

Abstract— The software engineering discipline contains

numerous myths and over-simplifications. Some of them may
be harmless, but others may hamper evidence-based practices
and contribute to a fashion- and myth-based software
engineering discipline. In this article we give examples of
software engineering myths and over-simplifications and
discuss how they are created and spread. One essential
mechanism of the creation and spread of myths and
over-simplifications are, we argue, people’s tendency towards
searching for confirming and neglecting disconfirming
evidence. We report from a study examining this tendency. The
study demonstrated that the developers who believed in a
positive effect of agile methods tended to interpret randomly
generated (neutral) project data as evidence confirming the
benefit of agile methods. For the purpose of supporting
evidence-based practice and avoiding unwanted influence from
myths and over-simplifications, we provide a checklist to be
used to evaluate the validity of software engineering claims.

Index Terms—Confirmation bias, evidence-based software

engineering, myths, over-simplifications.

I. INTRODUCTION

Important decisions and judgments in software
engineering should be based on relevant evidence, collected
from practice and research studies, not on myths,
over-simplifications or irrelevant evidence. A necessary
condition for the software engineering discipline to become
more evidence-based, which is the goal of this paper, is that
software professionals and researchers improve their ability
to evaluate when claims are valid and relevant and when
they are based on myths or over-simplifications [1].

Section II provides a selection of myths and
over-simplifications currently present in the software
engineering discipline. The main purpose of this section is
to motivate the need for more evidence-based practice in
software engineering and to illustrate the main mechanisms
leading to the creation and spread of myths and
over-simplifications. Section III reports results from an
experiment that demonstrates the effect of one of the
mechanisms leading to a belief in myths and
over-simplifications, i.e., the confirmation bias mechanism.
Section IV suggests a checklist for the purpose of evaluating
the validity of software engineering claims.

Manuscript submitted August 15, 2012.
Magne Jørgensen is with Simula Research Laboratory, Oslo, Norway

(e-mail: magnej@simula.no)

II. EXAMPLES OF MYTHS AND OVER-SIMPLIFICATIONS

Myths and over-simplifications may be defined as
incorrect claims. While a myth is plain wrong, an
over-simplification may have contexts where it is true or at
least contexts where its intended message can be useful.
With increased vagueness a myth or over-simplification may
turn into a non-falsifiable claim. In this section we focus on
presenting and discussing myths and over-simplification, but
we will also briefly illustrate and discuss non-falsifiable
claims.

A. Most of Our Communication is Non-verbal
It is frequently claimed that most of our communication is

non-verbal, i.e., body language and voice. A variant of the
claim is the seemingly more precise claim that as much as
93% of our communication is non-verbal, see for example
[2, page 53]. A high importance of non-verbal
communication may, for example, motivate training in
non-verbal communications, extreme awareness of
non-verbal cues and to argue in favour of having more
expensive, but richer in terms of communication,
face-to-face project meetings instead of communicating
through emails.

Most people may have experienced situations where the
non-verbal communication was essential for the final
outcome. Our ability to recall such confirming situations,
together with our tendency towards not searching for
situations where the verbal communication clearly was the
most important may be sufficient to make many accepting
the claim [3]. Few people, as far as we have experienced,
ask the following critical questions about the claim: What is
the precise meaning of the claim? How strong is the
evidence in support of it?

A precise meaning of the claim requires, amongst others,
that we have the same measure for the amount of non-verbal
and verbal communication. Otherwise, we would not be able
to claim that most communication is non-verbal. If do not
have this common measure, which in many situations will
be hard, the claim makes little meaning. Studies comparing
verbal and non-verbal communication, however, typically
compare how much each communication source dominates a
particular type of outcome in a particular context. Already at
this stage, we should start doubting the meaningfulness of
the claim in its typical format. If we cannot compare the
amount of verbal and non-verbal communication, what is
then the meaning of “most communication is non-verbal”?

