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Abstract—Efficiently generating test data is one of the key 

testing requirements of automated model-based test case 

generation. Keeping this in mind and driven by the needs of 

our industrial partners, we propose an improvement in 

heuristics that we previously defined to generate test data from 

OCL constraints using search algorithms. We evaluate our 

improved heuristics using two empirical studies with three 

search algorithms: Alternating Variable Method (AVM), (1+1) 

Evolutionary Algorithm (EA), and a Genetic Algorithm (GA). 

Furthermore, we used Random Search (RS) as a comparison 

baseline. The first empirical study was conducted using 

carefully designed artificial problems (constraints) to assess 

each individual heuristics. The second empirical study is based 

on an industrial case study provided by Cisco. The results of 

both empirical evaluations reveal that the effectiveness of the 

search algorithms, measured in terms of time to solve the OCL 

constraints to generate data, is significantly improved when 

using the novel heuristics presented in this paper. In 

particular, our experiments show that (1+1) EA with the novel 

heuristics has the highest success rate among all the analyzed 

algorithms, as it requires the least number of iterations to solve 

constraints to generate test data.  
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I.  INTRODUCTION 

Automated model-based testing requires test data in order to 
generate executable test cases. More specifically, when 
generating test cases from UML models [1], for instance, 
UML state machines, test data is required to solve guard 
conditions and change events, which are usually written as 
constraints in the Object Constraint Language (OCL)[2]. 
Generating test data by solving complex industrial OCL 
constraints can be difficult due to a large number of clauses 
in the constraints, which might include specialized OCL 
operations such as oclInState(), includesAll, and forAll() and 
a large number of attributes/collections of attributes used in  
those constraints.   

To efficiently generate test data for OCL constraints, we 
previously defined [2, 3] novel heuristics based on branch 
distance [4] for various OCL constructs and operations to 
guide search algorithms including Genetic Algorithm (GA), 
(1+1) Evolutionary Algorithm (EA), and Alternating 
Variable Method (AVM). We needed to create a new OCL 
solver because, at that time, the available solvers in the 
literature did not scale to the complex problems faced by our 
industrial partners. The results of our previous empirical 

studies show that our approach for generating test data does 
actually scale for industrial systems [2, 3].  

In this paper, we propose novel, improved heuristics for 
generating test data for Boolean operations defined in OCL 
including and, or, xor, and implies. The aim is to further 
improve the performance of search algorithms in order to 
efficiently generate test data. Our motivating assumption is 
that, instead of solving a complicated constraint consisting of 
several clauses all together, we can improve the performance 
of test data generation by solving independent clauses 
separately and, then, combining the results of the 
independent clauses to solve the complicated constraint.  

We empirically evaluate the performance of the 
improved heuristics by conducting two sets of experiments. 
On one hand, the first set of experiments compares the 
improved heuristics with existing heuristics using 28 
artificial problems (constraints) carefully designed to 
evaluate each heuristic. The results showed that the 
improved heuristics significantly improve the effectiveness 
of all the algorithms to solve the constraints. However, GA 
and RS showed worse performance when compared to (1+1) 
EA and AVM for both improved and existing heuristics. On 
the other hand, the second set of experiments was performed 
on a real industrial case study of model-based robustness 
testing of a Video Conferencing System developed by Cisco 
Systems, Inc, Norway. We evaluated our improved heuristics 
on 42 constraints from the industrial case study using the 
three search algorithms and RS. The results were consistent 
with the results from the artificial problems, where the novel 
heuristics significantly improved the performance of the 
search algorithms. Overall, our experiments revealed that 
(1+1) EA with the novel heuristics was the most efficient 
among all the studied algorithms. 

The rest of the paper is organized as follows:  Section II 
provides background information on our previous work. 
Next, Section III provides the details of our novel heuristics. 
Section IV discusses the empirical evaluation carried out on 
the artificial problems, whereas Section V presents the 
results on the industrial case study. Section VI provides 
overall discussion on the empirical evaluations followed by 
describing threats to validity in Section VII. We compare our 
work with the related works in the literature in Section VIII 
and finally we conclude the paper in Section IX. 

II. BACKGROUND 

In our previous works [2, 3], we proposed and assessed 
novel heuristics for the application of search-based 
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techniques, such as Genetic Algorithms (GAs), (1+1) 
Evolutionary Algorithm (EA), and Alternating Variable 
Method (AVM), to generate test data from OCL constraints. 
A search-based test data generator was implemented in Java 
and was evaluated on an industrial case study in addition to 
empirical evaluation of each individual proposed heuristics 
using several artificial problems.  

To guide the search for test data that satisfy OCL 
constraints, a heuristic tells ‘how far’ input data are from 
satisfying the constraint. For example, let us say we want to 
satisfy the constraint x=0, and suppose we have two data 
inputs: x1:=5 and x2:=1000. Both inputs x1 and x2 do not 
satisfy x=0, but x1 is heuristically closer to satisfy x=0 than 
x2. A search algorithm would use such a heuristic as a fitness 
function, to reward input data that are closer to satisfy the 
target constraint. 

To generate test data to solve OCL constraints, we used a 
fitness function that is adapted from work done for code 
coverage (e.g., for branch coverage in C code [4]). In 
particular, we used the so called branch distance (a function 
d()), as defined in [4]. The function d() returns 0 if the 
constraint is solved, otherwise a positive value that 
heuristically estimates how far the constraint was from being 
evaluated to true. As for any heuristic, there is no guarantee 
that an optimal solution (e.g., in our case, input data 
satisfying the constraints) will be found in reasonable time, 
but nevertheless many successful results based on such 
heuristics are reported in the literature for various software 
engineering problems [5]. In cases where we wanted a 
constraint to evaluate to false, we simply negated the 
constraint and find data for which the negated constraint 
evaluates to true. For example, if we want to prevent firing a 
guarded transition in a state machine, we can simply negate 
the guard and find data for the negated guard. In previous 
work, we defined various novel heuristics for calculating 
branch distances for various constructs and operations 
defined in OCL such as includes(), oclInState(), and forAll().  

The operations defined in OCL to combine Boolean 
clauses are or, xor, and, not, if then else, and implies. For 
these operations, branch distances are adopted from [4] since 
they work in a similar way as in programming languages and 
are shown in Table I. Operations implies, and xor are 
syntactic sugars that usually do not appear in programming 
languages such as C and Java, and can be re-expressed using 
combinations of and and or operators. The evaluation of d() 
on a constraint composed by two clauses is specified in 
Table I and can simply be computed for more than two 
clauses recursively. In this paper, we provide improvement 
in calculating branch distance for these operations as we will 
discuss in the next section.  

