Information and Software Technology 55 (2013) 2223-2242

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

To what extent can maintenance problems be predicted by code smell
detection? — An empirical study

@ CrossMark

Aiko Yamashita *™*, Leon Moonen *

4Simula Research Laboratory, P.O. Box 134, Lysaker, Norway
b Dept. of Informatics, University of Oslo, Oslo, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 17 July 2012

Received in revised form 5 August 2013
Accepted 10 August 2013

Available online 23 August 2013

Context: Code smells are indicators of poor coding and design choices that can cause problems during
software maintenance and evolution.
Objective: This study is aimed at a detailed investigation to which extent problems in maintenance
projects can be predicted by the detection of currently known code smells.
Method: A multiple case study was conducted, in which the problems faced by six developers working on
four different Java systems were registered on a daily basis, for a period up to four weeks. Where appli-
cable, the files associated to the problems were registered. Code smells were detected in the pre-main-
tenance version of the systems, using the tools Borland Together and InCode. In-depth examination of
quantitative and qualitative data was conducted to determine if the observed problems could be
explained by the detected smells.
Results: From the total set of problems, roughly 30% percent were related to files containing code smells.
In addition, interaction effects were observed amongst code smells, and between code smells and other
code characteristics, and these effects led to severe problems during maintenance. Code smell interac-
tions were observed between collocated smells (i.e., in the same file), and between coupled smells
(i.e., spread over multiple files that were coupled).
Conclusions: The role of code smells on the overall system maintainability is relatively minor, thus com-
plementary approaches are needed to achieve more comprehensive assessments of maintainability.
Moreover, to improve the explanatory power of code smells, interaction effects amongst collocated smells
and coupled smells should be taken into account during analysis.

© 2013 Elsevier B.V. All rights reserved.

Keywords:

Code smells
Maintainability
Empirical study

1. Introduction

Significant effort and cost in software projects is allocated to
maintenance [1-5], thus assessing the maintainability of a system
is of vital importance. In the last decade, code smells have become
an established concept for patterns or aspects of software design
that may cause problems for further development and mainte-
nance of these systems [6]. Code smell analysis allows people to
integrate both assessment and improvement into the software
evolution process itself.

Code smells are indicators that the code quality is not as good as
it could have been, which can cause problems for developers dur-
ing maintenance [7]. Code smells signal poor coding and design
choices that degrade code quality aspects such as understandabil-
ity and changeability, and can lead to the introduction of faults.

* Corresponding author at: Simula Research Laboratory, P.O. Box 134, Lysaker,
Norway. Tel.: +47 47451242; fax: +47 67828201.
E-mail addresses: aiko@simula.no (A. Yamashita), leon.moonen@computer.org
(L. Moonen).

0950-5849/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.08.002

Beck and Fowler [7] provide a set of informal descriptions for 22
smells and associate them with different refactoring strategies that
can be applied to improve software design. As such, code smell
analysis opens up the possibility for integration of both assessment
and improvement in the software maintenance process. Several
tools are currently available for the automated detection of code
smells, including commercial tools such as Borland Together' and
InCode,? and academic tools such as JDeodorant [8,9] and iSPARQL
[10].

Nevertheless, it is important for evaluations based on code
smells, to understand better how these code characteristics cause
problems during maintenance. Previous studies have investigated
the relations between individual code smells and different mainte-
nance outcomes such as effort, change size and defects; yet no
study has investigated in detail, how and which types of problems
code smells cause to developers during maintenance.

! http://www.borland.com/us/products/together.
2 http://www.intooitus.com/products/incode.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.08.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.08.002
mailto:aiko@simula.no
mailto:leon.moonen@computer.org
http://www.borland.com/us/products/together
http://dx.doi.org/10.1016/j.infsof.2013.08.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2224 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

In the context of this study, we define a maintenance problem as
“any struggle, hindrance, or challenge that was encountered by the
developers while they performed their assigned tasks, which resulted
in delays or in the introduction of defects during the maintenance
project.” The scope of the maintenance problem is within
programmatic activities (e.g., the ones described by Rajlich and
Gosavi in [11] such as concept extraction/location, impact analysis,
actualization, incorporation, change propagation, and other
additional activities such as unit testing, debugging and
configuration).

The study of maintenance problems is important, because prob-
lems can reflect and potentially explain different maintenance out-
comes such as performance, product quality and perhaps even
developers’ motivational levels. The study of maintenance prob-
lems can provide important information for: (1) better under-
standing the relative impact of different (product- and process
related) factors on maintainability and ultimately (2) building
more detailed causal models of maintainability. If we have a better
understanding the nature of potential maintenance problems that
code smells can cause, we can make better-informed plans for code
improvement.

This paper empirically investigates how much of the problems
in a ‘typical’ web-application maintenance project can be ex-
plained by the presence of code smells. We report on a multiple
case study in which the problems and challenges faced by six
developers working on four different Java systems were registered
on a daily basis, for a period up to four weeks. Observational notes
and interview transcripts were used in order to identify and regis-
ter the problems, and where applicable, the Java files associated to
the problems were registered. The record of maintenance problems
was examined and categorized into non-source code related and
source code-related. Twelve different code smells were detected
in the systems via Borland Together and InCode. In-depth
examination followed in order to determine if the underlying
cause(s) of the maintenance problems could be traced back to
the presence of code smells in the associated files. When no code
smells were present in the problematic code, we tried to identify
any particular design characteristic that could explain the mainte-
nance problem.

The remainder of this paper is structured as follows: Section 2
presents the theoretical background of this study. Section 3 pre-
sents the case study. Section 4 presents the results of the study.
Section 5 discusses the results. Section 6 concludes and presents
plans for future work.

2. Theoretical background and related work
2.1. Code smells

In [7], Beck and Fowler provided a set of informal descriptions
for 22 code smells and associated them with different refactoring
strategies that can be applied to improve software design. Code
smells are characteristics that indicate degraded code qualities,
such as comprehensibility and modifiability. As a result, code that
exhibits code smells can be more difficult to maintain, which can
lead to the introduction of faults.

Code smells have become an established concept for patterns or
aspects of software design that may cause problems for further
development and maintenance of the system [7,6]. They are also
closely related to OO design principles, heuristics and patterns.
Instances of OO design principles and heuristics can be found in
the work by Riel [12] and Coad and Yourdon [13], seminal work
on design patterns (and anti-patterns) can be found in [14-16],
and in [17], Martin elaborates on a set of design principles
advocated by the Agile community.

2.2. State of the art in code smell research

There has been a growing interest in the topic of code smells
within the software engineering community after the publication
of Fowler’s refactoring book [7]. Van Emden and Moonen [18] pro-
vided the first formalization of code smells and described a tool for
analyzing Java programs, while as Mdntyld [19] and Wake [20] pro-
posed two initial taxonomies for code smells.

Two main approaches exist for the detection of code smells:
Manual and Automated. The manual approach typically involves
a subjective assessment, and the automated methods involve the
use of source code analysis techniques to compute metrics or ana-
lyze properties. Travassos et al. [21] proposed a process based on
manual detection, to identify code smells for quality evaluations.
In [22,23] Mantyld et al. report on an empirical study of subjective
detection of code smells and compare it with automated metrics-
based detection. They found that results from manual detection
were not uniform between experienced developers and novices
(e.g., experienced developers reported more complex smells). In
addition, Mdntyla et al. found that developers with less experience
with the modules reported more code smells than developers
familiar with the modules.

Finally, when comparing subjective detection with automated,
they found that developers’ evaluations of complex code smells
did not correlate with the results of the metrics detection. They
conclude that subjective evaluations and metrics based detection
should be used in combination. Mantyld also reports on a experi-
ment for evaluating subjective evaluation for code smells detection
and refactoring decision [24]. He observed the highest inter-rater
agreements between evaluators for simple code smells, but when
the subjects were asked to make refactoring decisions, low agree-
ment was observed.

Most of the current detection approaches for code smells are
automated, and examples of such work can be found in [25-32].
Work on automated detection of code smells been used in com-
mercial tools such as Borland Together and InCode and academic
tools such as JDeodorant [8,9] and iSPARQL [10]. Zhang et al. [33]
conducted a systematic literature review to describe the state of
art in research pertaining code smells and refactoring. They cov-
ered papers published by IEEE and six leading software engineer-
ing journals from 2000 to June 2009. They found that very few
studies report on empirical studies involving effects of code smells,
and most studies focus on developing tools and methods for sup-
porting automatic detection of code smells. Previous studies have
investigated the effects of individual code smells on different
maintainability related aspects, such as defects [34-38], effort
[39-42] and changes [43-45].

Instead of first detecting bad smells in code that can then in
turn be removed by applying the associated refactorings, some
researchers have focused on alternative approaches for detecting
refactoring opportunities. These approaches follow a more direct
approach and try to immediately identify if a given refactoring
can be applied using a variety of program analysis techniques
and source code metrics. The approaches typically target a single
refactoring, such as extract method [46], move method [47], pull
up method [48], extract class [49,50], and form template method
[51], the introduction of polymorphism [52], or a class of related
refactorings, such as the potential for generalization [53] by means
of clone detection. By applying the detected refactoring, the code
will be improved, and any associated code smells may be removed
as a side effect. These approaches are generally supported by pro-
totype tools that can detect specific refactoring opportunities in
the context of the particular study. Although such tools push the
state of the art on a particular refactoring, they do not support
the type of wide-spectrum code smell analysis that is needed to
analyze the relation between code smells and maintainability

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2225

problems in an industrial context, as is done in the study presented
here. Moreover, in the context of this study, we argue that the nat-
ure of maintainability problems can be better investigated and
understood by means of code smells, aimed indicating poor coding
and design choices, than by means of possible code transforma-
tions that aim to alleviate those poor choices.

D’Ambros et al. [37] analyzed code in the open source systems
Lucene, Maven, Mina, CDT, PDE, Ul, Equinox for existence of code
smells described in [7], and found that neither Feature Envy nor
Shotgun Surgery was consistently correlated with defects across
systems. Juergens et al. [36] analyzed the proportion of inconsis-
tently maintained Duplicated Code (i.e., divergent changes in code
fragments that were once clones) in relation to the total set of
duplicates in C#, Java and Cobol systems, and found (with the
exception of Cobol) that 18% of them were positively associated
to faults. Li et al. [35] investigated the relationship between six
code smells and class error probability in an industrial-strength
system, and found that Shotgun Surgery was positively associated
with software faults. Monden et al. [34] performed an analysis of
a Cobol legacy system and concluded that cloned modules were
more reliable, but demanded more effort than non-cloned mod-
ules. Rahman et al. [38] conducted a descriptive analysis and
non-parametric hypothesis testing of source code and bug tracker
in the systems Apache httpd, Nautilus, Evolution and Gimp. They
found that the majority of defective code is not significantly asso-
ciated with clones (80% of defective code at system level contained
zero clones), clones may be less prone to defects than non-cloned
code, and clones that repeat less across the system are more error
prone than more repetitive clones.

Abbes et al. [42] conducted an experiment in which 24 students
and professionals were asked questions about the code in the open
source systems YAMM, JVerFileSystem, AURA, GanttProject, JFree-
Chart and Xerces. They concluded that classes and methods exhib-
iting God Class and God Method smells in isolation had no effect on
effort or quality of responses, but when these smells appeared to-
gether, they led to a statistically significant increase in required ef-
fort and a statistically significant decrease in percentage of correct
answers. Deligiannis et al. [39] conducted an observational study
where 4 participants evaluated two systems, one compliant and
one non-compliant to the principle of avoiding God Class. Their
main conclusion was that familiarity with the application domain
played an important role when judging the negative effects of god
class. They also conducted a controlled experiment [40] with 22
under-graduate students as participants, and could corroborate
their initial findings that a design without a God Class resulted in
better completeness, correctness and consistency than of the de-
sign that did contain a God Class. Lozano et al. [41] reported that
existence of duplicated code increases maintenance effort on
cloned methods. However, they were unable to identify character-
istics that systematically revealed a significant relation between
cloning and maintenance effort increase.

Khomh et al. [44] analyzed the source code of the Eclipse IDE
and found that, in general, classes that exhibited the Data Class
code smell, were changed more often than classes that did not ex-
hibit this code smell. Kim et al. [43] reported on the analysis of two
medium-sized open source libraries (Carol and dnsjava) and con-
cluded that 36% of the total amount of code that had been dupli-
cated changed consistently (i.e., they remained as identical
duplicates via simultaneous updates), while the remaining evolved
independently. Olbrich et al. [45] reported an experiment involving
the analysis of three open source systems and found that classes
exhibiting God Class or Brain Class smells were changed less fre-
quently and had fewer defects than other classes when normalized
with respect to size.

Recently, two studies have been published that have investi-
gated the lifespan of code smells during the evolution of software

systems [54,55]. Independently of each other, both author groups
found that code smells accumulate in systems over time; smells
are usually introduced when the method in which they reside
was initially added; smells are almost never removed, but when
they are it is usually shortly after they were added, and generally
not as a result of targeted refactoring but as a side effect of other
changes. Peters and Zaidman conclude that developers may be
aware, but are not concerned by the existence of code smells [55].

The current state of art indicates that not all code smells are
equally harmful. Also, code smells are not harmful to the same ex-
tent over different contexts, indicating that their effects are poten-
tially contingent on contextual variables or interaction effects. For
example, Li and Shatnawi [35] found that the presence of Shotgun
Surgery leads to defects. D’Ambros et al. [37], on the other hand,
found no such connection between Shotgun Surgery and defects.
Results from studies on Duplicated Code suggest that the effects
of duplication depend on factors such as the programming lan-
guage; e.g., the results from the COBOL system differed from that
of the other types of systems in the study by Juergens et al. [36].
In order to understand better the interaction between code smells
and different contextual factors, we perceive that more inductive
research approaches are needed. Case study design is an example
of an approach that could significantly contribute to the develop-
ment of new theories from observations in relevant fields and con-
texts (i.e., inductive research [56]).

2.3. Studies on maintenance problems

Several studies have addressed maintenance related problems,
as well as factors causing them. In [57], Kitchenham et al. propose
a maintenance ontology and describe a set of factors affecting
maintenance.

