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Abstract—A large number of live segmented adaptive HTTP
video streaming services exist in the Internet today. These quasi-
live solutions have been shown to scale to a large number of
concurrent users, but the characteristic on-off traffic pattern
makes TCP behave differently compared to the bulk transfers
the protocol is designed for. In this paper, we analyze the TCP
performance of such live on-off sources, and we investigate possi-
ble improvements in order to increase the resource utilization on
the server side. We observe that the problem is the bandwidth
wastage because of the synchronization of the on period. We
investigate four different techniques to mitigate this problem. We
first evaluate the techniques on pure on-off traffic using a fixed
quality and then repeat the experiments with quality adaptation.

Index Terms—live HTTP streaming, adaptation strategy, TCP

I. INTRODUCTION

Both the amount of video data and the number of video
streaming services in the Internet are rapidly increasing. The
number of videos streamed by these services is on the order
of tens of billions per month where YouTube alone delivers
more than four billion video views globally every day [25].
Furthermore, many major (sports) events like European soccer
leagues, NBA basketball and NFL football are streamed live
with only a few seconds delay. For example, such services
streamed events like the 2010 Winter Olympics [26], 2010
FIFA World Cup [13] and NFL Super Bowl [13] to millions
of concurrent users over the Internet, supporting a wide range
of devices ranging from mobile phones to HD displays.

As a video delivery technology, streaming over HTTP has
become popular for various reasons, e.g., it runs on top of TCP,
provides NAT friendliness and is allowed by most firewalls.
Furthermore, it has also been shown that video streaming
over TCP is possible as long as congestion is avoided [23]
and that adaptive HTTP streaming can scale to millions of
users [1]. The solution used for example by Microsoft’s
Smooth Streaming [26], Move Networks [1], Adobe’s HTTP
Dynamic Streaming [2] and Apple’s live HTTP streaming [17]
is to split the original stream into segments and upload
these to web-servers; such an approach, which is known as
MPEG Dynamic Adaptive Streaming over HTTP (MPEG-
DASH) [21], has recently been ratified for international stan-
dard by ISO/IEC’s joint committee known as MPEG. The
video segments can then be downloaded like traditional web
objects. To allow adaptation to available resources and client

devices, each segment may be encoded in multiple bit rates
(and thus qualities), and the adaptation is then just a matter
of downloading the segment in a different quality. In the live
streaming scenario, the segments are produced periodically.
A new segment becomes available as soon as it has been
recorded, completely encoded and uploaded to a web-server,
possibly located in a content distribution network (CDNs) like
Akamai or Level 3 [11]. Because the segment must be first
fully encoded and uploaded to the server, live adaptive HTTP
segment streaming is considered to be only quasi-live.

The nature of network traffic generated by live segment
streaming is very different from the traditional bulk transfer
traffic stemming from progressive video download and file
transfer. In the latter case, the entire file is retrieved using
a single request, i.e, the type of operation TCP is designed
and optimized for. Segmented HTTP video streaming is char-
acterized by many successive download-and-wait operations
creating an on-off traffic pattern of periodic HTTP GET
requests. This behavior makes TCP behave differently from
the traditional bulk operations [5], [24]. In this work, we
investigate the system performance of regular on-off traffic
generated from adaptive HTTP segment streaming.

In this paper, we analyze a multi-user server-side scenario,
and present our simulation results describing the behavior of
TCP cubic, the default Linux TCP variant, in a live HTTP
streaming scenario. The observation is that the performance
of default TCP cubic is reduced for on-off traffic compared
to bulk transfers. Based on the results, we further investigate
ways of increasing the overall system performance by looking
at protocol alternatives and different streaming options like
the segment duration and segment request timing. Based
on our experimental results, we outline different ways or
recommendations for improving the resource utilization on the
sender (server) side: 1) use another TCP congestion control;
2) use longer video segments; 3) avoid that the clients request
a segment that became recently available at the same time;
and 4) limit the TCP congestion window.

The outline of the paper is as follows: Section II discusses
the related work, and Section III describes our simulation
setup. We present and discuss our results for single quality
HTTP streaming in Section IV before we test our results
with a common quality adaptation strategy in Section V and
Section VI. In Section VII, we discuss our results, and in



Section VIII we conclude the paper.

