Evaluating Performance of Feature Extraction Methods for
Practical 3D Imaging Systems

Deepak Dwarakanath'?, Alexander Eichhorn!, Pal Halvorsen'2, Carsten Griwodz!
!Simula Research Laboratory, >University of Oslo
Oslo, Norway

{deepakd, echa, paalh, grifff@simula.no

ABSTRACT

Smart cameras are extensively used for multi-view capture
and 3D rendering applications. To achieve high quality,
such applications are required to estimate accurate posi-
tion and orientation of the cameras (called as camera cal-
ibration-pose estimation). Traditional techniques that use
checkerboard or special markers, are impractical in larger
spaces. Hence, feature-based calibration (auto-calibration),
is necessary. Such calibration methods are carried out based
on features extracted and matched between stereo pairs or
multiple cameras.

Well known feature extraction methods such as SIFT (Scale
Invariant Feature Transform), SURF (Speeded-Up Robust
Features) and ORB (Oriented FAST and Rotated BRIEF)
have been used for auto-calibration. The accuracy of auto-
calibration is sensitive to the accuracy of features extracted
and matched between a stereo pair or multiple cameras. In
practical imaging systems, we encounter several issues such
as blur, lens distortion and thermal noise that affect the ac-
curacy of feature detectors.

In our study, we investigate the behaviour of SIFT, SURF
and ORB through simulations of practical issues and eval-
uate their performance targeting 3D reconstruction (based
on epipolar geometry of a stereo pair). Our experiments are
carried out on two real-world stereo image datasets of var-
ious resolutions. Our experimental results show significant
performance differences between feature extractors’ perfor-
mance in terms of accuracy, execution time and robustness
to blur, lens distortion and thermal noise of various levels.
Eventually, our study identifies suitable operating ranges
that helps other researchers and developers of practical imag-
ing solutions.

Categories and Subject Descriptors

1.4 Image Processing and Computer Vision]: Digiti-
zation and Image Capture-Camera calibration, Imaging ge-
ometry; 1.4 [Image Processing and Computer Vision]:
Segmentation-Edge and feature detection
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1. INTRODUCTION

Multi-view vision applications such as free-view rendering
[3], motion tracking [11], structure from motion [16], and
3D scene reconstruction [10] require precise geometrical in-
formation about location and pose of each camera. Tra-
ditionally, camera calibration techniques use checkerboards
[19, 18] or special markers [5] to find point correspondences
between images. While such methods achieve sufficient ac-
curacy they are often inconvenient and limited in practice.
In some cases, it is impossible to place a measurement tar-
get like a checkerboard pattern of sufficient size in a scene.
Automatically finding corresponding points based on image
features alone is thus a desired goal.

To avoid dedicated calibration patterns and special mark-
ers in a scene, several auto-calibration methods have been
proposed [6] [7]. They rely on matching automatically de-
tected feature points between images from different camera
perspectives to estimate geometrical calibration parameters.
Feature extractors like SIFT (Scale Invariant Feature Trans-
form) [8], SURF (Speeded-Up Robust Features) [1] and ORB
(Oriented FAST and Rotated BRIEF) [15] are widely used
due to their easy availability, good detection and match-
ing performance, and a relatively small computational cost.
However, little is known about their spatial accuracy and ro-
bustness to real-world distortion although these issues play
a major role for precise reconstruction and scene geometry.

Sun et al. [17] have shown that the accuracy of calibration
is sensitive to the quality of corresponding features. At least
7 matching points are required for an accurate estimation
of calibration parameters [4] and more points will usually
improve the performance.

Most feature extraction algorithms are optimized for im-
age recognition tasks and search scenarios instead of geome-
try calibration. Hence, typical performance metrics such as
repeatability, precision and recall or number of matches only
consider the performance of matching [12], rather than the
performance in terms of 3D geometry reconstruction.

Moreover, the quality of images obtained from real-world
imaging sensors suffers from practical issues such as defocus
and motion blur, different lens distortions, thermal noise,
offsets in exposure time and white balance. Such pertur-
bations may degrade the performance of feature extraction
and matching up to a point where geometry reconstruction
accuracy becomes unacceptable.



Our study provides practical insights about the robustness
of existing feature extractors obtained in real-world exper-
iments and simulations. We seek to understand the typi-
cal operation ranges of three prominent feature extraction
methods; SIFT, SURF and ORB. We particularly investi-
gate how different image distortions can impact the preci-
sion of camera pose estimation when relying on detected
and matched feature points. We evaluate 3D calibration
performance based on extracted image features under dif-
ferent levels of quality degradation. We use two real-world
video data sets with a medium depth range, both captured
in-doors from multiple camera perspectives. We simulate
image quality degradation by introducing several levels of
gaussian blur, geometrical lens distortion and sensor noise.
To measure the geometrical accuracy of feature-based cali-
bration, we use a performance metric derived from the epipo-
lar constraint [4] which defines a precise geometrical relation
between a stereo pair of images. Together with an analysis
of computational costs we identify suitable operation ranges
to aid researchers and developers of multi-view applications.

