
Increased Robustness with Interface Based
Permutation Routing

Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

Simula Research Laboratory
{vqhung,olav.lysne,amundk}@simula.no

Abstract. A prime objective of fault tolerant routing methods is the
availability of multiple routing options at each hop. The methods that
are currently implemented in IP networks, such as Equal-Cost Multi-
Path (ECMP) and Loop Free Alternates (LFA), share the following four
properties: First, they work with a hop-by-hop forwarding strategy op-
timized for the fault free case. Second, they do not require information
associated with network faults included in the packet header. Third, they
do not form forwarding loops, even under multiple failures in the network.
Finally, they are compatible with standard link state routing protocols.
However, ECMP and LFA give very poor fault coverage; in most cases
fewer than 50% of primary next-hops are protected when using typical
link weight settings. This paper presents a new routing method that
combines the concept of permutation routing with interface-specific for-
warding. Our method results in a routing strategy that strictly adheres
to the four stated design properties. Through experiments we show that
we protect more than 97% of the primary next-hops for all tested ISP
networks.

Keywords: IP networks; Multipath Routing; Resilience; Fault-tolerant

1 Introduction

IP networks are the preferred transportation medium for time-critical services
such as online trading, remote monitor and control systems, telephony and video
conferencing. Fast recovery from network failures has therefore become an im-
portant requirement when designing networks. Currently implemented solutions
to the fast reroute problem in IP networks are Equal-Cost Multi-Path (ECMP)
and Loop Free Alternate (LFA) [4], both of which share four common properties
that are critical for adoption: First, they do not require the network operator
to change the traditional hop-by-hop forwarding strategy that is optimized for
the fault free case. Second, they do not require addition of fault-information in-
cluded in the packet header. Third, they do not suffer from routing loops, even
when there are multiple faulty components in the network. Finally, they work
with the existing standard link state routing protocols such as OSPF or IS-IS.
ECMP and LFA are simple but give limited protection against network failures;
in most cases they protect below 50% of primary next-hops when using typical
link weight settings [17].

2 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

Maximizing failure coverage has become a common routing objective for in-
creased robustness in many recently proposed routing schemes. Several solutions,
specifically Tunnels [19], Not-via [5], MRC [6] and IDAGs [26], promise full cov-
erage for single network component faults with the cost of altering the traditional
IP forwarding. More related to our work, Failure Insensitive Routing (FIR) [3]
introduces the interface-specific forwarding concept, which has potential to be
deployed with low complexity on modern high-performance routers. FIR also of-
fers full fault coverage for single link faults but it may cause routing loops when
there exist multiple failures in the network [20].

In this paper, we propose interface based permutation routing, which com-
bines the concept of permutation routing [21] with interface-specific forward-
ing [3]. The method aims to maximize protection coverage for IP networks by
giving multiple loop-free next-hops towards a destination for each incoming in-
terface of a router. Importantly, our routing method shares with ECMP and
LFA the four listed properties.

Permutation routing [21] is a new and flexible approach for calculating mul-
tiple loop-free next-hops in networks with the traditional hop-by-hop forward-
ing. Permutation routing is based on the fact that any routing strategy can be
expressed as a permutation (sequence) of nodes that are involved in traffic for-
warding to a destination. The routing is loop-free if packets are forwarded in
one direction towards the destination regarding to node ordering in the permu-
tation. Permutation routing only takes the topology information that is collected
by link state routing protocols as the input for its construction, and hence no
new control plane signaling is needed.

The main focus of this paper is to construct permutation routing of interfaces
that approximately maximizes the number of primary interface-destination pairs
that have more than one available next-hop. Importantly, our routing method
can easily be integrated with existing link state routing protocols, OSPF or IS-
IS, and can be used to augment shortest path routing tables with additional
forwarding entries. We show that our interface based permutation routing can
protect more than 97% of the primary next-hops in all tested ISP topologies.
This is significantly better than LFA and ANHOR-SP [21], which protect from
21% to 67% and from 29% to 81%, respectively, in the topologies we study.
Note that ANHOR-SP is a routing strategy constructed by using the concept of
permutation routing, which seeks to maximize protection coverage for traditional
IP networks. In this paper we only focus on finding a set of loop-free paths, and
leave the important topic of load-balancing across these paths for future work.

The rest of the paper is structured as follows. Section II explains why interface-
specific forwarding is beneficial over traditional IP forwarding and proposes iN-
HOR as our main routing objective. Section III describes two transformation
rules to pre-process the topology, resulting a new directed graph that is read-
ily for interface based routing construction. Section IV presents Permutation
Routing concept, proposes generic algorithm for permutation construction, and
discusses computational complexity management. Section V describes in details
the described framework in section IV to create routings that approximate iN-

Increased Robustness with Interface Based Permutation Routing 3

HOR. Section VI shows simulation results evaluating the path diversity and
computational complexity of iNHOR. Section VII reviews related work. Section
VIII concludes the paper.

2 Interface Next-Hop Optimal Routing

This section first reviews the interface specific forwarding concept and explains
its ability of increasing routing robustness for IP networks. We then introduces
Interface Next-hop Optimal Routing (iNHOR) as our main objective function
for a robust interface based routing.

To help ease our description, let us introduce networking terms that we will
use in the rest of this paper. We refer a directed link from node i to node j,
denoted by (i→ j), to an incoming interface to node j and an outgoing interface
of node i. A routing is an assignment of a set of next-hops for each destination
node for each traffic source. We require that a routing must be loop-free, and
hence a given routing corresponds to a Directed Acyclic Graph (DAG) rooted
at each destination node consisting of the links and nodes involved in packet
forwarding. With multipath routing, each node may have several outgoing links
in the DAG for a destination.

