
Assuring Software Quality by Code Smell Detection
(Invited talk, Most Influential Paper Award)

Eva van Emden
Vancouver Editor

Vancouver, BC, Canada
Email: eva@alumni.uvic.ca

Leon Moonen∗
Simula Research Laboratory

Lysaker, Norway
Email: leon.moonen@computer.org

Abstract—In this retrospective we will review the paper “Java
Quality Assurance by Detecting Code Smells” that was published
ten years ago at WCRE. The work presents an approach for the
automatic detection and visualization of code smells and discusses
how this approach could be used in the design of a software
inspection tool. The feasibility of the proposed approach was
illustrated with the development of jCOSMO, a prototype code
smell browser that detects and visualizes code smells in JAVA
source code. It was the first tool to automatically detect code
smells in source code, and we demonstrated the application of
this tool in an industrial quality assessment case study.

In addition to reviewing the WCRE 2002 work, we will discuss
subsequent developments in this area by looking at a selection of
papers that were published in its wake. In particular, we will have
a look at recent related work in which we empirically investigated
the relation between code smells and software maintainability in
a longitudinal study where professional developers were observed
while maintaining four different software systems that exhibited
known code smells. We conclude with a discussion of the lessons
learned and opportunities for further research.

Index Terms—software inspection, quality assurance, Java,
refactoring, code smells.

SUMMARY

Software inspection is a known technique for improving
software quality that involves carefully examining the code,
design, and documentation of a system to check for aspects
that are known to be potentially problematic based on past
experience. Given that the cost of repairing defects is much
lower at the beginning of the development cycle, one of
the main advantages of software inspection is that it does
not require execution, thereby enabling early identification of
potential problems, when it’s still cheap to fix them.

Traditional software inspection is a systematic and disci-
plined process that involves labor-intensive manual phases.
The strict requirements often backfire, resulting in ill-
performed or abandoned inspection processes. Our paper was
part of a body of work that aimed to alleviate these challenges
by automating the software inspection process using tools that
can detect potential issues via source code analysis. Automatic
inspection of code quality and conformance to coding stan-
dards allows early and repeated detection of signs of project
deterioration, which in turn enables early corrections, lowers
the development costs and increases the chances for success.

In 2002, most tools that supported automatic code inspection
took a technical perspective in which code inspections boiled
down to bug-chasing, with tools looking for problems with

pointer arithmetic, memory (de)allocation, null references,
array bounds errors, etc. Our work took a completely different
perspective: inspired by the metaphor of “code smells” intro-
duced by Beck and Fowler, we reviewed code for problems
that are associated with bad program design and bad pro-
gramming practices. Code smells were originally introduced
to describe characteristics of code that indicate that it can be
refactored. “Refactoring is the process of changing a software
system in such a way that it does not alter the external
behavior of the code yet improves its internal structure“.
Refactoring tidies up source code and reduces its complexity,
so that the system is easier to understand and maintain.

Our WCRE 2002 paper did not use code smells to guide
refactoring, but instead was the first to investigate feasibility
of automatic code smell detection via source code analysis,
and examined how such automatic code smell detection could
contribute to automatic software inspection by assessing soft-
ware quality attributes such as understandability and main-
tainability. The retrospective will discuss these and subsequent
developments in the area of code smell detection by looking
at a selection of papers that were published in its wake. In
particular, we will have a look at recent related work in which
we empirically investigated the relation between code smells
and software maintainability in a longitudinal study where
professional developers were observed while maintaining four
different software systems that exhibited known code smells.
We conclude with a discussion of the lessons learned and an
overview of opportunities for further research in this field.

Acknowledgment: The research described in the WCRE 2002 pa-
per was conducted at Centrum voor Wiskunde en Informatica (CWI),
the Netherlands. Eva van Emden was a visiting research assistant
from the Rigi Group, Computer Science Department, University of
Victoria, Victoria, BC, Canada.

About the authors: Eva van Emden received her MSc in Computer
Science from University of Victoria, Canada. She is currently a free-
lance editor with a special interest in editing academic and popular
science writing. Eva can be found online at vancouvereditor.com.

Leon Moonen is a senior research scientist at Simula Research
Laboratory in Norway. His research is aimed at creating better tools
for the exploration, assessment and evolution of large industrial soft-
ware systems. This combines several subfields of software engineer-
ing, such as program comprehension, reverse engineering, program
analysis, software visualization and empirical software engineering.
Leon’s work can be found online at leonmoonen.com.

∗Corresponding author.

Java Quality Assurance by Detecting Code Smells§

Eva van Emden�

CWI
The Netherlands

http://www.cwi.nl/�eva/
eva@cwi.nl

Leon Moonen‡

CWI
The Netherlands

http://www.cwi.nl/�leon/
leon@cwi.nl

Abstract

Software inspection is a known technique for improving soft-
ware quality. It involves carefully examining the code, the
design, and the documentation of software and checking
these for aspects that are known to be potentially problem-
atic based on past experience.

Code smells are a metaphor to describe patterns that are
generally associated with bad design and bad programming
practices. Originally, code smells are used to find the places
in software that could benefit from refactoring. In this paper,
we investigate how the quality of code can be automatically
assessed by checking for the presence of code smells and how
this approach can contribute to automatic code inspection.

We present an approach for the automatic detection and
visualization of code smells and discuss how this approach
can be used in the design of a software inspection tool. We il-
lustrate the feasibility of our approach with the development
of jCOSMO, a prototype code smell browser that detects and
visualizes code smells in JAVA source code. Finally, we show
how this tool was applied in a case study.

