
Simula Research Laboratory Technical Report (2012-17)

Empirically Evaluating Improved Heuristics for Test Data Generation from OCL

Constraints using Search Algorithms

Shaukat Ali, Muhammad Zohaib Iqbal, Andrea Arcuri

Certus Software V&V Center, Simula Research Lab

Norway

{shaukat, zohaib, arcuri}@simula.no

Abstract—Efficiently generating test data is one of the key

testing requirements of automated model-based test case

generation. Keeping this in mind and driven by the needs of

our industrial partners, we propose an improvement in

heuristics that we previously defined to generate test data from

OCL constraints using search algorithms. We evaluate our

improved heuristics using two empirical studies with three

search algorithms: Alternating Variable Method (AVM), (1+1)

Evolutionary Algorithm (EA), and a Genetic Algorithm (GA).

Furthermore, we used Random Search (RS) as a comparison

baseline. The first empirical study was conducted using

carefully designed artificial problems (constraints) to assess

each individual heuristics. The second empirical study is based

on an industrial case study provided by Cisco. The results of

both empirical evaluations reveal that the effectiveness of the

search algorithms, measured in terms of time to solve the OCL

constraints to generate data, is significantly improved when

using the novel heuristics presented in this paper. In

particular, our experiments show that (1+1) EA with the novel

heuristics has the highest success rate among all the analyzed

algorithms, as it requires the least number of iterations to solve

constraints to generate test data.

Keywords-UML; OCL; Search-based testing; Test data;

Empirical evaluation

I. INTRODUCTION

Automated model-based testing requires test data in order to
generate executable test cases. More specifically, when
generating test cases from UML models [1], for instance,
UML state machines, test data is required to solve guard
conditions and change events, which are usually written as
constraints in the Object Constraint Language (OCL)[2].
Generating test data by solving complex industrial OCL
constraints can be difficult due to a large number of clauses
in the constraints, which might include specialized OCL
operations such as oclInState(), includesAll, and forAll() and
a large number of attributes/collections of attributes used in
those constraints.

To efficiently generate test data for OCL constraints, we
previously defined [2, 3] novel heuristics based on branch
distance [4] for various OCL constructs and operations to
guide search algorithms including Genetic Algorithm (GA),
(1+1) Evolutionary Algorithm (EA), and Alternating
Variable Method (AVM). We needed to create a new OCL
solver because, at that time, the available solvers in the
literature did not scale to the complex problems faced by our
industrial partners. The results of our previous empirical

studies show that our approach for generating test data does
actually scale for industrial systems [2, 3].

In this paper, we propose novel, improved heuristics for
generating test data for Boolean operations defined in OCL
including and, or, xor, and implies. The aim is to further
improve the performance of search algorithms in order to
efficiently generate test data. Our motivating assumption is
that, instead of solving a complicated constraint consisting of
several clauses all together, we can improve the performance
of test data generation by solving independent clauses
separately and, then, combining the results of the
independent clauses to solve the complicated constraint.

We empirically evaluate the performance of the
improved heuristics by conducting two sets of experiments.
On one hand, the first set of experiments compares the
improved heuristics with existing heuristics using 28
artificial problems (constraints) carefully designed to
evaluate each heuristic. The results showed that the
improved heuristics significantly improve the effectiveness
of all the algorithms to solve the constraints. However, GA
and RS showed worse performance when compared to (1+1)
EA and AVM for both improved and existing heuristics. On
the other hand, the second set of experiments was performed
on a real industrial case study of model-based robustness
testing of a Video Conferencing System developed by Cisco
Systems, Inc, Norway. We evaluated our improved heuristics
on 42 constraints from the industrial case study using the
three search algorithms and RS. The results were consistent
with the results from the artificial problems, where the novel
heuristics significantly improved the performance of the
search algorithms. Overall, our experiments revealed that
(1+1) EA with the novel heuristics was the most efficient
among all the studied algorithms.

The rest of the paper is organized as follows: Section II
provides background information on our previous work.
Next, Section III provides the details of our novel heuristics.
Section IV discusses the empirical evaluation carried out on
the artificial problems, whereas Section V presents the
results on the industrial case study. Section VI provides
overall discussion on the empirical evaluations followed by
describing threats to validity in Section VII. We compare our
work with the related works in the literature in Section VIII
and finally we conclude the paper in Section IX.

II. BACKGROUND

In our previous works [2, 3], we proposed and assessed
novel heuristics for the application of search-based

Simula Research Laboratory Technical Report (2012-17)

techniques, such as Genetic Algorithms (GAs), (1+1)
Evolutionary Algorithm (EA), and Alternating Variable
Method (AVM), to generate test data from OCL constraints.
A search-based test data generator was implemented in Java
and was evaluated on an industrial case study in addition to
empirical evaluation of each individual proposed heuristics
using several artificial problems.

To guide the search for test data that satisfy OCL
constraints, a heuristic tells ‘how far’ input data are from
satisfying the constraint. For example, let us say we want to
satisfy the constraint x=0, and suppose we have two data
inputs: x1:=5 and x2:=1000. Both inputs x1 and x2 do not
satisfy x=0, but x1 is heuristically closer to satisfy x=0 than
x2. A search algorithm would use such a heuristic as a fitness
function, to reward input data that are closer to satisfy the
target constraint.

To generate test data to solve OCL constraints, we used a
fitness function that is adapted from work done for code
coverage (e.g., for branch coverage in C code [4]). In
particular, we used the so called branch distance (a function
d()), as defined in [4]. The function d() returns 0 if the
constraint is solved, otherwise a positive value that
heuristically estimates how far the constraint was from being
evaluated to true. As for any heuristic, there is no guarantee
that an optimal solution (e.g., in our case, input data
satisfying the constraints) will be found in reasonable time,
but nevertheless many successful results based on such
heuristics are reported in the literature for various software
engineering problems [5]. In cases where we wanted a
constraint to evaluate to false, we simply negated the
constraint and find data for which the negated constraint
evaluates to true. For example, if we want to prevent firing a
guarded transition in a state machine, we can simply negate
the guard and find data for the negated guard. In previous
work, we defined various novel heuristics for calculating
branch distances for various constructs and operations
defined in OCL such as includes(), oclInState(), and forAll().

The operations defined in OCL to combine Boolean
clauses are or, xor, and, not, if then else, and implies. For
these operations, branch distances are adopted from [4] since
they work in a similar way as in programming languages and
are shown in Table I. Operations implies, and xor are
syntactic sugars that usually do not appear in programming
languages such as C and Java, and can be re-expressed using
combinations of and and or operators. The evaluation of d()
on a constraint composed by two clauses is specified in
Table I and can simply be computed for more than two
clauses recursively. In this paper, we provide improvement
in calculating branch distance for these operations as we will
discuss in the next section.