(a) (b) (c)

(d) (e) (f)

Fig. 1: (a) A topology. (b) An SPT rooted at node 1. (c) A DAG, which contains
the SPT, rooted at node 1. Fast rerouting under interface-specific forwarding if
(d) link (1, 3) fails, (e) link (3, 5) fails, (f) multiple links fail.

4 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

Fig. 1a illustrates a simple topology with six nodes and eight (bidirectional)
links with their corresponding link weights. Fig. 1b is a shortest path tree (SPT)
rooted at node 1. We say that a node is protected if it has at least two next-
hops, no node in Fig. 1b is protected (gray shadowed nodes). Other routing
methods, e.g. ANHOR-SP [21], can improve the protection coverage by adding
non-shortest path branches to form a better-connected routing graph, manda-
torily a directed acyclic graph (DAG). Fig. 1c is such an instance. Obviously,
Fig. 1c is the most robust loop-free routing graph rooted at node 1 that the
traditional IP routing can provide because adding any more directed link will
cause loops. Consequently, we fail in protecting node 3 and node 5 under single
failures.

However, node 3 and node 5 of the topology can be protected if interface-
specific forwarding is used. Correspondingly, node 3 (in Fig. 1d) will reroute
flow I to node 2 under failure of link (1, 3). Upon receipt of rerouting packets,
node 2 will forward them to node 1 without causing loops. To do that, interfaces
of node 2 and node 3 should be installed with forwarding tables as shown in
Fig. 2. Likewise, node 5 (in Fig. 1e) will safely reroute flow II to node 4 under
failure of link (3, 5) if interfaces of node 4 and node 5 are also equipped with
loop-free forwarding tables. In those tables, next-hops marked with primary are
used if available. Other next-hops are called secondaries and only used when all
primaries are not in service. If there does not exist any next-hop (either primary
or secondary) for a specific incoming interface, packets will be discarded at that
interface as shown in Fig. 1f. We will show how to construct such a forwarding
table for each interface in Section III, but we first introduce our main routing
objective.

Fig. 2: Forwarding tables of incoming interfaces of node 2 and node 3.

2.1 Interface Next-Hop Optimal Routing

For maximizing fault tolerance and load-balancing capabilities of a network with
interface-specific forwarding, it is important that the routing offers more than
one available next-hop for as many primary incoming interface-destination pairs

Increased Robustness with Interface Based Permutation Routing 5

as possible. This leads us to the following optimization criterion for Interface
Next-hop Optimal Routing (iNHOR):

Definition 1. Given a routing for a destination, an incoming interface on the
SPT is called a primary interface (pI) and an incoming interface not on the SPT
a secondary interface. An iNHOR is an interface based routing that contains the
SPT and maximizes the number of primary interface-destination (pI-D) pairs
with at least two next-hops.

By maximizing fault tolerance capability for primary interfaces, iNHOR has a
great potential to increase robustness for IP networks under failures. In addition,
the SPT inclusion constraint of iNHOR is usually required for traffic engineering
purpose, e.g. shortest paths likely provide low transmission latency for voice
or video traffic. In the next section, we introduce a new network model that
helps construct a loop-free forwarding table for each interface using permutation
routing.

3 Network Model

We model the network topology as directed graph G = (V (G), E(G)) where
V (G) is the set of nodes and E(G) is the set of directed links1. Let p and q
denote the cardinalities of set V (G) and set E(G), respectively. The directed link
(u→ v) consists of head node u and tail node v. Let L(G) = (V (L(G), E(L(G)))
be the line graph of G by employing two following rules:

Definition 2. Each node in V (L(G)) represents a directed link of G

We denote [u, v] by the node in V (L(G)), which is directed link (u → v) in
E(G) . Let H([u, v]) and T ([u, v]) be two operators which apply on node [u, v] to
extract the head node and the tail node of corresponding directed link (u→ v).

Definition 3. Two nodes i, j2 ∈ V (L(G)) form directed link (i→ j) in E(L(G))
if and only if H(i) = T (j).

Following Def. 2 and Def. 3 in that sequence, line graph L(G) has been
identified thoroughly. Let AL(G) = (aij) be the adjacency-matrix that represents
for L(G):

aij =

{
1 H(i) = T (j)
0 otherwise

Following theorems describe some consequences of line graphs. Theorem 1
and Theorem 2 prove that line graphs preserve connectivity, subset relationship
and acyclic property of corresponding directed graphs while Theorem 3 provides
the cardinalities of node sets and link sets of line graphs.

1 each link in the topology is modeled as two directed links.
2 For convenience, we sometimes denote nodes in the new directed graphs with single

letters

6 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

Theorem 1. Let G1 and G be two directed graphs:

1. if G is connected, then L(G) is connected.
2. if G1 ⊆ G, then L(G1) ⊆ L(G).

Proof. 1. see the proof in [22].

2. We prove that V (L(G1)) ⊆ V (L(G) and E(L(G1)) ⊆ E(L(G)) both hold.
It is trivial that V (L(G1)) ⊆ V (L(G)) due to Def. 2. Assume that arbitrary
directed links (a → b) ∈ E(G1) and (b → c) ∈ E(G1), then we will have
([a, b] → [b, c]) ∈ E(L(G1)). Because E(G1) ⊆ E(G), then we have (a →
b) ∈ E(G) and (b → c) ∈ E(G). That means ([a, b] → [b, c]) ∈ E(L(G)). So
E(L(G1)) ⊆ E(L(G)) holds.

