
Intensive Course:Elements of
Scientific Computing

Part I: The Basics

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 1

Computing Integrals

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 2

Trapezoid method

• Generally we will study how to approximate definitive
integrals of the form

∫ b

a
f (x)dx

• Consider e.g. the function f (x) = ex and calculate

∫ 2

1
exdx (1)

• We will in the following pretend that this integral is not
analytically integrable , and later use the exact
analytical solution for comparison

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 3

Trapezoid method

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

Figure 1: The figure illustrates how the integral of f (x) = ex (lower

curve) may be approximated by a trapezoid on a given interval

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 4

Trapezoid method

• Let y(x) be the straight line equal to f at the endpoints
x= 1 and x= 2, i.e.

y(x) = e[1+(e−1)(x−1)]

• Note that

y(1) = e= f (1)

y(2) = e2 = f (2)

• Since y(x)≈ f (x) we approximate the integral by

∫ 2

1
exdx≈

∫ 2

1
y(x)dx (2)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 5

Trapezoid method

We can now compute both integrals and compare the
results
• Approximate

∫ 2

1
y(x)dx=

∫ 2

1
e[1+(e−1)(x−1)]dx=

1
2

e+
1
2

e2≈5.0537

• Exact ∫ 2

1
exdx= e(e−1)≈ 4.6708

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 6

Trapezoid method

The relative error is
•

5.0537−4.6708
5.0537

·100%≈ 7.6%

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 7

Trapezoid method

• Generally we can approximate the integral of f by

∫ b

a
f (x)dx≈

∫ b

a
y(x)dx (3)

where y(x) is a straight line equal to f at the endpoints,
i.e.

y(x) = f (a)+
f (b)− f (a)

b−a
(x−a) (4)

• y(x) is called the linear interpolation of f in the interval
[a,b]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 8

Trapezoid method

• Since y is linear, it is easy to compute the integral of
this function

∫ b

a
y(x)dx=

∫ b

a

[

f (a)+
f (b)− f (a)

b−a
(x−a)

]

dx

= (b−a)
1
2
(f (a)+ f (b))

• The trapezoid rule is therefore given by

∫ b

a
f (x)dx≈ (b−a)

1
2
(f (a)+ f (b)) (5)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 9

Example 1

• f (x) = sin(x), a= 1, b= 1.5

• Trapezoid method

∫ 1.5

1
f (x)dx≈ (1.5−1)

1
2
(sin(1)+sin(1.5))≈ 0.4597

• The exact value
∫ 1.5

1
f (x)dx=− [cos(x)]1.51 =−(cos(1.5)−cos(1))≈ 0.4696

• The relative error is

0.4696−0.4597
0.4696

·100%≈ 2.11%

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 10

Trapezoid method

Now we approximate the integral using two trapezoids
• Choosing the middle point between a and b,

c= (a+b)/2, we have that

∫ b

a
f (x)dx=

∫ c

a
f (x)dx+

∫ b

c
f (x)dx

• Using (5) on each integral gives

∫ b

a
f (x)dx≈

[

(c−a)
1
2
(f (a)+ f (c))

]

+

[

(b−c)
1
2
(f (c)+ f (b))

]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 11

Trapezoid method

• By using that

c−a= b−c=
1
2
(b−a),

we get

∫ b

a
f (x)dx≈ 1

4
(b−a) [f (a)+2 f (c)+ f (b)] (6)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 12

Example 2

• Using (6) on the problem considered in Example 1
gives

∫ 1.5

1
sin(x)dx≈ 1

4
· 1
2
[sin(1)+2sin(1.25)+sin(1.5)]≈0.4671

• The relative error of this approximation is

0.4696−0.4671
0.4696

·100%= 0.53%

• This is significantly better than the approximation
computed in in Example 1, where the error was 2.11%

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 13

Trapezoid method

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 2: The figure illustrates how the integral of f (x) = sin(x)

can be approximated by two trapezoids on a given interval

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 14

Trapezoid method

More generally we can approximate the integral using n
trapezoids

• Let h= b−a
n

• Define xi = a+ ih

• The points

a= x0 < x1 < · · ·< xn−1 < xn = b

divide the interval from a to b into n subintervals of
length h

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 15

Trapezoid method

• The integral has the following additive property

∫ b

a
f (x)dx=

∫ x1

x0

f (x)dx+
∫ x2

x1

f (x)dx+ · · ·+
∫ xn

xn−1

f (x)dx

=
n−1

∑
i=0

∫ xi+1

xi

f (x)dx (7)

• We use (5) on each integral, i.e.
∫ xi+1

xi

f (x)dx≈ (xi+1−xi)
1
2
[f (xi)+ f (xi+1)]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 16

Trapezoid method

Since h= xi+1−xi, we get

∫ b

a
f (x)dx=

n−1

∑
i=0

∫ xi+1

xi

f (x)dx

≈
n−1

∑
i=0

h
2
[f (xi)+ f (xi+1)]

=
h
2

(

[f (x0)+ f (x1)]+ [f (x1)+ f (x2)]+ [f (x2)+ f (x3)]

+ · · ·+[f (xn−2)+ f (xn−1)]+ [f (xn−1)+ f (xn)]
)

= h

[

1
2

f (x0)+ f (x1)+ f (x2)+ · · ·

· · ·+ f (xn−2)+ f (xn−1)+
1
2

f (xn)

]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 17

Trapezoid method

Written more compactly

∫ b

a
f (x)dx≈ h

[

1
2

f (x0)+
n−1

∑
i=1

f (xi)+
1
2

f (xn)

]

(8)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 18

Example 3

The integral considered in Example 1 with n= 100.

• h= b−a
n = 0.5

100 = 0.005

• We get

∫ 1.5

1
sin(x)dx≈ 0.005

[

1
2

sin(1)+sin(1.005)+ · · ·+ 1
2

sin(1.5)

]

= 0.469564

• The relative error is

0.469565−0.469564
0.469565

·100%= 0.0002%

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 19

Example 4

Calculate
∫ 1

0 f (x)dx, where f (x) = (1+x)ex

• The exact integral is

∫ 1

0
(1+x)exdx= [xex]10 = e

• Define Th = h
[

1
2 f (0)+∑n−1

i=1 f (xi)+
1
2 f (1)

]

• where n is given and h= 1
n and xi = ih for i = 1, . . . ,n

• We want to study the error defined by

Eh = |e−Th|

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 20

Example 4

n h Eh Eh/h2

1 1.0000 0.5000 0.5000

2 0.5000 0.1274 0.5096

4 0.2500 0.0320 0.5121

8 0.1250 0.0080 0.5127

16 0.0625 0.0020 0.5129

32 0.0313 0.0005 0.5129

64 0.0156 0.0001 0.5129

Table 1: The table shows the number of intervals, n, the length of

the intervals, h, the error, Eh, and Eh/h2

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 21

Example 4

• From the table it seems that

Eh

h2
≈ 0.5129

for small values of h

• That is
Eh≈ 0.5129h2 (9)

• This means that we can get as accurate approximation
as we want

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 22

Example 4

• Assume that you want Eh≤ 10−5

• then 0.5129h2≤ 10−5

• or h≤ 0.0044

• This means that n= 1/h≥ 226.47

• n has to be an integer, so therefore we set n= 227 to
obtain the desired accuracy

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 23

Example 5

We want to test the trapezoid method for the following three
integrals:

• ∫ 1
0 x4dx

• ∫ 1
0 x20dx

• ∫ 1
0

√
xdx

• Let Eh denote the error for a given value of h, i.e.

Eh =

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−h

[

1
2

f (x0)+
n

∑
i=1

f (xi)+
1
2

f (xn)

]∣

∣

∣

∣

∣

,

where h= b−a
n and xi = a+ ih for i = 0, . . . ,n

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 24

Example 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: The figure shows the graph of
√

x (upper), x4 (middle)

and x20 (lower)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 25

Example 5

∫ 1
0 x4dx= 1

5

∫ 1
0 x20dx= 1

21

∫ 1
0

√
xdx= 2

3

h

0.01
0.005
0.0025
0.00125

105Eh Eh/h2

3.33 0.33
0.83 0.33
0.21 0.33
0.05 0.33

105Eh Eh/h2

16.66 1.67
4.17 1.67
1.04 1.67
0.26 1.67

105Eh Eh/h2

20.37 2.04
7.25 2.90
2.57 4.17
0.91 5.84

Table 2: The table shows how accurate the trapezoidal method

is for approximating three definite integrals.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 26

Example 5

Conclusions
• In the two first integrals Eh

h2 seems to be constant

• The constant is smaller for x4 than for x20

• The approximate integral of
√

x on [0,1], seems to
converge towards the correct value as h→ 0, but Eh

h2

increases with decreasing h

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 27

Trapezoid method

• We have studied several examples where the exact
integral is obtainable

• In practice these examples are not so interesting
• Numerical integration is more interesting on examples

where analytical integration is impossible

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 28

import numpy as np

def integrate(a, b, n, function):

x = np.linspace(a, b, n+1);

value = function(x);

value[0] = 0.5*value[0]

value[-1] = 0.5*value[-1]

h = (b-a)/float(n)

return h*sum(value)

def f(x):

return x**2;

print "The integral is approximatly ", integrate(0, 1, 100, f)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 29

Differential Equations

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 30

Differential equations

• A differential equations is: an equations that relate a
function to its derivatives in such a way that the
function can be determined

• In practice, differential equations typically describe
quantities that changes in relation to each other

• Examples of such equations arise in several disciplines
of Science and Technology (e.g. physics, chemistry,
biology, economy, weather forecasting,...)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 31

Cultivation of rabbits

• A number of rabbits are placed on an isolated island
with perfect environments for them

• How will the number of rabbits grow?

Note that this question can not be answered based on
clever thinking only.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 32

The simplest model

• Let r = r(t) denote the number of rabbits

• Let r0 = r(0) denote the initial number of rabbits
• Assume that the change of rabbits per time is given by

f (t)

• For a small period of time ∆t > 0, we have

r(t +∆t)− r(t)
∆t

= f (t) (10)

• Assuming that r(t) is continuous and differentiable and
letting ∆t go to zero, we obtain

r ′(t) = f (t) (11)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 33

The simplest model

• From the fundamental theorem of Calculus, we get the
solution

r(t) = r(0)+
∫ t

0
f (s)ds (12)

• The integral can then be calculated as accurate as we
want, with the methods presented in the previous
lectures

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 34

Exponential growth

• We now assume that the growth in population is
proportional to the number of rabbits, i.e

r(t +∆t)− r(t)
∆t

= ar(t), (13)

where a is a positive constant
• Letting ∆t go to zero we get

r ′(t) = ar(t) (14)

• In practice a has to be measured

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 35

Analytical solution

• We want to solve the problem

r ′(t) = ar(t) (15)

with initial condition

r(0) = r0

• Since
dr
dt

= ar

• we have
1
r

dr = adt

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 36

Analytical solution

• by integrating we get
∫

1
r

dr =
∫

adt

• which gives
ln(r) = at+c (16)

where c is a constant of integration
• The right value for c is received by putting t = 0

c= ln(r0)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 37

Analytical solution

• From (16) we get

ln(r(t))− ln(r0) = at

• or

ln(
r(t)
r0

) = at

• and therefore
r(t) = r0e

at (17)

• Conclusion: the number of rabbits increase
exponentially in time

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 38

Logistic growth

The exponential growth is not realistic, since the number of
rabbits will go to infinity as the time increase.
• We assume that there is a carrying capacity R of the

island
• This number tells how many rabbits the island can

feed, host etc.
• The logistic model reads

r ′(t) = ar(t)

(

1− r(t)
R

)

(18)

where a> 0 is the growth rate and R> 0 is the carrying
capacity

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 39

Analytical solution

Solve

r ′(t) = ar(t)

(

1− r(t)
R

)

r(0) = r0.

We write
dr
dt

= ar
(

1− r
R

)

,

or
dr

r
(

1− r
R

) = adt.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 40

Analytical solution

By integration we get

ln
r

R− r
= at+c

where c is a integration constant. This constant is
determined by the initial condition

ln
r0

R− r0
= c

and thus

ln

[

r
R−r
r0

R−r0

]

= at,

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 41

Analytical solution

or
r

R− r
=

r0

R− r0
eat.