In many situations with myths and over-simplifications
there will be no reference to evidence. In this case, however,
there seems to be an agreement about that the main source
of evidence, at least for the 93% claim, is a paper from 1967
written by Mehrabian and Wiener [4]. The design of this
study was as follows: The participants hear a person saying

Myths and Over-simplifications in Software Engineering

Magne Jørgensen

the positive words “honey”, “thanks” and “dear”, the neutral
words “maybe”, “really”, “oh” and the negative words
“don’t”, “brute” and “terrible”. All these words are spoken
in a positive, neutral and negative voice and the participants
are asked to assess “… the feelings of a speaker towards the
person whom she is addressing”. The authors found, not
surprisingly, that if a person said, for example, “thanks” in a
negative voice to another person, most observers would not
emphasise the positive content of the word, but instead the
negative voice, when assessing to what extent the speaker
liked the other person. This study, together with a follow-up
study with facial expression added, also published in 1967,
are the sources of the claim that 93% of communication is
non-verbal. We doubt, however, that anybody who had
actually read and understood the design of the original
studies would believe that we could use this study as
evidence in support of the general claim that 93% (or most
of) of communication is non-verbal.

B. 189% Average Cost Overrun
The perhaps most cited report on software cost overruns

is the Standish Group’s Chaos Report from 1994, which
claims that the average cost overrun in software projects was
as high as 189% [5], i.e., the actual cost was on average
almost three times higher than the estimated cost! Although
from 1994, the study is even today used to document a
software project crisis, see for example [6]. Interestingly, the
tabular data presented in their report is consistent with an
average cost overrun of about 89% (or 189% of the original
cost estimate) and it seems as if the Standish Group has
confused not only the readers, but also themselves, by
mixing “189% of original cost overrun” with “189% cost
overrun”. An 89% cost overrun is, however, also substantial
and indicates a software crisis, given that we can trust the
result.

The evidence to support the claim of 189% cost overrun
is based on a survey of projects from as many as 365
software companies. A high number of respondents is,
however, not automatically leading to high reliability of
results. An examination of the study design shows that the
Standish Group did explicitly ask for non-representative
projects (page 13 of their report): “We then called and
mailed a number of confidential surveys to a random sample
of top IT executives, asking them to share failure stories.”
Clearly, a collection of failure stories cannot be used as a
representative sample of the software industry’s projects.
The 189% cost overrun result, consequently, only tell
something about the average cost overrun of the projects
with large cost overruns, which is far from how it has been
and still is presented. More about the problems with the
Standish Group’s study design in [7].

It may be useful to reflect on why so many software
engineering researchers and professionals accepted and
spread the Standish Group-created myth of extremely high
average cost overrun in software projects. Researchers and
software professionals could have referred to one of the
many other surveys on cost overruns, e.g., [8, 9], instead of
the results of the Standish Group report. The other surveys
of software cost overruns show, quite consistently, average
cost overruns in the interval 20-40%. A likely reason for the
selection of the much higher cost overrun values of the

Standish Group is that the extreme data were more useful
for the purpose of selling advisory work and demonstrating
the importance of more research on cost estimation. The
willingness and ability to search for disconfirming evidence
and be critical towards a claim may decrease with increased
benefit from the claim being true.

C. Brook’s Law
Brook’s law says that: “Adding manpower to a late

software project makes it later” [10]. Brooks himself
describe his own statement as an outrageous
over-simplification, but this has not stopped other people
from interpreting “Brook’s law” as an actual law, or at least
a rule with very few exceptions. It is, for example, used as
support for the a context-independent trade off-function
between time and effort in cost estimation tools [11]. While
it may be true that adding inexperienced people to a late
project usually makes it later, there are, as far as we know,
no evidence documenting that adding skilled, experienced
people to a late project in general makes the project later.
Adding people to a late project is what the software industry
does, as far as we have experienced, and what seems to be a
fully rational behaviour in many contexts.

What makes the use of Brook’s law an interesting
example of over-simplification is, we think, that it can be
used positively to remind project managers and leaders that
adding manpower in software development does not
automatically lead to reduced time to completion of the
project. People new to the project may have to be trained
and they are likely to lead to an increase proportion of effort
spent on project member communication. The problem
occurs when we do not acknowledge that Brook’s law is an
outrageous over-simplification, and use it to argue against
rational behaviour to rescue challenged projects. Of the
mechanism leading to the spread of over-simplifications,
such as Brook’s law, may be our wish for simple rules, i.e.,
rules that require us to reflect less on the context and do less
hard thinking.

