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Abstract. Product configuration in families of Integrated Control Sys-
tems (ICSs) involves resolving thousands of configurable parameters and
is, therefore, time-consuming and error-prone. Typically, these systems
consist of highly similar components that need to be configured similarly.
For large-scale systems, a considerable portion of the configuration data
can be reused, based on such similarities, during the configuration of each
individual product. In this paper, we propose a model-based approach to
automate the reuse of configuration data based on the similarities within
an ICS product. Our approach enables configuration engineers to manip-
ulate the reuse of configuration data, and ensures the consistency of the
reused data. Evaluation of the approach, using a number of configured
products from an industry partner, shows that more than 60% of con-
figuration data can be automatically reused using our similarity-based
approach, thereby reducing configuration effort.
Keywords: Product configuration, Internal similarities, Model-based
software engineering, UML/OCL, Feature Modeling.

1 Introduction

Modern society is increasingly dependent on embedded software systems such as
Integrated Control Systems (ICSs). Examples of ICSs include industrial robots,
process plants, and oil and gas production platforms. Many ICS producers ap-
ply product-line engineering to develop the software embedded in their systems.
They typically build a generic software, specifying a large number of interdepen-
dent configurable parameters, that need to be configured for each product accord-
ing to the product’s hardware architecture [6]. To configure the generic software,
engineers manually assign values to tens of thousands of configurable parame-
ters, while accounting for the constraints and dependencies between them. This
makes software configuration time-consuming, error-prone, and challenging.

In the literature, the area of product configuration is still rather immature
[22] and largely concentrates only on resolving high-level variabilities in feature
models [19] and their extensions [10, 11]. Feature models, however, are not easily
amenable to capturing complex architectural variabilities and dependencies in
embedded systems. Consequently, existing configuration approaches do not fo-
cus on configuration challenges in highly-configurable embedded systems, where
large numbers of configurable components need to be configured and cloned.



In a previous study [6], we identified characteristics of ICS families, and their
configuration challenges. Our studies show that ICSs, like many other embed-
ded systems, bear a high degree of structural similarity within their hardware
architectures to fulfill several product requirements, related for example to the
environment, safety, and cost efficiency. Structural similarities in hardware af-
fect software design and configuration, i.e., similar patterns of configuration are
repeated throughout the software configuration.

In this paper, we devise a model-based approach to automatically infer con-
figuration decisions based on the internal structural similarities of a product and
previously made decisions. Our solution (1) includes a similarity modeling ap-
proach for capturing structural similarities in terms of architectural elements in
an ICS family model, (2) applies feature models in practice to provide user-level
representations of structural similarities so as to enable controlling the required
amount of configuration reuse through feature selection, and (3) enables reduc-
ing configuration effort in large-scale, highly-configurable ICSs based on struc-
tural similarities. We build on our previous work, where we proposed a modeling
methodology [5, 6], called SimPL, for modeling families of ICSs, and a model-
based configuration approach [4] that uses finite domains constraint solving to
automate and interactively guide consistent configuration of such systems.

We motivate the work and formulate the problem in Section 2, by explain-
ing the current practice in configuration reuse. We analyze the related work in
Section 3. An overview of our model-based solution is given in Section 4. An
example ICS family illustrating the main aspects of the SimPL methodology is
presented in Section 5. We explain our similarity modeling approach in Section
6. The use of feature selection to control configuration reuse, and constraint
propagation to automate configuration reuse are presented in Sections 7 and 8.
We evaluate the effectiveness of our approach in Section 9. Finally, we conclude
the paper in Section 10.

2 Configuration reuse: practice and problem definition

Figure 1 shows a simplified model of a fragment of a subsea production system
produced by our industry partner. As shown in the figure, products are com-
posed of mechanical, electrical, and software components. Our industry partner,
similar to most companies producing ICSs, has a generic product that is config-
ured to meet the needs of different customers. For example, different customers
may require products with different numbers of subsea Xmas trees. A Xmas
tree in a subsea production system provides mechanical, electrical, and software
components for controlling and monitoring a subsea well.

Configuration in the ICSs domain is typically performed in a top-down man-
ner where the configuration engineer starts from the higher-level components and
determines the type and the number of their constituent (sub)components. Some
components are invariant across different products, and some have parameters
(i.e., configurable parameters) whose values differ from one product to another.
The latter group, known as configurable components, may need to be further
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decomposed and configured. In the rest of this paper, whenever clear from the
context, we use configuration to refer either to the configuration process or to
the description of a configured artifact.

