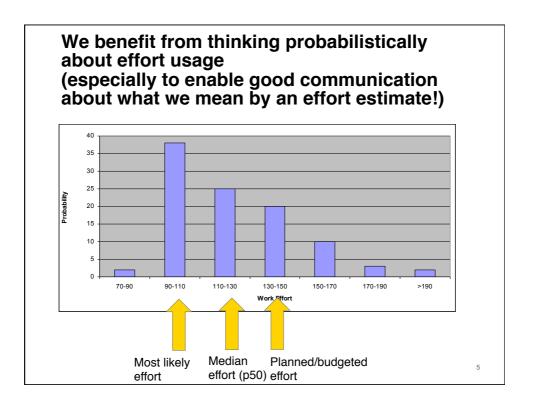
Software Development Effort Estimation: Why it fails and how to improve it

Steria, June 2012

Magne Jørgensen Simula Research Laboratory & University of Oslo

About me


- Scientific researcher at Simula Research Laboratory, Oslo, Norway
 - prof. at Univ. of Oslo
 - Research reports can (free of charge) be downloaded from: http://simula.no/people/magnei/bibliography
 - Experience as programmer, project manager, process improvement managers and general manager.
 - Responsible for estimation work and training in several companies.
- Conduct advisory work and seminars for software companies.

Estimation error

- Average estimation overrun in IT-projects is reported to be about 30%
 - Large estimation error sometimes causes huge problems with project management, profitability, client satisfaction and investment analysis!
 - No substantial changes in average estimation error from 1970 until today.
 - Seems to be similar levels of estimation errors and biases in all cultures.

Do we know what we mean by "estimate"?

Recommendations

- Use a precise, probability-based terminology to communicate what you mean by an effort estimate.
- Use different terms and processes for different purposes:
 - Estimated effort (pX estimates). Purpose: Realism, and just that!
 - Planned use of effort (e.g., based on a p70%-estimate). Purpose:
 Project control.
 - Budget (e.g., based on an p80%-estimate). Purpose: Financial control of project portfolio.
 - Price (e.g., based on p40%-estimate). Purpose: Profitability on short or long term.
- Different purposes should lead to different processes. Mixing realism (e.g., when estimating effort) and market considerations (e.g., winning a bidding round) means that realism will suffer!
 - Currently, many organization try to cover realism (estimation), control (planning, budgeting) and profitability (pricing, bidding) in the same process. This is not a good idea!

Indicators of high risk of effort and cost overrun

Indicators of projects likely to overrun their estimates

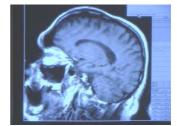
- Factors we may have to accept (or stop doing complex projects):
 - We do things that are substantially different from what we have done before
 - There are many interfaces to other systems and/or many stakeholders
 - A substantial re-engineering of existing work processes is involved
 - The problems to be solved are complex
 - Bad luck (could be many small "bad lucks" or one large)
- But, there are factors where we can and should improve:
 - Ambition level
 - Situational and human biases
 - Competence of client and provider
 - Attention, supervision and management support.
 - Communication with providers, sub-contractors, clients and other stakeholders, including cultural issues.
 - Bidding processes (avoiding winner's curse, adverse selection, ...)
 - Development methods.

Reasons for Estimation Error (and how to improve the processes)

The better-than-average effect....

Over-confidence ...

11


Wishful thinking

- Mix of "I hope this does not take more than ..."
- "To be a good programmer I should not use more than ..."
- Optimism and overconfidence can lead to increased performance, BUT
 - Only for a short period of time.
 - The effect is over-rated.

Cognitive processes

- Planning (scenarios of the future) makes us more optimistic than looking back (use of historical data).
- Illusion of control sometimes very strong
 - Perhaps the most important reason for overoptimism?

13

Bidding round format frequently leads to over-optimism

- · The winner's curse
 - You only win bidding round when being overoptimistic.
- · Bidding anchors
 - Budget
 - Early price indications
 - Expectations

Winner's Curse

- One overlooked reason for cost overrun seems to be the so-called "winner's curse".
- Winner's curse (WC):
 - Adverse (biased) selection of providers and/or projects wrt over-optimism:
 - Software projects tend to be won by providers with overoptimistic bids.
 - It does not help much being realistic in 9 out of 10 bids, if the only bidding round won is when being overoptimistic.
 - WC leads to lower than expected profitability of software providers.