Solving this with respect to r gives

r(t) =
r0

r0+e−at(R− r0)
R (19)

(see Figure 4.)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 42

0 1 2 3 4 5 6 7 8 9 10
1000

2000

3000

4000

5000

6000

7000

t

Figure 4: Different solutions of (19) using different values of r0.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 43

Numerical solution

• For simple examples of differential equations we can
find analytical solutions

• This is not the case for most of the realistic models of
nature

• Analytical solutions are still important for testing
numerical methods

• Analytical insight is very important for designing good
numerical methods

• An example of this is the insight we got above from the
arguments about increase and decrease in rabbit
population

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 44

The simplest model

We now pretend that we do not know the exact solution of

r ′(t) = f (t)

with r(0) = r0, and solve the problem in t ∈ (0,1).
• Pick a positive integer N, and define the time-step

∆t =
1
N

• Define time-levels tn = n∆t

• Let rn denote the approximation of r(tn)

rn≈ r(tn)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 45

The simplest model

• Remember the series expansion

r(t +∆t) = r(t)+∆tr ′(t)+O(∆t2)

• or

r ′(t) =
r(t +∆t)− r(t)

∆t
+O(∆t)

• By setting t = tn, we therefore see that

r ′(tn)≈
r(tn+1)− r(tn)

∆t

• By using the approximate solutions rn≈ r(tn) and
rn+1≈ r(tn+1), the numerical scheme is defined

rn+1− rn

∆t
= f (tn)Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 46

Exponential growth

We now want study numerical solution of the problem
r ′(t) = ar(t), t ∈ (0,T), where a is a given constant, and
initial condition r(0) = r0.
• We choose an integer N > 0, define the time-steps

∆t = T/N and the time-levels tn = n∆t, rn is the
approximation of r(tn) and the derivative is
approximated by

r ′(tn)≈
r(tn+1)− r(tn)

∆t

• The numerical scheme is defined by

rn+1− rn

∆t
= arn (20)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 47

Exponential growth

• Which can be written

rn+1 = (1+a∆t)rn (21)

• This formula gives initially

r1 = (1+a∆t)r0

r2 = (1+a∆t)r1 = (1+a∆t)2r0

• and for general n we can see that

rn = (1+a∆t)nr0 (22)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 48

Example 8

We test an example where a= 1, r0 = 1 and T = 1.
• The exact solution is r(t) = et and therefore

r(1) = e≈ 2.718

• Using N = 10 in the numerical scheme gives

r(1)≈ r10 = (1+
1
10

)10≈ 2.594

• Choosing N = 100, gives

r100= (1+
1

100
)100≈ 2.705

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 49

Example 8 - Convergence

• The general formula is

r(1)≈ rN = (1+
1
N
)N

• From Calculus we know that

lim
N−→∞

(1+
1
N
)N = e= r(1)

• Thus the numerical scheme will converge to the right
solution in this example

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 50

import numpy as np

def f(t, u):

return u;

T = 1;

N = 10; #number of time steps

t = np.linspace(0,T,N+1)

dt = float(T)/N

u = np.zeros(N+1)

u[0] = 1; # set intitial condition

for i in range(N):

u[i+1] = u[i] + dt*f(t[i], u[i])

import pylab

pylab.plot(t, u, t, np.exp(t))

pylab.show()

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 51

Numerical stability

Consider the initial value problem

y′(t) = −100y(t), t ∈ (0,1) (23)

y(0) = 1,

with analytic solution

y(t) = e−100t

• For a given N and corresponding ∆t we have

yn+1 = (1−100∆t)yn (24)

• which gives

yn =

(

1− 100
N

)n

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 52

Numerical stability

• Note that the analytical solution is always positive, but
decreases rapidly and monotonically towards zero

• For N = 10 we get the formula

yn =

(

1− 100
10

)n

= (−9)n

• which gives y0 = 1, y1 =−9, y2 = 18, y3 =−729

• This is referred to as numerical instability

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 53

Numerical stability

• For yn to stay positive we get from (24) that

1−100∆t > 0

• or

∆t <
1

100
(25)

• which means
N≥ 101

• This is referred to as stability condition
• A numerical scheme that is stable for all ∆t is called

unconditionally stable
• A scheme that needs a stability condition is called

conditionally stable
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 54

An implicit scheme

We still study the exponential model, r ′(t) = ar(t).
• Above the observation

r ′(tn) =
r(tn+1)− r(tn)

∆t
+O(∆t)

• led to the scheme

rn+1− rn

∆t
= arn

• Similarly we could have observed that

r ′(tn+1) =
r(tn+1)− r(tn)

∆t
+O(∆t)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 55

An implicit scheme

• This leads to
rn+1− rn

∆t
= ar(tn+1)

• which can be written

rn+1 =
1

1−∆ta
rn

• This leads to

rn =

(

1
1−∆ta

)n

r0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 56

An implicit scheme

• Reconsider the initial value problem

y′(t) = −100y(t),

y(0) = 1

• The implicit scheme gives

yn =

(

1
1+100∆t

)n

=

(

N
N+100

)n

• We see that yn is positive for all choices of N

• The scheme is therefore unconditionally stable

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 57

An implicit scheme

N yN

101 3.85·10−11

102 7.89·10−31

103 4.05·10−42

107 3.72·10−44

The exact solution is e−100≈ 3.72·10−44.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 58

Explicit and implicit schemes

We consider problems on the form

v′(t) = something(t) (26)

The term v′(t) is replaced

vn+1−vn

∆t

The right hand side can be evaluated in t = tn or t = tn+1.
• Explicit scheme: vn+1 = vn+∆tsomething(tn)

• Implicit scheme: vn+1 = vn+∆tsomething(tn+1)

Implicit schemes are often unconditionable stable, but might
be harder to use. Explicit schemes are often only
conditionable stable, but are very simple to implement.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 59

Logistic equation

We study the explicit scheme for the logistic equation

r ′(t) = ar(t)

(

1− r(t)
R

)

(27)

r(0) = r0, (28)

where a> 0 is the growth rate and R is the carrying
capacity. The discussion above gives the properties
• If R>> r0, then for small t, we have r ′(t)≈ ar(t) and

thus exponential growth
• If 0< r0 < R, then the solution satisfies r0≤ r(t)≤ R

and r ′(t)≥ 0 for all time

• If r0 > R, then the solution satisfies R≤ r(t)≤ r0 and
r ′(t)≤ 0 for all time

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 60

Explicit scheme

An explicit scheme for this model reads

rn+1− rn

∆t
= arn(1−

rn

R
),

or
rn+1 = rn+arn∆t(1− rn

R
). (29)

We assume the same stability conditions for this scheme as
for the exponential growth because of the exponential
growth, i.e.

∆t < 1/a. (30)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 61

Implicit scheme

The implicit scheme for the logistic model reads

rn+1− rn

∆t
= arn+1(1−

rn+1

R
),

or
rn+1−∆tarn+1(1−

rn+1

R
) = rn.

• For rn given, this is a nonlinear equation in rn+1

• This is easy to solve since it is only a second order
polynomial equation

The scheme is unconditionally stable and it fulfills the same
properties as the explicit scheme did.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 62

Systems of Ordinary Differential
Equations

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 63

Systems of ordinary differential equations

We have studied models of the form

y′(t) = F(y), y(0) = y0 (31)

this is an scalar ordinary differential equation (ODE).
We shall now study systems of ODEs. Especially we will
consider numerical methods for systems of two ODEs on
the form

y′(t) = F(y,z), y(0) = y0,

z′(t) = G(y,z), z(0) = z0.
(32)

Here y0 and z0 are given initial states and F and G are
smooth functions.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 64

Rabbits and foxes

• Earlier we have studied the evolution of a rabbit
population, and studied the Logistic model

y′ = αy(1−y/β), y(0) = y0 (33)

where now y is the number of rabbits, α > 0 denotes
the growth rate and β is the carrying capacity.

• Note that this model is the same as the Exponential
growth model if β = ∞

• We will consider the case where foxes are introduced
to the model

• This model is called a predator-prey system, and is
similar to models describing populations of fish (prey)
and sharks (predators)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 65

Fish and Sharks

The first mathematician to study predator-pray models was
Vito Volterra. He studied shark-fish populations, but his
results are valid for rabbit-fox populations as well.
• Let F = F(t) denote the number of fishes and S= S(t)

the number of sharks for a given time t

• If there is no sharks we assume that the number of
fishes follows the logistic model

F ′ = αF(1−F/β) (34)

• Expressed with relative growth it reads

F ′

F
= α(1−F/β) (35)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 66

Fish and Sharks

• Introducing sharks to the model, we assume the
relative growth rate of fish is reduced linearly with
respect to S

F ′

F
= α(1−F/β− γS) , (36)

where γ > 0

• or

F ′ = α(1−F/β− γS)F (37)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 67

Fish and Sharks

• If there is no fish, we expect the number of sharks to
decrease, and assume the relative change of sharks to
be expressed as

S′

S
=−δ, (38)

where δ > 0 is the decay rate
• We also assume that the relative change of sharks

increase linearly with the number of fish

S′

S
=−δ+ εF (39)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 68

Fish and Sharks

We now have a 2×2 system which predicts the
development of fish- and shark- population

F ′ = α(1−F/β− γS)F, F(0) = F0, (40)

S′ = (εF−δ)S, S(0) = S0. (41)

• In practice the parameters α, β, γ and ε, and initial
values F0 and S0 must be determined with some
estimation methods

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 69

Numerical method; Unlimited resources

• First we study the system (40)-(41) with β = ∞, i.e.
unlimited resources of food and space for the fish

• For the other parameters we choose
α = 2, γ = 1/2, ε = 1 and δ = 1, which gives the
system

F ′ = (2−S)F, F(0) = F0, (42)

S′ = (F−1)S, S(0) = S0. (43)

• We introduce ∆t > 0 and define tn = n∆t, and let Fn and
Sn denote approximations of F(tn) and S(tn) respectively

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 70

Numerical method

• The derivatives, F ′ and S′, are approximated with

F(tn+1)−F(tn)
∆t

≈ F ′(tn) and
S(tn+1)−S(tn)

∆t
≈ S′(tn),

which correspond to the explicit scheme
• The numerical scheme can then be written

Fn+1−Fn

∆t
= (2−Sn)Fn (44)

Sn+1−Sn

∆t
= (Fn−1)Sn (45)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 71

Numerical method

• This can then be rewritten on an explicit form

Fn+1 = Fn+∆t(2−Sn)Fn (46)

Sn+1 = Sn+∆t(Fn−1)Sn (47)

• When F0 and S0 are given, this formula gives us F1 and
S1 by setting n= 0, and then we can compute F2 and S2

by putting n= 1 in the formula, and so on
• In Figure 5 we have tested the explicit scheme

(46)-(47) with F0 = 1.9, S0 = 0.1 and ∆t = 1/1000

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 72

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

t

po
pu

la
tio

n
of

 fi
sh

 &
 s

ha
rk

Figure 5: The solid curve is the solution for F , and the dashed

curve is the solution for S.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 73

Numerical methods; limited resources

• We do the same as above, but use β = 2, which
corresponds to quite limited resources

• The system now reads

F ′ = (2−F−S)F, F(0) = F0, (48)

S′ = (F−1)S, S(0) = S0 (49)

• Similar to above we can define an explicit numerical
scheme

Fn+1 = Fn+∆t(2−Fn−Sn)Fn, (50)

Sn+1 = Sn+∆t(Fn−1)Sn (51)

• The results for F0 = 1.9, S0 = 0.1 and ∆t = 1/1000are
shown in Figure 6

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 74

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

po
pu

la
tio

n
of

 fi
sh

 &
 s

ha
rk

Figure 6: The solution for F is the solid curve, whereas the solu-

tion for S is the dashed curve.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 75

Numerical methods

• We see from Figure 5 that the solutions for both F(t)
and S(t) seem to be periodic

• From Figure 6 it seems that the solutions converge to
an equilibrium solution represented by S= F = 1

• Therefore it is interesting to notice that, different
parameter values can give different quantitative
behavior of the solution

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 76

Phase plane analysis

We shall now study a simplified version of the fish-shark
model

F ′(t) = 1−S(t), F(0) = F0,

S′(t) = F(t)−1, S(0) = S0.
(52)

• Using the notation as above an explicit numerical
scheme for this problem reads

Fn+1 = Fn+∆t(1−Sn),

Sn+1 = Sn+∆t(Fn−1),
(53)

where F0 and S0 are given initial states
• Figure 7 show a solution of this scheme when F0 = 0.9,

S0 = 0.1 and ∆t = 1/1000
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 77

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

po
pu

la
tio

n
of

 fi
sh

 &
 s

ha
rk

Figure 7: The solution for F is the solid curve, whereas the solu-

tion for S is the dashed curve.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 78

Phase plane analysis

• The solution of (52) seems to be periodic like the
solution of (42)-(43)

• In order to study how F and S interact we will plot the
solution in the F−Scoordinate system, i.e. we plot the
points (Fn,Sn) for all n-values

• In Figure 8 we plot the solution of (53) in the F−S
coordinate system, with the same specifications as
above (F0 = 0.9, S0 = 0.1, ∆t = 1/1000)

• In Figure 9 we do the same, but ∆t = 1/100

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 79

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F

S

Figure 8: Explicit scheme (53) using ∆t = 1/1000, F0 = 0.9 and

S0 = 0.1, plotted in the F-Scoordinate system
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 80

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F

S

Figure 9: Explicit scheme (53) using ∆t = 1/100, F0 = 0.9 and

S0 = 0.1, plotted in the F-Scoordinate system
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 81

def explicit_euler(dt, T, ic):

Store solutions in list of tuples: one tuple for each time

times = [0,]

solutions = [ic,]

Extract initial conditions

(F0, S0) = ic

Start time-loop: let F_, S_ be the previous solutions and F, S

be the current solutions

t = dt

(F_, S_) = ic

while (t <= T):

Define the new solutions from the old solutions

F = F_ + dt*(1 - S_)

S = S_ + dt*(F_ - 1)

Store the new solutions

solutions += [(F, S)]

times += [t]

Prepare for next iteration by updating the previous values

(F_, S_) = (F, S)

t += dt

return times, solutions Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 82

Crank-Nicolson scheme

The Crank-Nicolson scheme for the system

F ′(t) = 1−S(t), F(0) = F0,

S′(t) = F(t)−1, S(0) = S0.
(54)

reads

Fn+1−Fn

∆t
=

1
2
[(1−Sn)+(1−Sn+1)] ,

Sn+1−Sn

∆t
=

1
2
[(Fn−1)+(Fn+1−1)] .