Table I. Branch Distance Calculation for OCL’s Boolean Operations 

Boolean operations Branch Distance function 

A if A is true then 0 otherwise k  

not A if A is false then 0 otherwise k 

A and B d(A)+d(B) 

A or B min (d(A),d(B)) 

A implies B d(not A or B) 

if A then B 

else C 

d((A and B) or (not A and C)) 

A xor B d((A and not B) or (not A and B))  

III. IMPROVED BRANCH DISTANCE CALCULATION FOR 

LOGICAL OPERATIONS 

In this section, we will present our improved branch distance 
calculation for the Boolean operations defined in OCL. As 
mentioned in Section II, in total there are six operations in 
OCL for Boolean clauses. Among them, and, or, xor, and 
implies are binary operation and therefore can be used to 
combine different constraints. Our main assumption behind 
defining the branch distance for these operations is that, by 
dividing a complex constraint into a set of small independent 
constraints and then solving each of them individually, we 
can bring significant improvement over solving the whole 
constraint at the same time. By independent constraint, we 
mean that the variables used in one constraint are not used in 
the other constraints belonging to the main complex 
constraint. Mathematically, we can say that a complicated 
constraint C consisting of n clauses combined using any of 
the Boolean operations (e.g., or, and) can be divided into a 
set CI of independent constraints, where CI= {CI1, CI2, 
..CIm}, where m<=n. Each CIi is independent, if all variables 
v involved in CIi are not used inany variable involved in CIx, 
where x is from 1 to m excluding i. Below, we provide 
improved branch distance calculations for each of the 
Boolean operations defined in OCL. In this section, we show 
calculation of branch distance on a constraint consisting of 
two clauses and separated by a Boolean operation. However, 
this calculation can simply be computed for more than two 
clauses joined using different Boolean operations 
recursively. 

A. Improved-and Branch Distance Calculation 

In this case, since each CIi is conjuncted, each CIi must be 
solved to obtain the overall result for the complicated 
constraint C. If any CIi was not solved, then this means that 
C was not solved successfully.  

B. Improved-or Branch Distance Calculation 

Each CIi in this case is disjuncted and solving only one CIi 
will solve C. To improve the performance, first we calculate 
branch distance for each CIi based on a randomly generated 
test case. Then we select an independent constraint CIj from 
CI, which has the minimum branch distance. After selecting 
CIj, we instruct the search algorithm to only solve CIj, thus 
avoiding the cost of solving and evaluating the remaining 
independent constraints. In this case, we need to calculate n 
branch distance calculations corresponding to n independent 
constraints in C, prior to solving the selected CIj. For 
example, if we have a constraint A or B, then branch 
distance is calculated as follows: 

 If (d(A) <= d(B)) then Solve for A 

else  Solve for B 

However, it could be possible that the chosen CIj is not 
feasible. In such cases, if within a predefined number of 
fitness evaluations the fitness does not improve, then the 
search is re-directed toward one of the other clauses. 

C.   Improved-implies Branch Distance Calculation 

The result of implies operation is true in the following two 
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cases: (1) false implies true/false; (2) true/false implies true. 
To explain branch distance calculation in this case, consider 
a simple constraint A implies B, where A and B are two 
operands. By exploiting the definition of implies, we 
calculate branch distance as follows.  

If (d(not A)<= d(B)) then Solve for not A 

 else Solve for B 

Notice that we need one branch distance calculation to 
calculate d(not A) and one to calculate d(B) based on a 
randomly generated test case. This means that we need two 
calculations at the beginning to select either not A or B, 
depending on which one has the minimum distance. Later 
on, the selected one is solved by a search algorithm. 

D. Improved-xor Branch Distance Calculation 

The result of xor operator is true if any one of the operands 
is true and the other is false at the same time. In this case, by 
exploiting the definition of xor, we calculate branch distance 
as follows: 

Considering the example: A xor B 

If (d(A)+d(not B) <= d(not A) +d (B)) then 

 Solve for (A and not B) using improved-and 

else 

 Solve for (not A and B) using improved-and 

This means that we will calculate the branch distance for 
both A and not B and not A and B based on a randomly 
generated test case. We then make the search algorithm solve 
the constraint that has minimum branch distance. In this 
case, we need four branch distance calculations at the 
beginning based on a randomly generated test case to select 
d(A)+d(Not B) or d(notA) +d (B). 

IV. EMPIRICAL EVALUATION ON ARTIFICIAL PROBLEMS 

In this section, we will provide an empirical evaluation based 
on various artificial problems to evaluate our improved 
heuristics.  

A. Experiments Design 

To empirically evaluate whether the improved heuristics 
(IM) defined in Section III really improve the effectiveness 
of a search algorithm as compared to existing heuristics 
(NIM), we carefully defined artificial problems to evaluate 
each improved heuristic. For each of the four Boolean 
operations, we defined seven artificial problems covering 
various significant OCL operations such as forAll, include, 
and one. The model we used for the experiment consists of a 
very simple class diagram with one class B. B has two 
attributes x and y of type Integer. All the artificial problems 
used in the experiment are provided in Table VI in Appendix 
A.  

In our experiments, we compared three search 
algorithms: AVM, GA, (1+1) EA, and used RS as a 
comparison baseline to assess the difficulty of the addressed 
problems [7]. AVM was selected as a representative of local 
search algorithms. GA was selected since it is the most 
commonly used global search algorithm in search-based 
software engineering [7]. (1+1) EA is simpler than GAs, but 

in our previous work we found that it can be more effective 
for software testing problems (e.g., see [8, 9]). For GA, we 
set the population size to 100 and the crossover rate to 0.75, 
with a 1.5 bias for rank selection. We use a standard one-
point crossover, and mutation of a variable is done with the 
standard probability 1/n, where n is the number of variables. 
Different settings would lead to different performance of a 
search algorithm, but standard settings usually perform well 
[10]. 

 In this first set of experiments, we address the following 
research questions: 

RQ1: Does IM improve the effectiveness of search over 
NIM? 

RQ2:  Among the considered search algorithms (AVM, 
GA, (1+1) EA), which one fares best in solving OCL 
constraints using IM and how do they compare to RS? 

To compare the algorithms for IM and NIM, we followed 
the guidelines defined in [11], which recommends a number 
of statistical procedures to assess randomized test strategies. 
First, we calculated the success rate for each algorithm, 
which is defined as the number of times a solution was found 
out of the total number of runs (100 in this case). These 
success rates are then compared using the Fisher Exact test 
(with a significance level of 0.05), quantifying the effect size 
using an odds ratio with a 0.5 correction. We chose Fisher 
Exact test since for each run of algorithms the result is 
binary, i.e., either the result is ‘found’ or ‘not found’ and this 
is exactly the situation for which the Fisher’s exact test is 
defined. In addition to statistical significance, we used odds 
ratios as the results of our experiments are dichotomous. A 
value greater than 1 means that IM has more chances of 
success as compared to NIM, whereas a value of 1 means no 
differences.  

When the differences between the success rates of IM 
and NIM were not significant for an algorithm, we further 
compared the number of iterations taken by the algorithm for 
IM and NIM to solve the problems. For this purpose, we used 
Mann-Whitney U-test [12], at a significance level of 0.05. In 
addition, we report effect size measurements using Vargha 
and Delaney’s Â12 statistics, which is a non-parametric 
effect size measure. In our context, a value of Â12 less than 
0.5 tells that NIM is better than IM in finding solutions in 
lesser number of iterations. A value of 0.5 tells that there is 
no difference between IM and NIM, whereas a value greater 
than 0.5 tells that IM is better than NIM in finding solutions 
in lesser number of iterations. In Table II, Table III, and 
Table IV, results for Mann-Whitney U-test and Â12 are 
italicized and are only shown when the differences are not 
significant based on success rates. 

