
Discovery and Routing of Degraded Fat-Trees

Bartosz Bogdański, Bjørn Dag Johnsen
Oracle Corporation

Oslo, Norway
bartosz.bogdanski@oracle.com
bjorn-dag.johnsen@oracle.com

Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen
Simula Research Laboratory

Lysaker, Norway
svenar@simula.no

frankose@simula.no

Abstract—The fat-tree topology has become a popular choice
for InfiniBand enterprise systems due to its deadlock freedom,
fault-tolerance and full bisection bandwidth. In the HPC
domain, InfiniBand fabric is used in almost 42% of the systems
on the latest Top 500 list, and many of those systems are
based on the fat-tree topology. Despite the popularity of the
fat-tree topology, little research has been done to compare the
behavior of InfiniBand routing algorithms on degraded fat-tree
topologies.

In this paper, we identify the weaknesses of the current
fat-tree routing and propose enhancements that liberalize the
restrictions imposed on the routed fabric. Furthermore, we
present a thorough analysis of non-proprietary routing algo-
rithms that are implemented in the InfiniBand Open Subnet
Manager. Our results show that even though the performance
of a fat-tree routed network deteriorates predictably with the
number of failed links, fat-tree routing algorithm is still the
best choice for severely degraded fat-tree fabrics.

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today, and for
clusters based on InfiniBand (IB) technology the fat-tree is
the dominating topology. This includes large installations
such as Nebulae/Dawning, TGCC Curie and SuperMUC [1].
There are three properties that make fat-trees the topology
of choice for high performance interconnects: deadlock
freedom, the use of a tree structure makes it possible to
route fat-trees without special considerations for deadlock
avoidance; inherent fault-tolerance, the existence of multiple
paths between individual source destination pairs makes it
easier to handle network faults; full bisection bandwidth, the
network can sustain full speed communication between the
two halves of the network.

For fat-trees, as with most other topologies, the routing
algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts to improve their routing performance. These
proposals, however, have several limitations when it comes
to flexibility and scalability. This also includes the current
approach that the OpenFabrics Enterprise Distribution [2],
the de facto standard for InfiniBand system software, is
based on [3], [4]. One problem is the static routing used
by IB technology that limits the exploitation of the path
diversity in fat-trees as pointed out by Hoefler et al. in [5].
Another problem with the current routing is its shortcom-
ings when routing oversubscribed fat-trees as addressed by
Rodriguez et al. in [6]. A third problem, and the one that
we are analyzing in this paper, is that any irregularity in a
fat-tree fabric makes the subnet manager select a suboptimal
fallback routing algorithm.

In this paper, we analyze the performance of four major
routing algorithms implemented in InfiniBand Open Subnet

Manager (OpenSM) running on fat-trees with a number
of random faults. These algorithms are: optimized fat-tree
routing devised by Zahavi et al. [4], Layered-Shortest Path
Routing (LASH) [7], Deadlock-Free Single-Source-Shortest-
Path routing [8] and the default fallback algorithm for
OpenSM - MinHop [9]. Through simulations, we show how
susceptible is each of these algorithms to random link and
switch failures. Moreover, we demonstrate that even though
the fat-tree routing is the most susceptible algorithm, it still
delivers the highest performance even in extreme cases for
non-trivial traffic patterns. Furthermore, we extend the fat-
tree algorithm to remove the most common factors leading to
lower performance on degraded fat-trees which are the over-
restrictive topology discovery and flipping switch anomaly.
The major contributions of our work are:

• We present a thorough analysis of non-proprietary
routing algorithms implemented in the InfiniBand Open
Subnet Manager (OpenSM) running on degraded fat-
trees.

• We present enhancements that liberalize the restrictions
imposed on the fat-tree discovery and routing of de-
graded fabrics.

The rest of this paper is organized as follows: we discuss
related work in Section II and continue with introducing
the InfiniBand Architecture in Section III. We follow with
a description of OpenSM routing algorithms in Section
IV and discuss our enhancements in Section V. Next, we
describe the experimental setup in Section VI followed
by the experimental analysis in Section VII. Finally, we
conclude in Section VIII.

II. RELATED WORK

There was much research done in the general topic of
routing algorithms and fat-tree routing for interconnection
networks. First, a thorough survey of interconnection routing
algorithms was published by Flich et al. [10], but the authors
did not discuss the fat-tree algorithm and focused only on
algorithms for routing meshes and tori.