Theorem 2. The line graph of a directed acyclic graph is also a directed acyclic
graph.

Proof. The proof is by contradiction. We denote D by the given directed acyclic
graph and L(D) by its corresponding directed line graph. We assume that L(D)
contains a loop. Namely, the loop is [a, b] → [b, c] → . . . → [y, z] → [z, a] where
a, b, c . . . y, z are nodes of graph D. In addition, the loop implies that there exists
a path a → b → c . . . → y → z → a which is another loop of D. Since D is
directed acyclic graph, our assumption is broken.

Theorem 3. Given directed graph from topology G3, line graph L(G) is satis-
fied:

1. |V (L(G)| = q.
2. |E(L(G)| =

∑p
u=1 d

2
u where du is the out-degree of node u ∈ V (G).

Proof. (1) is trivial due to the Def. 2. We prove (2) by examining each node
u ∈ V (G). Let du be the out-degree of node u and NG(u) = {v ∈ V (G) : (u →
v) ∈ E(G)} be the set of neighboring nodes of u. We observe that there are du
directed link incident at u and du directed links departing from u. Via Def. 3,
each node [vk, u] ∈ V (L(G)), where u ∈ NG(vk), will have du neighboring nodes.
Therefore, in L(G), there are du nodes and d2u directed links involving node u.
That means |E(L(G))| =

∑p
u=1 d

2
u.

We might think that L(G) is a proper graph for calculating a loop-free routing
tables towards a certain destination node. It is, however, infeasible since L(G)
does not include any node that can correspond to the real destination node. For
the routing computation purpose, we should modify L(G). We denote L∗(G) by
the modified version of L(G). V (L∗(G)) is resulted from adding virtual node u
into V (L(G)) and E(L∗(G)) is resulted from augmenting E(L(G)) with virtual
directed links that depart from nodes [vi, u] (u ∈ NG(vi)) and terminate at

3 if there exists directed link u→ v, then there also exists directed link v → u.

Increased Robustness with Interface Based Permutation Routing 7

virtual node u while taking away from E(L(G)) those directed links that depart
from nodes [vi, u] and terminate at nodes [u, vj] (vj ∈ NG(u)). Those removed
directed links will not contribute to routing towards u.V (L∗(G) = V (L(G)) ∪ {u} where u ∈ V (G)

E(L∗(G) = {E(L(G) ∪ {([vi, u]→ u)}}
\ {([vi, u]→ [u, vj])}

(a) Topology G (b) Line graph L(G) (c) Modified line graph
L∗(G)

Fig. 3: Topology, its corresponding line graph and its modified line graph towards
node 1.

Fig. 3b shows the line graph generated from the topology in Fig. 3a. The
line graph includes 6 nodes and 12 directed links. It is obviously larger than the
original topology either in the number of nodes or in the number of directed
links. Fig. 3c is the modified line graph towards node 1 with the added virtual
node 1 and two virtual links in dotted lines.

We can apply an existing node based routing algorithm for traditional IP
forwarding on the directed graph L∗(G) to extract routing entries at each node
in V (L∗(G)) towards destination u. The resulting routing table at each node is
actual routing table for each incoming interface. In the next section, we propose a
new routing method to construct robust interface based routings for IP networks.

4 Permutation Routing

Given modified line graph L∗(G) towards destination d, we will seek for a routing
graph for that destination, denoted by Rd = (V,Ed) where V = V (L∗(G)) and
Ed ⊂ E(L∗(G)). In Rd, node j is called a next-hop of node i if there exists a
directed link between node i and node j. It is required that Rd must be a DAG
rooted at destination d. Without loss of generality, we look at the assignment of
next-hops for each destination individually.

8 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

4.1 Permutation Routing

Routing function Rd contains all paths to d, each of which is a sequence of
nodes from a specific source node to d. At each node, packets are forwarded to
a next-hop in such a sequence. In the rest of this section, we describe how a
permutation routing can be used as a tool to find such sequences with the goal
of realizing iNHOR.

Definition 4. For given line graph L∗(G), permutation P of nodes is an ar-
rangement of all nodes in V (L∗(G) into a particular order.

We write j < i to denote that j occurs before i in P . Our goal is to construct
permutations that realize a certain routing strategy.

Definition 5. Permutation P is a permutation routing for Rd if all next-hops
of each node occur before it in P : ∀(i→ j) ∈ Ed : j < i.

According to this definition, destination node d will always be the first node
in a routing permutation for Rd. Nodes further out in the permutation routing
will be topologically farther from the destination. Following lemma confirms the
existence of such sequences of all nodes in Rd.

Lemma 1. Any loop-free routing function Rd can always be represented by a
permutation routing in which d is at the left-most position.

Proof. A loop-free routing function Rd = (V,Ed) is a DAG, rooted at d. Let
arrange i ∈ V into a sequence such that if Ed contains a directed link (i → j),
then j appears before i in that sequence. Such an arrangement can be calculated
by a topological sort algorithm [13].

Destination d is the only node that does not have any outgoing link. Following
the above ordering, node d, hence, has been placed at the left-most position of
the sequence.

In general, there could be more than one valid permutation routing for one
routing graph Rd. Starting with a permutation routing P , another permutation
routing P ′ can be generated by swapping two consecutive nodes that are not
connected by a directed link to each other.