II. RELATED WORK

On-off sources using TCP for delivering data have been
studied in the literature a couple of times. Analytical models
were provided for example for simplified TCP Tahoe [5],
[12], Vegas [24] and Reno [6]. However, most of these
models assume exponentially (randomly) distributed on and off
periods whereas in the segmented HTTP streaming scenario
the on and off periods are distributed differently. Different
is also that an HTTP segment streaming on period is first
over when all bytes of a segment have been downloaded,
not when a certain time has elapsed. Furthermore, others [20]
assume perfect bandwidth sharing between TCP connections.
This is of course a valid assumption if the on periods are
adequately long to establish bandwidth sharing fairness, but
in our scenario, the stream segments are too small to make
this assumption valid [7].

Adaptive HTTP segment streaming has been a hot topic over
the past few years, but most of the research has focused on the
observation and the improvement of a single connection [8],
[14], [18]. However, in huge multi-user scenarios like the ones
listed in Section 1, the server will be the bottleneck [9], and
we therefore need to look at how multiple connections behave
when sharing a server.

III. SIMULATION SETUP

Because a network consisting of hundreds of computers
is practically not feasible in our research lab, we used the
ns-2 network simulator [3] to analyze the performance of
periodic on-off video streams in a multi-user server scenario.
Our simulation setup is based on the observation that network
bottlenecks are moving from the access network closer to
the server [9]. Figure 1 shows the network we used for our
simulations. The links between the client machines and the R2
router are provisioned for more than the highest media bitrate
(Table I). The link between the HTTP server and the router R1
is overprovisioned and can support the highest media bitrate
for all clients. The link between R1 and R2 is the simulated
bottleneck link at the server side with a capacity of 100 Mbit/s
(we have also tested with a 1 Gbps bottleneck link, but the
trends are the same, i.e., only the total numbers of clients
are scaled up). The delays between the clients and the server
are normally distributed with an average of µ = 55ms and a
variation of σ = 5ms. Distributing the delays prevents phase

HTTP Server

Client machines

R1 R2

100 Mbit/s

Fig. 1: Simulation setup

Quality Avg. Bitrate
0 250 kbit/s
1 500 kbit/s
2 750 kbit/s
3 1000 kbit/s
4 1500 kbit/s
5 3000 kbit/s

TABLE I: Video
qualities

effects in the simulation, and it also seems to be a reasonable
assumption for an ADSL access network [16]. The router
queue is limited by 1375 packets which corresponds to the rule
of thumb sizing of bandwidth delay product. Furthermore, we
modeled client arrivals as a Poisson process with an average
inter-arrival time λ = number of clients

segment duration , i.e., all clients join the
stream within the first segment duration. This models the case
when people are waiting in front of a ‘Your stream starts in . . .’
screen for the start of the game or TV show so they do not
miss the beginning of the show. Finally, to have a realistic set
of data, we used the soccer stream used in [19], encoded with
variable bitrate (Table I) for a real HTTP segment streaming
scenario.

IV. SYSTEM EFFECTS OF HTTP SEGMENT STREAMING

In order to get more insight into the behavior of live adaptive
HTTP segment streaming, we first considered a simplified case
using only a single quality stream with an average bitrate of
500 Kbit/s (quality 1 from Table I). We used a 20 minutes
long video stream of 600 segments with the duration of 2
seconds, as recommended by research [15] and for example
Microsoft [26], [13]. We configured the HTTP server to use
ns-2’s Linux implementation of the cubic congestion control
algorithm, because cubic is used as the default congestion
control algorithm in the Linux kernel, which again is used
by more than 30% of the websites whose operating system is
known [22].

On the client side, we allowed the clients to buffer only one
segment. This forces the clients to download a segment, wait
for the next segment to become available, download it, wait
for the next one etc. There are two real world cases where
clients show this on-off behavior. The first case is a scenario
where all clients try to stay only one segment duration behind
the live stream. The second case occurs when all clients caught
up with the live stream and start waiting for the next segment
to become available and so enter the download-and-wait cycle.

Fig. 2: Observed TCP congestion window.

A typical development of TCP’s congestion window during
the download-and-wait cycle is shown in Figure 2. The conges-
tion window opens during the download period and collapses
while the client is waiting for the next 2-second segment, i.e.,
the download period always starts with a slow start, which
leads to bandwidth not being fully utilized. We also want to
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Fig. 3: Performance of TCP cubic
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Fig. 4: Performance of alternative TCP congestion control algorithms

note that the wait (off ) period ends for all clients (that received
the previous segment in time) at about the same time when
the next segment becomes available.

