
1

This keynote is based on:
•  M. Jørgensen, T. Halkjelsvik, and B. Kitchenham. Is there a magnitude

bias in project cost estimation? , International Journal of Project
Management 30(7):751-862, 2012.

•  T. Halkjelsvik and M. Jørgensen. From origami to software development:
A review of studies on judgment-based predictions of performance
time, Psychological Bulletin 138(2):238-271, 2012.

•  M. Jørgensen and B. Kitchenham. Interpretation problems related to the
use of regression models to decide on economy of scale in software
development, Accepted for publication in Journal of Systems and
Software, 2012.

•  M. Jørgensen. The Influence of Selection Bias on Effort Overruns in
Software Development Projects, Submitted to a journal, 2012.

•  M. Jørgensen. Myths and Over-simplifications in Software Engineering,
Submitted to a conference, 2012.

•  M. Jørgensen and K. J. Moløkken-Østvold. How Large Are Software Cost
Overruns? Critical Comments on the Standish Group’s CHAOS
Reports, Information and Software Technology 48(4):297-301, 2006.

(download these papers from: simula.no/people/magnej/bibliography)

2

It is likely (in many contexts) that …

•  if you do unusually well on one test, you will
do worse on the following.

•  any treatment of the worst performers will
have a positive effect.

•  your children will be worse than you on things
you are exceptionally good at.

•  the “rookie of the year” will disappoint the
following year.

The reason is:
Regression towards the mean (RTM)

•  RTM is a real, statistical effect easy to misinterpret.
•  Milton Friedman once wrote that “I suspect that the

regression fallacy is the most common fallacy in the
statistical analysis of economic data”.

•  First formulated by Sir Francis Galton more than
100 years ago.

•  The relevance of RTM increases with decreasing
correlation between the variables of interest.

3

The beginning: Galton’s study of inheritance

•  Galton observed that children of tall (short)
parents were typically shorter (taller) than their
parents.

•  Galton first described this finding as a biological
force - “filial regression to mediocrity”.

•  BUT, then the human race would soon consists of
people with the same, average, height!

•  In addition, a time-reversal gave the opposite
result. Parents of tall (short) children were
typically shorter (taller) than their above average
tall parents.

Galton’s data
(probably the first regression analysis in history)

Yellow line: Same
average height of
parents and their
children"
Red line: Regressing
children’s height on
parent’s mid-height"
Blue line: Regressing
parent’s mid-height on
children’s height."

4

Comment to the interpretation of RTM

•  Observed height = “true” height + “noise”
–  “true” height is the inherited height
–  “noise” is the rest, i.e., luck, measurement

error, etc.
•  The “true” height of parents and their children is

the same - given no increase in average height in
a population over time.

•  The observed height regresses towards the mean
– The “luck” (J) that made me tall, will on

average not be repeated on my children.

Mutual funds

•  Easy to show that there is close to zero
correlation between a mutual fund’s ranked
performance one year and the next.

•  The relative performance of a mutual fund
can be simulated through a model where the
the true performance is the same, and the
observed performance is fully determined by
noise (luck, bad luck).

5

Mutual funds - simulation

No correlation between Rank(t) and Rank(t+1), i.e., no “true”,
only RTM-induced relationship."
"
These results should NOT be interpreted to mean that good
performers “get lazy” poor ones “pull them selves together”.

"

How would you interpret this data?

CR duration = Actual duration (effort) to complete a change request"
"
Interpretation by author: Larger tasks are more under-estimated."

6

 What about these data?

They are from the exact same data set! The only
difference in the use of estimated and actual duration
as the task size variable."

The data we get with actual effort being a
random number between 1 and 40

7

The data we get when there is no correlation
between estimated and actual duration

Actual CR duration" Estimated CR duration"

What is going on?

Let us start with the relation
between

effort (work-hours)
and

project size (lines of code)

8

We generate a data set with a linear relationship
between effort and task size

•  The “true” relationship is that it takes one work-hour (WH) to
develop one line of code (LOC), i.e., WH = LOC.

•  There is substantial “noise” in the measurement of WH and
LOC, e.g., :
–  Inconsistency in how lines of codes and work-hours are measured

from project to project
–  “Unsystematic” variance in WH or LOC, e.g., differences in

programming style that produces more LOC for the same amount of
WH for one person than another.

•  The noise leads to a correlation of 0.5 between the
observed task size and effort.

Generation process (1000 tasks)

•  Randomly draw a number, representing the true
number of LOC of a system, from a uniform distribution
with numbers between 1000 and 2000."

•  Calculate true number of WH as: "
•  WH_true =LOC_true."

