
Scientific computing needs supercomputers,
but also something else!

Xing Cai

NUDT, March 29, 2012

Some aspects of HPC – p. 1

Where am I from?

Simula Research Lab

University of Oslo

Some aspects of HPC – p. 2

More about myself

Research interests:

Methodologies for parallel programming

High-performance scientific computing and applications

Numerical methods for partial differential equations

Objectives for this visit:

Strengthen collaboration with the MASA group at NUDT
learn about cutting-edge computer architectures

Use high-end supercomputers for doing science

Some aspects of HPC – p. 3

Today’s talk

Performance is a very vague concept
Hardware capability of a supercomputer

∦

Achievable performance of a software code implementing a
particular numerical algorithm

Important: Speed of data movement vs. speed of floating-point
operations

We should be able to pinpoint the performance bottleneck

How to choose a best-performing numerical algorithm?
It depends on many things: application, hardware, problem size
We want the fastest computing time, while securing a certain
level of accuracy

Some aspects of HPC – p. 4

Top500

http://www.top500.org

Tianhe-1A: Pride of Chinese supercomputing and NUDT!
No.1 on Top500 list of November 2010
No.2 on Top500 list of June 2011
No.2 on Top500 list of November 2011

Peak floating-point rate: 4.701 Peta Flops/second

Linpack floating-point rate: 2.566 Peta Flops/second

Some aspects of HPC – p. 5

About Linpack

http://www.top500.org/project/linpack

Solving a dense system of linear equations

Double-precision operation count: 2
3
n3 +O(n2)

Compute-bound, not data-movement-bandwidth bound

Some aspects of HPC – p. 6

Remarks so far

Linpack shows idealized performance of a supercomputer

But lots of applications depend more on how fast data is transferred:
main memory ↔ L3 cache ↔ L2 cache ↔ L1 cache ↔ registers

There has been perhaps too much focus on achieving GFLOP/s,
TFLOP/s, PFLOP/s, EFLOP/s . . .

What really counts is to compute sufficiently accurate solutions using
the shortest amount of time

Hardware matters
Software matters
Numerical algorithm also matters!

Some aspects of HPC – p. 7

Balance is important

Machine balance ratio:

data traffic bandwidth [GWords/sec]
peak performance [GFlops/sec]

Code balance ratio:

data traffic [Words]
floating-point operations [Flops]

If the code-balance ratio is higher than machine-balance ratio, the
code will be data-traffic-bandwidth-bound

Otherwise, the code is compute-bound

Some aspects of HPC – p. 8

Performance bottlenecks

For non-compute-bound codes, people tend to put the blame on the
main memory bandwidth

However, the performance bottleneck can be somewhere else along
the data movement path:

main memory ↔ L3 cache ↔ L2 cache ↔ L1 cache ↔ registers
If data reuse is good in the caches, data traffic volume is
decreasing from registers to main memory

For example, the bandwidth between the L1 cache and registers can
be a bottleneck

Some aspects of HPC – p. 9

Can we roughly predict the performance?

Yes, if we know for software,

nFP — # floating-point operations

nLD — # loads from L1 cache to registers

nST — # stores from registers to L1 cache

nM
2way — # reads+writes between memory and last-level cache

and if we also know for hardware,

F — peak floating-point capability

Br
L1 — load bandwidth from L1 cache to registers

Bw
L1 — store bandwidth from registers to L1 cache

BM — 2-way bandwidth of main memory

Some aspects of HPC – p. 10

Simplified prediction models

The case of using a single core:

Time usage = max

(

nFP

F
,
nLD

Br
L1

,
nST

Bw
L1

,
nM
2way

BM

)

.

The case of using p cores:

Time usage = max

(

nFP

pF
,
nLD

pBr
L1

,
nST

pBw
L1

,
nM
2way

B
p
M

)

.

