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This keynote is based on: 
•  M. Jørgensen, T. Halkjelsvik, and B. Kitchenham. Is there a magnitude 

bias in project cost estimation? , International Journal of Project 
Management 30(7):751-862, 2012. 

•  T. Halkjelsvik and M. Jørgensen. From origami to software development: 
A review of studies on judgment-based predictions of performance 
time, Psychological Bulletin 138(2):238-271, 2012. 

•  M. Jørgensen and B. Kitchenham. Interpretation problems related to the 
use of regression models to decide on economy of scale in software 
development, Accepted for publication in Journal of Systems and 
Software, 2012. 

•  M. Jørgensen. The Influence of Selection Bias on Effort Overruns in 
Software Development Projects, Submitted to a journal, 2012. 

•  M. Jørgensen. Myths and Over-simplifications in Software Engineering, 
Submitted to a conference, 2012. 

•  M. Jørgensen and K. J. Moløkken-Østvold. How Large Are Software Cost 
Overruns? Critical Comments on the Standish Group’s CHAOS 
Reports, Information and Software Technology 48(4):297-301, 2006. 

(download these papers from: simula.no/people/magnej/bibliography) 
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It is likely (in many contexts) that … 

•  if you do unusually well on one test, you will 
do worse on the following. 

•  any treatment of the worst performers will 
have a positive effect. 

•  your children will be worse than you on things 
you are exceptionally good at. 

•  the “rookie of the year” will disappoint the 
following year. 

 

The reason is:  
Regression towards the mean (RTM) 

•  RTM is a real, statistical effect easy to misinterpret. 
•  Milton Friedman once wrote that “I suspect that the 

regression fallacy is the most common fallacy in the 
statistical analysis of economic data”.  

•  First formulated by Sir Francis Galton more than 
100 years ago. 

•  The relevance of RTM increases with decreasing 
correlation between the variables of interest. 
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The beginning: Galton’s study of inheritance 

•  Galton observed that children of tall (short) 
parents were typically shorter (taller) than their 
parents. 

•  Galton first described this finding as a biological 
force - “filial regression to mediocrity”. 

•  BUT, then the human race would soon consists of 
people with the same, average, height! 

•  In addition, a time-reversal gave the opposite 
result. Parents of tall (short) children were 
typically shorter (taller) than their above average 
tall parents. 

Galton’s data  
(probably the first regression analysis in history) 

Yellow line: Same 
average height of 
parents and their 
children"
Red line: Regressing 
children’s height on 
parent’s mid-height"
Blue line: Regressing 
parent’s mid-height on 
children’s height."
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Comment to the interpretation of RTM 

•  Observed height = “true” height + “noise” 
–  “true” height is the inherited height 
–  “noise” is the rest, i.e., luck, measurement 

error, etc. 
•  The “true” height of parents and their children is 

the same - given no increase in average height in 
a population over time. 

•  The observed height regresses towards the mean 
– The “luck” (J) that made me tall, will on 

average not be repeated on my children. 

Mutual funds 

•  Easy to show that there is close to zero 
correlation between a mutual fund’s ranked 
performance one year and the next. 

•  The relative performance of a mutual fund 
can be simulated through a model where the 
the true performance is the same, and the 
observed performance is fully determined by 
noise (luck, bad luck). 
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Mutual funds - simulation 

No correlation between Rank(t) and Rank(t+1), i.e., no “true”, 
only RTM-induced relationship."
"
These results should NOT be interpreted to mean that good 
performers “get lazy” poor ones “pull them selves together”. 
 
"

How would you interpret this data? 

CR duration = Actual duration (effort) to complete a change request"
"
Interpretation by author: Larger tasks are more under-estimated."
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 What about these data?  

They are from the exact same data set! The only 
difference in the use of estimated and actual duration 
as the task size variable."

The data we get with actual effort being a 
random number between 1 and 40 
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The data we get when there is no correlation 
between estimated and actual duration 

Actual CR duration" Estimated CR duration"

What is going on? 
 

Let us start with the relation  
between 

effort (work-hours)  
and  

project size (lines of code) 
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We generate a data set with a linear relationship 
between effort and task size 

•  The “true” relationship is that it takes one work-hour (WH) to 
develop one line of code (LOC), i.e., WH = LOC. 

•  There is substantial “noise” in the measurement of WH and 
LOC, e.g., : 
–  Inconsistency in how lines of codes and work-hours are measured 

from project to project 
–  “Unsystematic” variance in WH or LOC, e.g., differences in 

programming style that produces more LOC for the same amount of 
WH for one person than another. 

•  The noise leads to a correlation of 0.5 between the 
observed task size and effort. 

Generation process (1000 tasks) 

•  Randomly draw a number, representing the true 
number of LOC of a system, from a uniform distribution 
with numbers between 1000 and 2000."

•  Calculate true number of  WH as: "
•  WH_true =LOC_true."

