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ABSTRACT

Devices capable of connecting to multiple, overlapping net-
works simultaneously are becoming increasingly common.
For example, most laptops are equipped with LAN- and
WLAN-interfaces, and smart phones can typically connect
to both WLANs and 3G mobile networks. At the same time,
streaming high-quality video is becoming increasingly popu-
lar. However, due to bandwidth limitations or the unreliable
and unpredictable nature of some types of networks, stream-
ing video can be subject to frequent periods of rebuffering
and characterised by a low picture quality.

In this paper, we present a client-side request scheduler
that distributes requests for the video over multiple hetero-
geneous interfaces simultaneously. Each video is divided into
independent segments with constant duration, enabling seg-
ments to be requested over separate links, utilizing all the
available bandwidth. To increase performance even further,
the segments are divided into smaller subsegments, and the
sizes are dynamically calculated on the fly, based on the
throughput of the different links. This is an improvement
over our earlier subsegment approach, which divided seg-
ments into fixed size subsegments.

Both subsegment approaches were evaluated with
on-demand streaming and quasi-live streaming. The new
subsegment approach reduces the number of playback in-
terruptions and improves video quality significantly for all
cases where the earlier approach struggled. Otherwise, they
show similar performance.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems - Client/Server

General Terms

Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’11, February 23–25, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0517-4/11/02 ...$10.00.

1. INTRODUCTION
Streaming high-quality video is rapidly increasing in pop-

ularity. Video aggregation sites, like YouTube and Vimeo,
serve millions of HD-videos every day, various events are
broadcasted live over the Internet and large investments are
made in video-on-demand services. One example is Hulu 1,
which is backed by over 225 content companies and allows
users to legally stream popular TV-shows like Lost, Glee,
and America’s Got Talent.

However, high-quality video has a high bandwidth require-
ment. For example, the bitrate of H.264-compressed 1080p
video is usually around 6-8 Mbit/s. This might not be a
problem in areas with a highly developed broadband infras-
tructure, but a single, average home connection to the In-
ternet might not be able to support this quality. For exam-
ple, the average broadband connection in the US is about
4 Mbit/s [2]. Due to bandwidth limitations or the unreli-
able and unpredictable nature of some types of networks,
for example WLAN and HSDPA, streaming video can be
subject to frequent periods of rebuffering, characterised by
a low picture quality and playback interruptions.

Today, devices capable of connecting to multiple, over-
lapping networks simultaneously are common. For exam-
ple, most laptops are equipped with LAN- and WLAN-
interfaces, and smart phones can often connect to both
WLANs and HSDPA-networks. One way to alleviate the
bandwidth problem, is to increase the available bandwidth
by aggregating multiple physical links into one logical link.
By dividing the video into segments, parts can be
requested/sent over independent links simultaneously, achiev-
ing bandwidth aggregation. An example of a popular, com-
mercial streaming system which can be extended to support
bandwidth aggregation, is Microsoft’s HTTP-based Smooth-
Streaming [15]. Videos are encoded at different fixed quality
levels and divided into independent segments. The quality
level is chosen once for every segment by the client, using
the previously observed bandwidth to make the decision.

We have previously developed and presented a client-side
request scheduler that retrieves video segments in several
encodings over multiple heterogeneous network interfaces si-
multaneously [5]. To improve performance even further, the
segments are divided into smaller logical subsegments, and
the request scheduler performed well in our experiments. It
reduced the number of playback interruptions and increased
the average video quality significantly. However, this sub-
segment approach has a weakness - segments are divided
into fixed-sized subsegments which, in combination with lim-

1http://www.hulu.com/about



ited receive buffers, have a significant effect on multilink-
performance. Unless the buffer is large enough to compen-
sate for the link heterogeneity, this static approach is unable
to reach maximum performance. Increasing the size of the
receive buffer alleviates the problem. However, it might not
be acceptable, desirable or even possible with a larger buffer,
as it adds delay and requires more memory.

In this paper, we present an improved subsegment ap-
proach. Subsegment sizes are dynamic and calculated on
the fly, based on the links’ performance. By doing this,
the request scheduler avoids idle periods by allocating the
ideal amount of data (at that time) to each link. The re-
quest scheduler and both subsegment approaches were im-
plemented as extensions to the DAVVI [7] streaming plat-
form. The approaches were evaluated with on-demand
streaming and live streaming with and without buffering,
in a controlled network environment and with real world
wireless links. In the context of this paper, live is liveness,
where we have defined liveness to be how much the stream
lags behind the no-delay broadcast. The dynamic subseg-
ment approach significantly reduces the number of playback
interruptions, and improves the video quality when multiple
links are used. When the buffer is large enough to com-
pensate for the link heterogeneity, both the old and new
subsegment approach show similar performance.

The rest of the paper is organized as follows. Section 2
contains a presentation of related work, while section 3 de-
scribes DAVVI and our modifications. Our testbed setup is
introduced in section 4, and the results from our experiments
are discussed in section 5. Finally, we give the conclusion
and prospects for future work in section 6.