B. Experiment Execution 

We executed each of the four algorithms 100 times with both 
IM and NIM for the 28 problems. We let the algorithms run 
up to 10,000 fitness evaluations on each problem and 
collected data on whether the algorithms found solutions for 
IM and NIM. We used a PC with Intel Core Duo CPU 2.20 
GHz with 4 GB of RAM, running Microsoft Windows 7 
operating system for the execution of experiment.  
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C. Experiment Results and Analysis 

In this section, we will answer each of our research 
questions. 

1) Comparision of IM and NIM for each Algorithm 

(RQ1) 
Table II shows the results for all the algorithms for IM and 
NIM for 28 (P1-P28) artificial problems. P1-P7 are designed 
for evaluating the improved-and heuristic, P8-P14 for the 
improved-or heuristic, P15-P21 for the improved-implies 
heuristic, and P22-P28 for the improved-xor heuristic.  

First we discuss the performance of AVM for IM and 
NIM. As we observe in Table II that for the Boolean 
operation and (P1-P7), IM is significantly better than NIM 
for four problems (P1, P3, P4, and P7) and there are no 
significant differences for two problems (P5-P6) between IM 
and NIM. In case of P2, there is no significant difference 
between IM and NIM in terms of success rates, but NIM 
finds the solution faster than IM. For the operator or, we 
observed that for three problems (P10, P11, and P13) IM is 
significantly better than NIM, whereas for P8, P10, and P12, 
there were no significant differences. However, for P9 NIM 

is significantly better than IM. In case of implies operator, IM 
was significantly better than NIM for all problems, either 
based on success rates or number of iterations. For operator 
xor, IM was better than NIM for four problems and was 
worse for three problems. Out of two of these three 
problems, there were no significant differences between IM 
and NIM, though NIM found solutions quickly. Overall, we 
can conclude that IM improved the performance of search in 
18 problems. For six of the problems, there were no 
significant differences between IM and NIM. For four of the 
remaining, there were no significant differences between 
NIM and IM in terms of success rates, though NIM found 
solutions in lesser number of iterations.   

For (1+1) EA, in the case of and, IM is significantly 
better than NIM for all the problems. For or, IM is 
significantly better than NIM for all the problems except two. 
For P12, there were no significant differences. For P13, IM 
has higher success rate (0.83) than NIM (0.72), but not 
significant (p-value = 0.08). However, in terms of number of 
iterations for P13, NIM took significantly less number of 
iterations. For implies, IM is significantly better than NIM for 

Table II. Results for artificial problems for each algorithm for IM and NIM* 

 
*M: Mean, P: Problem, S(IM): Success rate for IM, S(NIM): Success rate for NIM, O/A: Represents O, i.e.,  Odds Ratio if results were significant based on success rates 

(non-italicized) otherwise represents A, i.e., Â12 when the results are not significant based on success rates (Italics), p-value: Italicized for Mann-Whitney U and non-

Italicized for Fisher’s Exact test, NA: Not Applicable 

S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value

1 0.54 0.31 2 0.001 1 0.43 265 1.51E-22 0 0 0.5 1 0 0 0.5 1

2 0.95 1 0.23 1.07E-07 0.81 0.19 17 4.09E-19 0 0 0.5 1 0 0 0.5 1

3 1 1 0.63 0.006 1 0.87 0.758 2.38E-05 0 0 0.5 1 0 0 0.5 1

4 1 1 0.59 0.049 1 1 0.972 5.85E-18 0 0 0.5 1 0 0 0.5 1

5 1 1 0.48 0.47 1 1 0.961 1.02E-16 0 0 0.5 1 0 0 0.5 1

6 0 0.01 1 0.33 0.74 0.62 0.538 0.04 0 0 0.5 1 0 0 0.5 1

7 0.35 0.09 5 1.27E-05 1 1 0.907 5.48E-15 0 0 0.5 1 0 0 0.5 1

8 0.51 0.71 0.42 0.0051 1 1 0.51 4.20E-02 0.31 0.16 2 0.01 1 0.91 20 0.003

9 0.94 1 0.07 0.02 0.93 0.12 88 4.81E-34 0.14 0.18 0.52 4.34E-01 1 0.86 0.71 9.86E-07

10 1 1 0.61 0.08 1 0.86 33 7.49E-05 0.17 0.16 0.49 0.8 1 0.86 0.68 1.87E-06

11 1 1 0.8 4.15E-12 1 1 0.544 3.23E-01 1 1 0.51 0.5 1 1 0.5 0.86

12 1 1 0.5 1 1 1 0.5 1 1 1 0.5 1 1 1 0.5 1

13 0.02 0 7.51 8.20E-11 0.83 0.72 0.421 7.16E-02 0.01 0.02 0.5 0.78 1 0.99 0.79 2.29E-10

14 0.22 0.35 12.33 0.001 1 1 0.296 7.40E-09 0 0 0.5 1 0.68 0.19 8 2.53E-12

15 1 0.8 51 6.64E-07 1 1 1 3.96E-18 1 0.33 405 4.05E-28 1 0.92 18 0.006

16 1 0.99 1 3.95E-18 1 0.19 840 1.08E-37 1 0.13 1303 8.48E-43 1 0.77 61 5.71E-08

17 1 0.99 1 3.87E-18 1 0.85 36 3.46E-05 1 0.24 628 5.75E-34 1 0.82 45 3.29E-06

18 1 1 1 1.55E-23 1 1 1 3.93E-18 1 1 1 3.90E-18 1 1 1 3.90E-18

19 1 1 1 3.88E-18 1 1 1 1.55E-23 1 1 1 1.55E-23 1 1 1 1.55E-23

20 1 0 40401 2.21E-59 1 0.73 75 1.96E-09 1 0.01 13333 2.23E-57 1 0.88 28 0.0003

21 1 0.32 424 1.01E-28 1 1 1 3.95E-18 1 0 40401 2.21E-59 1 0.24 628 5.75E-34

22 1 0.78 57 1.30E-07 1 1 0.705 3.29E-06 0 0.26 0.01 4.60E-09 0 0.86 0.0008 6.91E-42

23 1 1 0.27 3.43E-05 1 0.11 1564 1.05E-44 0 0.17 0.02 7.26E-06 0 0.74 0.001 1.39E-32

24 1 0.97 0.34 0.002 1 0.9 23 0.001 0 0.18 0.02 3.29E-06 0 0.81 0.001 1.08E-37

25 1 1 0.97 1.68E-14 1 1 0.785 1.13E-10 0 1 2.48E-05 2.21E-59 0 1 2.48E-05 2.21E-59

26 0.23 1 0.001 1.11E-34 1 1 0 3.96E-18 0 1 2.48E-05 2.21E-59 0 1 2.48E-05 2.21E-59

27 1 0 40401 2.21E-59 1 0.72 79 8.25E-10 0 0.05 0.08 0.059 0 0.98 0.0001 1.14E-55

28 1 0.45 245 1.59E-21 1 1 0.5 1.68E-02 0 0 0.5 1 0 0.14 0.029 7.49E-05

M 0.81 0.71 0.98 0.80 0.34 0.28 0.49 0.61NA NA NA NA

P#

AVM (1+1) EA RS GA
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all problems. For xor, IM is significantly better than NIM for 
all problems, except 22, and 26 in which cases NIM is better. 
But in all these three cases P19, P22, and P26, the success 
rates for both IM and NIM were equal to 100%. Therefore, 
we can conclude that for all these operators, (1+1) EA with 
IM shows significantly better results than NIM, except for the 
problems that were either simple for the algorithm(i.e., the 
success rate was 100%) or for P13, where the success rate of 
IM is better, but NIM finds the solution faster.  

