some 
duplicated code led to more change effort and less 
maintainable code, much of the copied code did not affect 
effort. Nevertheless, Study 5 stated that, on average, the 
duplicated code that was inconsistently maintained led to 
more defects than the remaining code. However, Study 6 
found no strong evidence associating duplicated code 
with defective code.  

Studies 7 and 8 found that God Classes had negative 
effects, whereas Study 10 found positive effects. Study 11 
studied God Classes and God Methods (denoted “Blob” 
and “Spaghetti code”, respectively, by the authors). This 
study concluded that their presence alone did not affect 

comprehension but that their combination tended to 
increase the developers’ effort on comprehension tasks. 
Studies 12 and 13 found that Feature Envy was not 
significantly associated with defects. Study 13 found that 
Data Classes were not associated with significantly more 
faults than the other classes. Study 13 also found that 
Refused Bequest was not positively associated with faults. 
Study 12 found that Shotgun Surgery was not associated 
with faults, whereas Study 13 found that it was associated 
with faults. 

Consequently, the existing studies give no clear 
indications about whether any of the code smells are 
harmful. Some studies have contradictory conclusions 
(e.g., Studies 7-8 vs. Study 10 on God Class and Study 12 
vs. Study 13 on Shotgun Surgery), and confirmatory 
studies are scarce (with the exception of the results on the 
COBOL systems from Studies 1 and 5). A potential reason 
for the inconclusive results is the variation in the 
dependent (outcome) variables and in the level of control 
over the relationships among them.  

Existing studies have two primary categories of 
dependent variables: effort (the amount of time spent to 
finish the tasks) and quality of the resulting product. 
Only Studies 7 and 11 measured effort directly; that is, the 
actual amount of time spent was recorded (Study 7 used 
video recordings, whereas Study 11 used IDE 
instrumentation). Studies 3, 9 and 10 purported to 
measure effort, but because of the lack of direct 
measurements, they used surrogates. Study 3 used 
change likelihood (the ratio between the number of 
revisions to the method and the number of revisions to 
the overall system) and change impact (the average 
percentage of the number of co-changed methods). 
Studies 9 and 10 used change frequency (in terms of the 
number of revisions) and change size (in terms of code 
churn size). These studies did not reference earlier work 
that had validated these measures as surrogates for effort. 
To help interpret the results from these earlier studies, we 
report the correlations between these measures and the 
implementation effort in our context in Section 4.3.  

TABLE 2
VARIABLES INVOLVED IN THE STUDY

Type Variables

Dependent variable Effort (seconds spent maintaining a file)

Independent variable Number of smells of 12 types in the files on 
which the developers worked on during the 
maintenance tasks.

Control variables System, Developer, Round, File size (LOC), 
Revisions (predictor of quality)

Context variables Task, Density of smells (no. of smells per 
KLOC of code)
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The quality measures also varied substantially among 
the studies (see Table 1). Studies 7, 8 and 11 assessed 
quality in terms of correctness. Studies 7 and 8 also 
defined completeness and consistency as part of quality. 
The remaining studies measured the number of defects, 
faults or errors per class or line. Study 1 used the number 
of revisions as a dependent variable that represented 
quality. That study argued that a module is, on average, 
less maintainable the more times that the module has 
been revised. 

Other reasons for the inconsistent results in the 
existing work may be the variations in the context [12] 
and in the rigor of the research method [23]. The context 
variations include the domain and size of the systems, the 
type and size of the tasks, the subjects conducting these 
tasks and the smell detection procedures. The research 
methods for the studies in Table 1 include two controlled 
experiments (Study 8 lasted one and a half hours and was 
conducted with students, whereas Study 11 was 
conducted with students and professionals who were 
given a few questions related to the comprehension of 
code; each question took 2-5 minutes to answer), one case 
study (Study 7), two studies that analyzed existing code 
in commercial systems (Studies 1 and 5) and nine studies 
of OSS (Studies 2-4, 6 and 9-13). To clarify some of the 
inconsistencies in the extant literature, we conducted the 
study reported in this article.  

3 STUDY DESIGN 
We hired six developers who performed three 
maintenance tasks each on two of four functionally 

equivalent but independently developed Java systems. 
The maintenance tasks were two adaptive ones (platform 
adjustments) and one perfective one (functionality for 
tailored reports). The amount of time that each developer 
spent on each file was recorded automatically. We 
analyzed whether the number of smells in the file affected 
effort. Hence, the unit of analysis was the Java file. In 
total, 298 of the 379 distinct Java files in the four systems 
were modified by at least one developer during the 
course of the maintenance tasks. Table 2 shows the 
variables in the study. The remainder of this section 
describes the variables that we measured and analyzed, 
the tools that we selected for smell detection, the practical 
context of the study and our modeling approach. 

3.1 Dependent, Independent and Control Variables 
To measure the exact amount of time (effort) that a 
developer spent maintaining each file, we instrumented 
Eclipse with a plug-in called Mimec [25], which can 
capture various IDE events, including editing, executing, 
navigating, reading and searching.  

