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Computing ischemic regions in the heart with the
bidomain model; first steps towards validation

Bjørn Fredrik Nielsen, Marius Lysaker and Per Grøttum

Abstract—We investigate whether it is possible to use the
bidomain model and body surface potential maps (BSPMs) to
compute the size and position of ischemic regions in the human
heart. This leads to a severely ill posed inverse problem for a
potential equation. We do not use the classical inverse problems
of electrocardiography, in which the unknown sources are the
epicardial potential distribution or the activation sequence. In-
stead we employ the bidomain theory to obtain a model that
also enables identification of ischemic regions transmurally. This
approach makes it possible to distinguish between subendocardial
and transmural cases, only using the BSPM data.

The main focus is on testing a previously published algorithm
on clinical data, and the results are compared with images taken
with perfusion scintigraphy. For the four patients involved in
this study, the two modalities produce results that are rather
similar: The relative differences between the center of mass and
the size of the ischemic regions, suggested by the two modalities,
are 10.8%±4.4% and 7.1%±4.6%, respectively. We also present
some simulations which indicate that the methodology is robust
with respect to uncertainties in important model parameters.
However, in contrast to what has been observed in investigations
only involving synthetic data, inequality constraints are needed
to obtain sound results.

Index Terms—Electrophysical imaging, heart, inverse methods.

I. INTRODUCTION

The electrocardiogram remains the recommended and most
used screening tool for diagnosis and risk stratification of
angina pectoris and myocardial infarction [1]–[4]. It has,
however, several shortcomings; in 12-lead exercise testing the
most important are low sensitivity (50-68%) for diagnosing
coronary artery disease [3], [4], inability to locate the ischemic
lesion from the distribution of ST-segment depressions [5]–
[8], and uncertain relation between the size of ST-segment de-
pressions and angiographic or scintigraphic indices of disease
severity [6], [8]–[12].
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Simple amplitude measurements are still the basis for the
interpretation of the exercise ECG, e.g., the diagnostic criterion
of 1mm flat ST-depression was established in 1957 [13].
Although more advanced processing of the exercise electrocar-
diogram has been attempted [14]–[16], none has gained wide-
spread use. In 1997 Oster et al. introduced the term ”ECG
imaging” [17] to describe a system that could depict detailed
spatial and temporal information about the electrical activity
of the heart from body surface measurements, providing the
user with the visual advantages of imaging modalities. To
achieve this, an inverse solution of the potential equation must
be computed, which is a mathematically severely ill posed
problem that requires skillful regularization to provide a stable
solution [18]–[20]. So far, mainly epicardial potentials [21]–
[27] and activation sequences [28]–[32] have been computed.
For these two source formulations, a number of impressive
validation studies have been published, see e.g. [17], [27], [30],
[33]–[37], [38]–[41] and references therein.

Clinically, these methods have been used to assess activation
patterns during arrhythmias [33], [34], [36], activation patterns
in CRT-treated congestive heart failure [35], and the location
of infarct-related myocardial scars [37]. Ischemia has been
assessed by epicardial potential reconstruction, quantitatively
in dogs [41], and qualitatively in man during PCI [40].

To our knowledge Li and He [42] published the first method
for full transmural assessment of ischemia, based on artificial
neural networks. We have later developed and shown that a
full transmural static bidomain model can detect the location
and size of simulated ischemia [43]–[46], which has been
confirmed in a recent study by Wang et al. [47]. The purpose
of the present study is to examine, in a small and highly
selected group of patients with coronary heart disease, whether
this method can be extended to full 3D use in a common
clinical setting, namely exercise-induced ischemia. So far the
technology has only been tested on four patients. Although
the results are rather promising, far more tests are needed
in order to validate the clinical value of solving this inverse
problem. Our findings provide a proof-of-concept and show
that a complete validation might turn out successfully.

As briefly mentioned above, detailed information about the
voltage distribution in the myocardium from ECGs can also
be computed by artificial neural networks. This promising
approach has been studied in a number of by papers by
He et al. [42], [48], [49]. Furthermore, the validation issue
has been thoroughly addressed [50], including the possibility
of computing transmural extracellular potentials [51]. In the
present study we do not use artificial neural networks, but a
method based on the bidomain model.
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II. METHOD

A. Patients

Four male patients, age range 62-81 years, were included
in the study. The patients were recruited from the population
referred to and accepted for coronary evaluation at Oslo Uni-
versity Hospital on the suspicion of coronary artery disease.
All patients had exercise induced angina, positive exercise
ECGs and positive myocardial perfusion scintigrams during
exercise. Patients 1 and 2 had previous myocardial infarctions,
patients 3 and 4 had no previous heart disease.

B. Myocardial scintigraphy

The patients underwent 99mTc-Tetrofosmin SPECT my-
ocardial scintigraphy using a one-day (rest-stress) protocol.
A body weight dependent dose of 99mTc-Tetrofosmin (My-
oview), e.g. 300 MBeq for 70-100 kg weight, was used in
the rest study. The stress test was performed on an ergometer
bicycle with a ramp-up protocol of 25 W every minute until
symptoms appeared or 85% of age-adjusted expected maximal
heart rate was achieved or the patient was nearly exhausted.
Three times the resting dose of 99mTc-Tetrofosmin was sub-
sequently injected and the patient continued to bicycle at the
same or a slightly reduced load for 2 minutes. Scintigraphy
was performed 1 hour later. The images were analyzed on
a General Electric Xeleris system using the 4DMSPECT
package. Counts were normalized automatically by the hottest
pixel technique. The basal cardiac plane was set manually to
correspond to that of the MR reconstruction (see later). Polar
plots of the count ratios between the stress and rest images
were computed.