Keywords: software inspection, quality assurance, Java,
refactoring, code smells.

1. Introduction

Software inspection is a known technique for improving soft-
ware quality. It was first introduced in 1976 by Fagan [10]
and has since been reported on by numerous others, for ex-
ample [18, 13]. Software inspection involves carefully ex-
amining the code, the design, and the documentation of soft-
ware and checking these for aspects that are known to be
potentially problematic based on past experience.

It is generally accepted that the cost of repairing a bug is
much lower when that bug is found early in the development
cycle. One of the advantages of software inspection is that
the software is analysed before it is tested. Thus, potential

� Visiting research assistant from the Rigi Group, Computer Science
Department, University of Victoria, Victoria, B.C., Canada.

‡ Corresponding author.

problems are identified in the beginning of the cycle so that
they can be solved early, when it’s still cheap to fix them.

Traditionally, software inspection is a formal process that
involves labor-intensive manual analysis techniques such as
formal code reviews and structured walk-throughs. Inspec-
tion is a systematic and disciplined process that is guided by
well-defined rules. These strict requirements often backfire,
resulting in code inspections that are not performed well or
sometimes even not performed at all.

These problems are addressed by tools that automate the
software inspection process. We distinguish two approaches:

1. Tools that automate the inspection process, making it
easier to follow the guidelines and record the results.

2. Tools that perform automatic code inspection, relieving
the programmers of the manual inspection burden.

We concentrate on the second type: tools that perform auto-
matic inspection. Such tools are interesting since automatic
inspection and reporting on the code’s quality and confor-
mance to coding standards allows early (and repeated) de-
tection of signs of project deterioration. Early feedback en-
ables early corrections, thereby lowering the development
costs and increasing the chances for success.

1.1. Code smells

The existing tools that support automatic code inspection (for
example, the well-known C analyzer LINT [15]) tend to fo-
cus on improving code quality from a technical perspective.
The fewer bugs (or defects) there are present in a piece of
code, the higher the quality of that code. From this perspec-
tive, code inspection boils down to low-level bug-chasing
and we see this reflected in the tools which typically look
for problems with pointer arithmetic, memory (de)allocation,
null references, array bounds errors, etc.

In this paper, we will focus on a different aspect of code
quality: Inspired by the metaphor of “code smells” intro-
duced in the refactoring book [12], we review the code for
problems that are generally associated with bad program

 § as published in the Proceedings of the 9th Working Conference on Reverse Engineering (WCRE), pp. 97-106, IEEE, 2002

design and bad programming practices.1

Beck and Fowler introduce the metaphor of “code smells”
to describe the patterns in code that indicate that refactoring
can be applied. “Refactoring is the process of changing a
software system in such a way that it does not alter the ex-
ternal behavior of the code yet improves its internal struc-
ture“. It improves the design of a software system after it
was written by tidying up code and reducing its complexity.
The resulting software is easier to understand and maintain.

Code smells can be used to answer the question of when
and what to refactor. The idea is not necessarily that no code
smells are permitted, but rather that code smells are hints
which tell us that refactoring may be beneficial. Some ex-
amples of code smells are: duplicated code, methods that are
too long, classes that contain too much functionality, classes
that violate data hiding or encapsulation rules or classes that
delegate the majority of their functionality to other classes.

1.2. Coding Standards

Another important code quality aspect of large scale soft-
ware development is conformance to coding standards. Cod-
ing standards ensure that everyone in the company can un-
derstand (and work with) each others’ code. If conformance
is not achieved, i.e. if the code is not written and organized
according to the programming guidelines, it becomes much
harder for a large team of programmers to develop, integrate,
and maintain a particular piece of software. This becomes
even more important in an environment where developers
are geographically distributed, as is, for example, commonly
found in open source development projects.

Unfortunately, conformance to coding standards is not al-
ways easy to achieve in practice. All developers involved
in the project have to know and appreciate the guidelines
enough to build software according to them. Experience
shows that just publishing a set of programming guidelines
is not enough. If developers do not really understand (the
ideas behind) a particular rule, feel restricted by it, or maybe
just do not believe that this rule can be useful, they are more
likely to ignore that rule during development. In other cases,
the set of guidelines may be so large that it is easy to overlook
some of them during development. When the project comes
under time constraints, these effects are often even stronger.

Consequently, overall code quality can be improved by
ensuring that the code conforms to the coding standards.
This process is supported by automatic conformance check-
ing. By allowing for the definition of additional (project spe-
cific) smells, automatic smell detection turns into a confor-
mance checking process.

In this paper, we investigate whether detection of code
1Please note that we do not regard this type of quality to be more im-

portant or better than the former. Both aspects should be considered when
trying to improve overall software quality. We decided to focus on the sec-
ond type since it is currently much less supported than the first type.

smells can contribute to automatic software inspection. Sec-
tion 2 discusses a general approach for building a software
inspection tool that is based on detection of code smells. Sec-
tion 3 introduces the case study that was used to investigate
the feasibility of the approach. Section 4 describes the im-
plementation of jCOSMO, the prototype code smell browser
that was developed in the case study. We conclude with an
evaluation of the case study, an overview of related work, and
the discussion of future work and contributions in Section 5.

2. Approach

There are a number of important questions that need to be
answered before we can automate detection of code smells
in program code and use them for software inspection: What
code smells are we going to detect? How are we going to
detect these smells? How are we going to present the results?

