
  

  
Abstract— The software engineering discipline contains 

numerous myths and over-simplifications. Some of them may 
be harmless, but others may hamper evidence-based practices 
and contribute to a fashion- and myth-based software 
engineering discipline. In this article we give examples of 
software engineering myths and over-simplifications and 
discuss how they are created and spread. One essential 
mechanism of the creation and spread of myths and 
over-simplifications are, we argue, people’s tendency towards 
searching for confirming and neglecting disconfirming 
evidence. We report from a study examining this tendency. The 
study demonstrated that the developers who believed in a 
positive effect of agile methods tended to interpret randomly 
generated (neutral) project data as evidence confirming the 
benefit of agile methods. For the purpose of supporting 
evidence-based practice and avoiding unwanted influence from 
myths and over-simplifications, we provide a checklist to be 
used to evaluate the validity of software engineering claims. 

 
Index Terms—Confirmation bias, evidence-based software 

engineering, myths, over-simplifications.  
 

I. INTRODUCTION 

Important decisions and judgments in software 
engineering should be based on relevant evidence, collected 
from practice and research studies, not on myths, 
over-simplifications or irrelevant evidence. A necessary 
condition for the software engineering discipline to become 
more evidence-based, which is the goal of this paper, is that 
software professionals and researchers improve their ability 
to evaluate when claims are valid and relevant and when 
they are based on myths or over-simplifications [1]. 

Section II provides a selection of myths and 
over-simplifications currently present in the software 
engineering discipline. The main purpose of this section is 
to motivate the need for more evidence-based practice in 
software engineering and to illustrate the main mechanisms 
leading to the creation and spread of myths and 
over-simplifications. Section III reports results from an 
experiment that demonstrates the effect of one of the 
mechanisms leading to a belief in myths and 
over-simplifications, i.e., the confirmation bias mechanism. 
Section IV suggests a checklist for the purpose of evaluating 
the validity of software engineering claims.  
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II. EXAMPLES OF MYTHS AND OVER-SIMPLIFICATIONS 

Myths and over-simplifications may be defined as 
incorrect claims. While a myth is plain wrong, an 
over-simplification may have contexts where it is true or at 
least contexts where its intended message can be useful. 
With increased vagueness a myth or over-simplification may 
turn into a non-falsifiable claim. In this section we focus on 
presenting and discussing myths and over-simplification, but 
we will also briefly illustrate and discuss non-falsifiable 
claims. 

A. Most of Our Communication is Non-verbal 
It is frequently claimed that most of our communication is 

non-verbal, i.e., body language and voice. A variant of the 
claim is the seemingly more precise claim that as much as 
93% of our communication is non-verbal, see for example 
[2, page 53]. A high importance of non-verbal 
communication may, for example, motivate training in 
non-verbal communications, extreme awareness of 
non-verbal cues and to argue in favour of having more 
expensive, but richer in terms of communication, 
face-to-face project meetings instead of communicating 
through emails.  

Most people may have experienced situations where the 
non-verbal communication was essential for the final 
outcome. Our ability to recall such confirming situations, 
together with our tendency towards not searching for 
situations where the verbal communication clearly was the 
most important may be sufficient to make many accepting 
the claim [3]. Few people, as far as we have experienced, 
ask the following critical questions about the claim: What is 
the precise meaning of the claim? How strong is the 
evidence in support of it? 

A precise meaning of the claim requires, amongst others, 
that we have the same measure for the amount of non-verbal 
and verbal communication. Otherwise, we would not be able 
to claim that most communication is non-verbal. If do not 
have this common measure, which in many situations will 
be hard, the claim makes little meaning. Studies comparing 
verbal and non-verbal communication, however, typically 
compare how much each communication source dominates a 
particular type of outcome in a particular context. Already at 
this stage, we should start doubting the meaningfulness of 
the claim in its typical format. If we cannot compare the 
amount of verbal and non-verbal communication, what is 
then the meaning of “most communication is non-verbal”? 