C. Body surface potential maps/electrocardiograms

Body surface potential maps (BSPM1) were recorded during
the exercise test with a BioSemi ActiveTwo system [52],
employing 72 leads. 64 leads were organized as 4 equidistant,
vertical strips each of 8 electrodes on the thorax and the same
on the back. In addition, 4 vertical, axillar leads were added on
each side. The standard Wilson central terminal was used as
reference. Signals were digitized at 2kHz per channel without
filtering. From the recordings a baseline sample of 180 seconds
(median) was extracted at rest as well as a 60 sec sample
starting at the time when 99mTc-Tetrofosmin was injected at
maximum exercise. It was assumed that the latter would make
the BSPM and the scintigram represent the same ischemia.

Post-processing was performed to measure the ST-segment
changes. First 50Hz powerline noise was removed by FFT
filtering. QRS templates were then generated in a two-pass
process with detection of peaks in the standard deviation as
the initial step. Beat detection was subsequently performed by
moving-window cross-correlation. Baseline drift was removed
by employing cubic spline techniques. QRS onset and the J-
point was detected by means of a spatial velocity function.
For each beat, the ST-deviation was measured as the average
amplitude in the interval J+50msec to J+75msec, and the

1We will use the terms BSPM and ECG synonymously, i.e. ECG does not
refer to the standard 12 lead procedure.

median2 of these averages was taken as the ST-segment shift
for the selected sample of beats. Finally, for each of the 72
electrodes the ischemia was assessed as the difference between
the ST-segment shift in the exercise sample and in the baseline
sample.

D. Magnetic resonance imaging

Magnetic resonance imaging (MRI) of the torso and the
heart was performed with a Siemens 1.5 T machine. Before
the examination, cod liver oil pills were taped on the torso in
the positions of the BSPM electrodes.

Two sets of MR images were recorded for each patient. One
set of images were recorded perpendicularly to the longitudinal
axis of the body with a distance of approximately 1.5 cm be-
tween the slices. For each image in this set, trained personnel
manually identified/marked points along the outer contours of
the lungs, the electrode positions and the outer contour of the
torso. The other set of images was recorded perpendicularly
to the longitudinal axis of the heart. The distance between the
slices was approximately 1.0 cm. The basal cardiac plane was
identified as the most cranial slice showing both the entire
right and left ventricular walls. For each image in this set, the
endocardial and epicardial contours of the heart were manually
segmented.

E. Geometry and fiber structure

A patient specific geometrical model of the human body was
generated from the MR images. Organ by organ, the manually
identified points were used to generate spline curves, and the
spline curves were transformed to smooth surface models by
a technique called lofting [53]. Finally, these surface models
were employed to produce a tetrahedrazation by a commercial
software package [54].

In order to assemble the complete torso model shown in
Figure 1, we need to take into account that the two sets of
MR images were recorded from different angles. The heart
must be transformed into the coordinate system of the torso
data. The MR-scanner provided us with rotational information
together with scaling. This means that the orientation and size
of the heart was known. However, the actual positioning of
the heart was done by hand. As a guide in this process, we
computed cross-sectional images of the assembled model and
compared them with the torso data by visual inspection.

It is a delicate issue to determine which organs that should
be included in the geometrical model of the patients. This
matter has been thoroughly studied for forward simulations,
see [55] and references therein. Nevertheless, due to the
significant amount of noise in clinical BSPMs, it is challenging
to assess the level of detailedness required. For the sake of
practical reasons, and because of the rather low quality of our
MR images, we restricted ourselves to model the torso, lungs
and heart with ventricles.

We also designed a myocardial fiber structure to implement
anisotropy in the heart model. The fibers are oriented in

2The median was used because it is considerably more robust to measure-
ment outliers than the mean. In an exercise situation, with periods of heavy
noise in some channels, it is important to choose a robust estimator.
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Figure 1. A mesh of the human torso, including lungs and heart with
ventricles. (The colors are only used to visualize the ventricles, lungs and
the body surface.)

the tangential plane of the ventricles with an angle to the
horizontal plane (of the heart) that varies linearly from -60
degrees on the endocardial surface to +60 degrees on the
epicardium [56], [57].

F. Inverse solution

We have previously suggested mathematical models and
numerical algorithms for the inverse problem of electrocar-
diography in which ischemic regions are the unknown source.
These schemes work almost perfectly on synthetic data. Un-
fortunately, and to our surprise, it turned out that none of
these methods worked on clinical data. The level set approach
[43], [44], [58] did not converge, and the fine resolution
procedure studied in [45] also failed. These algorithms do not
work on patient data because of the amount of noise in the
BSPM recordings. This was also confirmed by simulations
with synthetic data, by decreasing the signal to noise ratio.

In order to get sound results with clinical data we had to
• introduce inequality constraints,
• discretize the source term on a coarse mesh,
• normalize the exercise ECGs with BSPMs recorded dur-

ing rest.
Due to these significant changes, we will now present a rather
detailed description of our inversion procedure.