Note that many factors unrelated to code smells may 
affect the effort to implement a modification to a file. 
Some systems may be more difficult to understand than 
others, some developers might be faster than others, and 
developers may be faster in the second round than in the 
first round. Therefore, we included System, Developer 
and Round as variables to control for their potential 
confounding effects.  

Maintaining larger units of software generally requires 
more effort. Thus, it would not be surprising to find that a 
developer spends more time on larger files. Because of 

TABLE 3
NUMBER AND DENSITY OF CODE SMELLS PER TYPE IN THE SYSTEMS

LEGEND: THE DARKER SHADING, THE HIGHER SMELL DENSITY

System
Number of Java files

Java LOC

A B C D Total
63 168 29 119 379

8205 LOC 26679 LOC 4983 LOC 9960 LOC 49827 LOC
Code smell N Density N Density N Density N Density N Density
Feature Envy 37 4.51 34 1.27 17 3.41 25 2.51 113 2.27
Data Class 12 1.46 32 1.20 9 1.81 24 2.41 77 1.55
Temporary variable used for several purposes 12 1.46 31 1.16 6 1.20 4 0.40 53 1.06
Shotgun Surgery 7 0.85 17 0.64 0 0.00 13 1.31 37 0.74
ISP Violation 7 0.85 8 0.30 1 0.20 11 1.10 27 0.54
God Method 4 0.49 14 0.52 3 0.60 5 0.50 26 0.52
Refused Bequest 17 2.07 8 0.30 0 0.00 1 0.10 26 0.52
Data Clump 8 0.98 2 0.07 3 0.60 8 0.80 21 0.42
God Class 1 0.12 5 0.19 3 0.60 2 0.20 11 0.22
Duplicated code in conditional branches 1 0.12 4 0.15 2 0.40 2 0.20 9 0.18
Implementation used instead of interface 5 0.61 4 0.15 0 0.00 0 0.00 9 0.18
Misplaced Class 0 0.00 2 0.07 0 0.00 2 0.20 4 0.08
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the way most smells are defined, larger files are also more 
likely to contain (more) smells. In fact, one of the systems 
(System C, Table 3) had a few large files with much 
functionality in each file, whereas the remaining systems 
distributed the same functionality across many smaller 
files. Of course, these larger files generally had more 
smells than the smaller files. Files with at least one smell 
were, on average, twice as long as files without any smell. 
The Spearman correlation between file size and the 12 
smells was 0.53, on average, in the four systems. 

Furthermore, code smells are measures that are 
specific to object-oriented languages, whereas the size of a 
code unit can be defined more generally. Consequently, it 
makes little sense to consider the code smells as 
predictors of effort without first adjusting for a more 
fundamental predictor such as file size. Therefore, we 
included file (class) size as a control variable. A further 
discussion on the effect of file (class) size on code metrics 
can be found in [15]. Note that the notion of smell density 
was also introduced to adjust the number of smells with 
respect to code size; see Tables 2 and 3. 

A particular task may be implemented with varying 
levels of quality, which may affect the effort it takes to 
complete the task. In general, an individual may sacrifice 
quality to complete a task sooner; that is, more time spent 
on a task may increase the quality of the result. However, 
given that the task may be implemented in different 
ways, less optimal implementations are more likely to be 
both more difficult and more fault-prone. For example, if 
the initial approach does not work, a developer may need 
to reimplement it. Reimplementation leads to more effort 
and leaves less time to ensure that the working 
implementation is thoroughly verified. (See [7] for a 
further discussion of the relationship between time and 
quality in software engineering.) Therefore, we adjusted 
for work quality to ensure that the impact of smells does 
not simply reflect variations in the quality of a 
developers’ work. 

Perhaps the most commonly used quality attribute in 
software engineering is the number of defects. However, 
the acceptance tests showed few defects in the systems 
after the maintenance tasks had been performed. 
Therefore, it was not meaningful to use defects as a 
quality indicator at the file level. Instead, we used the 
number of changes completed in the course of the task as 
a quality indicator. The number of changes is typically 
found to be a good predictor of later defects, with more 
changes increasing fault-proneness [17], [33], [13]. 
Consequently, we also included the number of changes 
(revisions) performed to implement the tasks as the last 
control variable. The numbers were calculated using 
SVNKit [44], which is a Java library for obtaining 
information from the Subversion version control system. 
The developers were asked to commit at least once a day 

and ensure that the revision would compile without 
errors before the commit. 

3.2 Tools for Smell Detection 
As noted above, a large fraction of research on code 
smells is devoted to methods and tools that detect the 
smells. Consequently, available tools often operationalize 
the same smell differently. For the smell detection in this 
study, we aimed to find tools that reveal how they detect 
the smells and, preferably, tools that implement the 
strategies for smell detection that are described by 
Marinescu and Lanza in their comprehensive work in this 
area [28] [24]. 

We found and used the tools InCode [18] and Borland 
Together™ [8]. The 12 smells investigated in this study 
were those that these tools detected in the four Java 
systems used in our study. InCode detects the smells Data 
Class, Feature Envy and God Class and found all of them 
in our systems.  