We looked at two important measures for live HTTP seg-
ment streaming - startup time and liveness. The startup time
is the time needed to receive the first segment, after which
the playout can begin. The liveness measures the time that the
client lags behind the live stream at the end of the stream, e.g.,
a liveness of -4 seconds means that a client will play the last
segment 4 seconds after the segment has been made available
on the server. There are three main factors that contribute
to liveness: client arrival time, client startup time and client
playout stalls (buffer underruns) when segments do not arrive
in time for playout.

The average liveness and startup time for different numbers
of clients for the configuration described above are plotted
in Figures 3(a) and 3(b). Every experiment was run with
different inter-arrival times 10 times. The plots show the
average value and the error bars the min and max value.
The server bandwidth of 100 Mbit/s should provide enough
bandwidth for smooth playout without pauses for around 200
clients. However, it is clear from the liveness graph that as
the number of clients increases the clients start lagging more

and more behind the live stream. Furthermore, the figure
also shows that the average startup time does not increase
dramatically with the number of clients.

Since the clients arrive in all cases within one segment
duration, the change in liveness must be contributed by
playout stalls. Any playout stalls certainly decrease the user
experience and should therefore be prevented. The reason for
playout stalls is the inefficient use of bandwidth by the server.
Figure 3(c) shows a sample of router R1 queue development
over time. We observe that the queue overruns approximately
every segment duration when a segment becomes available
(the end of a waiting period). The accumulated number of
dropped packets is shown in Figure 3(d). We see that there
must be a lot of retransmissions reducing the achieved goodput
of the server. In the following sections, we analyze different
ways for improving the system’s performance.

A. Alternative congestion control algorithms

A number of alternative TCP congestion control mecha-
nisms exist that aim at different scenarios. These can be easily
interchanged, e.g., in Linux, you may set the /proc-variables
or use sysctl. We repeated the experiments above replacing
cubic with other alternatives, and the results are plotted in
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Fig. 5: Performance of longer segments: 10-second segments (cubic)

Figure 4. From the plots, we can observe that BIC and its
successor CUBIC give the worst liveness, and thus, most
playout hiccups. Using another congestion control algorithm
can therefore improve the performance.

An interesting alternative is the vegas congestion control
algorithm which is designed to back off before a bottleneck
queue is overrun. Average liveness and startup time are shown
in Figures 4(b) and 4(c), respectively. We observe that vegas
performs much better. The reason is that this congestion
control algorithm manages to avoid overflowing the router
queue R1 (at least most of the time) and therefore can cope
with the increased number of clients better. Figure 4(d) shows
a sample development of the router queue over time for 150
clients in case vegas is used. It is apparent from Figures 4(d)
and 4(e) that vegas induces very few packet losses due to
queue overruns.

B. Increased segment duration

Recent congestion control algorithms were optimized for
bulk transfer. However, the segmented approach of HTTP
streaming creates a short interval on-off traffic rather than
bulk traffic ( commercial systems use standard segment lengths
from 2 seconds [26] to 10 seconds [17]). To see the effects of
the segment length, we also changed this parameter.

Figure 5 plots the results using different segment lengths.
For example, Figure 5(a) shows that the startup times are
slightly higher for 10-second segments because they take
a longer time to download than 2-second segments. Please
note that 10-second segments are 5 times longer in duration
than 2-second segments, but not necessarily 5 times larger in
size. Quality switching between segments requires that every
segment starts with an intra encoded frame (I-frame), but the
rest of the frames in a segment can be lightweight P- and/or
B-frames that require a much smaller fraction of the segment
than an I-frame. Nevertheless, longer-duration segments larger
than shorter ones and therefore require more time to download,
prolonging the download (on) periods. This gives TCP more
time to reach its operating state.

The liveness is lower than in the case of 2-second segments
for multiple reasons. Firstly, we distributed the client arrivals

also here across one segment duration, i.e., 10 seconds.
Therefore the client arrival time is in general higher and so
decreases the liveness. However, note that the clients still
synchronize when they request the second segment. Therefore,
in this respect, this scenario is similar to the 2-second segment
scenario, but instead of synchronizing their requests at the third
second, clients synchronize at the eleventh second.

We can observe that client liveness changes from about -8
seconds to -24 seconds for 175 clients. The drop of liveness
with the number of clients is very much comparable to the
2-second case.

Fig. 6: Sample TCP congestion window for 10 second seg-
ments

A trace of a congestion window using 10-second segments
is plotted in Figure 6. Compared to the 2-second segment
scenario in Figure 2, we see that the window size oscillates
with a lower frequency, i.e., relative to the segment size. One
can also see the characteristic curve of cubic when it probes
for available bandwidth. There is no time to do that in the
2-second segment scenario.