Table I. Branch Distance Calculation for OCL’s Boolean Operations

Boolean operations Branch Distance function

A if A is true then 0 otherwise k

not A if A is false then 0 otherwise k

A and B d(A)+d(B)

A or B min (d(A),d(B))

A implies B d(not A or B)

if A then B

else C

d((A and B) or (not A and C))

A xor B d((A and not B) or (not A and B))

III. IMPROVED BRANCH DISTANCE CALCULATION FOR

LOGICAL OPERATIONS

In this section, we will present our improved branch distance
calculation for the Boolean operations defined in OCL. As
mentioned in Section II, in total there are six operations in
OCL for Boolean clauses. Among them, and, or, xor, and
implies are binary operation and therefore can be used to
combine different constraints. Our main assumption behind
defining the branch distance for these operations is that, by
dividing a complex constraint into a set of small independent
constraints and then solving each of them individually, we
can bring significant improvement over solving the whole
constraint at the same time. By independent constraint, we
mean that the variables used in one constraint are not used in
the other constraints belonging to the main complex
constraint. Mathematically, we can say that a complicated
constraint C consisting of n clauses combined using any of
the Boolean operations (e.g., or, and) can be divided into a
set CI of independent constraints, where CI= {CI1, CI2,
..CIm}, where m<=n. Each CIi is independent, if all variables
v involved in CIi are not used inany variable involved in CIx,
where x is from 1 to m excluding i. Below, we provide
improved branch distance calculations for each of the
Boolean operations defined in OCL. In this section, we show
calculation of branch distance on a constraint consisting of
two clauses and separated by a Boolean operation. However,
this calculation can simply be computed for more than two
clauses joined using different Boolean operations
recursively.

A. Improved-and Branch Distance Calculation

In this case, since each CIi is conjuncted, each CIi must be
solved to obtain the overall result for the complicated
constraint C. If any CIi was not solved, then this means that
C was not solved successfully.

B. Improved-or Branch Distance Calculation

Each CIi in this case is disjuncted and solving only one CIi
will solve C. To improve the performance, first we calculate
branch distance for each CIi based on a randomly generated
test case. Then we select an independent constraint CIj from
CI, which has the minimum branch distance. After selecting
CIj, we instruct the search algorithm to only solve CIj, thus
avoiding the cost of solving and evaluating the remaining
independent constraints. In this case, we need to calculate n
branch distance calculations corresponding to n independent
constraints in C, prior to solving the selected CIj. For
example, if we have a constraint A or B, then branch
distance is calculated as follows:

 If (d(A) <= d(B)) then Solve for A

else Solve for B

However, it could be possible that the chosen CIj is not
feasible. In such cases, if within a predefined number of
fitness evaluations the fitness does not improve, then the
search is re-directed toward one of the other clauses.

C. Improved-implies Branch Distance Calculation

The result of implies operation is true in the following two

Simula Research Laboratory Technical Report (2012-17)

cases: (1) false implies true/false; (2) true/false implies true.
To explain branch distance calculation in this case, consider
a simple constraint A implies B, where A and B are two
operands. By exploiting the definition of implies, we
calculate branch distance as follows.

If (d(not A)<= d(B)) then Solve for not A

 else Solve for B

Notice that we need one branch distance calculation to
calculate d(not A) and one to calculate d(B) based on a
randomly generated test case. This means that we need two
calculations at the beginning to select either not A or B,
depending on which one has the minimum distance. Later
on, the selected one is solved by a search algorithm.

D. Improved-xor Branch Distance Calculation

The result of xor operator is true if any one of the operands
is true and the other is false at the same time. In this case, by
exploiting the definition of xor, we calculate branch distance
as follows:

Considering the example: A xor B

If (d(A)+d(not B) <= d(not A) +d (B)) then

 Solve for (A and not B) using improved-and

else

 Solve for (not A and B) using improved-and

This means that we will calculate the branch distance for
both A and not B and not A and B based on a randomly
generated test case. We then make the search algorithm solve
the constraint that has minimum branch distance. In this
case, we need four branch distance calculations at the
beginning based on a randomly generated test case to select
d(A)+d(Not B) or d(notA) +d (B).

IV. EMPIRICAL EVALUATION ON ARTIFICIAL PROBLEMS

In this section, we will provide an empirical evaluation based
on various artificial problems to evaluate our improved
heuristics.

A. Experiments Design

To empirically evaluate whether the improved heuristics
(IM) defined in Section III really improve the effectiveness
of a search algorithm as compared to existing heuristics
(NIM), we carefully defined artificial problems to evaluate
each improved heuristic. For each of the four Boolean
operations, we defined seven artificial problems covering
various significant OCL operations such as forAll, include,
and one. The model we used for the experiment consists of a
very simple class diagram with one class B. B has two
attributes x and y of type Integer. All the artificial problems
used in the experiment are provided in Table VI in Appendix
A.

In our experiments, we compared three search
algorithms: AVM, GA, (1+1) EA, and used RS as a
comparison baseline to assess the difficulty of the addressed
problems [7]. AVM was selected as a representative of local
search algorithms. GA was selected since it is the most
commonly used global search algorithm in search-based
software engineering [7]. (1+1) EA is simpler than GAs, but

in our previous work we found that it can be more effective
for software testing problems (e.g., see [8, 9]). For GA, we
set the population size to 100 and the crossover rate to 0.75,
with a 1.5 bias for rank selection. We use a standard one-
point crossover, and mutation of a variable is done with the
standard probability 1/n, where n is the number of variables.
Different settings would lead to different performance of a
search algorithm, but standard settings usually perform well
[10].

 In this first set of experiments, we address the following
research questions:

RQ1: Does IM improve the effectiveness of search over
NIM?

RQ2: Among the considered search algorithms (AVM,
GA, (1+1) EA), which one fares best in solving OCL
constraints using IM and how do they compare to RS?

To compare the algorithms for IM and NIM, we followed
the guidelines defined in [11], which recommends a number
of statistical procedures to assess randomized test strategies.
First, we calculated the success rate for each algorithm,
which is defined as the number of times a solution was found
out of the total number of runs (100 in this case). These
success rates are then compared using the Fisher Exact test
(with a significance level of 0.05), quantifying the effect size
using an odds ratio with a 0.5 correction. We chose Fisher
Exact test since for each run of algorithms the result is
binary, i.e., either the result is ‘found’ or ‘not found’ and this
is exactly the situation for which the Fisher’s exact test is
defined. In addition to statistical significance, we used odds
ratios as the results of our experiments are dichotomous. A
value greater than 1 means that IM has more chances of
success as compared to NIM, whereas a value of 1 means no
differences.

When the differences between the success rates of IM
and NIM were not significant for an algorithm, we further
compared the number of iterations taken by the algorithm for
IM and NIM to solve the problems. For this purpose, we used
Mann-Whitney U-test [12], at a significance level of 0.05. In
addition, we report effect size measurements using Vargha
and Delaney’s Â12 statistics, which is a non-parametric
effect size measure. In our context, a value of Â12 less than
0.5 tells that NIM is better than IM in finding solutions in
lesser number of iterations. A value of 0.5 tells that there is
no difference between IM and NIM, whereas a value greater
than 0.5 tells that IM is better than NIM in finding solutions
in lesser number of iterations. In Table II, Table III, and
Table IV, results for Mann-Whitney U-test and Â12 are
italicized and are only shown when the differences are not
significant based on success rates.

B. Experiment Execution

We executed each of the four algorithms 100 times with both
IM and NIM for the 28 problems. We let the algorithms run
up to 10,000 fitness evaluations on each problem and
collected data on whether the algorithms found solutions for
IM and NIM. We used a PC with Intel Core Duo CPU 2.20
GHz with 4 GB of RAM, running Microsoft Windows 7
operating system for the execution of experiment.

Simula Research Laboratory Technical Report (2012-17)

C. Experiment Results and Analysis

In this section, we will answer each of our research
questions.