Borland’s Together detected these smells as well (and 
returned results that were consistent with those of 
InCode) but also detected the other nine smells listed in 
Table 9 in the Appendix. The other smells that Together 
can detect but did not find in our systems were Long 
Message Chain, Switch Statements, “Subclasses Differ 
only in Methods returning Constant values" and 
"Subclasses have the Same Member". 

InCode is provided by the company Intooitus 
(Marinescu is a co-founder) and can be downloaded for 
free. Borland’s Together license cost us 700 euros. 
Consequently, using the same tools in replications of our 
work should be straightforward.  

3.3 Context  
The cost of developing the four systems varied widely: 
€18,000, €25,000, €52,000 and €61,000 [3]. The systems also 
varied in size and in the number and density of smells 
(Table 3). Table 3 is sorted by the number of occurrences 
of each smell. Feature Envy is at the top with 113 
occurrences and Misplaced Class is at the bottom with 
only four occurrences. Feature Envy and Data Class are 
the most common smells in all of the systems. In contrast, 
Refused Bequest has 17 and 8 occurrences in Systems A 
and B, respectively, but only one and no occurrences in 
Systems C and D, respectively. 

Three developers from a software company in the 
Czech Republic and another set of three developers from 
a software company in Poland were hired to perform the 
maintenance tasks. The developers were recruited from a 
pool of 65 participants in an earlier study on 
programming skill [6], which also included maintenance 
tasks. Based on the results of that study, these six 
developers were selected because they could program 
reliably at medium to high levels of performance, 
reported high levels of motivation to participate in the 
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study and were available to take part in new studies. In 
this case, the results of the former study became the pre-
test measures for our study. In general, using pre-test 
measures to maximize interpretability of the results is 
recommended [20].  

The developers implemented two adaptive tasks that 
were needed to allow the systems to become operational 
again. Additionally, the developers implemented a third 
task requested by the users. Each developer conducted 
the same three tasks on two different systems. There were 
two reasons for having the same developer maintain two 
systems. First, the relative impact of a system could be 
separated from the impact of the developer. Second, we 
could observe the developers’ learning process when they 
implemented the same tasks the second time. These two 
rounds also correspond to two different settings 
commonly found in maintenance work: maintainers who 
are newcomers to a system and maintainers who are 
already familiar with the system. We could then observe 
the relative impacts of developer/system/round. 
Although the systems were assigned randomly to each 
developer, the four systems had to be maintained the 
same number of times (two) by each developer, and all of 
the systems had to be maintained at least once in each 
round; see Table 4. Note that, although Developer 6 was 
allocated to System B in the second round, the developer 
did not manage to finish all of the tasks in the second 
round. Thus, the corresponding measures were excluded, 
resulting in a total of 11 Developer x System 
combinations. 

One or two of the authors were physically present 
during the maintenance work, which lasted three to four 
weeks in the Czech Republic and three weeks in Poland. 
The second author conducted an acceptance test once all 
the tasks were completed for one system. The set of test 
cases was based on different scenarios that considered the 
following aspects: functionality, performance, browser 
compatibility and security. The following checklist was 

used for each scenario to ensure correct functioning of the 
system: internal/external links, absence of broken links, 
field validation, error message for wrong input, 
validation of mandatory fields, database integrity, 
database volume robustness (e.g., large attachment files), 
access to functionality according to the user role and 
browser compatibility (Internet Explorer, Firefox and 
Safari).  

3.4 Modeling Approach 
We used a multiple linear regression model to represent 
the relationship between the hypothesized predictor and 
response (cf. the independent and dependent variables in 
Table 2). The control variables were added to the 
regression model as covariates. 

Software engineering data is often highly skewed, and 
a few outlier observations may substantially affect the 
results. Our data was not an exception. Therefore, we 
applied the natural logarithm to the number of smells, 
effort, file size and the number of changes to render the 
data suitable for multiple regression analysis. Using the 
natural logarithm reduces the skew of the response and 
predictors (linear regression assumptions include normal 
distribution of the residuals). Also, the effort models are, 
by their nature, multiplicative (e.g., COCOMO), and the 
logarithmic transformation converts them into additive 
models suitable to be fit via linear regression. All 
statistical analyses were performed using R [43]. 

3.5 Qualitative Data  
To track the progress and to record any difficulties 
encountered during the maintenance tasks, we conducted 
daily interviews (20-30 minutes) with each developer and 
longer interviews (60 minutes) after they had finished the 
tasks for one system. The developers did not recognize or 
formulate problems in terms of code smells, but the 
problems that they reported related to factors that may be 
associated with various smells. Note that identifying the 

TABLE 4
NUMBER OF FILES AND EFFORT (HOURS)

System Round Developer Modified files Read files Created files Total
N Effort N Effort N LOC Effort N Effort

A
1 1 28 19.2 (73%) 18 0.5 (2%) 9 588 6.6 (25%) 55 26.3
1 6 46 3.1 (21%) 4 0.6 (4%) 50 2425 10.9 (75%) 100 14.6
2 2 37 7.5 (86%) 2 0.0 (0%) 8 2080 1.1 (13%) 47 8.7