1) Bidomain model: Our method for computing ischemic
regions in the heart is based on the bidomain model [19], [20],
[59] of the electrical activity in the myocardium:

∂s

∂t
= F (s, v) in H, (1)

χC
dv

dt
+ χI(s, v) = ∇ · (σi∇v) +∇ · (σi∇ϕ) in H, (2)

∇ · (σi∇v) +∇ · ((σi + σe)∇ϕ) = 0 in H, (3)

where
• F and I are given functions,
• the exact form of F depends on the cell model in use,

see e.g. [19], [20] for details,
• I is the total ionic current term, i.e. the sum of the ionic

currents, see e.g. [20],
• s is a state vector incorporating ionic currents and gating

variables,

• v is the transmembrane potential,
• ϕ is the extracellular potential,
• σi and σe are the intracellular and extracellular conduc-

tivity tensors, respectively,
• H is the domain of the heart,
• χ is the area of cell membrane per unit volume,
• and C is the capacitance of the cell membrane.
With the currently available computing power, it is not

possible to use the complete bidomain model to estimate
ischemic volumes from ECGs. We thus need a simplified
set of equations. In the present framework this was accom-
plished by combining (3) with biomedical knowledge. More
specifically, we exploit the observation that the transmembrane
potential v is approximately piecewise constant throughout the
myocardium during certain time intervals of the heart cycle.
More specifically, v is almost piecewise constant during the
plateau and resting phases of a heart beat. Furthermore, the
properties of v depend on whether ischemic tissue is present.

Using mathematical symbols, this may be expressed as
follows. Let t1 and t2 be time instances during the plateau
and resting states of the transmembrane action potential, re-
spectively. Previous studies [60]–[64] suggest that reasonable
choices for short-lasting, exercise-induced injury may be

v(x, t1) ≈
{

20mV x in healthy tissue,
−20mV x in ischemic tissue (4)

and

v(x, t2) ≈
{

−80mV x in healthy tissue,
−70mV x in ischemic tissue. (5)

From (4) and (5) we conclude that

h1(x) = v(x, t1)− v(x, t2)

≈
{

100mV x in healthy tissue,
50mV x in ischemic tissue. (6)

We would like to emphasize that the values 100mV and 50mV
in (6) have been derived from the measured values presented
in (4)-(5), cf. [60]–[64].

In this paper we will refer to h1 as the shift in the
transmembrane potential. The associated ST shift r1 in the
extracellular potential ϕ is defined as the difference between
the plateau and resting values of ϕ:

r1(x) = ϕ(x, t1)− ϕ(x, t2). (7)

Since (3) must hold for t = t1, t2, it follows that

∇ · (σi(x)∇v(x, t1)) (8)
+∇ · ((σi(x) + σe(x))∇ϕ(x, t1)) = 0 in H

and

∇ · (σi(x)∇v(x, t2)) (9)
+∇ · ((σi(x) + σe(x))∇ϕ(x, t2)) = 0 in H.

By subtracting (9) from (8) we conclude that

∇ · ((σi + σe)∇r1) = −∇ · (σi∇h1) in H, (10)

where h1 is defined in (6).
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We focus on exercise-induced ischemia. The derivation
presented above therefore applies to the potential distribution
in the patient’s heart during exercise testing. As mentioned
earlier, the ECGs recorded during exercise were normalized
with respect to data acquired at rest. We thus also need a model
for the latter situation, which may be obtained as follows:
Assume that there are no perfusion anomalies in the patient’s
myocardium, that is

v(x, t) =

{
20mV t = t1, for all x ∈ H,
−80mV t = t2, for all x ∈ H

and the associated shift becomes

h2(x) = v(x, t1)−v(x, t2) = 100mV for all x ∈ H. (11)

By defining
r2(x) = ϕ(x, t1)− ϕ(x, t2),

we obtain an equation corresponding to (10)

∇ · ((σi + σe)∇r2) = −∇ · (σi∇h2) in H. (12)

Equations (10) and (12) are models of the shifts in the
transmembrane and extracellular potentials during exercise and
rest, respectively. A model for the difference between these
two states is simply obtained by subtracting (10) from (12):

∇ · ((σi + σe)∇r) = −∇ · (σi∇h) in H, (13)

where

r(x) = r2(x)− r1(x)

and, see (6) and (11),

h(x) = h2(x)− h1(x)

=

{
0mV x in healthy tissue,
50mV x in ischemic tissue.

Keep in mind that (13) only is valid in the heart H .
Outside the heart H , i.e. in the torso T , we assume that

there are no sources. This means that the shift r is governed
by a standard homogeneous potential equation:

∇ · (σo∇r) = 0 in T, (14)

where σo represents the conductivity in T . Throughout this
text we will assume that the body is insulated.

To summarize, the shifts r and h are modeled by (13) in
the heart H and by (14) in the torso T . Let B = H ∪ T
denote the volume occupied by the body. Combining these
facts with suitable conditions at the heart-torso interface and
Gauss’ divergence theorem, yield the variational form of the
model [43]: Find3 r ∈ V such that∫

B

∇ψ · (σ∇r) dx = −
∫
H

∇ψ · (σi∇h) dx for all ψ ∈ V,

(15)

3Here, V = H1(B), where H1(B) is the classical Sobolev space of
square integrable functions defined on the body B with square integrable
distributional derivatives.

where

σ(x) =

{
σi(x) + σe(x) for x ∈ H,
σo(x) for x ∈ T,

(16)

h(x) =

{
0mV x in healthy tissue,
50mV x in ischemic tissue. (17)

We assume that the conductivities σi, σe and σo are unaf-
fected by the presence of ischemic tissue. This is a reasonable
assumption because we consider exercised induced ischemia
and not (old) scars.