Subsea production systems, and in general ICSs, are typically large-scale
systems with thousands of components and tens of thousands of configurable
parameters. Usually, in these systems, a high degree of similarity is required

«HwComponent»
xt1: XmasTree

«ICSystem»
toySps: SubseaProdSystem

«artifact»
semAppA: SemApplication

s1: Sensor s2: Sensor v1: Valve

«communication path»
controls/monitors

«HwComputingResource»
semA: SubseaElectronicModule

Fig. 1: Fragment of a simpli-
fied subsea production system.

among different configurable components to fulfill
certain product requirements such as environmen-
tal, safety, or cost efficiency. For example, to re-
duce the costs of design and production, it may be
required that all the Xmas trees in a product con-
tain the same number and types of devices, thus
requiring all the controller software units (SemAp-
plications) to be configured similarly.

Similarity, in this context, is defined as a re-
lationship between two or more configurable com-
ponents. Two configurable components are sim-
ilar if a subset of their configurable parameters
have identical values. Such configurable compo-
nents are not themselves identical, as some of their
configurable parameters may have different values. The similarity that exists in
such systems enables the reuse of configuration data: instead of configuring every
configurable parameter separately, configurable parameters with identical values
can be configured all at once. The large number of configurable parameters and
the high degree of similarity lead to the potential for a high degree of config-
uration reuse. This can considerably reduce the configuration effort, which we
define to be proportional to the number of manual configuration decisions.

Configuration is currently done in our industry partner using an in-house
tool with primitive support for configuration reuse through a copy and paste
mechanism. The existing support for the reuse of configuration data at our in-
dustry partner has the following limitations: (1) It does not provide the user
with sufficient control over the configuration reuse. The user can only select one
subcomponent and duplicate its whole configuration. As a result, it is sometimes
necessary to modify the values of some configurable parameters in the duplicated
subcomponents. (2) It does not automatically enforce the reuse of configuration
data. The configuration engineer has to derive, based on her own knowledge and
experience, a configuration reuse plan that specifies what data should be reused
and how. The configuration tool cannot help following the configuration reuse
plan. (3) Changes in the configuration data are not automatically propagated to
the copies, therefore resulting in inconsistencies.

In our previous work [5, 4], we proposed a model-based configuration ap-
proach that ensures the consistency of a, possibly partial, product during the
configuration process. In this paper, we build on our previous work to propose
an approach for modeling structural similarities in ICSs to automatically reuse
configuration data while preventing all the above-mentioned limitations.
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3 Related work

Feature models [19, 10] have been most commonly studied in the literature (e.g.,
[20, 16, 9]) for specification and model-based analysis of product families. How-
ever, few industrial applications (i.e., [13, 15, 23, 25]) of feature models have been
reported according to the findings of a preliminary review presented in [18]. An-
other group of approaches, which address architecture-level variability modeling
(e.g., [24, 27, 17, 21]), are studied and evaluated in our previous work [5, 6]. Struc-
tural similarities within individual products, and modeling solutions to capture
them are, however, missing from these approaches and applications.

Practical challenges in the configuration of highly-configurable systems have
been studied, and large numbers of configurable parameters and their implicit
interdependencies have been categorized as one major source of configuration
errors [12]. Moreover, results from a systematic literature review [22] confirm
that automation is one of the most important requirements for configuration
and product derivation support. Related work on automated verification and
guidance during configuration is presented in our previous work [4]. To the best
of our knowledge, however, there is no work in the literature focusing on the
automated reuse of configuration data, or on the similarity-based approaches to
improve or automate configuration. In this paper, we address this gap by propos-
ing a model-based approach to the automated reuse of configuration data based
on structural similarities in large-scale, highly-configurable embedded systems.

4 Overview of our approach

Figure 2 shows an overview of our reuse-oriented configuration approach, which
is a model-based approach to the automated reuse of configuration data based
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Fig. 2: An overview of our reuse-oriented configuration approach.
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on the similarities that exist within a particular product. This approach is an
extension to our previous work (the upper part in Figure 2) on automated,
model-based configuration, which has two major steps. In the first step, we build
a configurable and generic model for an ICS family (the Product-family modeling
step). In the second step, the Guided configuration step, we interactively guide
users to generate specifications of particular products complying with the generic
model built in the first step.