Note: Bp
M does not scale linearly as p ·BM

Some aspects of HPC – p. 11

Simple example 1

The simplest 3D heat equation :

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ f

Fully-explicit numerical scheme (∆x = ∆y = ∆z = h):

uℓ+1
i,j,k − uℓ

i,j,k

∆t

=
uℓ
i−1,j,k + uℓ

i,j−1,k + uℓ
i,j,k−1 − 6uℓ

i,j,k + uℓ
i+1,j,k + uℓ

i,j+1,k + uℓ
i,j,k+1

h2
+ fi,j,k

Some aspects of HPC – p. 12

Simple example 1 (cont’d)

The C code:
t = 0.;
while (t<T) {

#pragma omp for private(i,j) schedule(static)
for (k=1; k<n-1; k++)

for (j=1; j<n-1; j++)
for (i=1; i<n-1; i++)

u_new[k][j][i] = u_old[k][j][i] + rhs[k][j][i]
+ factor*(u_old[k][j][i-1]+u_old[k][j][i+1]

+u_old[k][j-1][i]+u_old[k][j+1][i]
+u_old[k-1][j][i]+u_old[k+1][j][i]
-6*u_old[k][j][i]);

#pragma omp single
{

/* pointer swap */
/* ... */
t += dt;

}
}

Some aspects of HPC – p. 13

Simple example 1 (cont’d)

Performance study on a computer with two quad-core Intel Xeon 2.0 GHz
E5504 CPUs

F = 4 GFLOP/s (for a non-SIMD compiler)

Br
L1 = Bw

L1 = 16 GB/s

B
p
M values are measured by the STREAM benchmark

Per time step and per grid point, nFP = 10, nLD = 11× 8 bytes,
nST = 1× 8 bytes, nM

2way = 3× 8 bytes

cores 1 2 4 6 8

B
p
M 6.22 GB/s 12.19 GB/s 13.89 GB/s 13.24 GB/s 13.03 GB/s

TA 358.32 s 184.84 s 120.72 s 114.61 s 122.14 s
TP 320.20 s 160.10 s 100.59 s 105.53 s 107.23 s

TA: actual time usage, TP : predicted time usage

points: 99× 99× 99, # time steps: 60001

Some aspects of HPC – p. 14

Simple example 2

3D heat equation with variable coefficient :

∂u

∂t
= ∇ · (κ∇u) + f

Fully-explicit numerical scheme (∆x = ∆y = ∆z = h):

uℓ+1

i,j,k
− uℓ

i,j,k

∆t

=
1

2h2
((κi+1,j,k + κi,j,k)(u

ℓ
i+1,j,k − uℓ

i,j,k)− (κi,j,k + κi−1,j,k)(u
ℓ
i,j,k − uℓ

i−1,j,k)

+(κi,j+1,k + κi,j,k)(u
ℓ
i,j+1,k − uℓ

i,j,k)− (κi,j,k + κi,j−1,k)(u
ℓ
i,j,k − uℓ

i,j−1,k)

+(κi,j,k+1 + κi,j,k)(u
ℓ
i,j,k+1 − uℓ

i,j,k)− (κi,j,k + κi,j,k−1)(u
ℓ
i,j,k − uℓ

i,j,k−1))

+fi,j,k

Some aspects of HPC – p. 15

Simple example 2 (cont’d)

Per time step and per grid point, nFP = 26, nLD = 21× 8 bytes,
nST = 1× 8 bytes, nM

2way = 4× 8 bytes

cores 1 2 4 6 8

TA 648.07 332.28 180.82 156.15 169.16
TP 611.30 305.65 152.82 140.71 142.98

TA: actual time usage, TP : predicted time usage

points: 99× 99× 99, # time steps: 60001

Some aspects of HPC – p. 16

Simple example 3

Sparse matrix-vector multiply :
y = Ax

where each row of matrix A has 7 nonzeros, due to finite differencing

Compressed sparse row storage of matrix A

Per matrix row nFP = 14, nLD = 14× 8 + 9× 4 bytes, nST = 1× 8

bytes, nM
2way = 9× 8 + 8× 4 bytes

cores 1 2 4 6 8

TA 0.020586 0.012319 0.012163 0.012976 0.013870
TP 0.016720 0.008532 0.007487 0.007855 0.007982

TA: actual time usage, TP : predicted time usage

rows in A: 106

Some aspects of HPC – p. 17

Remarks

For structured-grid applications, data reuse in cache is considerable,
therefore relieving the pressure on the main memory