For RS, in the case of and, success rates for both IM and 
NIM are 0%. For or, we observed that for most of the 
problems (P10-P14), there are no significant differences 
between IM and NIM. For implies, IM is significantly better 
than NIM for all problems either based on success rates or 
number of iterations.  Similar results are observed for xor, 
where NIM is significantly better than IM (P22-P26) or there 
are no significant differences (P27-P28). Although, success 

rates are again very low for RS, i.e., less than equal to 34% 
as it can be seen in Table II. Therefore, we can conclude that 
there is no significant benefit of using IM rather than NIM 
for RS as for both cases, the overall success rates are very 
low. 

For GA, in case of and, both NIM and IM achieved 0% 
success rates. In case of or, IM performed significantly better 
than NIM either in terms of success rates or number of 
iterations except for P11 and P12. For implies and xor, 
success rates for IM are 0% for all the problems and thus 
NIM seems to perform significantly better than IM for these 
cases.  

 To summarize, we can answer our RQ1 as follows: 
(1+1) EA with IM significantly improve effectiveness of 
solving OCL constraints for generating test data. (1+1) EA 
has higher average success rates with IM than NIM, i.e., 0.98 
(Table II). In addition, when there were no significant 

Table III. Results for artificial problems for IM across algorithms* 

 
* O/A: Represents O, i.e.,  Odds Ratio if results were significant based on success rates (non-italicized) otherwise represents A, i.e., Â12 when the results are not significant 

based on success rates (Italics), p-value: Italicized for Mann-Whitney U and non-Italicized for Fisher’s Exact test 

p-value O /A p-value O /A p-value O /A p-value O /A p-value O /A p-value O /A

1 3.17E-17 0.005 5.05E-21 236 5.05E-21 236 2.21E-59 40401 2.21E-59 40401 1 1

2 0.003 4 2.13E-51 3490 2.13E-51 3490 1.08E-37 840 1.08E-37 840 1 1

3 0.11 0.43 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

4 3.13E-05 0.32 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

5 0.0005 0.33 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

6 1.39E-32 0.001 1 1 1 1 1.39E-32 565 1.39E-32 565 1 1

7 6.16E-27 0.002 1.56E-12 109 1.56E-12 109 2.21E-59 40401 2.21E-59 40401 1 1

8 1.32E-18 0.005 0.006 2 1.32E-18 0 2.44E-29 443 1 1 2.44E-29 0.002

9 0.08 0.51 2.22E-33 87 0.02 0 2.58E-32 74 0.01 0.06 6.91E-42 0.001

10 0.13 0.59 2.64E-39 959 1 1 2.64E-39 959 1 1 2.64E-39 0.001

11 0.002 0.61 1 1 1 1 1 1 1 1 1 1

12 1 0.50 1 1 1 1 1 1 1 1 1 1

13 6.91E-36 0.005 1 2 1.14E-55 0.0001 1.90E-37 317 7.26E-06 0.02 2.23E-57 7.50E-05

14 2.08E-35 0.001 1.30E-07 58 7.19E-11 0.13 2.21E-59 40401 2.41E-11 95 1.01E-28 0.002

15 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

16 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

17 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

18 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

19 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

20 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

21 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1

22 0.03 0.42 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

23 0.001 0.39 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

24 3.15E-05 0.34 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

25 0.0004 0.32 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

26 1.11E-34 0.002 5.71E-08 61 5.71E-08 61 2.21E-59 40401 2.21E-59 40401 1 1

27 8.37E-05 0.37 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

28 0.005 0.38 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 2.21E-59 40401 1 1

1+1(EA) vs GA RS vs GA

P#

AVM vs (1+1) EA AVM vs RS AVM vs GA (1+1) EA vs RS
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differences between IM and NIM, most of the time the 
algorithm managed to solve constraints in significantly lesser 
number of iterations than NIM for successful runs as it can 
be seen in italicized Â12 values are greater than 0.5 (eight 
column in Table II) with p-values less than 0.05. For AVM, 
for more than half of the problems (18 out of 28), IM 
significantly improved the effectiveness of search and for six 
problems no significant differences were observed in terms 
of both success rates and number of iterations. For most of 
the remaining problems, IM and NIM have no significant 
differences in success rates. For RS and GA, overall we 
obtained very low success rates for both IM and NIM, for 
instance, 39% and 49% for RS and GA respectively for NIM. 

2) Comparision of Algorithms for IM (RQ2) 
Table III presents results for IM across each pair of 
algorithms for the four algorithms. For each pair, whenever 
Odds Ratio (O) is greater than 1, this means that the first 
algorithm has more chances of success than the second one. 
For instance in comparison of (AVM vs RS), when O>1, this 
means that AVM has more chances of success than RS. In 
Table III, a value of Â12 (A) less than 0.5 means that the 
second algorithm is better than the first one in finding 
solutions in lesser number of iterations. A value of Â12=0.5 
means no differences and a value greater than 0.5 means that 
first algorithm is better than the second one.  

First we discuss the performance of AVM in comparison 
to other algorithms. In case of AVM vs (1+1) EA, for 18 out 
of 28 problems (1+1) EA showed significantly better results 
than AVM. For the ten remaining problems, there were no 
significant differences between the two algorithms. For 
AVM vs RS, in 17 problems AVM shows significantly better 
results than RS (indicated in Table III by O values greater 
than 1 and p-values less than 0.05). For the remaining 11 
problems, there is no difference between the two algorithms. 
For AVM vs GA, in the case of 16 problems, AVM showed 
significantly better results than GA, for the other 11 there 
were no significant differences, whereas for P9, RS was 
significantly better than GA.  

Next, we discuss the comparison of (1+1) EA with the 
remaining algorithms (GA and RS). For (1+1) EA vs RS, in 
case of 19 problems, (1+1) EA shows significantly better 
performance than RS. For the remaining nine problems, 
there were no significant differences. In case of (1+1) EA vs 
GA, for 16 problems (1+1) EA showed significantly better 
performance. For the 11 problems, there were no statistically 
significant differences, whereas for P9, GA was significantly 
better than (1+1) EA.  