(55)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 83

Crank-Nicolson scheme

The Crank-Nicolson scheme can be rewritten as

Fn+1+
∆t
2 Sn+1 = Fn+∆t− ∆t

2 Sn,

−∆t
2 Fn+1+Sn+1 = Sn−∆t + ∆t

2 Fn.
(56)

• We see that when Fn and Sn are given, we have to solve
a 2×2 system of linear equations, to find Fn+1 and Sn+1

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 84

Crank-Nicolson scheme

Define

A =

[

1 ∆t/2
−∆t/2 1

]

, (57)

and

bn =

(

Fn+∆t− ∆t
2 Sn

Sn−∆t + ∆t
2 Fn

)

. (58)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 85

Crank-Nicolson scheme

Solving (56) for one time-step can now be done by:
•• Solve

Axn+1 = bn, (59)

where xn+1 is the unknown vector with two components
• The new solution for F and S is then

(

Fn+1

Sn+1

)

= xn+1 (60)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 86

Crank-Nicolson scheme

In general, a 2×2 matrix

B =

[

a b
c d

]

(61)

is non-singular if ad 6= cb. And when ad 6= cb the inverse is
given by

B−1 =
1

ad−bc

[

d −b
−c a

]

. (62)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 87

Crank-Nicolson scheme

• In order for the problem to be well defined we need the
matrix A to be non-singular

• But we have that

det(A) = 1+∆t2/4, (63)

which ensures det(A)> 0 for all values of ∆t, and A is
always non-singular

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 88

Crank-Nicolson scheme

• For the matrix (57), the inverse is given by

A−1 =
1

1+∆t2/4

[

1 −∆t/2
∆t/2 1

]

(64)

• This fact together with (59) and (60) gives
(

Fn+1

Sn+1

)

=
1

1+∆t2/4

[

1 −∆t/2
∆t/2 1

](

Fn+∆t− ∆t
2 Sn

Sn−∆t + ∆t
2 Fn

)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 89

Crank-Nicolson scheme

• We get

Fn+1 = 1
1+∆t2/4

[(

1−∆t2/4
)

Fn+∆t
(∆t

2 +1
)

−∆tSn
]

Sn+1 = 1
1+∆t2/4

[(

1−∆t2/4
)

Sn+∆t
(∆t

2 −1
)

+∆tFn
]

(65)

• Figure 10 plots the solution of this scheme for S0 = 0.1,
F0 = 0.9 and ∆t = 1/1000, t is from t = 0 to t = 10 and
the solution is plotted in the F-Scoordinate system

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F

S

Figure 10: The numerical solution for the Crank-Nicholson

scheme

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 91

Crank-Nicolson scheme

• In Figure 10 we observe that the solution again seems
to form a perfect circle

• To study this closer we define, as above

rn = (Fn−1)2+(Sn−1)2 (66)

• and study the relative change

rN− r0

r0
(67)

in Table 10

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 92

Crank-Nicolson scheme

∆t N rN−r0
r0

10−1 102 −2.6682·10−16

10−2 103 −1.59986·10−17

10−3 104 3.97982·10−17

10−4 105 7.06021·10−15

Table 3: The table shows ∆t, the number of time steps N, and the

“error” rN−r0
r0

.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 93

Crank-Nicolson scheme

• We observe that the relative error rN−r0
r0

is much smaller
for the Crank-Nicolson scheme (66) than for the explicit
scheme (53)

• We therefore conclude that the Crank-Nicolson
scheme produces better solutions than the explicit
scheme

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 94

Nonlinear Algebraic Equations

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 95

Nonlinear algebraic equations

In implicit methods we need to solve equations on the form

un+1−un = ∆t g(un+1) (68)

where ∆t is a small number, we know that un+1 is close to
un. This will be a useful property later.
More generally, we want to solve eqatations on the form:

f (x) = 0, (69)

where f is nonlinear. We assume that we have available a
value x0 close to the true solution x∗ (, i.e. f (x∗) = 0).
We also assume that f has no other zeros in a small region
around x∗.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 96

The bisection method

Consider the function

f (x) = 2+x−ex (70)

for x ranging from 0 to 3, see the graph in Figure 11.

• We want to find x= x∗ such that

f (x∗) = 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 97

0 0.5 1 1.5 2 2.5 3 3.5
−20

−15

−10

−5

0

5

x* x=3

f(x)

x

y

Figure 11: The graph of f (x) = 2+x−ex.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 98

The bisection method

• An iterative method is to create a series {xi} of
approximations of x∗, which hopefully converges
towards x∗

• For the Bisection Method we choose the two first
guesses x0 and x1 as the endpoints of the definition
domain, i.e.

x0 = 0 and x1 = 3

• Note that f (x0) = f (0)> 0 and f (x1) = f (3)< 0, and
therefore x0 < x∗ < x1, provided that f is continuous

• We now define the mean value of x0 and x1

x2 =
1
2
(x0+x1) =

3
2

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 99

0 0.5 1 1.5 2 2.5 3 3.5
−20

−15

−10

−5

0

5

x
1
=3

x
0
=0

x
2
=1.5

x

y

Figure 12: The graph of f (x) = 2+ x−ex and three values of f :

f (x0), f (x1) and f (x2).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 100

The bisection method

• We see that

f (x2) = f (
3
2
) = 2+3/2−e3/2 < 0,

• Since f (x0)> 0 and f (x2)< 0, we know that x0 < x∗ < x2

• Therefore we define

x3 =
1
2
(x0+x2) =

3
4

• Since f (x3)> 0, we know that x3 < x∗ < x2 (see
Figure 13)

• This can be continued until | f (xn)| is sufficiently small

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 101

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

x
3
=0.75

x
2
=1.5

x

y

Figure 13: The graph of f (x) = 2+ x− ex and two values of f :

f (x2) and f (x3).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 102

The bisection method

Written in algorithmic form the Bisection method reads:

Algorithm 1. Given a, b such that f (a) · f (b)< 0 and
given a tolerance ε. Define c= 1

2(a+b).
while | f (c)|> ε do

if f (a) · f (c)< 0
then b= c
elsea= c
c := 1

2(a+b)
end

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 103

Example 11

Find the zeros for

f (x) = 2+x−ex

using Algorithm 1 and choose a= 0, b= 3 and ε = 10−6.
• In Table 4 we show the number of iterations i, c and

f (c)

• The number of iterations, i, refers to the number of
times we pass through the while-loop of the algorithm

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 104

i c f (c)

1 1.500000 −0.981689
2 0.750000 0.633000
4 1.312500 −0.402951
8 1.136719 0.0201933
16 1.146194 −2.65567·10−6

21 1.146193 4.14482·10−7

Table 4: Solving the nonlinear equation f (x) = 2+ x− ex = 0 by

using the bisection method; the number of iterations i, c and f (c).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 105

Example 11

• We see that we get sufficient accuracy after 21
iterations

• The next slide show the C program that is used to
solve this problem

• The entire computation uses 5.82·10−6 seconds on a
Pentium III 1GHz processor

• Even if this quite fast, even faster algorithms exists.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 106

#include <stdio.h>

#include <math.h>

double f (double x) { return 2.0+x-exp(x); }

/* we define function ’fabs’ for calculating absolute values */

inline double fabs (double r) { return ((r >= 0.0) ? r : -r); }

int main (int nargs, const char** args)

{

double epsilon = 1.0e-6;

double a, b, c, fa, fc;

a = 0.; b = 3.;

fa = f(a);

c = 0.5*(a+b);

while (fabs(fc=(f(c))) > epsilon) {

if ((fa*fc) < 0) {

b = c;

}

else {

a = c;

fa = fc;

}

c = 0.5*(a+b);

}

printf("final c=%g, f(c)=%g\n",c,fc);

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 107

def bisection(f, a, b, tolerance):

assert (f(a)*f(b) < 0), "Input does not satisfy ansatz!"

c = 0.5*(a + b)

k = 1

points = [c,]

values = [f(c),]

while (abs(f(c)) > tolerance):

if f(a)*f(c) < 0:

b = c

else:

a = c

c = 0.5*(a + b)

points += [c]

values += [f(c)]

k += 1

return points, values

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 108

Newton’s method

• Recall that we have assumed that we have a good
initial guess x0 close to x∗ (where f (x∗) = 0)

• We will also assume that we have a small region
around x∗ where f has only one zero, and that f ′(x) 6= 0

• Taylor series expansion around x= x0 yields

f (x0+h) = f (x0)+h f ′(x0)+O(h2) (71)

• Thus, for small h we have

f (x0+h)≈ f (x0)+h f ′(x0) (72)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 109

Newton’s method

• We want to choose the step h such that f (x0+h)≈ 0

• By (72) this can be done by choosing h such that

f (x0)+h f ′(x0) = 0

• Solving this gives

h=− f (x0)

f ′(x0)

• We therefore define

x1
def
= x0+h = x0−

f (x0)

f ′(x0)
(73)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 110

Newton’s method

• We test this on the example studied above with
f (x) = 2+x−ex and x0 = 3

• We have that

f ′(x) = 1−ex

• Therefore

x1 = x0−
f (x0)

f ′(x0)
= 3− 5−e3

1−e3
= 2.2096

• We see that

| f (x0)|= | f (3)| ≈ 15.086 and | f (x1)|= | f (2.2096)| ≈ 4.902,

i.e, the value of f is significantly reduced
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 111

Newton’s method

We can now repeat the above procedure and define

x2
def
= x1−

f (x1)

f ′(x1)
, (74)

and in algorithmic form Newton’s method reads:
Algorithm 2. Given an initial approximation x0 and a
tolerance ε.
k= 0
while | f (xk)|> ε do

xk+1 = xk−
f (xk)

f ′(xk)
k= k+1

end

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 112

Newton’s method

In Table 5 we show the results generated by Newton’s
method on the above example.

k xk f (xk)

1 2.209583 −4.902331
2 1.605246 −1.373837
3 1.259981 −0.265373
4 1.154897 −1.880020·10−2

5 1.146248 −1.183617·10−4

6 1.146193 −4.783945·10−9

Table 5: Solving the nonlinear equation f (x) = 2+ x− ex = 0 by

using Algorithm 108 and ε = 10−6; the number of iterations k, xk and

f (xk).
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 113

Newton’s method

• We observe that the convergence is much faster for
Newton’s method than for the Bisection method

• Generally, Newton’s method converges faster than the
Bisection method

• This will be studied in more detail in Project 1

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 114

Example 12

Let

f (x) = x2−2,

and find x∗ such that f (x∗) = 0.

• Note that one of the exact solutions is x∗ =
√

2

• Newton’s method for this problem reads

xk+1 = xk−
x2

k−2
2xk

• or

xk+1 =
x2

k +2
2xk

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 115

Example 12

If we choose x0 = 1, we get

x1 = 1.5,

x2 = 1.41667,

x3 = 1.41422.

Comparing this with the exact value

x∗ =
√

2≈ 1.41421,

we see that a very accurate approximation is obtained in
only 3 iterations.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 116

An alternative derivation

• The Taylor series expansion of f around x0 is given by

f (x) = f (x0)+(x−x0) f ′(x0)+O((x−x0)
2)

• Let F0(x) be a linear approximation of f around x0:

F0(x) = f (x0)+(x−x0) f ′(x0)

• F0(x) approximates f around x0 since

F0(x0) = f (x0) and F ′0(x0) = f ′(x0)

• We now define x1 to be such that F(x1) = 0, i.e.

f (x0)+(x1−x0) f ′(x0) = 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 117

An alternative derivation

• Then we get

x1 = x0−
f (x0)

f ′(x0)
,

which is identical to the iteration obtained above
• We repeat this process, and define a linear

approximation of f around x1

F1(x) = f (x1)+(x−x1) f ′(x1)

• x2 is defined such that F1(x2) = 0, i.e.

x2 = x1−
f (x1)

f ′(x1)
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 118

An alternative derivation

• Generally we get

xk+1 = xk−
f (xk)

f ′(xk)

• This process is illustrated in Figure 14

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 119

x0x1x2x3f (x)

Figure 14: Graphical illustration of Newton’s method.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 120

def newton(f, df, y, tolerance):

k = 1 # iteration counter

c = y # initial guess

points = [c,]

values = [f(c),]

while (abs(f(c)) > tolerance):

c = c - f(c)/df(c)

points += [c]

values += [f(c)]

k += 1

return points, values

Define f (want f(x) == 0)

def f(x):

return x + 0.1*x**3 - 1.