If the position, size and shape of the ischemic region is
known, then we can define h according to (17) and use (15)-
(16) to simulate the ST shift in the body B. In particular, the
effects on the ECG provoked by ischemia in certain regions of
the heart can be investigated [64]–[70]. In the present context,
this is the so-called forward, or direct, problem. This is of
course a very interesting subject in itself and may provide
useful information about the mechanisms responsible for ST
shifts.

2) Inversion: In the present text we are focusing on the
inverse problem. More specifically, on how to use BSPM
recordings and the model (15)-(16) to identify ischemic heart
disease. Due to the particular simple structure (17) of the shift
h in the transmembrane potential, it is clear that the ischemic
region can be computed if we manage to recover h from ECG
data.

The approximate recovery of h from ECG data d is ac-
complished by dividing the left ventricle into 60 subunits and
assigning a basis function to each of these units:

N1(x), N2(x), . . . , N60(x),

where

Ni(x) ≈
{

0mV x outside subunit i,
50mV x inside subunit i, (18)

for i = 1, 2, . . . , 60. We write ” ≈ ” to emphasize that each
of these functions also have a transition zone representing the
border between the inside and outside of the subunit. This
transition zone is needed because (15) involves the gradient
of h. Further information about the steepness and extent
of this border zone can be found in the next subsection.
Equation (18) is strongly linked and motivated by the concept
of a characteristic function in mathematics. The characteristic
function XD of a subdomain D, of a larger domain Ω, is a
function that is equal to 1 on D and 0 elsewhere. Hence,

Ni ≈ 50XDi ,

where Di is the domain occupied by subunit i.
The shift in the transmembrane potential is discretized by

putting

h(x) =
60∑
i=1

piNi(x) (19)

in (15). Our scheme for identifying ischemic zones is based on
the output least squares approach. More specifically, assuming
that we have e electrodes, we suggest recovering such regions
by minimizing the deviation between the ECG data

d = (d1, d2, . . . , de)
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and the simulated ST shift on the body surface. Expressed
with mathematical symbols, we may write this problem on
the form;

min
p1,p2,...,p60

1

2


e∑

j=1

[r(yj)− dj ]
2 + α

60∑
i=1

p2i

 (20)

subject to∫
B

∇ψ · (σ∇r) dx (21)

= −
∫
H

∇ψ ·

(
σi

60∑
i=1

pi∇Ni

)
dx for all ψ ∈ V

and

0 ≤ pi ≤ 1 for i = 1, 2, . . . , 60. (22)

Here, α > 0 is a regularization parameter and y1, y2, . . . , ye
are the positions of the electrodes. For α = 0 the problem is
known to be severely unstable, and we used the so called
L-curve method to estimate an appropriate value for this
parameter, see e.g. [71]. The effective numerical solution of
optimization problems of the kind (20)-(22) is a contemporary
research field. We employed a simple penalty method, see
Appendix A for details.

Simulations were performed with both transmural and
subendocardial setups;

• the support of Ni, for i = 1, 2, . . . , 60, occupied the
entire heart volume from endocardium to epicardium for
transmural lesions,

• subendocardial ischemic regions were represented by
letting the support of Ni, for i = 1, 2, . . . , 60, constitute
a certain percentage (< 100 %) of the endocardium-
epicardium distance, cf. the next subsection.

Consequently, for each patient we obtain two inverse solutions,
one using the apriori assumption that the lesion is transmural
and one resulting from the assumption that the ischemic area
is subendocardial. For these two solutions we computed the
deviation, using the standard Euclidean norm, between their
associated simulated BSPMs and the clinical BSPM. If the
subendocardial simulation produced the least deviation, then
the case was classified as subendocardial, otherwise transmu-
ral. This classification can thus be done fully automatically.

G. Forward simulation

In our forward model we have to construct a set of ap-
propriate basis functions (18) to represent the shift h in the
transmembrane potential (19). Due to the ill-posedness of the
inverse problem, the number of basis functions must be kept
low. On the other hand, using too few basis functions may give
a coarse representation of the ischemic region. Therefore, two
important questions to take into account are:

• How many basis functions are needed?
• How should the support of each basis function be chosen?
To find an appropriate number of basis functions for the

problem at hand, we used the trial-and-error method. In short,
we solved the forward/inverse problem by using 10, 17, 20,

Figure 2. Each of the 17 segments is assigned to one of the three major
coronary arteries.

33, 60 and 65 basis functions for the left ventricle. Based on
this study, we found that satisfactory results were obtained by
using 60 basis functions (but other choices may also be used).
At first glance, the numbers 10, 17, 20, 33, 60 and 65 may
seem rather arbitrarily, but there is a reason for this selection.
To see why, we must look at how the support of each basis
function was chosen.