As shown in the lower part of Figure 2, in our reuse-oriented configuration
approach, we have extended both the modeling step and the configuration step of
the original configuration approach. Therefore, the reuse-oriented configuration
approach has four major steps. In the first step, the Product-family modeling
step, a configurable and generic model of an ICS family is created by following
the SimPL methodology [5, 6]. In the second step, the Similarity modeling step,
possible structural similarities that may exist in some particular products are
modeled and organized in a similarity model. In the third step, the Similarity
configuration step, the similarity model is used to generate similarity specifica-
tions of particular products. Finally, in the Guided configuration step, we use
our existing automated configuration approach [4] to interactively guide users to
generate specifications of particular products that comply both with the generic
SimPL model of the product family and with the similarity specifications of the
products generated in the previous step.

Step 1: Product-family modeling
During the product-family modeling step, we provide domain experts with a
modeling methodology, called SimPL [5, 6], to manually create a product-family
model describing an ICS family. The SimPL methodology enables the domain
experts to create, from textual specifications and tacit domain knowledge, archi-
tecture models of ICS families that encompass, among other things, information
about variabilities and consistency rules. We briefly describe and illustrate the
SimPL methodology in Section 5. Note that our reuse-oriented extension has no
impact on the product-family modeling step. This step is performed exactly as
it is done in our original configuration approach.

Step 2: Similarity modeling
During the similarity modeling step, domain experts follow the similarity model-
ing approach presented in this paper to manually create similarity models from
textual specifications and their own domain knowledge. A similarity model ex-
presses the structural similarities in two levels of abstraction. In the lower level
of abstraction, OCL is used to express the similarity in terms of the model ele-
ments in the SimPL model of the product family. Each OCL constraint in this
level specifies one similarity rule. In the higher level of abstraction, a feature
model [19] is used to provide a user-level representation of the similarity rules.
This feature model captures the variability that exists among individual prod-
ucts with respect to the applicability of the similarity rules. We describe and
illustrate our approach to similarity modeling in Section 6.
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Step 3: Similarity configuration
During the similarity configuration step, configuration engineers use the feature
models created in the previous step to select, for each product, the applicable
similarity rules according to the needs of that particular product. The result of
this step is a similarity specification, which is a collection of OCL constraints
each representing one applicable similarity rule. Using feature models as the
user-level representation of similarity rules, configuration engineers can generate
similarity specifications without requiring to know OCL or the SimPL method-
ology. In addition, by organizing the similarity rules (that can result in the reuse
of configuration data) and their variabilities in a feature model, we provide con-
figuration engineers with a suitable mechanism to gain control over the reuse of
configuration data. This way, we address the first limitation of the existing sup-
port for configuration reuse as discussed in Section 2. Similarity configuration is
illustrated in Section 7.

Step 4: Guided configuration
During the guided configuration step, configuration engineers create full or par-
tial product specifications by resolving variabilities in a product-family model.
Inputs to the guided configuration step are the generic model of the product
family and the similarity specification of the product. We use these two inputs
to ensure the consistency of the product specification during the entire config-
uration process. For this purpose, we use a finite domains constraint solver to
validate each user decision, and to identify the impacts of each decision. As an
impact of a user decision, the constraint solver may infer the values of one or
more configurable parameters. We refer to this as the reuse of configuration data.

The main idea in this work is to use the similarity rules in the similarity
specifications to trigger the inference capability of the constraint solver to auto-
matically enforce the reuse of configuration data. Moreover, to keep the product
specification consistent with respect to the similarity rules, whenever the value of
a configurable parameter is changed the new value is automatically propagated
to replace the related inferred values. Therefore, using our extended configura-
tion approach, we address the second and third limitations discussed in Section
2. Note that, in this work, we have extended our original guided configuration
step only by adding to it one extra input, which is the similarity specification.
However, this simple extension automatically results in the automated similarity-
based reuse of configuration data. This is described in details together with a
brief description of our original guided configuration step in Section 8. Our orig-
inal guided configuration step is described in details in [4].