The derivative of f

def df(x):

return 1 + 3*0.1*x**2

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 121

The Secant method

• The secant method is similar to Newton’s method, but
the linear approximation of f is defined differently

• Now we assume that we have two values x0 and x1

close to x∗, and define the linear function F0(x) such
that

F0(x0) = f (x0) and F0(x1) = f (x1)

• The function F0(x) is therefore given by

F0(x) = f (x1)+
f (x1)− f (x0)

x1−x0
(x−x1)

• F0(x) is called the linear interpolant of f

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 122

The Secant method

• Since F0(x)≈ f (x), we can compute a new
approximation x2 to x∗ by solving the linear equation

F(x2) = 0

• This means that we must solve

f (x1)+
f (x1)− f (x0)

x1−x0
(x2−x1) = 0,

with respect to x2 (see Figure 15)
• This gives

x2 = x1−
f (x1)(x1−x0)

f (x1)− f (x0)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 123

-

6

x

f s
s,,,,,,,,

,,,,,,,,
x2 x1 x0

f(x)
Figure 15: The figure shows a function f = f (x) and its linear

interpolant F between x0 and x1.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 124

The Secant method

Following the same procedure as above we get the iteration

xk+1 = xk−
f (xk)(xk−xk−1)

f (xk)− f (xk−1)
,

and the associated algorithm reads
Algorithm 3. Given two initial approximations x0 and
x1 and a tolerance ε.
k= 1
while | f (xk)|> ε do

xk+1 = xk− f (xk)
(xk−xk−1)

f (xk)− f (xk−1)
k= k+1

end

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 125

Example 13

Let us apply the Secant method to the equation

f (x) = 2+x−ex = 0,

studied above. The two initial values are x0 = 0, x1 = 3, and
the stopping criteria is specified by ε = 10−6.
• Table 6 show the number of iterations k, xk and f (xk) as

computed by Algorithm 3
• Note that the convergence for the Secant method is

slower than for Newton’s method, but faster than for
the Bisection method

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 126

k xk f (xk)

2 0.186503 0.981475
3 0.358369 0.927375
4 3.304511 −21.930701
5 0.477897 0.865218
6 0.585181 0.789865
7 1.709760 −1.817874
8 0.925808 0.401902
9 1.067746 0.158930
10 1.160589 −3.122466·10−2

11 1.145344 1.821544·10−3

12 1.146184 1.912908·10−5

13 1.146193 −1.191170·10−8

Table 6: The Secant method applied with f (x) = 2+x−ex=0.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 127

Example 14

Find a zero of

f (x) = x2−2,

which has a solution x∗ =
√

2.
• The general step of the secant method is in this case

xk+1 =xk− f (xk)
xk−xk−1

f (xk)− f (xk−1)

=xk− (x2
k−2)

xk−xk−1

x2
k−x2

k−1

=xk−
x2

k−2
xk+xk−1

=
xkxk−1+2
xk+xk−1 Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 128

Example 14

• By choosing x0 = 1 and x1 = 2 we get

x2 = 1.33333

x3 = 1.40000

x4 = 1.41463

• This is quite good compared to the exact value

x∗ =
√

2 ≈ 1.41421

• Recall that Newton’s method produced the
approximation 1.41422in three iterations, which is
slightly more accurate

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 129

A nonlinear system

We start our study of nonlinear equations, by considering a
nonlinear system of ordinary differential equations

u′ = −v3, u(0) = u0,

v′ = u3, v(0) = v0.
(75)

An implicit Euler scheme for this system reads

un+1−un

∆t
= −v3

n+1,
vn+1−vn

∆t
= u3

n+1, (76)

which can be rewritten on the form

un+1+∆t v3
n+1−un = 0,

vn+1−∆t u3
n+1−vn = 0.

(77)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 130

A nonlinear system

• Observe that in order to compute (un+1,vn+1) based on
(un,vn), we need to solve a nonlinear system of
equations

We would like to write the system on the generic form

f (x,y) = 0,
g(x,y) = 0.

(78)

This is done by setting

f (x,y) = x+∆t y3−α,
g(x,y) = y−∆t x3−β,

(79)

α = un and β = vn.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 131

Newton’s method

When deriving Newton’s method for solving a scalar
equation

p(x) = 0 (80)

we exploited Taylor series expansion

p(x0+h) = p(x0)+hp′(x0)+O(h2), (81)

to make a linear approximation of the function p, and solve
the linear approximation of (80). This lead to the iteration

xk+1 = xk−
p(xk)

p′(xk)
. (82)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 132

Newton’s method

We shall try to extend Newton’s method to systems of
equations on the form

f (x,y) = 0,
g(x,y) = 0.

(83)

The Taylor-series expansion of a smooth function of two
variables F(x,y), reads

F(x+∆x,y+∆y) = F(x,y)+∆x
∂F
∂x

(x,y)+∆y
∂F
∂y

(x,y)

+O(∆x2,∆x∆y,∆y2). (84)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 133

Newton’s method

Using Taylor expansion on (83) we get

f (x0+∆x,y0+∆y) = f (x0,y0)+∆x
∂ f
∂x

(x0,y0)+∆y
∂ f
∂y

(x0,y0)

+O(∆x2,∆x∆y,∆y2), (85)

and

g(x0+∆x,y0+∆y) = g(x0,y0)+∆x
∂g
∂x

(x0,y0)+∆y
∂g
∂y

(x0,y0)

+O(∆x2,∆x∆y,∆y2). (86)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 134

Newton’s method

Since we want ∆x and ∆y to be such that

f (x0+∆x,y0+∆y) ≈ 0,
g(x0+∆x,y0+∆y) ≈ 0,

(87)

we define ∆x and ∆y to be the solution of the linear system

f (x0,y0)+∆x∂ f
∂x(x0,y0)+∆y∂ f

∂y(x0,y0) = 0,

g(x0,y0)+∆x∂g
∂x(x0,y0)+∆y∂g

∂y(x0,y0) = 0.
(88)

Remember here that x0 and y0 are known numbers, and
therefore f (x0,y0),

∂ f
∂x(x0,y0) and ∂ f

∂y(x0,y0) are known
numbers as well. ∆x and ∆y are the unknowns.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 135

Newton’s method

(88) can be written on the form
(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)(

∆x
∆y

)

= −
(

f0
g0

)

. (89)

where f0 = f (x0,y0), g0 = g(x0,y0),
∂ f0
∂x = ∂ f

∂x(x0,y0), etc. If the
matrix

A =

(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)

(90)

is nonsingular. Then
(

∆x
∆y

)

= −
(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)−1(

f0
g0

)

. (91)
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 136

Newton’s method

We can now define
(

x1

y1

)

=

(

x0

y0

)

+

(

∆x
∆y

)

=

(

x0

y0

)

−
(

∂ f0
∂x

∂ f0
∂y

∂g0
∂x

∂g0
∂y

)−1(

f0
g0

)

.

And by repeating this argument we get

(

xk+1

yk+1

)

=

(

xk

yk

)

−
(

∂ fk
∂x

∂ fk
∂y

∂gk

∂x
∂gk

∂y

)−1(

fk
gk

)

, (92)

where fk = f (xk,yk), gk = g(xk,yk) and ∂ fk
∂x = ∂ f

∂x(xk,yk) etc.
The scheme (92) is Newton’s method for the system (83).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 137

A Nonlinear example

We test Newton’s method on the system

ex−ey = 0,
ln(1+x+y) = 0.

(93)

The system have analytical solution x= y= 0. Define

f (x,y) = ex−ey,

g(x,y) = ln(1+x+y).

The iteration in Newton’s method (92) reads

(

xk+1

yk+1

)

=

(

xk

yk

)

−
(

exk −eyk

1
1+xk+yk

1
1+xk+yk

)−1(

exk−eyk

ln(1+xk+yk)

)

.(94)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 138

A Nonlinear example

The table below shows the computed results when
x0 = y0 =

1
2.

k xk yk

0 0.5 0.5
1 -0.193147 -0.193147
2 -0.043329 -0.043329
3 -0.001934 -0.001934
4 −3.75·10−6 −3.75·10−6

5 −1.40·10−11 −1.40·10−11

We observe that, as in the scalar case, Newton’s method
gives very rapid convergence towards the analytical
solution x= y= 0.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 139

The Nonlinear System Revisited

We now go back to nonlinear system of ordinary differential
equations (75), presented above. For each time step we
had to solve

f (x,y) = 0,
g(x,y) = 0,

(95)

where

f (x,y) = x+∆t y3−α,
g(x,y) = y−∆t x3−β.

(96)

We shall now solve this system using Newton’s method.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 140

The Nonlinear System Revisited

We put x0 = α, y0 = β and iterate as follows

(

xk+1

yk+1

)

=

(

xk

yk

)

−
(

∂ fk
∂x

∂ fk
∂y

∂gk

∂x
∂gk

∂y

)−1(

fk
gk

)

, (97)

where

fk = f (xk,yk), gk = g(xk,yk),

∂ fk
∂x

=
∂ f
∂x

(xk,yk) = 1,
∂ fk
∂y

=
∂ f
∂y

(xk,yk) = 3∆t y2
k,

∂gk

∂x
=

∂g
∂x

(xk,yk) = −3∆t x2
k,

∂gk

∂y
=

∂g
∂y

(xk,yk) = 1.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 141

The Nonlinear System Revisited

The matrix

A =

(

∂ fk
∂x

∂ fk
∂y

∂gk

∂x
∂gk

∂y

)

=

(

1 3∆t y2
k

−3∆t x2
k 1

)

(98)

has its determinant given by: det(A) = 1+9∆t2x2
k y2

k > 0. So
A−1 is well defined and is given by

A−1 =
1

1+9∆t2x2
k y2

k

(

1 −3∆t y2
k

3∆t x2
k 1

)

. (99)

For each time-level we can e.g. iterate until

| f (xk,yk)|+ |g(xk,yk)| < ε = 10−6. (100)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 142

The Nonlinear System Revisited

• We have tested this method with ∆t = 1/100and
t ∈ [0,1]

• In Figure 16 the numerical solutions of u and v are
plotted as functions of time, and in Figure 17 the
numerical solution is plotted in the (u,v) coordinate
system

• In Figure 18 we have plotted the number of Newton’s
iterations needed to reach the stopping criterion (100)
at each time-level

• Observe that we need no more than two iterations at
all time-levels

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Figure 16: The numerical solutions u(t) and v(t) (in dashed line)

of (75) produced by the implicit Euler scheme (76) using u0= 1, v0= 0

and ∆t = 1/100.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 144

0.8 0.9 1
0

0.2

0.4

0.6

0.8

u

v

Figure 17: The numerical solutions of (75) in the (u,v)-coordinate

system, arising from the implicit Euler scheme (76) using u0 = 1,

v0 = 0 and ∆t = 1/100.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

t

Figure 18: The graph shows the number of iterations used by

Newton’s method to solve the system (77) at each time-level.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 146

The Method of Least Squares

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 147

The method of least squares

We study the following problem:
Given n points (ti,yi) for i = 1, . . . ,n in the (t,y)-plane. How
can we determine a function p(t) such that

p(ti)≈ yi, for i = 1, . . . ,n? (101)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 148

1 2 3 4 5 6 7 8 9 10
390

395

400

405

410

415

420

t

p(
t)

Figure 19: A set of discrete data marked by small circles is ap-

proximated with a linear function p = p(t) represented by the solid

line.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 149

1 2 3 4 5 6 7 8 9 10
390

395

400

405

410

415

420

t

p(
t)

Figure 20: A set of discrete data marked by small circles is ap-

proximated with a quadratic function p = p(t) represented by the

solid curve.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 150

The method of least square

• Above we saw a discrete data set being approximated
by a continuous function

• We can also approximate continuous functions by
simpler functions, see Figure 21 and Figure 22

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 151

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

t

Figure 21: A function y= y(t) and a linear approximation p= p(t).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 152

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

t

Figure 22: A function y= y(t) and a quadratic approximation p=

p(t).
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 153

World mean temperature deviations

Calendar year Computational year Temperature deviation

ti yi

1991 1 0.29

1992 2 0.14

1993 3 0.19

1994 4 0.26

1995 5 0.28

1996 6 0.22

1997 7 0.43

1998 8 0.59

1999 9 0.33

2000 10 0.29

Table 7: The global annual mean temperature deviation measured

in ◦C for years 1991-2000.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 154

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 23: The global annual mean temperature deviation mea-

surements for the period 1991-2000.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 155

Approximating by a constant

• We will study how this set of data can be approximated
by simple functions

• First, how can this data set be approximated by a
constant function

p(t) = α?