In the reverse process, routing tables can be generated from a permutation
routing, given a forwarding rule that defines the relationship between neighbor-
ing nodes. For now, we consider a greedy forwarding rule for constructing the
routing table, in which all out-neighbors of a node that occur before it in the
permutation routing are installed as next-hops. This will maximize the potential
for load balancing and failure recovery. More restrictive forwarding rules could
also be considered, which would result in a sparser DAG. This can sometimes
be beneficial in order to avoid excessively long paths, or to limit the number of
next-hops for a particular destination.

Since permutation routing has been proven to represent a routing function,
such routing function will be identified if we can construct its corresponding
permutation routing. Our goal is to find a permutation routing that can realize
iNHOR. This problem is believed to be NP-hard. In the next section, we present
an algorithm that produces permutation routings that approximate iNHOR.

Increased Robustness with Interface Based Permutation Routing 9

4.2 Generic Algorithms

Let P = {p1, p2, . . . , pN} be a set of N variables in a fixed order from p1 to pN ,
with respective domains D = {D1, D2, . . . , DN} where N is the number of nodes
in L∗(G). We refer to Di as the candidate set for each variable pi. A candidate
set consists of the nodes that can be assigned to variable pi.

Fig. 4: Basic assignment procedure for variable pi+1

Permutation routing P is constructed by successively assigning a node u ∈ Di

to each variable pi. Such assignment is said to be valid if it satisfies a specific
constraint function C(u) which is defined to realize the selected routing objective.
Fig. 4 illustrates the basic assignment procedure for variable pi+1 in which two
key functions Update and Select work as filters to control the assignment. In
the figure, each pair 〈pi, ui〉 represents an assignment of the node ui to variable
pi. The assignment of nodes to a subset of variables {p1, p2, . . . , pi} ⊆ P given
by {〈p1, u1〉, . . . , 〈pi, ui〉} is called partial routing permutation with i nodes. For
simplicity, we abbreviate it to ~pi.

This basic assignment procedure has been embedded into the well-known
backtracking algorithm (Algorithm 1) to obtain permutation routing P . The
algorithm calls function Select (with built-in constraint function C(u)) which
goes through Di to find a valid node for the current variable pi (line 4). If Select
succeeds in finding a valid assignment, the algorithm calls function Update to
generate domain Di+1 (line 9) and proceeds to next variable pi+1. Otherwise, a
backtrack step will be executed to revisit the variable pi−1 (line 6). The algorithm
terminates if a routing permutation P of N nodes, also denoted by ~pN , is found
or a failure notification returns if all backtracks are examined but no solution is
found under C(u).

If constraint function C(u) allows it, the backtracking algorithm will find
one permutation routing P among all possible solutions by searching through

10 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

the search space shaped by the number of variables in P and their domains of
values. It is known that the complexity of backtracking algorithm varies in a wide
range. In the best case, when we do not need any backtrack step (backtrack-free)
is O(t ×N) where t is the total computational complexity of functions Update

and Select. In another extreme, if there is only one solution and we always make
the “wrong” choice, the complexity would be O(t×N !). Hence, it is important
guide the search to avoid exploring the entire search space. In the implementation
described in the next section, we use two main mechanisms to reduce the search
space:

1. C(u) should be simple to reduce the computational complexity.
2. Domain Di can be limited by taking C(u) into account.

Algorithm 1: Backtracking

Input: Line graph L∗(G)
Output: Either a solution or failure notification

1 i← 1
2 Di ← {d}
3 while 1 ≤ i ≤ N do
4 pi ← Select
5 if pi = null then
6 i← i− 1
7 else
8 i← i + 1
9 Update

10 if i = 0 then
11 return failure
12 else
13 return ~pN

5 Approximate iNHOR

In this section, we propose a heuristic for generating permutation routings that
can approximate iNHOR. We call it AiNHOR. To this end, we first present how
to construct constraint function C(u) from which a corresponding permutation
routing is constructed by using the described algorithm framework.

5.1 Constraint function C(u)

We denote Rspt
d = (V,Espt

d) by the SPT towards destination d which is con-
structed on topology G. To construct permutation routing for AiNHOR, we need
the modified line graphs of both G and Rspt

d , denoted by L∗(G) and L∗(Rspt
d),

Increased Robustness with Interface Based Permutation Routing 11

respectively. According to Theorem 1 and Theorem 2, L∗(Rspt
d) is connected,

L∗(Rspt
d) ⊆ L∗(G) and L∗(Rspt

d) is a DAG towards d.
To achieve a robust interface based routing while being compatible with the

SPT, the resulting routing from its corresponding permutation must contain
L∗(Rspt

d). From the Def. 5 partial routing permutation ~pi represents a loop-free
routing sub-graph towards destination d, denoted by Ri

d = (V (~pi), E(~pi)) where
V (~pi) is the set of i nodes in ~pi and E(~pi) is the set of directed edges formed
by applying the greedy forwarding rule defined in Section 4 on ~pi. Then the
node selected for variable pi+1 to form partial permutation routing ~pi+1 should
be the node with the maximum number of out-neighbors already placed in ~pi.
In addition, ~pi must contain Rspt,i+1

d , which is a subset of L∗(Rspt
d) after the

(i + 1)-th assignment. Correspondingly, the number of directed edges of the
routing sub-graph formed by partial routing permutation ~pi+1, from assignment
〈pi+1, u〉, must be maximized:

|E(~pi+1)| = max
∀u∈Di+1

|E(~pi, 〈pi+1, u〉)| (1)

and
Rspt,i+1

d ⊆ Ri
d (2)