5 A subsea product-family model

The SimPL methodology organizes a product-family model into two views: a
system design view, and a variability view. The system design view presents both
hardware and software entities of the system and their relationships using UML
classes [1]. The variability view, on the other hand, captures the set of system
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variabilities using a collection of configuration units. Each configuration unit is
related to exactly one class in the system design view and defines a number
of configurable features. Each configurable feature describes a variability in the
value, type, or cardinality of a property in the corresponding class. In addition
to the two views described above, each SimPL model has a repository of OCL
expressions [2]. These OCL expressions specify constraints among the values,
types, or cardinalities of different properties of different classes. We call these
OCL constraints universal consistency rules, as they are part of the product-
family commonalities and must hold for all the products in the family.

Figure 3 shows a fragment of the SimPL model for a simplified subsea pro-
duction system1, SubseaProdSystem. In a subsea production system, the main
computation resources are the Subsea Electronic Modules (SEMs), which provide
electronics, execution platforms, and the software required for controlling subsea
devices. SEMs and Devices are contained by XmasTrees. Devices controlled by
each SEM are connected to the electronic boards of that SEM. Software deployed
on a SEM, referred to as SemAPP, is responsible for controlling and monitor-
ing the devices connected to that SEM. SemAPP is composed of a number of
DeviceControllers, which is a software class responsible for communicating with,
and controlling or monitoring a particular device. The system design view in
Figure 3 represents the elements and the relationships discussed above.

System 
Design View

Variability View

Fig. 3: A fragment of the SimPL model for the subsea production system.

The variability view in the SimPL methodology is a collection of template
packages, each representing one configuration unit. The upper part in Figure 3
shows a fragment of the variability view for the subsea production system. Due
to the lack of space we have shown only two template packages in the figure. As
shown in the figure, the package SystemConfigurationUnit represents the config-
uration unit related to the class SubseaProdSystem in the system design view.
Template parameters of this package specify the configurable features of the
subsea production system, which are: the number of XmasTrees, and SEM ap-
plications (semApps).
1 This example is a sanitized fragment of a subsea production case study [6].
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A number of universal consistency rules are defined for the subsea production
system in Figure 3. Below are OCL expressions for two of these consistency rules.

context Connection inv PinRange
self.pinIndex >= 0 and self.sem.eBoards->asSequence()->

at(self.ebIndex+1).numOfPins > self.pinIndex
context Connection inv BoardIndRange
self.ebIndex >= 0 and self.ebIndex < self.sem.eBoards->size()

The first constraint states that the value of the pinIndex of each device-to-
SEM connection must be valid, i.e., the pinIndex of a connection between a device
and a SEM cannot exceed the number of pins of the electronic board through
which the device is connected to its SEM. The second constraint specifies the
valid range for the ebIndex of each device-to-SEM connection, i.e., the ebIndex
of a connection between a device and a SEM cannot exceed the number of the
electronic boards on its SEM.

Product specifications are created from family models by instantiating the
classes associated to configuration units, and assigning values to the configurable
parameters (i.e., instances of configurable features) of those instances.

6 Similarity modeling

As mentioned in Section 4, in the similarity modeling step, we create similarity
models that specify the similarity rules in two levels of abstraction. In this sec-
tion, we first define and exemplify2 the similarity rules. Then we explain how
OCL can be used to model similarity rules in terms of the model elements in
the SimPL model of the product family. Then we explain how feature mod-
els are used to provide a user-level representation of similarity rules and their
variabilities. Finally, we explain the refactoring of similarity models.

6.1 Similarity rules

A similarity rule specifies a relationship between two or more configuration unit
instances within a particular product. Two configuration unit instances are sim-
ilar if a subset of their configurable parameters have equal or identical values.
For example, a similarity rule named XtTypeSimilarity specifies that all the Xmas
trees (Figure 3) in a subsea product must be of the same type. Here, Xmas trees
are the configuration units that are required to be similar. Types of the Xmas
trees, which can either be production or injection, are the configurable parameters
that are required to be identical for the similarity rule to hold.
2 Examples in this section focus on describing hardware similarities, as the SimPL
model in Figure 3 mostly contains hardware classes. However, in practice, similarity
rules are mainly defined in terms of software classes, as they are intended to be
used for reusing software configuration decisions. Note that, software similarities in
a product family are, in general, very similar to its hardware similarities.
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Every similarity rule has two parts: a scope, and a similarity relation. The
scope of a similarity rule determines the configuration unit instances that must
be similar. For example, the scope of the similarity rule XtTypeSimilarity is the
set of all Xmas trees in the product. The similarity relation in a similarity rule
specifies how the similarity is achieved. It is normally composed of one or more
equality relationships. Each relationship relates the values of different instances
of a particular configurable feature, each belonging to a configuration unit in-
stance in the scope of the similarity rule. For example, in XtTypeSimilarity, the
similarity relation is composed of a single equality relationship that relates the
values of the configurable parameter type of all the Xmas trees in the product.