For typical scientific codes, the machine balance (even considering
the L1 cache bandwidth) is lower than the code ratio

When a small number of cores are in use per CPU
L1 cache bandwidth may be the performance bottleneck

When all the cores are in use
Main memory is likely the bottleneck, because main memory
bandwidth doesn’t scale

For unstructured-grid applications, the main memory bandwidth is the
most likely bottleneck

Machine balance ratio will possibly continue to decrease in future

Some aspects of HPC – p. 18

Challenge 1: unstructured mesh

Unstructured computational meshes are important in many situations

Increased ratio of code balance (due to complex data layout)
Some aspects of HPC – p. 19

Challenge 2: adaptive mesh refinement

300 400 500 600 700 800
254.6

300

400

500

560.2

254.6

300

400

500

560.2

Can reduce the overall computational complexity

More complex data layout ⇒ even higher code balance ratio

Some aspects of HPC – p. 20

More challenges for floating-point rates

Sophisticated preconditioner (e.g. algebraic/geometric multigrid) for
solving linear systems

Parallel hybrid software code encompassing very different
subdomains

−6000 −4000 −2000 0 1000
−2581

−2000

−1000

0

1000

2000

0

0.678

1.36

2.03

2.71

3.39

4.07

4.75

5.43

6.1

6.78

−2581

−2000

−1000

0

1000

2000

200.4 300 331.8
629.2

700

768

200.4 300 331.8
629.2

700

768

p1

p2 p3

p4

Finite difference legacy code

New finite element code

Some aspects of HPC – p. 21

A real-world case

How to efficiently simulate sedimentary basin formation?

Numerical methods are different in accuracy, stability and speed

The choice of a best method is problem dependent

From http://www.lithoprobe.ca/

Some aspects of HPC – p. 22

Simulation snapshot 1

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

0 4 8 12 16
Lake Okeechobee, Florida; Initial h(x, y)

Some aspects of HPC – p. 23

Simulation snapshot 2

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

0 4 8 12 16
Lake Okeechobee, Florida; Solution of h(x, y) after 1,000 years

Some aspects of HPC – p. 24

Simulation snapshot 3

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

0.0 0.2 0.4 0.6 0.8 1.0
Lake Okeechobee, Florida; Solution of s(x, y) after 1,000 years

Some aspects of HPC – p. 25

The math model

Two coupled nonlinear partial differential equations:

∂h

∂t
=

1

Cs

∇ · (αs∇h) +
1

Cm

∇ · (β(1− s)∇h), (1)

A
∂s

∂t
+ s

∂h

∂t
=

1

Cs

∇ · (αs∇h). (2)

Two lithologies (sand and mud) are considered in sedimentary basin
filling

h(x, y, t) — height of basin surface

s(x, y, t) — fraction of sand

Some aspects of HPC – p. 26

Choices of numerical methods

There are at least five temporal discretization schemes:

Fully-explicit (first-order accuracy)
Update h and s separately, no need to solve linear systems

Semi-implicit 1 (first-order accuracy)
Update h and s separately, solving one linear system for h, and
one for s per time step

Semi-implicit 2 (second-order accuracy)
Update h and s separately, solving a linear system for h twice,
and twice s per time step

Fully-implicit 1 (first-order accuracy)
Backward Euler: Update h and s simultaneously, need Newton
iterations per time steps

Fully-implicit 2 (second-order accuracy)
Crank-Nicolson: Update h and s simultaneously, need Newton
iterations per time steps