In our experiments, we find substantial differences in ro-
bustness and execution time between SIFT, SURF and ORB.
SIFT and SURF are more robust, than ORB, to defocus,
lens distortion and thermal noise. Although SURF performs
similar to SIFT in terms of accuracy, SURF reduces the
computational cost drastically, by almost half. Compara-
tively, ORB is the most computationally efficient extractor
at higher resolutions and is robust to lens distortion, but
accuracy is inadequate for defocused and noisy images.

2. FEATURE EXTRACTORS

In this section, we briefly explain the principle of operation
of SIFT, SURF and ORB feature extractors.

SIFT detects key points in an image that are highly dis-
tinct, scale and rotation invariant, and fairly invariant to
illumination. SIFT is computed as follows. First, the inter-
esting points are searched over scale-space representation of
a image, and a difference of the Gaussian function is used to
identify the interesting points, which are invariant to scale
and orientation. The interesting points are subjected to a
3D quadratic function to determine their location and scale.
Every key-point is assigned one or more orientations depend-
ing on the direction of local gradients of the image around
this key-point and a highly distinct 128-bit descriptor is com-
puted.

SURF uses novel schemes for detection and description,
which mainly focuses on reducing computational time. Inte-
gral images are computed and interesting points are obtained
based on the Hessian matrix approximation. Using scale-
space representation, interesting points are searched over
several scales and levels. Localization: carried out using
interpolation of space. This is important because number of
interesting points in different layers of scales are large. The
descriptor is built using the distribution of intensity con-
tent within the interesting points. SURF uses distribution
of first order Haar wavelet responses in, both the x and y
directions. An additional step of indexing is based on the
sign of the Laplacian to increase robustness and matching
speed.

ORB modifies the FAST [14] detector to detect key points
by adding a fast and accurate orientation component, and
uses the rotated BRIEF [2] descriptor. Corner detection us-
ing FAST is carried out and that results in N points that

are sorted based on the Harris measure. A pyramid of the
image is constructed, and key points are detected on every
level of the pyramid. Detected corner intensity is assumed
to have an offset from its center. This offset representa-
tion, as a vector, is used to compute orientation. Images
are smoothened with the 31 x 31 pixel patch. Orientation of
each pixel patch is then used to steer the BRIEF descriptor
to obtain rotational invariance.

3. EVALUATION OVERVIEW

3.1 Simulation parameters

All imaging systems encounter practical issues such as de-
focus, radial lens distortion and thermal noise. Image blur
is the loss of image sharpness caused due to defocus, shallow
depth of field and motion of the camera or the scene objects
and quantization process. In our study, we focus on image
blur due to defocus only, because we consider multi view cap-
ture using only stationary cameras and hence motion blur
is of lesser significance. Radial lens distortion is an optical
aberration caused by spherical lens surfaces of the cameras,
which produces aberrations symmetrically and radially from
the image center. Barrel and pincushion are the types of ra-
dial distortions where the image aberration increases and de-
creases respectively as the radial distance from image center
increases. Image thermal noise appears as random speckles
in an image which is random variation in the luminosity or
color information of the pixels caused by the camera sensor
and its circuitry. To study the performance of the feature ex-
tractors under such practical scenarios, we simulate defocus,
lens distortion and noise using the mathematical models.

Defocus Ip(u,v) is accomplished by smoothing an image
I(u,v) with a linear 2D Gaussian filter G(u,v), as in equa-
tion 1. Various defocus levels can be controlled by the vari-
ance oy of the Gaussian kernel, which represents blur radius.

Ip(u,v) = I(u,v) * G(u,v) (1)
1 -
G(u,v) = 727r026 b (2)

Lens distortion can be modeled as a 3rd order polyno-
mial, as given by equation 3, where R, and Rg is undis-
torted and distorted pixel radius, respectively. The distor-
tion co-efficient k1 can be varied to obtain various levels of
distortion.

Ru=Raq+ kRS (3)

Thermal noise is modeled as Gaussian distribution. A
noisy image I (u, v) is obtained by adding Gaussian random
noise N (u7 v) with zero mean and variance o, to an image
I(u,v), as in equation 4. To obtain various noise levels N,

measured in decibels, the variance o, is controlled as, o, =
10Ni/10.