For simulations presented in this paper, the support of each
basis function was based on the cardiac anatomy. By doing so,
the individual basis function was assigned to specific coronary
arterial territories. For years, cardiac imaging modalities have
segmented and displayed the heart based on specific coronary
arterial territories [72]. The 17 segment model displayed in
Figure 2 is commonly used in cardiac imaging. With this
model, each segment is assigned to one of the three major
coronary arteries: LAD, LCX and RCA. We used a similar
assignment for the basis functions in (19). Using 17 basis
functions, the support of basis functions 1 to 17 equaled
segments 1 to 17, respectively, in Figure 2.

Now, for simulations using a reduced or increased number
of basis functions, we merged or split the support of the basis
functions based on the coronary arterial territories, see Table I.
When the Basal, Medial and Apical regions of the heart (and
apex) were divided into finer segments, the division was not
done in the Basal-Apex direction, nor did we divide segments
in the epicardium-endocardium direction. The division was
only done in the angular direction.

Independent of the refinement level, each basis function in
Table I was constructed with a smooth boarder zone separating
the healthy and ischemic tissue). It has been reported that the
transition zone is rather narrow [73], [74]. We have earlier
[43], in a pure synthetic setting, investigated the robustness of
the present inverse ECG problem with respect to the width of
this zone, and we concluded that the solution of the problem
is quite robust with respect to this parameter4. Based on the

4In [43] a level set framework was used to represent the ischemic region,
but the stability results can be transfered to the present setting.
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Table I
NUMBER OF BASIS FUNCTIONS (= NUMBER OF SEGMENTS) AND THEIR

SUPPORT IN THE LEFT VENTRICLE. IT IS STANDARD TO USE 17
SEGMENTS, BUT IN THIS STUDY WE, IF NOT EXPLICITLY STATED

OTHERWISE, EMPLOYED 60 SEGMENTS, I.E. 60 BASIS FUNCTIONS.

Number of basis functions Basal Medial Apical Apex
10 3 3 3 1
17 6 6 4 1
20 6 6 4 4
33 12 12 8 1
60 18 18 12 12
65 24 24 16 1

findings discussed in [43], we represented the boarder zone in
terms of as a linear function, and the transition region occupied
approximately 30% of the volume for each direction in space.
This choice was also motivated by the fact that if one wants
to use a very steep transition, then a very fine computational
mesh is needed to obtain the necessary resolution.

As explained at the end of the previous subsection, simula-
tions were performed with both transmural and subendocardial
setups. It was simple to perform a transmural simulation since
we had constructed the basis functions such that each of them
had support in the entire endocardium-epicardium direction.
To perform a subendocardial simulation, we first calculated the
endocardium-epicardium distance associated with each grid
point within the left ventricle. Based on this, the minimum
endocardium-epicardium distance could be determined. This
distance is defined as md. For subendocardial simulations, the
ischemic extension into the heart wall was controlled by re-
stricting the support of each basis function in the endocardium-
epicardium direction. The support was now only defined over
the region from endocardium and 3/5 md into the heart wall
in the endocardium-epicardium direction. With this approach,
we had full control over the subendocardial extension, even
for varying wall thicknesses.

III. RESULTS

The procedure described above was tested on four patients.
More specifically, the parameters p1, p2, . . . , p60 in (19) were
estimated by solving (20)-(22). Figure 3 shows the results
obtained for these patients. The inverse solutions are visualized
in terms of a so called bulls eye plot and the coloring of each
cell shows the size of the associated pi ∈ [0, 1] parameter, see
(19). Also the scintigram is depicted in terms of the bulls eye
representation of the left ventricle, where the hashed regions
represent zones with reversible perfusion defects.

For patients 1, 2 and 4 the inverse solution estimated the
ischemic region to be subendocardial, whereas the lesion for
patient 3 was classified as transmural. As mentioned above, our
scheme does this classification fully automatically by solving
the inverse problem (20)-(22) twice, see the discussion at the
end of Section II-F for details.

Table II contains a quantitative comparison of the two
modalities:

• The relative difference between the center of mass, of the
lesions suggested by the two imaging techniques, varies
from 6.6% to 15.2% with arithmetic average 10.8% ±
4.4%.

Table II
A QUANTITATIVE COMPARISON OF ISCHEMIC REGIONS IDENTIFIED BY
PERFUSION SCINTIGRAPHY AND BY SOLVING THE INVERSE PROBLEM

(20)-(22).

Relative difference
Patient Relative difference of size:
number of center of mass Threshold 0.5 Threshold 0.6

1 9.3% 11.7% 5.0%
2 12.1% 10.0% 13.3%
3 6.6% 3.3% 3.3%
4 15.2% 3.3% 10.0%

Average 10.8% ± 4.4% 7.1% ± 4.6% 7.9% ± 5.4%

• The ischemic zones are represented by hashed regions
in the images taken with perfusion scintigraphy, i.e.
each pixel of the images is either classified as being
associated with a point in the heart with completely
normal perfusion or with completely abnormal perfusion.
That is, a threshold procedure has been used. In order
to obtain a reasonable comparison of the volumes of
the lesions identified by the two imaging techniques, a
similar threshold procedure must be applied to the results
generated by solving the inverse ECG problem. This was
accomplished as follows:

– First, the inverse solution was mapped onto the
unit interval [0, 1] by a linear map, with 0 and 1
corresponding to zero and full ST shifts, respectively.

– Thereafter, each subunit was classified as ischemic if
its associated (mapped) parameter was larger than a
certain threshold value T , otherwise the subunit was
identified as normal.