B 1 2 46 24.1 (60%) 63 6.1 (15%) 17 1947 9.8 (25%) 126 40.0
2 5 53 9.7 (58%) 42 0.5 (3%) 30 2860 6.6 (39%) 125 16.8

C
1 3 9 4.1 (38%) 9 0.1 (1%) 15 537 6.6 (61%) 33 10.8
1 5 24 8.5 (48%) 0 0 (0%) 14 829 9.3 (52%) 38 17.8
2 4 10 5.4 (92%) 6 0.0 (0%) 5 450 0.5 (8%) 21 5.9

D
1 4 26 9.5 (60%) 36 1.2 (8%) 19 1439 5.3 (33%) 81 15.9
2 1 76 15.9 (75%) 8 0.1 (0.5%) 24 1167 5.1 (24%) 108 21.1
2 3 20 7.1 (62%) 46 1.5 (13%) 22 1188 2.9 (25%) 88 11.5
Total 375 114.1 (60%) 234 10.6 (6%) 213 15510 64.6 (34%) 822 189.4
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effect of individual smells may be difficult because 
several smells are often lumped together in the same file. 
The analysis and discussion of the qualitative interview 
data is reported in another paper [45]. 

4 RESULTS

4.1 Distribution of Effort  
During the work on the maintenance tasks, some existing 
files in the system were modified, and some files were 
only looked at. Additionally, new files were created. 
Table 4 shows the number of files and the amount of 
effort spent on the files in each of these categories. The 
highest effort ratio for two developers who worked on the 
same system in the same round was almost two; that is, 
one developer spent almost twice the time of another 
developer. 

The table also reveals that the developers used 
different strategies with respect to the relative effort spent 
on the various file categories. For example, on System A 
in Round 1, Developer 1 spent 73 percent of the effort on 

modifying the existing files, whereas Developer 6 spent 
21 percent of the effort doing the same. The average 
percent of effort spent on modifying the existing files 
ranged from 21 to 76 percent. Only two developers spent 
more than 10 percent of their time reading the existing 
files without modifying them. No correlation was 
observed between the overall effort and the proportion of 
effort spent on modifying files or on creating new files. 
On average, the effort declined by approximately 40 
percent from the first round to the second round.  

Table 4 also shows that the number of created files 
varied from 5 to 50. The reason for this substantial 
variation was partly driven by the developers’ 
programming style. At the extreme was Developer 2, who 
created eight new files in System A with an average size 
of 260 LOC, and Developer 3, who created 15 files in 
System C with an average of 36 LOC.  

4.2 Regression Analysis 
Table 5 shows the four regression models that we fitted in 
this study. Model 0 tries to explain the maintenance effort 
based on our control variables: Developer, System and 

TABLE 5
RESULTS OF REGRESSION ANALYSIS

Measure Model 0 Model 1 Model 2 Model 3

Developer (p-value for F-statistic) 1.5e-08*** 2.7e-11*** 1.7e-12*** 3.9e-17***

System (p-value for F-statistic) .0004*** 2.7e-05*** 8e-06*** 7e-08***

Round (p-value for F-statistic) .0071** .002** .0011** .00013***

File size§ NA NA .76 .12(7e-10)*** .58 .1(4e-8)***

Changes (Revisions)§ NA NA NA 2.2 .19(2e-27)***

Data Class§ NA .25 .21(.24) .21 .2(.31) .25 .17(.15)

Data Clump§ NA .2 .34(.55) .083 .32(.8) -.28 .28(.3)

Duplicated code in conditional branches§ NA .25 .4(.53) .57 .38(.14) .19 .33(.56)

Feature Envy§ NA .72 .18(7e-5)*** .37 .18(.041)* .02 .16(.9)

God Class§ NA 1.4 .44(.002)** .71 .43(.1) .57 .36(.12)

God Method§ NA .0085 .3(.98) -.18 .28(.52) -.32 .24(.18)

ISP Violation§ NA .37 .36(.3) .07 .34(.84) .0015 .29(1)

Misplaced Class§ NA -.71 .87(.42) -.46 .82(.58) -.3 .7(.67)

Refused Bequest§ NA -.76 .31(.015)* -.81 .29(.0057)** -.65 .25(.0089)**

Shotgun Surgery§ NA .66 .33(.05)* .57 .32(.074) .11 .27(.7)

Temporary variable used for several purposes§ NA .56 .28(.046)* .12 .27(.67) .012 .23(.96)

Implementation used instead of interface§ NA .71 .36(.048)* .61 .34(.072) .54 .29(.064)
Model fit (adjusted R2) .15 .36 .42 .58
Legend: “***” indicates α = .001, “**“ α = .01 and “*“ α = .05

§If applicable, for each model, estimate | stdev(significance) is shown
(+) A positive estimate indicates that more effort is required
(–) A negative estimate indicates that less effort is required
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Round. An R2 of only 0.15 indicates that these 
variables do not fully explain the maintenance effort. In 
turn, this finding suggests that developer performance 
and differences among the systems and rounds were 
insufficient to explain the observed variations in effort. 
This result is not particularly surprising, because the 
developers were selected based on their pre-test scores, 
which suggests that they had relatively similar skills, and 
all of the systems had the same functionality. 
Furthermore, the model was fit at the file level, and the 
variations among the files may have been more important 
for explaining the variation in maintenance effort than the 
variation among the systems; that is, if the file properties 
are known, the additional information about the system 
to which the file belongs may not be important. 