Lientz and Swanson [58] and Dekleva [59] describe mainte-
nance problems from a managerial perspective. For instance, [58]
reports user knowledge, programmer effectiveness, product
quality, programmer time availability, machine requirements,
and system reliability as the main sources of problems during
maintenance. Similarly, in [59] maintenance problems are elicited
from experienced software developers, and four major categories
are identified: maintenance management, organizational environ-
ment, personnel factors, and system characteristics. Palvia et al.
[60] elaborate on the initial set of problems in software mainte-
nance reported by Lientz and Swanson, and assess the criticality
of the factors based on an extensive survey involving software
practitioners.

Chapin [61] provides a classification for types of software main-
tenance and evolution, and discusses how their characteristics can
impact different aspects of the product and the business. Hall et al.
[62] and Chen et al. [63] describe maintenance problems and the
factors that potentially cause them from a Software Process
Improvement perspective, and Reedy [64]| proposes a catalogue
of maintenance problems within software configuration
management.

Karahasanovic et al. [65,66] report on a catalogue of program
comprehension problems observed during an experiment designed
to investigate whether following systematic strategy for program
comprehension is unrealistic in larger programs. They used the
taxonomy for program comprehension proposed by Mayrhauser
and Vann [67] and classified problems at the level of general
knowledge (which is independent of the specific software applica-
tion that the programmers are trying to understand, such as cache
memory), and at the level of software-specific knowledge (which
represents their level of understanding of the software application,
such as the use of memory pointers in C programming language).
They also compared which problems were associated to which
type of comprehension strategy.

2226 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

Webster [68] proposes taxonomy of risks in software mainte-
nance, which can also be seen as potential factors negatively affect-
ing software maintenance. Webster refers to [4,69-71], when
describing a set of code and design characteristics that represent
a risk for the maintenance process. Examples of risks include:
Antiquated system and technology, program code complexity,
problems in understanding programming ‘tricks’, large number of
lines of code affected by change request, and large number of
principal software functions affected by the change.

2.4. Knowledge gap

As seen in Section 2.2, there is a substantial body of work that
investigates if certain source code characteristics (i.e., a code smell)
affect a given maintenance outcome (e.g., effort, changes, defects).
However, when assessing software maintainability, it is not only
important to determine if a code characteristic have or not an ef-
fect on a given maintenance outcome, but we also need to better
understand how those characteristics affect the outcomes. We be-
lieve that one approach to get a step further in the development of
causal models in software maintenance research is by closely
studying the difficulties or problems that developers experience
during maintenance.

The study of maintenance problems is relevant because these
experiences reflect and potentially explain different outcomes of
a maintenance project, such as performance and product quality.
Our scope for maintenance problems is based on the notion of Incre-
mental Change proposed by Rajlich and Gosavi [11] who describe a
series of stages and activities within an increment in the evolution
of Object Oriented systems. Rajlich and Gosavi mention two
stages: change design, where developers conduct activities such
as: concept extraction, concept location, and impact analysis; and
change implementation, which involves activities such as: change
incorporation and propagation (see [11] for a detailed description
of each of the activities). Although not mentioned in [11], we be-
lieve that activities such as: change testing, debugging, and config-
uration activities constitute part of the incremental change
process.

We believe that the maintenance problems illustrated and de-
scribed within the identified literature (i.e., Section 2.3), focus
mostly on process and organizational aspects of software mainte-
nance, parting from a rather managerial perspective. They do not
address comprehensively, the problems that can manifest during
programming activities within an incremental change in the evolu-
tion of a software product. For instance, Karahasanovic et al. only
focuses on comprehension-related problems, whiles comprehen-
sion only accounts for two of the activities in an increment (i.e.,
concept extraction, concept location). The work by Lientz and
Swanson, Dekleva, Palvia, and Chen all focus on management or
software process improvement perspectives. They cover the whole
spectrum of a software maintenance process, and mention code
base quality in a rather superficial manner. The work by Webster
[68] can be considered the closest in their focus, to our study.

Thus, the state of art on maintenance problems does not pro-
vide the level of abstraction required to study the effects of soft-
ware design/code on maintainability, and the current taxonomies
seem too coarse-grained to address the actual “programming”
activity embedded within the maintenance/evolution process.
The investigation of maintenance problems at this level of detail
may help to address the causal “step” in-between code smells (or
any other code characteristics) and maintenance outcomes that
needs to be investigated.

In addition, when investigating the effects of code smells on
maintenance, our focus on problems corresponds better to the
original descriptions of code smells given by [7], where smell def-
initions are more direct symptoms of problematic maintenance

rather than change effort, change size, and defects (as the empirical
studies reported in Section 2.1). For example, effort can be affected
negatively by programmer’s skill, or the task, and not necessarily
by the low maintainability of the system. To the best of our knowl-
edge, a thorough, systematic analysis of the connection between
maintenance problems and code smells in practice has not been
conducted before, and has been, long overdue.

In the present study, an in-depth analysis has been carried out
to identify maintenance problems that can be related back to tech-
nical properties of the system (i.e., code smells, characteristics of
the source code). The results of this research are based on realistic
maintenance tasks (or change requests) carried out by six profes-
sional software engineers, each one working for a period up to four
weeks. Detailed data-collection was performed via interviews, di-
rect observation and think-aloud techniques. The qualitative
observations in the field were supported by quantitative data,
opening up the possibility to develop theories on code smells that
can be tested and investigated in further studies. The design of our
study is based on the assumption that by observing the whole
range of maintenance problems in a prototypical project, we can
achieve a better understanding of the role that code smells (i.e.,
automatically detectable smells) play in maintenance, which, in
turn, helps to further the area of automatic maintainability assess-
ments based on source code analysis.

Previously, we have looked at how well the definitions of code
smells address of characteristics that were deemed important for
maintainability by developers [72]. The study reported in [72]
was based on the same industrial case as the current paper and
the data that was analyzed consisted of expert-based maintainabil-
ity assessments of four Java systems before they entered a mainte-
nance project and a series of open interviews with the developers
after they had conducted the maintenance tasks. Using a combina-
tion of coding techniques and called cross-case synthesis, we
analyzed the transcripts of these interviews to compare each
developer’s perception on the maintainability of the systems, ex-
tracted the important maintainability aspects, and relate them
back to definitions of code smells. As such, the paper in [72] inves-
tigates the conceptual relation between code smell definitions and
aspects of maintainability. This is of interest because it helps to fo-
cus on smells that really matter for developers, and identifies
smells for which detection strategies are yet not available but
would be very beneficial. The current paper, in contrast, evaluates
to what extend the total set of problems occurring during mainte-
nance can be explained by the actual presence of code smells in the
code under maintenance. The data used as evidence is much more
comprehensive than in the previous work, and includes the
measurements of the code smells, daily interviews, think-aloud
sessions and observational logs. The open interviews that played
the main role earlier were used as confirmatory (triangulation)
evidence in this study.

3. Case study design

This section starts with describing the background of the main-
tenance project. Subsequently, it describes the data sources used as
the basis of the analysis and the methods used in order to attain
the research goals.

3.1. Context of the study

3.1.1. Systems under analysis

To conduct a longitudinal study of software development, the
Simula’s Software Engineering Department put out a tender in
2003 for the development of a new web-based information system
to keep track of their empirical studies. Based on the bids, four

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2227

Table 1

Development costs from [73] and final size (LOC) of the systems.
System A B C D
Cost € 25,370 € 51,860 € 18,020 € 61,070
Java 8205 26,679 4983 9960
JSP 2527 2018 4591 1572
Other files 371 1183 1241 1018
Total size 11,103 29,880 10,815 12,550

Norwegian consultancy companies were hired to independently
develop a version of the system, all using the same requirements
specification. The companies knew, and agreed that the work
would be done as part of a research study. More details on the ini-
tial project can be found in [73].

The same four functionally equivalent systems are used in our
current study. We will refer to them as System A, System B, System
C and System D, respectively. The systems were primarily devel-
oped in Java and they all have similar three-layered architectures,
but have large differences in their design and implementation.
Their cost and size differed notably as well (Table 1). The main
functionality of the systems consisted of keeping a record of the
empirical studies and related information at Simula (e.g., the re-
searcher responsible of the study, participants, data collected and
publications resulting from the study). Another key element of
functionality was to generate a graphical report on the types of
studies conducted per year. The systems were all deployed over
Simula Research Laboratories’ Content Management System
(CMS), which at that time was based on PHP and a relational data-
base system. The systems had to connect to the database in the
CMS in order to access data related to researchers at Simula as well
as information on the publications.

3.1.2. Maintenance project

In 2008, Simula’s CMS was replaced by a new platform called
Plone,® and it was no longer possible to run the systems under this
new platform. This gave the opportunity to set up a maintenance
study, where the functional similarity of the systems enabled inves-
tigating the relation between design aspects and maintainability on
cases with very similar contexts (e.g., identical tasks and program-
ming language), but different designs and implementations. This
study was conducted between September and December 2008 by
outsourcing the project to six professional developers at a total cost
of €50,000.

3.1.3. Subjects

To conduct this maintenance project, six professional develop-
ers were recruited from a pool of 65 participants to a separate
study on developer skills by one of our colleagues at Simula [74].
These developers had no relation to the original developers of
the four systems. They were selected based on having roughly sim-
ilar development skills, their availability, English proficiency, and
high motivation for participating in the maintenance project, for
which they received their regular salary. Although the pool con-
tained representatives from nine companies in eight European
countries, the six selected developers were employees of two soft-
ware companies in Eastern Europe (three from Czech Republic and
three from Poland). Both the developers and their companies were
aware from the start that this maintenance project was part of a
scientific study. In the remainder of this paper we will use the
terms developer and maintainer interchangeably to refer to these
subjects that conducted the maintenance tasks. In the rare cases

3 http://plone.org.

that we want to refer to the original developers that initially cre-
ated the systems, we will use the phrase original developers.

3.1.4. Activities and tools

The study was conducted in each of the companies premises.
Although the three developers in each site shared the same office
space, they were discouraged to discuss the project while in it.
The developers were given an overview of the project and a spec-
ification of each maintenance task. When needed, they would dis-
cuss the maintenance tasks with the researcher (first author) who
was present at the site during the entire project duration. Daily
interviews were held where the progress and the problems
encountered were tracked. Acceptance tests were conducted once
all tasks were completed, and individual open interviews were
conducted where the developer was asked upon his/her opinion
of the system. The daily interviews and wrap-up interviews were
recorded for further analysis. Eclipse was used as the development
tool, together with MySQL* and Apache Tomcat.” Defects were reg-
istered in Trac® (a system similar to Bugzilla), and Subversion or
SVN” was used as the versioning system.

3.1.5. Observed cases

Each of the six developers individually conducted all three tasks
on two systems. This was done to collect more observations for dif-
ferent types of analysis, and gave us a total of 12 cases, 3 observa-
tions per system. The assignment of developers to systems was
random, with control for equal representation, learning effects
(i.e. every system at least once in first round and at least once in
second round) and maximizing contrast between the two cases
handled by each developer.

3.2. Data collection activities

3.2.1. Data sources

Several sources of evidence were used in this study, as listed in
Table 3. Some data sources were used as primary evidence, and
others were used for triangulation purposes. Three qualitative data
collection activities were performed in order to attain the primary
sources of evidence: (1) daily interviews or progress meetings, (2)
random think-aloud sessions and (3) logbook annotations. Source
code was used as the fourth main source of evidence, and it was
examined for the presence of code smells. The rest of the sources
in Table 3 (i.e., transcripts of the open-ended interviews, task pro-
gress sheets, change size derived from SVN, and maintenance effort
derived from Eclipse activity logs) were used for triangulation pur-
poses. The audio files from both types of interviews were tran-
scribed, annotated and summarized with Transana.®

3.2.2. Maintenance tasks

Three maintenance tasks were defined, as described in Table 2.
Two tasks concerned adapting the system to the new platform and
a third task concerned the addition of new functionality that users
had requested. We believe that these tasks are representative of
realistic maintenance tasks for several reasons: (1) the tasks were
based on concrete needs in a real-life situation on a system that
was actually in use: both the change of environment on which
the systems were running that lead to the adaptive tasks, and
the new functionality were requested by several users of the sys-
tem, (2) the tasks had non-trivial impacts on the systems and
developers were required to examine and modify substantial parts

4 http://www.genuitec.com.

/

5 http://tomcat.apache.org.

8 http://trac.edgewall.org.

7 http://subversion.apache.org.
/

8 http://www.transana.org.

http://plone.org
http://www.genuitec.com
http://tomcat.apache.org
http://trac.edgewall.org
http://subversion.apache.org
http://www.transana.org

2228 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242
Table 2
Maintenance tasks.
No. Task Description
1 Adapting the system to the new The systems in the past had to retrieve information through a direct connection to a relational database within Simula’s
Simula CMS domain (information on employees at Simula and publications). Now Simula uses a CMS based on Plone platform, which uses
an OO database. In addition, the Simula CMS database previously had unique identifiers based on Integer type, for employees
and publications, as now a String type is used instead. Task 1 consisted of modifying the data retrieval procedure by
consuming a set of web services provided by the new Simula CMS in order to access data associated with employees and
publications
2 Authentication through web Under the previous CMS, authentication was done through a connection to a remote database and using authentication
services mechanisms available on that time for Simula Web site. This maintenance task consisted of replacing the existing
authentication by calling a web service provided for this purpose
3 Add new reporting functionality — This functionality provides options for configuring personalized reports, where the user can choose the type of information
related to a study to be included in the report, define inclusion criteria based on people responsible for the study, sort the
resulting studies according to the date that they were finalized, and group the results according to the type of study. The
configuration must be stored in the systems’ database and should only be editable by the owner of the report configuration
Table 3

Sources of evidence used in the study.

No. Data sources Data collection activity

1 Daily interviews Individual progress meetings (20-30 min): were conducted daily, with each of the developers and the researcher present at the study to
keep track of the progress, and register problems encountered during the project (ex. Dev: “It took me 3 h to understand this method...")

