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Abstract 

Code smells are indicators of deeper problems in the design that may cause difficulties in the evolution of a 
system. While previous studies have mainly focused on studying the effects of individual smells on 
maintainability, we believe that interactions tend to occur between code smells. The research in this paper 
investigates the potential interactions amongst twelve different code smells, and how those interactions can 
lead to maintenance problems. Four medium-sized systems with equivalent functionality but dissimilar 
design were examined for smells. The systems were the object of several change requests for a period of 
four weeks. During that period, we recorded on a daily basis problems faced by developers and their 
associated Java files. The first analysis is based on Principal Component Analysis (PCA), to identify 
components formed by collocated code smells (i.e., smells located in the same file). Analysis on the nature 
of the problems, as reported by the developers in daily interviews and think-aloud sessions, revealed how 
some of the collocated smells interacted with each other, causing maintenance problems. Finally, we could 
observe that some interactions occur across files, for which we suggest integrating dependency analysis 
when analyzing effects of code smells on maintainability. 

1. Introduction 
The presence of code smells indicate that there are issues with code quality, such as 
understandability and changeability, which can lead to the introduction of faults [5]. In [17], 
Fowler and Beck describe twenty-two code smells and associate each of them with refactoring 
strategies that can be applied to prevent potentially negative consequences of “smelly” code. 
However, code smells are only indicators of problematic code. Not all of them are equally 
harmful, and some may not even be harmful in some contexts. In addition, refactoring implies a 
certain cost and risk, e.g., any changes made in the code may induce unwanted side effects and 
introduce faults in the system. Consequently, we need to understand better the capability of code 
smells to explain maintenance problems.  

When analyzing code smells, we often can observe that several code smells tend to occur together 
in the same file. We conjecture that interaction effects between code smells can intensify 
problems caused by individual code smells or lead to additional, unforeseen maintenance issues. 
Pietrzak introduced the notion of inter-smell relations in [44], where he provides examples of 
different inter-smell relations. For example, one type of inter-smell relation reported in [44] (p. 
77) called plain-support is defined as: “… smell B is supported by smell A if the existence of A 
implies with sufficiently high certainty the existence of B. B is then a companion smell of A, and 
the program entities (classes, methods, expressions etc) burdened with A also suffer from B...”. 
Inter-smell relation has only brought to attention recently, but the concept is promising to 
understand the nature of code smells. Whiles Pietrzak suggested the notion of inter-smell 
relations to support more accurate detections of code smells [44], we suggest that the study of 
inter-smell relations can substantially help to the understanding of how code smells can cause 
problems to developers during maintenance. 

This paper reports a study where we examined for the presence of twelve code smells in four 
medium-sized Java systems. The systems were the object of several change requests for a period 



Yamashita & Moonen Exploring the impact of inter-smell relations in the maintainability of a system: An empirical study 

 

Simula Research Laboratory, Technical Report (2012- 14) 2	
  

of up to four weeks. During that period, we recorded problems faced by developers and their 
associated Java files, on a daily basis. The nature of the problems reported by developers was also 
recorded in detail. The maintenance problems were identified via interviews and think-aloud 
sessions with the developers. Principal Component Analysis (PCA) was used to identify 
components representing collocated code smells (i.e., smells located in the same file). Analysis 
on the nature of the problems, as reported by the developers in daily interviews and think-aloud 
sessions, revealed how some of the collocated smells interacted with each other, causing 
problems to developers during maintenance activities. Moreover, we found that some interactions 
occur across smells located across coupled files. 

The remainder of this paper is structured as follows: Section 2 presents the theoretical 
background and related work. Section 3 describes the study design, including a description of the 
systems under analysis and the maintenance tasks. Section 4 presents and discusses the results. 
Section 5 summarizes our findings and presents plans for future work. 

2. Theoretical Background and Related Work 
A code smell is a suboptimal design choice that can degrade different aspects of code quality such 
as understandability and changeability, and could lead to the introduction of faults [17]. Beck and 
Fowler [17] informally describe 22 code smells and associated them with refactoring strategies to 
improve the design. In the last decade, code smells have become an established concept for 
patterns or aspects of software design that may cause problems for further development and 
maintenance of the system [25]. Code smell analysis allows for integrating both assessment and 
improvement in the software evolution process.  

Van Emden and Moonen [50] provided the first formalization of code smells and developed an 
automated code smell detection tool for Java. Mäntylä [31] and Wake [51] proposed two initial 
taxonomies for code smells. Mäntylä investigated how developers identify and interpret code 
smells, and how this compares to results from automatic detection tools. Examples of recent 
approaches for code smell detection can be found in [3, 21, 34, 33, 36, 37, 39, 40, 38, 47]. 
Automated detection has been implemented in commercial tools such as Borland Together [9] 
and InCode [18].  

Previous studies have investigated the effects of individual code smells on different 
maintainability related aspects, such as defects [10, 19, 28, 41, 46], effort [2, 11, 12, 29] and 
changes [20, 22, 42]. From the empirical studies identified, only the study by Abbes et al. [2] 
brings up the notion of interaction effects across code smells. Abbes et al. [2] conducted an 
experiment in which 24 students and professionals were asked questions about the code in six 
OSSs. They concluded that classes and methods identified as God Classes and God Methods in 
isolation had no effect on effort or quality of responses, but when appearing together, they led to 
a statistically significant increase in response effort and a statistically significant decrease in the 
percentage of correct answers, i.e., significantly higher problems with the understanding of the 
code. We believe that the explanatory and predictive power of code smells can be improved by 
considering and investigating inter-related smells, rather than only focusing on the study of 
individual code smells. This study attempts first to identify tendencies with respect to collocated 
code smells via PCA, and subsequently explore the consequences of potential interaction effects 
on the incidence of problems during maintenance. 
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3. The Empirical Study 

3.1 The Systems Maintained 

Simula Research Laboratory’s Software Engineering department sent out a tender for the 
development of a web-based information system to keep track of their empirical studies in 2003. 
Based on the bids, four Norwegian consultancy companies were hired to independently develop a 
version of the system, all using the same requirements specification. More details on the original 
development projects can be found in [4].  The four development projects led to four systems 
with the same functionality. We will refer to the four systems as System A, System B, System C 
and System D in this paper. The systems were primarily developed in Java and they all have 
similar three-layered architectures. Although the systems comprised nearly identical 
functionality, there were substantial differences in how the systems were designed and coded, as 
it is indicated by the difference in lines of code (LOC) per system in Table 1. 