•  Randomly draw two numbers representing the “noise” of 
LOC and WH from a normal distribution with mean 0 
and standard deviation 280."

•  Calculate observed number of LOC as:  "
•  LOC_obs = LOC_true + LOC_noise."

•  Calculate the observed number of WH as:"
•  WH_obs = WH_true + WH_noise."
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The generated observed LOC and WH have about the same 
normal distribution (same mean and same std)  

Regressing LOC on WH 

Does it suggest that it takes about 0.5 work-hour to 
develop one additional line of code? "

(The true relationship is 1 WH per LOC.)"
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Regressing WH on LOC 

Does it suggest that you get 0.5 lines of code by investing   
work-hour? This corresponds to 2 work-hours per line of code. "

Statistical fact:  
Regression analyses tend to have too low  b-

values to reflect the true relationship  
 

•  The more noise in the dependent variable, the 
more deflated the b-value. 

•  The more noise in the measurement, the larger 
the difference between the TWO regression 
lines (regressing X on Y and Y on X). 

•  We may use the difference between the two 
regression lines as an indicator of noise and 
interpretation problems. 
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Is there an economy or diseconomy of scale 

in software development? 
 

(Do we get more or less productive with increasing project size?) 

Analyses of (dis)economy of scale 

•  Relevance: 
–  Should we split or join tasks? 
–  Are larger project less productive? If yes, this 

supports, for example, incremental development. 
•  Research results: 

–  Most studies show an economy of scale, but some 
find linearity. Few reports diseconomy of scale. 

•  Practitioners’ experience:  
–  Diseconomy of scale, except for very small task. 
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Generated data where the true relationship 
is linearity 

•  Calculate productivity (PROD) = LOC/WH  
•  Regression model: PROD = a + b . TS. 
•  TS is a measure of the task size, e.g., WH, LOC, 

function points, number of requirements, etc. 
–  The above model corresponds to Effort = aSizeb, when the tasks 

size is measured as LOC, function points etc.. 

•  True relationship of generated data:  
–  Constant productivity (a=1, b=0) 

•  Observed relationship: ? 

The choice of task size measure decides whether 
we find economy or diseconomy of scale! 

Prod = a + b . WH!
Diseconomy of scale"

Prod = a + b . LOC!
Economy of scale"
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We find the same pattern in reported data set  
(based on paper to appear in JSS) 

Visualization of data from one of the studies 
(Jørgensen 1997 ) 

Model 3: Effort = a.Sizeb                                       Model 4: Size = a.Effortb"
 Economy of scale (b < 1)                      Diseconomy of scale (b > 1)                           "



14 

We cannot trust the previous statistical 
analyses on economies of scale in SE 

•  The main reason for the dominance of reporting 
economy of scale or constant return on scale in SE 
research is the use of: 
–  Effort = a Sizeb (factor input model), instead of  
–  Size = a Effortb (production function) 

•  If SE, as most other disciplines, had used the 
production function instead of the factor input 
model, we would have, almost without exceptions, 
reported linearity or diseconomy of scale. 

 

A comment on prediction vs. explaining 

•  In a prediction (e.g., effort estimation) context the 
regression towards the mean is not really a problem. It 
is, for example, rational to predict an effort closer to the 
mean effort with increasing noise (decreased 
correlation between size and effort). 

•  If, however, we want to understand or explain the true 
relationship, e.g., to decide whether we on average will 
benefit from splitting up or joining tasks, we have a 
problem with regression towards the mean effects! 

•  Not easy to see how to conduct trustworthy explanatory 
analyses of observational data.  
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Is there an increase in cost overrun 
with increased project size? 

Previous studies on  
project size vs cost overrun 

•  Most software studies report an increase, 
while most infrastructure projects report a 
decrease in cost overrun with increased 
project size 

•  Software studies typically measure project 
size as the actual cost, while infrastructure 
projects measure it as the estimated cost. 

•  Can this difference in project size measure 
explain the difference in reported results? 
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Field data (published in IJPM): Cost overrun vs. size 
measure 

ACT = Actual cost, EST=Estimated cost, ICO=Increasing cost overrun, DCO=Decreasing cost 
overrun with increased project size, CCO=Constant cost overrun, TAB=Cross-tabulation, 
REG=Regression, CAT=Category-based analysis"

•  We cannot trust the previous statistical 
analyses on increasing cost overrun with 
increasing project size in software 
engineering 

•  If software engineering researchers had 
used estimated size (budget, cost 
estimate, effort estimate) as project size 
variable, we would typically find no 
difference or decreasing cost overrun with 
increased project size. 
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Non-random sampling 

Non-random sampling and regression 
towards the mean 

•  Regression towards the mean implies that values 
higher than the mean are likely to have a positive 
random error (positive noise-value), while values 
lower than mean are likely to have negative random 
error. 