1) Comparision of IM and NIM for each Algorithm

(RQ1)
Table II shows the results for all the algorithms for IM and
NIM for 28 (P1-P28) artificial problems. P1-P7 are designed
for evaluating the improved-and heuristic, P8-P14 for the
improved-or heuristic, P15-P21 for the improved-implies
heuristic, and P22-P28 for the improved-xor heuristic.

First we discuss the performance of AVM for IM and
NIM. As we observe in Table II that for the Boolean
operation and (P1-P7), IM is significantly better than NIM
for four problems (P1, P3, P4, and P7) and there are no
significant differences for two problems (P5-P6) between IM
and NIM. In case of P2, there is no significant difference
between IM and NIM in terms of success rates, but NIM
finds the solution faster than IM. For the operator or, we
observed that for three problems (P10, P11, and P13) IM is
significantly better than NIM, whereas for P8, P10, and P12,
there were no significant differences. However, for P9 NIM

is significantly better than IM. In case of implies operator, IM
was significantly better than NIM for all problems, either
based on success rates or number of iterations. For operator
xor, IM was better than NIM for four problems and was
worse for three problems. Out of two of these three
problems, there were no significant differences between IM
and NIM, though NIM found solutions quickly. Overall, we
can conclude that IM improved the performance of search in
18 problems. For six of the problems, there were no
significant differences between IM and NIM. For four of the
remaining, there were no significant differences between
NIM and IM in terms of success rates, though NIM found
solutions in lesser number of iterations.

For (1+1) EA, in the case of and, IM is significantly
better than NIM for all the problems. For or, IM is
significantly better than NIM for all the problems except two.
For P12, there were no significant differences. For P13, IM
has higher success rate (0.83) than NIM (0.72), but not
significant (p-value = 0.08). However, in terms of number of
iterations for P13, NIM took significantly less number of
iterations. For implies, IM is significantly better than NIM for

Table II. Results for artificial problems for each algorithm for IM and NIM*

*M: Mean, P: Problem, S(IM): Success rate for IM, S(NIM): Success rate for NIM, O/A: Represents O, i.e., Odds Ratio if results were significant based on success rates

(non-italicized) otherwise represents A, i.e., Â12 when the results are not significant based on success rates (Italics), p-value: Italicized for Mann-Whitney U and non-

Italicized for Fisher’s Exact test, NA: Not Applicable

S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value

1 0.54 0.31 2 0.001 1 0.43 265 1.51E-22 0 0 0.5 1 0 0 0.5 1

2 0.95 1 0.23 1.07E-07 0.81 0.19 17 4.09E-19 0 0 0.5 1 0 0 0.5 1

3 1 1 0.63 0.006 1 0.87 0.758 2.38E-05 0 0 0.5 1 0 0 0.5 1

4 1 1 0.59 0.049 1 1 0.972 5.85E-18 0 0 0.5 1 0 0 0.5 1

5 1 1 0.48 0.47 1 1 0.961 1.02E-16 0 0 0.5 1 0 0 0.5 1

6 0 0.01 1 0.33 0.74 0.62 0.538 0.04 0 0 0.5 1 0 0 0.5 1

7 0.35 0.09 5 1.27E-05 1 1 0.907 5.48E-15 0 0 0.5 1 0 0 0.5 1

8 0.51 0.71 0.42 0.0051 1 1 0.51 4.20E-02 0.31 0.16 2 0.01 1 0.91 20 0.003

9 0.94 1 0.07 0.02 0.93 0.12 88 4.81E-34 0.14 0.18 0.52 4.34E-01 1 0.86 0.71 9.86E-07

10 1 1 0.61 0.08 1 0.86 33 7.49E-05 0.17 0.16 0.49 0.8 1 0.86 0.68 1.87E-06

11 1 1 0.8 4.15E-12 1 1 0.544 3.23E-01 1 1 0.51 0.5 1 1 0.5 0.86

12 1 1 0.5 1 1 1 0.5 1 1 1 0.5 1 1 1 0.5 1

13 0.02 0 7.51 8.20E-11 0.83 0.72 0.421 7.16E-02 0.01 0.02 0.5 0.78 1 0.99 0.79 2.29E-10

14 0.22 0.35 12.33 0.001 1 1 0.296 7.40E-09 0 0 0.5 1 0.68 0.19 8 2.53E-12

15 1 0.8 51 6.64E-07 1 1 1 3.96E-18 1 0.33 405 4.05E-28 1 0.92 18 0.006

16 1 0.99 1 3.95E-18 1 0.19 840 1.08E-37 1 0.13 1303 8.48E-43 1 0.77 61 5.71E-08

17 1 0.99 1 3.87E-18 1 0.85 36 3.46E-05 1 0.24 628 5.75E-34 1 0.82 45 3.29E-06

18 1 1 1 1.55E-23 1 1 1 3.93E-18 1 1 1 3.90E-18 1 1 1 3.90E-18

19 1 1 1 3.88E-18 1 1 1 1.55E-23 1 1 1 1.55E-23 1 1 1 1.55E-23

20 1 0 40401 2.21E-59 1 0.73 75 1.96E-09 1 0.01 13333 2.23E-57 1 0.88 28 0.0003

21 1 0.32 424 1.01E-28 1 1 1 3.95E-18 1 0 40401 2.21E-59 1 0.24 628 5.75E-34

22 1 0.78 57 1.30E-07 1 1 0.705 3.29E-06 0 0.26 0.01 4.60E-09 0 0.86 0.0008 6.91E-42

23 1 1 0.27 3.43E-05 1 0.11 1564 1.05E-44 0 0.17 0.02 7.26E-06 0 0.74 0.001 1.39E-32

24 1 0.97 0.34 0.002 1 0.9 23 0.001 0 0.18 0.02 3.29E-06 0 0.81 0.001 1.08E-37

25 1 1 0.97 1.68E-14 1 1 0.785 1.13E-10 0 1 2.48E-05 2.21E-59 0 1 2.48E-05 2.21E-59

26 0.23 1 0.001 1.11E-34 1 1 0 3.96E-18 0 1 2.48E-05 2.21E-59 0 1 2.48E-05 2.21E-59

27 1 0 40401 2.21E-59 1 0.72 79 8.25E-10 0 0.05 0.08 0.059 0 0.98 0.0001 1.14E-55

28 1 0.45 245 1.59E-21 1 1 0.5 1.68E-02 0 0 0.5 1 0 0.14 0.029 7.49E-05

M 0.81 0.71 0.98 0.80 0.34 0.28 0.49 0.61NA NA NA NA

P#

AVM (1+1) EA RS GA

Simula Research Laboratory Technical Report (2012-17)

all problems. For xor, IM is significantly better than NIM for
all problems, except 22, and 26 in which cases NIM is better.
But in all these three cases P19, P22, and P26, the success
rates for both IM and NIM were equal to 100%. Therefore,
we can conclude that for all these operators, (1+1) EA with
IM shows significantly better results than NIM, except for the
problems that were either simple for the algorithm(i.e., the
success rate was 100%) or for P13, where the success rate of
IM is better, but NIM finds the solution faster.

For RS, in the case of and, success rates for both IM and
NIM are 0%. For or, we observed that for most of the
problems (P10-P14), there are no significant differences
between IM and NIM. For implies, IM is significantly better
than NIM for all problems either based on success rates or
number of iterations. Similar results are observed for xor,
where NIM is significantly better than IM (P22-P26) or there
are no significant differences (P27-P28). Although, success

rates are again very low for RS, i.e., less than equal to 34%
as it can be seen in Table II. Therefore, we can conclude that
there is no significant benefit of using IM rather than NIM
for RS as for both cases, the overall success rates are very
low.