Table 1: Size of the systems analyzed 
System A B C D 
LOC 7937 14549 7208 8293 

The systems were all deployed over Simula Research Laboratory’s Content Management System 
(CMS), which at that time was based on PHP and a relational database system. The systems had 
to connect to the database in the CMS, in order to access data related to researchers at Simula 
Research Laboratory as well as information on the publications. 

3.2 The Maintenance Tasks and the Developers 

In 2008, Simula Research Laboratory introduced a new CMS called Plone [45], and consequently 
it was no longer possible for the systems to remain operational. This situation required the 
systems to be adapted to the new environment. The adaptive task, together with an additional 
functionality required for the systems constitute the goals for the maintenance project reported in 
this paper. Two Eastern Europe software companies, at a total cost of approx. 50.000 Euros, 
conducted the maintenance tasks between September and December 2008. The maintenance tasks 
are briefly described in Table 2 and were completed by six different developers. All developers 
completed all three maintenance tasks individually. The developers were recruited from a pool of 
65 participants of a previously completed study on programming skill [8]. More about the skill 
scores used for this purpose can be found in [7]. All developers were evaluated to have sufficient 
English skills for the purpose of our study. 

Table 2: Maintenance tasks 
Task Description 

1. Adapting the system to 
the new Simula CMS 

The systems in the past had to retrieve information through a direct connection to a relational 
database within Simula’s domain (mainly information concerning the researchers at Simula and 
publications associated or derived from the different studies). Now Simula uses a CMS based on the 
Plone platform, which uses an OO database called ZODB [54]. In addition, the Simula CMS 
database previously had unique identifiers based on Integer type, for employees and publications. 
Now a Char type is used as unique identifier for both employees and publications. Task 1 consisted 
of modifying the data retrieval procedure by consuming a set of web services provided by the new 
Simula CMS in order to access all the information associated with employees and publications. 

2. Authentication through 
web services 

Under the previous CMS, authentication was done through a connection to a remote database and 
used authentication mechanisms available on that time for Simula Web site. Task 2 consisted of 
replacing the existing authentication by calling a web service provided for this purpose. 

3. Add new reporting 
functionality 

This functionality implemented in Task 3 provided a set of options for configuring personalized 
reports, where the user should be able to choose the type of information related to a study to be 
included in the report, set as inclusion criteria a list of the people responsible for the study, sort the 
resulting studies according to when the study had been finalized, and group the results according to 
the type of study. The configuration of the report must be stored in the systems’ database and should 
be editable by only the owner of the report configuration. 
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3.3 Study Design 

a) The Process. First, the developers were given an overview of the tasks (e.g., the motivation for 
the maintenance tasks and the expected activities). Then they were given the specification of the 
maintenance task. When needed, they would discuss the maintenance tasks with the researcher 
who was present at the site during the entire project duration. We had daily meetings with the 
developers where we tracked the progress and the problems encountered. Think-aloud sessions 
were conducted every second day, in a random point of the day, lasting 30 minutes. Acceptance 
tests and individual open interviews, with duration of 20-30 minutes, were conducted once all 
tasks were completed. In the open-ended interviews, the developers were asked about their 
opinions of the system, e.g., about their experiences when maintaining it. Eclipse was used as the 
development tool, together with MySQL [43] and Apache Tomcat [1]. Defects were registered in 
Trac [14], and Subversion or SVN [16] was used as the versioning system. A plug-in for Eclipse 
called Mimec [27] was installed in each developer’s computer, in order to log all the user actions 
performed at the GUI level, with milliseconds precision. After completion of the three 
maintenance tasks on one system, they repeated the same maintenance tasks on a second system. 
The developers varied with respect to which of the four systems they received as the first and the 
second system. Clearly, there is a learning effect from repeating the same tasks on a second 
system. This learning effect does, however, also reflect a quite realistic situation where the 
developers have much relevant experience, i.e., have completed quite similar tasks before. 

b) Code smells analyzed. Twelve code smells were extracted from the systems by using Borland 
Together™ [9] and InCode [18]. Table 3 presents descriptions of the code smells that were 
detected in the systems (taken from [17, 35]). The detection strategies used in the tools are based 
in [32] (see Appendix A). A design principle violation called Interface Segregation Principle 
Violation (a.k.a. ISP Violation) was included (See Martin in [35]). This was included because we 
thought it could be an essential indicator of maintenance problems and because Borland Together 
was able to detect this violation. This code smell is not part of the twenty-two smells defined by 
Fowler and Beck, but it can be considered as a code smell since it constitutes an anti-pattern 
believed to have negative effects on maintainability [35]. 

Table 3: Code smells and their descriptions from [17, 35] 
Code Smell (ID) Description 

Data Class (DC) Classes with fields and getters and setters not implementing any function in special 

Data Clump (CL) Clumps of data items that are always found together whether within classes or between classes 

Duplicated code in 
conditional branches 
(DUP)1 

Same or similar code structure repeated within a the branches of a conditional statement. 

Feature Envy (FE) A method that seems more interested in another class other than the one it is actually in. Fowler 
recommends putting a method in the class that contains most of the data the method needs. 