D. Factor Ten Increase in Error Correction Cost
Some people claim that there is an increase of a factor of

about ten to correct error effort per phase, see for example
the claims by the XP-expert Alistair Cockburn
xprogramming.com/articles/cost_of_change. An error that
costs one hour to correct in the requirement phase would
according to this claim typically take about 10 hours to
correct in the design, 100 hours in the programming and
1000 hours in the test phase. There are less extreme claims,
e.g., the claim that the correction cost is higher (perhaps
with a factor less than ten) the later the error is detected
[12]. The claim of increasing cost is frequently used to argue
that it is always beneficial to detect errors as early as
possible, see for example
hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/209/error.htm.

While we were unable to find any empirical evidence
documenting the factor ten increase in correction cost, there
are several studies that find that it takes on average more
effort to correct errors detected in later phases, see for
example [13]. So what is the problem with the claim?

The claim is, we argue, an over-simplification of the
research results. The studies, for practical reasons, observe

the average cost of error correction in the phase where the
error was actually detected. The studies do, however, not
say anything about how much these errors would have cost
to identify and remove in an earlier phase. Removal of the
last requirement and design errors, for example, is likely to
cost very much more than removal of the average
requirement and design errors. In agile development the
insight of increased marginal cost of detecting and removing
requirement errors in the requirement phase has led to an
approach where it is planned with frequent correction of the
requirement specification, instead of trying to remove all of
them before starting the design phase. If it always were
beneficial to remove errors in the phase where they are
introduced, especially given a factor ten increase in cost per
phase, agile development would probably be very
inefficient.

An example of a misuse of this over-simplification can be
found in the perhaps most quoted report on the benefit of
better testing infrastructure, i.e., the NIST report on “The
economic impacts of inadequate infrastructure for software
testing” [14]. This study calculates a very high benefit from
improved testing infrastructure (22.2 – 59.5 billion USD)
and is, not surprisingly, used by many researchers and
advisors to strengthen the need for research funding on
testing and motivate the need for advisory services. The
report states (page 5-4) “… regardless of when an error is
introduced it is always more costly to fix it downstream in
the development process.” An assumption of no added error
detection cost and always decreasing correction cost when
detecting more errors in the phases where they are
introduced, creates, not surprisingly, great savings from
better testing infrastructure. The assumption is, as argued
earlier, not supported with evidence, and, likely to be
incorrect.

The claim of increasing cost of correcting errors in later
phases has, similarly to Brook’s law, a core of essential
truth. A brief question to the client to clarify a requirement
may cost a few minutes of work, while the discovery of a
requirement error related to misinterpreting a requirement
may cost many work-hours to correct in the testing phase.
The over-simplification does however potentially also make
harm since it removes the focus from the more precise and
more essential questions: How much and what kind of early
error detection and removal is cost-efficient for a particular
context (type of system, development method, complexity of
development, stability of requirements)? As with Brook’s
law we have the desire for simple rules. Unfortunately this
may frequently not be consistent with a complex software
engineering world full of context-dependent insights.

E. 45% of Features Never Used
The Standish Group claimed, in a presentation at the

conference XP 2002, that 45% of the features of software
applications were never used, when developed by
“traditional” (waterfall) development teams (no official
report exists, as far as we know). The claim has been used
extensively to argue against the use of “traditional”
development and to support a transition towards more use of
agile development teams, see for example
thecriticalpath.info/2011/07/07/waste-in-software-projects/.
Agile development methods embrace frequent update of the

requirement specification based on feedback and learning
during the project to avoid delivery of useless, originally
specified features.