For GA, in case of and, both NIM and IM achieved 0%
success rates. In case of or, IM performed significantly better
than NIM either in terms of success rates or number of
iterations except for P11 and P12. For implies and xor,
success rates for IM are 0% for all the problems and thus
NIM seems to perform significantly better than IM for these
cases.

 To summarize, we can answer our RQ1 as follows:
(1+1) EA with IM significantly improve effectiveness of
solving OCL constraints for generating test data. (1+1) EA
has higher average success rates with IM than NIM, i.e., 0.98
(Table II). In addition, when there were no significant

Table III. Results for artificial problems for IM across algorithms*

* O/A: Represents O, i.e., Odds Ratio if results were significant based on success rates (non-italicized) otherwise represents A, i.e., Â12 when the results are not significant

based on success rates (Italics), p-value: Italicized for Mann-Whitney U and non-Italicized for Fisher’s Exact test

p-value O /A p-value O /A p-value O /A p-value O /A p-value O /A p-value O /A

1 3.17E-17 0.005 5.05E-21 236 5.05E-21 236 2.21E-59 40401 2.21E-59 40401 1 1

2 0.003 4 2.13E-51 3490 2.13E-51 3490 1.08E-37 840 1.08E-37 840 1 1

3 0.11 0.43 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

4 3.13E-05 0.32 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

5 0.0005 0.33 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

6 1.39E-32 0.001 1 1 1 1 1.39E-32 565 1.39E-32 565 1 1

7 6.16E-27 0.002 1.56E-12 109 1.56E-12 109 2.21E-59 40401 2.21E-59 40401 1 1

8 1.32E-18 0.005 0.006 2 1.32E-18 0 2.44E-29 443 1 1 2.44E-29 0.002

9 0.08 0.51 2.22E-33 87 0.02 0 2.58E-32 74 0.01 0.06 6.91E-42 0.001

10 0.13 0.59 2.64E-39 959 1 1 2.64E-39 959 1 1 2.64E-39 0.001

11 0.002 0.61 1 1 1 1 1 1 1 1 1 1

12 1 0.50 1 1 1 1 1 1 1 1 1 1

13 6.91E-36 0.005 1 2 1.14E-55 0.0001 1.90E-37 317 7.26E-06 0.02 2.23E-57 7.50E-05

14 2.08E-35 0.001 1.30E-07 58 7.19E-11 0.13 2.21E-59 40401 2.41E-11 95 1.01E-28 0.002

15 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

16 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

17 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

18 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

19 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

20 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

21 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

22 0.03 0.42 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

23 0.001 0.39 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

24 3.15E-05 0.34 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

25 0.0004 0.32 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

26 1.11E-34 0.002 5.71E-08 61 5.71E-08 61 2.21E-59 40401 2.21E-59 40401 1 1

27 8.37E-05 0.37 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

28 0.005 0.38 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

1+1(EA) vs GA RS vs GA

P#

AVM vs (1+1) EA AVM vs RS AVM vs GA (1+1) EA vs RS

Simula Research Laboratory Technical Report (2012-17)

differences between IM and NIM, most of the time the
algorithm managed to solve constraints in significantly lesser
number of iterations than NIM for successful runs as it can
be seen in italicized Â12 values are greater than 0.5 (eight
column in Table II) with p-values less than 0.05. For AVM,
for more than half of the problems (18 out of 28), IM
significantly improved the effectiveness of search and for six
problems no significant differences were observed in terms
of both success rates and number of iterations. For most of
the remaining problems, IM and NIM have no significant
differences in success rates. For RS and GA, overall we
obtained very low success rates for both IM and NIM, for
instance, 39% and 49% for RS and GA respectively for NIM.

2) Comparision of Algorithms for IM (RQ2)
Table III presents results for IM across each pair of
algorithms for the four algorithms. For each pair, whenever
Odds Ratio (O) is greater than 1, this means that the first
algorithm has more chances of success than the second one.
For instance in comparison of (AVM vs RS), when O>1, this
means that AVM has more chances of success than RS. In
Table III, a value of Â12 (A) less than 0.5 means that the
second algorithm is better than the first one in finding
solutions in lesser number of iterations. A value of Â12=0.5
means no differences and a value greater than 0.5 means that
first algorithm is better than the second one.

First we discuss the performance of AVM in comparison
to other algorithms. In case of AVM vs (1+1) EA, for 18 out
of 28 problems (1+1) EA showed significantly better results
than AVM. For the ten remaining problems, there were no
significant differences between the two algorithms. For
AVM vs RS, in 17 problems AVM shows significantly better
results than RS (indicated in Table III by O values greater
than 1 and p-values less than 0.05). For the remaining 11
problems, there is no difference between the two algorithms.
For AVM vs GA, in the case of 16 problems, AVM showed
significantly better results than GA, for the other 11 there
were no significant differences, whereas for P9, RS was
significantly better than GA.

Next, we discuss the comparison of (1+1) EA with the
remaining algorithms (GA and RS). For (1+1) EA vs RS, in
case of 19 problems, (1+1) EA shows significantly better
performance than RS. For the remaining nine problems,
there were no significant differences. In case of (1+1) EA vs
GA, for 16 problems (1+1) EA showed significantly better
performance. For the 11 problems, there were no statistically
significant differences, whereas for P9, GA was significantly
better than (1+1) EA.

Finally, in case of RS vs GA, for 23 problems, there were
no significant differences and for the remaining five
problems (P8-P10, P13, P14), GA showed significantly
better performance.

Based on the above results, we can conclude that (1+1)
EA with IM is significantly better than the other algorithms
and is best suited for generating test data for OCL
constraints, followed by AVM.

V. INDUSTRIAL CASE STUDY

A. Introduction of the Case Study

Our industrial case study is part of a project aiming at
supporting automated, model-based robustness testing of a
core subsystem of a video conference system (VCS) called
Saturn [13], developed by Cisco Systems, Inc, Norway. The
standard behavior of the system is modeled as a UML 2.0
state machine. In addition, we used Aspect-oriented
Modeling (AOM) and more specifically the AspectSM
profile [14] to model robustness behavior separately as
aspect state machines. The robustness behavior is modeled
based on different functional and non-functional properties,
whose violations lead to erroneous states. Such properties
can be related to the VCS or its environment such as the
network and other systems interacting with the SUT. Some
details and models of the case study, including a partial
woven state machine, are provided in [14]; however, due to
confidentiality reasons, we cannot provide further details.
For test automation, we needed to generate test data from
OCL constraints defined on the environment of Saturn. In
our case study, in total we have 57 constraints and 42 out of
these 57 constraints have more than one clause and thus we
included them in this experiment. These constraints contain
between 6 and 8 clauses and all of these clauses were
conjuncted, therefore we could only evaluate the improved-
and heuristic.

We followed exactly the same design and analysis
methods as for artificial problems except that we ran each
algorithm for 2,000 iterations due to time limitation to
execute the experiment. We answered the same research
questions as we studied for artificial problems.