God Class (GC) 
A class has the God Class smell if the class takes too many responsibilities relative to the classes with 
which it is coupled. The God Class centralizes the system functionality in one class, which contradicts the 
decomposition design principles. 

God Method (GM) A class has the God Method bad smell if at least one of its methods is very large compared to the other 
methods in the same class. God Method centralizes the class functionality in one method 

Misplaced Class (MC) In “God Packages” it often happens that a class needs the classes from other packages more than those from 
its own package. 

Refused Bequest (RB) Subclasses do not want or need everything they inherit 

Shotgun Surgery (SS) A change in a class results in the need to make a lot of little changes in several classes 

Temporary variable is Consists of temporary variables that are used in different contexts, implying that they are not consistently 

                                                                   	
  
1 Note that this smell is not the actual Duplicated Code, but a local version of it, which are only located across conditional branches. 
This smell was included because Borland Together could detect it. Analysis of other types of Duplicated Code is out of the scope of 
this study. 
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used for several purposes 
(TMP) 

used. They can lead to confusion and introduction of faults. 

Use interface instead of 
implementation (IMP) 

Castings to implementation classes should be avoided and an interface should be defined and implemented 
instead. 

Interface Segregation 
Principle Violation 
(ISPV) 

The dependency of one class to another one should depend on the smallest possible interface. Even if there 
are objects that require non-cohesive interfaces, clients should see abstract base classes that are cohesive. 
Clients should not be forced to depend on methods they do not use, since this creates coupling 

In addition to the code smells, we observed file size, measured as the number of lines of code 
(LOC) including comments and blank lines, and observed the size of the task (churn size) on a 
file. Churn size was measured as the sum of lines of code inserted, updated or deleted on a file. 
These variables were measured using SVNKit [49] (a Java library for requesting information to 
Subversion). 

c) Identification of maintenance problems and problematic files. The aim of the study is to 
explore situations where maintenance problems occur due to the interaction of several code 
smells. Thus, we need to identify the files that caused problems during maintenance and record 
the nature of the problems caused by them. In the context of this study we interpret a 
maintenance-related problem as “any struggle, hindrance or problem developers encounter, and 
observed by us through daily interviews and think-aloud sessions, while they performed their 
maintenance tasks”.  

The daily interviews with each developer enabled us to record the problems encountered during 
maintenance while they were still fresh in their mind. The following is an example of a comment 
given by one developer, who complains on the complexity of a piece of code: “It took me 3 hours 
to understand this method...” We use such comments like this as evidence that there were 
maintenance (understandability) problems in the file that included this method.  

During the think-aloud sessions, the developers’ screens were recorded with ZD Soft Screen 
Recorder [48]. Sometimes the maintenance problems were derived from more than one data 
source (e.g., by a combination of direct observation, the developers’ statements on a given 
topic/element, and the time/effort spent in an activity). When it was possible to map the identified 
maintenance problems to a file, we categorized that file as problematic.  

An example of our process to collect and structure data related to the variable “problematic file” 
is given in Table 4. In this example, the observations by the researcher and the statements from 
the developer lead to the conclusion that the initial strategy of replacing several interfaces in 
order to complete Task 1 was not feasible due to unmanageable error propagation. The developer 
spent up to 20 minutes trying to follow the initial strategy (i.e., replace the interfaces), but 
decided then to rollback and to follow an alternative strategy (i.e., forced casting in several 
locations) instead. As a result of this information (i.e., problems due to change propagation), the 
files containing these interfaces were deemed as be problematic. While the assessment of 
problematic files to some extent can be subjective, we perceived the connections between 
problems and code in this study to be quite direct and not did require much problematic 
judgment. 

Table 4: Excerpt from a think-aloud session 

Code Statement or Action taken by Developer Observation / Interpretation 
Goal Change entities’ ID type from Integer to String This is part of the requirements in Task 1. 

Finding “Persistence is not used consistently across the system, only few of 
them are actually implementing this interface so…” 

Persistence2 is referred to as two interfaces for 
defining business entities, which are associated 

                                                                   	
  
2 A persistence framework is used as part of Java technology for managing relational data (more specifically data entities). For more 
information on Java persistence, see www.oracle.com 
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to a third-party persistence library, which is not 
used consistently in the system. 

Strategy 

“I will remove this dependency, I will remove two methods from the 
interface (getId an setId) added for integer and string. This strategy 
forces me to check the type of the class but this is better than having 
multiple type forced castings throughout the code.” 

Developer decides to replace two methods of 
the Persistence interface (i.e., getId() an setId()) 
which are using Integer and will replace them 
with methods with String parameters. 

Action Engages in the process of changing id in interface 
PersonStatement.java Developer engages in the initial strategy. 

Muttering “Uh, updates? just look at all these compilation errors…” Developer encounters compilation errors after 
replacing the methods in the interfaces. 

Action Fix, refactor, correct errors. Starts correcting the errors 

Strategy 

“Ok… I need to implement two types of interfaces, one for each 
type of ID for the domain entities. I will make 
PersistentObjectInt.java for entities that use Integer IDs and 
PersistentObjectString.java for String IDs. 

Change of strategy, decides to actually replace 
the interface instead of replacing the methods 
in the interface. 

Action Fix more errors from Persistable.java  More compilation errors appear 

Action Continue changing interface of the entity classes into 
PersistentObjectInt and PersistentObjectString Attempt to continue with the second strategy. 

Action (After 20 minutes) Roll back the change 
Developer realizes that the amount of error 
propagation is ummanegeable, so rollbacks the 
changes. 

Muttering “Hmm… how to do this?” Developer thinks of alternative options. 

Strategy “Ok, I will just have to do forced casting for the cases when the 
entity has String ID” 

Developer decides to use the least desirable 
alternative: forced type castings whenever is 
required. 