Finally, in case of RS vs GA, for 23 problems, there were 
no significant differences and for the remaining five 
problems (P8-P10, P13, P14), GA showed significantly 
better performance. 

Based on the above results, we can conclude that (1+1) 
EA with IM is significantly better than the other algorithms 
and is best suited for generating test data for OCL 
constraints, followed by AVM. 

V. INDUSTRIAL CASE STUDY 

A. Introduction of the Case Study 

Our industrial case study is part of a project aiming at 
supporting automated, model-based robustness testing of a 
core subsystem of a video conference system (VCS) called 
Saturn [13], developed by Cisco Systems, Inc, Norway. The 
standard behavior of the system is modeled as a UML 2.0 
state machine. In addition, we used Aspect-oriented 
Modeling (AOM) and more specifically the AspectSM 
profile [14] to model robustness behavior separately as 
aspect state machines. The robustness behavior is modeled 
based on different functional and non-functional properties, 
whose violations lead to erroneous states. Such properties 
can be related to the VCS or its environment such as the 
network and other systems interacting with the SUT. Some 
details and models of the case study, including a partial 
woven state machine, are provided in [14]; however, due to 
confidentiality reasons, we cannot provide further details. 
For test automation, we needed to generate test data from 
OCL constraints defined on the environment of Saturn. In 
our case study, in total we have 57 constraints and 42 out of 
these 57 constraints have more than one clause and thus we 
included them in this experiment. These constraints contain 
between 6 and 8 clauses and all of these clauses were 
conjuncted, therefore we could only evaluate the improved-
and heuristic.  

We followed exactly the same design and analysis 
methods as for artificial problems except that we ran each 
algorithm for 2,000 iterations due to time limitation to 
execute the experiment. We answered the same research 
questions as we studied for artificial problems.  

B. Results and Analysis 

1) Comparision of IM and NIM for each Algorithm 

(RQ1) 

Table IV presents results for IM and NIM for each of the 42 

constraints for all the four algorithms. We observed that 

mean success rates using IM for all the algorithms are 

greater than equal to 98% ; however for NIM mean success 

rates are 100%, 80%,  20%, and 50% for AVM, (1+1) EA, 

RS, and GA, respectively.  
For AVM, for both IM and NIM, success rates are 100%, 

therefore, we compared IM and NIM based on number 
iterations to solve problems. All Â12 values are greater than 
0.5 and p-values less than 0.05 suggesting that IM took 
significantly less number of iterations to solve the problems. 
For the rest of the three algorithms, IM has either 
significantly higher success rates than NIM or took 
significantly lower iterations to solve the problems as it can 
be seen in Table IV except for Problem 23. 

Based on the above results we can conclude that IM 
brought significant improvement to all the algorithms. 

2) Comparision of Algorithms for IM (RQ2) 
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In terms of IM across algorithms as we can observe in Table 
IV that success rates for all four algorithms are greater than 
or equal to 98%; and thus the differences in terms of success 
rates are not significant. Therefore, we performed 
comparisons based on number of iterations for each pair of 
algorithms as shown in Table V. In Table V, a value of Â12 

less than 0.5 means that the second algorithm has higher 
chances of finding a solution in lesser number of iterations 
than the first one. A value greater than 0.5 means first 
algorithm is better than the second one. 

For AVM vs (1+1) EA, most of Â12 values are greater 
than 0.5 with p-values less than 0.05 (32 out of 42) 

Table IV. Results for industrial constraints for each algorithm for IM and NIM* 

 
*M: Mean, P: Problem, S(IM): Success rate for IM, S(NIM): Success rate for NIM, O/A: Represents O, i.e.,  Odds Ratio if results were significant based on success rates 

(non-italicized) otherwise represents A, i.e., Â12 when the results are not significant based on success rates (Italics), p-value: Italicized for Mann-Whitney U and non-

Italicized for Fisher’s Exact test, NA: Not Applicable 

S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value S(IM) S(NIM) O /A p-value