The remainder of this section discusses these questions
and the issues that surround them in more detail. This results
in a generic approach for building software inspection tools
that are based on code smell detection.

2.1. What smells are we going to detect?

In the refactoring book, Beck and Fowler present a list of
code smells that they use to look for refactoring potential
[12]. These smells range from simple patterns that ev-
eryone discourages, such as “code duplication” and “long
methods”, to more complex patterns that originate from ob-
ject oriented design issues, such as “parallel inheritance
hierarchies” (if you extend or change one hierarchy you
will need to do the same with the other) and “message
chains” (also known as the Law of Demeter: a client
should not navigate through the object structure, for exam-
ple, a.getThis().getThat().foo()).

Other examples of code smells are: “large class” es-
pecially w.r.t. classes with many fields, “feature envy” for
methods that access more methods and fields of another class
than of its own class, “switch statements” where inheritance
should be used for specialization, “data class” for classes that
do not contain functionality, only fields, “refused bequest”
for classes that leave many of the fields and methods they in-
herit unused, and “data clumps” for clusters of data that are
often seen together as class members or in method signatures
but are not grouped in a class.

We can make a few observations about this list that influ-
ence our design. First, such a list of code smells can never be
complete: there will always be domains and projects where a
different set of code smells should be applied. For example,
in an earlier paper, we have identified a number of smells that
can occur in unit test code and described the corresponding
refactorings to remove them [8].

Second, code smells are subjective: they are based on
opinions and experiences. Creators of a list include those

patterns that they found to be useful indicators of potentially
problematic aspects of the code. However, not all smells may
be supported by concrete evidence and some of them may be
inspired by aesthetic considerations. For example, some de-
velopers strive to minimize the use of typecasts and consider
typecasts to be a smell, while others see absolutely no harm
in typecasts and do not want to regard them as smells.

Finally, code smells are not precise: “One thing we won’t
try to do here is give precise criteria for when a refactoring is
overdue. In our experience no set of metrics rivals informed
human intuition” [12, p.75]. This is related to the subjec-
tivity of code smells. For each project, one needs to decide
what the actual parameters are: for example, which variable
naming convention are used and what is the maximum size
of classes and methods that is allowed, etc.

From these observations, we can only conclude that one
of the main design requirements for a code smell inspection
tool is that the smells should be configurable by the user. As
tool builders, we can predefine a number of smells but con-
figurability is needed to allow for: (1) definition of additional
smells, (2) removal of smells that should not be considered,
and (3) more precise definition of a smell so that its parame-
ters can be tuned.

2.2. How are we going to detect these smells?

Examination of the list of code smells shows that each of
them is characterized by a number of smell aspects that are
visible in source code entities such as packages, classes,
methods, etc. A given code smell is detected when all its
aspects are found in the code.

We distinguish two types of smell aspects: primitive smell
aspects that can be observed directly in the code, and derived
smell aspects that are inferred from other aspects. An ex-
ample of a primitive aspect is “method m contains a switch
statement”, an example of a derived aspect is “class C does
not use any methods offered by its superclasses”.

This distinction is used in the design of the smell detection
process that is separated into the following steps:

1. Find all entities of interest in the code.

2. Inspect them for primitive smell aspects.

3. Store information about entities and primitive smell as-
pects in a repository.

4. Infer derived smell aspects from the repository.

This process constructs so-called source models from the
program text. These source models are the abstraction of
a system’s source code that is needed for smell detection.
The structure of these source models is described by a meta-
model. Our meta-model was designed with analysis of JAVA

programs in mind. It contains information regarding pro-
gram entities such as packages, classes, interfaces, excep-

tions, methods, constructors, static blocks, and fields. Fur-
thermore, it describes the relations between these entities
such as composition, inheritance, interface implementation,
thrown exceptions, inner classes, method calls, field ac-
cesses, and field assignments.

Our meta-model is very similar to those used by other
JAVA analysis tools such as Shimba [20] and RevJava [11].
Furthermore, it has considerable overlap with the Famix
meta-model that was designed with generic OO reverse en-
gineering and refactoring in mind [22]. Although our current
focus is on the JAVA programming language, we feel that this
overlap indicates that it is possible to generalize our approach
to other object oriented languages.

So how do we find and inspect all entities of interest in
the code? Since the code smells are described in terms of
program patterns and not in terms of behavior patterns, dy-
namic (runtime) information is not needed for smell detec-
tion. Therefore, source models can be extracted using static
analysis of the program: First, a parser reads the source
code and produces a parse tree containing all structural in-
formation contained in the code. Second, an analyzer reads
these parse trees and traverses them according to the pro-
gram structure. During this traversal, the analyser visits all
program entities and stores their structure and relations in the
repository. When primitive smell aspects are observed, these
are also stored in the repository.

Note that is is possible to extend our approach to include
code smells that need runtime information for their detec-
tion. For this, we need to add a separate extractor that is
used to augment the source models with the necessary dy-
namic information. In general, such a “dynamic” extractor
will collect this information using source code instrumenta-
tion. In the case of JAVA analysis, an attractive alternative is
monitoring the runtime environment via its debugging inter-
face.