2 Think aloud Think-aloud sessions (ca. 30 min) were conducted in random points to observe the developers in their daily activities. During these sessions,

sessions the developers’ screens were recorded, for later analysis and triangulation. There was one developer who felt uncomfortable vocalizing their

thoughts, in which case this session was limited to recording the screen and taking notes based on the researcher’s observations

3 Logbook The researcher present at the study kept a study diary or logbook in a daily basis, to annotate in detail the observations from all different
data collection activities, and also to annotate any important aspects of the study

4 Source code The system’s source code. (Note: The scope of the code smells is limited only to Java files, and consequently, jsp, sql files and other artefacts

were not considered for measurement)
5 Open-ended

Individual open-ended interviews (40-60 min): were held after the maintenance tasks were completed for each system, where the
developer gave his/her opinion of the system(s) on which he/she had worked so far (e.g., how difficult was it to understand the systems?)

interviews

6 Task progress The developers filled in these sheets, where they compared estimations vs. actual time for each of the sub-tasks required for the
sheets maintenance

7 Subversion The repository database where the source code was kept (Subversion was used)
database

8 Eclipse activity

Developer’s activities were logged by a plug-in called Mimec [75]. This plug-in logged all the actions performed on Eclipse at the GUI level,
logs including filenames and elements of the Eclipse GUI

of the systems (around 70% for System B which was the largest,
and higher percentages for the smaller systems). For example, task
1 required the developers to find and modify data access proce-
dures for the major domain entities in the system, and (3) the time
to complete all three tasks on one system took up to three weeks
per developer, which is equivalent to a single sprint or iteration
in the context of Agile development. Trivial tasks do not demand
such an extensive period of effort. Moreover, as was mentioned be-
fore, we are unaware of any other in vivo studies of software main-
tenance that lasted longer than 240 min.

3.2.3. Identification of maintenance problems

In the context of this study, maintenance-related problems
were interpreted as “any struggle, hindrance, or problem develop-
ers encountered while they performed their maintenance tasks,
which were possible to observe through daily interviews and
think-aloud sessions.”

The daily interviews with each developer enabled the recording
of problems encountered during maintenance while they were still
fresh in their mind. The following is an example of a comment gi-
ven by one developer, who complained about the complexity of a
piece of code: “It took me 3 h to understand this method...” Such
types of comments were used as evidence that there were mainte-
nance (understandability) problems in the file that included this
method.

During the think-aloud sessions, the developers’ screens were
recorded with ZD Soft’s Screen Recorder.” Sometimes the mainte-

9 http://www.zdsoft.com.

nance problems were derived from more than one data source
(e.g., combination of direct observation, the developers’ statements
on a given topic/element, and the time/effort spent on an activity).

An example of how problems were identified is given in Table 4,
which presents an excerpt of the observations recorded during a
think aloud session. In this example, the observations by the re-
searcher and the literal statements given by the developer during
a think aloud session led to the interpretation that the initial strat-
egy of replacing several interfaces in order to complete mainte-
nance task 1 was not feasible due to unmanageable error
propagation. The developer spent up to 20 min trying to follow
the initial strategy, but then decided to rollback and to follow an
alternative strategy (forced casting) whenever it was required.

A logbook or study diary (See source 3 in Table 3) was kept dur-
ing the interviews and think-aloud sessions, in which the mainte-
nance problems were registered in detail. For each identified
maintenance problem, the following information was collected:

(a) The developer and the system.

(b) The statements given by the developers related to the main-
tenance problem.

(c) The source of the problem (e.g., whether it was related to the
Java files, the infrastructure, the database, external services).

(d) List of files/classes/methods mentioned by the developer
when talking about the maintenance problem.

Although the identification of problems can be subjective to
some degree, the connections between the observations and the
incidences of problems in this study were deemed to be rather

http://www.zdsoft.com

Table 4

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

Excerpt from think aloud session.

2229

Code Statement or action by developer Observation/interpretation
Goal Change entities’ ID type from Integer to String This is part of the requirements in Task 1
Finding “Persistence is not used consistently across the system, only few of them are Persistence” is referred as two interfaces for defining business entities,
actually implementing this interface so...” which are associated to a third-party persistence library, which is not used
consistently in the system
Strategy “I will remove this dependency, I will remove two methods from the Developer decides to replace two methods of the Persistence interface (i.e.,
interface (getld an setld) added for integer and string. This strategy forces getld () an setld ()) which are using Integer and will replace them with
me to check the type of the class but this is better than having multiple type methods with String parameters
forced castings throughout the code”
Action Engages in the process of changing id in interface PersonStatement.java Developer engages in the initial strategy
Muttering “Uh, updates? just look at all these compilation errors...” Developer encounters compilation errors after replacing the methods in the
interfaces
Action Fix, refactor, correct errors Starts correcting the errors
Strategy “Ok... I need to implement two types of interfaces, one for each type of ID Change of strategy, decides to actually replace the interface instead of
for the domain entities. I will make PersistentObjectInt.java for entities that replacing the methods in the interface
use Integer IDs and PersistentObjectString.java for String IDs”
Action Fix more errors from Persistable.java More compilation errors appear
Action Continue changing interface of the entity classes into PersistentObjectInt Attempt to continue with the second strategy
and PersistentObjectString
Action (After 20 min) Roll back the change Developer realizes that the amount of error propagation is ummanegeable,
so rollbacks the changes
Muttering “Hmm... how to do this?” Developer thinks of alternative options
Strategy “0Ok, I will just have to do forced casting for the cases when the entity has Developer decides to use the least desirable alternative: forced type castings

String ID”

whenever is required

@ A persistence framework is used as part of Java technology for managing relational data (more specifically data entities). Form more information on Java persistence, see

www.oracle.com

Table 5
Code smells automatically detected in the systems.
Code smell Description
Data Class Classes with fields and getters and setters not implementing any function in particular

Data Clumps

Duplicated code in conditional
branches

Feature Envy

Clumps of data items that are always found together either within classes or between classes
Same or similar code structure repeated within a the branches of a conditional statement

A method that seems more interested in data from a class other than the one it is actually in. Fowler recommends putting a

method in the class that contains most of the data the method needs

God (Large) Class

A class has the God Class smell if the class takes too many responsibilities relative to the classes with which it is coupled. The God

Class centralizes the system functionality in one class, which contradicts the decomposition design principles

God (Long) Method

A class has the God Method bad smell if at least one of its methods is very large compared to the other methods in the same class.

God Method centralizes the class functionality in one method

Misplaced Class

Refused Bequest

Shotgun Surgery

Temporary variable for various
purposes

Use interface instead of
implementation

Interface Segregation Principle
(ISP) Violation

confusion and introduction of faults

In “God Packages” it happens often that a class needs the classes from other packages more than those from its own package
Subclasses don’t want or need everything they inherit

A change in a class results in the need to make a lot of little changes in several classes

Consists of temporary variables that are used in different contexts, implying that they are not consistently used. They can lead to

Castings to implementation classes should ideally be avoided and an interface should be defined and implemented instead

The dependency of one class to another one should depend on the smallest possible interface. Even if there are objects that require
non-cohesive interfaces, clients should see abstract base classes that are cohesive. Clients should not be forced to depend on

methods they do not use, since this creates coupling

direct. A second researcher was presented during the kickoff week
in Czech Republic. This second researcher was present at several of
the data collection activities (i.e., daily interviews and think-aloud
sessions). This enabled to cross-validate the initial observations,
and both researcher’s observations (and respective notes) were
used as basis to create and revise the think-aloud schema. In addi-
tion, a portion of the daily interviews transcripts were examined
by the second researcher, in order to validate the interpretations
of the researcher who registered the maintenance problems.

3.2.4. Identification of code smells

Instances of twelve different code smells were automatically
identified in the source code of the four systems using the
commercially available tools Borland Together and InCode. The
selection of these particular tools was based on: (1) the fact that
vendors would reveal how they detect the smells, (2) the tools
implemented well-known detection strategies that were

comprehensively described by Marinescu and Lanza ([76,6]), and
(3) the choice of these tools would enable cross-comparison with
other studies that have investigated code smells (e.g., previous
work on code smells by Li and Shatnawi [35], who have used
Together).

The choice for using commercial detection tools is also justifi-
able from the perspective of realism, in that this selection resem-
bles the choice that would be made in an industrial setting, and
from the perspective of replication, since their general availability
makes replication of our work straightforward.

Table 5 presents the list of code smells that were detected in the
systems, alongside their descriptions, taken from [7]. Note that the
last smell in the table, i.e., Interface Segregation Principle (ISP)
violation is not a smell, but a design principle violation, proposed
by Martin in [17]. Also, note that Duplicated code in conditional
branches is a “local version” of code duplication or code cloning that
looks for duplicated code located across conditional branches. This

http://www.oracle.com

2230 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

Difficulties during maintenance

Difficulties not associated to source code

Difficulties associated to source code

Difficulties explained by
Code Smells

Difficulties explained by
other code characteristics

Fig. 1. Venn-diagram of maintenance problems.

local variant is of interest to us because this is a clear situation in
which cloning can lead to mix-ups when maintaining the code. For
code cloning in general on the other hand, there is empirical evi-
dence that it is not always a bad practice but can be useful as strat-
egy for creating code variants, such as drivers, that even though
they start as clones, undergo little to no connected modifications
during their lifetime [43,77,78]. As such, we leave the analysis of
duplicated code in general as a topic that is beyond the scope of
this study. Both Interface Segregation Principle (ISP) violation
and Duplicated code in conditional branches can be detected using
Borland Together.

3.3. Data analysis approach

In order to answer the research question, the problems identi-
fied were categorized into source code-related and non-source
code related. The source code-related problems and JAVA files con-
nected to them were examined in detail in order to determine if
the underlying problem was explained or not by the presence of
code smells.

The files that did not contain any detectable code smell were
manually reviewed to analyze if they exhibited any characteristics
or issues that could explain why they were associated to problems.
This step is similar to doing code reviews for software inspection,
where peers or experts review code for constructs that are known
to lead to problems. In this case the task is easier because we al-
ready know that there is a problem associated with the file and
we look for evidence that can explain this problem. Fig. 1 depicts
the Venn-diagram of maintenance problems according to the cate-
gorization criteria we just described.

In addition, to determine whether multiple files contributed to
maintenance problems instead of individual files, the notion of
coupling was used as part of the analysis. The tools InCode and
Stan4]'® were used to identify such couplings. The notion of cou-
pling used in these tools is the same as the one defined by Stevens
et al. [79], where file (class or interface) A is coupled to B in any of
the following cases:

(a) A has an attribute that refers to, or is of type B (i.e. A
instantiates B).

(b) A calls on methods of an object B.

(c) A has a method that references B (via return type or
parameter).

(d) A is a subclass of B (i.e. inheritance).

(e) A implements B (i.e. when B is an Interface and A
implements the Interface).

10 http://stan4j.com.

runtime
environment
(10%)

code smells (27%)

code relate

developer's
strategy
(9%)

Fig. 2. Distribution of maintenance problems classified by their origins.

4. Results

This section first presents the distribution of the different clas-
ses of maintenance problems identified during the project. Second,
the fraction of the problems related to code smells is described,
alongside detailed examples. Third, we describe cases where other
source code characteristics than code smells were the cause of the
maintenance problems. Finally, details are given on cases where
problems were due to a combination of factors (sometimes includ-
ing code smells).

4.1. Overview of maintenance problems

In total, 137 different problems were identified from the differ-
ent maintenance projects. From the total, 64 problems (47%) were
associated to Java source code. The remaining 73 (53%) constituted
problems not directly related to code such as: lack of adequate
technical infrastructure, developer’s coding habits, external ser-
vices, runtime environment, and defects initially present in the
system. The distribution of the observed problems classified by
their origins is visualized in the treemap in Fig. 2. Appendix A pre-
sents an excerpt of the records where maintenance problems were
registered. Each entry contains a summary of the problem,
whether it was associated with Java code or not, files involved,
developer who reported the problem, system, and the origin of
the problem. Note that there is a many-to-many relationship be-
tween maintenance problem and files. More specifically, one main-
tenance problem can be associated with several or no files, and one
file can be associated with different observed occurrences of main-
tenance problems.

Another way to classify the observed maintenance problems is
to distinguish problem types based on tasks or activities. In this
categorization, the majority of problems (91%) related to three
clearly distinguishable situations: (a) defects introduced as result
of changes (25%), (b) program comprehension and information
searching (27%), and (c) time-consuming changes (39%). The
remaining problems manifested at much lower scale, and include
cumbersome configuration (6%) and debugging (3%). Table 6
describes the three major problem types in this activity related
categorization in more detail, and Table 7 presents the distribution
of the problems according to their associated activities and (high-
level) origins (code related vs non-code related, and split up per
system).

http://stan4j.com

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2231

Table 6
Description of the three main types of problems identified.