1 1 1 0.68 5.73E-07 1 0.5 201 4.45E-19 1 0.1 1732 1.04E-45 1 0.3 465 5.77E-30

2 1 1 0.74 3.05E-05 1 0.7 87 1.43E-10 1 0.1 1732 1.04E-45 1 0.2 789 6.51E-37

3 1 1 0.83 2.20E-13 1 0.61 129 3.54E-14 1 0.03 5599 3.91E-54 1 0.25 595 2.87E-33

4 1 1 0.85 8.05E-12 1 0.59 140 5.03E-15 1 0.01 13333 2.23E-57 1 0.19 840 1.08E-37

5 1 1 0.75 1.21E-07 1 0.68 95 2.41E-11 1 0.02 7919 1.14E-55 1 0.17 959 2.64E-39

6 1 1 0.80 6.77E-10 1 0.65 109 1.56E-12 1 0 40401 2.21E-59 1 0.14 1199 6.91E-42

7 1 1 0.83 1.02E-13 1 1 0.34 0.005 1 0.8 51 6.64E-07 1 0.7 87 1.43E-10

8 1 1 0.73 2.67E-08 1 0.8 51 6.64E-07 1 0.4 300 3.90E-24 1 0.9 23 0.001

9 1 1 0.72 4.49E-06 1 0.87 31 0.0001 1 0.42 277 4.54E-23 1 0.93 16 0.01

10 1 1 0.71 6.65E-06 1 0.83 42 7.26E-06 1 0.46 236 5.05E-21 1 0.85 36 3.46E-05

11 1 1 0.62 0.008 1 0.89 26 0.0007 1 0.26 565 1.39E-32 1 0.79 54 2.95E-07

12 1 1 0.70 2.40E-06 1 0.85 36 3.46E-05 1 0.35 371 6.16E-27 1 0.83 42 7.26E-06

13 1 1 0.64 6.20E-07 1 0.8 51 6.64E-07 1 0.1 1732 1.04E-45 1 0.4 300 3.90E-24

14 1 1 0.72 3.20E-05 1 0.7 87 1.43E-10 1 0.1 1732 1.04E-45 1 0.4 300 3.90E-24

15 1 1 0.74 3.60E-07 1 0.69 91 5.90E-11 1 0.05 3490 2.13E-51 1 0.37 340 8.62E-26

16 1 1 0.75 1.54E-06 1 0.66 104 3.91E-12 1 0.12 1423 9.76E-44 1 0.38 326 3.13E-25

17 1 1 0.77 5.02E-08 1 0.76 64 2.48E-08 1 0.06 2922 3.77E-50 1 0.17 959 2.64E-39

18 1 1 0.70 1.17E-05 1 0.69 91 5.90E-11 1 0.03 5599 3.91E-54 1 0.22 701 2.08E-35

19 1 1 0.76 3.87E-08 1 0.68 95 2.41E-11 1 0.12 1423 9.76E-44 1 0.43 266 1.51E-22

20 1 1 0.71 5.96E-05 1 0.89 26 0.0007 1 0.18 896 1.73E-38 1 0.64 114 6.13E-13

21 1 1 0.81 2.19E-10 1 0.66 104 3.91E-12 1 0.05 3490 2.13E-51 1 0.3 465 5.77E-30

22 1 1 0.80 6.85E-09 1 0.66 104 3.91E-12 1 0.02 7919 1.14E-55 1 0.31 443 2.44E-29

23 1 1 0.00 3.95E-18 0.55 1 0.01 8.93E-17 0.05 1 0.0002 2.13E-51 0.21 1 0.001 3.75E-36

24 1 1 0.74 3.73E-07 1 0.72 79 8.25E-10 1 0 40401 2.21E-59 1 0.21 743 3.75E-36

25 1 1 0.72 3.82E-06 1 0.85 36 3.46E-05 1 0.66 104 3.91E-12 1 0.94 14 0.02

26 1 1 0.65 0.01 1 0.95 0.48 0.65 1 0.92 0.43 0.11 1 0.97 0.53 0.49

27 1 1 0.72 4.49E-06 1 0.87 31 0.0001 1 0.42 277 4.54E-23 1 0.93 16 0.01

28 1 1 0.71 6.65E-06 1 0.83 42 7.26E-06 1 0.46 236 5.05E-21 1 0.85 36 3.46E-05

29 1 1 0.62 0.008 1 0.89 26 0.0007 1 0.26 565 1.39E-32 1 0.79 54 2.95E-07

30 1 1 0.74 3.73E-07 1 0.72 79 8.25E-10 1 0 40401 2.21E-59 1 0.21 743 3.75E-36

31 1 1 0.76 3.87E-08 1 0.68 95 2.41E-11 1 0.12 1423 9.76E-44 1 0.43 266 1.51E-22

32 1 1 0.71 5.96E-05 1 0.89 26 0.0007 1 0.18 896 1.73E-38 1 0.64 114 6.13E-13

33 1 1 0.81 2.19E-10 1 0.66 104 3.91E-12 1 0.05 3490 2.13E-51 1 0.3 465 5.77E-30

34 1 1 0.80 6.85E-09 1 0.66 104 3.91E-12 1 0.02 7919 1.14E-55 1 0.31 443 2.44E-29

35 1 1 0.73 2.52E-07 1 0.69 91 5.90E-11 1 0.03 5599 3.91E-54 1 0.18 896 1.73E-38

36 1 1 0.74 3.73E-07 1 0.72 79 8.25E-10 1 0 40401 2.21E-59 1 0.21 743 3.75E-36

37 1 1 0.77 9.70E-09 1 0.73 75 1.96E-09 1 0.12 1423 9.76E-44 1 0.52 186 3.85E-18

38 1 1 0.76 2.48E-09 1 0.82 45 3.29E-06 1 0.22 701 2.08E-35 1 0.66 104 3.91E-12

39 1 1 0.74 3.60E-07 1 0.69 91 5.90E-11 1 0.05 3490 2.13E-51 1 0.37 340 8.62E-26

40 1 1 0.75 1.54E-06 1 0.66 104 3.91E-12 1 0.12 1423 9.76E-44 1 0.38 326 3.13E-25

41 1 1 0.77 5.02E-08 1 0.76 64 2.48E-08 1 0.06 2922 3.77E-50 1 0.17 959 2.64E-39

42 1 1 0.70 1.17E-05 1 0.69 91 5.90E-11 1 0.03 5599 3.91E-54 1 0.22 701 2.08E-35

M 1 1 0.99 0.75 0.98 0.20 0.98 0.48NA NA NANA

P#

AVM (1+1) EA RS GA
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suggesting that AVM has significantly higher chances of 
solving constraints in lesser number of iterations than (1+1) 
EA. Similar results can be seen for AVM vs RS (28 out of 
42) and AVM vs GA (26 out of 42) in Table V. For (1+1) 
EA vs RS, for 23 out of 42 problems, (1+1) EA took 
significantly less iterations than RS, whereas in nine it took 
significantly more iterations than RS, and no differences 
were observed in 10 problems. For (1+1) EA vs GA, (1+1) 
EA took significantly less iterations than GA for 16 
problems, where (1+1) EA took significantly more iterations 
than GA in 13 problems, and no differences were observed 

for the rest of the problems. For RS vs GA, in case of 16 
problems Â12 values are below 0.5 with p-values less than 
0.05 suggesting RS has significantly higher chances of 
solving constraints with more iterations than GA. For 12 
problems, RS took significantly less iterations than GA, 
whereas for the remaining 14 problems no significant 
differences were observed. 

Based on the above results, we can conclude that for the 
industrial case study, AVM has higher chances of solving 
constraints with lesser number of iterations with IM than 
other algorithms.      

Table V. Results for industrial constraints for IM across algorithms 

 