For a more efficient implementation, we maintain a counter, say c[u], for
each node u. This counter denotes the number of outgoing links from u to ~pi.
In other words, c[u] corresponds to the number of next-hops node u will have
if it is selected as the next assignment in the routing permutation. We derive
constraint function C(u) to realize expression (1) and (2) as follow:

C(u) =


True if c[u] = max∀v∈Di+1

c[v]

and Rspt,i+1
d ⊆ Ri

d

False otherwise

Apparently, constraint function C(u) is complicated and thus may not result
in an efficient search. We will make C(u) more simple by not using expression (2)
in C(u). Instead, expression (2) will be used to reduce domain Di+1 in expression
(1). Let D∗i+1 be the reduced domain readily for assignment (i + 1)-th, the new
constraint function C∗(u) is re-written as follow:

C∗(u) =

{
True if c[u] = max∀v∈D∗

i+1
c[v]

False otherwise

Because D∗i+1 is usually smaller than Di+1, the search space of our problem
would be reduced. In the next section, we describe in details how we find domain
D∗i , from which we select a node satisfying C∗(u).

5.2 Search space reduction

In a connected graph, expression (1) implies that the domain Di+1 includes all
nodes that have at least one topological neighbor (following the directed edge)
in ~pi. The domain is, therefore, updated following the recursive relation:

12 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

Di+1 = Di ∪ { v ∈ Vi | (v → u) ∈ E(L∗(G))} \ {u} (3)

where u is the node that has been assigned to variable pi in the i-th assignment
and Vi is a set of nodes from V (L∗(G)), exluding all nodes in pi and Di.

Domain Di+1 is usually large when i increases. We will divide Di+1 into
smaller domains, on which our search would be more efficient. We have noticed
that Di+1 may contain three types of nodes. First, they are nodes in V (L∗(Rspt

d))

which have all their next-hops in V (L∗(Rspt
d)) already placed in ~pi, denoted by

Da
i+1. Second, they are nodes which are not in V (L∗(Rspt

d)), denoted by Db
i+1.

Third, they are nodes in V (L∗(Rspt
d)) which do not have all their next-hops

in V (L∗(Rspt
d)) already placed in ~pi, denoted by Dc

i+1. Note that those nodes

in V (L∗(Rspt
d)) correspond to directed links of Rspt

d and those nodes not in

V (L∗(Rspt
d)) are directed links of the topology that do not belong to Rspt

d .

For a node v, let csp[v] be the number of next-hops in V (L∗(Rspt
d)) placed

in ~pi and nsp[v] be the total number of next-hops in L∗(Rspt
d), sub-domain Da

i+1

for variable pi+1 follows the recursive relation:

Da
i+1 = Da

i ∪ {v ∈ Di+1 | csp[v] = nsp[v]} (4)

Sub-domain Db
i+1 is calculated as follow:

Db
i+1 = Db

i ∪ {v ∈ Di+1 | v /∈ V (L∗(Rspt
d))} (5)

Function Update

1 Di ← Di \ {u}
2 for v ∈ Vi such that (v → u) ∈ E(L∗(G)) do
3 c[v]← c[v] + 1
4 Di ← Di ∪ {v}
5 Vi ← Vi \Di

6 for v ∈ Di do
7 if (v → u) ∈ E(L∗(Rspt

d)) then
8 csp[v]← csp[v] + 1
9 if csp[v] = nsp[v] then

10 Da
i ← Da

i ∪ {v}
11 else
12 Db

i ← Db
i ∪ {v}

13 camax ← max∀v∈Da
i
c[v]

14 cbmax ← max∀v∈Db
i
c[v]

We implement the described update domain process in the Update function.
We first remove node u, which has just been added in the permutation routing,
from Di in line 1. The for loop of line 2-4 considers all nodes v in Vi such that

Increased Robustness with Interface Based Permutation Routing 13

(v → u) ∈ E(L∗(G)) to update Di following (3) and counter c[v]. Another for
loop of lines 6-12 goes through all nodes in Di and divides them in two groups:
Da

i following (4) and Db
i following (5). As the input for constraint function

C∗(u), max∀v∈Da
i
c[v] and max∀v∈Db

i
c[v] are calculated in lines 13-14.

We then select one node from one of two domain groups that satisfies C∗(u)
and place it in the permutation. We have two strategies: first choosing a node in
Da

i if it is not empty or first choosing a node in Db
i if it is not empty. The resulting

routing in both cases will contain L∗(Rspt
d). However, the latter will increase the

number of next-hops for primary links because it places in the permutation all
possible secondary links, which can become next-hops for primary links, before
primary links. We implement this selection strategy in function Select.

The Select function will realize constraint function C∗(u) with two steps
in a strict order. We will first maximize number of next-hops for primary links
by going through sub-domain Db

i to select a node that satisfies C∗(u) (line 2-6).
Note that C∗(u) is simply a comparison between c[u] and pre-computed cbmax

(line 5). If Db
i is empty, we will select a node in Da

i that satisfies C∗(u) (lines 8-
12). Again, C∗(u) is simply a comparison between c[u] and pre-computed camax

(line 11). Returned node u is assigned to variable pi in Algorithm 1.