It is possible to have several similarity rules with the same scope, but express-
ing different aspects of similarity. For example, in addition to XtTypeSimilarity,
we can have another similarity rule among all the Xmas trees in the product,
named XtSemNumSimilarity, expressing that all of the Xmas trees must have the
same number of SEMs.

6.2 Architecture level modeling of similarity rules using OCL

Configuration in our automated, model-based approach is performed by resolving
variabilities through assigning values to configurable parameters [4]. To enable
the reuse of such configuration decisions based on the similarities within a prod-
uct, we express the similarity rules in terms of the configurable features and
other model elements in the SimPL model of a product family. For this purpose,
we use OCL, as it is the standard language for expressing constraints on the
elements in UML class diagrams.

Each OCL expression is written in the context of an instance of a specific
type [2]. In an OCL expression representing a similarity rule, the context must be
the instance that contains all the configuration unit instances that form the scope
of the similarity rule. For example, to model the similarity rule XtTypeSimilarity,
we use an OCL invariant written in the context of the class SubseaProdSystem.
This class is the topmost class in the SimPL model (Figure 3), and contains all
the instances of XmasTree3. Each equality relationship in the similarity relation
of a similarity rule becomes a boolean subexpression in the corresponding OCL
invariant. The following is the OCL invariant expressing XtTypeSimilarity.

context SubseaProdSystem inv XtTypeSimilarityInv
self.xTs->forAll(x | x.type = WellType::PRODUCTION) or
self.xTs->forAll(x | x.type = WellType::INJECTION )

The scope of a similarity rule does not always contain all the instances of a
configuration unit. In general, for modeling the scope of a similarity rule more
expressive OCL constructs such as implication- or selection-statements are re-
quired. The following is an example. This similarity rule specifies that all the
3 In the SimPL methodology, each product contains only one instance of the topmost
class [5, 6]. In a product specification created from the SimPL model in Figure 3, the
only instance of the class SubseaProdSystem contains all the XmasTree instances.
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production Xmas trees must have two SEM instances. Here, the scope of the
similarity rule is the set of all Xmas trees that are of type production (speci-
fied using the selection-statement), and the number of SEMs is the configurable
feature that must have the same value for all such Xmas trees.

context SubseaProdSystem inv ProductionXtTwoSemSimilarityInv
self.xTs->select(x | x.type = WellType::PRODUCTION)

->forAll(x | x.sEMs->size() = 2)

We use OCL and -statements to specify similarity relations that are composed
of two or more equality relationships. SemDesignSimilarityInv is an example.

context SubseaProdSystem inv SemDesignSimilarityInv
SEM.allInstances()->forAll(s, t | s.eBoards->size() = t.eBoards->size())
and
SEM.allInstances()->forAll(s, t |

s.eBoards->forAll(e1 | t.eBoards->exists(e2 | e2 = e1)))

6.3 User-level modeling of similarity rules using feature models

As mentioned in Section 4, we use feature models [19] to provide a user-level
representation of the similarity rules. We call these feature models similarity
feature models. A similarity feature model captures the variabilities that exist
among individual products with respect to the applicability of the similarity
rules. A similarity feature model is part of a product-family specification, and is
created only once for that product family.

Figure 4 shows a fragment of the similarity feature model for the product
family shown in Figure 3. To create a similarity feature model, we follow the
existing feature modeling methodologies [3] and organize features into a tree.

SubseaFieldSimilarity

XtSimilarity

XtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

Fig. 4: A fragment of the similarity
feature model for the subsea produc-
tion systems family.

Each leaf feature in the tree represents a
similarity rule and is associated with an
OCL expression. For example, XtTypeSim-
ilarity is a leaf feature associated with the
OCL invariant XtTypeSimilarityInv. Non-
leaf features (e.g., XtSimilarity) are used to
group related similarity rules, or other non-
leaf features. In Figure 4, XtSimilarity is a
non-leaf or-feature that groups two leaf features XtTypeSimilarity and XtSem-
NumSimilarity. An or-feature specifies that one or more of its subfeatures can be
selected. Both XtTypeSimilarity and XtSemNumSimilarity are optional features
and therefore introduce variabilities that should be resolved during similarity
configuration.