2.3. How are we going to present the results?

The next question we have to ask ourselves is how the smells
should be presented to the user after they have been detected.
There are several ways in which this can be done. The in-
tended use of the tool will have substantial influence on the
the type of presentation used. We distinguish three classes of
users for the detection results:

a. Programmers that use detected smells during develop-
ment or maintenance of a system to improve the code.

b. Code inspectors (or reviewers) that use detected smells
to assess the quality of the code.

c. Tools that use the detected smells to perform further
analysis or transformations on the code, for example,
software refactoring tools. Generally, these tools do not
need specific presentations, they just use the repository
content for further processing.

primitive properties
extract

artifacts
system

model
source

visualize smells
query and

artifacts
parse

derived properties
infer

program structure
extract

tree
parse

views
graph

Figure 1. Architecture of code smell browser

Note that we do not consider software integrators as a sepa-
rate class but assume that they switch between the inspector
and developer roles.

Smell presentation for programmers should be integrated
with the normal development process. This can be done
without much intrusion by treating smells similarly to com-
pilation errors and warnings. Depending on the IDE, smells
will then be shown in separate message panes or integrated
with the class browser (as for example is done with com-
piler errors in IBM’s VisualAge for Java and the new Eclipse
platform). Another possibility is building a dedicated smell
browser that can be used to explore the repository (similar
to the Windows Explorer interface). Since the main focus of
this paper is software inspection, we will not investigate this
approach any further.

Software inspectors have special presentation require-
ments for assessing the quality of (potentially large) soft-
ware systems. They need to be able to get a quick overview
of the complete system, showing if the system contains bad
smells, what parts are affected, and where the concentration
of smells is the highest.

We can support these requirements by generating graph-
ical representations of the software system, in particular by
visualizing the source model using structured graphs. The
nodes in these graphs are the program entities of the source
models (i.e., packages, classes, methods, etc.) and the edges
are the relations between program entities (i.e., composition,
inheritance, method calls, etc.). Since these nodes and edges
can be distinguished based on their types, we can represent
them using different colors and selectively hide them in var-
ious views on the graph. Graph layout algorithms can be
applied in these views to improve their comprehensibility.

There are a number of options for the visualization of
code smells in these graphs. For example, one can vary node
attributes such as color and size for the nodes that represent
code entities that possess code smells. Furthermore, code
smells can be visualized using additional nodes that are con-
nected to the entity in which they are present. It is also pos-
sible to use code smells during the computation of the graph
layout, for example, by ordering them in such a way that
nodes with the most smells come first (i.e., in the upper left
corner of the picture).

2.4. Modular architecture

As we have seen, it is important that our code smell inspec-
tion tool is easily extendable because new smells are likely
to be added during its lifetime. In particular, it should be
possible for users to add their own code smells. We can sup-
port this in our design by using a modular architecture that
encapsulates the detection of primitive smell aspects and in-
ference of derived smell aspects in separate units. With such
an architecture, addition of new code smells is as simple as
extending the set of detectors or inference rules.

The presentation side of our tool should also be robust
against addition of new smells. This has two aspects: (1) ad-
dition of new smells should not break existing visualizations,
and (2) preferably, we want new smells to be included in the
main views without extra work.

An overview of the architecture is shown in Figure 1. In
this figure, the boxes depict inputs and outputs, the ellipses
depict processing. Double lined shapes are used to indicate
that this item can occur a number of times (for example, there
exist several extractors for the different primitive smell as-
pects but only one extractor for the program structure).

3. Case Study

To investigate the feasibility of the described approach, we
have performed a case study in which we developed a pro-
totype software inspection tool that is based on code smell
detection and applied it on a JAVA software system.

The system analysed, called CHARTOON, is a tool for de-
veloping 2 1=2 dimensional animations of facial expressions
[19]. It was originally developed as a research prototype at
the CWI under the direction of Paul ten Hagen. The research
group has formed a spinoff company and is in the process of
reviewing their code intensively in preparation for releasing
it as a commercial product.

One of the principal software engineers involved in this
task consulted with us to see whether we could provide tool
support for refactoring and quality assurance. Based on our
discussions and guided by the company’s coding standards,
we have added detection of some specific code smells to our
prototype. The remainder of this section discusses these ad-
ditional smells in more detail.

3.1. Instanceof as Code Smell

In JAVA, the instanceof operator is used to check that an
object is an instance of a given class or implements a certain
interface. These are considered code smell aspects because
a concentration of instanceof operators in the same block
of code may indicate a place where the introduction of an
inheritance hierarchy or the use of method overloading might
be a better solution.

We have found two typical patterns in which this occurs:
The first is characterized by a sequence of conditional state-
ments that test an object for its type. When the type is found,
the object is cast to that type and a method is called. This can
be refactored by introducing a common interface that defines
the method and lets the runtime environment call the appro-
priate method using dynamic method dispatch (also known
as late binding).

The second pattern is characterized by a method that takes
a variable of the type Object (the supertype of all JAVA

classes) as a parameter and has a body which contains a se-
quence of conditional statements that perform different ac-
tions depending on the object’s type. In this case the original
method can be broken up into a series of overloaded meth-
ods, each taking one of the types tested for before as a pa-
rameter. This removes the instanceof statements, making the
code more modular and easier to understand.

3.2. Typecast as Code Smell

Another code smell that was added for the case study in-
volves typecasts. Typecasts are used to explicitly convert an
object from one class type into another. Many people con-
sider typecasts to be problematic since it is possible to write
illegal casting instructions in the source code which cannot
be detected during compilation but result in runtime errors.