A12 p-value A12 p-value A12 p-value A12 p-value A12 p-value A12 p-value

1 0.87 1.31E-11 0.50 0.22 0.59 0.0001 0.70 3.69E-18 0.74 1.86E-30 0.69 5.73E-23

2 0.78 1.18E-09 0.40 0.01 0.53 0.06 0.59 2.30E-06 0.67 3.44E-18 0.67 7.46E-19

3 0.76 1.32E-07 0.34 5.26E-09 0.38 4.30E-10 0.43 2.21E-06 0.47 0.0003 0.48 0.001

4 0.75 1.27E-08 0.34 4.25E-09 0.37 8.66E-12 0.43 1.43E-06 0.46 0.0002 0.46 0.0002

5 0.74 1.82E-08 0.37 5.98E-08 0.40 6.68E-10 0.46 1.37E-05 0.48 0.0005 0.48 0.0006

6 0.79 8.54E-09 0.28 1.27E-13 0.33 5.11E-16 0.38 1.25E-12 0.43 2.46E-08 0.45 9.25E-06

7 0.40 1.28E-06 0.74 2.27E-21 0.79 5.79E-30 0.75 1.57E-27 0.72 3.42E-27 0.68 2.57E-23

8 0.26 3.88E-09 0.67 8.57E-11 0.71 1.20E-19 0.62 8.37E-09 0.60 1.44E-06 0.60 1.64E-08

9 0.58 0.34 0.52 0.55 0.55 0.08 0.57 0.007 0.57 0.0002 0.56 0.0006

10 0.49 0.35 0.56 0.04 0.54 0.17 0.54 0.07 0.53 0.29 0.51 0.75

11 0.50 0.85 0.55 0.08 0.56 0.02 0.56 0.01 0.55 0.005 0.54 0.03

12 0.52 0.88 0.53 0.47 0.53 0.78 0.53 0.59 0.52 0.73 0.51 0.86

13 0.74 1.19E-10 0.44 0.006 0.56 0.02 0.61 1.04E-07 0.68 4.26E-22 0.69 1.44E-25

14 0.69 2.18E-07 0.40 1.07E-05 0.56 0.20 0.56 0.04 0.63 1.32E-09 0.67 9.24E-17

15 0.71 1.24E-06 0.40 7.09E-05 0.44 1.46E-05 0.49 0.04 0.51 0.29 0.51 0.24

16 0.67 0.0001 0.45 0.01 0.44 1.56E-05 0.49 0.01 0.49 0.01 0.47 0.001

17 0.80 1.81E-10 0.36 4.04E-08 0.40 5.06E-09 0.47 0.0006 0.51 0.05 0.50 0.06

18 0.73 8.03E-08 0.36 2.81E-08 0.38 1.82E-11 0.43 6.61E-07 0.45 1.21E-05 0.45 1.38E-05

19 0.72 1.39E-06 0.42 0.0002 0.49 0.049 0.53 0.61 0.57 0.12 0.57 0.03

20 0.71 3.11E-07 0.40 4.39E-06 0.46 0.0009 0.50 0.03 0.54 0.87 0.55 0.46

21 0.76 4.42E-09 0.37 5.82E-08 0.40 2.12E-09 0.46 0.0001 0.49 0.007 0.49 0.005

22 0.71 2.84E-05 0.38 1.50E-05 0.39 5.19E-08 0.44 0.0001 0.46 0.0007 0.46 0.0003

23 0.94 1.15E-17 0.04 4.26E-34 0.04 4.03E-50 0.16 1.73E-41 0.24 2.18E-35 0.28 2.77E-34

24 0.72 3.97E-05 0.36 1.64E-05 0.39 3.04E-07 0.44 0.0001 0.46 0.001 0.47 0.001

25 0.48 0.32 0.59 0.0006 0.63 7.69E-08 0.62 6.61E-09 0.62 1.45E-10 0.61 3.96E-09

26 0.50 0.10 0.59 3.00E-05 0.62 6.39E-08 0.61 3.68E-09 0.61 5.43E-09 0.59 7.30E-07

27 0.58 0.34 0.52 0.55 0.55 0.08 0.57 0.007 0.57 0.0002 0.56 0.0006

28 0.49 0.35 0.56 0.03 0.54 0.17 0.54 0.07 0.53 0.29 0.51 0.75

29 0.50 0.85 0.55 0.07 0.56 0.02 0.56 0.005 0.55 0.005 0.54 0.03

30 0.72 3.97E-05 0.36 1.64E-05 0.39 3.04E-07 0.44 0.0001 0.46 0.001 0.47 0.001

31 0.72 1.39E-06 0.42 0.0002 0.49 0.049 0.53 0.61 0.57 0.12 0.57 0.03

32 0.71 3.11E-07 0.40 4.39E-06 0.46 0.0009 0.50 0.03 0.54 0.87 0.55 0.46

33 0.76 4.42E-09 0.37 5.82E-08 0.40 2.12E-09 0.46 0.0001 0.49 0.007 0.49 0.005

34 0.71 2.84E-05 0.38 1.50E-05 0.39 5.19E-08 0.44 0.0001 0.46 0.0007 0.46 0.0003

35 0.76 5.21E-09 0.39 1.21E-05 0.42 1.46E-06 0.48 0.02 0.51 0.17 0.50 0.08

36 0.72 3.97E-05 0.36 1.64E-05 0.39 3.04E-07 0.44 0.0001 0.46 0.001 0.47 0.001

37 0.68 0.0001 0.44 0.02 0.52 0.78 0.56 0.35 0.60 0.001 0.60 0.0003

38 0.75 3.54E-07 0.39 0.0001 0.47 0.03 0.52 0.87 0.57 0.02 0.57 0.009

39 0.71 1.24E-06 0.40 7.09E-05 0.44 1.46E-05 0.49 0.04 0.51 0.29 0.51 0.24

40 0.67 0.0001 0.45 0.00526 0.44 1.56E-05 0.49 0.01 0.49 0.01 0.47 0.001

41 0.80 1.81E-10 0.36 4.04E-08 0.40 5.06E-09 0.47 0.0006 0.51 0.05 0.50 0.06

42 0.73 8.03E-08 0.36 2.81E-08 0.38 1.82E-11 0.43 6.61E-07 0.45 1.21E-05 0.45 1.38E-05

(1+1) EA vs RS (1+1) EA vs GA RS vs GA

P#

AVM vs (1+1) EA AVM vs RS AVM vs GA
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VI. OVERALL DISCUSSION 

Based on the results of our empirical analyses, we 

recommend using (1+1) EA with IM for solving constraints 

since the effectiveness of the algorithm was better than all 

the other algorithms we compared, as we discussed in 

Section IV based on artificial problems on which all four 

heuristics were applied. However, we found that AVM was 

the best algorithm for the industrial case study as we 

discussed in Section V. Notice that, in the industrial case 

study, we could only evaluate the heuristic for and  operator 

and, even in this case, there were no significant differences 

across success rates of AVM and (1+1) EA, which are 

100% and 99% respectively.  Based on these observations, 

we suggest using AVM when the constraints are conjuncted 

and there is limited time as it may find solutions quicker 

than (1+1) EA. If we are flexible with time budget (e.g., the 

constraints need to be solved only once, and the cost of 

doing that is negligible compared to other costs in the 

testing phase), we rather recommend running (1+1) EA for 

as many iterations as possible as we notice that the success 

rate for (1+1) EA was 99% on average for the industrial 

case study, whereas for the artificial problems, it has mean 

success rate of 98% with IM and AVM has 81% of average 

success rate (Table II). 
The difference in performance between AVM and (1+1) 

EA has a clear explanation. AVM works like a sort of greedy 
local search. If the fitness function provides a clear gradient 
towards the global optima, then AVM will quickly converge 
to one of them. On the other hand, (1+1) EA puts more focus 
on the exploration of the search landscape. When there is a 
clear gradient toward global optima, (1+1) EA is still able to 
reach those optima in reasonable time, but it will spend some 
time in exploring other areas of the search space. This latter 
property becomes essential in difficult landscapes where 
there are many local optima. In these cases, AVM gets stuck 
and has to re-start from other points in the search landscape. 
On the other hand, (1+1) EA, thanks to its mutation operator, 
has always a non-zero probability of escaping from local 
optima. 

VII. THREATS TO VALIDITY 

To reduce construct validity threats, we used search success 
rate measure, which is comparable across all four search 
algorithms (AVM, (1+1) EA, GA and RS). Furthermore, we 
used the same stopping criterion for all algorithms, i.e., 
number of iterations. This criterion is a comparable measure 
of efficiency across all the algorithms. 

The most probable conclusion validity threat in 
experiments involving randomized algorithms is due to 
random variations. To address it, we repeated experiments 
100 times to reduce the possibility that the results were 
obtained by chance. Furthermore, we performed Fisher exact 
tests to compare proportions and determine the statistical 
significance of the results. To determine the practical 
significance of the results obtained, we measured the effect 
size using the odds ratio of success rates across search 
techniques, we used Mann-Whitney U-test [12] to determine 

significance of results and Vargha and Delaney’s Â12 
statistics for report effect sizes, using the guidelines for 
reporting results of randomized algorithms presented in [11]. 

A possible threat to internal validity is that we have 
experimented with only one configuration setting for the GA 
parameters. However, these settings are in accordance with 
the common guidelines in the literature and our previous 
experience on testing problems. Parameter tuning can 
improve the performance of GAs, although default 
parameters often provide reasonable results [10].   