Second, Sem-Jacobsen et al. proposed various methods
to improve fault-tolerance in fat-trees [11], [12], [13], [14],
however, that work did not compare fat-tree routing to other
algorithms available in OpenSM.

There was further work by Bermudez [15], [16], [17] and
Vishnu [18] on performance of subnet management for fat-
tree topologies (including the discovery process), but the
authors dealt strictly with fabric management and did not
discuss performance of the routing algorithms themselves.

The popularity of fat-trees in the last decade also led to
many efforts trying to improve their routing performance:
exploitation of path diversity [5], routing oversubscribed



fat-trees [6] or utilizing virtual lanes to increase network
performance [19].

Unlike previous research on IB routing algorithms, we
focus on multiple routing algorithms running on the same
fabric. Our work is partially based on [20] where we
also analyzed degraded fat-trees, however, only with failing
nodes. In this work we widen the scope and, first, consider
also failing links and, second, evaluate multiple routing
algorithms.

III. THE INFINIBAND ARCHITECTURE

InfiniBand networks are referred to as subnets, where
a subnet consists of a set of hosts interconnected using
switches and point-to-point links. An IB fabric constitutes
one or more subnets, which can be interconnected using
routers. Hosts and switches within a subnet are addressed
using local identifiers (LIDs) and a single subnet is limited
to 49151 LIDs.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initializing and bringing up the
network, including the configuration of all the IB ports
residing on switches, routers, and host channel adapters
(HCAs) in the subnet. At the time of initialization the SM
starts in the discovering state where it does a sweep of
the network in order to discover all switches and hosts.
During this phase it will also discover any other SMs
present and negotiate who should be the master SM. When
this phase is complete the elected SM enters the master
state. In this state, it proceeds with LID assignment, switch
configuration, routing table calculations and deployment,
and port configuration. When this is done, the subnet is up
and ready for use. After the subnet has been configured, the
SM is responsible for monitoring the network for changes.

A major part of the SM’s responsibility is to calcu-
late routing tables that maintain full connectivity, deadlock
freedom, and proper load balancing between all source
and destination pairs. Routing tables must be calculated at
network initialization time and this process must be repeated
whenever the topology changes in order to update the routing
tables and ensure optimal performance.

During normal operation the SM performs periodic light
sweeps of the network to check for topology changes e.g. a
link goes down, a device is added, or a link is removed). If
a change is discovered during a light sweep or if a message
(trap) signaling a network change is received by the SM,
it will reconfigure the network according to the changes
discovered. This reconfiguration also includes the steps used
during initialization. Moreover, for each device a subnet
management agent (SMA) residing on it generates responses
to control packets (subnet management packets (SMPs)), and
configures local components for subnet management.

IB is a lossless networking technology, where flow-
control is performed per virtual lane (VL) [21]. VLs are
logical channels on the same physical link, but with sep-
arate buffering, flow-control, and congestion management
resources. The concept of VLs makes it possible to build
virtual networks on top of a physical topology. These virtual
networks, or layers, can be used for various purposes such
as efficient routing, deadlock avoidance, fault-tolerance, and
service differentiation. Some routing algorithms, like LASH
or DFSSSP, use VLs to break credit dependency cycles and
avoid deadlock.

IV. ROUTING IN INFINIBAND

In this paper, we focus on fat-tree topologies where the
default routing algorithm is the fat-tree routing because it
is optimal for fault-free fat-trees. However, if any failure in
the fabric occurs or if the fabric does not comply with the
strict rules that define a proper fat-tree, the subnet manager
fails over to another routing algorithm. In the following
subsections, we will describe the algorithms analyzed in
this paper. In Section VII, we will analyze and compare
the performance of those routing algorithms under different
conditions and for different traffic patterns.

A. Fat-Tree Routing Algorithm
The fat-tree topology was introduced by Leiserson in [22],

and has since become a common topology in HPC. The fat-
tree is a layered network topology with equal link capacity at
every tier (applies for balanced fat-trees), and is commonly
implemented by building a tree with multiple roots, often
following the m-port n-tree definition [23] or the k-ary n-tree
definition [24]. An XGFT notation is also used to describe
fat-trees and was presented by Öhring [25]. More recently,
Zahavi also proposed PGFT and RLFT notations to describe
real-life fat-trees [26].