One typical pattern where typecasts create this smell can
be observed when objects are stored in one of the container
classes from the JAVA API. Because these classes are written
as generic containers for objects of any type, items are au-
tomatically upcasted to their generic supertype Object when
they are put in a container. When the programmer retrieves
items from a container, they have to be explicitly downcasted
to whatever type they used to be. However, since this type is
not always known (and storage methods accept all types of
objects), it is possible to perform illegal casting which results
in a runtime error.

This pattern can be remediated by creating a wrapper
around the container that is specific to the type that the con-
tainer is going to hold. This way, casts are hidden in the
wrapper class, and static type checking makes sure that the
correct type is put into the container. In addition, the wrapper
class can get a descriptive name that makes it clear what ob-
jects are contained. This is especially useful if the container
is passed around in the program.

4. Prototype Implementation

To illustrate the approach described in Section 2, we have
implemented jCOSMO, a prototype code smell browser. This
tool was created following the architecture described in Fig-
ure 1. It consists of two main phases: the code smell ex-
traction and the visualization. During extraction, the source
code is parsed and a source model is generated that describes
program structure and code smells. This source model is read
during visualization to generate different views on the source
code and its smells.

4.1. Extraction

The extraction of program structure and primitive smell
aspects was implemented using the ASF+SDF META-
ENVIRONMENT [4], an environment for developing lan-
guage centered tooling that was developed at the CWI (Cen-
tre for Mathematics and Computer Science) in the Nether-
lands under the direction of Paul Klint. This environment
supports the generation of parsers, syntax directed editors
and language processing tools such as interpreters, type-
checkers and source-to-source transformations. It takes two
types of input: (1) language syntax definitions written in the
formalism SDF [25] and (2) language processing definitions
written in the term rewriting language ASF [3].

The parser generator produces generalized LR (GLR)
parsers. Generalized parsing allows definition of the com-
plete class of context-free grammars instead of restricting
it to a non-ambiguous subclass such as LL(k), LR(k) or
LALR(1), which is common to most other parser genera-
tors [24]. This allows for a more natural definition of the in-
tended syntax because a grammar developer no longer needs
to encode it in a restricted subclass. Moreover, since the full
class of context-free grammars is closed under composition
(unlike restricted subclasses), generalized parsing allows for
better modularity and syntax reuse. For more information on
SDF, we refer to [25].

Programming in ASF is done in a functional fashion by
means of term rewriting: rules that describe how a given term
can be translated into another term. These rewrite rules can
be defined using pattern matching on concrete syntax defined
in the SDF grammar. The patterns can contain variables that
are bound during matching and can be reused to build the
reduct. The use of concrete syntax has the advantage that the
extractor writer does not have to learn a new language for
processing terms.

For our prototype, we have instantiated the ASF+SDF

META-ENVIRONMENT using an SDF definition of the JAVA

grammar and a set of ASF modules that specify the process-
ing that is needed for extraction of program structure and
primitive smell aspects. The extraction is performed in two
steps: first, the JAVA input is parsed using a parser generated
from the SDF grammar. Then the parse trees are processed

Figure 2. Complete smell detection graph for a small test system (12 classes, 1450 LOC)

using term rewriting traversals in ASF to derive the desired
source model. This model describes the structure and prim-
itive smell aspects detected in the code. The source models
are represented in plain text in the three tuple notation that is
known as RSF (Rigi Standard Format).

We have chosen to analyse JAVA source code instead of
JAVA byte-code as is done by most other tools that operate
on JAVA software. This choice has a number of advantages:

• Source code analysis allows us to treat parts of software
systems that do not compile by themselves because of
incompleteness. When the source code parsing is based
on island grammars, it is even possible to analyse source
code that contains syntax errors [16].

• Extraction of program structure and primitive smell as-
pects from source code can be expressed using pattern
matching over the concrete syntax of the JAVA program-
ming language. This makes it very easy for users to
adapt and extend the extractor in order to detect new
code smells since they do not have to learn a new lan-
guage.

• Some coding standards cannot be checked on byte-code
since the byte-code contains less information than the
original source code (i.e., regarding layout and variable
names).

In case only the byte-code for a system is available, it can
still be analysed with our tool by first feeding it through a

decompiler. However, one can wonder why the code quality
of such a system needs to be assessed in the first place. . .

After extraction of program structure and primitive smell
aspects, these facts are combined and abstracted to infer
a number of derived smell aspects regarding code smells.
These derived smell aspects are also stored in the repository.
One of the tools we use for inferring these derived aspects
is grok [14], a calculator for relational algebra [21]. Rela-
tional algebra provides operators for relational composition,
for computing the transitive closure of a relation, for com-
puting the difference between two relations, and so on. We
use it, for example, to compute the “refused bequest” smell
where child classes do not use the methods that were offered
by their parents.

4.2. Visualization

The visualization was implemented using the Rigi software
visualization tool that was developed at the University of
Victoria, Canada, under the direction of Hausi Müller [23].
The Rigi infrastructure is based on a general graph model.
This graph model is adapted to a specific domain by defining
the entity types and relations of interest in a domain model.
Usually, graphs are created using a parser that extracts facts
from a software system and stores them in this graph model
using Rigi Standard Format (RSF). The graphs are visualized
using a programmable graph editor.

Generally, Rigi graphs consist of the artifacts that soft-
ware engineers use to understand a software system. Ex-

Figure 3. Collapsed smell detection graph for Chartoon (147 classes, 46000 LOC)

amples are software components such as subsystems, proce-
dures, variables, and the dependencies between them, such
as composition, calls, and control- and data-flow. For our
prototype, a new domain was added that describes the struc-
ture of JAVA software systems and their code smell aspects.