Model 1 introduces the effect of the various code 
smells (with Developer, System and Round as co-
variates). The table shows that Feature Envy and, to some 
extent, God Class were associated with more effort. To a 
lesser extent, the same was also true for “Temporary 
variable used for several purposes”, “Implementation 
used instead of interface” and Shotgun Surgery. In 
contrast, the Refused Bequest classes indicated a small 
decrease in effort. Note that we essentially performed a 
multiple comparisons test by including all of the smells in 
the model. In other words, after a suitable Bonferroni 
correction, the predictors at the α = 0.05 level will no 
longer be statistically significant. Furthermore, the R2 
was not high at 0.36. 

We included the results of Model 1 to allow for 
comparisons with earlier work that did not consider file 
size or any quality indicator as a predictor of maintenance 
effort. The relatively low  of Model 1 suggests that 
code smells have limited impacts on maintenance effort.  

Model 2 adds file size to Model 1 and improved the 
model fit (  = 0.42). However, the negative effect of 
the smells was reduced. Feature Envy was now 
significant at α = 0.05, and God Class, “Temporary 
variable used for several purposes”, “Implementation 
used instead of interface” and Shotgun Surgery appeared 
to have no effect. However, the positive effect (decrease 
in effort) for classes with Refused Bequest was now 
significant at α = 0.01. 

Model 3 adjusted for file size and the number of 
changes and substantially improved the fit (  = 0.58). 
We were concerned that the larger files would have lower 
quality, which would manifest itself in a greater number 
of changes, but the collinearity measured via Variance 
Inflation Factor (VIF) was only 1.6. Only Refused Bequest 
was still a significant predictor of effort at α = 0.01 in 
Model 3. Hence, the interpretation is that if we keep file 
size and the number of changes constant, then only the 
Refused Bequest smells in the file will significantly affect 
the effort needed to maintain the file but in a positive 

direction: effort will decrease. 
If we exclude the smells from Model 3, the  

remains at 0.58. This finding implies that the model fit 
does not increase by adding smell measures to file size 
and quality. In other words, code smells are not needed to 
explain the maintenance effort if we adjust for file size 
and the number of changes. If we exclude the smells and 
the changes from Model 3 (i.e., only file size remains), the 

 becomes 0.38. This result indicates that a single 
predictor of file size achieves a better fit than all of the 
smell predictors. We argued above for including file size 
and the number of changes (as an indicator of quality) in 
the regression model, and our analysis confirmed that file 
size and the number of changes were both significant (α = 
0.001) predictors of effort; see Models 2 and 3. Thus, code 
smells need to add explanatory power even after 
adjusting for these more fundamental parameters to be 
relevant. In our study, this did not happen. 

The regression diagnostics did not show surprises: A 
QQ plot showed approximately normal residuals, the 
largest VIF was 2.98 for ISP Violation (well below 10, 
which is considered to indicate a serious collinearity 
issue), and the residual plot did not reveal patterns or a 
suggestion of a non-constant variance. The only 
Spearman correlations above 0.5 in Model 3 were 
between ISP Violation and Shotgun Surgery (0.68) and 
between God Method and God Class (0.64). 

4.3 Churn and Revisions as Surrogates for Effort  
Many studies in software engineering use code churn or 
revisions as surrogate measures of effort (e.g., Studies 3, 9 
and 10 in Table 1). However, we found only two studies 
that investigated the association between effort and code 
churn or effort and revisions at the file (module) level. 
Specifically, El Emam [14] analyzed 98 corrective 
maintenance tasks in a 40 KSLOC systems application 
written in C. He found a moderate, significant correlation 
(Spearman's  = 0.36) between maintenance effort and 
code churn. Mockus and Votta [30] investigated 170 tasks 
in a very large commercial system. They found that churn 
(added and deleted lines), duration and type of the task 
were needed to explain effort with large and corrective 
tasks requiring more effort. Our study found a large 
correlation (Spearman's  = 0.59); see Table 6.  

TABLE 6
CORRELATION EFFORT AND CHURN/REVISIONS

Files Variable by Variable ρ Prob>|ρ|
Modified Effort Code churn 0.59 <.0001*
(N=375) Effort Revisions 0.47 <.0001*

Revisions Code churn 0.65 <.0001*
New Effort Code churn 0.66 <.0001*
(N=213) Effort Revisions 0.53 <.0001*

Revisions Code churn 0.56 <.0001*
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One reason for the difference among the studies may 
be that the maintenance tasks were corrective in study 
[14], whereas they were adaptive and perfective in our 
study and of all types in study [30]. It may generally be 
the case that the number of lines changed per unit of 
effort is smaller for corrective maintenance tasks than for 
adaptive and perfective maintenance tasks [30]. For the 
changes in the new files, we found an even higher 
correlation between effort and code churn (0.66).  

