
Some perspectives on high-performance computing
in the Geosciences

Xing Cai

Simula Research Laboratory & Univ. Oslo

Geilo, January 19, 2012

HPC – p. 1

The main question

What’s the achievable performance of a scientific code on modern parallel
hardware (multicore CPUs and GPUs)?

A related question: How to effectively use modern parallel H/W?

HPC – p. 2

Motivation

GFLOPS—giga 109 floating-point operations achieved per
second—the most widely used metric for code performance

Quite often, the achieved GFLOPS rate is far below the theoretical
peak

Is this supposed to be what we should achieve?

This presentation
gives a simple performance analysis/prediction strategy, and
reports its application in the context of basin-filling simulations

HPC – p. 3

Performance prediction on multicore CPUs

When a scientific code is executed on a computer:
Floating-point (FP) operations are carried out on values provided
through a data path consisting of several links
Different amounts of data pass through different links
FPs and data transfers can happen at the same time, thanks to
pipelining and data prefetching

What is the performance limiting factor?
The CPU’s floating-point capability?
Memory bandwidth?
Read/write bandwidth between registers and L1 cache?
Something else?

The answer depends, of course!

We want a simple analysis that can identify the bottleneck, and in
addition, roughly predict the computing time on a given multicore CPU

HPC – p. 4

Nehalem-EP: an example of multicore architecture

HPC – p. 5

Can we predict the computing time?

The answer is yes...

if we know for software,
nFP — # floating-point operations
nLD — # loads from L1 cache to registers
nST — # stores from registers to L1 cache

nM
2way — # reads+ writes between memory and last-level cache

if we know for hardware,
F — peak floating-point capability
Br

L1 — load bandwidth from L1 cache to registers

Bw
L1 — store bandwidth from registers to L1 cache

BM — 2-way bandwidth of main memory

HPC – p. 6

Simplified prediction models

The case of using a single core:

max

(

nFP

F
,
nLD

Br
L1

,
nST

Bw
L1

,
nM
2way

BM

)

.

The case of using p cores:

max

(

nFP

pF
,
nLD

pBr
L1

,
nST

pBw
L1

,
nM
2way

B
p
M

)

.

HPC – p. 7

How to use?

Need to know the computation and memory complexity
The numerical algorithm itself provides approximate counts of
nFP and nLD

Hardware performance counters (e.g. via the PAPI tool) give
precise counts

Estimation needed for nM
2way

Need to know the hardware characteristics
Hardware specifications (FP & L1 cache)
Standard simple benchmark of memory bandwidth

HPC – p. 8

Advantages and weaknesses

Advantages
simple philosophy — a quick characteristic overview
capable of identifying the (switching) performance bottleneck
no need for detailed analysis of cache misses
can even predict the performance before actual code
implementation

easy to find nFP, nLD, nST (and nM
2way), which are independent

of problem size
F , Br

L1, Bw
L1, BM are readily known (through hardware

spec. and STREAM benchmarking)

Weaknesses
Very crude predictions — lower bound of time usage
No consideration of stall of cycles due to unavailable H/W
resource
No consideration of the actual parallelization strategy (MPI,
OpenMP, Pthreads) and communication/synchronization
overhead

HPC – p. 9

An example of solving 3D heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ f

Fully-explicit numerical scheme (∆x = ∆y = ∆z = h):

uℓ+1
i,j,k − uℓ

i,j,k

∆t

=
uℓ
i−1,j,k + uℓ

i,j−1,k + uℓ
i,j,k−1 − 6uℓ

i,j,k + uℓ
i+1,j,k + uℓ

i,j+1,k + uℓ
i,j,k+1

h2
+ fi,j,k

HPC – p. 10

The C code

t = 0.;
while (t<T) {

#pragma omp for private(i,j) schedule(static)
for (k=1; k<n-1; k++)

for (j=1; j<n-1; j++)
for (i=1; i<n-1; i++)

u_new[k][j][i] = u_old[k][j][i] + rhs[k][j][i]
+ factor*(u_old[k][j][i-1]+u_old[k][j][i+1]

+u_old[k][j-1][i]+u_old[k][j+1][i]
+u_old[k-1][j][i]+u_old[k+1][j][i]
-6*u_old[k][j][i]);

#pragma omp single
{

/* pointer swap */
/* ... */
t += dt;

}
}

HPC – p. 11

Predicting performance

Testbed: a compute node consisting of two quad-core Intel Xeon 2GHz
E5504 CPUs

F = 4 GFLOPS (for a non-SIMD compiler), Br
L1 = Bw

L1 = 16 GB/s

Per time step, per grid point: nFP = 10, nLD = 11× 8 bytes, nST = 0,
nM
2way = 3× 8 bytes

B
p
M values are measured by STREAM

cores 1 2 4 6 8

B
p
M 6.22 GB/s 12.19 GB/s 13.89 GB/s 13.24 GB/s 13.03 GB/s

Mesh size: 99× 99× 99, # time steps: 60001

TA 358.32 s 184.84 s 120.72 s 114.61 s 122.14 s
TP 320.20 s 160.10 s 100.59 s 105.53 s 107.23 s
TA: actual time usage, TP : predicted time usage