Unfortunately, it is not possible in Rigi to vary the color
or size of a node to indicate that it possesses a smell; all
nodes of a given type have the same color and all nodes have
the same size. Therefore, we choose to present smells as
additional nodes that are connected to the code entities that
possess them. Each smell has its own node type, which has a
distinct color in the graph. An advantage of this visualization
is that it is easy to see which parts of the system have the
most smells, and would benefit most from refactoring.

An alternative approach is to store code smell information
as attributes of a node. We did not use this method since
these attributes have no visual representation in the graph
editor. Generally, they are used for querying the graph and
their values can be inspected in a separate window.

To present the results of smell detection, we have ex-
tended the Rigi user interface with a separate jCOSMO tool-
bar from which the user can browse the detected smells and
invoke all dedicated jCOSMO functionality. This includes
various visualizations that provide customized views of ex-
tracted data and special filtering functions that can be used
to show or hide certain nodes, arcs or labels. Moreover it
provides a special “pruning” function that allows the user to
select a particular subgraph and hide the rest.

The first view provided shows all the packages, classes,
interfaces, methods and constructors, and their attached
smell nodes. This gives a basic overview of the system and
the distribution of the code smells. An example of this view
is shown in Figure 2.2

A disadvantage of the previous view is that it does not
scale up well for large systems. Therefore, we provide
an improved view where class members such as methods
and constructors are collapsed into their enclosing classes.
Smell nodes are shown attached to their containing class (if
a method contains a smell, it is “inherited” by the class that
contains the method). By using a spring layout algorithm,
it becomes clear where the code smells are clustered in the
system. An example of this view is shown in Figure 3.3

The class nodes in this view are so-called composite nodes:
to view the smell distribution within a class, the user can
double-click the class and a new view is opened which shows
that class with its members and their smells.

For clarity, we have decided to hide node labels in these
views. They can be redisplayed at any time via the jCOSMO

user interface or by using a command. All typecast smell
nodes are labeled with the types they are casting to and from
(when known). This information is used by a number of fil-

2 Please note that this figure shows a greyscale screendump of
a view that was developed for color displays. A color screen-
dump is available at http://www.cwi.nl/projects/renovate/
javaQA/wcre2002/curvedraw.gif.

3 The color version is available at http://www.cwi.nl/
projects/renovate/javaQA/wcre2002/chartoon.gif.

tering functions that hide certain typecasts or show only casts
to a certain type. Using these functions, which are also ac-
cessible via the jCOSMO user interface, a user can quickly
and easily see where each kind of typecast is concentrated.

A third view orders the program entities based on code
smells instead of program structure. It uses the number of
smells that were detected in an entity to determine its place
in the graph layout. The nodes in these graphs are ordered in
a grid: all packages are arranged on the top row, distributed
along an x-axis according to the average number of smells
they contain. All classes are arranged on a single row below
that, distributed in the same way. Finally, all methods in
the system are arranged on the bottom row according to the
number of smells they contain.

To prevent cluttering of the graph, this view hides the con-
tainment and inheritance arcs. Furthermore, all smells are
collapsed into their containing nodes. After selecting a node
in the view, the user can filter the graph using jCOSMO’s
prune command. Pruning leaves only the parents and chil-
dren of the selected node. Thus, by pruning after selecting a
method node, one sees the class and package in which it is
defined, whereas pruning after selecting a class node shows
all methods of that class and the package in which it is de-
fined, and pruning after selecting a package node shows all
classes and methods in that package.

5. Concluding Remarks

5.1. Evaluation

The CHARTOON system consists of 46000 LOC (without
comments or empty lines) and 147 classes. The extraction
step takes about 30 sec. on a computer with an AMD Athlon
processor (1.2 Ghz) and 512 Mb main memory running linux
2.4.9-12. The extracted source model contains 33840 facts.

Because of the number of classes and methods involved,
the most useful view for examining CHARTOON is the one
that collapses all members into their classes while leaving
the smell nodes attached to the class. This view is shown in
Figure 3. Many code smells were indicated (shown as dark
nodes in the figure).

Using node filtering, we have examined the distribution
of each separate smell without disturbing the layout of the
graph. This immediately revealed that all but two of the
instanceof nodes were clustered in one class. Opening this
class node revealed that within the class the instanceofs were
fairly evenly distributed between the methods. This sug-
gested that they were not linked to a switch statement, but
that this might be code that could benefit from the introduc-
tion of overloaded methods. Inspection of the source code
showed that such a refactoring could be performed.

It was also clear that most of the switch statements were
in the same package. This might be a hint that some of these

statements may be switching on the same type and could be
eliminated by the introduction of an inheritance hierarchy.

Furthermore, the majority of code smells originated from
the use of typecasts. Using the predefined filtering functions,
new views were created that show only the typecast to one
particular type at a time. These views showed that there were
clusters of identical typecasts in particular areas of the sys-
tem which suggests that a small amount of refactoring could
remove a large number of these smells.

Feedback from the CHARTOON maintainer was generally
positive. He felt that the jCOSMO views were useful for
conformance checking and refactoring support. Addition-
ally, they provided useful information for (re)documenting
the system to other developers and management. He was
very interested in being able to repeat detection after ma-
jor revisions, so that conformance to coding standards and
changes in the software quality could be monitored.