The probing for bandwidth leads to queue overruns as
shown in Figure 5(c). These overruns trigger almost constant
packet loss independent of the number of clients (Figure 5(d)).
Based on this observation we would rather lean towards using
2-second segments because they give us better liveness and
give the adaptation algorithm 5 times more chances to adapt
stream’s quality.
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Fig. 7: Performance of regular vs. distributed requests (cubic)

C. Requests distributed over time

In a live streaming scenario, the clients usually download
the new segment as soon as it becomes available. Thus, the
server will experience large flash crowd effects with a huge
competition for the server resources. However, we showed
in [10] that such segment request synchronization leads to
reduced performance in terms of quality and liveness. The
negative effects can be seen in the default configuration of
the server where the router queue fills up (Figure 3(c)),
and packets are dropped (Figure 3(d)), i.e., the performance
degrades.

To avoid this synchronization, we propose to distribute
the requests across the segment duration. For example, upon
arrival, the clients make a request every segment duration. This
algorithm requires the clients to check the media presentation
description only in the beginning of the streaming to find out
which segment is the most recent. After that they can assume
that a new segment is going to be produced every segment
duration. This way the requests stay distributed over time also
beyond the first segment.

In our experiment, the requests are exponentially distributed
over the entire segment duration. The results show that dis-
tributed requests increase the liveness if the client number is
small (Figure 7(a)). If the number of clients is high, clients
that get more than one segment duration behind the stream
implicitly build up the possibility for buffering, i.e., they
break the download-and-wait cycle and reduce the effect of
distributed requests until they catch up with the live stream
again. We also see that distributed requests lead to less
pressure on the router queue (Figure 7(c)) which can possibly
leave more space for other traffic, and that the number of
packet losses is greatly reduced (Figure 7(d)).

D. Limited congestion window

In Video-On-Demand scenarios, clients can download the
whole stream as fast as their download bandwidth and their
playout buffers permit. On the other hand, in live streaming
scenarios, clients are additionally limited by segment avail-
ability. In the download-and-wait cycle, a fast download of a
segment prolongs only the wait period. Hence, there is no need
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Fig. 8: Performance of a limited TCP congestion window (cu-
bic)

for the client to download a segment as quickly as possible as
long as it is downloaded in time for playout.

TCP’s bandwidth sharing is fair for long running data
transfers. However, for short transfers, the sharing is in many
cases very unfair. To reduce this unfairness, we experiment
with a limited TCP congestion window. The limited congestion
window can lead to longer download times, resulting in a
behavior similar to TCP pacing [4]. To avoid playout stalls
due to congestion window limitation, we chose the congestion
window so that a segment can easily be downloaded in one
segment duration. We set the congestion window to 20 TCP
segments, which equals to a bandwidth 3 times bigger than the
average bitrate of the stream (to account for bitrate variance).
The startup time is low as in the other scenarios tested
above, yet the average liveness is improved (Figure 8(a)).
Furthermore, from Figure 8(b), we observe a significantly
reduced number of dropped packets which also indicates a
lighter load on the bottleneck router queue, resulting in a more
efficient resource utilization.

V. APPLICATION EFFECTS USING QUALITY ADAPTATION

In the previous section, we showed how different changes
of default settings have a beneficial impact on HTTP segment
streaming without adaptation. In this section, we look at
the impact of these changes on the adaptive HTTP segment
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streaming. We chose a classic adaptation strategy that is
very similar to the strategy used by Adobe’s HTTP Dynamic
Streaming [2], [11]. This strategy is known to follow the avail-
able bandwidth very closely [14], [18]. We use the following
formula to estimate the available bandwidth:

bs = α ∗ bs−1 + (1− α) ∗ segment sizes
download times

The estimated bandwidth bs after the download of a segment
s is the weighted sum with aging (α was 0.1) of the estimated
bandwidth after segment s − 1 and the quotient of the size
of segment s and its download time download times. After
the bandwidth is estimated, the strategy finds the sizes of the
next segment using a HTTP HEAD request and chooses to
download the segment in the highest bitrate (quality) possible
so that the estimated download time does not exceed one
segment duration.

In the following subsections, we compare a quality adap-
tive scenario using a system with the default settings from
section IV (unmodified) with systems that include modified
settings over a 30 minute playback. Here, the startup times
are in general lower than in the previous section since the first
segment is downloaded in a low quality to ensure a fast startup
like in most of the commercial systems. We focus therefore
only on the user experience metrics liveness (smooth playout)
and segment bitrate (video quality). Note that a segment can
only be encoded when all (video) data in it is available, i.e.,
the best achievable liveness is one segment duration.