HPC – p. 12

Observations

For the fully-explicit finite difference 3D heat solver:

Floating-point operations are never the performance bottleneck

Data transfer is indeed the bottleneck

However, the main memory is not always the bottleneck

For a small number of cores in use, the main memory bandwidth is
sufficient, in comparison with the aggregate bandwidth between L1
and registers

For a large number of cores in use, the main memory bandwidth
becomes the bottleneck

HPC – p. 13

Math model of sediment transport

∂h

∂t
=

1

Cs

∇ · (αs∇h) +
1

Cm

∇ · (β(1− s)∇h), (1)

A
∂s

∂t
+ s

∂h

∂t
=

1

Cs

∇ · (αs∇h). (2)

Two lithologies (sand and mud) considered in sedimentary basin
filling

h(x, y, t) — height

s(x, y, t) — fraction of sand

HPC – p. 14

Example of Lake Okeechobee, Florida

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

0 4 8 12 16

Initial h(x, y)

HPC – p. 15

Example of Lake Okeechobee, Florida (cont’d)

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

0 4 8 12 16

Solution of h(x, y) after 1,000 years

HPC – p. 16

Example of Lake Okeechobee, Florida (cont’d)

−81˚00'

−81˚00'

−80˚45'

−80˚45'

−80˚30'

−80˚30'

26˚40' 26˚40'

26˚50' 26˚50'

27˚00' 27˚00'

27˚10' 27˚10'

0.0 0.2 0.4 0.6 0.8 1.0

Solution of s(x, y) after 1,000 years

HPC – p. 17

A fully-explicit scheme

hℓ+1
− hℓ

∆t
=

1

Cs

∇ · (αsℓ∇hℓ) +
1

Cm

∇ · (β(1− sℓ)∇hℓ),

A
sℓ+1

− sℓ

∆t
+ sℓ+1h

ℓ+1
− hℓ

∆t
=

1

Cs

∇ · (αsℓ∇hℓ+1).

Straightforward calculations

No need to solve linear systems

Inferior numerical stability

HPC – p. 18

Semi-implicit scheme 1

hℓ+1
− hℓ

∆t
=

1

Cs

∇ · (αsℓ∇hℓ+1) +
1

Cm

∇ · (β(1− sℓ)∇hℓ+1),

A
sℓ+1

− sℓ

∆t
+ sℓ+1h

ℓ+1
− hℓ

∆t
=

1

Cs

∇ · (αsℓ+1
∇hℓ+1).

hℓ+1 and sℓ+1 are updated separately

One linear system wrt hℓ+1

One linear system wrt sℓ+1

HPC – p. 19

Semi-implicit scheme 2

hℓ+1,k
− hℓ

∆t
=

1

2

(

1

Cs

∇ · (αsℓ+1,k−1
∇hℓ+1,k)

+
1

Cm

∇ · (β(1− sℓ+1,k−1)∇hℓ+1,k)

)

+
1

2

(

1

Cs

∇ · (αsℓ∇hℓ) +
1

Cm

∇ · (β(1− sℓ)∇hℓ)

)

A
sℓ+1,k

− sℓ

∆t
+

sℓ+1,k + sℓ

2

hℓ+1,k
− hℓ

∆t
=

1

2

(

1

Cs

∇ · (αsℓ+1,k
∇hℓ+1,k) +

1

Cs

∇ · (αsℓ∇hℓ)

)

Crank-Nicolson strategy is used

Inner iterations, k = 1, 2, . . ., are used within each time step

Numerical experiments show that k = 2 can give second-order
accuracy in time

HPC – p. 20

Fully-implicit scheme 1

hℓ+1 and sℓ+1 are updated simultaneously

Backward Euler temporal discretization is used

A nonlinear system arises per time step

Fh

(

h
ℓ+1, sℓ+1,hℓ, sℓ

)

= 0,

Fs

(

h
ℓ+1, sℓ+1,hℓ, sℓ

)

= 0.

Newton iterations are needed

HPC – p. 21

Fully-implicit scheme 2

Same as fully-implicit scheme 1, except that Crank-Nicolson temporal
discretization is used

Second-order accuracy in time

HPC – p. 22

Comparison of the five schemes

Scheme Action nFP nLD nST nM
2way

Fully Compute hi,j 57 43 1 5
-explicit Compute si,j 37 24 1 5

Semi- Set up h system 62 21 8 10
implicit 1 Solve h system 15 52 9 21

Set up s system 35 35 10 10
Solve s system 15 68 14 21

Semi- Set up h system 262 158 24 20
implicit 2 Solve h system 15 52 9 21

Set up s system 117 125 29 20
Solve s system 15 68 14 21

Fully- Set up h-s system 150 150 92 27
implicit 1 Solve h-s system 46 264 52 62

Fully- Set up h-s system 225 223 138 28
implicit 2 Solve h-s system 46 264 52 62

HPC – p. 23

Comparison of the five schemes (cont’d)