15

Our Findings

- · Empirical study on bidding
 - Winner's curse => Client's curse.
 - WC => More work completed by the clients.
 - WC => Lower quality.
 - WC => Delays.
 - Low price indicator of low expertise.
 - An over-optimistic price may make even experienced and potentially very good providers poor.

Our Findings

- The factors determining the harmfull effect of WC include:
 - Price focus of the client
 - Number of bidders
 - Uncertainty of cost estimates
 - Awareness of the WC-effects of the bidders and the client
 - Degree of opportunistic behavior
- Recommendation: Do the "thought-experiment": What
 if our bid is the lowest among ten others and we get
 selected. How likely is it that we will make a profit?

10

Other implications

- Cost estimation accuracy surveys are not based on a random sample of all project estimates.
 - Reported average cost estimation accuracy should therefore NOT be interpreted (and described) as a measure of the estimation ability of the software industry!

Expert estimation

Some Expert Characteristics ...

- Experts excel mainly in their own domain (expertise is narrow)
- Experts has a large knowledge base, e.g., consisting of chunks (more than 10,000?), rules and schemata.
- The experts perceive large meaningful patterns in their domain (e.g. identify chunks stored in their knowledge base)
- Experts see and represent a problem in their own domain at a deeper (more principled) level than novices; novices tend to represent a problem at a superficial level.
- It takes at least 10 years with "deliberate practice" to achieve top performance.
- Experts do not differ from non-expert in basic informationprocessing power, but mainly in amount of "deliberate practice".

For an overview, see, for example: Expertise, models of learning and computer-based tutoring, by F. Gobet and D. Wood, 1999.

An empirical study

- We divided 65 software professionals randomly into three groups: Low (22 participants), Control (23 participants), and High (20 participants).
- We gave all participants the same programming task specification but varied the words describing some of the requirements slightly.
- The most notable difference in wording is that we asked the:
 - Low group to complete a "minor extension"
 - Control group to complete an "extension"
 - High group to develop "new functionality."
- We told all the estimators:
 - "You shouldn't assess how much the client will spend on this project, but what's required by development work with normal delivery quality."

21

An empirical study - results

- The resulting average (median) effort estimates of the different groups were:
 - "Minor extension" group: 40 work-hours
 - Control group: 50 work-hours
 - "New functionality" group: 80 work-hours

Indicators of estimation expertise

- Length of experience? Not a good indicator.
- Experience from similar projects?
 - Definitively yes, but remember that expertise is "narrower" than typically assumed.
- The best developer?
 - Not always. The best developer may not be suited for the estimation of work effort for novices.
 - "Outside view" (less know-how) sometimes a better strategy.
- The lowest bid? No! Perhaps the worst indicator.

2

Indicators of estimation expertise

- The one with highest confidence in his/her estimate?
 - Perhaps, but we have also observed the opposite. The most confident may also be the most over-optimistic.
- Those historically most accurate?
 - Yes, but not a very good indicator. We observed that the software professional (out of two) most over-optimistic on previous estimate had a 70% probability of being the most over-optimistic on the next estimate.
- Personality? (optimism tests, suggestibility, Big five test, IQ-test, ...)
 - Probably not of much help.
- Slightly depressive people?
 - Yes ③. They are on average most realistic regarding own abilities.

Recommendations

- 1. Educate a "cost engineer" that will be evaluated wrt realism of estimates and not him/ herself be a part of the projects estimated.
- 2. Use separate processes (and people?) for estimation, planning and bidding.
- 3. Avoid irrelevant information (prepare information material before given to the estimators)
- 4. Use historical data
- Ask for estimation justification based on historical data. Require very good arguments if the estimates are based on assumption of much less effort compared to similar projects.
- 6. Do not assume that you have learned very much from previous projects.
- 7. When there are no relevant historical data available, try to find experts with relevant experience and historical data outside the organizations.
- 8. Do not let the most skilled estimators estimate the effort of junior developers. Use instead medium skilled developers.
- 9. If a person benefits from low effort estimates (really wants to start the project etc.), find another person to estimate the effort.
- Combine estimates from different sources. Use a Delphi-like process (e.g., Planning Poker) to combine these estimates.

25

Hvor mange non-stop (alle farger)?