– Table II contains results with threshold T = 0.50
and threshold T = 0.60.

With T = 0.50 the arithmetic average of the differences
between the size of the ischemic regions suggested by
perfusion scintigraphy and by inverse ECG is 7.1% ±
4.6%. For T = 0.60 this arithmetic average is approxi-
mately of the same size, i.e. 7.9%± 5.4%. Nevertheless,
for each patient, using a threshold T = 0.60, instead
of T = 0.50, has a rather significant influence on the
estimated size of the affected area.

For each of the inverse solutions, we also computed the
correlation coefficient between the simulated and measured
BSPMs. Table III contains these numbers for patients 1-4.
More specifically, let

dtrue = (d1, d2, . . . , de)

and
dsim = (s1, s2, . . . , se)

denote the recorded and simulated BSPMs, respectively, where
e = 72 is the number of electrodes on the body surface of the
patient. The simulated BSPM, dsim, is computed by solving
the inverse problem (20)-(22) and thereafter defining

sj = r(yj) for j = 1, 2, . . . , e.

Table III reports the correlation coefficient between dtrue and
dsim for each of the four patients. This table also contains the
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root-mean-square-errors (RMSE):√∑e
1(si − di)2

e
.

A. Robustness

The sensitivity of the solution of the inverse problem (20)-
(22) with respect to some of the model parameters was
investigated.

Simulations with 40mV and 60mV shifts h(x) in the
transmembrane potential, instead of 50mV, were performed,
see equation (17). This only resulted in a constant scaling of
the inverse solutions depicted in the left column in Figure 3.
For example, the inverse solution generated by employing a
40mV shift for patient 1 is identical to what is shown in the
left panel, in the first row, in Figure 3, expect that the entire
solution is multiplied by a constant approximately equal to
40/50 = 0.8.

For the inverse solutions presented above, the left ventricle
was divided into 60 subunits. Inverse solutions were also
computed with 33 and 17 subunits, and the results obtained
for patient 1 with these discretizations are shown in Figure 4.
Qualitatively, the results are similar to those obtained with 60
cells, see top left panel in Figure 3. Quantitatively, we found
that:

• The relative difference between the center of mass (of the
lesions) computed with 60 and 33 subunits is 2.2%.

• The relative difference between the center of mass (of the
lesions) computed with 60 and 17 subunits is 2.0%.

• The range of the inverse solution decreases as the number
of cells increases. For example, the range in panel (b) in
Figure 4 is (0.0, 0.655), whereas in the top left panel in
Figure 3 the range is (0.0, 0.136).

We investigated whether changes in the assumed ”thickness”
of the subendocardial lesions had any significant impact on the
inverse solutions. More precisely, the simulations discussed
above employed an assumption of 3/5 subendocardial ”thick-
ness”. That is, the ischemic region occupied 3/5 of the en-
tire endocardial-epicardial distance. Changing this ”thickness”
from 3/5 to 1/5 or 4/5 did not cause any significant qualitative
changes in the inverse solutions, and the number of subunits
classified as ischemic was almost unchanged. Quantitatively,
we observed, for example, that for patient 1:

• The relative difference between the center of mass (of the
lesions) computed with 3/5 ”thickness” and 1/5 ”thick-
ness” is 1.7%.

• The relative difference between the center of mass (of the
lesions) computed with 3/5 ”thickness” and 4/5 ”thick-
ness” is 1.5%.

We also explored whether it was necessary to impose
inequality constraints on the parameters p1, p2, . . . , p60, see
(22). For each of the four patients, inverse solutions with
and without such constraints were compared. Figure 5 shows
such a comparison for patient 3, which was the case that was
most influenced by the inequalities. We observe that, if the
constraints (22) are omitted, then many of the parameters
p1, p2, . . . , p60, which constitute the inverse solution, may
become less than zero.

Table III
CORRELATION COEFFICIENT AND RMSE BETWEEN RECORDED AND

SIMULATED BSPMS

Patient number 1 2 3 4
Correlation coefficient 0.81 0.95 0.85 0.90

RMSE 0.03 0.04 0.04 0.04

Finally, a number of rather extreme tests were undertaken:
The BSPM of each patient was employed to compute inverse
solutions on the geometries of the other patients. That is,
completely ”alien” geometrical models were used. The results
are presented in [75], and they reveal that the methodology is
quite robust with respect changes in the geometrical model of
the patient.

IV. DISCUSSION

We have explored the possibilities for using the bidomain
model and body surface potential maps to compute the location
and size of ischemic regions in the human heart. The results
obtained by solving the inverse problem were compared with
scintigraphic images. The main focus was on testing a previ-
ously published algorithm on clinical data. In earlier studies,
this method has been reported to work well on synthetic cases.

Our approach is not based on the classical inverse problems
of electrocardiography, which employ the epicardial voltage
distribution or the activation sequences as sources for abnor-
malities observed in the ECGs. Instead, we use the bidomain
theory to obtain a model which allows full wall inversion.
That is, the inverse solution enables us to classify the lesions
as subendocardial or transmural.