A. Alternative congestion control algorithms

In the previous sections, we saw that the vegas congestion
control is slowing down connections’ throughput to reduce
packet losses, which leads in general, as observed in Figure
10(a), to much lower quality than that achieved with cubic (for
quality coding see Figure 9). However, because of its very
careful congestion control, vegas is not causing the clients
to have many late segments. The liveness (and thus video
playout) is therefore almost perfect without any hiccups. On
average, clients lag only about 2 seconds behind the live stream
independent of their number. In case of cubic, the clients need
to buffer at least 12 seconds for a smooth playout for smaller
numbers of clients. When the number of clients rises, the
competition for the resources increases, forcing every client
to select a lower quality, thereby improving liveness. Thus,
vegas should be considered if liveness is the goal, and the
quality is secondary or if clients cannot afford buffering.
B. Increased segment duration

In section IV-B, we compared short segments with long
segments from the system perspective where longer segments
give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better
performance than 10-second segments. The question answered
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Fig. 10: Alternative congestion control: cubic vs. vegas

in this section is how this influences the segment video quality.
In this respect, Figure 11(a) shows that the relative number
of high quality segments is lower compared to the 2-second
case. The liveness seems also worse, but it is actually quite
good for 10-second segments. The reason is that the best
liveness achievable is always one segment duration, i.e., 10
seconds, as we explained in the beginning of this section. This
means that the clients need to buffer only one segment, even
though it is 10 seconds long. Nevertheless, it seems to be more
efficient to use 2-second segments – both from the system and
the user perspective. This raises the question if even shorter
segments should be used, but this would negatively influence
the perceived user quality [15].
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Fig. 11: Segment lengths: 2 vs. 10 seconds

C. Requests distributed over time

Section IV-C showed a better system performance when
distributing the requests for a segment over the entire segment
period. Figure 12(a) shows the respective quality improvement
when the requests are distributed as in the previous section.
The quality improvement is obvious especially when the
number of clients is high. However, we need to point out that
the liveness suffers. Figure 12(b) shows that because of the



poor quality, the strategy without any modifications is able to
provide the clients with a more ’live’ stream.
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Fig. 12: Request distribution (1 segment buffer)

90 100
110
120
130
140
150
175
200
210

Number of clients

0

10

20

30

40

50

60

70

80

90

100

Nu
mb

er 
of 

seg
me

nts
 [%

]

(a) Segment quality (regular left bar)

100

120

140

160

180

200

220

Number of clients

35

30

25

20

15

10

5

0

Li
ve

ne
ss

 [s
]

unmodified dist. req.

(b) Liveness

Fig. 13: Request distribution (5 segment buffer)
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Fig. 14: Request distribution (15 segment buffer)

In practice, however, this would be handled by allowing
buffering, which does affect liveness, but fixes the interruptions
in playout. Thus, the observed liveness of -16 seconds means

the client would require at least a 14 seconds buffer in order
to play the stream smoothly without any pauses. For live
streaming, this means that a client cannot request the most
recent segment from the server when it joins the stream, but
has to request an older segment to have a chance to fill its
buffer before catching up with the live stream and so entering
the download-and-wait cycle.

Figure 13 shows the quality improvement and liveness when
clients use 5-segment (10-second) buffers. We observe that the
quality gain of distribution is preserved while also improving
the liveness. Moreover, Figure 14 shows the trend of improved
quality, yet comparable liveness continues when the size of
buffers is further increased to 15 segments (30 seconds).
We conclude therefore that distributing requests is important
especially when client buffers are already in place.

D. Limited congestion window
Restricting the client’s TCP congestion window and so dis-

tributing the download over a longer time has positive effects
not only on the server and bottleneck resources (Section IV-D),
but also on quality as shown in Figure 15(a). The interesting
thing about reducing the congestion window is that for small
numbers of clients both the liveness and the quality are better.
As the number of clients grows, the quality of an unmodified
adaptation strategy degrades quickly, improving the liveness as
shown in Figure 15(b). The modified settings keep the liveness
about the same irrespective of the number of clients, which is
a good thing for practical implementation reasons when the
client buffer size is to be chosen.
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Fig. 15: Limiting the congestion window (cubic)

VI. COMBINATION OF ALTERNATIVE SETTINGS

In this section, we briefly outline and compare the effect of
the 16 different setting combinations (see Figure 16) using
the 140 client scenario as a representative example. It is
again important to note that the graphs must be evaluated
together, i.e., a gain in quality (Figure 16(a)) often means
reduced liveness (Figure 16(b)) and increased packet loss
(Figure 16(c)).