• The most obvious guess would be to choose α as the
arithmetic average

α =
1
10

10

∑
i=1

yi = 0.312 (102)

• We will study this guess in more detail

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 156

Approximating by a constant

• Assume that we want the solution to minimize the
function

F(α) =
10

∑
i=1

(α−yi)
2 (103)

• The function F measures a sort of deviation from α to
the set of data (ti,yi)

10
i=1

• We want to find the α that minimizes F(α), i.e. we want
to find α such that F ′(α) = 0

• We have

F ′(α) = 2
10

∑
i=1

(α−yi) (104)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 157

Approximating by a constant

• This leads to

2
10

∑
i=1

α∗ = 2
10

∑
i=1

yi, (105)

or

α∗ =
1
10

10

∑
i=1

yi, (106)

which is the arithmetic average

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 158

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α*=0.312

Figure 24: A graph of F = F(α) given by (103).
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 159

Approximating by a constant

• Since

F ′′(α) = 2
10

∑
i=1

1 = 20 > 0, (107)

it follows that the arithmetic average is the minimizer
for F

• We can say that the average value is the optimal
constant approximating the global temperature

• This way of defining an optimal constant, where we
minimize the sum of the square of the distances
between the approximation and the data, is referred to
as the method of least squares

• There are other ways to define an optimal constant
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 160

Approximating by a constant

• Define

G(α) =
10

∑
i=1

(α−yi)
4 (108)

• G(α) also measures a sort of deviation from α to the
data

• We have that

G′(α) = 4
10

∑
i=1

(α−yi)
3 (109)

• And in order to minimize G we need to solve G′(α) = 0,
(and check that G′′(α)> 0)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 161

Approximating by a constant

• Solving G′(α) = 0 leads to a nonlinear equation that
can be solved with the Newton iteration from the
previous lecture

• We use Newton’s method with
• initial approximation: α0 = 0.312
• tolerance specified by: ε = 10−8

This gives α∗ ≈ 0.345, in three iterations
• α∗ is a minimum of G since

G′′(α∗) = 12
10

∑
i=1

(α∗−yi)
2 > 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 162

0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

α*=0.345

Figure 25: A graph of G= G(α) given by (108).
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 163

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 26: Two constant approximations of the global annual

mean temperature deviation measurements from year 1991 to 2000.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 164

Approximating by a linear function

• Now we will study how we can approximate the world
mean temperature deviation with a linear function

• We want to determine two constants α and β such that

p(t) = α+βt (110)

fits the data as good as possible in the sense of least
squares

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 165

Approximating by a linear function

• Define

F(α,β) =
10

∑
i=1

(α+βti−yi)
2 (111)

• In order to minimize F with respect to α and β, we can
solve

∂F
∂α

=
∂F
∂β

= 0 (112)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 166

Approximating by a linear function

We have that

∂F
∂α

= 2
10

∑
i=1

(α+βti−yi), (113)

and therefore the condition ∂F
∂α = 0 leads to

10α+

(

10

∑
i=1

ti

)

β =
10

∑
i=1

yi. (114)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 167

Approximating by a linear function

Here

10

∑
i=1

ti = 1+2+3+ · · ·+10 = 55,

and

10

∑
i=1

yi = 0.29+0.14+0.19+ · · ·+0.29 = 3.12,

so we have

10α+55β = 3.12. (115)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 168

Approximating by a linear function

Further, we have that

∂F
∂β

= 2
10

∑
i=1

(α+βti−yi)ti,

and therefore the condition ∂F
∂β = 0 gives

(

10

∑
i=1

ti

)

α+

(

10

∑
i=1

t2
i

)

β =
10

∑
i=1

yiti.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 169

Approximating by a linear function

We can calculate

10

∑
i=1

t2
i = 1+22+32+ · · ·+102 = 385,

and

10

∑
i=1

tiyi = 1·0.29+2·0.14+3·0.19+ · · ·+10·0.29 = 20,

so we arrive at the equation

55α+385β = 20. (116)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 170

Approximating by a linear function

We now have a 2×2 system of linear equations which
determines α and β:

(

10 55

55 385

)(

α
β

)

=

(

3.12

20

)

.

With our knowledge of linear algebra, we see that

(

α
β

)

=

(

10 55

55 385

)−1(
3.12

20

)

=
1

825

(

385 −55

−55 10

)(

3.12

20

)

≈
(

0.123

0.034

)

.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 171

Approximating by a linear function

We conclude that the linear model

p(t) = 0.123+0.034t (117)

approximates the data optimally in the sense of least
squares.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 172

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 27: Constant and linear least squares approximations of

the global annual mean temperature deviation measurements from

year 1991 to 2000. Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 173

Approx. by a quadratic function

• We now want to determine constants α, β and γ, such
that the quadratic polynomial

p(t) = α+βt + γt2 (118)

fits the data optimally in the sense of least squares
• Minimizing

F(α,β,γ) =
10

∑
i=1

(α+βti + γt2
i −yi)

2 (119)

requires

∂F
∂α

=
∂F
∂β

=
∂F
∂γ

= 0 (120)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 174

Approx. by a quadratic function

• ∂F
∂α = 2∑10

i=1

(

α+βti + γt2
i −yi

)

= 0 leads to

10α+

(

10

∑
i=1

ti

)

β+

(

10

∑
i=1

t2
i

)

γ =
10

∑
i=1

yi

• ∂F
∂β = 2∑10

i=1

(

α+βti + γt2
i −yi

)

ti = 0 leads to
(

10

∑
i=1

ti

)

α+

(

10

∑
i=1

t2
i

)

β+

(

10

∑
i=1

t3
i

)

γ =
10

∑
i=1

yiti

• ∂F
∂γ = 2∑10

i=1

(

α+βti + γt2
i −yi

)

t2
i = 0 leads to

(

10

∑
i=1

t2
i

)

α+

(

10

∑
i=1

t3
i

)

β+

(

10

∑
i=1

t4
i

)

γ =
10

∑
i=1

yit
2
i

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 175

Approx. by a quadratic function

Here

10

∑
i=1

ti = 55,
10

∑
i=1

t2
i = 385,

10

∑
i=1

t3
i = 3025,

10

∑
i=1

t4
i = 25330,

10

∑
i=1

yi = 3.12,
10

∑
i=1

tiyi = 20,

10

∑
i=1

t2
i yi = 138.7,

which leads to the linear system

10 55 385
55 385 3025
385 3025 25330

α
β
γ

=

3.12
20

138.7

. (121)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 176

Solving the linear system (121)with, e.g., matlab we get

α ≈ −0.4078,
β ≈ 0.2997, (122)
γ ≈ −0.0241.

We have now obtained three approximations of the data
• The constant

p0(t) = 0.312

• The linear
p1(t) = 0.123+0.034t

• The quadratic

p2(t) =−0.4078+0.2997t−0.0241t2

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 177

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 28: Constant, linear and quadratic approximations of the

global annual mean temperature deviation measurements from the

year 1991 to 2000. Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 178

Summary

Approximating a data set

(ti,yi) i = 1, . . . ,n,

with a constant function

p0(t) = α.

Using the method of least squares gives

α =
1
n

n

∑
i=1

yi, (123)

which is recognized as the arithmetic average.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 179

Summary

Approximating the data set with a linear function

p1(t) = α+βt

can be done by minimizing

min
α,β

F(α,β) = min
α,β

n

∑
i=1

(p1(ti)−yi)
2,

which leads to the following 2×2 linear system

n
n

∑
i=1

ti

n

∑
i=1

ti
n

∑
i=1

t2
i

α

β

=

n

∑
i=1

yi

n

∑
i=1

tiyi

. (124)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 180

Summary

A quadratic approximation on the form

p2(t) = α+βt + γt2

can be done by minimizing
minα,β,γ F(α,β,γ) = minα,β,γ ∑n

i=1(p2(ti)−yi)
2, which leads to

the following 3×3 linear system

n
n

∑
i=1

ti
n

∑
i=1

t2
i

n

∑
i=1

ti
n

∑
i=1

t2
i

n

∑
i=1

t3
i

n

∑
i=1

t2
i

n

∑
i=1

t3
i

n

∑
i=1

t4
i

α
β
γ

=

n

∑
i=1

yi

n

∑
i=1

yiti

n

∑
i=1

yit
2
i

. (125)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 181

import numpy as np

import pylab

y = np.array([1.1, 2.1, 3.2, 4.1, 6.4])

t = np.linspace(0,1,5)

pylab.plot(t,y)

n = len(t)

t1 = sum(t)

t2 = sum(t**2)

t3 = sum(t**3)

t4 = sum(t**4)

A = np.array([[n,t1,t2],[t1,t2,t3],[t2,t3,t4]])

y1 = sum(y)

yt = sum(y*t)

yt2 = sum(y*t**2)

b = np.array([y1,yt,yt2])

p = np.linalg.solve(A, b)

x = np.linspace(0,1,101);

f = p[2]*x**2 + p[1]*x + p[0]

pylab.plot(x,f)

pylab.show() Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 182

Approximations of Functions

• Above we have studied continuous representation of
discrete data

• Next we will consider continuous approximation of
continuous functions

• Consider the function

y(t) = ln

(

1
10

sin(t)+et

)

(126)

• In Figure 29 we see that y(x) seems to be close to the
linear function p(t) = t on the interval [0,1]

• In Figure 30 we see that y(x) seems to be even closer
to the linear function plotted on t ∈ [0,10]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 183

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 29: The function y(t) = ln
(

1
10 sin(t)+et

)

(solid curve) and

a linear approximation (dashed line) on the interval t ∈ [0,1].

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 184

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 30: The function y(t) = ln
(

1
10 sin(t)+et

)

(solid curve) and

a linear approximation (dashed line) on the interval t ∈ [0,10].

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 185

Approximations by constants

• For a given function y(t), t ∈ [a,b], we want to compute
a constant approximation of it

p(t) = α (127)

for t ∈ [a,b], in the sense of least squares
• That means that we want to minimize the integral

∫ b

a
(p(t)−y(t))2dt =

∫ b

a
(α−y(t))2dt

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 186

Approximations by constants

• Define the function

F(α) =
∫ b

a
(α−y(t))2dt (128)

• The derivative with respect to α is

F ′(α) = 2
∫ b

a
(α−y(t)) dt

• And solving F ′(α) = 0 gives

α =
1

b−a

∫ b

a
y(t)dt (129)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 187

Note that

• The formula for α is the integral version of the average
of y on [a,b]. In the discrete case we would have written

α =
1
n

n

∑
i=1

yi, (130)

If yi in (130) is y(ti), where ti = a+ i∆t and ∆t = b−a
n , then

1
n

n

∑
i=1

yi =
1

b−a
∆t

n

∑
i=1

y(ti) ≈
1

b−a

∫ b

a
y(t)dt.

We therefore conclude that (129) is a natural
continuous version of (130).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 188

Note that

• We used

d
dα

∫ b

a
(α−y(t))2dt =

∫ b

a

∂
∂α

(α−y(t))2dt

Is that a legal operation? This is discussed in
Exercise 5.

• The α given by (129) is a minimum, since

F ′′(α) = 2(b−a) > 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 189

Example 15; const. approx.

Consider

y(t) = sin(t)

defined on 0≤ t ≤ π/2. A constant approximation of y is
given by

p(t) = α (129)
=

2
π

∫ π/2

0
sin(t)dt =

−2
π

[cos(t)]π/2
0

=
−2
π

(0−1) =
2
π
.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 190

Example 16; const. approx.

Consider

y(t) = t2+
1
10

cos(t)

defined on 0≤ t ≤ 1. A constant approximation of y is given
by

p(t) = α (129)
=

∫ 1

0

(

t2+
1
10

cos(t)

)

dt =

[

1
3

t3+
1
10

sin(t)

]1

0

=
1
3
+

1
10

sin(1) ≈ 0.417.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 191

Approximations by Linear Functions

• Now, we search for a linear approximation of a function
y(t), t ∈ [a,b], i.e.

p(t) = α+β t (131)

in the sense of least squares
• Define

F(α,β) =
∫ b

a
(α+β t−y(t))2dt (132)

• A minimum of F is obtained by finding α and β such
that

∂F
∂α

=
∂F
∂β

= 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 192

Approximations by Linear Functions

• We have

∂F
∂α

= 2
∫ b

a
(α+β t−y(t))dt

∂F
∂β

= 2
∫ b

a
(α+β t−y(t))t dt

• Therefore α and β can be determined by solving the
following linear system

(b−a)α+
1
2
(b2−a2)β =

∫ b

a
y(t)dt

1
2
(b2−a2)α+

1
3
(b3−a3)β =

∫ b

a
t y(t)dt

(133)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 193

Example 15; linear approx.

Consider

y(t) = sin(t)

defined on 0≤ t ≤ π/2.
We have

∫ π/2

0
sin(t)dt = 1

and
∫ π/2

0
t sin(t)dt = 1.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 194

Example 15; linear approx.

The linear system now reads
(

π/2 π2/8
π2/8 π3/24

)(

α
β

)

=

(

1
1

)

.

The solution is

(

α
β

)

=
1
π2

8π−24
96
π
−24

 ≈
(

0.115
0.664

)

.

Therefore the linear approximation is given by

p(t) ≈ 0.115+0.664t.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 195

Example 16; linear approx.