I, (u,v) = I(u,v) + N(u,v) (4)

3.2 Performance measure

The performance of feature extractors are measured in
terms of accuracy, detectability and execution time.

Accuracy of feature extraction in stereo images is mea-
sured by deviations of measured positions of matched fea-
ture points from their ideal positions. To explain this in
detail, we bring in the concept of epipolar geometry. Re-
searchers [4] [9] [13] have shown that in 3D imaging systems,
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Figure 1: Illustration of Epipolar Geometry. Cour-
tesy R. I. Hartley [4]

the geometrical relationship between the point correspon-
dences between stereo images is important and is character-
ized by a mapping matrix called Fundamental Matriz (F).

The epipolar geometry is illustrated in figure 1. Ideally,
for every point in one of the stereo images (say &), a cor-
responding point on the other stereo image (ag’ ) should lie
on a line, called epipolar line (I'), which is computed using
the matrix (F). In practice, feature extractors estimate the
corresponding point (z'), which can lie outside the line and
thus producing an error (d'). Such an error averaged over
all N, feature points will be referred as Epipolar Error (Ep),
and can be computed as in equation 5. Thus, the Epipolar
Error aids in measuring the accuracy of feature extractors,
in pixels. The sub-pixel errors, that is Ep < 1 pixel, is an ac-
ceptable value for good performance in most of the relevant
applications.
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Detectability measures the ability to obtain sufficient fea-
ture point correspondences in stereo images. A good esti-
mation of Fundamental Matrix requires at least 7 feature
corresponding points in stereo images [4]. Therefore, the
percentage of trials resulting in at least 7 feature correspon-
dences represents the detectability of a feature extractor.

Ezecution time measures the computational speed of the
feature extractors. It is computed as time spent on the
extraction step (detecting interesting points in two images
and building descriptors for them) and the matching step
(performing feature matching to obtain feature correspon-
dences).

3.3 Simulation Setup

Our experimental setup, as illustrated in figure 2, com-
prises a database of the test stereo images, an image degrada-
tion module and a feature extraction and matching module.
During our evaluation, stereo images are retrieved from the
database, and the image degradation module pre-transforms
the stereo images to simulate defocus, lens distortion and
sensor noise, with various levels using a tuner. Then, the fea-
ture detector-descriptor-matcher operates over all stereo im-
ages that are pre-transformed. The resulting feature matches
on degraded images are used to evaluate the performance of
the feature extractor based on the fundamental matrix esti-
mated for the stereo images before degradation.

In our experiments, we have used 30 stereo images from
the dataset of an opera performance, captured using 8 cam-
eras (2 camera arrays, each consisting of 4 cameras of narrow
and wide angle lens respectively). A second dataset used for
evaluation contains 35 images, from the popular breakdance
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Figure 2: Evaluation Pipeline

video sequence from Microsoft [20]. The stereo images from
both datasets were of HD resolution (1280x768). All these

stereo images were scaled to high resolution (1280x960), medium

resolution (640x480) and low resolution (160x120) images to
study the behavior of feature extractors across various res-
olutions in conjunction to image degradation. Image degra-
dation was carried out at different levels on every test stereo
pair (equally on both images of a stereo pair). Blur radius
levels ranged from values 1.5-6.0. Barrel distortion and pin-
cushion distortion were varied as -50% to -10% and +10%
to +50% respectively. Thermal noise levels were 5 - 50dB.
Then, feature extraction and matching using SIFT, SURF
and ORB methods are performed and the performance is
evaluated. An example of feature extraction in stereo im-
ages for various datasets and the image degradation using
simulation parameters are shown in figure 3.

4. EVALUATION RESULTS
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First, we ran the tests to measure accuracy and execution
time of various feature extractors to comparatively analyze
the performance of feature extractors at various image reso-
lutions. Figure 4 shows the results of the test (note that the
execution time is plotted in logarithmic scale). Obviously, a
tradeoff exists in choosing feature extractors between achiev-



(a) Opera dataset - Wide lens with SIFT (b) Microsoft dataset with ORB points (c) Opera dataset - Narrow lens with
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(d) SIFT matching on blurred images

(e) ORB matching on distorted images  (f) SURF matching on noisy images
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Figure 3: Stereo images from various datasets of resolution 320x240

ing higher accuracy and higher speed. Overall, ORB is com-
putationally efficient compared to SIFT and SURF at all
resolutions. A relative difference in execution time between
SIFT and SURF is significant; SURF reduces the compu-
tational cost by 48% at all resolutions. SIFT, SURF and
ORB results in acceptable (sub-pixel) accuracies, except for
SURF-L and ORB-L. This shows that SIFT is more robust
to change in scale.