Function Select

1 if Db
i 6= ∅ then

2 while Db
i 6= ∅ do

3 an arbitrary node u from Db
i

4 Db
i ← Db

i \ {u}
5 if c[u] = cbmax then
6 return u

7 else
8 while Da

i 6= ∅ do
9 an arbitrary node u from Da

i

10 Da
i ← Da

i \ {u}
11 if c[u] = camax then
12 return u

13 return null

5.3 Time complexity

The computational complexity of AiNHOR is the product of the average number
of operations to make a move between two successive states and the total number
of states visited in the search space.

Proposition 1. The selection rule defined in function Select gives a backtrack-
free algorithm for all connected input directed graph.

14 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

Proof. The proof is by contradiction. Assume that the algorithm with the selec-
tion rule defined in function Select is not backtrack-free. This could happen in
two following cases:

(i) C∗(u) returns False at some iteration for all u ∈ Db
i+1 or for all u ∈ Da

i+1

if Db
i+1 is empty. That can not happen because all nodes in domain Db

i+1 or
domain Da

i+1 always have at least one next-hop in ~pi.
(ii) Both Db

i+1 and Da
i+1 are empty in some iteration. We show here that both

Db
i+1 and Da

i+1 can never be empty at the same time before all nodes have been
placed in the permutation. If this is the case, there exists only candidate nodes
in L∗(Rspt

d) but do not have all its shortest path descendants in ~pi. In other

words, we can follow DAG L∗(Rspt
d) from any node that has not been placed

and always find a next-hop node that is not placed in ~pi. But this is impossible:
since L∗(Rspt

d) is connected and loop-free, any path from a particular nodes will
eventually reach the destination, which is the first node that was placed in the
permutation.

The computational complexity of AiNHOR towards one destination includes
two parts: the shortest path calculation using Dijkstra’s algorithm and the rout-
ing permutation construction. Due to the property of backtrack-freeness, with
sparse topologies the computational complexity of the second part towards one
destination would be O(|E(L∗(G))| + q × |D|) where |D| denotes the average
size of the domains. In dense topologies, the total computational complexity of
calculating routing permutations for all destinations can approach O(q3) where
q is the number of directed links in the given topology. The backtrack-free prop-
erty also gives a low memory consumption because it does not need to store
temporary partial permutations.

Such running time can be reduced more by following observation. A node
does not necessarily produce a permutation routing of N nodes towards each
destination because it only needs to know which are its primary next-hops and
its backup next-hop on its joker link (if the joker link exists). Therefore, given
destination j each node should create a permutation of Pj(i) (or Pj(i)+1) nodes
where Pj(i) is the position of node i in the permutation P towards destination
j. The average length of the permutations calculated by node i for all destina-
tions would be Ni = 1

N

∑N
j=1 Pj(i) and the average length of the permutations

calculated by N sources for all destination would be N = 1
N

∑N
i=1 Ni.

6 Performance Analysis

We assess routing robustness of AiNHOR in terms of the improved number of
next-hops for primary incoming interfaces towards all destinations. Since adopt-
ing secondary interfaces for packet transportation can lead to path inflation, we
also investigate the hop-count length distribution with various allowed number
of next-hops.

6.1 Evaluation Setup

Increased Robustness with Interface Based Permutation Routing 15

Network Topology We select six representative network topologies from the
Rocketfuel project [28] for our evaluations. For each topology, we remove all
nodes that will not contribute on routing (e.g. single out-degree node). The
refined topologies are bi-connected graphs, listed in Table 1 in increasing order
of their average node out-degrees. In addition, Table II shows their corresponding
line graphs in increasing order of their average node out-degrees.

Table 1: Network topologies
AS Name Nodes Links Avg. Degree

1221 Telstra(au) 50 298 3.88
3967 Exodus(us) 72 280 3.89
1755 Ebone(eu) 75 298 4.00
3257 Tiscali(eu) 115 564 4.90
6461 Abovenet(us) 129 726 5.60
1239 Sprint(us) 284 1882 6.62

Table 2: Transformed graphs
AS Name Nodes Links Avg. Degree

1755 Ebone(eu) 298 1432 4.80
3967 Exodus(us) 280 1372 4.90
1221 Telstra(au) 194 1030 5.30
6461 Abovenet(us) 726 5434 7.50
3257 Tiscali(eu) 564 4378 7.76
1239 Sprint(us) 1882 25988 13.81

Link weight assignments The ECMP and LFA bases its path calculation
on link weights. To obtain realistic link weight settings, we implement local
search heuristic [15] to optimize link load objective function under traffic matrix
generated by the gravity model [27]. For AS1239, we, however, use unit link
weights, because the local search heuristic does not scale to a topology of this
size. Note that permutation routing of links will work with any link weight
settings. We use this approach to show the performance with ”typical” link
weights.

Comparison We compare our AiNHOR with shortest path based routings,
ECMP and LFA, and recent solution ANHOR-SP. Comparisons to other inter-
face based routing methods (e.g. FIR [3], NISR[24] and ESCAPE [23]) are less
relevant because they do not fulfill the four properties stated in our introduction.

We evaluate robustness of all mentioned routing methods in terms of links,
instead of nodes. Accordingly, for given incoming interface (∗ → i), j is called
the primary next-hop of (∗ → i) if (i→ j) is on the SPT towards d. Otherwise,
j is called secondary next-hop and (i→ j) is a secondary link towards d.

16 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

6.2 Robustness Evaluation

Fig. 5 shows fractions of primary interfaces with at least two next-hops under
four methods. We observe that the fractions of AiNHOR vary slightly across
six topologies and are above 97%. Especially, AiNHOR achieves 100% primary
interfaces with two next-hops in AS6461 and AS3257. The good results come
from properties of interface based routing and its operation on the bi-connected
graph. That is a node with at least two outgoing interfaces may have the chance
to installed two loop-free next-hops.