There are several reasons not to trust the finding by the
Standish Group:

i) The study design is not publicly available. We were for
example unable to find out how and who they asked about
the information. In order to trust the results, the respondents
of the survey by the Standish Group should be well
informed about previous, current and future use of the
application for all users. Neither the developers nor single
users are typically that well informed.

ii) The claim is difficult to interpret. Those who use the
claim to promote agile methods typically use it to mean that
45% of the features has, for the average system, never been
used by anybody. This would be a chocking result
suggesting that something is very wrong with how we
develop software, i.e., a software crisis motivating a change
to new development methods, while the claim that each
individual user on average use only 45% of the functionality
would perhaps not be surprising or bad at all. The spread of
the undocumented, probably incorrect claim seems to be
supported by a benefit from it being true among agile
method supporters.

F. Productivity Ratio of 1:10
It is sometimes claimed that the productivity ratio

between the least and the most productive programmer is
about 1:10 (or some other ratio). The factor 1:10 may have
its origin in a study from 1968 [15], which states that:
“These studies revealed large individual differences
between high and low performers, often by an order of
magnitude.”

It may be debated to what extent the claim of factor ten is
a myth, an over-simplification or simply a meaningless
statement. It is easy to see that you can get any productivity
difference number out of empirical studies comparing
programmers. The ratio between the least and the most
productive programmer is for example likely to increase
with higher number of programmers and with more complex
tasks. If a task is complex enough, the least skilled
developers may not be able to complete it (undefined
productivity) or complete it incorrectly so that other
programmers has to correct it (possibly negative
productivity). For a good discussion of this claim, see
forums.construx.com/blogs/stevemcc/archive/2008/03/27/pr
oductivity-variations-among-software-developers-and-teams
-the-origin-of-quot-10x-quot.aspx

As with several of the other claims, the intention of this
claim is likely to be good. On the other hand, to believe in a
fixed, task-independent, proportion between the best and the
worst may be counter-productive and, for example, lead to
under-estimation of the performance difference on really
complex tasks. Our quest for simple rules may be
understandable, but also in this case the context matters and
productivity ratios without knowing how many developers
who were included in the study and the complexity of the
task is not very informative.

G. Non-falsifiable Claims
Most software engineering claims with high impact on

practice may neither be myths or over-simplifications, but
rather belong to the category of non-falsifiable claims.
Non-falsifiable claims have many similarities with myths
and over-simplifications, especially when it comes to the
type of control questions useful to evaluate their validity.

One example of a non-falsifiable claim, possibly with
high impact on practice (formulated as a value in the agile
development manifesto) is the following: “… we have come
to value … working software over comprehensive
documentation.” This value, which implicitly is a claim
about what is a more efficient work process, may have
contributed to less effort spent on documentation in agile
than in most other types of software projects. The problem
with the claim is that it falls into one out of the following
two categories: i) The category of obviously correct claims,
i.e., who would not rather have software that works (without
comprehensive documentation) than comprehensive
documentation (without software that works)? ii) The
category of non-falsifiable claims, i.e., if the term
“comprehensive documentation” is interpreted as inefficient
or too extensive documentation, it will not be possible to
falsify the validity of the claim. If a project benefit from
some documentation, it could easily be claimed that this
documentation is not what is meant by “comprehensive
documentation” and do not falsify it.

H. Mechanisms
Summarized, we find that central mechanisms for the

creation and spread of myths and over-simplifications
include:
• Confirmation bias, i.e., we see patterns that are not there
if we expect or want to see them (“we see it, when we
believe it”)
• Poor studies, e.g., use of non-representative samples
• Misunderstood or over-generalized research results
• Usefulness bias, i.e., we benefit from a claim being true
and are for this reason less motivated check its validity
properly
• Insufficient check of the validity, scope and robustness of
the evidence, e.g., not reading the original study leading to
the claim
• Poor precision level of claims, which makes it easier to
recall confirming evidence and more difficult to falsify
• A tendency towards interpreting a claim with the
intention to believe rather than disbelieve it
• Desire for simple, deterministic relationship
• Belief in authorities
• Repetitions, i.e., the more frequently a claim is repeated,
the more we believe in it, even when all claims are based on
the same, perhaps misunderstood, source of evidence.