For three of the four patients analyzed in this study, namely
patients 1, 2 and 3, the two modalities, inverse ECG and
perfusion scintigraphy, produced pictures that are qualitatively
similar; see the three first rows in Figure 3. The results
obtained for patient 4, visualized in the last row in Figure
3, are somewhat more inconclusive; both imaging techniques
identify a perfusion defect laterally, but the anteroseptal region
present in the scintigram is not that pronounced in the inverse
ECG analysis.

From a quantitative perspective, one might argue that the
images generated by inverse ECG match quite well with
those obtained with perfusion scintigraphy. In fact, the average
relative difference between the center of mass of the lesions,
estimated by the two modalities, was 10.8%±4.4%. Moreover,
the average difference in size of the computed ischemic
regions was 7.1± 4.6%. Further details can be found in Table
II.

According to Table III, both the correlation coefficient
and the root-mean-square-error between the simulated and
recorded ECGs/BSPMs are good for all four patients - includ-
ing patient 4. Furthermore, and in contrast to what has been
observed in pure in silico studies [45], inequality constraints
are needed to get acceptable results, see Figure 5. More
specifically:

• From the derivation presented in Section II-F it follows
that the variables p1, p2, . . . , p60, cf. equation (19), must
satisfy

pi ≥ 0 for i = 1, 2, . . . , 60.
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(a1) Patient 1, inverse solution (b1) Patient 1, scintigram

(a2) Patient 2, inverse solution (b2) Patient 2, scintigram

(a3) Patient 3, inverse solution (b3) Patient 3, scintigram

(a4) Patient 4, inverse solution (b4) Patient 4, scintigram
Figure 3. Panels (a1)-(a4) and (b1)-(b4) show bulls eye plots of the inverse solutions and scintigrams, respectively, for the four patients involved in this
study. The inverse solutions are visualized in terms of the parameters p1, p2, . . . , p60 employed to discretize the shift in the transmembrane potential, see
(19) and (20)-(22). Since the basis functions {Ni} have the unit mV, the parameters {pi} do not have any unit, see (18)-(19). The hashed regions in the
scintigrams show the areas with significantly reduced perfusion, i.e. classified by the scanner as (reversible) ischemic. (The coloring used in the scintigrams
visualizes the degree of perfusion, with white corresponding to 100% perfusion. This coloring is not important in the present study because we focus on the
regions with reversible perfusion defects, i.e. the hashed regions.)

This criterion is not fulfilled by the solution shown in the left panel in Figure 5. Hence, the inequality constraints
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(a) 33 subunits (b) 17 subunits

Figure 4. Inverse solutions computed for patient 1 with 33 subunits (a) and 17 subunits (b). These figures should be compared with the top left panel in
Figure 3, which shows the result obtained with 60 subunits.

(a) Inverse solution without inequality constraints (b) Inverse solution with inequality constraints

Figure 5. Effects of inequality constraints on the inverse solutions. These are the results obtained for Patient 3. The scintigram from this patient is shown in
the right panel in the third row in Figure 3. The correlation coefficients between the simulated and recorded ECGs are 0.91 and 0.85 for the images depicted
in (a) and (b), respectively.

(22) are needed in order to obtain inverse solutions that
are medically meaningful. This was, to a varying degree,
observed for all four patients.

• We observe that the correlation coefficient between the
simulated and recorded BSPMs is improved if the in-
equality constraints are removed from the inverse problem
(20)-(22), cf. the caption of Figure 5. From a mathemat-
ical point of view, this is not surprising: Removing (22)
implies that the cost functional (20) is minimized with
fewer constraints, which of course will lead to a solution
yielding a smaller value for the cost functional. Appar-
ently, deleting the inequality constraints also provides a
better correlation coefficient.

The robustness of the scheme studied in this paper was in-
vestigated, and a number of model parameters were perturbed.
Changing the assumed shift in the transmembrane potential,
caused by the presence of ischemic heart disease, only lead to
a constant scaling of the entire inverse solution. This can also
be verified from a mathematical point of view.

Reducing the number of subunits, employed to discretize
the left ventricle, did not qualitatively alter the results, and
the change in the center of mass of the estimated lesions
were moderate. Nevertheless, the range of the inverse solutions
decreased as the number of subunits were increased. The
latter phenomenon can be explained in a rather straightforward
manner:

• The projective regularization is weakened on finer parti-
tions, and consequently, more Tikhonov regularization is

needed. For the results presented in Figure 4 and in the
top left panel in Figure 3, the L-curve method estimated
the parameter values α = 0.0080 and α = 0.056 with 17
and 60 subunits, respectively - a significant increase of
the Tikhonov regularization parameter.

• Clearly, minimizing the cost functional (20) is a compro-
mise between making the deviation between the measured
and simulated BSPMs small and to determine a solution
that has a small Euclidean norm. Furthermore, as α
grows, the term

α
∑

p2i

”pushes” the solution (p1, p2, . . .) of (20)-(22) towards
zero.

• In short, if the number of subunits is increased, then
α increases which ”pushes” the solution of the inverse
problem towards zero. This explains why the range of the
inverse solutions on fine partitions (of the left ventricle
of the heart) is smaller, compared with results computed
on coarser meshes.