Next, we conducted experiment to discuss how the defo-
cus/image blur, lens distortion and thermal noise affects the
performance of feature extractors, and the results are shown
in figure 5.

4.1 Effects of blur variation

Figures 5(a), 5(b) and 5(c) show that SIFT outperforms in
terms of accuracy at all resolutions. SIFT seems to be robust
to blur levels probably because of its own way of finding key
points, which uses scale space representation with various
blur levels. SIFT operations on blurry images are equivalent
to having more levels of blurs in every octave of the scale
space, for an un-blurry image. Obviously, at lower resolu-
tions blur-ness has a greater effect and hence SIFT shows an
acceptable accuracy up to blur level 4.5, as in figure 5(c).

SURF performs marginally at acceptable accuracy (E, <=
1, figure 5(c)) up to blur level 4.5, at low resolutions, for the
same reasons mentioned for SIFT. However, the difference in
accuracies between SURF and SIFT is due to the descriptor
construction. SURF integrates the gradient information and
loses distinctiveness when blur increases, while SIFT uses in-
dividual gradient to create the descriptor and sustains the
performance to a larger extent of blur, compared to SURF.

The detectability measure (figure 5(d)) for both SIFT and
SURF reduced drastically with increase in blur level at low
resolution, which makes them unsuitable to use when low
resolution images are blurred, especially at levels > 4.5.

Although, ORB performs good only at medium and high
resolution (figures 5(b) and 5(a)) up to blur level 3.5, the

detectability of ORB decreases rapidly with increase in blur
level. The use of huge box filters in ORB to obtain descrip-
tors seems to limit performance on blurry images. Addi-
tional blur worsens the efficiency of the descriptor. Hence
ORB fails at low resolutions.

4.2 Effects of distortion variation

The effects on performance of the feature extractors due
to different levels of barrel and pincushion distortion can be
seen in figures 5(e), 5(f), 5(g) and 5(h). All the feature ex-
tractors perform well and similar at high and medium resolu-
tion. A at low resolutions, SIFT outperforms SURF, which
in turn outperforms ORB; however, all of them exhibit an
acceptable accuracy and a constant detectabitlity. Over-
all performance of SIFT, SURF and ORB at all resolution
andseems to be unaffected by lens distortion. It should be
noted that this result is for a homogenous stereo pair where
the distortions are assumed to be of same degree in both the
cameras.

4.3 Effects of noise variation

The measurements for this experiment peaked at around
10 pixels, hence the results are shown in log scale for y axis
in figures 5(i), 5(j) and 5(k). Here, we show that SIFT out-
performs SURF and ORB, at all resolutions and exhibited
resilience to thermal noise, but becomes sensitive to noise
at around 15dB for low resolution images. SURF and ORB
showed resilience to noise up to 20dB and 15dB, respectively,
at both high and medium resolutions. Importantly, we ob-
serve high and constant detectability rate (figure 5(1)) for
SURF and ORB, suggesting that the performance of SURF
and ORB are not affected by noise, but the accuracy is too
low (Ep > 10 pixels). This behavior is because SURF and
ORB detect more features which are not supposed to be,
in noisy images. Hence under noisy conditions, above 15dB
none of the feature extractors perform within the acceptable
accuracy.
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CONCLUSION

In this paper, we evaluated the popular and widely used
feature extractors SIFT, SURF and ORB. The experiments
were conducted over different datasets at various resolu-
tions to test the resiliency of the feature extractors to de-
focus/blur, lens distortion and thermal noise. From the re-
sults, we can conclude that:

e At resolutions > 320x240, SIFT and SURF are the best
choices. However, choosing SURF would save execu-
tion time of 48%, on an average, with a cost of around
0.10 pixels in accuracy. A choice of feature extrac-
tor should be made considering the below conclusions,
which are based on the resolution 320x240.

e For blurry images, SIFT is the best choice. However,
using SURF would save 48%, on an average with a cost
of 0.22 pixels in accuracy.

e For lens distorted images, SIFT, SURF and ORB all
are good choices. By using ORB, the execution time
reduces by 98.12% and 95.27% with a cost of 0.69 pix-
els and 0.33 pixels in accuracy compared to SIFT and
SURF, respectively.

e For noisy images, SIFT and SURF are good choice and
using SURF saves 32% time with a cost of 0.67 pixels
in accuracy.

Unlike other feature evaluations, we have used the Epipo-

lar

Error to measure the accuracy of the feature correspon-

dence, which aids to selection of feature extractors for feature
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ed calibration and other 3D applications.
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Figure 5: Performance of feature extractors for simulation of blur, distortion and noise levels over various

resolutions