B. Results and Analysis

1) Comparision of IM and NIM for each Algorithm

(RQ1)

Table IV presents results for IM and NIM for each of the 42

constraints for all the four algorithms. We observed that

mean success rates using IM for all the algorithms are

greater than equal to 98% ; however for NIM mean success

rates are 100%, 80%, 20%, and 50% for AVM, (1+1) EA,

RS, and GA, respectively.
For AVM, for both IM and NIM, success rates are 100%,

therefore, we compared IM and NIM based on number
iterations to solve problems. All Â12 values are greater than
0.5 and p-values less than 0.05 suggesting that IM took
significantly less number of iterations to solve the problems.
For the rest of the three algorithms, IM has either
significantly higher success rates than NIM or took
significantly lower iterations to solve the problems as it can
be seen in Table IV except for Problem 23.

Based on the above results we can conclude that IM
brought significant improvement to all the algorithms.

2) Comparision of Algorithms for IM (RQ2)

Simula Research Laboratory Technical Report (2012-17)

In terms of IM across algorithms as we can observe in Table
IV that success rates for all four algorithms are greater than
or equal to 98%; and thus the differences in terms of success
rates are not significant. Therefore, we performed
comparisons based on number of iterations for each pair of
algorithms as shown in Table V. In Table V, a value of Â12

less than 0.5 means that the second algorithm has higher
chances of finding a solution in lesser number of iterations
than the first one. A value greater than 0.5 means first
algorithm is better than the second one.

For AVM vs (1+1) EA, most of Â12 values are greater
than 0.5 with p-values less than 0.05 (32 out of 42)

Table IV. Results for industrial constraints for each algorithm for IM and NIM*

*M: Mean, P: Problem, S(IM): Success rate for IM, S(NIM): Success rate for NIM, O/A: Represents O, i.e., Odds Ratio if results were significant based on success rates

(non-italicized) otherwise represents A, i.e., Â12 when the results are not significant based on success rates (Italics), p-value: Italicized for Mann-Whitney U and non-

Italicized for Fisher’s Exact test, NA: Not Applicable

S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value

1 1 1 0.68 5.73E-07 1 0.5 201 4.45E-19 1 0.1 1732 1.04E-45 1 0.3 465 5.77E-30

2 1 1 0.74 3.05E-05 1 0.7 87 1.43E-10 1 0.1 1732 1.04E-45 1 0.2 789 6.51E-37

3 1 1 0.83 2.20E-13 1 0.61 129 3.54E-14 1 0.03 5599 3.91E-54 1 0.25 595 2.87E-33

4 1 1 0.85 8.05E-12 1 0.59 140 5.03E-15 1 0.01 13333 2.23E-57 1 0.19 840 1.08E-37

5 1 1 0.75 1.21E-07 1 0.68 95 2.41E-11 1 0.02 7919 1.14E-55 1 0.17 959 2.64E-39

6 1 1 0.80 6.77E-10 1 0.65 109 1.56E-12 1 0 40401 2.21E-59 1 0.14 1199 6.91E-42

7 1 1 0.83 1.02E-13 1 1 0.34 0.005 1 0.8 51 6.64E-07 1 0.7 87 1.43E-10

8 1 1 0.73 2.67E-08 1 0.8 51 6.64E-07 1 0.4 300 3.90E-24 1 0.9 23 0.001

9 1 1 0.72 4.49E-06 1 0.87 31 0.0001 1 0.42 277 4.54E-23 1 0.93 16 0.01

10 1 1 0.71 6.65E-06 1 0.83 42 7.26E-06 1 0.46 236 5.05E-21 1 0.85 36 3.46E-05

11 1 1 0.62 0.008 1 0.89 26 0.0007 1 0.26 565 1.39E-32 1 0.79 54 2.95E-07

12 1 1 0.70 2.40E-06 1 0.85 36 3.46E-05 1 0.35 371 6.16E-27 1 0.83 42 7.26E-06

13 1 1 0.64 6.20E-07 1 0.8 51 6.64E-07 1 0.1 1732 1.04E-45 1 0.4 300 3.90E-24

14 1 1 0.72 3.20E-05 1 0.7 87 1.43E-10 1 0.1 1732 1.04E-45 1 0.4 300 3.90E-24

15 1 1 0.74 3.60E-07 1 0.69 91 5.90E-11 1 0.05 3490 2.13E-51 1 0.37 340 8.62E-26

16 1 1 0.75 1.54E-06 1 0.66 104 3.91E-12 1 0.12 1423 9.76E-44 1 0.38 326 3.13E-25

17 1 1 0.77 5.02E-08 1 0.76 64 2.48E-08 1 0.06 2922 3.77E-50 1 0.17 959 2.64E-39

18 1 1 0.70 1.17E-05 1 0.69 91 5.90E-11 1 0.03 5599 3.91E-54 1 0.22 701 2.08E-35

19 1 1 0.76 3.87E-08 1 0.68 95 2.41E-11 1 0.12 1423 9.76E-44 1 0.43 266 1.51E-22

20 1 1 0.71 5.96E-05 1 0.89 26 0.0007 1 0.18 896 1.73E-38 1 0.64 114 6.13E-13

21 1 1 0.81 2.19E-10 1 0.66 104 3.91E-12 1 0.05 3490 2.13E-51 1 0.3 465 5.77E-30

22 1 1 0.80 6.85E-09 1 0.66 104 3.91E-12 1 0.02 7919 1.14E-55 1 0.31 443 2.44E-29

23 1 1 0.00 3.95E-18 0.55 1 0.01 8.93E-17 0.05 1 0.0002 2.13E-51 0.21 1 0.001 3.75E-36

24 1 1 0.74 3.73E-07 1 0.72 79 8.25E-10 1 0 40401 2.21E-59 1 0.21 743 3.75E-36

25 1 1 0.72 3.82E-06 1 0.85 36 3.46E-05 1 0.66 104 3.91E-12 1 0.94 14 0.02

26 1 1 0.65 0.01 1 0.95 0.48 0.65 1 0.92 0.43 0.11 1 0.97 0.53 0.49

27 1 1 0.72 4.49E-06 1 0.87 31 0.0001 1 0.42 277 4.54E-23 1 0.93 16 0.01

28 1 1 0.71 6.65E-06 1 0.83 42 7.26E-06 1 0.46 236 5.05E-21 1 0.85 36 3.46E-05

29 1 1 0.62 0.008 1 0.89 26 0.0007 1 0.26 565 1.39E-32 1 0.79 54 2.95E-07

30 1 1 0.74 3.73E-07 1 0.72 79 8.25E-10 1 0 40401 2.21E-59 1 0.21 743 3.75E-36

31 1 1 0.76 3.87E-08 1 0.68 95 2.41E-11 1 0.12 1423 9.76E-44 1 0.43 266 1.51E-22

32 1 1 0.71 5.96E-05 1 0.89 26 0.0007 1 0.18 896 1.73E-38 1 0.64 114 6.13E-13

33 1 1 0.81 2.19E-10 1 0.66 104 3.91E-12 1 0.05 3490 2.13E-51 1 0.3 465 5.77E-30

34 1 1 0.80 6.85E-09 1 0.66 104 3.91E-12 1 0.02 7919 1.14E-55 1 0.31 443 2.44E-29

35 1 1 0.73 2.52E-07 1 0.69 91 5.90E-11 1 0.03 5599 3.91E-54 1 0.18 896 1.73E-38

36 1 1 0.74 3.73E-07 1 0.72 79 8.25E-10 1 0 40401 2.21E-59 1 0.21 743 3.75E-36

37 1 1 0.77 9.70E-09 1 0.73 75 1.96E-09 1 0.12 1423 9.76E-44 1 0.52 186 3.85E-18

38 1 1 0.76 2.48E-09 1 0.82 45 3.29E-06 1 0.22 701 2.08E-35 1 0.66 104 3.91E-12

39 1 1 0.74 3.60E-07 1 0.69 91 5.90E-11 1 0.05 3490 2.13E-51 1 0.37 340 8.62E-26

40 1 1 0.75 1.54E-06 1 0.66 104 3.91E-12 1 0.12 1423 9.76E-44 1 0.38 326 3.13E-25

41 1 1 0.77 5.02E-08 1 0.76 64 2.48E-08 1 0.06 2922 3.77E-50 1 0.17 959 2.64E-39

42 1 1 0.70 1.17E-05 1 0.69 91 5.90E-11 1 0.03 5599 3.91E-54 1 0.22 701 2.08E-35

M 1 1 0.99 0.75 0.98 0.20 0.98 0.48NA NA NANA

P#

AVM (1+1) EA RS GA

Simula Research Laboratory Technical Report (2012-17)