Our inverse ECG methodology turned out to be rather
robust with respect to uncertainties concerning the apriori
assumed ”thickness” of subendocardial ischemic regions - both
qualitatively and quantitatively. This can probably be explained
by the fact that changing this ”thickness” only causes the
associated synthetic-forward-BSPMs to change in magnitude,
not in shape. But the subject definitely needs to be thoroughly
investigated.
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A series of rather extreme tests were undertaken: The BSPM
of each patient was used on the geometries of the other
patients, i.e. not using patient specific meshes. According to
the results published in [75], these tests indicate, or at least
give hope, that patient specific models might not be needed in
the clinical setting. However, this issue must be much more
thoroughly analyzed.

In spite of these rather positive observations, the present
study also has its limitations:

• The algorithm was only tested on four patients.
• We only considered ischemic regions in the left ventricle

of the myocardium.
• Our methodology can distinguish between subendocardial

and transmural lesions. This classification, however, is
performed by employing a ”brute-force” approach, i.e.
by computing two inverse solutions and choosing the
solution which yields the least deviation from the clinical
BSPM. We have not explored whether the subendocardial
”thickness” can be estimated. In fact, our experiments
indicate that this might be difficult: We observed that the
inverse solutions computed with, apriori defined, thick-
ness 3/5 (of the endocardial-epicardial distance) were
quantitatively rather similar to those obtained with 1/5
and 4/5 thickness. The issue must be thoroughly analyzed.

• We maximally used 60 subunits in the partitioning of the
left ventricle. Ideally, one might want to employ finer
resolutions. However, this is a subtle issue: We used 72
electrodes on the body surface, and, in the clinical setting,
data recorded at some of these electrodes can not be used
due to the amount of noise in the signals. Consequently,
employing more than 60 subunits will typically lead to a
model with more variables than equations, i.e. a under-
determined linear system. In such cases, the associated
forward operator will have a nontrivial null space. It
is therefore questionable whether dividing the heart into
more than, approximately, 60 subunits is a good strategy,
unless further electrodes are used. In any case, increasing
the number of sub cells will make the problem more ill
posed, i.e. more unstable.

• In order to estimate the size of the ischemic region, we
employed a threshold procedure. The threshold parameter
T , of course, influenced the computed volume. Based
on results from four patients only, it is not possible to
estimate the ”correct” value for T. Far more tests and
comparisons with several modalities are needed. An issue
closely related to this problem, is the observation that the
range of the inverse solution decreases as the number of
subunits, used in the partitioning of the heart, increases.
Even though this matter is easily explained from a
mathematical point of view, the threshold algorithm must
be designed to tackle it.

• In addition to ST shifts, which is the main focus of the
present study, ischemic heart disease is well known to
cause shortening of action potential duration (APD). This
effect can not be included in our framework because
we consider a stationary model. In fact, if one wants
to consider changes in the APD, using the bidomain

equations, then one needs to use the complete model (1)-
(3). As mentioned above, for inverse solution purposes,
this is currently not possible, but, due to the steadily
increasing computing power and the development of
numerical mathematics, this might become an attractive
alternative during the next two decades.

• In this investigation we used a rather simple geometrical
model of the patients, i.e. only the lungs and the ventricles
where included. The remaining part of the body was
treated as a homogeneous bulk. Previous studies, focusing
on the forward problem, suggest that also other organs
will have a significant impact on the simulated BSPM,
see [55] and references therein. The effect of including
further organs in our model should therefore be explored.
Nevertheless, this is a very subtle issue because the
noise in the BSPM recordings might make it difficult to
obtain better results with a more sophisticated model. We
conclude that an in-depth study is needed.

• In clinical practice, the need for patient specific geomet-
rical models would constitute a severe limitation, and the
feasibility of using standardized geometries must there-
fore be studied. Optimization of the electrode number
and placement will also be important for clinical usability
[76].

• Myocardial scintigraphy and ECG measure two different
sides of exercise-induced, reversible, ischemic myocardial
injury; relative differences in myocardial perfusion and
ionic fluxes inside the myocardium, respectively. Both
methods have their own methodological problems and
confounders. Thus, we do not know the absolute truth
about the degree and extent of the injury. We only have
two methods that indirectly say something about the
injury.

In view of this discussion, it seems reasonable to conclude
that our results are promising and may serve as the first steps
towards validating an imaging technique based on solving
the inverse problem of electrocardiography. A large scale
validation is needed to further assess the clinical value of the
method, both in terms of locating and estimating the size of
the ischemic injury, and in terms of diagnostic thresholding,
sensitivity and specificity. Such a study must include a healthy
control group and preferably further modalities, e.g. angiog-
raphy.

APPENDIX

A. Penalty method

For implementational simplicity, we decided to use a penalty
method for the numerical solution of (20)-(22). Since the heart
was divided into only 60 subunits, this scheme turned out to
be fast enough.

The inequality constraints (22) are ”removed” from the
problem by adding a penalty term to the cost functional (20):

min
p1,p2,...,p60

1

2


e∑

j=1

[r(yj)− dj ]
2 + α

60∑
i=1

p2i
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+β
60∑
i=1

(max{0,−pi})2

+β

60∑
i=1

(max{0, pi − 1})2
}

subject to∫
B

∇ψ · (σ∇r) dx

= −
∫
H

∇ψ ·

(
σi

60∑
i=1

pi∇Ni

)
dx for all ψ ∈ V.

Here, β is a large positive constant, and β(max{0,−pi})2
or β(max{0, pi − 1})2 become large if pi is outside the unit
interval [0, 1]. We solved this penalized approximation of (20)-
(22) with a gradient method (steepest descent).
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