In many situations with myths and over-simplifications 
there will be no reference to evidence. In this case, however, 
there seems to be an agreement about that the main source 
of evidence, at least for the 93% claim, is a paper from 1967 
written by Mehrabian and Wiener [4]. The design of this 
study was as follows: The participants hear a person saying 
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the positive words “honey”, “thanks” and “dear”, the neutral 
words “maybe”, “really”, “oh” and the negative words 
“don’t”, “brute” and “terrible”. All these words are spoken 
in a positive, neutral and negative voice and the participants 
are asked to assess “… the feelings of a speaker towards the 
person whom she is addressing”. The authors found, not 
surprisingly, that if a person said, for example, “thanks” in a 
negative voice to another person, most observers would not 
emphasise the positive content of the word, but instead the 
negative voice, when assessing to what extent the speaker 
liked the other person. This study, together with a follow-up 
study with facial expression added, also published in 1967, 
are the sources of the claim that 93% of communication is 
non-verbal. We doubt, however, that anybody who had 
actually read and understood the design of the original 
studies would believe that we could use this study as 
evidence in support of the general claim that 93% (or most 
of) of communication is non-verbal. 

B. 189% Average Cost Overrun 
The perhaps most cited report on software cost overruns 

is the Standish Group’s Chaos Report from 1994, which 
claims that the average cost overrun in software projects was 
as high as 189% [5], i.e., the actual cost was on average 
almost three times higher than the estimated cost! Although 
from 1994, the study is even today used to document a 
software project crisis, see for example [6]. Interestingly, the 
tabular data presented in their report is consistent with an 
average cost overrun of about 89% (or 189% of the original 
cost estimate) and it seems as if the Standish Group has 
confused not only the readers, but also themselves, by 
mixing “189% of original cost overrun” with “189% cost 
overrun”. An 89% cost overrun is, however, also substantial 
and indicates a software crisis, given that we can trust the 
result.  

The evidence to support the claim of 189% cost overrun 
is based on a survey of projects from as many as 365 
software companies. A high number of respondents is, 
however, not automatically leading to high reliability of 
results. An examination of the study design shows that the 
Standish Group did explicitly ask for non-representative 
projects (page 13 of their report): “We then called and 
mailed a number of confidential surveys to a random sample 
of top IT executives, asking them to share failure stories.” 
Clearly, a collection of failure stories cannot be used as a 
representative sample of the software industry’s projects. 
The 189% cost overrun result, consequently, only tell 
something about the average cost overrun of the projects 
with large cost overruns, which is far from how it has been 
and still is presented. More about the problems with the 
Standish Group’s study design in [7]. 

It may be useful to reflect on why so many software 
engineering researchers and professionals accepted and 
spread the Standish Group-created myth of extremely high 
average cost overrun in software projects. Researchers and 
software professionals could have referred to one of the 
many other surveys on cost overruns, e.g., [8, 9], instead of 
the results of the Standish Group report. The other surveys 
of software cost overruns show, quite consistently, average 
cost overruns in the interval 20-40%. A likely reason for the 
selection of the much higher cost overrun values of the 

Standish Group is that the extreme data were more useful 
for the purpose of selling advisory work and demonstrating 
the importance of more research on cost estimation. The 
willingness and ability to search for disconfirming evidence 
and be critical towards a claim may decrease with increased 
benefit from the claim being true. 

C. Brook’s Law 
Brook’s law says that: “Adding manpower to a late 

software project makes it later” [10]. Brooks himself 
describe his own statement as an outrageous 
over-simplification, but this has not stopped other people 
from interpreting “Brook’s law” as an actual law, or at least 
a rule with very few exceptions. It is, for example, used as 
support for the a context-independent trade off-function 
between time and effort in cost estimation tools [11]. While 
it may be true that adding inexperienced people to a late 
project usually makes it later, there are, as far as we know, 
no evidence documenting that adding skilled, experienced 
people to a late project in general makes the project later. 
Adding people to a late project is what the software industry 
does, as far as we have experienced, and what seems to be a 
fully rational behaviour in many contexts.  

What makes the use of Brook’s law an interesting 
example of over-simplification is, we think, that it can be 
used positively to remind project managers and leaders that 
adding manpower in software development does not 
automatically lead to reduced time to completion of the 
project. People new to the project may have to be trained 
and they are likely to lead to an increase proportion of effort 
spent on project member communication. The problem 
occurs when we do not acknowledge that Brook’s law is an 
outrageous over-simplification, and use it to argue against 
rational behaviour to rescue challenged projects. Of the 
mechanism leading to the spread of over-simplifications, 
such as Brook’s law, may be our wish for simple rules, i.e., 
rules that require us to reflect less on the context and do less 
hard thinking. 