•  Randomly draw two numbers representing the “noise” of
LOC and WH from a normal distribution with mean 0
and standard deviation 280."

•  Calculate observed number of LOC as: "
•  LOC_obs = LOC_true + LOC_noise."

•  Calculate the observed number of WH as:"
•  WH_obs = WH_true + WH_noise."

9

The generated observed LOC and WH have about the same
normal distribution (same mean and same std)

Regressing LOC on WH

Does it suggest that it takes about 0.5 work-hour to
develop one additional line of code? "

(The true relationship is 1 WH per LOC.)"

10

Regressing WH on LOC

Does it suggest that you get 0.5 lines of code by investing
work-hour? This corresponds to 2 work-hours per line of code. "

Statistical fact:
Regression analyses tend to have too low b-

values to reflect the true relationship

•  The more noise in the dependent variable, the
more deflated the b-value.

•  The more noise in the measurement, the larger
the difference between the TWO regression
lines (regressing X on Y and Y on X).

•  We may use the difference between the two
regression lines as an indicator of noise and
interpretation problems.

11

Is there an economy or diseconomy of scale

in software development?

(Do we get more or less productive with increasing project size?)

Analyses of (dis)economy of scale

•  Relevance:
–  Should we split or join tasks?
–  Are larger project less productive? If yes, this

supports, for example, incremental development.
•  Research results:

–  Most studies show an economy of scale, but some
find linearity. Few reports diseconomy of scale.

•  Practitioners’ experience:
–  Diseconomy of scale, except for very small task.

12

Generated data where the true relationship
is linearity

•  Calculate productivity (PROD) = LOC/WH
•  Regression model: PROD = a + b . TS.
•  TS is a measure of the task size, e.g., WH, LOC,

function points, number of requirements, etc.
–  The above model corresponds to Effort = aSizeb, when the tasks

size is measured as LOC, function points etc..

•  True relationship of generated data:
–  Constant productivity (a=1, b=0)

•  Observed relationship: ?

The choice of task size measure decides whether
we find economy or diseconomy of scale!

Prod = a + b . WH!
Diseconomy of scale"

Prod = a + b . LOC!
Economy of scale"

13

We find the same pattern in reported data set
(based on paper to appear in JSS)

Visualization of data from one of the studies
(Jørgensen 1997)

Model 3: Effort = a.Sizeb Model 4: Size = a.Effortb"
 Economy of scale (b < 1) Diseconomy of scale (b > 1) "

14

We cannot trust the previous statistical
analyses on economies of scale in SE

•  The main reason for the dominance of reporting
economy of scale or constant return on scale in SE
research is the use of:
–  Effort = a Sizeb (factor input model), instead of
–  Size = a Effortb (production function)

•  If SE, as most other disciplines, had used the
production function instead of the factor input
model, we would have, almost without exceptions,
reported linearity or diseconomy of scale.

A comment on prediction vs. explaining

•  In a prediction (e.g., effort estimation) context the
regression towards the mean is not really a problem. It
is, for example, rational to predict an effort closer to the
mean effort with increasing noise (decreased
correlation between size and effort).

•  If, however, we want to understand or explain the true
relationship, e.g., to decide whether we on average will
benefit from splitting up or joining tasks, we have a
problem with regression towards the mean effects!

•  Not easy to see how to conduct trustworthy explanatory
analyses of observational data.

15

Is there an increase in cost overrun
with increased project size?

Previous studies on
project size vs cost overrun

•  Most software studies report an increase,
while most infrastructure projects report a
decrease in cost overrun with increased
project size

•  Software studies typically measure project
size as the actual cost, while infrastructure
projects measure it as the estimated cost.

•  Can this difference in project size measure
explain the difference in reported results?

16

Field data (published in IJPM): Cost overrun vs. size
measure

ACT = Actual cost, EST=Estimated cost, ICO=Increasing cost overrun, DCO=Decreasing cost
overrun with increased project size, CCO=Constant cost overrun, TAB=Cross-tabulation,
REG=Regression, CAT=Category-based analysis"

•  We cannot trust the previous statistical
analyses on increasing cost overrun with
increasing project size in software
engineering

•  If software engineering researchers had
used estimated size (budget, cost
estimate, effort estimate) as project size
variable, we would typically find no
difference or decreasing cost overrun with
increased project size.

17

Non-random sampling

Non-random sampling and regression
towards the mean

•  Regression towards the mean implies that values
higher than the mean are likely to have a positive
random error (positive noise-value), while values
lower than mean are likely to have negative random
error.

•  If we generate a data set through a non-random
selection of observations, we may get a biased
sample of random errors

•  A biased sample of random errors may mislead the
analysis.