To construct larger topologies, the industry has found it
more convenient to connect several fat-trees together rather
than building a single large fat-tree. Such a fat-tree built
from several single fat-trees is called a multi-core fat-tree.
Multi-core fat-trees may be interconnected through the leaf
switches using horizontal links [27] or by using an additional
layer of switches at the bottom of the fat-tree where every
such switch is connected to all the fat-trees composing the
multi-core fat-tree [28].

Regardless of how a fat-tree is constructed, the routing
function always works in a similar manner. The fat-tree rout-
ing is divided into two distinct phases: the upward phase in
which a packet is forwarded from the source in the direction
of one of the root (top) switches, and the downward phase
when a packet is forwarded downwards to the destination.
The transition between these two phases occurs at the lowest
common ancestor, which is a switch that can reach both
the source and the destination through its downward ports.
Such an implementation ensures deadlock freedom, and the
implementation presented in [4] also ensures that every path
towards the same destination converges at the same root
switch such that all packets toward that destination follow a
single dedicated path in the downward direction. By having
a dedicated downward path for every destination, contention
in the downward phase is effectively removed (moved to the
upward stage), so that packets for different destinations have
to contend for output ports in only half of the switches on
their path. In oversubscribed fat-trees, the downward path
is not dedicated and is shared by several destinations. The
fabric discovery complexity for optimized fat-tree routing
algorithm is given by O(m+ n) where m is the number of
edges (links) and n is the number of vertices (nodes). The
routing complexity is O(k · n), where k is the number of
end-nodes and n is the number of switches.

B. Layered-Shortest Path routing
Layered-Shortest Path (LASH) is a deterministic shortest

path routing algorithm for irregular networks. All packets are
routed using the minimal path, and the algorithm achieves



deadlock freedom by finding and breaking cycles through
virtual lanes.

However, LASH does not balance the traffic in any
manner, which is especially evident in fat-tree fabrics. The
algorithm aims at using the lowest number of VLs and,
therefore, routes all possible deadlock-free pairs on the same
layer, i.e. using the same links. The computing complexity
for LASH is O(n3) where n is the number of nodes.

C. Deadlock-Free Single-Source-Shortest-Path routing
Deadlock-Free Single-Source-Shortest-Path routing (DF-

SSSP) [8] is an efficient oblivious routing for arbitrary
topologies developed by Domke et al. [8]. It uses virtual
lanes to guarantee deadlock freedom and, in comparison to
LASH, aims at not limiting the number of possible paths
during the routing process. It also uses improved heuristics
to reduce the number of used virtual lanes in comparison to
LASH.

The problem with DFSSSP is that for switch-to-switch
traffic it assumes deadlock freedom, and does not break
any cycles that may occur for switch-to-node and switch-
to-switch pairs. The computing complexity for the offline
DFSSSP is O(n2 · log(n)) where n is the number of
nodes [8].

D. MinHop routing
MinHop is the default fallback routing algorithm for the

OpenSM. It finds minimal paths among all endpoints and
tries to balance the number of routes per link at the local
switch. However, using MinHop routing usually leads to
credit loops, which may deadlock the fabric. The complexity
of MinHop is given by O(n2) where n is the number of
nodes.

V. DEGRADED FAT-TREE DISCOVERY

The main weakness of the current implementation in
OpenSM of the fat-tree routing is its inability to route by
default any non-pure fat-tree fabrics that do not pass the
rigorous topology validation. Currently, topology validation
fails if the number of up and down links on any two switches
on the same level is not equal (e.g. if one link in the whole
fabric fails, fat-tree routing falls back to MinHop routing).
There are also other scenarios where fat-tree routing fails,
but we will not consider those in this paper due to limited
space.

Our proposal is to provide three simple enhancements to
the routing algorithm to deal properly with any fat-tree fab-
ric. The first enhancement is to liberalize the restrictions on
the topology validation and disable link count inconsistency
check. This way, fat-tree routing will not fail by default on
any incomplete fat-tree.