D. Factor Ten Increase in Error Correction Cost 
Some people claim that there is an increase of a factor of 

about ten to correct error effort per phase, see for example 
the claims by the XP-expert Alistair Cockburn 
xprogramming.com/articles/cost_of_change. An error that 
costs one hour to correct in the requirement phase would 
according to this claim typically take about 10 hours to 
correct in the design, 100 hours in the programming and 
1000 hours in the test phase. There are less extreme claims, 
e.g., the claim that the correction cost is higher (perhaps 
with a factor less than ten) the later the error is detected 
[12]. The claim of increasing cost is frequently used to argue 
that it is always beneficial to detect errors as early as 
possible, see for example 
hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/209/error.htm.  

While we were unable to find any empirical evidence 
documenting the factor ten increase in correction cost, there 
are several studies that find that it takes on average more 
effort to correct errors detected in later phases, see for 
example [13]. So what is the problem with the claim? 

The claim is, we argue, an over-simplification of the 
research results. The studies, for practical reasons, observe 



  

the average cost of error correction in the phase where the 
error was actually detected. The studies do, however, not 
say anything about how much these errors would have cost 
to identify and remove in an earlier phase. Removal of the 
last requirement and design errors, for example, is likely to 
cost very much more than removal of the average 
requirement and design errors.  In agile development the 
insight of increased marginal cost of detecting and removing 
requirement errors in the requirement phase has led to an 
approach where it is planned with frequent correction of the 
requirement specification, instead of trying to remove all of 
them before starting the design phase. If it always were 
beneficial to remove errors in the phase where they are 
introduced, especially given a factor ten increase in cost per 
phase, agile development would probably be very 
inefficient. 

An example of a misuse of this over-simplification can be 
found in the perhaps most quoted report on the benefit of 
better testing infrastructure, i.e., the NIST report on “The 
economic impacts of inadequate infrastructure for software 
testing” [14]. This study calculates a very high benefit from 
improved testing infrastructure (22.2 – 59.5 billion USD) 
and is, not surprisingly, used by many researchers and 
advisors to strengthen the need for research funding on 
testing and motivate the need for advisory services. The 
report states (page 5-4) “… regardless of when an error is 
introduced it is always more costly to fix it downstream in 
the development process.” An assumption of no added error 
detection cost and always decreasing correction cost when 
detecting more errors in the phases where they are 
introduced, creates, not surprisingly, great savings from 
better testing infrastructure. The assumption is, as argued 
earlier, not supported with evidence, and, likely to be 
incorrect.  

The claim of increasing cost of correcting errors in later 
phases has, similarly to Brook’s law, a core of essential 
truth. A brief question to the client to clarify a requirement 
may cost a few minutes of work, while the discovery of a 
requirement error related to misinterpreting a requirement 
may cost many work-hours to correct in the testing phase. 
The over-simplification does however potentially also make 
harm since it removes the focus from the more precise and 
more essential questions: How much and what kind of early 
error detection and removal is cost-efficient for a particular 
context (type of system, development method, complexity of 
development, stability of requirements)? As with Brook’s 
law we have the desire for simple rules. Unfortunately this 
may frequently not be consistent with a complex software 
engineering world full of context-dependent insights. 

E. 45% of Features Never Used 
The Standish Group claimed, in a presentation at the 

conference XP 2002, that 45% of the features of software 
applications were never used, when developed by 
“traditional” (waterfall) development teams (no official 
report exists, as far as we know). The claim has been used 
extensively to argue against the use of “traditional” 
development and to support a transition towards more use of 
agile development teams, see for example 
thecriticalpath.info/2011/07/07/waste-in-software-projects/. 
Agile development methods embrace frequent update of the 

requirement specification based on feedback and learning 
during the project to avoid delivery of useless, originally 
specified features. 