suggesting that AVM has significantly higher chances of
solving constraints in lesser number of iterations than (1+1)
EA. Similar results can be seen for AVM vs RS (28 out of
42) and AVM vs GA (26 out of 42) in Table V. For (1+1)
EA vs RS, for 23 out of 42 problems, (1+1) EA took
significantly less iterations than RS, whereas in nine it took
significantly more iterations than RS, and no differences
were observed in 10 problems. For (1+1) EA vs GA, (1+1)
EA took significantly less iterations than GA for 16
problems, where (1+1) EA took significantly more iterations
than GA in 13 problems, and no differences were observed

for the rest of the problems. For RS vs GA, in case of 16
problems Â12 values are below 0.5 with p-values less than
0.05 suggesting RS has significantly higher chances of
solving constraints with more iterations than GA. For 12
problems, RS took significantly less iterations than GA,
whereas for the remaining 14 problems no significant
differences were observed.

Based on the above results, we can conclude that for the
industrial case study, AVM has higher chances of solving
constraints with lesser number of iterations with IM than
other algorithms.

Table V. Results for industrial constraints for IM across algorithms

A12 p-value A12 p-value A12 p-value A12 p-value A12 p-value A12 p-value

1 0.87 1.31E-11 0.50 0.22 0.59 0.0001 0.70 3.69E-18 0.74 1.86E-30 0.69 5.73E-23

2 0.78 1.18E-09 0.40 0.01 0.53 0.06 0.59 2.30E-06 0.67 3.44E-18 0.67 7.46E-19

3 0.76 1.32E-07 0.34 5.26E-09 0.38 4.30E-10 0.43 2.21E-06 0.47 0.0003 0.48 0.001

4 0.75 1.27E-08 0.34 4.25E-09 0.37 8.66E-12 0.43 1.43E-06 0.46 0.0002 0.46 0.0002

5 0.74 1.82E-08 0.37 5.98E-08 0.40 6.68E-10 0.46 1.37E-05 0.48 0.0005 0.48 0.0006

6 0.79 8.54E-09 0.28 1.27E-13 0.33 5.11E-16 0.38 1.25E-12 0.43 2.46E-08 0.45 9.25E-06

7 0.40 1.28E-06 0.74 2.27E-21 0.79 5.79E-30 0.75 1.57E-27 0.72 3.42E-27 0.68 2.57E-23

8 0.26 3.88E-09 0.67 8.57E-11 0.71 1.20E-19 0.62 8.37E-09 0.60 1.44E-06 0.60 1.64E-08

9 0.58 0.34 0.52 0.55 0.55 0.08 0.57 0.007 0.57 0.0002 0.56 0.0006

10 0.49 0.35 0.56 0.04 0.54 0.17 0.54 0.07 0.53 0.29 0.51 0.75

11 0.50 0.85 0.55 0.08 0.56 0.02 0.56 0.01 0.55 0.005 0.54 0.03

12 0.52 0.88 0.53 0.47 0.53 0.78 0.53 0.59 0.52 0.73 0.51 0.86

13 0.74 1.19E-10 0.44 0.006 0.56 0.02 0.61 1.04E-07 0.68 4.26E-22 0.69 1.44E-25

14 0.69 2.18E-07 0.40 1.07E-05 0.56 0.20 0.56 0.04 0.63 1.32E-09 0.67 9.24E-17

15 0.71 1.24E-06 0.40 7.09E-05 0.44 1.46E-05 0.49 0.04 0.51 0.29 0.51 0.24

16 0.67 0.0001 0.45 0.01 0.44 1.56E-05 0.49 0.01 0.49 0.01 0.47 0.001

17 0.80 1.81E-10 0.36 4.04E-08 0.40 5.06E-09 0.47 0.0006 0.51 0.05 0.50 0.06

18 0.73 8.03E-08 0.36 2.81E-08 0.38 1.82E-11 0.43 6.61E-07 0.45 1.21E-05 0.45 1.38E-05

19 0.72 1.39E-06 0.42 0.0002 0.49 0.049 0.53 0.61 0.57 0.12 0.57 0.03

20 0.71 3.11E-07 0.40 4.39E-06 0.46 0.0009 0.50 0.03 0.54 0.87 0.55 0.46

21 0.76 4.42E-09 0.37 5.82E-08 0.40 2.12E-09 0.46 0.0001 0.49 0.007 0.49 0.005

22 0.71 2.84E-05 0.38 1.50E-05 0.39 5.19E-08 0.44 0.0001 0.46 0.0007 0.46 0.0003

23 0.94 1.15E-17 0.04 4.26E-34 0.04 4.03E-50 0.16 1.73E-41 0.24 2.18E-35 0.28 2.77E-34

24 0.72 3.97E-05 0.36 1.64E-05 0.39 3.04E-07 0.44 0.0001 0.46 0.001 0.47 0.001

25 0.48 0.32 0.59 0.0006 0.63 7.69E-08 0.62 6.61E-09 0.62 1.45E-10 0.61 3.96E-09

26 0.50 0.10 0.59 3.00E-05 0.62 6.39E-08 0.61 3.68E-09 0.61 5.43E-09 0.59 7.30E-07

27 0.58 0.34 0.52 0.55 0.55 0.08 0.57 0.007 0.57 0.0002 0.56 0.0006

28 0.49 0.35 0.56 0.03 0.54 0.17 0.54 0.07 0.53 0.29 0.51 0.75

29 0.50 0.85 0.55 0.07 0.56 0.02 0.56 0.005 0.55 0.005 0.54 0.03

30 0.72 3.97E-05 0.36 1.64E-05 0.39 3.04E-07 0.44 0.0001 0.46 0.001 0.47 0.001

31 0.72 1.39E-06 0.42 0.0002 0.49 0.049 0.53 0.61 0.57 0.12 0.57 0.03

32 0.71 3.11E-07 0.40 4.39E-06 0.46 0.0009 0.50 0.03 0.54 0.87 0.55 0.46

33 0.76 4.42E-09 0.37 5.82E-08 0.40 2.12E-09 0.46 0.0001 0.49 0.007 0.49 0.005

34 0.71 2.84E-05 0.38 1.50E-05 0.39 5.19E-08 0.44 0.0001 0.46 0.0007 0.46 0.0003

35 0.76 5.21E-09 0.39 1.21E-05 0.42 1.46E-06 0.48 0.02 0.51 0.17 0.50 0.08

36 0.72 3.97E-05 0.36 1.64E-05 0.39 3.04E-07 0.44 0.0001 0.46 0.001 0.47 0.001

37 0.68 0.0001 0.44 0.02 0.52 0.78 0.56 0.35 0.60 0.001 0.60 0.0003

38 0.75 3.54E-07 0.39 0.0001 0.47 0.03 0.52 0.87 0.57 0.02 0.57 0.009

39 0.71 1.24E-06 0.40 7.09E-05 0.44 1.46E-05 0.49 0.04 0.51 0.29 0.51 0.24

40 0.67 0.0001 0.45 0.00526 0.44 1.56E-05 0.49 0.01 0.49 0.01 0.47 0.001

41 0.80 1.81E-10 0.36 4.04E-08 0.40 5.06E-09 0.47 0.0006 0.51 0.05 0.50 0.06

42 0.73 8.03E-08 0.36 2.81E-08 0.38 1.82E-11 0.43 6.61E-07 0.45 1.21E-05 0.45 1.38E-05

(1+1) EA vs RS (1+1) EA vs GA RS vs GA

P#

AVM vs (1+1) EA AVM vs RS AVM vs GA

Simula Research Laboratory Technical Report (2012-17)

VI. OVERALL DISCUSSION

Based on the results of our empirical analyses, we

recommend using (1+1) EA with IM for solving constraints

since the effectiveness of the algorithm was better than all

the other algorithms we compared, as we discussed in

Section IV based on artificial problems on which all four

heuristics were applied. However, we found that AVM was

the best algorithm for the industrial case study as we

discussed in Section V. Notice that, in the industrial case

study, we could only evaluate the heuristic for and operator

and, even in this case, there were no significant differences

across success rates of AVM and (1+1) EA, which are

100% and 99% respectively. Based on these observations,

we suggest using AVM when the constraints are conjuncted

and there is limited time as it may find solutions quicker

than (1+1) EA. If we are flexible with time budget (e.g., the

constraints need to be solved only once, and the cost of

doing that is negligible compared to other costs in the

testing phase), we rather recommend running (1+1) EA for

as many iterations as possible as we notice that the success

rate for (1+1) EA was 99% on average for the industrial

case study, whereas for the artificial problems, it has mean

success rate of 98% with IM and AVM has 81% of average

success rate (Table II).
The difference in performance between AVM and (1+1)

EA has a clear explanation. AVM works like a sort of greedy
