Some perspectives on high-performance computing in the Geosciences

Xing Cai

Simula Research Laboratory & Univ. Oslo

Geilo, January 19, 2012

The main question

What's the achievable performance of a scientific code on modern parallel hardware (multicore CPUs and GPUs)?

A related question: How to effectively use modern parallel H/W?

Motivation

- GFLOPS—giga 10⁹ floating-point operations achieved per second—the most widely used metric for code performance
- Quite often, the achieved GFLOPS rate is far below the theoretical peak
 - Is this supposed to be what we should achieve?
- This presentation
 - gives a simple performance analysis/prediction strategy, and
 - reports its application in the context of basin-filling simulations

Performance prediction on multicore CPUs

- When a scientific code is executed on a computer:
 - Floating-point (FP) operations are carried out on values provided through a data path consisting of several links
 - Different amounts of data pass through different links
 - FPs and data transfers can happen at the same time, thanks to pipelining and data prefetching
- What is the performance limiting factor?
 - The CPU's floating-point capability?
 - Memory bandwidth?
 - Read/write bandwidth between registers and L1 cache?
 - Something else?
- The answer depends, of course!
- We want a simple analysis that can identify the bottleneck, and in addition, roughly predict the computing time on a given multicore CPU

Nehalem-EP: an example of multicore architecture

Configuration of a Nehalem-EP Node

Can we predict the computing time?

The answer is yes...

- if we know for software,
 - $n_{\rm FP}$ # floating-point operations
 - $n_{\rm LD}$ # loads from L1 cache to registers
 - $n_{\rm ST}$ # stores from registers to L1 cache
 - $n_{2\mathrm{way}}^M$ # reads+ writes between memory and last-level cache
- if we know for hardware,
 - F peak floating-point capability
 - B_{L1}^r load bandwidth from L1 cache to registers
 - B_{L1}^w store bandwidth from registers to L1 cache
 - B_M 2-way bandwidth of main memory

Simplified prediction models

The case of using a single core:

$$\max\left(\frac{n_{\mathrm{FP}}}{F}, \frac{n_{\mathrm{LD}}}{B_{L1}^r}, \frac{n_{\mathrm{ST}}}{B_{L1}^w}, \frac{n_{\mathrm{2way}}^M}{B_M}\right).$$

The case of using p cores:

$$\max\left(\frac{n_{\mathrm{FP}}}{pF}, \frac{n_{\mathrm{LD}}}{pB_{L1}^r}, \frac{n_{\mathrm{ST}}}{pB_{L1}^w}, \frac{n_{\mathrm{2way}}^M}{B_M^p}\right).$$

How to use?

- Need to know the computation and memory complexity
 - The numerical algorithm itself provides approximate counts of $n_{\rm FP}$ and $n_{\rm LD}$
 - Hardware performance counters (e.g. via the PAPI tool) give precise counts
 - Estimation needed for $n_{2\text{way}}^M$
- Need to know the hardware characteristics
 - Hardware specifications (FP & L1 cache)
 - Standard simple benchmark of memory bandwidth

Advantages and weaknesses

Advantages

- simple philosophy a quick characteristic overview
- capable of identifying the (switching) performance bottleneck
- no need for detailed analysis of cache misses
- can even predict the performance before actual code implementation
 - easy to find $n_{\rm FP}$, $n_{\rm LD}$, $n_{\rm ST}$ (and $n_{\rm 2way}^M$), which are independent of problem size
 - $F, B_{L1}^r, B_{L1}^w, B_M$ are readily known (through hardware spec. and STREAM benchmarking)

Weaknesses

- Very crude predictions lower bound of time usage
- No consideration of stall of cycles due to unavailable H/W resource
- No consideration of the actual parallelization strategy (MPI, OpenMP, Pthreads) and communication/synchronization overhead

An example of solving 3D heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + f$$