His only concerns had to do with possible difficulties
when installing the tool and learning the interface. To ad-
dress these issues, we added the jCOSMO toolbar as de-
scribed earlier, as well as a support web page with instruc-
tions for downloading, installing and running the tool and
links to available documentation. To make installation even
easier, we are working on a single packaged distribution of
jCOSMO that installs all the necessary components.

5.2. Related Work

Automatic Code Inspection There are a number of tools
that perform some sort of automatic code inspection. The
most well-known include the C analyzer LINT [15] and its
JAVA variant JLINT [1] that check for type violations, porta-
bility problems and other anomalies such as flawed pointer
arithmetic, memory (de)allocation, null references, array
bounds errors, etc. IllumaSM (formerly known as Instant-
QA) is a defect analysis service provided by Reasoning that
identifies the location of potential crash-causing and data-
corrupting errors. Besides providing a detailed description
of each defect found, they report on defect metrics by mea-
suring the software’s defect density (the average number of
defects found per thousand lines of source code) and its rela-
tion to standard industry norms.

Generally, these tools focus on improving code quality
from a technical perspective. The fewer bugs (or defects)
there are present in a piece of code, the higher the quality
of that code. This differs from our approach which focuses
more on code quality as seen from a program design and
programming practice perspective.

More closely related to our approach is RevJava, a JAVA

analysis tool developed at the Software Engineering Re-
search Centre in the Netherlands [11]. RevJava performs
design review and architectural conformance checking. It
reads JAVA byte-code from which facts are derived and met-
rics are collected. This information is used to apply critics to

the system that check whether particular design rules were
violated. A large number (70) of these critics are predefined
and users can add their own. Reporting is done by means of
a class browser that shows the rule violations for each class,
method, etc, or using a browser that starts from the critics and
shows all entities that violate that critic. There is no support
for visualization of rule violations which makes RevJava less
suitable for getting an overview of large software systems.
Software Metrics Another approach to assessing the qual-
ity of software systems is based on software metrics. Typi-
cally, these metrics are computed over facts that were ex-
tracted from the system’s source code, which is similar to
our analysis. Chidamber and Kemerer describe a suite of
software metrics for object oriented systems [6]. Systä et
al. report on using this suite for JAVA quality analysis in
their tool Shimba [20]. As in our approach, Shimba repre-
sents programs as graphs where the nodes are program enti-
ties. The computed metrics are stored as attributes of a node
which can be inspected in a separate window and used for
querying. The metrics are not used to determine the color or
layout of nodes in the graph.

CodeCrawler is a program understanding tool that com-
bines software metrics and graphs [7]. Again, nodes repre-
sent program entities, however CodeCrawler’s distinguish-
ing feature is that it reports on the metrics of that entity by
varying the size, color and position of the nodes in the graph.

There are also a number of commercial tools that use
software metrics to compute the complexity and quality of
software systems and present results using colored structure
charts, scatterplots, metric charts and Kiviat diagrams. These
tools include, amongst others, the McCabe QA and McCabe
Reengineer tools by McCabe & Associates, and the Hind-
sight tool by IntegriSoft.
AntiPatterns Antipatterns are an extension of the design
pattern idea: where design patterns describe good solutions
to frequently occurring problems, antipatterns are patterns
that describe frequently observed bad solutions for a given
problem. Antipatterns explain why that solution looks attrac-
tive, why it turns out to be bad, and what positive patterns are
applicable instead.

Brown et al. describe a number of antipatterns that can
be found in software development, software architecture and
(software) project management [5]. The software develop-
ment antipatterns are very similar to code smells in that they
describe commonly seen patterns in code that could bene-
fit from refactoring. However, antipatterns are generally at
a somewhat higher level, referring to source code entities at
the class level or higher.

Examples of development antipatterns include “the blob”
for large classes that monopolize processing, “golden ham-
mer” for the misapplication of a familiar solution for every
possible problem, “poltergeists” for classes with limited re-
sponsibility and lifetime, and “cut and paste programming”
for duplicate or near-duplicate code.

Refactoring tools Finally, our approach is related to the
growing body of work on tools that support the (automatic)
refactoring of software systems. The original refactoring tool
is the Smalltalk Refactoring Browser that was developed by
John Brant and Don Roberts [17].

Recently, several other commercial and open-source tools
started to offer refactoring support. These include develop-
ment environments such as the Eclipse platform, Borland’s
JBuilder and IDEA by IntelliJ and refactoring tools such as
jFactor by Instantiations, ReTool by Chive, and XRefactory
that act as add-ons to popular programming environments.

All these tools have in common that they focus at the ac-
tual code transformation and do not analyse when a certain
refactoring can (or should) be applied. The smell detection
described in this paper could be used to add such an analy-
sis to a programming environment allowing for an “intelli-
gent” refactoring assistant that signals when a given refac-
toring can be applied.

5.3. Future Work

Beck and Fowler describe a number of smells that we can
characterize as “maintenance smells”. What we mean by
this is that these smells are not obvious from the code itself
but that they manifest themselves during maintenance of the
code. These smells include:

• Divergent Change: when different parts of a class are
changed in different situations.

• Shotgun Surgery: a smell that occurs when making
changes requires changing many different classes.

• Parallel Inheritance Hierarchies: This is the case when
making a new subclass in one place also makes it nec-
essary to add a new subclass in another place.