18

Example: Project size vs Productivity
•  We divide projects into size groups (very small, small,

large, very large) based on the produced LOC.
•  This gives four non-random groups and biased “noise”
•  Assume, for example, that the “very small” group only

include projects less than 1000 LOC.
•  This will, amongst others lead to:

–  Inclusion of a project that has a true size of 1200 LOC, but due to
forgetting to count some code, it is measured to be 800 LOC
(negative noise value, too low measured productivity).

–  Exclusion of a project that has a true size of 800 LOC, but due to
counting the same code twice, it is measured to be 1200 LOC
(positive noise value, too high measured productivity).

•  In short, we would expect the observation of below
average productivity for “very small” projects.

An this is exactly what we observe …
•  To illustrate the effect of non-random sampling we split the

previously generated data set into projects based on their LOC:
–  very small: <1000 LOC,
–  small: 1000-1500 LOC,
–  large: 1500-2000 LOC
–  very large: >2000 LOC

•  As before there is NO true
increase or decrease in
productivity with increasing
project size.

•  The results are, however,
very convincing (p<0.0001).

19

Non-random sampling: The Winner’s curse
•  The client does not select randomly among the

proposals (the bids), but is more likely to select among
those with lowest price.

•  Those with over-optimistic cost estimates are more
likely to give lower bids than those with realistic or over-
pessimistic cost estimates.

•  It can be shown that, situations with no underlying bias
towards over-optimism, results in observed cost
overruns due to selection bias in accordance with:

•  w = Percentage of average cost, µ = mean estimated cost, est = estimated cost, act
= actual cost (more information in my paper on selection bias, see previous slide)

A controlled experiment on selection bias effect
(Strategy: Select the i-th highest cost estimate):

20

Other evidence in support of selection bias
effects in explaining cost overruns

Fields studies report that:
•  In-house software development, where there is

no selection bias, have no systematic tendency
towards cost overrun.

•  The higher the focus on lowest price as
selection criterion, the higher the cost overruns.

•  The “average bid” selection format seems to
remove the cost overruns.

Low awareness on selection bias effects

•  Experimental evidence on the winner’s curse
•  The Standish Group (1994) claimed a 189% average

cost overrun of software projects.
–  Selection process (page 13 of their report): “We then called and

mailed a number of confidential surveys to a random sample of
top IT executives, asking them to share failure stories. During
September and October of that year, we collected the majority
of the 365 surveys we needed to publish the CHAOS research.”

•  Clearly, the average cost overrun of projects with large
cost overruns can be very large, but how much does
this say about the software industry?

•  Still, this report is the one most frequently quoted on
cost overruns in software projects.

21

Lessons learned - 1
•  Future explanatory analyses of observational

data should avoid go into the regression-
towards-the mean traps.
– Re-read Section 1 in the introduction to

regression analysis, e.g., the assumption of
fixed variables.

•  Results from ordinary regression and related
analyses can only be interpreted properly if the
level of random error in the independent
variable is reasonably low or we know how to
adjust for it.

Lessons learned - 2
•  If the level of random error in the independent variable

is likely to be high (e.g., indicated by a low correlation)
we may have to:
–  Conduct controlled experiments (fixed variables)
–  Change into other variables (with less random error)
–  Assess the level of random error (not easy)
–  Use other statistical methods

•  There is a high number of alternative statistical methods
made for adjustments or avoidance of the
interpretations problems. As far as I can see, they are
hard to use and/or solve one problem by introducing
new ones in typical software engineering contexts.

22

Lessons learned - 3

Know what you do, when conducting
statistical analyses.

Extra material

23

Salary discrimination?
•  Assume that there is an IT-company that:

–  Has 100 different tasks they want to complete.
–  For each task they hire one man and one woman (200 workers)
–  The “base salary” of a task varies from 50.000 to 60.000 USD and

is the same for the man and the woman completing it.
–  The actual salary is the “base salary” added a random, gender

independent, bonus. This is done through use of a “lucky wheel”
with numbers (bonuses) between 0 and 10.000.

•  This should lead to: Salary of women = Salary of men
•  A regression analysis, however, gives that the women are

discriminated (paid less) for the above average high
salaries!
–  Salary of women = 26100 + 0.56 * Salary of men

•  On the other hand:
–  Salary of men = 26900 + 0.55 * Salary of women

Salary men"

Salary men"

Salary women"

Salary women"

24

The distribution used to select “noise” numbers

28.12.12 47

Observed LOC = true_LOC + noise_LOC  
Observed WH = true_WH + noise_WH"

Productivity (LOC/work-hours)
Skewed, but close to normally distributed

48