Different types of dependencies, such as imply and exclude, may exist among
similarity rules. Using feature models to organize similarity rules allows model-
ing these dependencies among the features representing the similarity rules. This
makes OCL constraints simpler and independent from each other, thus easier to
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maintain. In general, all similarity rules must be consistent with the universal
consistency rules in the SimPL model (This consistency can be checked, for
example, using the approaches in [8] and [14]). Similarity rules are, in fact, com-
plementary to the universal consistency rules, but must not be contradictory to

SubseaFieldSimilarity

XtSimilarity

RefactoredXtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

AllInjectionAllProduction

ProductionXtTwoSemSimilarity

Fig. 5: Dependencies between similarity rules
are modeled as dependencies between features.

them. However, similarity rules
can be contradictory to each
other. If two similarity rules are
contradictory, an exclude or al-
ternative relationship is necessary
between the features representing
them to avoid any inconsistency
in the products. Figure 5 shows an
example. The similarity feature model in this figure is achieved by refactoring
(Section 6.4) the similarity feature model in Figure 4. AllInjection (AllProduction)
is a similarity rule that specifies that all Xmas trees must be of type injection
(production). The OCL constraints associated with AllInjection and AllProduc-
tion are contradictory and cannot be true simultaneously. To ensure that these
two similarity rules are never selected simultaneously, the features representing
them are grouped in an alternative-feature (RefactoredXtTypeSimilarity). In ad-
dition, the similarity feature model in Figure 5 shows an exclude relationship
between the features AllInjection and ProductionXtTwoSemSimilarity, as selecting
AllInjection makes ProductionXtTwoSemSimilarity void.

6.4 Refactoring similarity models

Creating similarity models is an incremental process, which may involve refac-
toring course-grained similarity rules into more fine-grained ones. Refactoring
a similarity rule is done in both the architecture (i.e., OCL expressions) and
the feature levels. Refactoring similarity models is, in particular, useful when
product families evolve [7, 26] and new requirements are introduced.

Consider the OCL invariant XtSimilarity in Figure 6-(a). XtSimilarity repre-
sents a similarity rule that requires all the Xmas trees in the susbea field to be of
the same type (i.e., all production or all injection), and that all the Xmas trees
have the same number of SEMs. This rule is associated with a single feature in
the similarity feature model.

Figure 6-(b) shows the similarity feature model and OCL constraints resulting
from refactoring XtSimilarity. This refactoring is done to fulfill the needs of a
new product that requires all the Xmas trees in the field to have the same
number of SEMs, but does not require all the Xmas trees to be of the same
type. The refactoring shown in Figure 6 has decomposed XtSimilarity into two
finer-grained similarity rules that can be selected independently during similarity
configuration. To fulfill the needs of the new product, one must select the features
XtSimilarity and XtSemNumSimilarity and leave XtTypeSimilarity unselected.

In general, if the OCL constraint expressing a similarity rule is a conjunction
of subexpressions each expressing an equality relation on a different configurable
feature, then it is a good modeling practice to refactor the similarity model by
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decomposing that similarity rule so that each subexpression becomes an inde-
pendent similarity rule. To reflect this refactoring step in the similarity feature
model, we make the feature corresponding to the original similarity rule a non-
leaf or-feature and add to that a number of optional subfeatures each associated
with one of the OCL subexpressions. In Figure 6-(b), the two OCL expressions
associated with features XtTypeSimilarity and XtSemNumSimilarity are in fact the
two subexpressions of the OCL constraint in Figure 6-(a).

XtSimilarity

XtSemNumSimilarity XtTypeSimilarity

context SubseaProdSystem inv XtSimilarityInv
(self.xTs->forAll(x | x.type = WellType::PRODUCTION) or 
self.xTs->forAll(x | x.type = WellType::INJECTION)) and
self.xTs->forAll(x1, x2 | x1.sEMs->size() = x2.sEMs->size())

XtSimilarity

context SubseaProdSystem inv XtTypeSimilarityInv
self.xTs->forAll(x |
     x.type = WellType::PRODUCTION) or 
self.xTs->forAll(x |
     x.type = WellType::INJECTION)

context SubseaProdSystem inv XtSemSimilarityInv
self.xTs->forAll(x1, x2 | 
     x1.sEMs->size() = x2.sEMs->size())

(a) Coarse-grained similarity rule.