Automatic detection of these smells cannot be done by
analysing the program code as was described earlier; one has
to analyse the changes that are made to the program to find
out whether the program suffers from these smells. An in-
teresting topic of future research is to investigate if the data
in a configuration management system (esp. version man-
agers such as CVS) could be used to check for these smells.
Such an approach seems feasible since analysis of this type
of data has already been done, for example, in the context of
software evolution research [2, 9].

5.4. Contributions

We have discussed the design considerations of a software
inspection tool that is based on code smell detection. We
have shown how code smells can be broken up into aspects
that can be automatically detected. Furthermore, we have
described how the code smell concept may be expanded to
include coding standard conformance. We have investigated
the feasibility of the described approach using a case study

in which a prototype tool was developed and applied on a
software system.

For the development of our prototype, jCOSMO, we have
implemented an extendable JAVA code smell detector which
can be reused in other tools. We have extended Rigi with
an additional user interface that allows code smell browsing
and visualization and developed several strategies for visu-
ally representing code smells within their program context.

Since the smell detection is fully automated, it can be
tied into the development cycle providing continuous qual-
ity assessment and conformance checking. The graphical
overviews immediately show the maintainers if the system
contains bad smells, what parts are affected, and where the
concentration of smells is the highest. Furthermore, since
the analysis does not require the complete application, sub-
systems can be inspected before integration. This allows for
incremental checking of large software systems which is es-
pecially interesting for distributed development.

Availability

The jCOSMO distribution can be downloaded from:
http://www.cwi.nl/projects/renovate/javaQA/

Acknowledgments

We would like to thank Serge Barthel of Epictoid for provid-
ing us with the source code and feature requests used in the
CHARTOON case study.

References
[1] C. Artho and A. Biere. Applying static analysis to large-scale,

multi-threaded Java programs. In Proc. 13th Australian Soft-
ware Engineering Conference (ASWEC 2001), pages 68–75,
2001.

[2] T. Ball, J. Kim, A. Porter, and H. Siy. If your version control
system could talk. In Proc. Workshop on Process Modelling
and Empirical Studies of Software Engineering, May 1997.

[3] J. A. Bergstra, J. Heering, and P. Klint. The Algebraic Specifi-
cation Formalism ASF. In Algebraic Specification, chapter 1,
pages 1–66. ACM Press & Addison-Wesley, 1989.

[4] M. G. J. van den Brand et al. The ASF+SDF Meta-
Environment: a Component-Based Language Development
Environment. In Proc. Compiler Construction 2001, volume
1827 of LNCS, pages 265–370, 2001.

[5] W. J. Brown, R. C. Malveau, H. W. S. McCormick III, and
T. J. Mowbray. AntiPatterns: Refactoring Software, Architec-
tures, and Projects in Crisis. Wiley and Sons, 1998.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[7] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering approach combining metrics and program visual-
ization. In Proc. 6th Working Conference on Reverse Engi-
neering (WCRE’99), pages 175–186, 1999.

[8] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok.
Refactoring test code. In Proc. 2nd International Conference
on Extreme Programming and Flexible Processes in Software
Engineering (XP2001), pages 92–95, May 2001.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data. IEEE Transactions on Software En-
gineering, 27(1):1–12, 2001.

[10] M. E. Fagan. Design and code inspections to reduce errors in
program development. IBM Systems Journal, 15(3):182–211,
1976.

[11] G. Florijn. RevJava – Design critiques and archi-
tectural conformance checking for Java software.
White Paper. SERC, the Netherlands, 2002. See also
http://www.serc.nl/people/florijn/work/
designchecking/RevJava.htm.

[12] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[13] T. Gilb and D. Graham. Software Inspection. Addison-
Wesley, 1993.

[14] R. Holt. Structural manipulations of software architecture us-
ing Tarski relational algebra. In Proc. 5th Working Conference
on Reverse Engineering (WCRE’98), pages 210–219, 1998.

[15] S. C. Johnson. Lint, a C program checker. In Unix Program-
mer’s Manual, volume 2A, chapter 15, pages 292–303. Bell
Laboratories, 1978.

[16] L. Moonen. Generating robust parsers using island gram-
mars. In Proc. 8th Working Conference on Reverse Engineer-
ing (WCRE 2001), pages 13–22, October 2001.

[17] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS),
3(4):253–263, 1997.

[18] G. W. Russell. Experience with inspection in ultralarge-scale
developments. IEEE Software, 8(1):25–31, 1991.

[19] Zs. Ruttkay, P. ten Hagen, and H. Noot. Chartoon: a system to
animate 2D cartoon faces. In Short Papers and Demos Proc.
of Eurographics’99, 1999.

[20] T. Systä, P. Yu, and H. Müller. Analyzing Java software by
combining metrics and program visualization. In Proc. 4th
European Conference on Software Maintenance and Reengi-
neering (CSMR 2000), 2000.

[21] A. Tarski. On the calculus of relations. Journal of Symbolic
Logic, 6:73–89, 1941.

[22] S. Tichelaar. Modeling Object-Oriented Software for Re-
verse Engineering and Refactoring. PhD thesis, University
of Berne, December 2001.

[23] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller. Pro-
grammable reverse engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering, pages 501–
520, December 1994.

[24] M. Tomita. Efficient Parsing for Natural Languages. A Fast
Algorithm for Practical Systems. Kluwer, 1985.

[25] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, 1997.

	Assuring Software Quality by Code Smell Detection.pdf
	wcre2002_paper.pdf