III. A CONFIRMATION BIAS EXPERIMENT

To illustrate the effect of confirmation bias, i.e., the effect
of “we see it, when we believe it”, we conducted an
experiment with software professionals. The participants
consisted of 50 software developers employed in a company
that had recently started using agile methods in many of
their software development projects.

A. Design
The experiment consisted of the following three steps:

i) Collection of the developers’ beliefs in the effect of agile
methods compared to “traditional” (waterfall-based)
methods.
ii) Generation of ten different data sets. The data were
generated randomly, i.e., there was no systematic difference
in performance, measured as productivity and user
satisfaction, between the projects using agile and traditional
development methods. Each data set contained outcome data
of twenty projects, ten of them using agile and ten of them
traditional development methods.
iii) Provision of one, randomly allocated, data set to each
of the developers with the request: “Assume that this [the
data set] is the only information you have about the use of
agile and traditional development methods in the company
and that you are asked to interpret the data. The
organization would like to know what the data shows related
to whether they have benefited from use of agile methods or
not.” We emphasized in the instructions that the developers
were supposed to interpret the data alone, i.e., “what the
data shows”, and not what they believed would be the case
in general or combine it with their own experience. We told
the participants that the data was from another, i.e., not their
own, company. The developers’ responses should be based
on the selection of a number between 1 (agree strongly) and
5 (disagree strongly), reflecting how much they agreed with
the statement “I believe that the data set indicates that the
company has benefited from the use of agile methods.” A
neutral answer (“no difference”/”don’t know”) would give
the response 3.

B. Results
The measurement of the developers’ belief about the

benefits of agile methods, which was conducted before they
were exposed to the data sets, gave that 84% of them
believed that agile development methods in general had a
positive effect on productivity and 66% believed in a
positive effect on user satisfaction. There were a few
developers without a strong opinion, i.e., they used the
“don’t know” option on the effect with respect to effect on
productivity (10%) or on user satisfaction (26%). Even
fewer developers believed in a negative effect of agile
methods on either productivity (6%) or user satisfaction
(8%). None of the developers believed in a negative effect
on both productivity and user satisfaction. In total this
shows a strong tendency towards believing in the benefits of
agile methods among the developers. We categorized the 18
developers who stated that they had no opinion (don’t know)
or believed that there was a negative effect on either
productivity or user satisfaction, as “undecided”. The other
developers were categorized as “believe in agile”.

A random generation of project data with only twenty
data points does not guarantee that there are no patters in
favour of either agile or traditional development in some of
the data sets. An examination of the randomly generated
data set gave that the five of the data sets were close to
neutral on both productivity and user satisfaction. One data
set was in favour of agile development and one data set was
in favour of traditional development for both productivity
and user satisfaction. The remaining three data sets were

mixed, i.e., in favour of one development approach for
productivity and in favour of the other approach for user
satisfaction. The average values of productivity and user
satisfaction when joining all ten data sets were not
significantly different for the two development methods.

If the software developers’, in general, positive attitude
towards agile methods had no impact on the responses, we
would expect an average response of about 3 (“no
difference”/”don’t know”). What we found, however, was a
median response of 2 (“agree”). The effect of the previous
belief on data interpretation, i.e., the confirmation bias
effect, is further strengthened when comparing the responses
of the developers with positive view on agile methods with
those of the undecided. A chi-square analysis of the variable
PreviousBelief (“undecided” vs “positive to agile”) and
DataInterpretation (“agree strongly” + “agree” vs “disagree”
+ “disagree strongly”) gives that independence between
previous belief and data interpretation is highly unlikely
(p=0.1). Among the developers who were positive to agile
development, 60% interpreted the data set to show a positive
effect, 22% a negative effect and 20% found no effect of
agile methods. Among the developers who were undecided
towards the benefits of agile development, 40% interpreted
the data set to show a positive effect, 40% a negative effect
and 20% found no effect. In short, those undecided about
the benefits of agile development were, on average,
unbiased in their data interpretation, while those with a
previous positive attitude towards agile methods interpreted
the data sets to show what they might have expected to see
in the data sets, i.e., a positive effect of agile methods.