(b) Refactored finer-grained similarity rules.

Fig. 6: Refactoring of a similarity rule.

As shown in Figure 5, XtTypeSimilarity can be refactored by decomposing
its associated OCL constraint into two finer-grained OCL constraints, one (i.e.,
AllProduction) expressing that all the Xmas trees must be of type production, the
other (i.e., AllInjection) expressing that all Xmas trees must be of type injection.
This refactoring allows configuration engineers to identify the type of the Xmas
trees during the similarity configuration; while, without this refactoring, config-
uration engineers must make this choice during the guided configuration step.
Note that in both cases the total number of configuration decisions to be made
are equal. Whether refactoring XtTypeSimilarity or not depends on the require-
ments of the product family (e.g., presence of ProductionXtTwoSemSimilarity).

7 Similarity configuration

Optional features in the similarity feature model represent variability points that
SubseaFieldSimilarity

XtSimilarity

RefactoredXtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

AllInjectionAllProduction

ProductionXtTwoSemSimilarity✗ ✓ ✗

✗✓

✗ ✗

Fig. 7: Similarity feature model configured for
a particular product.

should be resolved during the sim-
ilarity configuration step to gener-
ate similarity specifications. Con-
figuration engineers resolve these
variabilities by selecting features
in the similarity feature model ac-
cording to the needs of a particu-
lar product. For example, Figure
7 shows the similarity feature model in Figure 5 configured for a product that
requires all the Xmas trees to have the same number of SEMs.
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Features that are selected during similarity configuration represent the sim-
ilarity rules that must hold within the product under configuration. OCL con-
straints associated to the selected features are used to automatically generate
the similarity specification of the product. For example, the similarity specifica-
tion for the product mentioned above, will contain one OCL constraint, which is
XtSemNumSimilarityInv that is the OCL constraint associated with XtSemNum-
Similarity as shown in Figure 6.

8 Configuration reuse through constraint propagation

Our original model-based configuration approach, presented in details in [4], gets
as input a SimPL model, which is composed of a set of UML class diagrams and
a set of OCL constraints. From these inputs, it creates a constraints system and
uses a finite domains constraint solver to validate user decisions, to ensure the
consistency of the configured product, and to automatically infer values.

Originally, OCL constraints that are fed to the configuration engine specify
universal consistency rules. As mentioned in Section 4, we extend our original
approach by adding to it one more input: the similarity specification of a product.
In the reuse-oriented configuration approach, OCL constraints in the similarity
specification are merged with the OCL constraints of the universal consistency
rules, and are used by the configuration engine to create the constraints system.

Bringing the similarity rules – which express equality relationships among
configurable parameters – in the constraints system forces the configuration en-
gine to infer new values whenever a value is assigned to a configurable parameter
involved in a similarity rule. For example, as a result of selecting XtTypeSimilar-
ity, when the configuration engineer sets the type of one Xmas tree to production,
the type of all other Xmas trees will be automatically set to production.

In general, OCL constraints representing similarity rules are expected to
result in high numbers of inferences and a high ratio of reuse of configuration
data. Using the similarity feature model and by configuring it (through selecting
features), configuration engineers can control the degree of configuration reuse
for each product. Note that some of the universal consistency rules may, as well,
result in the reuse of configuration data. Table 1 compares universal consistency
rules and similarity rules.

Table 1: A comparison between universal consistency rules and similarity rules.
Applies to Modeled in Specifies Impact on reuse

Universal consistency
rule All products OCL All types of relation-

ships May result in reuse

Similarity rule A subset of products OCL Equality relation-
ships

Results in reuse if
selected

In addition to inferring values and reusing configuration decisions, using sim-
ilarity rules, value changes will be automatically propagated into similar parts of
the configuration. This allows keeping the configuration consistent after chang-
ing the value of a configurable parameter and without requiring extra effort. For
example, as a result of selecting XtSemNumSimilarity, whenever the configuration
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engineer adds a new SEM to one of the Xmas trees (i.e., changes the number of
SEMs in the Xmas tree) the inference engine automatically adds a new SEM to
all other Xmas trees in the field.

9 Evaluation

To empirically evaluate our approach, we investigated two complete subsea prod-
ucts of our industry partner. These products, detailed in Table 2, are represen-
tative considering their size, types of components, and similarity specifications.