As seen above, changing congestion control, i.e., replacing
cubic with vegas, results in no or very mild loss which leads
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Fig. 16: Performance of combined settings (A=vegas, B=10 second segments, C=distributed requests, D=cwnd limitation)

to much better liveness, also in combinations. On the other
hand, it has implications on quality, which is lower compared
to the default setting, cubic. Furthermore, 10-second segment
combinations show lower quality than the same combinations
with 2-second segments. The only exception is vegas used
with distributed requests, but it is still worse than other
combinations. The liveness is naturally smaller using longer
segments. Moreover, in general, combinations with distributed
requests results in higher quality, however, it decreases the
liveness in most of the cases. Finally, a congestion window
limitation does not seem to have influence on liveness or
quality apart from the case when it is the only setting modified,
or when used with distributed requests where it performs better
in terms of liveness especially for small client numbers. Thus,
there are several combinations that can be used, but it is
usually a trade-off between liveness (which can be fixed by
buffering and a startup latency) and video quality.

VII. DISCUSSION AND FUTURE WORK

The importance of resource utilization is often a question
of the number of supported clients. The beauty of adaptive
streaming is that the system adapts to resource availability by
downgrading the quality when the number of clients increases,
e.g., we do see in our experiments that we can support more or
less the same number of clients due to the adaption. However,
an improvement in resource utilization does increase the users’

perceived quality, i.e., it reduces delayed packets and playout
interrupts and increases video quality. Furthermore, at a given
lower quality threshold, the experiments shows that the number
of clients can be increased, i.e., the client number per (CDN)
machine can be higher using the tested configurations.

In this paper, we have investigated various techniques to
improve the server resource utilization in the HTTP streaming
scenario, but the proposed changes do also have potential
positive effects outside the single server machine. For example,
distributing the requests over a short time period (like the
segment duration) gives the web proxy caches time to buffer
the data meaning that a lot of the requests can be served by
machines in the network, offloading the CDNs. The research
to quantify such broader gains is, however, out of the scope
of this paper and left for future work.

We would like to point out that the on-off traffic pattern
does not only apply to live streaming but also to Video-On-
Demand, when the client filled its buffer and is waiting for the
playout to consume a segment from it. In this case, however,
the requests from clients are not synchronized and so rather
resemble our distributed requests.

An interesting investigation is what happens if the conges-
tion window is not truncated when the TCP connection is idle.
How much does it influence the clients competition when the
connections resume after an off period with full speed and
a big burst of data? Avoiding a colapse of the window is a



potential improvement, and we will look into this in the next
step of our investigation.

We would also like to mention that we are working on
estimating the influence of cross traffic on our results. This
might be interesting especially for vegas since it is known
to loose against other more aggressive TCPs. Cross traffic
would also help to estimate the impact of our modifications
if the bottleneck is closer to the clients. In the future we
plan to evaluate the impact of other possible modifications
on the investigated scenario and we also plan to evaluate our
results with real large scale systems in a collaboration with a
Norwegian video provider.

VIII. CONCLUSION

We have first studied the performance of HTTP segment
streaming in a multi-user server-side scenario. It turns out
that because of the different traffic pattern of HTTP segment
streaming, the server is able to handle much fewer clients
than its network bandwidth would allow. We proposed and
tested four different methods (and their combinations) ranging
from network-layer to application-layer changes to improve
the situation. Additionally, we re-evaluated these methods also
in a scenario where clients used a quality adaptation strategy.

Our results show that other congestion control algorithms
(like vegas) avoid queue overruns, also in the case of short
(up to 2 seconds) connections. Therefore, its use leads to
very few late segments which means an increased liveness
with less buffer underruns. On the other hand, vegas’s careful
approach reduces the quality. Moreover, we do not find a
persuasive reason for using 10-second segments, i.e., in a
single-user scenario, it uses the congestion window better, but
in a multi-user scenario with competition for the resources,
neither the video quality nor the liveness are improved over
2-second segments. We further observe that the distribution
of requests over time leads to very good results in terms of
quality and in case of client side buffers also liveness. Limiting
the congestion window contributes to better fairness among
the connections and gives a better bandwidth estimation.
This results in good quality and stable liveness for different
numbers of clients, but only if used as the only modification.
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