Based on his result, Emam stated that “analysts should 
be discouraged from using surrogate measures, such as 
code churn, unless there is evidence that they are indeed 
good surrogates” [14]. We agree that one should be 
cautious when using surrogates for effort, but given the 
lack of real effort data, our results indicate that code 
churn may be a reasonable surrogate for non-corrective 
maintenance effort.  

5 DISCUSSION
After adjusting for file size and the number of changes, 
we found that among the 12 common code smells, none 
of them were associated with more effort. In contrast, 
Refused Bequest was associated with less effort. Only 
minor improvements in model fit were due to code 
smells. Just two predictors, file size and the number of 
changes, explained approximately twice as much of the 
variance in the regression models as the code smells with 
12 predictors did. Therefore, if Occam’s razor approach is 
used (i.e., ceteris paribus, choose a simpler explanation 
rather than a complex one), the 12 code smells that we 
investigated appear to be superfluous for explaining 
maintenance effort. Consequently, although some code 
smells appear to measure aspects of “bad design“ beyond 
what file size and file size in combination with the 
number of changes can capture, our results indicate that 
the present focus in research and industry on “bad 
design” as operationalized by code smells may be 
misdirected. 

5.1 Large Class and Long Method 
Our results indicate that size is an important driver of 
effort. There is a medium to large, significant (p < 0.01) 
correlation between size (LOC) of files and effort (System 
A: ρ = 0.37; System B: ρ = 0.61; System C: ρ = 0.58; System 
D: ρ = 0.48). One might then argue that it is likely that the 
smells Large Class and Long Method [16] would be 
significantly associated with effort. We did not 
investigate those smells because the tools we used 
(InCode and Borland Together) do not support them. 
Instead, these tools support God Class and God Method. 
Conceptually, a Large Class is defined to have many 
instance variables and many long methods [16], whereas 
a God Class controls much of the processing in a system 
[38]. God Classes may be detected by the use of metrics 

such as Weighted Method Count (WMC), Tight Class 
Cohesion (TCC) and Access To Foreign Data (ATFD) [24]. 
In practice, God Classes are often large, and The Borland 
Together White Sheet rephrases Marinescu’s statement 
that the design problem represented by God Classes “can 
be partially assimilated with Fowler’s Large Class bad-
smell” [28].  

The difference between God Method and Long 
Method is similar to the difference between God Class 
and Large Class. Long Methods have a large number of 
lines of code. In addition to being long, God Methods 
have many branches and use many attributes, parameters 
and local variables.  

Nevertheless, we found that the aspects of God Classes 
unrelated to size are not associated with increased effort. 
Therefore, at least in our context, the corresponding size-
only-defined smells Large Class and Long Methods 
would probably be good indicators of code that requires 
more effort to maintain. 

5.2 Smell Addition and Removal During 
Maintenance Tasks

After conducting the regression analysis, we investigated 
whether the developers increased or reduced the number 
of smells while implementing their maintenance tasks. 
Table 8 shows the increase in percentage in LOC, the total 
number of smells and the four smells that were indicated 
with an effect (even small) in Model 3 of Table 5. A minus 
indicates a reduction. Note that the developers 
themselves initiated all refactoring during the projects 
and were not aware that the study was concerned with 
the effect of smells on maintenance effort.  

A six percent reduction in the number of smells was 
observed. The smell that had the highest association with 
increased effort (Feature Envy) in Models 1 and 2 was 
also the smell that was subject to the most refactoring 
(reduced by 26 percent on average). Interestingly, there 
were large differences between the systems. Besides 
System A, the developers who modified the same system 
consistently increased or reduced the number of smells. 
For example, the total number of smells in the whole 
system increased from 111 to 133 (a 19 percent average 
increase in each file) in System C but declined from 172 to 
116 (35 percent average decrease in each file) in System D. 
(Feature Envy increased by 21 percent in C and decreased 
by 94 percent in D.)  

Moreover, a medium to large correlation (Spearman ρ 
= 0.5) was observed between the number of changes 
(revisions) and the increase in the total number of smells. 
This finding indicates that the developers who revised 
most often also introduced the most smells. However, 
there were great variations among the systems. No 
correlation was observed in System D between the 
number of revisions and increase in smells. 
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Hence, in future work, we will explore in more detail 
how various smells may affect the way maintenance is 
conducted over time. In particular, we will investigate 
how the relationship between the various code smells, file 
size and system size affects refactoring strategies. 

5.3 Implications for Research 
After adjusting for size, the results of our study contrast 
with most of the results in other empirical studies on the 
effect of code smells on effort. For example, the significant 
effect for God Classes and the small effect for Shotgun 
Surgery disappeared when we adjusted for file size.  