The second enhancement is to fix the flipped switches
issue. This problem occurs when there exists a leaf switch
that has no nodes connected. When this happens, such a
switch is not classified as a leaf switch by the fat-tree
algorithm but as a switch located at level leaf level + 2.
In general, fat-tree routing is runnable on such a fabric, but
this counter-intuitive behavior makes troubleshooting more
difficult due to incorrect ranks assigned to the switches. The
situation is illustrated on Figure 1 and a fix is proposed in
Algorithm 1. The problem with providing a fix is that when
a ranking conflict occurs in the fabric, the SM can only act

Figure 1: Flipping switch in a simple 3-stage fat-tree.

reactively, i.e. it has to first detect the conflict and then re-
rank the fabric. This is cumbersome and it may happen that
the conflict will not be detected due to high complexity of
the fabric. Therefore, the fix for this problem is built using
the last enhancement we propose.

The third and last enhancement is an implementation of
switch roles mechanism for explicitly defining switch roles
that can be later detected by the SM. For this, we use vendor
SMP attributes that can be queried via vendor specific SMPs.
Basically, each switch in the IB fabric can be assigned a
hostname, an IP address and a node description. By using
vendor attributes, we are able to make any specific infor-
mation available to the SM without having a dependency
on SM config input or any other out-of-band interfaces for
providing config information in a dynamic manner.

We are aware that providing RootGUIDs to the routing
algorithm yields the same effect, but currently it requires
non-trivial effort to maintain a correct list following (multi-
ple) component replacement operations. On the other hand,
switch roles can be saved and restored as part of normal
switch configuration maintenance following component re-
placements since it is not tied to the actual hardware instance
like hardware GUIDs.

The switch roles mechanism that we implemented will
provide each switch with a simple role that it should adhere
to. In our first simple implementation, we will physically tag
each switch in the fabric with its respective role, i.e. root
switches (placed at the top of the fabric with no uplinks)
will have the role ”root” and the leaf switches will have the
role ”leaf”.

This not only shortens the fabric discovery time (con-
sistency checks are not required), but almost completely
removes the need to discover the fabric from the routing
algorithm, which means that the probability of making a
mistake during routing table generation will be much lower.
In other words, we are decoupling the complex problem of
fabric discovery from the routing problem.

Using the switch roles mechanism, we can redefine the
osm ftree rank fabric(p tree) OpenSM function in

a very simple manner to always construct a proper fat-tree
as shown in Algorithm 1.

Algorithm 1 osm ftree rank fabric(p tree)function

Require: Firmware vendor specific switch roles.
Ensure: Each sw in the fabric is placed at correct rank.

1: if switch has no CNs then
2: if smpquery(switch, role) == leaf then
3: switch.rank = tree rank
4: end if
5: end if



VI. EXPERIMENT SETUP

To evaluate the differences between various routing algo-
rithms, we performed a number of simulations. The subse-
quent sections will describe the simulation model that we
used and examine the topology that we selected.

A. Simulation model
To perform large-scale evaluations of the routing algo-

rithms, we use an InfiniBand model for the OMNEST
simulator [29] (OMNEST is a commercial version of the
OMNeT++ simulator). The IB model consists of a set of
simple and compound modules to simulate an IB network
with support for the IB flow control scheme, arbitration over
multiple virtual lanes, congestion control, and routing using
linear routing tables. The model supports instances of HCAs,
switches and routers with routing tables.

The network topology and the routing tables were gener-
ated using OpenSM and converted into OMNEST readable
format in order to simulate real-world systems. As for our
simulations, we measured average throughput per node as a
function of the number of failed links and switches under
different traffic patterns.

For the uniform traffic pattern, we used a link speed of
20 Gbit/s (4x DDR), a default MTU size of 2kB, a variable
packet size (from 84B up to 2kB) and a constant message
size of 2kB. The destination was chosen randomly and the
network load was set constant at 100%. Each simulation run
was repeated 16 times with a different seed and an average
was taken.

For HPCC simulations, we implemented a ping-pong
traffic pattern that was used to run the HPC Challenge
Benchmark tests in the simulator. For the bandwidth tests
we used a message size of 1954KB. The MTU size was
2KB and the network load was set constant at 100%. The
bandwidth tests were performed on the default 31 ring
patterns: one natural-ordered ring and 30 random-ordered
rings from which the minimum, maximum and average
results were taken. For this measurement, each node sends
a message to its left neighbor in the ring and receives a
message from its right neighbor. Next, it sends a message
back to its right neighbor and receives a return message from
its left neighbor.