Fully-explicit numerical scheme ($\Delta x = \Delta y = \Delta z = h$):

$$\begin{split} \frac{u_{i,j,k}^{\ell+1} - u_{i,j,k}^{\ell}}{\Delta t} \\ &= \frac{u_{i-1,j,k}^{\ell} + u_{i,j-1,k}^{\ell} + u_{i,j,k-1}^{\ell} - 6u_{i,j,k}^{\ell} + u_{i+1,j,k}^{\ell} + u_{i,j+1,k}^{\ell} + u_{i,j,k+1}^{\ell}}{h^{2}} + f_{i,j,k} \end{split}$$

The C code

```
t = 0.;
  while (t < T) {
#pragma omp for private(i,j) schedule(static)
     for (k=1; k< n-1; k++)
       for (j=1; j< n-1; j++)
         for (i=1; i<n-1; i++)
           u_new[k][j][i] = u_old[k][j][i] + rhs[k][j][i]
             + factor*(u_old[k][j][i-1]+u_old[k][j][i+1]
                        +u old[k][j-1][i]+u old[k][j+1][i]
                        +u_old[k-1][j][i]+u_old[k+1][j][i]
                        -6*u_old[k][j][i]);
#pragma omp single
       /* pointer swap */
       /* ... */
       t += dt;
```

Predicting performance

Testbed: a compute node consisting of two quad-core Intel Xeon 2GHz E5504 CPUs

- ▶ F = 4 GFLOPS (for a non-SIMD compiler), $B_{L1}^r = B_{L1}^w = 16$ GB/s
- Per time step, per grid point: $n_{\rm FP}=10$, $n_{\rm LD}=11\times 8$ bytes, $n_{\rm ST}=0$, $n_{2way}^M=3\times 8$ bytes
- $m{\mathcal{P}}_{M}^{p}$ values are measured by STREAM

# cores	1	2	4	6	8
B_M^p	6.22 GB/s	12.19 GB/s	13.89 GB/s	13.24 GB/s	13.03 GB/s
Mesh size: $99 \times 99 \times 99$, # time steps: 60001					
$\overline{T_A}$	358.32 s	184.84 s	120.72 s	114.61 s	122.14 s
T_P	320.20 s	160.10 s	100.59 s	105.53 s	107.23 s

 T_A : actual time usage, T_P : predicted time usage

Observations

For the fully-explicit finite difference 3D heat solver:

- Floating-point operations are never the performance bottleneck
- Data transfer is indeed the bottleneck
- However, the main memory is not always the bottleneck
- For a small number of cores in use, the main memory bandwidth is sufficient, in comparison with the aggregate bandwidth between L1 and registers
- For a large number of cores in use, the main memory bandwidth becomes the bottleneck

Math model of sediment transport

$$\frac{\partial h}{\partial t} = \frac{1}{C_s} \nabla \cdot (\alpha s \nabla h) + \frac{1}{C_m} \nabla \cdot (\beta (1 - s) \nabla h), \tag{1}$$

$$A\frac{\partial s}{\partial t} + s\frac{\partial h}{\partial t} = \frac{1}{C_s}\nabla \cdot (\alpha s \nabla h). \tag{2}$$

- Two lithologies (sand and mud) considered in sedimentary basin filling

Example of Lake Okeechobee, Florida

Example of Lake Okeechobee, Florida (cont'd)

Example of Lake Okeechobee, Florida (cont'd)

A fully-explicit scheme

$$\frac{h^{\ell+1} - h^{\ell}}{\Delta t} = \frac{1}{C_s} \nabla \cdot (\alpha s^{\ell} \nabla h^{\ell}) + \frac{1}{C_m} \nabla \cdot (\beta (1 - s^{\ell}) \nabla h^{\ell}),$$
$$A \frac{s^{\ell+1} - s^{\ell}}{\Delta t} + s^{\ell+1} \frac{h^{\ell+1} - h^{\ell}}{\Delta t} = \frac{1}{C_s} \nabla \cdot (\alpha s^{\ell} \nabla h^{\ell+1}).$$