There are several reasons not to trust the finding by the 
Standish Group:  

i) The study design is not publicly available. We were for 
example unable to find out how and who they asked about 
the information. In order to trust the results, the respondents 
of the survey by the Standish Group should be well 
informed about previous, current and future use of the 
application for all users. Neither the developers nor single 
users are typically that well informed. 

ii) The claim is difficult to interpret. Those who use the 
claim to promote agile methods typically use it to mean that 
45% of the features has, for the average system, never been 
used by anybody. This would be a chocking result 
suggesting that something is very wrong with how we 
develop software, i.e., a software crisis motivating a change 
to new development methods, while the claim that each 
individual user on average use only 45% of the functionality 
would perhaps not be surprising or bad at all. The spread of 
the undocumented, probably incorrect claim seems to be 
supported by a benefit from it being true among agile 
method supporters. 

F. Productivity Ratio of 1:10 
It is sometimes claimed that the productivity ratio 

between the least and the most productive programmer is 
about 1:10 (or some other ratio). The factor 1:10 may have 
its origin in a study from 1968 [15], which states that: 
“These studies  revealed large individual differences 
between high and low performers, often by an order of 
magnitude.”  

It may be debated to what extent the claim of factor ten is 
a myth, an over-simplification or simply a meaningless 
statement. It is easy to see that you can get any productivity 
difference number out of empirical studies comparing 
programmers. The ratio between the least and the most 
productive programmer is for example likely to increase 
with higher number of programmers and with more complex 
tasks. If a task is complex enough, the least skilled 
developers may not be able to complete it (undefined 
productivity) or complete it incorrectly so that other 
programmers has to correct it (possibly negative 
productivity). For a good discussion of this claim, see 
forums.construx.com/blogs/stevemcc/archive/2008/03/27/pr
oductivity-variations-among-software-developers-and-teams
-the-origin-of-quot-10x-quot.aspx 

As with several of the other claims, the intention of this 
claim is likely to be good. On the other hand, to believe in a 
fixed, task-independent, proportion between the best and the 
worst may be counter-productive and, for example, lead to 
under-estimation of the performance difference on really 
complex tasks. Our quest for simple rules may be 
understandable, but also in this case the context matters and 
productivity ratios without knowing how many developers 
who were included in the study and the complexity of the 
task is not very informative. 



  

G. Non-falsifiable Claims 
Most software engineering claims with high impact on 

practice may neither be myths or over-simplifications, but 
rather belong to the category of non-falsifiable claims. 
Non-falsifiable claims have many similarities with myths 
and over-simplifications, especially when it comes to the 
type of control questions useful to evaluate their validity. 

One example of a non-falsifiable claim, possibly with 
high impact on practice (formulated as a value in the agile 
development manifesto) is the following:  “… we have come 
to value … working software over comprehensive 
documentation.” This value, which implicitly is a claim 
about what is a more efficient work process, may have 
contributed to less effort spent on documentation in agile 
than in most other types of software projects. The problem 
with the claim is that it falls into one out of the following 
two categories: i) The category of obviously correct claims, 
i.e., who would not rather have software that works (without 
comprehensive documentation) than comprehensive 
documentation (without software that works)? ii) The 
category of non-falsifiable claims, i.e., if the term 
“comprehensive documentation” is interpreted as inefficient 
or too extensive documentation, it will not be possible to 
falsify the validity of the claim. If a project benefit from 
some documentation, it could easily be claimed that this 
documentation is not what is meant by “comprehensive 
documentation” and do not falsify it. 

H. Mechanisms 
Summarized, we find that central mechanisms for the 

creation and spread of myths and over-simplifications 
include: 
• Confirmation bias, i.e., we see patterns that are not there 
if we expect or want to see them (“we see it, when we 
believe it”) 
• Poor studies, e.g., use of non-representative samples 
• Misunderstood or over-generalized research results 
• Usefulness bias, i.e., we benefit from a claim being true 
and are for this reason less motivated check its validity 
properly 
• Insufficient check of the validity, scope and robustness of 
the evidence, e.g., not reading the original study leading to 
the claim 
• Poor precision level of claims, which makes it easier to 
recall confirming evidence and more difficult to falsify 
• A tendency towards interpreting a claim with the 
intention to believe rather than disbelieve it 
• Desire for simple, deterministic relationship 
• Belief in authorities 
• Repetitions, i.e., the more frequently a claim is repeated, 
the more we believe in it, even when all claims are based on 
the same, perhaps misunderstood, source of evidence. 