Scheme # time # Newton # CG # GMRES
steps iterations iterations iterations

Fully-explicit 100 N/A N/A N/A
Semi-implicit 1 100 N/A 694 473
Semi-implicit 2 100 N/A 1215 897
Fully-implicit 1 100 300 N/A 5173
Fully-implicit 2 100 300 N/A 4438

HPC – p. 24

Predicting computing time

Mesh size: 1700× 1400, # time steps: 100

Scheme Time 1 core 2 cores 4 cores 8 cores

Fully- TA 13.19 6.91 3.65 1.48
explicit TP 7.94 3.97 1.98 1.46

Semi- TA 141.48 76.78 58.95 53.08
implicit 1 TP 90.74 45.82 36.34 38.74

Semi- TA 281.71 151.18 106.71 99.52
implicit 2 TP 184.37 92.97 69.22 70.66

Fully- TA 2411.12 1233.59 841.94 759.87
implicit 1 TP 1678.70 839.35 453.09 480.53

Fully- TA 1988.75 1034.44 721.55 620.93
implicit 2 TP 1473.85 736.93 397.13 414.38

HPC – p. 25

What about GPUs?

More complex than predicting performance on CPUs

Cost of data transfer between host (CPU) and device (GPU)

Cost of data transfer between device global memory and local
memory

can overlap with floating-point operations

Device occupancy may not be 100%

For a cluster of GPUs, cost of host-host communication must also be
considered

HPC – p. 26

Insufficient balance of FPs via bandwidth?

Multicore CPU example: Intel Xeon quadcore E5504 2.0GHz
peak F=64.0 single-precision GFLOPS
peak BM=19.2 GB/s

GPU example: NVIDIA GeForce GTX 590
peak F=2488 single-precision GFLOPS
peak BM=328 GB/s

Memory-bandwidth bound code will suffer more on a GPU!

HPC – p. 27

Test runs on Tianhe-1A

Tianhe-1A — No.1 supercomputer on TOP500 in 2010, No.2 in 2011
14,336 Intel X5670 6-core 2.93 GHz CPUs
7,168 NVIDIA Tesla M2050 GPUs
Peak: 4.70 peta FLOPS
Linpack: 2.56 peta FLOPS

Collaboration is being established between Simula and NUDT
(developer of Tianhe-1A)

Test runs of basin-filling simulations
Successful collaboration depends on dedicated effort from both
sides

HPC – p. 28

Using CPUs on Tianhe-1A

Preliminary runs of the fully-explicit scheme on the CPUs of Tianhe-1A,
using a 8000× 8000 mesh

CPU cores GFLOPS

96 219.18
192 414.96
384 753.88
768 2272.33

1536 1961.21
3072 5254.15

HPC – p. 29

Using GPUs on Tianhe-1A

Preliminary runs of the fully-explicit scheme on the GPUs of Tianhe-1A,
using a 8000× 8000 mesh

GPUs GFLOPS

4 174.09
8 280.47

16 542.35
32 828.94
64 1591.53

128 1855.36
256 3365.59

HPC – p. 30

Mint: an automated translator from C to CUDA

To ease the pain of GPU programming...

Input: C code with Mint pragmas
#pragma mint for nest(all) tile(16,16,1)

for (int z=1; z<= k; z++)
for (int y=1; y<= m; y++)
for (int x=1; x<= n; x++)
Unew[z][y][x] = c0 * U[z][y][x] +

c1 * (U[z][y][x-1] + U[z][y][x+1] +
U[z][y-1][x] + U[z][y+1][x] +
U[z-1][y][x] + U[z+1][y][x]);

Output: (auto-optimized) CUDA code

Developed in collaboration between UCSD and Simula

Mint can do extensive optimizations for stencil computations
Achieved about 80% performance of hand-coded and
hand-optimized CUDA

HPC – p. 31

Current and future activities of Mint

Translation of real-world codes
AWP-ODC: 3D anelastic wave propagation in connection with
earthquake simulations
3D PMM: simulation of geological folding
3D Harris interest point detection (computer visualization)
Basin-filling simulations

Downloadable from https://sites.google.com/site/mintmodel/
Future enrichment of Mint

Extension to multi-GPUs
Automated optimizations for non-stencil computations

HPC – p. 32

	The main question
	Motivation
	Performance prediction on multicore CPUs
	Nehalem-EP: an example of multicore architecture
	Can we predict the computing time?
	Simplified prediction models
	How to use?
	Advantages and weaknesses
	An example of solving 3D heat equation
	The C code
	Predicting performance
	Observations
	Math model of sediment transport
	Example of Lake Okeechobee, Florida
	Example of Lake Okeechobee, Florida (cont'd)
	Example of Lake Okeechobee, Florida (cont'd)
	A fully-explicit scheme
	Semi-implicit scheme 1
	Semi-implicit scheme 2
	Fully-implicit scheme 1
	Fully-implicit scheme 2
	Comparison of the five schemes
	Comparison of the five schemes (cont'd)
	Predicting computing time
	What about GPUs?
	Insufficient balance of FPs via bandwidth?
	Test runs on Tianhe-1A
	Using CPUs on Tianhe-1A
	Using GPUs on Tianhe-1A
	Mint: an automated translator from C to CUDA
	Current and future activities of Mint