Without accounting for the size of the software unit, 
many studies on code smells have found that large 
systems, classes and methods (e.g., God Classes, Brain 
Classes and God Methods) are subject to more effort, 
changes and defects than smaller systems, classes and 
methods. The fact that the effort, change frequency and 
the number of defects measured in absolute terms (i.e., 
not per size unit, such as LOC and function points) are 
higher in larger units than in smaller ones is a trivial 
result. Therefore, to determine the incremental effect of a 
code smell (or any other code metrics), researchers should 
use a measure of size as a covariate [39]. 

Given the focus on code smells and refactoring within 
the context of agile methods, we call for replications of 
our study in other controlled industrial settings. 
Furthermore, given the impact of file size on maintenance 
effort, we also encourage research on methods, 
techniques and tools to reduce code size without 
compromising other aspects of quality (e.g., avoid 
reducing the size of large files by creating smaller 
additional files or by reducing functionality or 
comprehensibility). 

5.4 Implications for Practice 
Our analyses indicate that refactoring classes with the 12 
investigated code smells is unlikely to reduce effort. 
Consequently, developers should not be concerned with 
these smells in their code for the purpose of reducing 
effort. Instead, effort may decrease by reducing file size 
(which is a basic file property that is always available) 
and improving work processes to reduce the number of 
revisions. Of course, the methods by which developers 
should achieve these tasks are not trivial. For example, 
reducing the amount of functionality in one file (for 
example, refactoring a God Class) will also lead to a 
higher number of total files or larger other files. At the 
system level, the increased risks caused by creating more 
files in a system may offset the savings achieved by 
reducing the size of a large file. The distribution of the 
same functionality over more files may also fail to reduce 
maintenance effort. Although large files may be 
eliminated, many more files will be created, with each file 
requiring a smaller amount of maintenance effort. These 

smaller efforts may add up to a greater amount of total 
effort than the larger efforts needed for a few large files. 
Note that whether centralization or delegation is more 
beneficial may depend on developer skill level. In an 
experiment on the effect of a centralized versus delegated 
control style, the former was better for the junior and 
intermediate consultants, whereas the latter was better for 
the senior consultants [5]. 

This tradeoff can be illustrated by comparing Systems 
C and D. Table 7 shows that the system with the most 
LOC in total (System B) required the most effort, whereas 
the one with the fewest LOC (System C) required the least 
amount of effort. (Table 7 pertains to the files in all of the 
used languages, not only Java. The effort in the last 
column was adjusted to account for the fact that some 
systems had more second round developers than other 
systems. This disparity led to an imbalance in the 
measured effort.) Table 7 also shows that, although 
Systems C and D had approximately the same number of 
LOC in total, the files in System C were twice as large as 
those in System D. In this case, it seemed better to have 
fewer but larger files. 

6 Limitations 

6.1 External Effects 
This study analyzed the relationship between the amount 
of effort spent on maintaining a file and the presence of 
code smells in that file. However, developers may work 
around smelly files; that is, instead of modifying a smelly 
file, developers could find it easier to duplicate code 
fragments of the file. If a piece of code is copied into a 
new file and the modified functionality is implemented 
there, the effort for the modification would be associated 
with the new file instead of the smelly one. To investigate 
this potential threat, we identified the code that was 
copied across files in the four systems by using the Simian 
tool [40]. We found that the probability of such copying 
was independent of the smell density in the file (i.e., only 
file size mattered). Additionally, no correlation existed 
between the size or number of code fragments copied 
from a file and the smell density of that file. Furthermore, 
we suspect that the developers did not work around 
high-smell files because the number of smells in the files 

TABLE 7
LOC AND EFFORT IN THE FOUR SYSTEMS

System # Files 
total

LOC 
per 
File

Total 
LOC

Mean Total 
Effort 
(hours)

Effort 
adj. wrt 
round

A 107 149 15943 22 24
B 161 189 30429 31 39
C 58 180 10440 16 17
D 127 89 11303 19 28
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was mostly reduced as a result of the maintenance work; 
see Section 5.2. 

The effect of some smells may be restricted to the 
particular file in which the smell occurs (e.g., God Class). 
Conversely, other types of smells may hinder 
maintenance outside of a particular file’s scope. For 
example, a file with Feature Envy uses more data in 
another file (class) than that particular file does. However, 
measuring the effort on a file that may be due to a smell 
in another file is far from trivial. 

6.2 Detection of Code Smells 
Operationalizing the definitions of the various code 
smells to render them automatically detectable is a 
subjective exercise. A discussion of such 
operationalizations is beyond the scope of this article. In 
this study, we utilized the tools InCode [18] and Borland 
Together™ [8] to compute the number of each type of 
smell in each Java file. These tools do not provide 
parameter settings by the user. Although this makes the 
tool developers fully in charge of the threshold values for 
detecting smells, the given values for detection would be 
consistent for all researchers who want to use the same 
tools (and same version) in replications of our work. 
Using other tools with other operationalizations of smell 
definitions and other strategies for smell detection might 
have produced different results. 