III. A CONFIRMATION BIAS EXPERIMENT 

To illustrate the effect of confirmation bias, i.e., the effect 
of “we see it, when we believe it”, we conducted an 
experiment with software professionals. The participants 
consisted of 50 software developers employed in a company 
that had recently started using agile methods in many of 
their software development projects.  

A. Design 
The experiment consisted of the following three steps: 

i) Collection of the developers’ beliefs in the effect of agile 
methods compared to “traditional” (waterfall-based) 
methods. 
ii)  Generation of ten different data sets. The data were 
generated randomly, i.e., there was no systematic difference 
in performance, measured as productivity and user 
satisfaction, between the projects using agile and traditional 
development methods. Each data set contained outcome data 
of twenty projects, ten of them using agile and ten of them 
traditional development methods. 
iii) Provision of one, randomly allocated, data set to each 
of the developers with the request: “Assume that this [the 
data set] is the only information you have about the use of 
agile and traditional development methods in the company 
and that you are asked to interpret the data. The 
organization would like to know what the data shows related 
to whether they have benefited from use of agile methods or 
not.” We emphasized in the instructions that the developers 
were supposed to interpret the data alone, i.e., “what the 
data shows”, and not what they believed would be the case 
in general or combine it with their own experience. We told 
the participants that the data was from another, i.e., not their 
own, company. The developers’ responses should be based 
on the selection of a number between 1 (agree strongly) and 
5 (disagree strongly), reflecting how much they agreed with 
the statement “I believe that the data set indicates that the 
company has benefited from the use of agile methods.” A 
neutral answer (“no difference”/”don’t know”) would give 
the response 3. 

B. Results 
The measurement of the developers’ belief about the 

benefits of agile methods, which was conducted before they 
were exposed to the data sets, gave that 84% of them 
believed that agile development methods in general had a 
positive effect on productivity and 66% believed in a 
positive effect on user satisfaction. There were a few 
developers without a strong opinion, i.e., they used the 
“don’t know” option on the effect with respect to effect on 
productivity (10%) or on user satisfaction (26%). Even 
fewer developers believed in a negative effect of agile 
methods on either productivity (6%) or user satisfaction 
(8%). None of the developers believed in a negative effect 
on both productivity and user satisfaction. In total this 
shows a strong tendency towards believing in the benefits of 
agile methods among the developers. We categorized the 18 
developers who stated that they had no opinion (don’t know) 
or believed that there was a negative effect on either 
productivity or user satisfaction, as “undecided”. The other 
developers were categorized as “believe in agile”. 

A random generation of project data with only twenty 
data points does not guarantee that there are no patters in 
favour of either agile or traditional development in some of 
the data sets. An examination of the randomly generated 
data set gave that the five of the data sets were close to 
neutral on both productivity and user satisfaction. One data 
set was in favour of agile development and one data set was 
in favour of traditional development for both productivity 
and user satisfaction.  The remaining three data sets were 



  

mixed, i.e., in favour of one development approach for 
productivity and in favour of the other approach for user 
satisfaction. The average values of productivity and user 
satisfaction when joining all ten data sets were not 
significantly different for the two development methods. 

If the software developers’, in general, positive attitude 
towards agile methods had no impact on the responses, we 
would expect an average response of about 3 (“no 
difference”/”don’t know”). What we found, however, was a 
median response of 2 (“agree”). The effect of the previous 
belief on data interpretation, i.e., the confirmation bias 
effect, is further strengthened when comparing the responses 
of the developers with positive view on agile methods with 
those of the undecided. A chi-square analysis of the variable 
PreviousBelief (“undecided” vs “positive to agile”) and 
DataInterpretation (“agree strongly” + “agree” vs “disagree” 
+ “disagree strongly”) gives that independence between 
previous belief and data interpretation is highly unlikely 
(p=0.1). Among the developers who were positive to agile 
development, 60% interpreted the data set to show a positive 
effect, 22% a negative effect and 20% found no effect of 
agile methods. Among the developers who were undecided 
towards the benefits of agile development, 40% interpreted 
the data set to show a positive effect, 40% a negative effect 
and 20% found no effect. In short, those undecided about 
the benefits of agile development were, on average, 
unbiased in their data interpretation, while those with a 
previous positive attitude towards agile methods interpreted 
the data sets to show what they might have expected to see 
in the data sets, i.e., a positive effect of agile methods. 