- Straightforward calculations
- No need to solve linear systems
- Inferior numerical stability

Semi-implicit scheme 1

$$\frac{h^{\ell+1} - h^{\ell}}{\Delta t} = \frac{1}{C_s} \nabla \cdot (\alpha s^{\ell} \nabla h^{\ell+1}) + \frac{1}{C_m} \nabla \cdot (\beta (1 - s^{\ell}) \nabla h^{\ell+1}),$$
$$A \frac{s^{\ell+1} - s^{\ell}}{\Delta t} + s^{\ell+1} \frac{h^{\ell+1} - h^{\ell}}{\Delta t} = \frac{1}{C_s} \nabla \cdot (\alpha s^{\ell+1} \nabla h^{\ell+1}).$$

- $h^{\ell+1}$ and $s^{\ell+1}$ are updated separately
- One linear system wrt $h^{\ell+1}$
- One linear system wrt $s^{\ell+1}$

Semi-implicit scheme 2

$$\frac{h^{\ell+1,k} - h^{\ell}}{\Delta t} = \frac{1}{2} \left(\frac{1}{C_s} \nabla \cdot (\alpha s^{\ell+1,k-1} \nabla h^{\ell+1,k}) + \frac{1}{C_m} \nabla \cdot (\beta (1 - s^{\ell+1,k-1}) \nabla h^{\ell+1,k}) \right)$$

$$+ \frac{1}{2} \left(\frac{1}{C_s} \nabla \cdot (\alpha s^{\ell} \nabla h^{\ell}) + \frac{1}{C_m} \nabla \cdot (\beta (1 - s^{\ell}) \nabla h^{\ell}) \right)$$

$$A \frac{s^{\ell+1,k} - s^{\ell}}{\Delta t} + \frac{s^{\ell+1,k} + s^{\ell}}{2} \frac{h^{\ell+1,k} - h^{\ell}}{\Delta t} =$$

$$\frac{1}{2} \left(\frac{1}{C_s} \nabla \cdot (\alpha s^{\ell+1,k} \nabla h^{\ell+1,k}) + \frac{1}{C_s} \nabla \cdot (\alpha s^{\ell} \nabla h^{\ell}) \right)$$

- Crank-Nicolson strategy is used
- Inner iterations, k = 1, 2, ..., are used within each time step
- Numerical experiments show that k=2 can give second-order accuracy in time

Fully-implicit scheme 1

- $h^{\ell+1}$ and $s^{\ell+1}$ are updated simultaneously
- Backward Euler temporal discretization is used
- A nonlinear system arises per time step

$$egin{array}{lll} \mathbf{F}_h\left(\mathbf{h}^{\ell+1},\mathbf{s}^{\ell+1},\mathbf{h}^{\ell},\mathbf{s}^{\ell}
ight) &=& \mathbf{0}, \ \mathbf{F}_s\left(\mathbf{h}^{\ell+1},\mathbf{s}^{\ell+1},\mathbf{h}^{\ell},\mathbf{s}^{\ell}
ight) &=& \mathbf{0}. \end{array}$$

Newton iterations are needed

Fully-implicit scheme 2

- Same as fully-implicit scheme 1, except that Crank-Nicolson temporal discretization is used
- Second-order accuracy in time

Comparison of the five schemes

Scheme	Action	$n_{ m FP}$	$n_{ m LD}$	$n_{ m ST}$	$n_{2\mathrm{way}}^{M}$
Fully	Compute $h_{i,j}$	57	43	1	5
-explicit	Compute $s_{i,j}$	37	24	1	5
Semi-	Set up h system	62	21	8	10
implicit 1	Solve h system	15	52	9	21
	Set up s system	35	35	10	10
	Solve s system	15	68	14	21
Semi-	Set up h system	262	158	24	20
implicit 2	Solve h system	15	52	9	21
	Set up s system	117	125	29	20
	Solve s system	15	68	14	21
Fully-	Set up h - s system	150	150	92	27
implicit 1	Solve $h ext{-}s$ system	46	264	52	62
Fully-	Set up h - s system	225	223	138	28
implicit 2	Solve h - s system	46	264	52	62