 

A logbook was kept during the interviews and think-aloud sessions where the maintenance 
problems were registered in detail. For each identified maintenance problem the following 
information was extracted:  

a. The developer and the system. 
b. The statements provided by the developers related to the maintenance problem.  
c. The source of the problem, e.g., whether it was related to the Java files, the 

infrastructure, the database, external services, etc. 
d. List of files/classes/methods mentioned by the developer when talking about the 

maintenance problem. 
In short, the categorization of the problematic files was based on either the direct observation of 
the developers’ behavior in the think-aloud sessions or on the comments made by the developers 
during the daily interviews. 
 
d) Analysis technique. A principal component analysis (PCA) using orthogonal rotation 
(varimax) was conducted on the set of files that were modified/inspected by at least one of the 
developers during maintenance, in order to observe patterns of collocated code smells. 
Subsequently, a follow-up qualitative analysis based on the data from the interviews and the 
think-aloud sessions was performed. This analysis is based on explanation building technique 
[53] and aimed at determining the extent to which the presence of a single code smell or several 
code smells contributed to the problems experienced by the developers during maintenance. An 
essential input to the qualitative analysis was the analysis of Java files that were modified or 
inspected during the maintenance work. These files were identified by using the logs generated 
by Mimec [26]. This plug-in recorded not only the type of action performed by the developer in 
the IDE, but also the Java element (if any) that was the subject of the interaction, such as the 
name of the file selected, or the name of the class/method being edited. For more details on the 
Mimec logs, see [52]. 
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4. Results 

4.1 Exploration of the Maintenance Problems 

Most of the maintenance problems identified were related to: (1) introduction of defects as result 
of changes (25%), (2) time-consuming changes (39%), and (3) troublesome program 
comprehension and information searching (27%). Table 5 provides a description of each type of 
problem. 

Table 5: Description of the three main types of problem identified 

No. Type of problem Description 

1 Introduction of defects 
Undesired behaviour, or unavailability of functionality in the system (i.e., defects) manifested 
after modifying different components of the system. This introduced delays in the work, and 
forced the developers in several cases to rollback initial strategies for solving the tasks. 

2 Time-consuming or costly 
changes 

Time consuming or costly changes were associated with situations with: i) a high number of 
components in the system required changes in order to accomplish a task , and, ii) cognitively 
demanding tasks due to the nature of the problem to be solved or due to intrincate design, 
visualization or information distribution. 

3 
Troublesome program 
comprehension and 
information searching 

This problem type comprised three situations: i) The situation where the developers struggle to 
get an overview of the system or to get high-level understanding of the system’s behaviour, ii) 
The situation with low-level understanding of code where the developers become confused 
because they find inconsistent or contradictory evidence in different components of the system, 
and iii) The situations with time consuming or troublesome information or “task context” 
search (e.g., finding the place to perform the changes, finding the data needed to perform a 
task). 

 
In total, 137 different maintenance problems3 were identified. From the total number of 
maintenance problems, 64 (47%) related to Java source code. The remaining 73 (53%) 
constituted problems not directly related to code (e.g., lack of adequate technical infrastructure, 
developer coding habits, external services, runtime environment, and defects initially present in 
the system). 
The high percentage of non-source code related problems suggests that problems identifiable via 
current definitions of code smells may only cover a smaller part (in this case 47%) of the total 
problems identified during maintenance. This indicates that there are substantial limitations in the 
use of source code analysis to explain maintenance problems. This may also imply that 
alternative evaluation methods should be used in combination with code smell analysis, in order 
to achieve a comprehensive maintainability evaluation. 
In total, 301 Java files across all four systems were modified or inspected by at least one 
developer during maintenance. Out of those files, 61 (approx. 20%) of them were reported as 
problematic during maintenance by at least one developer. Table 6 presents the numbers and 
proportions of problematic files across the four systems. 

Table 6: Distribution and percentage of problematic vs. non-problematic files 
System Problematic = 1 Problematic = 0 N 

A 11 20% 45 81% 56 

B 37 30% 88 70% 125 

C 3 12% 22 88% 25 

D 10 11% 85 89% 95 

Total 61 20% 240 80% 301 

                                                                   	
  
3 A more complete description of the nature and distribution of the different problems identified during maintenance are available by 
sending a request to the first author. 
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4.2 The Factor Analysis 

A principal component analysis (PCA) was conducted on the 301 data points using orthogonal 
rotation (varimax). The Kaiser-Meyer-Olkin measure verified the sampling adequacy for the 
analysis, KMO = .604, and all KMO values for individual items were > .5, which is above the 
acceptable limit according to Kaiser (1974). Bartlett’s test of Sphericity χ2(66) = 561.252, p < 
.001, indicated that the correlations between the items were sufficiently large for PCA. An initial 
analysis was run to obtain eigenvalues for each component in the data. Five components had 
eigenvalues over Kaiser’s criterion of 1 and in combination explained 63.5% of the variance (See 
Table 7). Table 8 shows the factor loadings after rotation. 

Table 7: Total Variance Explained  

Initial Eigenvalues Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings Component 

Total Var. % Cum. % Total Var. % Cum. % Total Var. % Cum. % 
1 2.442  20.350  20.350  2.442  20.350  20.350  2.315 19.291  19.291  
2 1.768  14.731  35.081  1.768  14.731  35.081  1.693 14.108  33.399  
3 1.305  10.875  45.956  1.305  10.875  45.956  1.462 12.180  45.579  
4 1.073  8.942  54.898  1.073  8.942  54.898  1.098 9.147  54.725  
5 1.033  8.607  63.505  1.033 8.607 63.505  1.054 8.779 63.505 
6 .885  7.378  70.883        
7 .826  6.881  77.764        
8 .767  6.389  84.153        
9 .650 5.415  89.568        

10 .554  4.613  94.181        
11 .406  3.385  97.566        
12 .292 2.434 100.000       

Table 8: Factor loadings after rotation 
Component  

1 2 3 4 5 
GM .751     
GC .730     

TMP .687     
DUP .595     
FE .537     
SS  .896    

ISPV  .823    
DC   .751   
CL   .721   

IMP    .823  
RB     .822 
MC     -.548 

Eigenvalues 2.442 1.768 1.305 1.073 1.033 
% of variance 20.350 14.731 10.875 8.942 8.607 

4.3 Relations between Factors and Maintenance Problems 

In total, five factors are identified through PCA, as depicted in Table 8. In this section, we will 
discuss for each factor, the code smells part of them, the Java files displaying the some of the 
combinations of the code smells, and report the observed effects of the code smells on the 
incidence of maintenance problems. 