Consider

y(t) = t2+
1
10

cos(t)

defined on 0≤ t ≤ 1. The linear system (133) then reads
(

1 1
2

1
2

1
3

)(

α
β

)

=

(

1
3 +

1
10 sin(1)

3
20+

1
10 cos(1)+ 1

10 sin(1)

)

,

with solution α ≈ −0.059and β ≈ 0.953.
We conclude that the linear least squares approximation is
given by

p(t) ≈ −0.059+0.953t.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 196

Approx. by Quadratic Functions

• We seek a quadratic function

p(t) = α+β t + γ t2 (134)

that approximates a given function y= y(t), a≤ t ≤ b, in
the sense of least squares

• Let

F(α,β,γ) =
∫ b

a
(α+β t + γ t2−y(t))2dt (135)

• Define α, β and γ to be the solution of the three
equations:

∂F
∂α

=
∂F
∂β

=
∂F
∂γ

= 0
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 197

Approx. by Quadratic Functions

• By taking the derivatives, we have
•

∂F
∂α

= 2
∫ b

a
(α+β t + γ t2−y(t))dt

•

∂F
∂β

= 2
∫ b

a
(α+β t + γ t2−y(t)) t dt

•

∂F
∂γ

= 2
∫ b

a
(α+β t + γ t2−y(t)) t2dt

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 198

• The coefficients α, β and γ can now be determined
from the linear system

(b−a)α+
1
2
(b2−a2)β+

1
3
(b3−a3)γ =

∫ b

a
y(t)dt

1
2
(b2−a2)α+

1
3
(b3−a3)β+

1
4
(b4−a4)γ =

∫ b

a
t y(t)dt

1
3
(b3−a3)α+

1
4
(b4−a4)β+

1
5
(b5−a5)γ =

∫ b

a
t2y(t)dt

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 199

Example 15; quad. approx.

For the function

y(t) = sin(t), 0≤ t ≤ π/2,

the linear system reads

π/2 π2/8 π3/24
π2/8 π3/24 π4/64

π3/24 π4/64 π5/160

α
β
γ

=

1
1

π−2

,

and the solution is given by α ≈ −0.024, β ≈ 1.196and
γ ≈ −0.338, which gives the quadratic approximation

p(t) = −0.024+1.196t−0.338t2.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 200

Example 16; quad. approx.

Let us consider

y(t) = t2+
1
10

cos(t)

for 0≤ t ≤ 1. The linear system takes the form

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

α
β
γ

=

1
3 +

1
10 sin(1)

3
20+

1
10 cos(1)+ 1

10 sin(1)
1
5 +

1
5 cos(1)− 1

10 sin(1)

and the solution is given by α ≈ 0.100, β ≈ −0.004and
γ ≈ 0.957, and the quadratic approximation is

p(t) = 0.100−0.004t +0.957t2.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 201

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Figure 31: The function y(t) = sin(t) (solid curve) and its least

squares approximations: constant (dashed line), linear (dotted line)

and quadratic (dashed-dotted curve).
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 202

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 32: The function y(t) = t2+ 1
10 cos(t) (solid curve) and its

least squares approximations: constant (dashed line), linear (dotted

line) and quadratic (dashed-dotted curve).
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 203

• import numpy as np

from scipy.integrate import quad as integrator

def approximate(f, n, x0, x1):

A = np.zeros((n,n))

b = np.zeros((n,1))

for i in range(n):

b[i] = integrator(lambda x: f(x)*x**i, x0, x1)[0]

for j in range(n):

A[i,j] = integrator(lambda x: (x**i)*(x**j), x0, x1)[0]

p = np.linalg.solve(A, b)

return p

def f(x):

return np.sin(x)

x0 = 0.

x1 = 10.

p = approximate(f, 7, x0, x1)

def eval(p, x):

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 204

From Mathematical Formula to
Scientific Software

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 205

Scientific software

• Desired properties
• Correct
• Efficient (speed, memory, storage)
• Easily maintainable
• Easily extendible

• Important skills
• Understanding numerics
• Designing data structures
• Using libraries and programming tools
• (Quick learning of new programming languages)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 206

A typical scientific computing code

• Starting point
• Numerical problem

• Pre-processing
• Data input and preparation
• Build-up of internal data structure

• Main computation
• Post-processing

• Result analysis
• Display, output and visualization

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 207

A two-step strategy

• Correct implementation of a complicated numerical
problem is a challenging task

• Divide the task into two steps:
• Express the numerical problem as a complete

algorithm
• Translate the algorithm into a computer code using

a specific programming language

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 208

Advantages

• Small gap between the numerical method and the
complete algorithm (few software issues to consider)

• Easy translation from the complete algorithm to a
computer code (no numerical issues)

• An effective approach
• Easy to debug
• Easy to switch to another programming language

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 209

Writing complete algorithms

• Complete algorithm = mathematical pseudo code:
programming language independent!

• Rewrite a compact mathematical formula as a set of
simple operations (e.g., replace ∑ with a for-loop or
do-loop in Fortran)

• Identify input and output
• Give names to mathematical entities and make them

variables/arrays
• Introduce intermediate variables (if necessary)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 210

Optimization; rule of thumb

• Adopt good programming habits
• Maintain the clear structure of the numerical method
• Avoid “premature optimization”
• Leave part of the optimization work to a compiler

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 211

Example 20: Simpson’s rule

• Want to approximate
∫ b

a
f (x)dx

• Similar idea as Trapezoidal rule, better accuracy

∫ b

a
f (x)dx≈ h

6

n

∑
i=1

{

f (xi−1)+4 f (xi− 1
2
)+ f (xi)

}

• h=
b−a

n
, xi = a+ ih, xi− 1

2
= 1

2(xi−1+xi)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 212

Complete algorithm (I)

simpson (a,b, f ,n)
h= b−a

n
s= 0
for i = 1, . . . ,n

x− = a+(i−1)h
x+ = a+ ih
x= 1

2(x
−+x+)

s← s+ f (x−)+4 f (x)+ f (x+)
end for
s← h

6s
return s

• Input: a,b, f ,n

• Output: s

• Intermediate variables: x−, x, x+Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 213

Efficiency consideration

• f (x+) in iteration i is the same as f (x−) in iteration i+1

f (x0)+4 f (x1
2
)+ f (x1)+

f (x1)+4 f (x1+ 1
2
)+ f (x2)+

· · ·
f (xn−1)+4 f (xn− 1

2
)+ f (xn)

• Unnecessary function evaluations should be avoided
for efficiency!

• Rewrite Simpson’s rule

∫ b

a
f (x)dx≈ h

6

[

f (a)+ f (b)+2
n−1

∑
i=1

f (xi)+4
n

∑
i=1

f (xi− 1
2
)

]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 214

Complete algorithm (II)

simpson (a,b, f ,n)
h= b−a

n
s1 = 0 x= a
for i = 1, . . . ,n−1

x← x+h
s1← s1+ f (x)

end for
s2 = 0 x= a+0.5·h
for i = 1, . . . ,n

s2← s2+ f (x)
x← x+h

end for
s= h

6(f (a)+ f (b)+2s1+4s2)
return s

• New intermediate
variables s1 and s2

• Two for-loops (can
we combine them
into one loop?)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 215

Choosing a programming language

• Many programming languages exist
• We examine 7 languages: Fortran 77, C, C++, Java,

Maple, Matlab & Python
• Issues that influence the choice of a programming

language
• Static typing vs. dynamic typing
• Computational efficiency
• Built-in high-performance utilities
• Support for user-defined data types

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 216

Static typing vs. dynamic typing

• Statically typed programming languages
• Each variable must be given a specific type

(int, char, float, double etc.)
• Compiler is able to detect obvious syntax errors
• Special rules for transformation between different

types
• Dynamically typed programming language

• No need to give a specific type to a variable
• Typing is dynamic and adjusts to the context
• Great flexibility and more “elegant” syntax
• Difficult to detect certain “typos”

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 217

Computational efficiency

• Compiled languages run normally fast

• Program code
compilation & linking−→ executable (machine

code)
• Interpreted languages run normally slow

• Statements are interpreted directly as function calls
in a library

• Translation takes place “on the fly”
• Different compiled languages may have different

efficiency

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 218

Built-in utilities

• Compiled languages have very fast loop-instructions
• Plain loops in interpreted languages (Maple, Matlab &

Python) are very slow
• Important for interpreted languages to have built-in

numerical libraries
• Need to “break” a complicated numerical method into a

series of simple steps when using an interpreted
language

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 219

User-defined data types

• Built-in primitive data types may not be enough for
complicated numerical programming

• Need to “group” primitive variables into a new data type
• struct in C (only data, no function)
• class in C++, Java & Python
• Class hierarchies⇒ powerful tool⇒

object-oriented programming

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 220

Different programming languages

• Different syntax
• Similar structure for main computation
• Different ways for function transfer
• Different I/O
• Different ways for writing comments
• No need to learn all the details at once!
• Learn from the examples!

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 221

Vectorization

• Loops are very slow in interpreted languages
• Should use built-in vector functionality when possible

trapezoidal_vec (a,b, f ,n)
h= b−a

n
x = (a,a+h, . . . ,b)
v = f (x)
s= h· (sum(v)−0.5· (v1+vn+1))

return s

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 222

Guidelines on implementation

• Understand the numerics (make use of literature)
• Close resemblance between mathematical pseudo

code and numerical method
• Test the implementation on first problems with known

solutions
• No premature optimization before code verification
• During later optimization, refer to the “non-optimized”

code as reference for checking

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 223

Diffusion Processes

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 224

Diffusion processes

Examples of diffusion processes
• Heat conduction

• Heat moves from hot to cold places
• Diffusive (molecular) transport of a substance

• Ink in water
• Sugar/Cream in coffee
• Perfume/Gas in air

• Thin-film fluid flow

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 225

Diffusion processes

• Diffusion processes smoothes out differences
• A physical property (heat/concentration) moves from

high concentration to low concentration

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 226

One dimension

• For simplicity, we will in the following focus on one
dimensional examples

• This simplifies the complexity of the numerics and
codes, but it would still be realistic in examples with
• Long thin geometries
• One dimensional variation only
• Cylindrical or spherical symmetry
• Mathematical splitting of dimension

u(x,y,z, t) = F(x, t)+G(y,z, t)

or

u(x,y,z, t) = F(x, t)G(y,z, t)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 227

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

0 10
0

1

Figure 33: Diffusion of ink in a long and thin tube. The top figure

shows the initial concentration (dark is ink, white is water). The three

figures below show the concentration of ink at (scaled) times t = 0.25,

t = 0.5, t = 1, and t = 3, respectively. The evolution is clearly one-

dimensional. Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 228

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

−1 0 1
−0.5

0

0.5

Figure 34: The evolution of the temperature in a medium com-

posed of two pieces of metal, at different initial temperatures. In the

gray scale plots, dark is hot and white is cool. The plots correspond

to t = 0, t = 0.01, t = 0.1, and t = 0.5. All boundaries are insulated,

and the temperature approaches a constant value, equal to the av-

erage (T1+T2)/2 of the initial temperature values.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 229

The Basics of the Mathematical Model

The diffusion equation reads

∂u
∂t

= k
∂2u
∂x2

+ f (x, t), x∈ (a,b), t > 0 (136)

•• k is a physical parameter
• Large k implies that u spreads quickly

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 230

Initial and Boundary conditions

• Let u be a solution of (136), then for any constant C,
u+C will also be a solution (136)

• Thus, there are infinitely many solutions of (136)

• In order to make a problem with unique solution we
need some initial and boundary conditions

• Initial conditions is that we now the solution initially
u(x,0) for x∈ [a,b]

• Boundary conditions is that we have some information
about the solution at the endpoints u(a, t) and u(b, t)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 231

Diffusion equation

• In 3 dimensions the diffusion equation reads

∂u
∂t

= k

(

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

)

+ f (x,y,z, t) (137)

• This equation is sometimes written on a more compact
form

∂u
∂t

= k∇2u+ f , (138)

where the operator ∇2 is defined by ∇2u= ∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

• ∇2 is called the Laplace operator

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 232

Initial conditions

In order to solve the diffusion equation we need some initial
condition and boundary conditions.
• The initial condition gives the concentration in the tube

at t=0

c(x,0) = I(x), x∈ (0,1) (139)

• Physically this means that we need to know the
concentration distribution in the tube at a moment to be
able to predict the future distribution

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 233

Boundary conditions

Some common boundary conditions are
• Prescribed concentrations, S0 and S1, at the endpoints

c(0, t) = S0 and c(1, t) = S1

• Impermeable endpoints, i.e. no out flow at the
endpoints

q(0, t) = 0 and q(1, t) = 0

• By Fick’s law we get

∂c(0, t)
∂x

= 0 and
∂c(1, t)

∂x
= 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 234

Boundary conditions

• Prescribed outflows Q0 and Q1 at the endpoints

−q(0, t) = Q0 and q(1, t) = Q1

• Here the minus sign in the first expression,
−q(0, t) = Q0, comes since Q0 measures the flow
out of the tube, and that is the negative direction
(from right to left)

• By Fick’s law we get

k
∂c(0, t)

∂x
= Q0 and −k

∂c(1, t)
∂x

= Q1

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 235

Numerical methods

First we consider a version of the heat equation where any
varying parameters are scaled away:

∂u
∂t

=
∂2u
∂x2

+ f (x, t), x∈ (0,1), t > 0. (140)