In real life contexts, there will typically be more than two 
relevant variables and more subjectivity in the interpretation 
than in our experiment. This increase in interpretation 
complexity and subjectivity is, we believe, likely to increase 
the strength of a confirmation bias in real life contexts. It is 
therefore, we believe, remarkable that even in our simple 
experimental situation, with interpretation of only two, 
objectively measured variables, there are more than enough 
opportunities to get affected by previous belief.  

IV. HOW TO AVOID BEING AFFECTED BY MYTHS AND 
OVER-SIMPLIFICATIONS 

Many myths and over-simplifications may, as partly 
illustrated by our discussion in Section II, be disclosed by 
using the following set of control questions: 
1. What does the claim means? When is it supposed to be 

valid? Has it any precise meaning? Is it possible to 
falsify it? 

2. Before looking at the evidence related to a claim, ask 
yourself what you would expect of supporting evidence 
to believe in it. Is this evidence, or equally convincing 
evidence, present? 

3. Do you have a previously formed opinion about the 
validity of the claim? If so, be especially aware of your 
tendency to accept poor evidence and argumentation. 

4. Who makes the claim? Do you accept it because of the 
authority claiming proposing it, or based on the validity 
of the supporting evidence? 

5. What is the quality of the evidence? Is the evidence 
neutral, as opposed to collected by people with vested 
interests in a particular outcome, and relevant? Is there 

any evidence at all? Search for confirming and 
disconfirming evidence. The evidence should be as 
neutral as possible. If possible identify and understand 
the original source, e.g., study or practice-based 
experience, of the evidence.  

6. What does the totality of evidence say? How strong is it 
and in which contexts is it valid?  

 

V. REFERENCES: 
1. Dybå, T., B. Kitchenham, and M. Jørgensen, 

Evidence-based software engineering for 
practitioners. IEEE Software, 2005(Jan-Feb): p. 
58-65. 

2. Borg, J., Persuasion: The art of influencing 
people2008: Financial Times Press. 

3. Nickerson, R.S., Confirmation bias: A ubiquitous 
phenomenon in many guises. Review of General 
Psychology, 1998. 2(2): p. 175-220. 

4. Mehrabian, A. and W. Morton, Decoding of 
inconsistent communication. Journal of Personality 
and Social Psychology, 1967. 6(1): p. 109-114. 

5. The Standish Group: Chaos Chronicles Version 
3.0, 2003, The Standish Group: West Yarmouth, 
MA. 

6. Doloi, H.K., Understanding stakeholders' 
perspective of cost estimation in project 
management. International Journal of Project 
Management, 2011. 29(5): p. 622-636. 

7. Jørgensen, M. and K. Moløkken-Østvold, How 
large are software cost overruns? A review of the 
1994 CHAOS report. Information and Software 
Technology, 2006. 48(4): p. 297-301. 

8. Yang, D., et al. A Survey on Software Cost 
Estimation in the Chinese Software Industry. in 
ACM/IEEE International Sympsoium on Empirical 
Software Engineering and Measurement. 2008. 
Kaiserslautern, GERMANY: Assoc Computing 
Machinery. 

9. Moløkken-Østvold, K., et al. A survey on software 
estimation in the Norwegian industry. in 10th 
International Symposium on Software Metrics. 
2004. Chicago, IL: IEEE Computer Society. 

10. Brooks, F.P., The mythical man-month: Essays on 
Software Engineering1975, Reading, Mass.: 
Addison-Wesley. XI, 195 s. : ill. 

11. Nan, N. and D.E. Harter, Impact of Budget and 
Schedule Pressure on Software Development Cycle 
Time and Effort. IEEE Transactions on Software 
Engineering, 2009. 35(5): p. 624-637. 

12. Westland, J.C., The cost behavior of software. 
Decision Support Systems, 2004. 37: p. 229-238. 

13. Boehm, B.W., Verifying and validating software 
requirements and design specifications. IEEE 
Software, 1984. 1(1): p. 75-88. 

14. The Economic Impacts of Inadequate Infrastructure 
for Software Testing, 2002, National Institute of 
Standards and Technology. 

15. Sackman, H., W.J. Erikson, and E.E. Grant, 
Exploratory Experimental Studies Comparing 
Online and Offline Programming Performance. 
Communications of the ACM, 1968. 11(1): p. 3-11. 

 