Obviously, AiNHOR gives a clear improvement over LFA and ANHOR-SP.
Fig. 5 shows that LFA and ANHOR-SP protect only from 21% to 67% and from
29% to 81% primary interfaces, respectively, in six tested ISP topologies.

In practice, there are good reasons to limit the number of next-hops that are
installed in the forwarding tables at each interface for a particular destination.
Installing more next-hops will not give much benefit with respect to robustness
or load-balancing. It will, however, require more fast memory in the forwarding
table, and may lead to the unnecessary inclusion of paths that are much longer
than the shortest path. Therefore, those interfaces with high number of next-
hops will likely have some of their next-hops involved in packet forwarding. That
leads to waste many network resources when next-hop distribution resulting from
a routing are more spread out.

Fig. 5: Fraction of pI-D pairs with two routing options.

6.3 Path length distribution

AiNHOR has significantly improved the multipath capability that allows load
balancing and increased fault-tolerance. However, adopting secondary interfaces
for packet forwarding possibly leads to high path inflation which can increase

Increased Robustness with Interface Based Permutation Routing 17

traffic load over non-shortest paths. For that reason, we investigate the distri-
bution of path length for different values of the maximum number of next-hops
for each interface, denoted by K. Note that we have measured the longest path
corresponding to K for each source-destination pair. In other words, we show
the upper bound of the path length for each S-D pair while packets might travel
on much shorter paths in practice (where there is not the case that all primary
links from the source node to the destination simultaneously fail).

(a) AS1755 (b) AS3967

(c) AS1221 (d) AS6461

(e) AS3257 (f) AS1239

Fig. 6: Path length distribution and average path length in hops

Fig. 6 shows the distribution of path lengths in hop for K =1, 2 and 3.
For K = 1, all paths from source nodes to destinations are shortest paths. The
average shortest path length is the left-most vertical line in each sub-figure. In-

18 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

creasing K to 2 and 3 will allow more longer paths and therefore shift the average
upper bounds of path lengths (vertical lines) to the right. Of all topologies, those
upper bounds only increase from 7.5% (AS1239) to 40% (AS6461) for K = 2
and up to 100% (AS6461) for K = 3. In practice, those path lengths are still
comparable to those of shortest path routing.

6.4 Time complexity

The complexity of our proposed algorithms depends on the number of nodes,
links and the length of the permutation for each destination. For all tested
topologies, the average length of permutations for N sources towards N des-
tinations, N , equals half of the total number of nodes (N = 0.5×N).

Fig. 7 shows the relative running time of AiNHOR method to ECMP across
six topologies. The AS topologies are listed in an increasing order of node degrees.
The results are achieved with an Intel Core 2 CPU 6300 @ 1.86 GHz machine.
For the first five topologies, the relative running times are less than ten times.
The result for AS1239 is getting a bit worse, by up to 16 times. Explosion in
both number of nodes and number of directed links in the transformed graph
contribute in such increase. However, it is still computationally feasible.

Fig. 7: Running time

7 Related Work

Many recent solutions proposed in literature seek to increase the protection
coverage with different approaches. We categorized those proposals into two main
groups corresponding to two forwarding methods: the traditional IP forwarding
and the interface-specific forwarding. Examples of the former are Tunnels [19],
Not-via [5], O2 [16], PR [14], ANHOR-SP [21], MRC [6] and IDAGs [26]. The
latter includes FIR [3], ESCAP [23], NISR [24] and LFIR [20].

Increased Robustness with Interface Based Permutation Routing 19

Tunnels [19] and Not-via [5] suggest that IP packets should be encapsulated
at the node adjacent to the failure. Those IP-in-IP packets then are tunneled to
an unaffected node where they are forwarded to the destination. Promising 100%
single failure coverage, the tunnel technique obviously requires high overheads
in tunnel signalling.

O2 [16] and PR [14] are two routings designed for the centralized routing
system. Both O2 and PR use the concept of ”joker” links in which both directions
of a link are used for mutual backups. O2 seeks to maximize the number of nodes
with two next-hops while PR allows nodes to adopt at least two next-hops. In
addition, PR is only suitable for small scale networks due to its high complexity.
ANHOR-SP [21] introduces the concept of permutation routings and proposes
a generic framework, from which various routing objectives for the traditional
IP network can be realized. ANHOR-SP is designed for the distributed routing
system due to its low complexity. ANHOR-SP, however, provides a coverage of
single link faults which is significantly lower than AiNHOR.

MRC [6] and IDAGs [26] use multiple routing tables that cover all possible
failures. Upon detecting a failure on the connected link, the affected node selects
another routing table to avoid network interruption and marks the routing table
index in its packets. Other node will examine such index in incoming packets
and will select the same configuration.

FIR [3] first introduces the interface-specific forwarding concept and proposes
the shortest path based algorithm to construct forwarding tables for incoming
interfaces. FIR offers 100% single link fault coverage while a later version [25]
provides full coverage of single node faults. ESCAPE [23] and NISR [24] share
the same idea with FIR except that routing options are not necessarily bound
to shortest paths. Those papers compute back-up ports for each affected router
by solving an integer linear programming problem involving single component
fault situations. Those methods, however, may produce forwarding loops when
multiple failures occur [20].