Factor 1. In Table 8, we see that the code smells God Method and God Class are the closest in 
this factor, followed by the code smells Temporal variable used for several purposes, Duplicated 
code in conditional branches, and Feature Envy. Given that the detection strategies of the first 
two code smells are based on size measures (See Appendix A), it is natural that they appear 
together. Also, large classes often use many different variables, which increase the chances of the 
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presence of Temporary variable used for several purposes. Feature Envy is also present when 
there are complex methods (i.e. God Methods) that need many parameters from other classes. 
Code smells in Factor 1 may, consequently, be considered to relate to the size of the code.  

Table 9 displays the system, and code smells of the files deemed problematic during maintenance 
that contained at least one instance of the God Method smell (as this last one represents best the 
Factor 1). The great majority of these classes contained many methods that accessed 
data/methods from different areas of the system (i.e., methods displaying Feature Envy, or FE). 
This characteristic forced the developers to examine all the files called by these methods in order 
to first understand the behaviour of the class, and to identify the pertinent data or location where 
to perform the changes. Faults occurred in those files because developers missed areas on the 
code that needed to be consistently changed after changes were done on the classes displaying the 
efferent coupling. Also, files with Feature Envy and God Method were associated to time-
consuming changes. This was because they demanded highly complex changes, in terms of 
number of changes required to complete the task, and in terms of the number of elements that a 
developer needs to consider simultaneously in order to complete the task (this last case 
comprising a cognitively demanding task). 

One or two classes in each system “hoarded” the business logic/functionality of the system (i.e., 
StudyDatabase, StudySearch, DB, and StudyDAO). They were extremely large in comparison to 
the rest of the files of the systems, and developers frequently will commit “slips” or mistakes 
because of the size of these classes (mainly because it is hard to navigate across the class and 
keep track of changes within the class). Some of these “hoarders” also contained Temporal 
variable used in different contexts (TMP). These inconsistencies in the use of different variables 
made the developers unsure about the purpose of the variables, and the behaviour of the 
method/class containinig them. This propitiated mistakes that lead to several faults, particularly in 
System C. Developers would change a variable expecting that it will be used in the same way 
across the class, but instead unexpected behavior would manifest and demand debugging and 
refactoring. 

Table 9: Problematic files containing at least one God Method smell 

File 

Sy
st

em
 

D
C

 

C
L 

D
U

P 

FE
 

G
C

 

G
M

 

IS
PV

 

M
C

 

R
B

 

SS
 

Te
m

p 

Im
p 

StudyDatabase A 0 0 0 7 0 1 1 0 0 1 1 1 
PrivilegesManageAction B 0 0 0 0 0 1 0 0 0 0 1 0 
StudiesEditAction B 0 0 0 0 1 2 0 0 0 0 0 0 
StudiesSearchAction B 0 0 0 1 0 1 0 0 0 0 1 0 
StudySearch B 0 0 0 2 1 2 0 0 0 0 0 0 
DB C 0 0 2 16 1 2 1 0 0 0 1 0 
StudyDAO D 0 0 1 10 1 2 1 0 0 1 1 0 

 
Factor 2. ISP Violation and Shotgun Surgery belong together in a separate factor (Factor 2). This 
indicates that they may represent, to some extent, the same construct (e.g., related to wide-spread, 
afferent coupling). Also, they do not seem to relate much to the size of the code (Factor 1). Table 
10 displays the code smells for the files that displayed the ISP Violation. As can be seen, a high 
proportion of problematic files with solely the ISP Violation and the Shotgun Surgery (7 out of 
12). One critical example of program comprehension in files containing ISP Violation relates to 
the presence of inconsistent design (manifested in the class StudySortBean, in System A). A 
major reason why the developers found System A difficult to understand seems to be due to 
inconsistent and incoherent data and functionality allocation, which was considered ‘not logical’ 
by the developers (two developers literally stated that the design “did not make sense”). The class 
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StudySortBean was initially employed as a Bean4 to sort a given list of empirical studies and 
present them in a report to the user. Probably throughout the initial development phase (i.e., not 
the maintenance phase), StudySortBean class started to acquire more responsibilities that did not 
correspond to the class, and turned into an Action file. This would be a good example of what 
Martin [35] calls, “wider spectrum of dissimilar clients..”. This file was originally a Bean file that 
should only contain data, but it ended up containing functionality. As a result, this file initially 
containing Data Class, acquired the ISP Violation. Both the data and the functionality were called 
from many different classes, many of them unrelated. Since the allocation of the data and 
functionality seemed rather arbitrary to the developers, they got confused about the rationale of 
such design. This case is very interesting because ISP Violation is not the real cause of the 
problem (the real problem was the inadequate allocation of data and functionality); nonetheless, 
the definition of ISP Violation and subsequent detection strategy could identify this situation. 