Type of problem Description

Introduction of defects

Undesired behavior, or unavailability of functionality in the system (i.e., defects) manifested after modifying different

components of the system. This introduced delays in the project, and forced developers in several cases to rollback

initial strategies for solving the tasks
This problem type comprises three situations: One where developers struggle to get an overview of the system or to get
high-level understanding of the system’s behavior. The second situation relates to low-level understanding of the code,

Troublesome program comprehension and
information searching

where developers become confused because they find inconsistent or contradictory evidence in different components
of the system. The third case consists of time consuming or troublesome information or “task context” search (e.g.,
finding the place to perform the changes, finding the data needed to perform a task)

Time-consuming or costly changes

Time consuming or costly changes were associated with two situations: One where the nature of the task required

making changes to a high number of components in the system, and the second one for tasks that were cognitively
demanding due to the complexity of the problem to be solved, or due to intricate design, visualization or information
distribution. While problems in the previous category all relate to information search and program comprehension, for
problems in this category, we assume that the developer has already gathered the information and understands fairly
well the code, but during the problem solving stage, the solution has to be reworked, or the solution is difficult to

formulate
Table 7
Difficulties according to source and type.
Sys. Introd. defects Program compreh. Costly changes Config. Debug Total
Not code related A 7 6 2 4 0 19
B 1 0 2 4 0 7
c 5 2 17 0 5 29
D 4 5 9 0 0 18
Sum 17 13 30 8 5 73
Code related A 4 5 0 0 0 9
B 6 12 14 0 0 32
c 4 4 1 0 0 9
D 3 3 8 0 0 14
Sum 17 24 23 0 0 64
Total 34 37 53 8 5 137
(%) (25%) (27%) (39%) (6%) (3%) (100%)
Table 8 contained extensive and complex SQL queries ‘hard-coded’ within
Non-code related problems categorized by origin. the Java code for performing different searches. The maintainers in
Sys. Arch. Defects Dev. Ext. Infra- Runtime Spec Sum our study found it extremely difficult to understand and modify
services struct. Env. these SQL queries, in particular for accomplishing Task 1. We note
A 0 0 4 1 9 5 0 19 that ‘hard-coded logic’ could constitute an code smell (e.g., Exces-
B 0 0 2 0 1 4 0 7 sive use of literals), but does not comprise any of the definitions of
C 0 4 3 1 17 3 1 29 code smells we used for the purposes of this analysis, and conse-
D 6 0 3 1 5 2 1 18 ; :
Total 6 4 2 3 3 " 5 7 quently, problems due to this aspect were considered as non-code

4.2. Problems not directly associated to source code

The problems that were not directly associated with source
code characteristics were attributed to a heterogeneous collection
of origins that included: lack of adequate technical infrastructure
(e.g., lack of proper data persistence frameworks), developer’s
strategy to solve a task, availability of external services (e.g., the
web services provided by Simula’s CMS), dependence on the run-
time environment (e.g., problems due to conflicting versions of
the Java runtime environment or JRE), and defects initially present
in the system. Table 8 presents the distribution of the non-code re-
lated problems over the various systems, and Table 9 provides
examples of the subcategories of this problem type.

It is worth noting that more than half of the problems did not
relate directly to source code, with Inadequate infrastructure being
the most salient one. This was particularly visible in Systems A and
C (see Table 8). The original developers of these systems did not
make use of adequate libraries for implementing data storage
and search technology in their solutions. For example, the systems

related problem.

In addition, System C had no clear separation of concerns be-
tween the presentation and business layers. This forced the devel-
opers to work with the business logic located in the JSP files, and
perform modifications in a “manual” way, as they were deprived
from much of the functionality in Eclipse that was only available
for Java files.

Some of the problems were caused by the maintainer’s ap-
proach to the solve the tasks and his/her coding style. Our observa-
tions showed that some of them had a high tendency to copy-paste
code and not be very systematic in making the required adapta-
tions. There were many occasions in which faults were introduced
due to mistakes during these operations.

Another large portion of the problems were due to incompatibil-
ities with the Java Runtime Environment (JRE), since the case study
systems were originally developed for a much older version of
the JRE (in 2004). The usage of deprecated components in some of
the systems contributed to the problems, in particular during the
configuration stage (i.e., installation and configuration of the working
environment for the maintenance, prior the project kick-off).

Architectural issues manifested in System D, where developers
were slightly taken aback by an additional layer within the

2232 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

Table 9
Examples of non-code related problems.

Origin

Examples of problems faced by developers

Architectural challenges

Wasted a lot of time on useless refactoring involving 15 classes.

Confusion about 4 tier system which has a “handler” and “command” tier.
Working with an extra layer in the business logic produced delays.

Initial defects in the system

“Too many defects in the system, but only [noted them later on. This made estimations highly optimistic”

(Bug in redirect pages caused delays during testing. Developer had to correct those before continuing.)

Developer factor

Lack of knowledge about technology forced re-development from scratch.

Negative side-effects from developers’ own copy-paste “strategy”.

Availability of external services
Inadequate nfrastructure

Low performance of web services required for the maintenance tasks, made the testing and development slow.
Confusions due to several tables with duplicated content in the DB.

Large SQL queries embedded in source were difficult to understand and debug.
Copy-paste errors/inconsistencies in SQL queries induced defects and delays.
Hard-coded class paths and redirects in the web pages were causing defects.
Erroneous exception handling in JSP files made debugging difficult.

Excessive logic embedded in JSP files made changes and debugging difficult.
Excessive changes required on style-sheets demanded time.

Runtime environment challenges

Java Runtime Environment was incompatible with web service library (xmlrpc).

Library compilation issues induced delays.

IDE had limitations for handling different types of files.

Delays due to problems configuring error logging on the server. (log4j)
Delays due to problems configuring web servers (Tomcat).

Unclear specification

Misunderstanding of the maintenance requirements specification.

business logic layer (i.e., distinguishing between a “handler” layer
and a “command” layer to enable that the web based presentation
layer could be replaced by a standalone library in the future). As a
result of this 4-tier design, there is a set of handler packages, which
mirrored the command packages containing a set of functional
entities. The developers complained about the fact that it was re-
quired to add two classes for each new functional unit to be added
to the system, because of these two tiers. Although this was not
considered very problematic, one of the developers tried to ‘elim-
inate’ this extra-layer, but had to rollback, incurring delays for
the project.

It is worth noting that most of these problems could not have
been detected via automated source code analysis (including code
smell detection), which provides some insights on the scope and
coverage level of code smells for assessing system-level maintain-
ability. In addition, given that these four systems constitute web-
applications, it is natural that many of the problems developers
experience are not directly related to source code. However, many
factors are in common with systems that are not web applications,
such as Runtime Environment, External services and Developers.

4.3. Problems associated to source code

Problems associated to source code were grouped into three
groups: 37 (58%) problems were attributed to the presence of code
smells, 19 (30%) problems were attributed to other code character-
istics, and 8 (12%) problems were the result of a combination of
code characteristics, some of them including smells.

Table 10 shows a classification of all code-related problems, dis-
tinguishing those that were (solely) attributed to code smells,
those that were attributed to other characteristics, and those that
were attributed to a combination of factors, including code smells.
The columns in the table classify the source code-related problems
according to the type of problem (i.e., introduction of defects, pro-
gram comprehension and time-consuming changes). First, we will
describe those problems caused by code characteristics other than
code smells. Second, we will describe the problems related to the
presence of code smells. Finally, we describe those which were
caused by a combination of factors, including code smells.

4.3.1. Problems caused by other characteristics than code smells
Many code-related problems could not be explained by the
presence of code smells. Our analysis showed that this held for

Table 10
Maintenance problems related to source code.
System Defects Program Costly Total
comprehension changes
Other code A 1 3 0 4
charact. B 0 6 4 10
C 0 1 0 1
D 0 0 4 4
Sum 1 10 8 19 (30%)
Code smells A 3 2 0 5
B 5 6 3 14
C 4 3 1 8
D 3 3 4 10
Sum 15 14 8 37 (58%)
Comb. factors A 0 0 0 0
B 1 0 7 8
C 0 0 0 0
D 0 0 0 0
Sum 1 0 7 8 (12%)

30% of the source code-related problems. This indicates that alter-
native source code analysis techniques are needed in order to
determine potential problematic areas in the code that need
improvements. For some of the problems identified, alternative
techniques such as semantic analysis [80] and dependency analysis
[81] are available.

4.3.1.1. (Lack of) Conceptual integrity. Inconsistent or illogical nam-
ing was considered problematic, in particular for System A. Devel-
oper 1 did not understanding why a file was called
“StudySortBean” when its main responsibility was to connect a
study to a researcher. These inconsistencies cannot be detected
by code smells alone, and need manual inspection or semantic
analysis. Lack of conceptual integrity was observed to introduce
defects in the code and hinder program comprehension.

4.3.1.2. Internally complex code. Developers working with System B
complained about side effects from modifying code which did not
contain any code smells at all. One such class was examined and it
was found that it implemented an extremely high number of
methods (78 in total) and displayed intensive coupling (22
incoming dependencies) with another problematic class which

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2233
Table 11
Difficulties associated the introduction of defects.
Reason # Explanation Code smell
Obs.
Efferent 2 Classes contained many methods that accessed data/methods from different areas of the system. Faults Feature Envy
coupling occurred because developers missed areas on the code that needed to be consistently changed after changes
were done on the classes displaying the efferent coupling. This is a very similar situation to when consistent
changes need to be done across duplicated code to avoid the introduction of defects
Afferent 3 When developers introduced faults in files with wide afferent coupling, the consequences of these faults will ISP Violation
coupling manifest across different components that are depending on them. This situation made many functional areas
in the system to stop working after changes, and also led to unmanageable error propagation. The classes and
interfaces with afferent coupling were recognized by the presence of ISP Violation and to some extent by
Shotgun Surgery
Large and 7 One or two classes in each system “hoarded” the business logic/functionality of the system. They were God Class and/or God
complex extremely large in comparison to the rest of the files of the systems. Developers frequently will commit Method
classes “slips” or mistakes because of the size of these classes (mainly because it is hard to navigate across the class
and keep track of changes within the class). These files will sometimes contain other smells such as Feature
Envy, ISP Violation, and Temporal variable used for several purposes, but they will tend to be God Class or
have multiple instances of God Method
Inconsistent 3 Some of these “hoarders” also contained Temporal variable used in different contexts which propitiated Temporal variable used in
variables mistakes that led to several faults, particularly in System C. Developers would change a variable expecting different contexts

that it will be used in the same way across the class, but instead unexpected behavior would manifest and

demand debugging and refactoring

constituted a God Class. The detection strategy for God Class used
by Borland and InCode did not recognize the first mentioned class
as a God Class. We conjecture that this occurred because the detec-
tion strategy considers the size of the methods (i.e., not only the to-
tal size of a class), and in this particular class, all 78 methods were
very small.

4.3.1.3. Files with cyclic dependencies. In System B, many of the clas-
ses that exhibited program comprehension issues contained cyclic
dependencies that hindered the understanding of the overall sys-
tem’s functionality.

4.3.1.4. Multiple inheritance and dynamic binding. In System B, the
implementation of multiple interfaces to simulate multiple inher-
itance (see [82] for detailed explanation) led to such complex (and
dynamic) dependencies between classes that it prompted one of
the developers to remove code that he erroneously considered
“dead code”. After finding out that it was not, considerable effort
was needed to roll back this change. Currently, there is no code
smell definition related to “Multiple inheritance simulation” but
we propose it as a new smell, given its potentially serious
consequences.

4.3.1.5. External libraries. In System B, maintainers spent many
hours trying to understand how to use the complex proprietary
persistence framework that was used during initial development.
This was considered one of the main reasons why changes were
costly or expensive in System B. They also had serious issues with
the Tomcat Realm library, which is an authentication mechanism
that manages usernames and passwords for valid users of a web
application and controls the roles associated with each valid user.

4.3.1.6. Implementation shortcomings. System A had a problem
relating to the Java language version used at the time of initial
development. The system did not use Java Generics'' (see [83]
for more information) when defining Map and Hashtable types. Dur-
ing maintenance, this use of non-typed Maps and Hashtables re-
quired manual identification of all areas of the code where the
Employee or Publication IDs had to be changed from Integer to

™ Java Generics is a facility for generic programming introduced to the Java as part
of J2SE 5.0. Generic programming is a style of programming in which algorithms are
written in terms of to-be-specified-later types that are then instantiated when needed
for specific types provided as parameters.

String. Since the maintainers sometimes missed locations where
types should have been replaced, this resulted in defects after Task
1. A related problem was found in System D: the entire system used
a Hashtable (Integer,String) to transfer data between the business
layer and the presentation layer. As a result, developers could only
send an Integer (ID) and a String (which in this case was the title
of the publication) to the presentation layer. Although maintainers
wanted to transfer more information on Publications, this decision
was so entangled in the system that they were forced to use work-
arounds instead of simply modifying the Hashtable to support a
more generic type.

4.3.2. Difficulties associated to code smells

Several problems that occurred during maintenance could be
explained by occurrences of code smells in the problematic code.
For each type of problem described earlier in Table 6 (i.e., defects
introduced, difficult program comprehension and costly changes),
we will now discuss how they occurred, and which code smells
were detected in the problematic code that can explain those
issues.

4.3.2.1. Introduction of defects. We found four main code character-
istics that according to our observations, led to the introduction of
defects after changes: (1) wide efferent coupling, (2) wide afferent
coupling'?, (3) large and complex classes, and (4) inconsistent use of
variables. Large and complex classes were the main reason for most
of the problems registered under this group (7 observations in total).
Files belonging to each of these four groups were characterized pri-
marily by the presence of several code smells: Feature Envy, ISP Vio-
lation, God Method/God Class and Temporal variable used for several
purposes. Table 11 shows for each code characteristic, the number of
observations, an explanation why the problem occurred, and the
most salient code smell across the files associated to those problems.

4.3.2.2. Troublesome program comprehension and information search-
ing. Table 12 presents the various reasons that we observed to
underlie maintenance problems related to program comprehen-
sion and information searching. As mentioned previously, there
were different levels of program comprehension problems

12 Efferent coupling is a measure of how many different classes are used by the
specific class, also known as outgoing dependencies, and Afferent coupling is a
measure of how many other classes use the specific class, also known as incoming
dependencies.

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

Reasons and smells underlying observed maintenance difficulties that were related to program comprehension and information search.