8 Conclusion

We have presented the permutation routing of interfaces as a method to in-
crease robustness for IP networks with interface-specific forwarding. Our routing
method is loop-free, does not introduce additional overheads for IP packets and
works with the standard link state routing protocols such as OSPF or IS-IS. Our
method aims to approximate the optimality of the survivability by installing as
many primary interface destination pairs with at least two next-hops as possible.

We have evaluated permutation routing of interfaces with simulations on six
ISP topologies. The results show that permutation routings of interfaces offer
protection coverage above 97% with realistic link weight settings.

References

1. Garcia-Lunes-Aceves, J. J.: Loop-free routing using diffusing computations. IEEE
Trans. on Networking, 1 (1), pp. 130–141 (1993)

20 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

2. Vutukury, S., Garcia-Luna-Aceves, J. J.: MDVA: A Distance-Vector Multipath
Routing Protocol. In: IEEE INFOCOM, pp. 557-564 (2001)

3. Nelakuditi, S.,Lee, S., Yu, Y., Zhang, Z-L., Chuah, C.-N.: Fast local rerouting for
handling transient link failures. IEEE Trans. on Networking, 15, pp. 359–372 (2007)

4. Atlas, A., Zinin, A.: RFC5286: Basic Specification for IP Fast Reroute: Loop-Free
Alternates. (Sep. 2008)

5. Shand, M., Bryant, S., Previdi, S.: IP Fast Reroute Using Not-via Addresses.
Internet-Draft (work in progress, expired in Dec. 2012).

6. Kvalbein, A., Hansen, A.F., Čičic, T., Gjessing S., Lysne, O.: Multiple routing con-
figurations for fast IP network recovery. IEEE Trans. on Networking, 17 (2), (2009)

7. Elhourani, T., Ramasubramanian, S., Kvalbein, A.: Enhancing Shortest Path Rout-
ing for Resilience and Load Balancing. In: ICC, pp. 1–6 (2011)

8. Francois, P., Bryant, S., Decraene, B., Horneffer, M.: LFA applicability in SP net-
works. Internet-Draft (work in progress, expired in Jul. 2012)

9. Nakano, K., Olariu, S., Zomaya, A.Y.: Energy-efficient permutation routing in radio
networks. IEEE Trans. on Parallel and Distributed Systems, 12 (6), (2001)

10. Liang, X., Shen, X: Permutation Routing in All-Optical Product Networks. IEEE
Trans. on Circuits and Systems, 49 (4), pp. 533–538 (2002)

11. Xu, D., Chiang, M., Rexford, J.: DEFT: Distributed Exponentially-Weighted Flow
Splitting. In: IEEE INFOCOM, pp. 71-79 (2007)

12. Kvalbein, A., Dovrolis, C., Muthu, C.: Multipath load-adaptive routing: putting
the emphasis on robustness and simplicity. In: IEEE ICNP, pp. 203–212 (2009)

13. Cormen, T. H., et al.: Introduction to Algorithms. MIT Press, ISBN 0-262-03293-7
14. Kwong, K.-W., Gao L., Gurin, R., Zhang, Z.-L.: On the feasibility and efficacy of

protection routing in IP networks. In: IEEE INFOCOM, pp. 1543–1556 (2010)
15. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights.

In: IEEE INFOCOM, pp. 519-528 (2000)
16. Schollmeier, G., Charzinski, J., Kirstadter, A.: Improving the resilience in IP net-

works. In: HPSR Workshop, pp. 91-96 (2003)
17. Gjoka, M., Ram, V.,Yang, X.: Evaluation of IP Fast Reroute Proposals. In: IEEE

COMSWARE, pp. 1-8 (2007)
18. Ohara, Y., Imahori, S., Meter, R. V.: MARA: Maximum Alternative Routing Al-

gorithm. In: IEEE INFOCOM, pp. 298-306 (2009)
19. Bryant, S., Filsfils, C., Previd, S., Shand M.: IP Fast Reroute Using Tunnels. In:

IETF Internet Draft (expired in May 2008)
20. Enyedi G., Rétvári, G.: A Loop-Free Interface-Based Fast Reroute Technique. In:

NGI, pp.39-44 (2008)
21. Vo, H. Q., Lysne, O., Kvalbein, A.: Permutation Routing for Increased Robustness

in IP Networks. In: Networking 2012, pp. 217-231 (2012)
22. Druken, B., K.: Line graphs and flow nets. In: SDSU Theses and Dissertations

(2010)
23. Xi, K., Chao, H., J.:IP fast rerouting for single-link/node failure recovery. In:

Broadnets, pp. 142-151 (2007)
24. Lee, S., S., W., Tseng, P.-K., Chen, A., Wu, C.-S.: Non-Weighted Interface Specific

Routing for Load-Balanced Fast Local Protection in IP Networks. In: IEEE ICC,
pp.1-6 (2011)

25. Zhong, Z., Nelakuditi, S., Yu, Y., Lee, S., Wang, J., Chuah, C.-N.: Failure infer-
encing based fast rerouting for handling transient link and node failures. In: IEEE
Global Internet (2005)

26. Cho, S., Elhourani, T., Ramasubramanian, S.: Independent directed acyclic graphs
for resilient multipath routing. In: IEEE/ACM Trans. Networking (2012)

27. Nccui, A., Bhattacharyya, S., Taft, N., Diot, C.: IGP link weight assignment for
operational Tier-1 backbones. IEEE Trans. on Networking, 15, pp. 789-802 (2007)

28. Rocketfuel topology mapping. WWW. http://www.cs.washington.edu