Table 10: Problematic files containing ISP Violation smell 
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StudyDatabase.java A 0 0 0 7 0 1 1 0 0 1 1 1 
StudySortBean.java A 1 1 0 0 0 0 1 0 0 0 0 0 
ObjectStatementImpl.java B 0 0 0 0 0 0 1 0 0 1 0 0 
Person.java B 0 0 0 0 0 0 1 0 0 1 0 0 
Simula.java B 0 0 0 0 0 0 1 0 0 1 0 0 
Table.java B 0 0 0 0 0 0 1 0 0 1 0 0 
DB.java C 0 0 2 16 1 2 1 0 0 0 1 0 
Nuller.java D 0 0 0 0 0 0 1 0 0 1 0 0 
StudyDAO.java D 0 0 1 10 1 2 1 0 0 1 1 0 
StudySDTO.java D 1 0 0 0 0 0 1 0 0 0 0 0 
WebConstants.java D 0 0 0 0 0 0 1 0 0 1 0 0 
WebKeys.java D 0 0 0 0 0 0 1 0 0 1 0 0 

 
We also observed that when the developers introduced faults in files displaying ISP Violation, the 
consequences of these faults manifested themselves across different components that depended 
on them. This situation caused much of the systems’ functionality to stop working after changes, 
and in some cases, lead to unmanageable error propagation. Also, when changes were introduced 
to the abovementioned classes, we observed that adaptations or amendments were needed in other 
classes depending on the ISP Violators. This resulted in time-consuming change propagation. 
This situation also caused the introduction of defects (as developers sometimes would miss parts 
of the code that needed amendments), resulting in a time-consuming, and an error-prone process.  

Factor 3. Data Class and Data Clump are together in one factor (Factor 3). Although most files 
displaying Data Class also displayed Data Clump, very few of the files displaying both smells 
were deemed as problematic during maintenance. The problematic files with Data Class in turn 
seemed to display more affinity with ISP Violation, as described in the previous section. Most of 
the problems in Data Class related to Task 1, where the types for the identifiers needed to be 
changed from Integer to String, and developers would forget to update some of them, introducing 
defects to the systems. One observation from these files is that the great majority of them 
displayed incoming dependencies from Feature Envy methods. Data was located on files 
displaying Data Class, and those were accessed by methods in the classes that contained most 
functionality in the systems. This code smell relation has been mentioned by Pietrzak et.al. [44] 
and Lanza et.al. (p.78)[24]. 

 

                                                                   	
  
4 In J2EE environments, it is common to use Bean files as data transfer objects. Their counterparts, the Action files (which in turn 
contain the business logic) access the Bean files. 
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Table 11: Problematic files containing Data Class smell 
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StudyMaterialForm A 1 0 0 0 0 0 0 0 1 0 0 0 
StudySortBean A 1 1 0 0 0 0 1 0 0 0 0 0 
ObjectJoinableStatementImpl B 1 0 0 0 0 0 0 0 0 0 0 0 
Privilege B 1 0 0 0 0 0 0 0 0 1 0 0 
PrivilegePersonsRelStatement B 1 0 0 0 0 0 0 0 0 0 0 0 
PrivilegesForm B 1 0 0 0 0 0 0 0 1 0 0 0 
Publication B 1 0 0 0 0 0 0 0 0 0 0 0 
StudyPersonRelStatement B 1 0 0 0 0 0 0 0 0 0 0 0 
StudySearchForm B 1 0 0 0 0 0 0 0 1 0 0 0 
StudyStatement B 1 0 0 1 0 0 0 0 0 0 0 0 
StudySDTO D 1 0 0 0 0 0 1 0 0 0 0 0 
StudyMaterialForm A 1 0 0 0 0 0 0 0 1 0 0 0 
StudySortBean A 1 1 0 0 0 0 1 0 0 0 0 0 
ObjectJoinableStatementImpl B 1 0 0 0 0 0 0 0 0 0 0 0 

Factor 4. Implementation instead of interface represented Factor 4. This code smell appeared 
very seldom in our dataset and did not relate to any of the other code smells. From the 
problematic files, only two files contained this code smell, and one of the files displayed the 
combination of smells described in Factor 1. Consequently, in this study this code smell did not 
represent any maintenance problems nor displayed any relationship to other code smells. 

Factor 5. Refused Bequest and Misplaced Class constitute the last factor, where Misplaced Class 
has a negative loading. This indicates that Misplaced Class tends to be negatively associated with 
this factor. Positive and negative loadings can be associated with the same factor. For example, in 
surveys, negative loadings are caused by questions that are negatively oriented to a factor. A 
combination of positive and negative questions is normally used to minimize an automatic 
response bias by the respondents [13]. By observing the types of problems in each of the files, 
none of them could be associated to the presence of Refused Bequest or the absence of Misplaced 
Class. 

Table 12: Problematic files containing Refused Bequest smell 
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DesAction A 0 0 0 0 0 0 0 0 1 1 0 0 
PerformSearchStudiesAction A 0 0 0 1 0 0 0 0 1 0 0 0 
StudyMaterialForm A 1 0 0 0 0 0 0 0 1 0 0 0 
PrivilegesForm B 1 0 0 0 0 0 0 0 1 0 0 0 
StudySearchForm B 1 0 0 0 0 0 0 0 1 0 0 0 

4.4 Trends Identified 

The results from our PCA and the analysis of the problematic files and the nature of the 
maintenance problems caused by them support our stance that inter-smells relations should be 
analyzed alongside individual effects of code smells. Based on our observations, we propose an 
initial draft of relevant inter-smell relations and their characteristics. Several of them have already 
been suggested theoretically by Walter and Pietrzak in [44], and Lanza and Marinescu in [24]. 
Table 13 displays four major code characterizers, their associated Factors as described in our 
PCA analysis, and a description of each. Figure 1 is an extension of the relationship diagram 
proposed by Lanza and Marinescu in [24], based on our observations from study, which 
complements the summary provided in Table 13.   
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Table 13: Tendencies and characteristics of Factors identified in the study 
Factor Nickname Major characteristic Characteristic code smells 

1 Hoarders Indicators of high internal complexity and large size where the 
functionality for the element has grown out of proportion. These 
elements are difficult to understand, change and prone to defects due 
to “slips”. 