2234
Table 12
Reason #
Obs.

Explanation

Code smell

Cross-cutting concerns 2

Inconsistent Design 1

Inconsistent variables 3
and duplication

Large and complex 2
classes

Pervasive classes 3

Logic Spread 2

In both Systems A and B, the domain entity Person was being used within the “User” context and also
within “Employee” concept. As such, information and functionality connected to the studies (e.g.,
employees who participated on it) and the management of privileges and access constituted
crosscutting concerns. In System A, the entity person had many clients, thus resulting in ISP Violation
and in System B, the entity person was hoarding all the functionality that related to both concepts
employee and user

Imbalances and inconsistencies in the allocation of data and functionality across classes confused a
developer. In J2EE environments, it is common to use Bean files as data transfer objects. Their
counterparts, the Action files (which in turn contain the business logic) access the Bean files. In System
A, a class was acting as both Bean and Action file, and it was accessed by a wide set of dissimilar clients.
This confused one developer, who was not sure about the intended scope of the code, which led to delays
in the project, because the developer spent time deciding on the right strategy to follow in order to solve
the task

Inconsistencies in the use of many different variables made the developers unsure about the purpose of
the variables, and the behavior of the method/class containing them. Also duplicated code or similar
functionality implemented inconsistently made it difficult to understand the code

Files that were hoarding the functionality of the system were extremely big in size, and consequently,
difficult to navigate within. This resulted in developers struggling to understand the roles and behavior
of these classes. Some of them would display wide afferent and efferent coupling, but the biggest
distinguishing factor was the presence of God Class and/or God Methods

Classes which acted as a “Middle Man” in every functional aspect of the system made it difficult for the
developers to grasp the overall behavior of the system. System B had a Memory caching mechanism
implemented through one class which was involved in every data-related operation in the system.
Developers spent hours investigating this mechanism before feeling enough confident to perform any
changes

Classes that contained many methods making many calls to methods or variables in other classes, forced
the developers to examine all the files called by these methods in order to identify the pertinent data or
location where to perform the change. Some of the God Methods also called other God Methods, which

Feature Envy or ISP
Violation

Data Class and ISP
Violation

Temporal variable used in
different contexts

God Class and/or God

Method

God Class

God Method and Feature
Envy

made the problem worse

identified during the project. The presence of one pervasive class
(named MemoryCachingSimula) caused most of the problems in
understanding the overall behavior of system. This class consti-
tuted a God Class Confusion during program comprehension was
caused by inconsistent design and cross-cutting concerns, which
can be explained by the presence of Data Class and ISP Violation.
Files that developers associated with inconsistent use of variables
displayed the smell Temporal variable used in different contexts.
We could observe two cases of cross-cutting concerns, which were
explained by afferent (ISP Violation) and efferent coupling (Feature
Envy). Finally, problems understanding low-level details of the
code were caused by large classes and wide spread logic, explained
by a combination of God Method and Feature Envy.

4.3.2.3. Costly changes. The observations in this category are related
to highly complex changes, both in terms of number of changes re-
quired to complete the task, as well as in terms of the number of
elements that a developer needs to consider simultaneously in or-
der to complete the task (i.e. a cognitively demanding task). The
code smell that was most salient within this group was Feature
Envy, followed by ISP Violation and God Class (See Table 13). Most
of the files associated with costly changes displayed a combination
of God Class and Feature Envy. We observed that many files asso-
ciated with complex changes were also associated with the intro-
duction of defects. It is plausible that these complex tasks have
led to the introduction of faults, since the developers could not
keep track of the potential consequences of their changes due to
the complex design.

4.3.3. Difficulties associated to interaction effects

We observed that a single characteristic could lead to different
types of problems, but we also found instances of interaction ef-
fects in this study. In particular, we identified a set of files (marked
with bold) that exhibited a combination of different characteristics,
and they were associated with multiple problems during mainte-

nance. These files (classes) also showed a higher number of churn
and number of revisions than the average for a file in a given sys-
tem (see Table 14). In Table 14, we mainly see two sets of files: One
set that contains either zero code smells or very few (ex. Object-
Statement, PeopleDAO), and another set comprising extremely
large files displaying a combination of smells: Feature Envy, God
Method, ISP Violation, Shotgun Surgery and Temporary variable
used for several purposes (ex. StudyDatabase, DB, StudyDAO).

We could observe that the files with none or nearly none smells
were coupled to files containing many code smells, and we identi-
fied several cases where particular characteristics in the former
group of files interacted with the smells present in the latter group
of files, causing problems to developers.

We named the files containing a lot of code smells “control
hoarders”, mainly because they contained the majority of the func-
tionality. Each system except for System B displayed one instance
of them (i.e. DB in System C, StudyDatabase in System A, and
StudyDAO in System D), and they were associated to all types of
problems, and were unanimously mentioned by all developers that
worked with the same system. They all contained: Feature Envy,
God method, and ISP violation, and, in addition they also exhibited
high churn rate and LOC. We found that in System B, the previously
mentioned combination of smells was not located in one file, but
distributed across several problematic files. StudySearch and
MemoryCachingSimula were internally complex, whiles Simula
and ObjectStatementImpl displayed a wide spread afferent/effer-
ent coupling. Both pairs of files were coupled (i.e., MemoryCach-
ingSimula had dependencies on Simula while StudySearch had
dependencies on ObjectStatementlmpl).

We could observe in our study that two coupled files can con-
tain the same combination of smells (distributed over the files)
as one single file, and lead to the exact same consequences. This
means that for a practical perspective, there is no difference if a
combination of smells is located in one file or if it is distributed
across coupled files.

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2235
Table 13
Difficulties associated with costly changes.
Reason # Explanation Code smell
Obs.
Lack of flexibility of 3 Classes that contained many calls to different elements were dependent of the implementation on those Feature Envy

dependent components

elements. When developers introduced changes in a class, the elements on which the class was relying on will

not allow the changes due to their lack of flexibility in their design. This forced the developers to roll-back
changes and try out different solutions/strategies to complete a task

Efferent coupling 4

When classes call many methods (in particular for data access) from other classes (delocalized logic), this led

Feature Envy

to “cognitively demanding” changes. This became particularly problematic when trying to merge the data
retrieved from the new web services and the data retrieved from the DB

Afferent coupling 1

When changes were introduced to interfaces with wide dependencies, adaptation or amends were needed on

ISP Violation

those elements depending on the interfaces. This led to time-consuming change propagation

Large and complex classes 1

When classes are very big and contain many methods without clear separation of concerns, parallel changes God

were required in each of them Class + God
Method
Table 14
Files linked to problems due to code smells or to a combination of characteristics.

System File obs DC CL DUP FE GC GM ISPV MC RB SS Temp Imp rev chrn loc

A PublicationDatabase 2 0 0 0 2 0 0 0 0 0 0 1 0 8 557 308
A StudyDatabase 2 0 0 0 7 0 1 1 0 0 1 1 1 23 525 888
B ObjectStatement 2 0 0 0 0 0 0 0 0 0 0 0 0 2 4 133
B PrivilegesManageAction 2 0 0 0 0 0 1 0 0 0 0 1 0 9 304 225
B Publication 2 1 0 0 0 0 0 0 0 0 0 0 0 8 190 84
B Simula 2 0 0 0 0 0 0 1 0 0 1 0 0 12 806 408
B ConfigServlet 3 0 0 0 0 0 0 0 0 0 0 0 0 5 176 152
B MemoryCachingSimula 3 0 0 0 0 1 0 0 0 0 0 1 0 13 1011 611
B ObjectStatementImpl 3 0 0 0 0 0 0 1 0 0 1 0 0 9 1134 796
B Person 3 0 0 0 0 0 0 1 0 0 1 0 0 14 451 193
B StudiesEditAction 3 0 0 0 0 1 2 0 0 0 0 0 0 10 484 368
B Persistable 4 0 0 0 0 0 0 0 0 0 0 0 0 2 2 22
B PersistentObject 0 0 0 0 0] 0 0 0 0 0 0 0 0 3 2 70
B StudySearch 4 0 0 0 2 1 2 0 0 0 0 0 0 10 1213 786
C DB 9 0 0 2 16 1 2 1 0 0 0 1 0 34 2754 1824
D PublicationDAO 2 0 0 0 0 0 0 0 0 0 0 0 0 12 336 159
D PeopleDAO 3 0 0 0 0 0 0 0 0 0 0 0 0 16 372 261
D StudyDAO 8 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268

The following example was identified in System B, where a par-
ticular combination of factors led to costly changes and defects
were introduced after changes. This issue was reported by all
developers who worked in System B and it manifested through 8
different maintenance problems.

4.3.3.1. Critical example of an interaction effect. The developers who
worked on System B wanted to replace two interfaces: Persistable
and PersistentObject with one new interface that would support a
String ID type instead of an Integer type in order to complete Task
1. This was not possible since the entire implementation was based
on primitive types instead of domain entities. Both interfaces were
restrictive and were made under the assumption that identifiers
for objects would always be Integers, and thus defined accessor
methods getld () and setld () with Integer types. Note that these
interfaces displayed zero code smells. The problem occurred be-
cause many critical classes in the system implemented these two
interfaces, consequently the change spread was extensive. See for
example in Fig. 3, how up to 10 domain classes implemented the
PersistentObject interface. Many of the classes that implemented
these interfaces displayed ISP Violation, which resulted in an
extensive ripple effect. Fig. 4 shows how ObjectStatementImpl
(which displayed both Shotgun Surgery and ISP Violation) dis-
played dependencies on the Persistable interface. Due to these
dependencies, from a practical perspective modifying Persistable
would have the same impact (in terms of ripple effect) as making
modifications directly in ObjectStatementlmpl. Modifying any of
these interfaces led to an unmanageable number of compilation er-

rors, so developers had to rollback the changes in those files (i.e.
keep the interfaces untouched) and instead perform forced casting
wherever it was required.

Most developers used a considerable amount of time trying to
replace the interface, and they were forced to rollback and perform
the forced casting. This is an example of how code smells intensify
or spread the effects of certain design choices throughout the
system. The above-mentioned interfaces alone where not so harm-
ful, in spite of having a design flaw (i.e., having typed setters and
getters). But the moment that classes widely used in the system
display a dependency on them, that would spread the effects of
this design limitation.

5. Discussion

5.1. Code characteristics (and smells) that can lead to maintenance
difficulties

Our results indicate that there are many reasons why difficul-
ties can occur during maintenance, and code smells can help to ex-
plain and potentially identify some of those problems beforehand.
However, as we observed several cases where distinct problems
were caused by the same code characteristics, the predictive
capacity will generally be limited to signalling that problems are
to be expected, but not what concrete problems these are.

In our study, we identified four code characteristics that
are strongly related to current code smell detection strategies,
that explained maintenance difficulties: (a) Inconsistent design

2236

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

(C] no.simula.PersistentFactory ————----==ssmeeseemmsceecc 1
(C] no.simula.des.persistence.PersistentAdminModule
G no.simula.persistence.PersistentPublication

@ no.simula.des.persistence.PersistentPrivilege ~_

G no.simula.des.persistence.PersistentStudyType "57

= (1) no.halogen.persistence.PersistentObject

G no.simula.des.persistence.PersistentStudy — "

@ no.simula.persistence.PersistentPerson -~

G no.simula.des.persistence.PersistentStudyMaterial
@ no.simula.des.persistence.PersistentDurationUnit
G no.simula.des.persistence.PersistentStudyReport 1

Fig. 3. Diagram of interface dependencies of PersistentObject.

® no.simula.statements PublicationStatement ———— 11
(@B no.simula.des.statements —----—--—-smeererrrmmeeeeeeeee 114
A\ 4® no.halogen.utils sql.SqlHelper
G no.halogen.statements.ObjectjoinableStatementimpl, 4
: \ 11 ,1@ no.halogen.statements.StatementException
no.simula.des.search-- 7 4
#n ¢ \ fi
3 y VI'VO no.halogen.statements.Entity
@ no.simula.des.persistence —----======s=esesx] x@ no.halogen.statements.ObjectStatementimpl
! 2@ no.halogen.utils.sql.LoggableStatement
® no.simula.statements.PersonStatement /
Vs 4 l‘[‘eno halogen.persistence.Persistable]
@ no.simula.persistence.PersistentPerson ~ 11 A
{ 9 no.halogen.statements.ObjectStatement
® no.simula.persistence.PersistentPublication /
® no.simula.statements PublicationPeopleRelStatement’

Fig. 4. Incoming/outgoing dependencies of ObjectStatementImpl.

(incl. usage of variables), (b) cross-cutting concerns, (c) large and
complex classes, and (d) coupling (afferent and efferent).

5.1.1. Inconsistent design

This characteristic was found to negatively affect program com-
prehension and in some situations led to the introduction of faults.
Although design inconsistencies can manifest in a semantic form
(as discussed in Section 4.3.1), they also manifest through imbal-
ances in the data/functionality allocation. Our observations on Sys-
tem A suggest that this characteristic can be identified by detecting
a combination of Data Class and an ISP Violation smells. We also
found design inconsistencies that manifested at the variable level,
related to Reuse of Temporary Variable for unrelated purposes.

5.1.2. Cross-cutting concerns

This characteristic was found in this study to negatively affect
program comprehension (See Section 4.3.2, paragraph: Troublesome
program comprehension and information searching). As concerns can
pass through different layers or packages, they can manifest in the
form of widespread dependencies. As such, either Feature Envy
(which indicates efferent coupling) or ISP Violation (which indi-
cates afferent coupling) can help to identify these situations, in
combination to approaches for identifying cross-cutting concerns.

5.1.3. Large and complex classes

This characteristic was attributed as the cause for all three ma-
jor types of difficulties (i.e., introduction of defects, troublesome
program comprehension and costly changes), and it largely relates

to the size factor. We observed that most of the files with large size
exhibited either the God Class smell or the God Method smell and
in most cases a combination of both smells. This finding is con-
firmed by the results from Abbes et al. [42]. When it comes to pro-
gram comprehension difficulties, our results are in agreement to
observations by Deligiannis [39], who found that designs that exhi-
bit God class led to reduced correctness and increased effort in
maintenance tasks. In our study, many of the large and complex
classes also contained other smells such as Feature Envy, ISP Viola-
tion and Shotgun Surgery (see Table 14). This suggests that these
difficulties are caused by a indirect consequence of size (i.e., they
can be caused by interaction effects between code smells that are
more likely occur in large classes). For example, Large classes (or
God Classes) often are difficult to navigate through and read. But
if they contain in addition, many Feature Envy methods, that
would cause additional difficulties, because it will make time-con-
suming or even confusing, the navigation across artifacts displaying
dependencies (e.g., methods or variables in other classes that are
accessed by the Feature Envious methods). What happens is that
Feature Envy methods tend to appear in classes that contain high
amounts of logic. We observed such cases in our study, where
we found that is not the actual size of the artifact, but also the large
number of outgoing dependencies that co-occur in these large arti-
facts, that intensified the problems. Olbrich et al. [45] reported that
when normalized with respect to size, classes constituting God
Class or Brain Class had less faults and demanded less effort. The
results on our study suggest that observing combinations of code
smells could be useful to discriminate instances of God Classes that

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2237

are potentially more problematic (by for example focusing on
those God Classes which also display Feature Envy, ISP violation
and Shotgun Surgery).