B. Topology
As a base for our topology we selected a 3-stage 648-port

fat-tree where each two leaf switches are interconnected with
each other with 12 links and form a single switching unit.
For each subsequent simulation run, we randomly failed one
link in the fabric (both in the up and down direction), until 85
of all non-horizontal links in the fabric were disconnected.
In a 648-node 3-stage fabric, there are 1296 non-horizontal
links (as there are 36 36-port middle-stage switches), so
the number 85 represents approximately 6.5% of all links.
Furthermore, we added three measurements where the num-
ber of failed links is 10% (130 failed links), 15% (194
failed links) and 20% (259 failed links) to accommodate for
extreme situations. The links were not failed incrementally,
but randomly, that is, the set of failed links from one
scenario can and will usually differ from the set of failed
links from a subsequent scenario. This was done to show
the location of a failed link in the fabric also influences
the network performance. Furthermore, for comparison, we
added simulations where we did not fail links but whole

switches. The number of failed links when a single switch
fails is 36, so the measurements are less granular.

We chose a 3-stage 648-port fat-tree as the base fabric
because it is a common configuration used by switch vendors
in their own 648-port systems [30], [31], [32]. Additionally,
such switches are often connected together to form larger
installations like the JuRoPa supercomputer [27].

VII. PERFORMANCE EVALUATION

A. Uniform Traffic
Figure 2 shows the results for uniform traffic scenario.

The first observation is the fact that the fat-tree routing
algorithm is very susceptible to link failure (reducing the
performance by 35% for 80 failed links). Other algorithms
are also negatively influenced by link failure, but not to
such an extent, and LASH delivers constant, while very low,
throughput. Secondly, we observe that if the number of failed
links reaches 34 (approximately 2.6%), the DFSSSP routing
algorithm outperforms the fat-tree routing algorithm. This
cut-off point may be used to define whether a particular
fabric is still a fat-tree topology or has become a hybrid
topology.

Lastly, we observe that the plot for each routing algorithm
apart from LASH is not a strictly monotonically decreas-
ing function as one would expect (i.e. less links is lower
throughput). This means - due to random link failure - that
the location of a failed link also influences the network
performance. We checked in detail which links have failed
in each case, and we learned that if a link connecting a
leaf switch with a middle-stage switch fails, the performance
drop is much lower than if a link fails between a middle-
stage switch and a root switch. This is because, in this
particular topology, each leaf switch is connected with 3
links with each of its four upward neighbors. A failure of a
single link does not limit connectivity, but only changes the
number of paths per port in the port group that connects to
the upward switch (failure is localized). On the other hand,
the root switches are connected with only a single link with
each downward neighbor, which means that a link failure at
this stage leads to a complete lack of connectivity between
the two switches and the need to distribute the paths across
the whole network (failure with global influence).

On Figure 3 we see the same scenario, but instead of
single links, we failed whole 36-port switches (up to 7
switches which gives 252 failed links). We see that fat-tree
routing is slightly more susceptible (in terms of delivered
network performance) to link failure than to switch failure.
It is because fat-tree routing unknowingly chooses switches
with a large number of failed links (but still aims to divide
the destinations equally among all switches), which leads to
much higher traffic congestion on those switches that have
limited bandwidth (more failed links). If a whole switch
fails, then the rest of the traffic is evenly distributed among
all other devices, so bandwidth is higher than in case of
single-link failures.

MinHop, however, deals better with link failure than with
switch failure, which is surprisingly explained by inefficient
upward balancing that MinHop does. Due to multiple links
connecting middle-stage switches with leaf switches, Min-
Hop balancing is broken even for a fully populated fabric. In
our case, for middle-stage switches, the odd ones (counting
from the left) have 16 upward paths per each port 1, 2, 3,
zero paths per ports 4, 5, 6, and again 16 paths per each



0 10 20 30 40 50 60 70 80 90 130 194 259

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0 FTREE routing

DFSSSP routing
MinHop routing
LASH routing

Number of failed links

A
v

e
ra

g
e

 p
e

r 
en

d
-n

o
d

e 
th

ro
u

g
h

p
u

t 
(%

 o
f 

ca
p

ac
it

y
)

Figure 2: Comparing the algorithms for uniform traffic and failing links

0 1 2 3 4 5 6 7

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0 FTREE routing

DFSSSP routing
MinHop routing
LASH routing

Number of failed switches

A
v

er
a

g
e

 p
e

r 
en

d
-n

o
d

e 
th

ro
u

g
h

p
u

t 
(%

 o
f 

ca
p

ac
it

y
)