6.3 Smells versus Maintained Code 
We found that the effort to change code with smells was 
not significantly higher than the effort to change code 
without smells. However, an issue is whether the specific 
maintenance tasks required mostly changes to code 
without smells by chance or whether the developers 
chose to work around code with smells. First, we consider 
smells defined at the class (file) level. Our analysis 
includes only files on which developers spent some effort. 
Some of these files were modified, and some were only 
read. While 70 percent of the modified files had at least 
one smell, only 47 percent of all read but not modified 
files had at least one smell. The fractions were 
significantly different (Fisher test p-value = 0.006), which 
suggests that among the worked-on files, the files with 
smells were more likely to be modified. On average, 61 
percent of the smelly files were modified during the 
maintenance tasks, whereas 43 percent of the non-smelly 
files were modified. This means that the developers did 
not work around smells but, in fact, were more likely to 
work on files with smells.  

However, this analysis may be too simplistic, because 
files with smells were larger and larger files had more 
smells. Thus, we may obtain the result that files with 
smells were more likely to be modified but only to the 
extent that they were larger. The proportion of code in 
worked-on files that had smells was 75 percent. The 

proportion of code in worked-on files that were modified 
was 77 percent. Consequently, if we adjust for size, the 
files with smells do not appear to be more (or less) likely 
to be modified because these two code proportions are 
very similar. 

Our infrastructure did not allow measuring the effort 
of changing a single method for smells defined at the 
level of method, only the effort of changing the entire 
class (file). Consequently, it is conceivable that the 
changes in classes with smelly methods were 
concentrated on the non-smelly methods; thus, not 
leading to higher effort and indicating a threat to validity 
of the results concerning method-level smells.  

Nevertheless, we believe that it is unlikely that the 
well-defined, comprehensive maintenance tasks 
systematically required less change to parts of classes 
containing methods without smells. Furthermore, if 
developers managed to perform the given tasks 
efficiently by avoiding code with smells, one may 
nevertheless argue that the smells may not be that 
harmful. 

6.4 Long-Term Effects of Code Smells 
The maintenances tasks performed in this study were the 
first major changes to the code base after the systems 
became operational. Therefore, the software had not had 
a chance to “decay” at the time when we investigated the 
effect of smells. We cannot exclude the possibility that the 
effect of smells may manifest itself only after multiple 
rounds of maintenance. 

6.5 Subjects, Tasks, System and Smells 
We selected developers who had relatively similar skill 
levels to reduce the likelihood that skill would affect the 
results. Still, the external validity would have been 
greater with a larger sample of subjects. However, almost 
all other studies of this kind used convenience sampling. 
In contrast, we sampled six developers from a pool of 65 
developers based on a single criterion. We hired the 
selected developers for a total cost of approximately 
50,000 euros. Increasing the number of subjects would 
have increased the costs beyond the available funds. 

Similar to using professional developers, we wanted 
the tasks that they perform to represent “typical” tasks in 
the industry [4]. However, no well-defined way of 
identifying representative or typical tasks exists in 
software engineering. Additionally, no standard 
taxonomy for classifying task complexity is available [42]. 
Nevertheless, in our study, we did not need to look for 
(artificial) representative tasks. We used real tasks. The 
two adaptive tasks had to be performed to allow the 
systems to become operational again, and the third task 
was requested by users of the systems. 

Furthermore, the scope of this study was real, albeit 
small, web-based information systems primarily 
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implemented in Java. The 12 smells identified in these 
systems constitute a subset of all the smells defined in the 
literature. Whether the results of this study are valid for 
other developers, tasks (including corrective and 
preventive maintenance tasks) and systems with other 
smells must be explored in other studies. 

7 CONCLUSIONS
We conducted the first empirical study on the effect of 
code smells on software maintenance effort in a 
controlled industrial setting. We used multiple linear 
regression analysis in which all of the smells were 
investigated in the same model. We found that without 
any adjustments, files with Feature Envy and God Class 
(to a lesser extent) and (to an even lesser extent) 
“Temporary variable used for several purposes”, 
“Implementation used instead of interface” and Shotgun 
Surgery were associated with more effort than files 
without these smells. The smell Refused Bequest was 
associated with a small reduction in effort.  

However, after adjusting for file size and the number 
of changes (revisions) as quality predictor, we found that 
none of the code smells remained a significant driver of 
effort. In contrast, the code smell Refused Bequest 
contributed significantly to less effort. File size and the 
number of revisions were responsible for almost all of the 
variance explained by the model. 

Given that refactoring software is a time-consuming 
and error-prone activity, one should investigate when 
refactoring is beneficial. In our study, the 12 types of code 
smells turned out to be harmless with respect to effort. 
Other types of smells and the same 12 types in other 
settings may still be harmful.  

Overall, if more follow-up studies with professionals 
as subjects support our results, it may be questioned 
whether the present focus in research and industry on 

“bad design” as operationalized by code smells is 
misdirected. Focusing more on code size and the work 
practices that limit the number of changes may prove 
more beneficial for reducing maintenance effort. 

APPENDIX

The 12 code smells investigated in this study are 
explained in Table 9. 
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