5.1.4. Coupling

Afferent and efferent coupling were associated to all three ma-
jor types of difficulties (i.e., introduction of defects, troublesome
program comprehension and costly changes) in our study. We
found that classes with wide coupling displayed Feature Envy or
ISP Violation and to some extent Shotgun Surgery. Li and Shatnawi
[35] reported that Shotgun Surgery was positively associated to
faults, and in our study we observed several situations where affer-
ent coupling led to the introduction of defects.

Also, the nature of the maintenance task created a situation,
where “consistent changes” were needed (e.g., all the functionality
related to Employee and Publication should use String IDs instead
of Int IDs). This situation is very similar to what happens when
duplicated code needs to be consistently and simultaneously up-
dated: when it’s not, it leads to defects (see work by Juergens
et al. [36]). When the logic is widespread over the code, it will be-
come easier for developer to overlook places where changes/up-
dates need to be made, leading to defects. To address this issue,
either the design of the system or appropriate tools should support
efficient localization of the task context and change propagation.

From a program comprehension perspective, our observations
challenge the current views on how delocalized plans only affect
unexperienced developers (as reported by Arisholm and Sjeberg
in [84]). Although the developers in our study were as experienced
as in [84], in our study, they were observed for a longer period of
time, and they worked with more complex tasks and systems than
in the study reported in [84]. An explanation on why coupling
turned out to be problematic for program comprehension in our
study, and not in the study reported in [84], can be due to the pres-
ence of thresholds on the levels of delocalized logic that developers
can handle without the task becoming too cognitively demanding.

An insightful case was System B, which in order to successfully
complete Task 3, required the combined activities of understand-
ing and (re)using certain libraries that were build by the original
developers of the system (i.e., a library for generating requests to
the DB, which was needed to produce the reports). What develop-
ers referred as “time-consuming” or costly work was to actually
put the elements provided by the library together in order to solve
the task. Our observations are aligned with Wood’s [85] perspec-
tive on component task complexity, referring to the number of dis-
tinct information cues that must be processed simultaneously to
perform a task. We could identify cases where this component
complexity increased the effort on code comprehension and mod-
ification, as developers needed to gather the distinct information
cues to complete the task.

5.2. Challenges of code smell analysis due to interaction effects

Within the categorization made on the maintenance difficulties,
there is a degree of overlap between the difficulty category de-
scribed in Section 4.3.2 (i.e., problems attributed to the presence
of code smells) and the category described in Section 4.3.3 (i.e.,
problems due to interaction effects). However, we believe the dis-
tinction necessary in order to build more detailed causal models
for attempting to understand the relationship between code attri-
butes and maintenance.

For example, in Section 4.3.3, it was described how modifying
two widely used interfaces in System B led to unmanageable error
propagation. The case portraits what happens when a widely used
interface (manifested in the form of ISP violation) that has a lim-
ited design choice (i.e., the definition of getters and setters using
primitive types) needs to be modified. We could observe that there

was an interaction effect between these two characteristics, which
in the context of the maintenance task (i.e., Task 1: replacing ID
type of the domain entities from Integer to String) resulted in a
considerable problem for the developers. We believe this is a very
important observation to report, as it could be the key to actually
understand why code smells are harmful in certain situations,
and in some other, they are not. This may explain why different
empirical studies report contradictory effects on the same code
smell.

In our study, we observed interaction effects between a code
smell and other code characteristics, but we also observed interac-
tion effects between code smells. Pietrzak [35] introduced the no-
tion of inter-smell relations. An example of an inter-smell relation
is plain-support: “... smell B is supported by smell A if the exis-
tence of A implies with sufficiently high certainty the existence
of B. B is then a companion smell of A, and the program entities
(classes, methods, expressions, etc.) burdened with A also suffer
from B...” (p. 77) [86]. Pietrzak suggest the notion of inter-smell
relations to support more accurate code smell detections, but it
can also be used to better understand the potential interaction ef-
fects due to different combinations of code smells.

We have identified and reported explicit cases where the pres-
ence of a single code smell in a file did not lead to as much prob-
lems as when several specific code smells, where present,
suggesting that interaction effects between code smells exist. If
we have grouped the code smell interaction cases (reported in
Section 4.3.3) together with the first category (described in Sec-
tion 4.3.2), we would have omitted an important cue, as we would
assume that code smells that appear alone have the same effects as
those that interact with other smells or other code characteristics.
Very little has been investigated in the current literature on the
interplay between code smells, being the work by [42], the only
one reporting on potential interaction effects (i.e., between God
Method and God Class). Thus, we believe that correlation studies
involving individual variables are perhaps, not enough for under-
standing the effects of code smells in a comprehensive manner.

In Section 4.3.3 we discussed how in System B, interaction ef-
fects occurred across code smells not collocated in a single file,
but distributed across several files that were coupled. Up to now,
code smells have been detected mainly at class or method level.
Considering the fact that the consequences of such coupled smells
are the same for collocated smells, we can assume that there is a
need to consider smell interactions across artifacts that are cou-
pled. To include such interactions, code smell detection algorithms
should not be limited to class or method levels, but also consider
the dependencies between artifacts.

5.3. Capability of code smells to predict system’s overall
maintainability

This paper has provided a detailed account on the different as-
pects of the four systems that caused maintenance difficulties. This
gives us an insight in the plethora of factors that may influence
maintenance. Several of these factors have been reported before
[59,57,87], but here we provide a detailed, systematic analysis
based on an industrial case study that included observing develop-
ers conduct maintenance tasks over a longer time.

From the total set of difficulties identified during maintenance,
less than half (43%) were related to Java code, and from those, only
58% clearly related to any of the twelve code smells used to analyze
the code. This means that even if we count those difficulties that
are due to combination of factors, roughly only 30% of the total
set of difficulties can be explained and potentially foreseen by code
smells. As a result, we conclude that the subset of aspects that are
covered by current code smell detection has a relatively low

2238 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

impact on the outcomes of a maintenance project, and code smell
detection is of limited value as single predictor of maintainability.

Moreover, our results show that there are several code charac-
teristics that are not captured by code smells but did affected a
considerable part of maintenance difficulties (30%). This suggests
that a combination of different code analysis techniques and tools
is needed in order to achieve a more comprehensive evaluations of
maintainability. This aligns with the ideas of Walter and Pietrzak
[88], who suggested the usage of multiple criteria to assess code
quality.

There were some differences in the types and number of prob-
lems across systems, for example System B displayed more code-
related problems (82% of the total), whiles System C displayed
more non-code related problems (76% of total problems). One
can then argue that the proportion of java files versus other types
of files (ex., jsp, sql, php) may influence the proportion of code vs.
non-code related maintenance problems (89% of the files in System
B were java files, whiles in System C, java files constituted only 46%
of the total system).

However, we observed that proportion of files does not always
explain the type of problem: whiles in Systems B and C, the propor-
tion of code-related problems is in accordance to the proportion of
Java files, Systems A and D, displayed more non-code related prob-
lems (32% and 44% respectively) despite the fact that they con-
tained a considerably higher number of Java files than Jsp or
other files (74% and 79% respectively). This suggests that the
sources of the maintenance problems identified in our study con-
stitute a broader range of aspects than the proportion of files in
the business and presentation layers.

The results from our study reminds us of the limitations of eval-
uations based purely on static analysis and suggest the need of
more comprehensive quality models and techniques that can
incorporate the analysis of diverse factors. This position was also
taken by Anda [87], who suggests that maintainability evaluations
should combine the analysis of code measures with expert assess-
ment, as they both cover different aspects of software quality.

5.4. Threats to validity

We consider four perspectives in the threats to the validity of
our study:

5.4.1. Construct validity

Maintenance problem constituted a simple but straightforward
construct in our study. Although this term has not been previously
defined in the literature, we provide a comprehensive description
of the problems. With respect to code smells, we used automated
detection to avoid subjective bias. Nevertheless, the lack of stan-
dard detection strategies used in the tools could be a potential
threat, as they can affect some of the results reported in this study.
For example, we found classes with complex code were not identi-
fied God Class, and did not contain Feature Envy, or Long Method
smells. We are aware that there are other tools that can detect
many of the code smells analyzed, and their detection strategies
could to some extent, differ from those used in this study.

5.4.2. Internal validity

In this study, we have used mainly qualitative analysis tech-
niques to explore potential causal links between code smells and
maintenance problems, and their corresponding underlying causal
mechanisms. According to Maxwell [89], there are mainly two
ways to derive/test theories and investigate causality: variance the-
ory, which involves measurements of differences and correlations.
In contrast, there is an approach called process theory, which deals
with events and processes that connect them, is less compatible to

statistical approaches, and focuses instead to in-depth study of a
limited number of cases [89]. Maxwell states:

“Both types of theories involve causal explanation. Process the-
ory is not merely descriptive, as opposed to explanatory variance
theory; it is a different approach to explanation. Experimental
and survey methods typically involve a black box approach to
the problem of causality; lacking direct information about
social and cognitive processes, they must attempt to correlate
differences in output with differences in input and control for
other plausible factors that might affect the output. Qualitative
methods, on the other hand, can often directly investigate these
causal processes, although their conclusions are subject to
validity threats of their own”.

In this study, we have used a technique called “explanation
building” where we provide the sequence of events, factors or sit-
uations that lead to a given problem. As in any qualitative research,
there are threats to validity and limitations. One limitation is that
the level of detail on the narrative is not homogeneous for all the
problems mentioned. A threat is that is possible that some devel-
opers were more open about problems than others, and some did
not report all the maintenance problems they experienced. As with
most other qualitative research, researcher bias may occur when
selecting data to analyze and report and when summarizing and
interpreting the data. Maxwell and also Yin [56], suggests a series
of approaches or characteristics necessary in a qualitative inquiry
to tackle its threats to validity. Our study possess many of impor-
tant characteristics reported, in specific:

o Intensive, long-term involvement, which according to Becker
and Geer [90], as cited by Maxwell “provides more com-
plete data about specific situations and events than any
other method"”.

e Rich data, which according to Maxwell, given the condition
that is detailed and varied enough, they can, provide a full
and revealing picture of the processes involved.

e Searching for discrepant evidence and negative cases. The use
of the modus operandi across cases was applied in our study
to strengthen the causal inference on the effect of code
smells. For example, the fact that all developers who
worked with the same system faced the exact same prob-
lem, strengths the validity of the narrative describing the
process involved in the causal relations.

e Member checks. During the study, feedback was requested
from other researchers on the data being collected, and in
the latter stage where the analysis and the writing of this
paper was conducted, there was a intensive discussion on
the nature of the problems, the evidence and the
categorization.

e Triangulation. “Collecting information from a diverse range
of individuals and settings or using a variety of methods”
[89], via the usage of three independent collection meth-
ods, i.e., interviews, direct observation and think-aloud
sessions.

5.4.3. External validity

The main threat to external validity of this study is that the re-
sults are contingent to the contextual characteristics and industrial
domain of the project, encompassing a Java web-based, medium-
sized (10-30KLOC), three-layered information system. Had the
project not involved a web-application, the number of code smells
detected could have been different, and the percentage of prob-
lems that could be connected to code smells could have been dif-
ferent. Also, it is possible that not all the definitions of code
smells used are equally applicable in every domain. For example,

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2239
Table A.15
Difficulties, description and files associated.
ID Description (Summary) Code? Factors File Dev. Sys. Diff. type
40 Slightly confused about 4 tier system which has a “handler” and no Arch. n/a 3 D Program
“command” tier compreh.
49 Working with handlers and jsp took a lot of time no Arch. n/a 3 D Modifying
9 Query study_search_query is difficult to understand no Infrastr. n/a 1 A Understanding
11 Difficulties with usage of wildcard “%” in sql queries no Infrastr. n/a 3 C Understanding
37 Copy-paste error in sql query took around 2 h no Infrastr. n/a 1 A Defects
57 Complaints about the size of the query no Infrastr. n/a 2 A Understanding
21 Problems after adding the personalized report functionality no Infrastr. n/a 3 C Defects
25 Bug due to userld which was left without conversion from int to String no Developer ReportListAction.java, 2 B Defects
ReportDefinitionsEditAction.java
2 Dynamic binding made programmer think erroneously that code was yes n/a SearchByPublicationTitle.java, 2 B Program
dead compreh.
SearchByPublicationTitlelmpl.java,
CriteriumFactorylmpl.java,
PublicationStatement.java
3 Finding task context is difficult for Person and Publication. Specially yes n/a Person.java 2 B Program
person since domain is localized but code is spread compreh.
4 Hard to find entity People yes n/a PeopleDatabase.java 1 A Program
compreh.
8 Programmer does not understand if User is creator of Publication yes n/a PublicationDatabase.java 1 A Understanding
10 Difficulties finding the assignment of the results due to polymorphism yes n/a PersistentPerson.java B Understanding
in the statement
12 Variable “Search” used in different contexts, make it difficult to yes n/a DB.java 3 C Understanding
understand
15 Bug due to temporal variables repeatedely used for different purposes yes n/a DB.java 3 C Defects
20 Difficulties understanding the caching system yes n/a MemoryCachinSimula.java 2 B Understanding
22 Hard to understand the realm concept yes n/a SimulaRealm.java 2 B Understanding
23 Problems with understanding the previous authentication procedure yes n/a SimulaRealm.java 2 B Understanding
27 Casting problems (due to DB drivers), and this forced the programmer yes n/a ObjectStatementImpl.java 2 B Modifying
to do hard casting from long to int
28 Defects introduced after modifying function create new study (Last yes n/a StudiesEditAction.java 2 B Defects
modified/created by info lost during int-string conversion)
Table A.16
Code characteristics and files that were associated to the introduction of defects.
Reason ID Sys File DC CL Dup FE GC GM Ispv MC RB SS Tmp Imp rev chrn Iloc
Efferent coupling 58 A RemoveResponsibleAction 0 0o o0 1 0 0 0 0 0 0 0 0 5 23 80
103 D SearchCriteriaTag 0 0 0 1 0 0 0 0 0 0o 0 0 4 41 51
Afferent coupling 97 D Nuller 0 0o o0 0 0 0 1 0 0 1 0 0 2 22 121
98 D StudyDAO 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268
113 C DB 0 0o 2 16 1 2 1 0 0 0o 1 0 34 2754 1824
113 C ReportServlet 0 0 0 0 1 0 0 0 0 0o 3 0 10 184 441
Inconsistent variables 15 C DB 0 0o 2 16 1 2 1 0 0 0 1 0 34 2754 1824
78 C DB 0 0o 2 16 1 2 1 0 0 0o 1 0 34 2754 1824
137 A StudyDatabase 0 0 0 7 0 1 1 0 1] 1 1 1 23 525 888
137 A PerformSearchStudiesAction 0 0o o0 1 0 0 0 0 1 0o o0 0 4 23 95
Large and complex classes 28 B MemoryCachingSimula 0 0o o0 0 1 0 0 0 0 0 1 0 2 1 13
28 B PersistentStudy 0 0 0 4 1 0 0 0 0 0 0 0 5 1 13
28 B PrivilegesManageAction 0 0o o0 0 0 1 0 0 0 0 1 0 2 1 9
28 B StudiesEditAction 0 0 0 0 1 2 0 0 0 0 O 0 10 484 368
32 B StudiesEditAction 0 0 0 0 1 2 0 0 0 0 0 0 10 484 368
39 B StudiesSearchAction 0 0o o0 1 0 1 0 0 0 0 1 0 10 40 262
39 B StudySearchForm 1 0 0 0 0 0 0 0 1 0 O 0 4 269 221
70 C DB 0 0o 2 16 1 2 1 0 0 0o 1 0 34 2754 1824
70 C StudyEditServlet 0 0 0 0 0 0 0 0 0 0 0 0 2 1 115
77 A StudyDatabase 0 0 0 7 0 1 1 0 0 1 1 1 23 525 888
87 B StudySearch 0 0 0 2 1 2 0 0 0 0 O 0 10 1213 786
119 B StudySearch 0 0 0 2 1 2 0 0 0 0 0 0 10 1213 786