Figure 3: Comparing the algorithms for uniform traffic and failing switches

port 7, 8, 9 and so on. The even switches have a reverse
path assignment, i.e. ports 1, 2, 3 have 0 paths and ports 4,
5, 6 have 16 paths per port and so on. For root switches, for
odd ones (again counting from the left), even ports have 0
paths and for even root switches odd ports have 0 paths. This
means that there are 324 links that have 0 paths and if such
a link failure happens at an unused port (25% probability),
it will not influence the network performance. The further
explanation for the positive spike seen for a failing switches
scenario is given in the next subsection where this behavior
is more evident as balancing plays a more important role
there.

To summarize, the results indicate that fat-tree routing
delivers high performance only until a certain threshold
of failures is reached. However, as shown in the next
subsection, we will demonstrate that this threshold shifts if
a different traffic pattern is used.

B. HPC Challenge Benchmark
Figure 4 and Figure 5 show the results for the HPC

Challenge Benchmark simulations where the average from
the 30 random rings was taken. We do not present the results
for the maximum, minimum and natural rings because they
do not provide any additional insight. For this kind of traffic,
if we fail single links, all the algorithms deliver lower perfor-
mance with each subsequent failed link. However, DFSSSP
outperforms fat-tree routing only at 20% of failed links
(not at 2.6% like for uniform traffic). Furthermore, as seen
on Figure 5, which also confirms the previous observation

0 10 20 30 40 50 60 70 80 90 130 194 259

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0 FTREE routing

DFSSSP routing
MinHop routing
LASH routing

Number of failed links

A
v

e
ra

g
e

 p
e

r 
e

n
d

-n
o

d
e 

th
ro

u
g

h
p

u
t 

(%
 o

f 
ca

p
ac

it
y

)

Figure 4: Random Ring - Average results for failing links scenario

0 1 2 3 4 5 6 7

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0 FTREE routing

DFSSSP routing
MinHop routing
LASH routing

Number of failed switches

A
v

er
a

g
e

 p
er

 e
n

d
-n

o
d

e 
th

ro
u

g
h

p
u

t 
(%

 o
f 

ca
p

ac
it

y
)

Figure 5: Random Ring - Average results for failing switches scenario

for uniform traffic, fat-tree routing is less susceptible to
switch failures than link failures and is not outperformed
by DFSSSP even if close to 20% of links fail.

An interesting anomaly occurs with MinHop for failing
switches scenario, where failing a switch in a fabric does
not necessarily mean that there will be a performance drop.
This also confirms the observations for uniform traffic where
the plot is similar but these spikes are less pronounced. The
explanation is that for a fully populated fabric, MinHop does
not balance the paths correctly as described and explained
in the previous subsection. However, the visible spikes on
Figure 5 are a result of MinHop not being able to properly
balance a regular fabric, but being able to balance the
paths for an irregular fabric. In detail, for zero switch
failures and for a single switch failure, MinHop does not
properly balance the paths by leaving 25% of all ports
unused. The performance spike for the scenario with 2 and
3 failed switches is explained by proper path balancing.
Similarly, the drop for the scenario with 4 and 5 switches
is explained by the lack of proper balancing. The last two
scenarios again have proper balancing, but only for middle-
stage switches while the downward paths from the root
switches remain imbalanced (there are unused ports). This
counter-intuitive behavior is a bug in the sorting function
for MinHop and is caused by two factors: the topology with
port groups (i.e. multiple links connecting the same devices)
and a corresponding bug in the sorting function during the
balancing phase of the MinHop routing, which, if middle-
stage switches have an even number of upward ports but an



odd number of ports in a port group, does not deliver the
expected results. If the number of upward ports is odd, then
the balancing is proper. The question remains unanswered
whether the MinHop anomaly regarding balancing is a
simple bug or a more complex implication of the algorithm.

To summarize, the results for HPC Challenge Bench-
mark clearly demonstrate that even though fat-tree routing
is susceptible to link failures, it still delivers the highest
performance of all analyzed routing algorithms for non-
trivial traffic pattern on degraded fat-trees.