Comparison of the five schemes (cont'd)

Scheme	# time	# Newton	# CG	# GMRES
	steps	iterations	iterations	iterations
Fully-explicit	100	N/A	N/A	N/A
Semi-implicit 1	100	N/A	694	473
Semi-implicit 2	100	N/A	1215	897
Fully-implicit 1	100	300	N/A	5173
Fully-implicit 2	100	300	N/A	4438

Predicting computing time

Mesh size: 1700×1400 , # time steps: 100

Scheme Time		1 core	2 cores	4 cores	8 cores
Fully-	T_A	13.19	6.91	3.65	1.48
explicit	T_P	7.94	3.97	1.98	1.46
Semi-	T_A	141.48	76.78	58.95	53.08
implicit 1	T_P	90.74	45.82	36.34	38.74
Semi-	T_A	281.71	151.18	106.71	99.52
implicit 2	T_P	184.37	92.97	69.22	70.66
Fully-	T_A	2411.12	1233.59	841.94	759.87
implicit 1	T_P	1678.70	839.35	453.09	480.53
Fully-	T_A	1988.75	1034.44	721.55	620.93
implicit 2	T_P	1473.85	736.93	397.13	414.38

What about GPUs?

- More complex than predicting performance on CPUs
- Cost of data transfer between host (CPU) and device (GPU)
- Cost of data transfer between device global memory and local memory
 - can overlap with floating-point operations
- Device occupancy may not be 100%
- For a cluster of GPUs, cost of host-host communication must also be considered

Insufficient balance of FPs via bandwidth?

- Multicore CPU example: Intel Xeon quadcore E5504 2.0GHz
 - peak F=64.0 single-precision GFLOPS
 - peak B_M =19.2 GB/s
- GPU example: NVIDIA GeForce GTX 590
 - peak F=2488 single-precision GFLOPS
 - peak B_M =328 GB/s
- Memory-bandwidth bound code will suffer more on a GPU!

Test runs on Tianhe-1A

- Tianhe-1A No.1 supercomputer on TOP500 in 2010, No.2 in 2011
 - 14,336 Intel X5670 6-core 2.93 GHz CPUs
 - 7,168 NVIDIA Tesla M2050 GPUs
 - Peak: 4.70 peta FLOPS
 - Linpack: 2.56 peta FLOPS
- Collaboration is being established between Simula and NUDT (developer of Tianhe-1A)
 - Test runs of basin-filling simulations
 - Successful collaboration depends on dedicated effort from both sides

Using CPUs on Tianhe-1A

Preliminary runs of the fully-explicit scheme on the CPUs of Tianhe-1A, using a 8000×8000 mesh

# CPU cores	GFLOPS
96	219.18
192	414.96
384	753.88
768	2272.33
1536	1961.21
3072	5254.15

Using GPUs on Tianhe-1A

Preliminary runs of the fully-explicit scheme on the GPUs of Tianhe-1A, using a 8000×8000 mesh

GFLOPS
174.09
280.47
542.35
828.94
1591.53
1855.36
3365.59

Mint: an automated translator from C to CUDA

To ease the pain of GPU programming...

Input: C code with Mint pragmas

- Output: (auto-optimized) CUDA code
- Developed in collaboration between UCSD and Simula
- Mint can do extensive optimizations for stencil computations
 - Achieved about 80% performance of hand-coded and hand-optimized CUDA

Current and future activities of Mint

- Translation of real-world codes
 - AWP-ODC: 3D anelastic wave propagation in connection with earthquake simulations
 - 3D PMM: simulation of geological folding
 - 3D Harris interest point detection (computer visualization)
 - Basin-filling simulations
- Downloadable from https://sites.google.com/site/mintmodel/
- Future enrichment of Mint
 - Extension to multi-GPUs
 - Automated optimizations for non-stencil computations