Data Class constitutes a code smell according to Fowler [7], but it
constitutes a well-accepted practice in web applications that use
EJB (Enterprise Javabeans).'> To achieve a better maintainability
analysis based on code smells, we believe that future work should
focus on defining code smells that match the domain of the systems
under analysis, such as the work by Guo et al. [91].

13 http://www.oracle.com/technetwork/java/javaee/ejb/index.html.

In addition, the maintainers performed their tasks as solo-pro-
jects. The fact that these were solo-projects can affect the applica-
bility of the results in highly collaborative environments. Despite
these limitations, the tasks observed are based on real needs and
their duration and complexity are representative of real-life pro-
jects. The tasks resemble backlog items in a single sprint or itera-
tion within the context of Agile development. Studies of in vivo
maintenance tasks have not reported more than 240 min, whereas

http://www.oracle.com/technetwork/java/javaee/ejb/index.html

2240 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242
Table A.17
Code characteristics and files that were associated to the difficult program comprehension.
Reason ID Sys File DC CL Dup FE GC GM Ispv MC RB SS Tmp Imp rev chrn loc
Cross-cutting concern 3 B Person 0 0 0 0 0 0 1 0 0 1 0 0 14 451 193
4 A PeopleDatabase 0 0 0 30 0 0 0 0o 0 o 0 12 359 282
Inconsistent functionality 36 A StudySortBean 1 1 0 00 0 1 0 0 0o o0 0 6 60 154
allocation
Inconsistent variables and 12 C DB 0 0o 2 16 1 2 1 0 0 0 1 0 34 2754 1824
duplication 63 B PrivilegesManageAction 0 0 0 0 0 1 0 0 0 0 1 0 9 304 225
80 C DB 0 0 2 16 1 2 1 0 0o 0 1 0 34 2754 1824
88 C DB 0 0 2 16 1 2 1 0 0o 0 1 0 34 2754 1824
Large and complex classes 42 D StudyDAO 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268
62 B StudiesEditAction 0 0o o0 0 1 2 0 0 0 0 O 0 10 484 368
Pervesive classes 20 B ConfigServlet 0 0 0 0 0 0 0 0 0 0o 0 0 5 176 152
20 B MemoryCachingSimula 0 0 0 0 1 0 0 0 0 0 1 0 13 1011 611
20 B PersistentFactory 0 0 0 0 0 0 0 0 0 0o o0 0 3 8 87
20 B Person 0 0 o0 0 0 0 1 0 0 1 0 0 14 451 193
20 B Privilege 1 0o o0 0 0 0 0 0 0 1 0 0 4 100 72
20 B Publication 1 0o o0 0 0 0 0 0 0 0 O 0 8 190 84
20 B Simula 0 0 0 0 0 0 1 0 0 1 0 0 12 806 408
20 B SimulaException 0 0 0 0 0 0 0 0 0 0o 0 0 1 11 25
20 B SimulaFactory 0 0o o0 0 0 0 0 0 0 1 0 0 0 0 40
117 B ConfigServlet 0 0o o0 0 0 0 0 0 0 0 O 0 5 176 152
117 B MemoryCachingSimula 0 0 0 0 1 0 0 0 0 0 1 0 13 1011 611
118 B Table 0 0 o0 0 0 0 1 0 0o 1 o0 0 1 1 190
Logic Spread 66 D StudyDAO 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268
75 D StudyDAO 0 0 1 10 1 2 1 0 o 1 1 0 30 480 1268
Table A.18
Code characteristics and files that were associated to the difficult program comprehension.
Reason ID Sys File DC CL Dup FE GC GM Ispyv MC RB SS Tmp Imp rev chrn loc
Lack of flexibility 43 D StudyDAO 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268
51 B StudySearch 0 0 0 2 1 2 0 0 0 0 0 0 10 1213 786
56 B StudySearch 0 0 0 2 1 2 0 0 0 0 0 0 10 1213 786
Data dependencies 45 D PeopleDAO 0 0 0 0 0O 0 0 0 0 0 0 0 16 372 261
45 D PublicationDAO 0 0 0 0 o0 0 0 0 0 0 0 0 12 336 159
45 D StudyDAO 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268
46 D PeopleDAO 0 0 0 0 o0 0 0 0 0 0 0 0 16 372 261
82 D StudyDAO 0 0 1 10 1 2 1 0 0 1 1 0 30 480 1268
108 B ConfigServlet 0 0 0 0 o0 0 0 0 0 0 0 0 5 176 152
Large classes 91 C DB 0 0 2 16 1 2 1 0 0 0 1 0 34 2754 1824

in this study, we closely observed the whole maintenance process
for a period of 120-160 h per system.

5.4.4. Reliability

Finally, with respect to the reliability (or repeatability) of our
study: we have comprehensive documentation of the study proto-
col, the procedures for conducting the interviews, think aloud ses-
sions and for summarizing and analyzing the data. Most
importantly, the systems and the data used as baseline for this study
bear enough complexity to belong to a realistic setting. Situations
that normally do not occur in controlled settings were observed
and provided new insights that can be useful for practitioners and
researchers.

6. Conclusions

In total, 137 different difficulties were identified from the dif-
ferent maintenance projects, from which only 64 difficulties
(47%) were associated to Java source code. The remaining 73
(53%) constituted difficulties not directly related to code, such as:
lack of adequate technical infrastructure, developer’s coding
habits, dependence on external services (e.g., web services), incom-

patibilities in the runtime environment (e.g., JRE), and defects ini-
tially present in the system. Our results showed a relatively low
coverage of code smells when we observe the maintenance project
as a whole. Within the limits established by the context of this
study, it was clear that the proportion of problems that were linked
to source code and more specifically, to code smells was not as
large as expected. A corollary from our observations is that code
smells are just partial indicators of maintenance difficulties.

The explanatory power of code smells within source-code re-
lated difficulties was considerably low as well (58% of the cases),
because some of the difficulties were associated to a combination
of code smells and other characteristics in the code, whereas others
were not associated code smells at all. The underlying reasons for
difficulties that were associated to the presence of code smells re-
late back to already known notions such as size/complexity, and
coupling. These characteristics are related to smells such as God
Method, God Class, Feature Envy and ISP Violation.

However, we have also observed cases, where factors such as
crosscutting concerns, and inconsistent design caused many of
the difficulties. Based on our observations, we have identified indi-
vidual smells and combinations that can help to recognize these
code situations. Our observations also suggest that analyzing code
smells individually may give the wrong picture, due to potential

A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242 2241

interaction effects amongst code smells, and between smells and
other code characteristics. We have discussed a critical case where
the interaction effects between a design shortcoming and a code
smell (ISP Violation) led to difficulties such as defects and costly
changes. To achieve more comprehensive source-code evaluations,
we suggest combining different code analysis techniques with
code smell detection. In particular, we suggest the analysis of inter-
action effects amongst code smells via dependencies across classes
and interfaces.

Future work includes better understanding inter-smell
relations, their consequences for maintenance difficulties, and
their effects on effort, defects and change size. We intend to study
this aspect with focus on quantitative analysis, supported by qual-
itative observations. The results from this study are intended as
starting points for developing hypotheses that can be tested via
quantitative analysis in larger maintenance contexts. In addition,
we plan to investigate more in detail potential “new” smells (as re-
ported in Section 4.3.1), such as the “lack of conceptual integrity”,
“cyclic dependencies” and comprehension problems caused by
“multiple inheritance and dynamic binding”.

Appendix A. Excerpt of maintenance difficulties identified

Note that the selection of problems in Table A.15 does not re-
flect the actual distribution of code-related vs non-code related
problems but was made so it includes the descriptions for all
code-related problems mentioned in later tables (see Tables A.16,
A.17 and A.18).

References

[1] KH. Bennett, An introduction to software maintenance, Information and
Software Technology (IST) 12 (1990) 257-264.

[2] W. Harrison, C. Cook, Insights on improving the maintenance process through
software measurement, in: IEEE International Conference on Software
Maintenance (ICSM), pp. 37-45.

[3] A. Abran, H. Nguyenkim, Analysis of maintenance work categories through
measurement, in: IEEE International Conference on Software Maintenance
(ICSM), pp. 104-113.

[4] T.M. Pigoski, Practical Software Maintenance: Best Practices for Managing Your
Software Investment, Wiley, 1996.

[5] T.C. Jones, Estimating Software Costs, McGraw-Hill, 1998.

[6] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer, 2005.

[7] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[8] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, JDeodorant: Identification and
removal of feature envy bad smells, in: IEEE International Conference on
Software Maintenance (ICSM), pp. 519-520.

[9] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, JDeodorant: identification and
removal of type-checking bad smells, in: 12th European Conference on
Software Maintenance and Reengineering (CSMR), IEEE, 2008, pp. 329-331.

[10] C. Kiefer, A. Bernstein,]. Tappolet, Mining software repositories with iSPAROL
and a software evolution ontology, in: Fourth International Workshop on
Mining Software Repositories (MSR) (2007) 10.

[11] V.T. Rajlich, P. Gosavi, Incremental change in object-oriented programming,
IEEE Software 21 (2004) 62-69.

[12] AlJ. Riel, Object-Oriented Design Heuristics, first ed., Addison-Wesley, Boston,
MA, USA, 1996.

[13] P. Coad, E. Yourdon, Object-Oriented Design, Prentice Hall, 1991.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[15] W. Brown, R. Malveau, S. McCormick, Tom Mowbray, AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley & Sons Inc., 1998.

[16] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, third ed., Prentice Hall, 2004.

[17] R.C. Martin, Agile Software Development, Principles, Patterns and Practice,
Prentice Hall, 2002.

[18] E. Van Emden, L. Moonen, Java quality assurance by detecting code smells, in:
Working Conference on Reverse Engineering (WCRE), pp. 97-106.

[19] M.V. Mdntyl4, J. Vanhanen, C. Lassenius, A taxonomy and an initial empirical
study of bad smells in code, in: IEEE International Conference on Software
Maintenance (ICSM), pp. 381-384.

[20] W.C. Wake, Refactoring Workbook, Addison-Wesley, 2003.

[21] G.H. Travassos, F. Shull, M. Fredericks, V.R. Basili, Detecting defects in object-
oriented designs, in: ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pp. 47-56.

[22] ML.V. Mdntyl4, J. Vanhanen, C. Lassenius, Bad smells - humans as code critics,
in: IEEE International Conference on Software Maintenance (ICSM), pp. 399-
408.

[23] M.V. Mintyld, C. Lassenius, Subjective evaluation of software evolvability
using code smells: an empirical study, Empirical Software Engineering 11
(2006) 395-431.

[24] M.V. Mdntyld, An experiment on subjective evolvability evaluation of object-
oriented software: explaining factors and interrater agreement, in:
International Conference on Software Engineering (ICSE), pp. 277-286.

[25] R. Marinescu, D. Ratiu, Quantifying the quality of object-oriented design: the
factor-strategy model, in: Working Conference on Reverse Engineering
(WCRE), IEEE, 2004, pp. 192-201.

[26] R. Marinescu, Measurement and quality in object-oriented design, in: IEEE
International Conference on Software Maintenance (ICSM), pp. 701-704.

[27] N. Moha, Y.-g. Gueheneuc, P. Leduc, Automatic generation of detection
algorithms for design defects, in: 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 2006, pp. 297-300.

[28] N. Moha, Detection and correction of design defects in object-oriented designs,
in: ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pp. 949-950.

[29] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, A domain analysis to
specify design defects and generate detection algorithms, in: Fundamental
Approaches to Software Engineering (FASE), pp. 276-291.

[30] A.A. Rao, K.N. Reddy, Detecting bad smells in object oriented design using
design change propagation probability matrix, in: International
MultiConference of Engineers and Computer Scientists, pp. 1001-1007.