• The solution of this equation is a continuous function of
time and space

• We approximate the solution at a finite number of
space points and at a finite number of time levels

• This approximation is referred to as discretization
• There are several ways of discretizing (140) - in the

following we will consider a technique which is called
the finite difference method

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 236

Numerical methods

Applying the finite difference method to the problem (140)
implies

1. constructing a grid, with a finite number of points in
(x, t) space, see Figure 35

2. requiring the PDE (140) to be satisfied at each point in
the grid

3. replacing derivatives by finite difference
approximations

4. calculating u at the grid points only

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 237

1 2 3 4 5 6 7 8 9 10

0

1

2

3

x

t

∆ t

∆ x

x x x x x x x x x x

t

t

t

t

Figure 35: Computational grid in the x, t-plane. The grid points

are located at the points of intersection of the dashed lines.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 238

Discrete functions on a grid

• Chose a spatial discretization size ∆x and a temporal
discretization size ∆t

• Functions are only defined in the grid points

(xi, tℓ),

for i = 1, . . . ,n and ℓ= 0, . . . ,m where
• n is the number of approximation points in space

(∆x= 1
n−1)

• m+1 is the number of time levels
• The value of an arbitrary function Q(x, t) at a grid point
(xi, tℓ) is denoted

Qℓ
i = Q(xi, tℓ), i = 1, . . . ,n, ℓ= 0, . . . ,m

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 239

Discrete functions on a grid

•• The purpose of a finite difference method is to
compute the values uℓi for i = 1, . . . ,n and ℓ= 0, . . . ,m

• We can now write the PDE (140)as

∂
∂t

u(xi, tℓ) =
∂2

∂x2
u(xi, tℓ)+ f (xi, tℓ), (141)

i = 1, . . . ,n, ℓ= 1, . . . ,m

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 240

Finite difference approximation

Now we approximate the terms in (141) that contains
derivatives. The approximation is done as follows
• The right hand side is approximated

∂
∂t

u(xi, tℓ)≈
uℓ+1

i −uℓi
∆t

(142)

• The first term on left hand side is approximated

∂2

∂x2
u(xi, tℓ)≈

uℓi−1−2uℓi +uℓi+1

∆x2
(143)

• The first approximation (142)can be motivated directly
from the definition of derivatives, since ∆t is small, and
it is called a finite difference approximation

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 241

Finite difference approximation

The motivation for (143) is done in two steps and the finite
difference approximation is based on centered difference
approximations.
• We first approximate the“outer” derivative at x= xi (and

t = tℓ), using a fictitious point xi+ 1
2
= xi +

1
2∆x to the right

and a fictitious point xi− 1
2
= xi− 1

2∆x to the left

∂
∂x

[(

∂u
∂x

)]ℓ

i

≈ 1
∆x

[

[

∂u
∂x

]ℓ

i+ 1
2

−
[

∂u
∂x

]ℓ

i− 1
2

]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 242

Finite difference approximation

• The first-order derivative at xi+ 1
2

can be approximated
by a centered difference using the point xi+1 to the right
and the point xi to the left:

[

∂u
∂x

]ℓ

i+ 1
2

≈ uℓi+1−uℓi
∆x

• Similarly, the first-order derivative at xi− 1
2

can be
approximated by a centered difference using the point
xi to the right and the point xi−1 to the left

[

∂u
∂x

]ℓ

i− 1
2

≈ uℓi −uℓi−1

∆x

• Combining these finite differences gives (143)Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 243

The Finite Difference Scheme

• Inserting the difference approximations (142)and (143)
in (141) results in the following finite difference scheme

uℓ+1
i −uℓi

∆t
=

uℓi−1−2uℓi +uℓi+1

∆x2
+ f ℓi (144)

• We solve (144)with respect to uℓ+1
i , yielding a simple

formula for the solution at the new time level

uℓ+1
i = uℓi +

∆t
∆x2

(

uℓi−1−2uℓi +uℓi+1

)

+∆t f ℓi (145)

• This is referred to as a numerical scheme for the
diffusion equation

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 244

1 2 3 4 5 6 7 8 9 10

0

1

2

3

x

t

∆ t

∆ x

x x x x x x x x x x

t

t

t

t

Figure 36: Illustration of the updating formula (145); u3
5 is com-

puted from u2
4, u2

5, and u2
6.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 245

new time level

previous time level

1

∆

∆

t

x

s s1−2s

Figure 37: Illustration of the computational molecule correspond-

ing to the finite difference scheme (145). The weight s is ∆t/∆x2.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 246

Incorporating Boundary Conditions

• (145)can not be used for computing new values at the
boundary uℓ+1

1 and uℓ+1
n , because (145) for i = 1 and

i = n involves values uℓ−1 and uℓn+1 outside the grid.

• Therefore we need to use the boundary conditions to
update on the boundary uℓ+1

1 and uℓ+1
n

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 247

Dirichlet Boundary Condition

• Suppose we have the following Dirichlet boundary
conditions

u(0, t) = g0(t), u(1, t) = g1(t),

where g0(t) and g1(t) are prescribed functions
• The new values on the boundary can then be updated

by
uℓ+1

1 = g0(tℓ+1), uℓ+1
n = g1(tℓ+1)

• The numerical scheme (145)update all inner points

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 248

Algorithm 1. Diffusion equation with Dirichlet bound-
ary conditions.
Set initial conditions:

u0
i = I(xi), for i = 1, . . . ,n

for ℓ= 0,1, . . . ,m:

• Update all inner points:

uℓ+1
i = uℓi +

∆t
∆x2

(

uℓi−1−2uℓi +uℓi+1

)

+∆t f ℓi

for i = 2, . . . ,n−1

• Insert boundary conditions:

uℓ+1
1 = g0(tℓ+1), uℓ+1

n = g1(tℓ+1)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 249

Neumann Boundary Conditions

Assume that we have Neumann conditions on the problem

∂
∂x

u(0, t) = h0 and
∂
∂x

u(1, t) = h1

Implementing the first condition, ∂
∂xu(0, t) = h0, can be done

as follows
• We introducing a fictisous value uℓ0

• The property ∂
∂xu(0, t) can then be approximated with a

centered difference

uℓ2−uℓ0
2∆x

= h0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 250

Neumann Boundary Conditions

• The discrete version of the boundary condition then
reads

uℓ2−uℓ0
2∆x

= h0 (146)

or

uℓ0 = uℓ2−2h0∆x

• Setting i = 1 in (145), gives

uℓ+1
1 = uℓ1+

∆t
∆x2

(

uℓ0−2uℓ1+uℓ2
)

+ f ℓ1

= uℓ1+
∆t

∆x2

(

uℓ2−2h0∆x−2uℓ1+uℓ2
)

+ f ℓ1

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 251

Neumann Boundary Conditions

• We now have a formula for updating the boundary
point

uℓ+1
1 = uℓ1+2

∆t
∆x2

(

uℓ2−uℓ1−h0∆x
)

+ f ℓ1

• For the condition ∂
∂xu(1, t) = h1, we can define a

fictitious point uℓn+1

• Similar to above we can use a centered difference
approximation of the condition, use (145)with i = n and
get

uℓ+1
n = uℓn+2

∆t
∆x2

(

uℓn−1−uℓn+h1∆x
)

+ f ℓn (147)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 252

Algorithm 2. Diffusion equation with Neumann
boundary conditions.
Set initial conditions:

u0
i = I(xi), for i = 1, . . . ,n

for ℓ= 0,1, . . . ,m:

• Update all inner points:

uℓ+1
i = uℓi +

∆t
∆x2

(

uℓi−1−2uℓi +uℓi+1

)

+∆t f ℓi

for i = 2, . . . ,n−1

• Insert boundary conditions:

uℓ+1
1 = uℓ1+2

∆t
∆x2

(

uℓ2−uℓ1−h0∆x
)

+ f ℓ1

uℓ+1
n = uℓn+2

∆t
∆x2

(

uℓn−1−uℓn+h1∆x
)

+ f ℓn
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 253

Implementation

We study how Algorithm 1 can be implemented in Python
• Arrays in Python has zero as the first index
• We rewrite Algorithm 1 so that the index i goes from 0

to n−1

• That is, we change i with i−1

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 254

Implementation

• In Algorithm 1, we see that we need to store n
numbers for m+1 time levels, i.e. n(m+1) numbers in
a two-dimensional array

• But, when computing the solution at one time level, we
only need to have stored the solution at the previous
time level - older levels are not used

• So, if we do not need to store all time levels, we can
reduce the storage requirements to 2n in two
one-dimensional arrays

• Introducing ui for uℓ+1
i and u−i for uℓi , we arrive at the

mathematical pseudo code presented as Algorithm 3

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 255

Algorithm 3. Pseudo code for diffusion equation with
general Dirichlet conditions.
Set initial conditions:

u−i = I(xi), for i = 0, . . . ,n−1

for ℓ= 0,1, . . . ,m:

• Set h= ∆t
∆x2 and t = ℓ∆t

• Update all inner points:
ui = u−i +h

(

u−−2u−i +u−i+1

)

+∆t f (xi, t)

for i = 1, . . . ,n−2

• Insert boundary conditions:
u0 = g0(t), un−1 = g1(t)

• Update data structures for next step:
u−i = ui, i = 0, . . . ,n−1

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 256

def diffeq(I, f, g0, g1, dx, dt, m, action=None):

n = int(1/dx + 1) h = dt/(dx*dx) # help variable in the scheme

x = arrayrange(0, 1+dx/2, dx, Float) # grid points in x dir

user_data = [] # return values from action function

set initial condition:

um = I(x)

u = zeros(n, Float) # solution array

for l in range(m+1): # l=0,...,m

t = l*dt

update all inner points:

for i in range(1,n-1,1): # i=1,...,n-2

u[i] = um[i] + h*(um[i-1] - 2*um[i] + um[i+1]) + dt*f(x[i], t)

insert boundary conditions:

u[0] = g0(t); u[n-1] = g1(t)

update data structures for next step:

for i in range(len(u)): um[i] = u[i]

if action is not None:

r = action(u, x, t) # some user-defined action

if r is not None:

user_data.append(r) # r can be arbitrary data...

return user_data

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 257

Comments

• The functions f , g0, and g1 are given as function
arguments for convenience

• We need to specify each array element in the solution
u to be a floating-point number, otherwise the array
would consist of integers. The values of u are of no
importance before the time loop.

• The action parameter may be used to invoke a
function for computing the error in the solution, if the
exact solution of the problem is known, or we may use
it to visualize the graph of u(x, t). The action
function can return any type of data, and if the data
differ from None, the data are stored in an array
user_data and returned to the user.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 258

Verifications

• A well known solution to the diffusion equation is

u(x, t) = e−π2t sinπx, (148)

which is the solution when f = 0 and I(x) = sinπx and
the Dirichlet boundary conditions are g0(t) = 0 and
g1(t) = 0

• We shall see how this exact solution can be used to
test the code

• In Python the initial and boundary conditions can
specified by

def IC_1(x): return sin(pi*x)

def g0_1(t): return 0.0

def g1_1(t): return 0.0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 259

Verifications

• We can now construct a function compare_1 as
action parameter, where we compute and return the
error:
def error_1(u, x, t):

e = u - exactsol_1(x, t)

e_norm = sqrt(innerproduct(e,e)/len(e))

return e_norm

def exactsol_1(x, t): return exp(-pi*pi*t)*sin(pi*x)

• The e_norm variable computes an approximation to
the a scalar error measure

E =

√∫ 1

0
(û−u)2dx,

where û denotes the numerical solution and u is the
exact solution Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 260

Verifications

• We actually computes a Riemann approximation of this
integral since

E2 =
∫ 1

0
(û−u)2dx≈

n−1

∑
i=0

e2
i ∆x=

1
n−1

n−1

∑
i=0

e2
i ,

where
ei = uℓi −exp(−π2ℓ∆t)sin(πi∆x)

(the code divide by n instead of n−1, for convenience)
• The final call to diffeq reads

e = diffeq(IC_1, f0, g0_1, g1_1, dx, dt, m, action=error_1)

print "error at last time level:", e[-1]

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 261

Verifications

• Theoretically, it is known that

E =C1∆x2+C2∆t

• Choosing ∆t = D∆x2 for a positive constant D, we get

E =C3∆x2, C3 =C1+C2D

• Hence, E/∆x2 should be constant
• A few lines of Python code conduct the test

dx = 0.2

for counter in range(4): # try 4 refinements of dx

dx = dx/2.0; dt = dx*dx/2.0; m = int(0.5/dt)

e = diffeq(IC_1, f0, g0_1, g1_1, dx, dt, m, action=error_1)

print "dx=%12g error=%12g ratio=%g" % (dx, e[-1], e[-1]/(dx*dx))

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 262

Verifications

• The output becomes
dx= 0.1 error= 0.000633159 ratio=0.0633159

dx= 0.05 error= 0.00016196 ratio=0.0647839

dx= 0.025 error= 4.09772e-05 ratio=0.0655636

dx= 0.0125 error= 1.03071e-05 ratio=0.0659656

• This confirms that E ∼ ∆x2

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 263

from numpy import linspace, zeros, exp, sin, pi

import pylab

def solve(I, f, g0, g1, T, m, L, n):

dx = L/(n-1.) # n unknowns, n-1 intervals of length dx.