VIII. CONCLUSIONS

In this paper, we identified flaws in the existing fat-tree
routing algorithm for InfiniBand networks, and we proposed
three extensions that alleviate problems encountered when
discovering and routing degraded fabrics. First, we liber-
alized topology validation to make fat-tree routing more
versatile. Second, we proposed a switch tagging through
vendor SMP attributes that can be queried via vendor
specific SMPs and are used to configure the switches with
specific fabric roles, which decouples topology discovery
from actual routing. Lastly, we proposed solving the flipping
switches problem through using the SMP attributes. With
this insight, we compared four non-proprietary routing al-
gorithms running on degraded fat-trees. The results indicate
that the fat-tree routing is still the preferred algorithm even
if the number of failures is very large.

In the future, we plan to work on native IB-IB routing.
The current work will be expanded to cover hybrid fabrics
with multiple IB subnets and concurrently running multiple
routing protocols.

REFERENCES
[1] “Top 500 supercomputer sites,” http://top500.org/, November

2010.
[2] “The OpenFabrics Alliance,” http://openfabrics.org/.
[3] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Du-

ato, “Deterministic versus Adaptive Routing in Fat-Trees,”
in Workshop on Communication Architecture on Clusters,
IPDPS, 2007.

[4] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Opti-
mized Infiniband fat-tree routing for shift all-to-all communi-
cation patterns,” in Concurrency and Computation: Practice
and Experience, 2009.

[5] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage
switches are not crossbars: Effects of static routing in high-
performance networks,” in Cluster Computing, 2008 IEEE
International Conference on, 29 2008-Oct. 1 2008, pp. 116–
125.

[6] G. Rodriguez, C. Minkenberg, R. Beivide, and R. P. Luijten,
“Oblivious Routing Schemes in Extended Generalized Fat
Tree Networks,” IEEE International Conference on Cluster
Computing and Workshops, 2009.

[7] T. Skeie, O. Lysne, and I. Theiss, “Layered shortest path (lash)
routing in irregular system area networks,” in Proceedings of
Communication Architecture for Clusters, 2002.

[8] J. Domke, T. Hoefler, and W. Nagel, “Deadlock-Free Oblivi-
ous Routing for Arbitrary Topologies,” in Proceedings of the
25th IEEE International Parallel and Distributed Processing
Symposium. IEEE Computer Society, May 2011, pp. 613–
624.

[9] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Net-
works An Engineering Approach. Morgan Kaufmann, 2003.

[10] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. López, A. Robles,
J. Duato, M. Koibuchi, T. Rokicki, and J. Sancho, “A survey
and evaluation of topology agnostic routing algorithms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23,
no. 3, pp. 405–425, March 2012.

[11] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato,
“Dynamic fault tolerance in fat-trees,” IEEE Transactions on
Computers, vol. 60, no. 4, pp. 508–525, April 2011.

[12] F. O. Sem-Jacobsen and O. Lysne, “Fault tolerance with short-
est paths in regular and irregular networks,” in 22nd IEEE
International Parallel & Distributed Processing Symposium,
Y. Robert, Ed., IEEE. Unknown, April 2008.

[13] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato,
“Dynamic fault tolerance with misrouting in fat trees,” in
Proceedings of the International Conference on Parallel Pro-
cessing (ICPP), W. chi Feng, Ed. IEEE Computer Society,
August 2006, pp. 33–45.

[14] F. O. Sem-Jacobsen, T. Skeie, and O. Lysne, “A dynamic
fault-torlerant routing algorithm for fat-trees,” in Interna-
tional Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, June
27-30, H. R. Arabnia, Ed. CSREA Press, 2005, pp. 318–324.

[15] A. Bermudez, R. Casado, F. Quiles, T. Pinkston, and J. Duato,
“On the infiniband subnet discovery process,” Proceedings of
International Conference on Cluster Computing, pp. 512–517,
1-4 Dec. 2003.

[16] A. Bermudez, R. Casado, F. Quiles, and J. Duato, “Fast
routing computation on infiniband networks,” Transactions on
Parallel and Distributed Systems, vol. 17, no. 3, pp. 215–226,
March 2006.

[17] A. Bermudez, R. Casado, F. Quiles, T. Pinkston, and J. Duato,
“Evaluation of a subnet management mechanism for infini-
band networks,” Proceedings of International Conference on
Parallel Processing, pp. 117–124, 6-9 Oct. 2003.