[31] E.H. Alikacem, H.A. Sahraoui, A metric extraction framework based on a high-
level description language, in: IEEE International Conference on Source Code
Analysis and Manipulation (SCAM), pp. 159-167.

[32] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. Le Meur, DECOR: a method for the
specification and detection of code and design smells, IEEE Transactions on
Software Engineering 36 (2010) 20-36.

[33] M. Zhang, T. Hall, N. Baddoo, Code bad smells: a review of current knowledge,
Journal of Software Maintenance and Evolution: Research and Practice 23
(2011) 179-202.

[34] A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto, Software quality
analysis by code clones in industrial legacy software, in: [EEE Symposium on
Software Metrics, pp. 87-94.

[35] W. Li, R. Shatnawi, An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution, Journal of
Systems and Software 80 (2007) 1120-1128.

[36] E.Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones matter? in:
International Conference on Software Engineering (ICSE), pp. 485-495.

[37] M. D'Ambros, A. Bacchelli, M. Lanza, On the impact of design flaws on software
defects, in: International Conference on Quality Software (QSIC), pp. 23-31.

[38] F. Rahman, C. Bird, P. Devanbu, Clones: what is that smell? in: Working
Conference on Mining Software Repositories (MSR), pp. 72-81.

[39] I. Deligiannis, M. Shepperd, M. Roumeliotis, I. Stamelos, An empirical
investigation of an object-oriented design heuristic for maintainability,
Journal of Systems and Software 65 (2003) 127-139.

[40] 1. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, M. Shepperd, A controlled
experiment investigation of an object-oriented design heuristic for
maintainability, Journal of Systems and Software 72 (2004) 129-143.

[41] A.Lozano, M. Wermelinger, Assessing the effect of clones on changeability, in:
IEEE International Conference on Software Maintenance (ICSM), pp. 227-236.

[42] M. Abbes, F. Khombh, Y.-G. Gueheneuc, G. Antoniol, An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program
comprehension, in: 15th European Conference on Software Maintenance and
Reengineering (CSMR), IEEE, 2011, pp. 181-190.

[43] M. Kim, V. Sazawal, D. Notkin, G.C. Murphy, An empirical study of code clone
genealogies, in: Joint 10th European Software Engineering Conference (ESEC)
and 13th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-13), pp. 187-196.

[44] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, An exploratory study of the impact of
code smells on software change-proneness, in: Working Conference on
Reverse Engineering (WCRE), IEEE, 2009, pp. 75-84.

[45] S.M. Olbrich, D.S. Cruzes, D.LK. Sjgberg, Are all code smells harmful? A study of
God Classes and Brain Classes in the evolution of three open source systems,
in: IEEE International Conference on Software Maintenance (ICSM), pp. 1-10.

[46] N. Tsantalis, A. Chatzigeorgiou, Identification of extract method refactoring
opportunities for the decomposition of methods, Journal of Systems and
Software 84 (2011) 1757-1782.

[47] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, IEEE Transactions on Software Engineering 35 (2009) 347-367.

[48] Y. Higo, S. Kusumoto, K. Inoue, A metric-based approach to identifying
refactoring opportunities for merging code clones in a Java software system,
Journal of Software Maintenance and Evolution: Research and Practice 20
(2008) 435-461.

[49] G. Bavota, A. De Lucia, R. Oliveto, Identifying Extract Class refactoring
opportunities using structural and semantic cohesion measures, Journal of
Systems and Software 84 (2011) 397-414.

[50] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Identification and
application of Extract Class refactorings in object-oriented systems, Journal of
Systems and Software 85 (2012) 2241-2260.

[51] K. Hotta, Y. Higo, S. Kusumoto, Identifying, tailoring, and suggesting form
template method refactoring opportunities with program dependence graph,

http://refhub.elsevier.com/S0950-5849(13)00161-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0120
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0120
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0120
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0120
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0125
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0125
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0125
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0130
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0130
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0135
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0135
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0135
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0135
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0140
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0140
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0140
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0145
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0145
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0145
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0150
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0150

2242 A. Yamashita, L. Moonen/Information and Software Technology 55 (2013) 2223-2242

in: European Conference on Software Maintenance and Reengineering, IEEE,
pp. 53-62.

[52] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities
introducing polymorphism, Journal of Systems and Software 83 (2010) 391-
404.

[53] H. Liu, Z. Niu, Z. Ma, W. Shao, Identification of generalization refactoring
opportunities, Automated Software Engineering 20 (2012) 81-110.

[54] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of bad smells in
object-oriented code, in: International Conference on Quality of Information
and Communications Technology, IEEE, 2010, pp. 106-115.

[55] R. Peters, A. Zaidman, Evaluating the lifespan of code smells using software
repository mining, in: European Conference on Software Maintenance and
Reengineering, IEEE, 2012, pp. 411-416.

[56] R. Yin, Case Study Research: Design and Methods (Applied Social Research
Methods), SAGE, 2002.

[57] B.A. Kitchenham, G.H. Travassos, A. von Mayrhauser, F. Niessink, N.F.
Schneidewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang, Towards an
ontology of software maintenance, Journal of Software Maintenance: Research
and Practice 11 (1999) 365-389.

[58] B.P. Lientz, E.B. Swanson, Problems in application software maintenance,
Communications of the ACM 24 (1981) 763-769.

[59] S. Dekleva, Delphi study of software maintenance problems, in: IEEE
International Conference on Software Maintenance (ICSM), pp. 10-17.

[60] P. Palvia, A. Patula,]. Nosek, Problems and issues in application software
maintenance, Journal of Information Technology Management 4 (1995) 17-28.

[61] N. Chapin, J.E. Hale, KM. Kham, J.F. Ramil, W.-G. Tan, Types of software
evolution and software maintenance, Journal of Software Maintenance:
Research and Practice 13 (2001) 3-30.

[62] T. Hall, A. Rainer, N. Baddoo, S. Beecham, An empirical study of
maintenance issues within process improvement programmes in the
software industry, in: IEEE International Conference on Software
Maintenance (ICSM), pp. 422-430.

[63] J.-C. Chen, S.-]. Huang, An empirical analysis of the impact of software
development problem factors on software maintainability, Journal of Systems
and Software 82 (2009) 981-992.

[64] A. Reedy, D. Stephenson, E. Dudar, F. Blumberg, Software configuration
management issues in the maintenance of Ada software systems, in: IEEE
International Conference on Software Maintenance (ICSM), pp. 234-245.

[65] A. Karahasanovi¢, AK. Levine, R. Thomas, Comprehension strategies and
difficulties in maintaining object-oriented systems: an explorative study,
Journal of Systems and Software 80 (2007) 1541-1559.

[66] A. Karahasanovi¢, R.C. Thomas, Difficulties experienced by students in
maintaining object-oriented systems: an empirical study, in: Australasian
Conf. on Computing Education (ACE), Australian Computer Society, 2007, pp.
81-87.

[67] A. von Mayrhauser, A.M. Vans, Industrial experience with an integrated code
comprehension model, Software Engineering Journal 10 (1995) 171-182.

[68] K. Webster, KM. de Oliveira, N. Anquetil, A risk taxonomy proposal for
software maintenance, in: IEEE International Conference on Software
Maintenance (ICSM), pp. 453-461.

[69] R. Charette, K. Adams, M. White, Managing risk in software maintenance, IEEE
Software 14 (1997) 43-50.

[70] S.L. Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, 2001.

[71] N.E. Schneidewind, Requirements risk and maintainability, in: Advances in
Software Maintenance Management: Technologies and Solutions, IGI Global,
2003, pp. 182-200.

[72] A. Yamashita, L. Moonen, Do code smells reflect important maintainability
aspects? in: IEEE International Conference on Software Maintenance (ICSM),
pp. 306-315.

[73] B.C.D. Anda, D.LK. Sjeberg, A. Mockus, Variability and reproducibility in
software engineering: a study of four companies that developed the same
system, IEEE Transactions on Software Engineering 35 (2009) 407-429.

[74] G.R. Bergersen, J.-E. Gustafsson, Programming skill, knowledge, and working
memory among professional software developers from an investment theory
perspective, Journal of Individual Differences 32 (2011) 201-209.

[75] L.M. Layman, L.A. Williams, R.St. Amant, MimEc, in: International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE), ACM
Press, New York, USA, 2008, pp. 73-76.

[76] R. Marinescu, Measurement and Quality in Object Oriented Design, Doctoral
thesis, Politehnica University of Timisoara, 2002.

[77] C. Kapser, M. Godfrey, “Cloning considered harmful” considered harmful:
patterns of cloning in software, Empirical Software Engineering 13 (2008)
645-692.

[78] W. Wang, M.W. Godfrey, A study of cloning in the Linux SCSI drivers, in: IEEE
11th International Working Conference on Source Code Analysis and
Manipulation (SCAM), IEEE, 2011, pp. 95-104.

[79] W. Stevens, G. Myers, Structured design, IBM Systems Journal 13 (1974) 115-
139.

[80] J.I. Maletic, A. Marcus, Supporting program comprehension using semantic and
structural information, in: International Conference on Software Engineering
(ICSE), ICSE '01, IEEE Computer Society, Washington, DC, USA, 2001, pp. 103-
112.

[81] A. Sharma, P.S. Grover, R. Kumar, Dependency analysis for component-based
software systems, ACM SIGSOFT Software Engineering Notes 34 (2009) 1.

[82] E. Tempero, R. Biddle, Simulating multiple inheritance in Java, Journal of
Systems and Software 55 (2000) 87-100.

[83] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler, Making the future safe for the
past, in: ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), ACM Press, New York, USA, 1998, pp.
183-200.

[84] E. Arisholm, D.LK. Sjgberg, Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented software,
[EEE Transactions on Software Engineering 30 (2004) 521-534.

[85] R.EE. Wood, Task complexity: definition of the construct, Organizational
Behavior and Human Decision Processes 37 (1986) 60-82.

[86] B. Pietrzak, B. Walter, Leveraging code smell detection with inter-smell
relations, in: Extreme Programming and Agile Processes in Software
Engineering (XP), pp. 75-84.

[87] B.C.D. Anda, Assessing software system maintainability using structural
measures and expert assessments, in: IEEE International Conference on
Software Maintenance (ICSM), pp. 204-213.

[88] B. Walter, B. Pietrzak, Multi-criteria detection of bad smells in code with UTA
method 2 data sources for smell detection, in: Extreme Programming and
Agile Processes in Software Engineering (XP), Springer, Berlin/Heidelberg,
2005, pp. 154-161.

[89] J.A. Maxwell, Using qualitative methods for causal explanation, Field Methods
16 (2004) 243-264.

[90] H. Becker, B. Geer, Participant observation and interviewing: a comparison,
Human Organization 16 (1957) 28-32.

[91] Y. Guo, C. Seaman, N. Zazworka, F. Shull, Domain-specific tailoring of code
smells: An empirical study, in: International Conference on Software
Engineering (ICSE), vol. 2, pp. 167-170.

http://refhub.elsevier.com/S0950-5849(13)00161-4/h0150
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0150
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0150
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0155
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0155
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0155
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0160
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0160
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0165
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0165
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0165
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0165
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0170
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0170
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0170
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0170
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0175
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0175
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0175
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0180
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0180
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0180
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0180
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0185
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0185
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0190
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0190
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0195
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0195
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0195
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0200
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0200
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0200
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0205
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0205
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0205
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0210
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0210
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0210
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0210
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0210
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0215
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0215
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0220
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0220
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0225
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0225
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0230
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0230
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0230
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0235
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0235
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0235
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0240
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0240
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0240
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0240
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0245
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0245
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0245
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0250
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0250
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0250
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0250
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0255
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0255
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0260
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0260
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0260
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0260
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0260
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0265
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0265
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0270
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0270
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0275
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0275
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0275
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0275
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0275
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0280
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0280
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0280
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0285
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0285
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0290
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0290
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0290
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0290
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0290
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0295
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0295
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0300
http://refhub.elsevier.com/S0950-5849(13)00161-4/h0300

	To what extent can maintenance problems be predicted by code smell detection? – An empirical study
	1 Introduction
	2 Theoretical background and related work
	2.1 Code smells
	2.2 State of the art in code smell research
	2.3 Studies on maintenance problems
	2.4 Knowledge gap

	3 Case study design
	3.1 Context of the study
	3.1.1 Systems under analysis
	3.1.2 Maintenance project
	3.1.3 Subjects
	3.1.4 Activities and tools
	3.1.5 Observed cases

	3.2 Data collection activities
	3.2.1 Data sources
	3.2.2 Maintenance tasks
	3.2.3 Identification of maintenance problems
	3.2.4 Identification of code smells

	3.3 Data analysis approach

	4 Results
	4.1 Overview of maintenance problems
	4.2 Problems not directly associated to source code
	4.3 Problems associated to source code
	4.3.1 Problems caused by other characteristics than code smells
	4.3.1.1 (Lack of) Conceptual integrity
	4.3.1.2 Internally complex code
	4.3.1.3 Files with cyclic dependencies
	4.3.1.4 Multiple inheritance and dynamic binding
	4.3.1.5 External libraries
	4.3.1.6 Implementation shortcomings

	4.3.2 Difficulties associated to code smells
	4.3.2.1 Introduction of defects
	4.3.2.2 Troublesome program comprehension and information searching
	4.3.2.3 Costly changes

	4.3.3 Difficulties associated to interaction effects
	4.3.3.1 Critical example of an interaction effect

	5 Discussion
	5.1 Code characteristics (and smells) that can lead to maintenance difficulties
	5.1.1 Inconsistent design
	5.1.2 Cross-cutting concerns
	5.1.3 Large and complex classes
	5.1.4 Coupling

	5.2 Challenges of code smell analysis due to interaction effects
	5.3 Capability of code smells to predict system’s overall maintainability
	5.4 Threats to validity
	5.4.1 Construct validity
	5.4.2 Internal validity
	5.4.3 External validity
	5.4.4 Reliability

	6 Conclusions
	Appendix A Excerpt of maintenance difficulties identified
	References