local search. If the fitness function provides a clear gradient
towards the global optima, then AVM will quickly converge
to one of them. On the other hand, (1+1) EA puts more focus
on the exploration of the search landscape. When there is a
clear gradient toward global optima, (1+1) EA is still able to
reach those optima in reasonable time, but it will spend some
time in exploring other areas of the search space. This latter
property becomes essential in difficult landscapes where
there are many local optima. In these cases, AVM gets stuck
and has to re-start from other points in the search landscape.
On the other hand, (1+1) EA, thanks to its mutation operator,
has always a non-zero probability of escaping from local
optima.

VII. THREATS TO VALIDITY

To reduce construct validity threats, we used search success
rate measure, which is comparable across all four search
algorithms (AVM, (1+1) EA, GA and RS). Furthermore, we
used the same stopping criterion for all algorithms, i.e.,
number of iterations. This criterion is a comparable measure
of efficiency across all the algorithms.

The most probable conclusion validity threat in
experiments involving randomized algorithms is due to
random variations. To address it, we repeated experiments
100 times to reduce the possibility that the results were
obtained by chance. Furthermore, we performed Fisher exact
tests to compare proportions and determine the statistical
significance of the results. To determine the practical
significance of the results obtained, we measured the effect
size using the odds ratio of success rates across search
techniques, we used Mann-Whitney U-test [12] to determine

significance of results and Vargha and Delaney’s Â12
statistics for report effect sizes, using the guidelines for
reporting results of randomized algorithms presented in [11].

A possible threat to internal validity is that we have
experimented with only one configuration setting for the GA
parameters. However, these settings are in accordance with
the common guidelines in the literature and our previous
experience on testing problems. Parameter tuning can
improve the performance of GAs, although default
parameters often provide reasonable results [10].

We ran our experiments on an industrial case study to
generate test data for 42 different OCL constraints, ranging
from constraints having just six to eight clauses. Although
the empirical analysis is based on a real industrial system,
our results might not generalize to other case studies.
However, such threat to external validity is common to all
empirical studies. In addition to the industrial case study, we
also conducted an empirical evaluation of each proposed
branch distance calculation using small yet complex artificial
problems to demonstrate that the effectiveness of our
heuristics holds even for more complex problems. In
addition, empirically evaluating all proposed branch distance
calculations on artificial problems was necessary since it was
not possible to evaluate them for all features of OCL in the
industrial case study, due to its inherent properties.

VIII. RELATED WORK

A number of approaches use constraint solvers for analyzing
OCL constraints for various purposes. These approaches
usually translate constraints and models into a formalism
(e.g., Alloy [15], temporal logic BOTL [16], FOL [17],
graph constraints [18]), which can then be analyzed by a
constraint analyzer (e.g., Alloy constraint analyzer [19],
model checker [16], Satisfiability Modulo Theories (SMT)
Solver [17], theorem prover [17]). Satisfiability Problem
(SAT) solvers have also been used for evaluating OCL
specifications ,e.g., for OCL operation contracts (e.g., [20]).

Some approaches are reported in the literature to solve
OCL constraints and generate data that evaluate the
constraints to true. The data generated can then be used as
test data. Most of these approaches do not handle important
features of OCL (e.g., Collections) and UML, and are based
on formal constraint solving techniques, such as SAT solving
(e.g., [21]), constraint satisfaction problem (CSP) (e.g., [22]),
higher order logic (HOL) [23], and partition analysis (e.g.,
[24]). The work presented in [22] is one of the most
sophisticated approaches reported so far. However, its focus
is on the verification of correctness properties, though it
generates an instantiation of the model as part of its process.
The major limitation of the approach is that the search space
is bounded and, as the bounds are raised, CSP faces a
quickly increasing combinatorial explosion (as discussed in
[22]). The task of determining the optimal bounds for
verification is left to the user and considering that models of
industrial applications can have a large number of attributes,
manually finding bounds for individual attributes is often
impractical. We present the results of an experiment that we
conducted to compare our novel approach with this approach
[22] which has a downloadable tool available in [3]. The

Simula Research Laboratory Technical Report (2012-17)

results showed that our approach is significantly more
efficient.

Existing approaches for OCL constraint solving do not
fully fit the needs we identified with our industrial partners.
Most of the approaches are only limited to simple numerical
expressions and do not handle collections, which are used
widely to specify expressions that navigate over associations.
These limitations are due to the high expressiveness of OCL
that makes the definitions of constraints easier, but their
analysis more difficult. The conversion of OCL to a SAT
formula or a CSP instance can easily result in a
combinatorial explosion as the complexity of the model and
constraints increases (as discussed in [22]). Most of the
discussed approaches listed in this section either do not
support the OCL constructs present in the constraints that we
have in our industrial case study or are not efficient to solve
them. Hence, existing techniques based on conversion to
lower-level languages seem impractical in the context of
large scale, real-world systems.