We ran our experiments on an industrial case study to 
generate test data for 42 different OCL constraints, ranging 
from constraints having just six to eight clauses. Although 
the empirical analysis is based on a real industrial system, 
our results might not generalize to other case studies. 
However, such threat to external validity is common to all 
empirical studies. In addition to the industrial case study, we 
also conducted an empirical evaluation of each proposed 
branch distance calculation using small yet complex artificial 
problems to demonstrate that the effectiveness of our 
heuristics holds even for more complex problems. In 
addition, empirically evaluating all proposed branch distance 
calculations on artificial problems was necessary since it was 
not possible to evaluate them for all features of OCL in the 
industrial case study, due to its inherent properties.   

VIII. RELATED WORK 

A number of approaches use constraint solvers for analyzing 
OCL constraints for various purposes. These approaches 
usually translate constraints and models into a formalism 
(e.g., Alloy [15], temporal logic BOTL [16], FOL [17],  
graph constraints [18]), which can then be analyzed by a 
constraint analyzer (e.g., Alloy constraint analyzer [19], 
model checker [16], Satisfiability Modulo Theories (SMT) 
Solver [17], theorem prover [17]). Satisfiability Problem 
(SAT) solvers have also been used for evaluating OCL 
specifications ,e.g., for OCL operation contracts (e.g., [20]).  

Some approaches are reported in the literature to solve 
OCL constraints and generate data that evaluate the 
constraints to true.  The data generated can then be used as 
test data. Most of these approaches do not handle important 
features of OCL (e.g., Collections) and UML, and are based 
on formal constraint solving techniques, such as SAT solving 
(e.g., [21]), constraint satisfaction problem (CSP) (e.g., [22]), 
higher order logic (HOL) [23],  and partition analysis (e.g., 
[24]). The work presented in [22] is one of the most 
sophisticated approaches reported so far. However, its focus 
is on the verification of correctness properties, though it 
generates an instantiation of the model as part of its process. 
The major limitation of the approach is that the search space 
is bounded and, as the bounds are raised, CSP faces a 
quickly increasing combinatorial explosion (as discussed in 
[22]). The task of determining the optimal bounds for 
verification is left to the user and considering that models of 
industrial applications can have a large number of attributes, 
manually finding bounds for individual attributes is often 
impractical. We present the results of an experiment that we 
conducted to compare our novel approach with this approach 
[22] which has a downloadable tool available in [3]. The 
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results showed that our approach is significantly more 
efficient.  

Existing approaches for OCL constraint solving do not 
fully fit the needs we identified with our industrial partners. 
Most of the approaches are only limited to simple numerical 
expressions and do not handle collections, which are used 
widely to specify expressions that navigate over associations. 
These limitations are due to the high expressiveness of OCL 
that makes the definitions of constraints easier, but their 
analysis more difficult. The conversion of OCL to a SAT 
formula or a CSP instance can easily result in a 
combinatorial explosion as the complexity of the model and 
constraints increases (as discussed in [22]). Most of the 
discussed approaches listed in this section either do not 
support the OCL constructs present in the constraints that we 
have in our industrial case study or are not efficient to solve 
them.  Hence, existing techniques based on conversion to 
lower-level languages seem impractical in the context of 
large scale, real-world systems.  

Most of the above approaches are different from our 
work, since we want to generate test data based on OCL 
constraints provided by modelers on UML state and class 
diagrams. These diagrams may be developed for 
environment models (for example, as in [25]) or system 
models (for example [14]) and the modeler should be 
allowed to use the standard OCL. We also wanted a tool that 
can be easily integrated with different state-based testing 
approaches and is completely automated. 

IX. CONCLUSION 

Test data generation from OCL constraints is an 
important problem for automated model-based testing. In 
this paper, we proposed four new heuristics for solving OCL 
constraints to generate test data. The improved heuristics are 
based on the process of dividing a given constraint into its 
independent sub constraints and solving them separately, by 
first focusing on the ones that are easier to solve. The new 
heuristics correspond to the four primary operations for OCL 
constraints (and, or, implies, and xor). We conducted two 
empirical studies, one on 28 artificial constraints and the 
other on 42 constraints from an industrial case study, to 
evaluate the performance of improved heuristics and 
comparing them with previously defined heuristics. For this 
purpose, we used three search algorithms: (1+1) 
Evolutionary Algorithm (EA), Genetic Algorithms (GA), 
and Alternating Variable Method (AVM). The results of the 
empirical studies show that the novel heuristics lead to 
significantly better performance for each algorithm, on both 
the artificial problems and the industrial case study. Overall, 
(1+1) EA with the improved heuristics showed best 
performance among all the algorithms and it is the most 
viable algorithm to be used in practice. 
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X. APPENDIX A: ARTIFICAL PROBLEMS 

 

Table VI. Artificial Problems used in the Experiment 

P# Constraint 

1 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92) 

2 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x) 

3 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95) 

4 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->collect(b|b.x)->includes(17) 

5 B.allInstances()->forAll(b|b.x=47) and B.allInstances()->collect(b|b.x)->excludes(0) 

6 B.allInstances()->forAll(b|b.x=47) and let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c) 

7 B.allInstances()->forAll(b|b.x=47) and let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-
>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c) 

8 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92) 

9 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x) 

10 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95) 

11 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->collect(b|b.x)->includes(17) 

12 B.allInstances()->forAll(b|b.x=47) or B.allInstances()->collect(b|b.x)->excludes(0) 

13 B.allInstances()->forAll(b|b.x=47) or let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c) 

14 B.allInstances()->forAll(b|b.x=47) or let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-

>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c) 

15 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92) 

16 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x) 

17 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95) 

18 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->collect(b|b.x)->includes(17) 

19 B.allInstances()->forAll(b|b.x=47) implies B.allInstances()->collect(b|b.x)->excludes(0) 

20 B.allInstances()->forAll(b|b.x=47) implies let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c) 

21 B.allInstances()->forAll(b|b.x=47) implies let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-
>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c) 

22 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->select(b|b.y > 90)->size() > 4 and B.allInstances()->select(b|b.y > 90)-exists(b|b.y=92) 

23 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)-isUnique(b|b.x) 

24 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->select(b|b.x > 90)->size() > 4 and B.allInstances()->select(b|b.x > 90)->one(b|b.x=95) 

25 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->collect(b|b.x)->includes(17) 

26 B.allInstances()->forAll(b|b.x=47) xor B.allInstances()->collect(b|b.x)->excludes(0) 

27 B.allInstances()->forAll(b|b.x=47) xor let c = Set{-1,87,19,88} in B.allInstances()->collect(b|b.x)->includesAll(c) 

28 B.allInstances()->forAll(b|b.x=47) xor let c = Set{0,1,2,3} in B.allInstances()->select(b|b.x>0 and b.x<5)->size()>=5 and B.allInstances()-
>select(b|b.x>0 and b.x<5)->collect(b|b.x)->excludesAll(c) 

 