God Method, God Class and 
Feature Envy  

1 Cofounders These smells are associated mostly with defects and program 
comprehension issues, and often in same classes where the Hoarders 
are. 

Temporal variable used for 
several purposes, Duplicated 
code in conditional branches 
 

2 Wide 
interfaces 

Indicators of afferent coupling dispersion. If the maintenance task 
requires any modification in classes displaying these smells, this will 
entail unexpected side effects due to the functional coupling 
dispersion. Sometimes they are found in same class as Data 
Containers or Hoarders. 

Shotgun Surgery and ISP 
Violation 
 

3 Data 
containers 

Indicators of elements only containing data. Often Feature Envy 
methods have dependencies on files displaying these classes. 
Sometimes are contained in same class as “Wide interfaces”, when the 
allocation of data-functionality is not optimal.  

Data Class and Data Clump 

4 and 5 Unknowns Not enough data from the study, very few instances were found and 
most of them were not associated to maintenance problems. 

Implementation instead of 
interface, Misplaced Class, and 
Refused Bequest 

 

 

Figure 1: Diagram for displaying potential relationships from the observations in the study 

During the study, we could observe the effects of interactions between code smells and also 
between code smells and other code characteristics. The following two observations illustrate the 
maintenance problems caused by interaction effects involving ISP Violation, and we believe they 
are representative of the types of problems identified during the study. 

4.5 Interactions across code smells and other code characteristics 

The first case was observed in System B, and it was related to time-consuming changes and 
defects after initial changes. All developers who updated System B reported this type of problem. 
The developers who worked on System B wanted to replace two interfaces (located in the files 
Persistable.java and PersistentObject.java5) with one new interface to support a String ID type in 
order to complete Task 1. Recall that Task 1 consisted of modifying functionality that accesses 
external data. The external data employs String type identifiers, as opposed to Integer types used 
in the system. Replacing the interfaces was not possible since the entire logic flow was based on 
primitive types instead of domain entities. Both interfaces were restrictive and were made under 
the assumption that the identifiers for objects would always be Integers, and thus defined accessor 
methods getId() and setId() with Integer types. Notice that these interfaces did not display any 
code smells. The maintenance problems seemed to occur because several critical classes in the 
system implemented these two interfaces. Many of the classes that implemented these interfaces 
                                                                   	
  
5 These files constituted implementations of the Persistence Framework. Persistence Framework is used as part of Java technology for 
managing relational data (more specifically data entities). For more information on Java persistence, see www.oracle.com 
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(e.g., ObjectStatementImpl in Table 10) displayed ISP Violation, which resulted in extensive 
ripple effects when modifying the interfaces. It was observed that after the developers modified 
the interfaces, this led to an extremely high number of compilation errors. This induced the 
developers to rollback the initial changes in those files (i.e., keep the interfaces untouched) and 
instead perform forced casting wherever a String type identifier was required. Most developers 
used a considerable amount of time trying to replace the interface, and they were forced to 
rollback and perform the forced casting. This is an example of how the presence of a code smell 
may intensify or spread the effects of certain design choices throughout the system. Since classes 
with wide afferent coupling dispersion (and thus, containing ISP Violation) were coupled with 
these interfaces, any changes to the interfaces would have the same impact as if they were 
performed in the classes with the wide afferent coupling. 

4.6 Interactions across “collocated” smells and “coupled” smells 

The second case relates to the observation that all systems except for System B contained one 
single class that “hoarded” most of the logic and functionality in those systems (They were 
located in the files StudyDatabase, DB, and StudyDAO, as described in Factor 1). These classes 
were very large in comparison to other classes in the system, displayed a wide spread of both 
afferent and efferent coupling, and demanded high amounts of changes. All three ‘hoarders’ 
displayed ISP Violation, because they displayed many incoming dependencies from different 
segments of the system. Because of their high level of efferent coupling, they also contained 
Feature Envy. They also contained God Method, which is commonly present in big, complex 
classes. The developers found it difficult to foresee the consequences of changes performed in the 
“hoarders”, given the combination of their internal complexity and the high number of dependent 
classes. Changes in the “hoarders” were essential to the maintenance tasks, and they were time 
consuming since the developers first had to understand the logic they contained. Even after the 
changes were made, errors would manifest in different areas of the system, causing further delays 
to the project. One interesting observation was that in System B, the combination of code smells 
representing Factor 1 was not located in one file, but distributed across several problematic files. 
StudySearch and MemoryCachingSimula were internally complex and ObjectStatementImpl and 
Simula displayed the highest incoming dependencies. Both pairs of files were coupled (i.e., 
StudySearch had dependencies on ObjectStatementImpl while MemoryCachingSimula had 
dependencies on Simula). We found that the interactions between “coupled” smells had similar 
effects as if code smells were collocated in the same file (See Table	
  14). 
 

Table 14: Hoarders in System B and how they are distributed across two coupled files 
File Individual 

code smells Coupled smells 
StudySearch.java GC, GM, FE 
ObjectStatementImpl.java ISPV, SS FE, GM, ISPV, GC, SS 
MemoryCachingSimula.java GC, TMP 
Simula.java ISPV, SS ISPV, GC, SS, TMP 
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4.7 Implications for Research and Practice 

In this study, we have described how some code smells appear together in the same file and can 
interact with each other, causing different types of maintenance problems. Practitioners could use 
the descriptions of the Factors identified in this study to spot critical files that may need 
refactoring.  

Insofar, we know only of one study (by Abbes et al., [2]) that has reported on interaction effects 
between code smells (i.e., between God Class and God Method), and we believe that the results 
from our study point into the same directions as their findings. We also provide empirical 
evidence of some of the inter-smell relations proposed by Pietrzak in [44], and Lanza and 
Marinescu in [24]. 