Some aspects of HPC – p. 27

Comparison of the five schemes

Scheme Action nFP nLD nST nM
2way

Fully Compute h 57 43 1 5
-explicit Compute s 37 24 1 5

Semi- Set up h system 62 21 8 10
implicit 1 Solve h system 15 52 9 21

Set up s system 35 35 10 10
Solve s system 15 68 14 21

Semi- Set up h system 262 158 24 20
implicit 2 Solve h system 15 52 9 21

Set up s system 117 125 29 20
Solve s system 15 68 14 21

Fully- Set up h-s system 150 150 92 27
implicit 1 Solve h-s system 46 264 52 62

Fully- Set up h-s system 225 223 138 28
implicit 2 Solve h-s system 46 264 52 62

Some aspects of HPC – p. 28

Preliminary measurements on Tianhe

Spatial mesh resolution: 9206× 6108

Fully-explicit using ∆t = 0.005 (due to strict stability limit)
Semi-implicit 1 using ∆t = 10

Semi-implicit 2 using ∆t = 0.25 (due to stability requirement)

Scheme Measurement 240 cores 480 cores 960 cores 1920 cores

Fully- Time 150.76 78.13 36.57 17.92

explicit GFLOP/s 701.20 1353.04 2890.70 5899.16

Semi- Time 131.77 70.70 30.45 18.02

implicit 1 GFLOP/s 30.90 57.59 133.72 225.97

Semi- Time 648.98 356.87 137.54 78.82

implicit 2 GFLOP/s 51.03 92.81 240.80 420.19

Some aspects of HPC – p. 29

Into the era of GPU computing

Example of CPU peak performance versus GPU peak performance:

Xeon 6-core X5670
Peak Double-precision floating-points: 6× 4× 2.93 = 70.32
GFLOP/s
Peak Memory bandwidth 64-bit (to the L3-cache):
3× 8× 1.333 = 32 GB/s

Tesla M2050
512 CUDA cores
Peak Double-precision floating-points: 515 GFLOP/s
Peak memory 384-bit bandwidth: 148 GB/s

Some aspects of HPC – p. 30

Implications of GPU computing

Ratio of memory bandwidth
floating-point rate decreases further

Compute-bound algorithms are favored on GPUs

Simple algorithms are favored on GPUs
Advanced algorithms may not suit on GPUs

GPUs GFLOP/s

16 542.35

32 828.94

64 1591.53

128 1855.36

256 3365.59

Preliminary runs of the fully-explicit scheme on the GPUs of Tianhe

Some aspects of HPC – p. 31

Summary

1. Utilizing the full potential of a supercomputer is challenging
because computations may very well be bound by data-traffic
bandwidth

2. It is possible to (roughly) predict the minimum required computing
time for well-defined computations

even before the software code is written

3. When the goal is to solve a scientific problem fastest possible, with
sufficient accuracy:

choosing a best-performing numerical algorithm depends on
many factors (e.g. ratio of code balance, problem size, hardware)

4. On GPUs, the simplest numerical algorithms with high computational
intensity may beat advanced algorithms with low computational
complexity

Some aspects of HPC – p. 32

Acknowledgments

Thanks to my collaborators:

Wenjie Wei (Simula Research Lab)

Dr. Stuart Clark (Simula Research Lab)

Prof. Zhang Chunyuan (MASA/NUDT)

Prof. Wen Mei (MASA/NUDT)

Prof. Wu Nan (MASA/NUDT)

Su Huayou (MASA/NUDT)

Chai Jun (MASA/NUDT)

Some aspects of HPC – p. 33

	Where am I from?
	More about myself
	Today's talk
	Top500
	About Linpack
	Remarks so far
	Balance is important
	Performance bottlenecks
	Can we roughly predict the performance?
	Simplified prediction models
	Simple example 1
	Simple example 1 (cont'd)
	Simple example 1 (cont'd)
	Simple example 2
	Simple example 2 (cont'd)
	Simple example 3
	Remarks
	Challenge 1: unstructured mesh
	Challenge 2: adaptive mesh refinement
	More challenges for floating-point rates
	A real-world case
	Simulation snapshot 1
	Simulation snapshot 2
	Simulation snapshot 3
	The math model
	Choices of numerical methods
	Comparison of the five schemes
	Preliminary measurements on Tianhe
	Into the era of GPU computing
	Implications of GPU computing
	Summary
	Acknowledgments