Table 2: An overview of the two investigated products.
* # XmasTrees # SEMs # Devices # Configurable parameters **

Product_1 9 18 (9 twin SEMs) 2360 29796
Product_2 14 28 (14 twin SEMs) 5072 56124
* The two products are very dissimilar with respect to their internal similarities and each represent
one of two main types of subsea fields (scattered and clustered subsea fields).
** Total number of configurable parameters that need to be configured to create the software
specification for the product.

Similarity modeling. Generic software of the product family investigated in
this case study contains 36 configuration units, which in total have 264 config-
urable features. To create a similarity feature model, we thoroughly studied both
products and identified the similarities within each product. The resulting simi-
larity feature model is a tree of depth four, with a total of 200 features, including
81 leaf features representing the similarity rules. These similarity rules have, in
total, 423 equality relations that are defined in terms of classes and configurable
features in the generic software model.

Similarity-based reuse. To create software products, we started by select-
ing the required similarity rules using the similarity feature model. The total
number of selected similarity rules, and equality relations are reported, for each
product, in Table 3. Among these similarity rules 12 are common between the
two products, resulting in 110 equality relations in common. This relatively low
number of common similarity rules reflects the fact that the chosen products are
very dissimilar with respect to their internal similarities.

Table 3: Summary of similarity rules, and automated reuse in the two products.
# Similarity rules # Eq. Relation # Auto. decisions Reuse rate

Product_1 52 263 19289 0.647
Product_2 41 270 46801 0.834

To identify the effectiveness of our approach, we introduce a measure called
reuse rate, which provides an insight into the percentage of the decisions that
can be automatically inferred based on the applied similarity rules and the pre-
viously provided configuration decisions. The fourth column in Table 3 gives,
for each product, the number of such decisions. Reuse rate, for each product,
is calculated by dividing the number of automated decisions by the number of
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configurable parameters (last column in Table 2). As shown in the fifth col-
umn in Table 3, reuse rates for product_1 and product_2 are 0.647 and 0.834,
respectively. It means that, for example in product_2, 83.4% of configuration
decisions can be automatically made by the configuration tool using the similar-
ity rules, and the user has to manually configure only 16.6% of the parameters.
Given the very large number of configurable parameters, this result is of practi-
cal significance. In particular, assuming automated configuration decisions have
similar complexity to manual ones, our results show that such an automation
can save more than 60% of the configuration effort in large-scale systems. Note
that the 60% gain is calculated with respect to cases where no support for reuse
is provided, not compared to the current situation at our industry partner where
primitive support for reuse is provided through copy-and-paste mechanism.

Discussion. Modeling, in general, is manual and time consuming. This applies
to our similarity modeling approach too. However, the effort that is put into
creating similarity models is paid back because, (1) only one similarity model
is created for each product family and is used during the configuration of all
products, and (2) as our evaluation shows, a great portion of the configuration
data can be automatically derived using similarity models, reducing the config-
uration effort. When the number of configurable parameters is very large–often
in the thousands, as in many ICSs, the benefit of such similarity models can be
substantial. This has shown to be clearly the case in our industrial case studies.

Hardware similarities that are the basis for automated reuse in our approach
are present in many embedded software systems as well as distributed networked
systems. Therefore, we expect our results to generalize to those domains, as well
as to other ICSs with highly-symmetric hardware architectures.

10 Conclusion

This paper focuses on the automated similarity-based reuse of configuration data
in families of integrated control systems (ICS). Individual ICS products, like
many other embedded software systems, usually bear a high degree of similar-
ity within their hardware structures, which results in internal similarities within
their software configurations. In this paper, we propose an approach to model
such internal similarities. As opposed to the commonalities in a product family
that capture similarities among different products, internal similarities capture
similarities among different parts of an individual product. In our similarity
modeling approach, to enable automated reuse, we model internal similarities
in terms of the elements in the generic model of the product family as a set of
similarity rules using OCL. We use feature models to provide a user-level repre-
sentation of similarity rules and the variabilities they introduce. We evaluated
the effectiveness of our approach using two product configurations from our in-
dustry partner. Our results show that an automated similarity-based approach to
configuration reuse can save more than 60% of configuration decisions, and con-
sequently, can reduce configuration effort. In future, we will conduct experiments
with human subjects, to further evaluate the applicability of our approach.
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