[18] A. Vishnu, A. Mamidala, H.-W. Jin, and D. Panda, “Perfor-
mance modeling of subnet management on fat tree infiniband
networks using opensm,” Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pp.
8 pp.–, 4-8 April 2005.

[19] W. L. Guay, B. Bogdanski, S.-A. Reinemo, O. Lysne, and
T. Skeie, “vFtree - A Fat-tree Routing Algorithm using
Virtual Lanes to Alleviate Congestion,” in Proceedings of the
25th IEEE International Parallel & Distributed Processing
Symposium, 2011.

[20] B. Bogdanski, F. O. Sem-Jacobsen, S.-A. Reinemo, T. Skeie,
L. Holen, and L. P. Huse, “Achieving predictable high per-
formance in imbalanced fat trees,” in Proceedings of the 16th
IEEE International Conference on Parallel and Distributed
Systems, X. Huang, Ed. IEEE Computer Society, 2010, pp.
381–388.

[21] W. J. Dally, “Virtual-channel flow control,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 3, no. 2, pp.
194–205, March 1992.

[22] C. E. Leiserson, “Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transactions on
Computers, 1985.

[23] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A Multiple LID
Routing Scheme for Fat-Tree-Based Infiniband Networks,”
Proceedings of IEEE International Parallel and Distributed
Processing Symposiums, 2004.

[24] F. Petrini and M. Vanneschi, “K-ary n-trees: High perfor-
mance networks for massively parallel architectures,” Diparti-
mento di Informatica, Universita di of Pisa, Tech. Rep., 1995.

[25] S. Öhring, M. Ibel, S. Das, and M. Kumar, “On General-
ized Fat Trees,” in Proceedings of 9th International Parallel
Processing Symposium, 1995, pp. 37–44.

[26] E. Zahavi, “D-Mod-K Routing Providing Non-Blocking Traf-
fic for Shift Permutations on Real Life Fat Trees,” http:
//www.technion.ac.il/∼ezahavi/, September 2010.

[27] “Julich Supercomputing Centre,” http://www.fz-juelich.de/
jsc/juropa/configuration/.

[28] “Texas Advanced Computing Center,” http://www.tacc.
utexas.edu/.

[29] E. G. Gran and S.-A. Reinemo, “Infiniband congestion con-
trol, modelling and validation,” in 4th International ICST
Conference on Simulation Tools and Techniques (SIMU-
Tools2011, OMNeT++ 2011 Workshop), 2011.

[30] “Sun Datacenter InfiniBand Switch 648,” Oracle Cor-
poration, http://www.oracle.com/us/products/servers-storage/
networking/infiniband/034537.htm.

[31] “Voltaire QDR InfiniBand Grid Director 4700,”
http://www.voltaire.com/Products/InfiniBand/Grid Director
Switches/Voltaire Grid Director 4700.

[32] “IS5600 - 648-port InfiniBand Chassis Switch,” Mel-
lanox Technologies, http://www.mellanox.com/related-docs/
prod ib switch systems/IS5600.pdf.

http://top500.org/
http://www.technion.ac.il/~ezahavi/
http://www.technion.ac.il/~ezahavi/
http://www.fz-juelich.de/jsc/juropa/configuration/
http://www.fz-juelich.de/jsc/juropa/configuration/
http://www.tacc.utexas.edu/
http://www.tacc.utexas.edu/
http://www.oracle.com/us/products/servers-storage/networking/infiniband/034537.htm
http://www.oracle.com/us/products/servers-storage/networking/infiniband/034537.htm
http://www.voltaire.com/Products/InfiniBand/Grid_Director_Switches/Voltaire_Grid_Director_4700
http://www.voltaire.com/Products/InfiniBand/Grid_Director_Switches/Voltaire_Grid_Director_4700
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5600.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5600.pdf

	I Introduction
	II Related Work
	III The InfiniBand Architecture
	IV Routing in InfiniBand
	IV-A Fat-Tree Routing Algorithm
	IV-B Layered-Shortest Path routing
	IV-C Deadlock-Free Single-Source-Shortest-Path routing
	IV-D MinHop routing

	V Degraded Fat-Tree Discovery
	VI Experiment Setup
	VI-A Simulation model
	VI-B Topology

	VII Performance Evaluation
	VII-A Uniform Traffic
	VII-B HPC Challenge Benchmark

	VIII Conclusions
	References