From our results, the effects of inter-smell relations seem to be a topic that deserves more 
attention. This stance is further supported by our observations that in some large classes, the 
maintenance problems may not be directly caused by the actual size of the class, but rather be a 
result of interaction effects across different code smells that happen to appear together in the 
same file. This implies that the current approach for code smell analysis (i.e., analyzing individual 
smells and not the effect of their combinations) limits the capability of code smells to explain 
much of the maintenance problems caused by design flaws.  

Another limitation of the current approaches for code smell analysis is that couplings among 
elements containing code smells are not considered in the analyses. The findings from this study 
indicate that interaction effects between code smells distributed across coupled files may have the 
same consequences from a practical perspective as interaction effects between code smells 
collocated in the same file. This last finding implies a serious consideration for further studies on 
code smells and a need to include dependency analyses to provide a better understanding of the 
role of code smells in software maintenance. 

4.8 Threats to validity 

We consider the validity of the study presented from three perspectives: 

Construct Validity. The definition of “maintenance problem” may have been interpreted 
differently amongst different developers and the researcher who conducted the data collection 
(the author of the paper). The code smells were identified via detection tools to avoid subjective 
bias. Nevertheless, the meaningfulness and/or common usage of the detection strategies used in 
the tools could be a potential threat. We are aware that there are other tools that can detect many 
of the code smells analyzed, and their detection strategies could differ to an extent from those 
used in this study. 

Internal validity. It is possible that some developers were more open about the maintenance 
problems they faced than others and that some developers did not tell about all the maintenance 
problems they experienced. This is a common threat whenever qualitative data is used in 
empirical studies. Our usage of three independent collection methods, i.e., interviews, direct 
observation and think-aloud sessions for triangulation purposes6 may have reduced this threat. 

External validity. The results are contingent on the contextual properties of the study and the 
results are mainly valid for maintenance projects in contexts similar to ours. The maintenance 
work involved medium-sized, Java-based, web-applications, and the programmers completed the 
tasks individually, i.e., not by teams or use of pair programming. This last characteristic can 
affect the applicability of the results in highly collaborative environments. We do not claim our 
                                                                   	
  
6 In the social sciences, triangulation is often used to indicate that more than two methods are used in a study with a view to double (or triple) checking 
results. This is also called "cross examination". 
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results to fully represent long-term maintenance projects with large tasks, given the size of the 
tasks and the shorter maintenance period covered in our study. The tasks involved may, however, 
resemble backlog items in a single sprint or iteration within the context of, for example, Agile 
development. To the best of our knowledge we do not know of other studies reporting 
experimental studies on code smells on in-vivo maintenance tasks for more than 240 minutes, 
whereas in this study, we could observe closely the whole maintenance process for a period up to 
four full-working weeks. 

5. Conclusion and Future Work 
Our study constitutes a realistic maintenance project and we believe that the maintenance 
problems identified are representative of those experienced in several industry settings. Thus, our 
results may provide empirical evidence to guide the focus on design aspects that can be used for 
detecting and avoiding maintenance problems. The research aimed at identifying potential inter-
smell relations and their effects on the incidence of maintenance problems. We found evidence 
that some inter-smell relations are associated with problematic files during maintenance, and that 
some inter-smell relations manifest across coupled files. Further studies on the basis of our 
findings and experiences with the reported study include code smell analyses that: i) Include 
larger systems and different maintenance tasks, and ii) Focus on the interaction effect between 
smells and other design properties, and to incorporate the analysis of coupled smells. 

 
Appendix A 
 

Code smells Detection Strategy / Metrics 

Data class WOC lower 33 and (NOPA higher 5 or NAM higher 
5) 

Weight Of Class (WOC) 
Number Of Public Attributes (NOPA) 
Number of Accessor Methods (NAM) 

God method (LOC top 20% except LOC lower 70) and (NOP 
higher 4 or NOLV higher 4) and MNOB higher 4 

Lines Of Code (LOC) 
Number Of Parameters (NOP) 
Number Of Local Variables (NOLV) 
Max Number Of Branches (MNOB) 

God class 
AOFD top 20% and AOFD higher 4 and WMPC1 
higher 20 and TCC lower 33 
 

Access Of Foreign Data (AOFD) 
Weighted Methods Per Class 1 (WMPC1) 
Tight Class Cohesion (TCC) 

Shotgun surgery CM top 20% and CM higher 10 and ChC higher 5 
 

Changing Methods (CM) 
Changing Classes (ChC) 

Misplaced class CL lower 0.33 and NOED top 25% and NOED, 
higher 6 and DD lower 3 

Number Of External Dependencies (NOED) 
Class Locality (CL) 
Dependency Dispersion (DD) 

Refused bequest AIUR lower 1 
 Average Inheritance Usage Ratio (AIUR) 

Feature envy 
AID higher 4 and AID top 10% and ALD lower 3 and 
NIC lower 3 
 

Access of Import Data (AID) 
Access of Local Data (ALD) 
Number of Import Classes (NIC) 

Interface segregation 
principle (ISP) violation 

(CIW top 20% except CIW lower 10) and AUF lower 
50 and COC higher 3 
 

Class Interface Width (CIW) 
Average Use of Interface (AUF) 
Clients Of Class (COC) 

Data clump Abstract semantic graph [30] can be analyzed to detect independent groups of fields and methods that 
appear together in multiple locations. 

Duplicated code in 
conditional branches 

Abstract syntax three [15] can be analyzed to detect conditional statements, and this information can be 
combined with clone detection techniques (e.g., Baxter et al., [6]). 

Temporary variable is 
used for several purposes 

Analysis of abstract semantic graph can be combined with semantic analysis (e.g., Landauer et al., 
[23]) to determine the location where temporal variables are defined and deter- mine differences in their 
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context of usage. 

Use interface instead of 
implementation Abstract semantic graph can be analyzed to detect castings to implementation classes. 
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