In real life contexts, there will typically be more than two
relevant variables and more subjectivity in the interpretation
than in our experiment. This increase in interpretation
complexity and subjectivity is, we believe, likely to increase
the strength of a confirmation bias in real life contexts. It is
therefore, we believe, remarkable that even in our simple
experimental situation, with interpretation of only two,
objectively measured variables, there are more than enough
opportunities to get affected by previous belief.

IV. HOW TO AVOID BEING AFFECTED BY MYTHS AND
OVER-SIMPLIFICATIONS

Many myths and over-simplifications may, as partly
illustrated by our discussion in Section II, be disclosed by
using the following set of control questions:
1. What does the claim means? When is it supposed to be

valid? Has it any precise meaning? Is it possible to
falsify it?

2. Before looking at the evidence related to a claim, ask
yourself what you would expect of supporting evidence
to believe in it. Is this evidence, or equally convincing
evidence, present?

3. Do you have a previously formed opinion about the
validity of the claim? If so, be especially aware of your
tendency to accept poor evidence and argumentation.

4. Who makes the claim? Do you accept it because of the
authority claiming proposing it, or based on the validity
of the supporting evidence?

5. What is the quality of the evidence? Is the evidence
neutral, as opposed to collected by people with vested
interests in a particular outcome, and relevant? Is there

any evidence at all? Search for confirming and
disconfirming evidence. The evidence should be as
neutral as possible. If possible identify and understand
the original source, e.g., study or practice-based
experience, of the evidence.

6. What does the totality of evidence say? How strong is it
and in which contexts is it valid?

V. REFERENCES:
1. Dybå, T., B. Kitchenham, and M. Jørgensen,

Evidence-based software engineering for
practitioners. IEEE Software, 2005(Jan-Feb): p.
58-65.

2. Borg, J., Persuasion: The art of influencing
people2008: Financial Times Press.

3. Nickerson, R.S., Confirmation bias: A ubiquitous
phenomenon in many guises. Review of General
Psychology, 1998. 2(2): p. 175-220.

4. Mehrabian, A. and W. Morton, Decoding of
inconsistent communication. Journal of Personality
and Social Psychology, 1967. 6(1): p. 109-114.

5. The Standish Group: Chaos Chronicles Version
3.0, 2003, The Standish Group: West Yarmouth,
MA.

6. Doloi, H.K., Understanding stakeholders'
perspective of cost estimation in project
management. International Journal of Project
Management, 2011. 29(5): p. 622-636.

7. Jørgensen, M. and K. Moløkken-Østvold, How
large are software cost overruns? A review of the
1994 CHAOS report. Information and Software
Technology, 2006. 48(4): p. 297-301.

8. Yang, D., et al. A Survey on Software Cost
Estimation in the Chinese Software Industry. in
ACM/IEEE International Sympsoium on Empirical
Software Engineering and Measurement. 2008.
Kaiserslautern, GERMANY: Assoc Computing
Machinery.

9. Moløkken-Østvold, K., et al. A survey on software
estimation in the Norwegian industry. in 10th
International Symposium on Software Metrics.
2004. Chicago, IL: IEEE Computer Society.

10. Brooks, F.P., The mythical man-month: Essays on
Software Engineering1975, Reading, Mass.:
Addison-Wesley. XI, 195 s. : ill.

11. Nan, N. and D.E. Harter, Impact of Budget and
Schedule Pressure on Software Development Cycle
Time and Effort. IEEE Transactions on Software
Engineering, 2009. 35(5): p. 624-637.

12. Westland, J.C., The cost behavior of software.
Decision Support Systems, 2004. 37: p. 229-238.

13. Boehm, B.W., Verifying and validating software
requirements and design specifications. IEEE
Software, 1984. 1(1): p. 75-88.

14. The Economic Impacts of Inadequate Infrastructure
for Software Testing, 2002, National Institute of
Standards and Technology.

15. Sackman, H., W.J. Erikson, and E.E. Grant,
Exploratory Experimental Studies Comparing
Online and Offline Programming Performance.
Communications of the ACM, 1968. 11(1): p. 3-11.