dt = 1.*T/m;

alpha = dt/dx**2;

x = linspace(0, L, n);

u_new=zeros(n)

u=I(x)

im = range(0,n-2);

i = range(1,n-1);

ip = range(2,n);

for l in range(m):

t = (l+1)*dt

inner nodes

u_new[i] = u[i] + alpha*(u[ip]-2*u[i]+u[im]) + dt*f(t,x[i])

boundary conditions

u_new[0] = g0(t)

u_new[n-1] = g1(t)

copy solution

u = u_new.copy()

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 264

The Heat Equation

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 265

The Heat Equation

We study the heat equation:

ut = uxx for x∈ (0,1), t > 0, (149)

u(0, t) = u(1, t) = 0 for t > 0, (150)

u(x,0) = f (x) for x∈ (0,1), (151)

where f is a given initial condition defined on the unit
interval (0,1). We shall in the following study
• physical properties of heat conduction versus the

mathematical model (149)-(151)
• analyze the stability properties of the explicit numerical

method

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 266

Energy arguments

• We define the “energy” of the solution u at a time t by

E1(t) =
∫ 1

0
u2(x, t)dx for t ≥ 0. (152)

• Note that this is not the physical energy
• This “energy” is a mathematical tool, used to study the

behavior of the solution
• We shall see that E1(t) is a non-increasing function of

time

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 267

Energy arguments

• If we multiply the left and right hand sides of the heat
equation (149) by u it follows that

utu= uxxu for x∈ (0,1), t > 0

• By the chain rule for differentiation we observe that

∂
∂t

u2 = 2uut

• Hence
1
2

∂
∂t

u2 = uxxu for x∈ (0,1), t > 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 268

Energy arguments

• By integrating both sides with respect to x, and
applying the rule of integration by parts, we get

1
2

∫ 1

0

∂
∂t

u2(x, t)dx =
∫ 1

0
uxx(x, t)u(x, t)dx (153)

= ux(1, t)u(1, t)−ux(0, t)u(0, t)

−
∫ 1

0
ux(x, t)ux(x, t)dx

= −
∫ 1

0
u2

x(x, t)dx for t > 0,

where the last equality is a consequence of the
boundary condition (150)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 269

Energy arguments

• We assume that u is a smooth solution of the heat
equation, which implies that we can interchange the
order of integration and derivation in (153), that is

∂
∂t

∫ 1

0
u2(x, t)dx=−2

∫ 1

0
u2

x(x, t)dx for t > 0 (154)

• Therefore

E′1(t) =−2
∫ 1

0
u2

x(x, t)dx for t > 0

• This implies that
E′1(t)≤ 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 270

Energy arguments

• Thus E1 is a non-increasing function of time t, i.e.,

E1(t2)≤ E1(t1) for all t2≥ t1≥ 0

• In particular

∫ 1

0
u2(x, t)dx≤

∫ 1

0
u2(x,0)dx =

∫ 1

0
f 2(x)dx

for t > 0(155)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 271

Energy arguments

• This means that the energy, in the sense of E1(t), is a
non-increasing function of time

• The integral of u2
x with respect to x, tells us how fast the

energy decreases

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 272

Maximum principles

A smooth solution of the problem (149)-(151)
must satisfy the bound

m≤ u(x, t)≤M for all x∈ [0,1], t > 0, (156)

where

m= min

(

min
t≥0

g1(t), min
t≥0

g2(t), min
x∈(0,1)

f (x)

)

, (157)

M = max

(

max
t≥0

g1(t), max
t≥0

g2(t), max
x∈(0,1)

f (x)

)

.

(158)

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 273

Stability analysis of the num. sol.

• We shall now study the stability properties of the
explicit finite difference scheme for heat equation
presented earlier

• As above, the discretization parameters are defined by

∆t =
T
m

and ∆x=
1

n−1
,

and functions are only defined in the gridpoints

uℓi = u(xi, tℓ) = u((i−1)∆x, ℓ∆t)

for i = 1, . . . ,n and ℓ= 0, . . . ,m

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 274

Stability analysis of the num. sol.

• The numerical scheme is written

uℓ+1
i = uℓi +

∆t
∆x2

(uℓi−1−2uℓi +uℓi+1)

= αuℓi−1+(1−2α)uℓi +αuℓi+1 (159)

for i = 2, . . . ,n−1 and ℓ= 0, . . . ,m−1, where

α =
∆t

∆x2
(160)

• Boundary conditions are uℓ0 = uℓ1 = 0 for ℓ= 1, . . . ,m

• We shall see that this numerical scheme is only
conditionable stable, and the stability depends on the
parameter α

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 275

Example 29

Consider the following problem

ut = uxx for x∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x,0) = sin(3πx) for x∈ (0,1),

with the analytical solution

u(x, t) = e−9π2t sin(3πx).

In Figures 38-40 we have graphed this function and the
numerical results generated by the scheme (159) for
various values of the discretization parameters in space
and time. Notice how the solution depends on α.

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 276

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Figure 38: The solid line represents the solution of the problem

studied in Example 29. The dotted, dash-dotted and dashed lines

are the numerical results generated in the cases of n= 10and m= 17

(α = 0.4765), n = 20 and m= 82 (α = 0.4402), n = 60 and m= 706

(α = 0.4931), respectively.
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 277

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Figure 39: The dashed line represents the results generated by

the explicit scheme (159) in the case of n= 60 and m= 681, corre-

sponding to α = 0.5112, in Example 29. The solid line is the graph of

the exact solution of the problem studied in this example.Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 278

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 40: A plot of the numbers generated by the explicit

scheme (159), with n = 60 and m= 675, in Example 29. Observe

that α = 0.5157> 0.5 and that, for these discretization parameters,

the method fails to solve the problem under consideration!
Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 279

Analysis

• We have observed that the explicit scheme (159)
works fine, provided that α≤ 1/2

• For small discretization parameters ∆t and ∆x, it seems
to produce accurate approximations of the solution of
the heat equation

• However, for α > 1/2 the scheme tends to “break
down”, i.e., the numbers produced are not useful. Our
goal now is to investigate this property from a
theoretical point of view

• We will derive, provided that α≤ 1/2, a discrete
analogue to the maximum principle

• Note that, for (149)-(151), the maximums principle
implies

|u(x, t)| ≤max
x
| f (x)| for all x∈ (0,1) and t ≥ 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 280

Analysis

• Assume that ∆t and ∆x satisfy

α =
∆t

∆x2
≤ 1

2

• Then
1−2α≥ 0 (161)

• We introduce

ūℓ = max
i
|uℓi | for ℓ= 0, . . . ,m

• Note that
ū0 = max

i
| f (xi)|

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 281

Analysis

•• Recall that uℓ+1
i = αuℓi−1+(1−2α)uℓi +αuℓi+1

• It now follows from the triangle inequality that

|uℓ+1
i | = |αuℓi−1+(1−2α)uℓi +αuℓi+1|

≤ |αuℓi−1|+ |(1−2α)uℓi |+ |αuℓi+1|
= α|uℓi−1|+(1−2α)|uℓi |+α|uℓi+1|
≤ αūℓ+(1−2α)ūℓ+αūℓ

= ūℓ (162)

for i = 2, . . . ,n−1

• Note that
uℓ+1

1 = uℓ+1
n = 0

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 282

Analysis

• Since (162) is valid for i = 2, . . . ,n−1, we get

max
i
|uℓ+1

i | ≤ ūℓ

• or
ūℓ+1≤ ūℓ

• Finally, by a straightforward induction argument we
conclude that

ūℓ+1≤ ū0 = max
i
| f (xi)|

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 283

Analysis

Assume that the discretization parameters ∆t
and ∆x satisfy

α =
∆t

∆x2
≤ 1

2
. (163)

Then the approximations generated by the ex-
plicit scheme (159) satisfy the bound

max
i
|uℓi | ≤max

i
| f (xi)| for ℓ= 0, . . . ,m, (164)

where f is the initial condition in the model prob-
lem (149)-(151).

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 284

Consequences

• For a given n, m must satisfy

m≥ 2T(n−1)2

• Hence, the number of time steps, m, needed increases
rapidly with the number of grid points, n, used in the
space dimension

• If T = 1 and n= 101, then m must satisfy m≥ 20000,
and in the case of n= 1001at least 2·106 time steps
must be taken!

• This is no big problem in 1D, but in 2D and 3D this
problem may become dramatic

Intensive Course:Elements of Scientific ComputingPart I: The Basics – p. 285

	Trapezoid method
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Example 1
	Trapezoid method
	Trapezoid method
	Example 2
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Trapezoid method
	Example 3
	Example 4
	Example 4
	Example 4
	Example 4
	Example 5
	Example 5
	Example 5
	Example 5
	Trapezoid method
	Differential equations
	Cultivation of rabbits
	The simplest model
	The simplest model
	Exponential growth
	Analytical solution
	Analytical solution
	Analytical solution
	Logistic growth
	Analytical solution
	Analytical solution
	Analytical solution
	Numerical solution
	The simplest model
	The simplest model
	Exponential growth
	Exponential growth
	Example 8
	Example 8 - Convergence
	Numerical stability
	Numerical stability
	Numerical stability
	An implicit scheme
	An implicit scheme
	An implicit scheme
	An implicit scheme
	Explicit and implicit schemes
	Logistic equation
	Explicit scheme
	Implicit scheme
	Systems of ordinary differential equations
	Rabbits and foxes
	Fish and Sharks
	Fish and Sharks
	Fish and Sharks
	Fish and Sharks
	Numerical method; Unlimited resources
	Numerical method
	Numerical method
	Numerical methods; limited resources
	Numerical methods
	Phase plane analysis
	Phase plane analysis
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Crank-Nicolson scheme
	Nonlinear algebraic equations
	The bisection method
	The bisection method
	The bisection method
	The bisection method
	Example 11
	Example 11
	Newton's method
	Newton's method
	Newton's method
	Newton's method
	Newton's method
	Newton's method
	Example 12
	Example 12
	An alternative derivation
	An alternative derivation
	An alternative derivation
	The Secant method
	The Secant method
	The Secant method
	Example 13
	Example 14
	Example 14
	A nonlinear system
	A nonlinear system
	Newton's method
	Newton's method
	Newton's method
	Newton's method
	Newton's method
	Newton's method
	A Nonlinear example
	A Nonlinear example
	The Nonlinear System Revisited
	The Nonlinear System Revisited
	The Nonlinear System Revisited
	The Nonlinear System Revisited
	The method of least squares
	The method of least square
	World mean temperature deviations
	Approximating by a constant
	Approximating by a constant
	Approximating by a constant
	Approximating by a constant
	Approximating by a constant
	Approximating by a constant
	Approximating by a linear function
	Approximating by a linear function
	Approximating by a linear function
	Approximating by a linear function
	Approximating by a linear function
	Approximating by a linear function
	Approximating by a linear function
	Approximating by a linear function
	Approx. by a quadratic function
	Approx. by a quadratic function
	Approx. by a quadratic function
	Summary
	Summary
	Summary
	Approximations of Functions
	Approximations by constants
	Approximations by constants
	Note that
	Note that
	Example 15; const. approx.
	Example 16; const. approx.
	Approximations by Linear Functions
	Approximations by Linear Functions
	Example 15; linear approx.
	Example 15; linear approx.
	Example 16; linear approx.
	Approx. by Quadratic Functions
	Approx. by Quadratic Functions
	Example 15; quad. approx.
	Example 16; quad. approx.
	Scientific software
	A typical scientific computing code
	A two-step strategy
	Advantages
	Writing complete algorithms
	Optimization; rule of thumb
	Example 20: Simpson's rule
	Complete algorithm (I)
	Efficiency consideration
	Complete algorithm (II)
	Choosing a programming language
	Static typing vs.~dynamic typing
	Computational efficiency
	Built-in utilities
	User-defined data types
	Different programming languages
	Vectorization
	Guidelines on implementation
	Diffusion processes
	Diffusion processes
	One dimension
	The Basics of the Mathematical Model
	Initial and Boundary conditions
	Diffusion equation
	Initial conditions
	Boundary conditions
	Boundary conditions
	Numerical methods
	Numerical methods
	Discrete functions on a grid
	Discrete functions on a grid
	Finite difference approximation
	Finite difference approximation
	Finite difference approximation
	The Finite Difference Scheme
	Incorporating Boundary Conditions
	Dirichlet Boundary Condition
	Neumann Boundary Conditions
	Neumann Boundary Conditions
	Neumann Boundary Conditions
	Implementation
	Implementation
	Comments
	Verifications
	Verifications
	Verifications
	Verifications
	Verifications
	The Heat Equation
	Energy arguments
	Energy arguments
	Energy arguments
	Energy arguments
	Energy arguments
	Energy arguments
	Maximum principles
	Stability analysis of the num. sol.
	Stability analysis of the num. sol.
	Example 29
	Analysis
	Analysis
	Analysis
	Analysis
	Analysis
	Consequences