Most of the above approaches are different from our
work, since we want to generate test data based on OCL
constraints provided by modelers on UML state and class
diagrams. These diagrams may be developed for
environment models (for example, as in [25]) or system
models (for example [14]) and the modeler should be
allowed to use the standard OCL. We also wanted a tool that
can be easily integrated with different state-based testing
approaches and is completely automated.

IX. CONCLUSION

Test data generation from OCL constraints is an
important problem for automated model-based testing. In
this paper, we proposed four new heuristics for solving OCL
constraints to generate test data. The improved heuristics are
based on the process of dividing a given constraint into its
independent sub constraints and solving them separately, by
first focusing on the ones that are easier to solve. The new
heuristics correspond to the four primary operations for OCL
constraints (and, or, implies, and xor). We conducted two
empirical studies, one on 28 artificial constraints and the
other on 42 constraints from an industrial case study, to
evaluate the performance of improved heuristics and
comparing them with previously defined heuristics. For this
purpose, we used three search algorithms: (1+1)
Evolutionary Algorithm (EA), Genetic Algorithms (GA),
and Alternating Variable Method (AVM). The results of the
empirical studies show that the novel heuristics lead to
significantly better performance for each algorithm, on both
the artificial problems and the industrial case study. Overall,
(1+1) EA with the improved heuristics showed best
performance among all the algorithms and it is the most
viable algorithm to be used in practice.

REFERENCES

[1] R. V. Binder, Testing object-oriented systems: models, patterns, and tools:

Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] OCL. Object Constraint Language Specification, Version 2.2. Available:

http://www.omg.org/spec/OCL/2.2/, Accessed: April, 2012

[3] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "Generating Test Data from

OCL Constraints with Search Techniques," Simula Reserach Laboratory,

Technical Report (2010-16)2012.

[4] P. McMinn, "Search-based software test data generation: a survey: Research
Articles," Softw. Test. Verif. Reliab., vol. 14, pp. 105-156, 2004.

[5] M. Harman, S. A.Mansouri, and Y. Zhang, "Search based software

engineering: A comprehensive analysis and review of trends techniques and

applications," King’s College,Technical Report TR-09-032009.

[6] S. Ali, M. Z. Iqbal, and A. Arcuri, "Empirically Evaluating Improved

Heuristics for Test Data Generation from OCL Constraints using Search

Algorithms," Simula Reserach Laboratory, Technical Report (2012-17), 2012.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A
Systematic Review of the Application and Empirical Investigation of Search-

Based Test Case Generation," IEEE Transactions on Software Engineering, vol.

99, 2009.

[8] A. Arcuri, "It really does matter how you normalize the branch distance in

search-based software testing," Software Testing, Verification and Reliability,

2011.

[9] M. Z. Iqbal, A. Arcuri, and L. Briand, "Empirical Investigation of Search

Algorithms for Environment Model-Based Testing of Real-Time Embedded
Software " in International Symposium on Software Testing and Analysis

(ISSTA), 2012.

[10] A. Arcuri and G. Fraser, "On Parameter Tuning in Search Based Software

Engineering," presented at the International Symposium on Search Based

Software Engineering (SSBSE), 2011.

[11] A. Arcuri and L. Briand., "A Practical Guide for Using Statistical Tests to

Assess Randomized Algorithms in Software Engineering," presented at the
International Conference on Software Engineering (ICSE), 2011.

[12] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures: Chapman and Hall/CRC, 2007.

[13] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model

Transformations as a Strategy to Automate Model-Based Testing - A Tool and

Industrial Case Studies," Simula Research Laboratory, Technical Report (2010-

01)2010.

[14] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior
Using Aspect-Oriented Modeling to Support Robustness Testing of Industrial

Systems," Simula Research Laboratory, Technical Report (2010-03)2010.

[15] B. Bordbar and K. Anastasakis, "UML2Alloy: A tool for lightweight

modelling of Discrete Event Systems," presented at the IADIS International

Conference in Applied Computing, 2005.

[16] D. Distefano, J.-P. Katoen, and A. Rensink, "Towards model checking

OCL," presented at the ECOOP-Workshop on Defining Precise Semantics for
UML, 2000.

[17] M. Clavel and M. A. G. d. Dios, "Checking unsatisfiability for OCL

constraints," presented at the In the proceedings of the 9th OCL 2009 Workshop

at the UML/MoDELS Conferences, 2009.

[18] J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. ster, "Translation of

Restricted OCL Constraints into Graph Constraints for Generating Meta Model

Instances by Graph Grammars," Electron. Notes Theor. Comput. Sci., vol. 211,

pp. 159-170, 2008.
[19] D. Jackson, I. Schechter, and H. Shlyahter, "Alcoa: the alloy constraint

analyzer," presented at the Proceedings of the 22nd international conference on

Software engineering, Limerick, Ireland, 2000.

[20] M. Krieger and A. Knapp, "Executing Underspecified OCL Operation

Contracts with a SAT Solver," presented at the 8th International Workshop on

OCL Concepts and Tools., 2008.

[21] L. v. Aertryck and T. Jensen, "UML-Casting: Test synthesis from UML

models using constraint resolution," presented at the Approches Formelles dans
l'Assistance au Développement de Logiciels (AFADL'2003), 2003.

[22] J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class

Diagrams using Constraint Programming," presented at the Proceedings of the

2008 IEEE International Conference on Software Testing Verification and

Validation Workshop, 2008.

[23] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff, "A Specification-

Based Test Case Generation Method for UML/OCL," presented at the
Worksshop on OCL and Textual Modelling, MoDELS, 2010.

[24] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, "Test case automate

generation from uml sequence diagram and ocl expression," presented at the

International Conference on cimputational Intelligence and Security, 2007.

[25] M. Iqbal, A. Arcuri, and L. Briand, "Environment Modeling with

UML/MARTE to Support Black-Box System Testing for Real-Time Embedded

Systems: Methodology and Industrial Case Studies," presented at the

International Conference on Model Driven Engineering Languages and Systems
(MODELS), 2010.

http://www.omg.org/spec/OCL/2.2/

Simula Research Laboratory Technical Report (2012-17)

X. APPENDIX A: ARTIFICAL PROBLEMS

Table VI. Artificial Problems used in the Experiment

P# Constraint

1 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92)

2 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x)

3 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95)

4 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->collect(b|b.x)->includes(17)

5 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->collect(b|b.x)->excludes(0)

6 B.allInstances()->forAll(b|b.x=47) and let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c)

7 B.allInstances()->forAll(b|b.x=47) and let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-
>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c)

8 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92)

9 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x)

10 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95)

11 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->collect(b|b.x)->includes(17)

12 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->collect(b|b.x)->excludes(0)

13 B.allInstances()->forAll(b|b.x=47) or let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c)

14 B.allInstances()->forAll(b|b.x=47) or let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-

>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c)

15 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92)

16 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x)

17 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95)

18 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->collect(b|b.x)->includes(17)

19 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->collect(b|b.x)->excludes(0)

20 B.allInstances()->forAll(b|b.x=47) implies let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c)

21 B.allInstances()->forAll(b|b.x=47) implies let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-
>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c)

22 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92)

23 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x)

24 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95)

25 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->collect(b|b.x)->includes(17)

26 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->collect(b|b.x)->excludes(0)

27 B.allInstances()->forAll(b|b.x=47) xor let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c)

28 B.allInstances()->forAll(b|b.x=47) xor let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-
>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c)