•  If we generate a data set through a non-random 
selection of observations, we may get a biased 
sample of random errors 

•  A biased sample of random errors may mislead the 
analysis. 
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Example: Project size vs Productivity 
•  We divide projects into size groups (very small, small, 

large, very large) based on the produced LOC. 
•  This gives four non-random groups and biased “noise” 
•  Assume, for example, that the “very small” group only 

include projects less than 1000 LOC. 
•  This will, amongst others lead to: 

–  Inclusion of a project that has a true size of 1200 LOC, but due to 
forgetting to count some code, it is measured to be 800 LOC 
(negative noise value, too low measured productivity). 

–  Exclusion of a project that has a true size of 800 LOC, but due to 
counting the same code twice, it is measured to be 1200 LOC 
(positive noise value, too high measured productivity). 

•  In short, we would expect the observation of below 
average productivity for “very small” projects. 

An this is exactly what we observe … 
•  To illustrate the effect of non-random sampling we split the 

previously generated data set into projects based on their LOC: 
–  very small: <1000 LOC,  
–  small: 1000-1500 LOC,  
–  large: 1500-2000 LOC 
–  very large: >2000 LOC 

•  As before there is NO true  
increase or decrease in 
productivity with increasing 
project size. 

•  The results are, however, 
very convincing (p<0.0001). 
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Non-random sampling: The Winner’s curse 
•  The client does not select randomly among the 

proposals (the bids), but is more likely to select among 
those with lowest price. 

•  Those with over-optimistic cost estimates are more 
likely to give lower bids than those with realistic or over-
pessimistic cost estimates. 

•  It can be shown that, situations with no underlying bias 
towards over-optimism, results in observed cost 
overruns due to selection bias in accordance with: 

 

•  w = Percentage of average cost, µ = mean estimated cost, est = estimated cost, act 
= actual cost (more information in my paper on selection bias, see previous slide) 

A controlled experiment on selection bias effect 
(Strategy: Select the i-th highest cost estimate): 
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Other evidence in support of selection bias 
effects in explaining cost overruns 

Fields studies report that: 
•  In-house software development, where there is 

no selection bias, have no systematic tendency 
towards cost overrun. 

•  The higher the focus on lowest price as 
selection criterion, the higher the cost overruns. 

•  The “average bid” selection format seems to 
remove the cost overruns. 

Low awareness on selection bias effects 

•  Experimental evidence on the winner’s curse 
•  The Standish Group (1994) claimed a 189% average 

cost overrun of software projects. 
–  Selection process (page 13 of their report): “We then called and 

mailed a number of confidential surveys to a random sample of 
top IT executives, asking them to share failure stories. During 
September and October of that year, we collected the majority 
of the 365 surveys we needed to publish the CHAOS research.”  

•  Clearly, the average cost overrun of projects with large 
cost overruns can be very large, but how much does 
this say about the software industry? 

•  Still, this report is the one most frequently quoted on 
cost overruns in software projects. 
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Lessons learned - 1 
•  Future explanatory analyses of observational 

data should avoid go into the regression-
towards-the mean traps. 
– Re-read Section 1 in the introduction to 

regression analysis, e.g., the assumption of 
fixed variables. 

•  Results from ordinary regression and related 
analyses can only be interpreted properly if the 
level of random error in the independent 
variable is reasonably low or we know how to 
adjust for it. 

Lessons learned - 2 
•  If the level of random error in the independent variable 

is likely to be high (e.g., indicated by a low correlation) 
we may have to: 
–  Conduct controlled experiments (fixed variables) 
–  Change into other variables (with less random error) 
–  Assess the level of random error (not easy) 
–  Use other statistical methods 

•  There is a high number of alternative statistical methods 
made for adjustments or avoidance of the 
interpretations problems. As far as I can see, they are 
hard to use and/or solve one problem by introducing 
new ones in typical software engineering contexts. 
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Lessons learned - 3 

 
 
Know what you do, when conducting 
statistical analyses. 

Extra material 
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Salary discrimination? 
•  Assume that there is an IT-company that: 

–  Has 100 different tasks they want to complete. 
–  For each task they hire one man and one woman (200 workers) 
–  The “base salary” of a task varies from  50.000 to 60.000 USD and 

is the same for the man and the woman completing it. 
–  The actual salary is the “base salary” added a random, gender 

independent, bonus. This is done through use of a “lucky wheel” 
with numbers (bonuses) between 0 and 10.000. 

•  This should lead to: Salary of women = Salary of men 
•  A regression analysis, however, gives that the women are 

discriminated (paid less) for the above average high 
salaries! 
–  Salary of women = 26100 + 0.56 * Salary of men 

•  On the other hand: 
–  Salary of men = 26900 + 0.55 * Salary of women 

Salary men"

Salary men"

Salary women"

Salary women"
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The distribution used to select “noise” numbers 

28.12.12 47 

Observed LOC = true_LOC + noise_LOC  
Observed WH = true_WH + noise_WH"

Productivity (LOC/work-hours) 
Skewed, but close to normally distributed 
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