2. RELATEDWORK
HTTP is currently one of the, if not the, most common

protocol used to stream video through the Internet, and
multi-quality encoding and file segmentation is a popular
way to allow quality adaptation and increase performance.
By picking the quality most suited to the current link per-
formance, a smoother playback can be achieved. Also, file
segmentation allows content providers to build more scalable
services that offer a better user experience due to increased
capacity. Commercial examples of HTTP-based streaming
solutions built upon segmentation of the original content,
include Move Networks [10], Apple’s QuickTime Streaming
Server [1] and Microsoft’s SmoothStreaming [15].

Picking the most appropriate server is a non-trivial prob-
lem that has been studied extensively. Parallel access schemes,
like those presented in [12] and [14], try to reduce the load
on congested servers by automatically switching to other
servers for further segment requests. These parallel access
schemes assume that excessive server load or network con-
gestion create the throughput bottleneck. We assume that
the bottleneck lies somewhere in the access network. How-
ever, the scheduling problem is similar - either the client or
server has more available bandwidth than the other party
can utilize.

Parallel access schemes are not suitable for achieving live
or quasi-live streaming (sometimes referred to as “progres-
sive download”), as they have no notion of deadlines. Also,
the additional complexity introduced by automatically adapt-
ing the video quality is not solved by these parallel access
schemes. Still, with some modifications, the techniques de-
veloped within the field of parallel access can be applied to

multilink streaming. Our earlier subsegment approach was
inspired by the work done in [9], where the authors divide
a complete file into smaller, fixed-size subsegments. The
new, dynamic subsegment approach uses some of the ideas
found in [6], most notably using the current throughput to
calculate the size of the subsegments.

Although our solution can be extended to support mul-
tiple servers, our current research focuses on client-based
performance improvements of using multiple network inter-
faces simultaneously. Wang et al. pursued a similar goal
in [13], where the server streams video over multiple TCP
connections to a client. However, such push-based solutions
have limited knowledge about the client-side connectivity,
and introduce a significant delay before detecting if a client’s
interface has gone down or a device has lost the connection
with its current network. Also, push-based solutions, for
example [3], cannot easily be extended to support multiple
servers. Since we assume that the bottleneck is in the access
network, we favour a pull-based scheme, allowing the client
to adjust the quality and subsegment-request schedule.

3. SYSTEM COMPONENTS
Streaming high-quality video is bandwidth intensive, as

discussed earlier. In many cases, for example with wireless
networks, a single link is often insufficient. To show how
multiple independent links can be used to achieve a higher
video quality, we extended the DAVVI streaming system [7]
with support for more than a single network interface. This
section describes DAVVI in more detail, as well as the im-
provements we made to the data delivery subsystem.

3.1 Video streaming
DAVVI is an HTTP-based streaming system where each

video is divided into fixed length, independent (closed-GOP)
segments with constant duration (two seconds). A video is
encoded in multiple qualities (bitrates), and the constant
duration of the segments limits the liveness of a stream - at
least one segment must be ready and received by the client
before playback can start.

DAVVI stores video segments on regular web servers. A
dedicated streaming server is not needed, the video segments
are retrieved using normal HTTP GET-requests. Because
no additional feedback is provided by the server and the
client monitors the available resources, the client is respon-
sible for prefetching, buffering, and adapting video quality.
The quality can be changed whenever a new segment is re-
quested, but the user can not see the change immediately. In
our case, each segment contains two seconds of video, which
has been shown to be a good segment length. According
to the work done in [11], changing video quality more fre-
quently than every 1-2 seconds annoys the user. However,
the two second segment length is a limit imposed by DAVVI,
in our future work, we plan to look at how the duration of
a segment affects the subsegment approaches and thereby
performance. For example, one possibility would be to use
H.264 SVC-encoding and allow changing quality immedi-
ately, but then forbid a new change within one second.

For this paper, we look at three types of streaming, on-
demand streaming, live streaming with buffering and live
streaming without buffering. On-demand streaming is
the most common type of streaming and used as our base
case, it assumes “infinite” receive buffers and is only limited
by network bandwidth. Because the entire video is available



in advance, segments are requested as soon as there is room
in the receive buffer. We use an alternative encoding and
linear download, so we do not have the common concept
of a base layer that could be downloaded first with quality
improvements as time permits. On-demand streaming is
used together with full-length movies and similar content,
meaning that video quality and continuous playback are the
most important metrics.

Live streaming with buffering is very similar to on-
demand streaming, except that the whole video is not avail-
able when the streaming starts. As defined in the intro-
duction, live in the context of this paper is liveness, and
by delaying playback by a given number of segments (the
startup delay), a trade off between liveness and smoothness
is made. Provided that all requested segments are received
before their playout deadline, the total delay compared to
the no-delay broadcast is startup delay +
initial segments transfer time. Any errors occurring during
transfer cause a further reduction in liveness.

Live streaming without buffering has liveness as the
most important metric and is the opposite of on-demand
streaming. Segments (requests) are skipped if the stream
lags too far behind the broadcast, and a requirement for be-
ing as live as possible is that the startup delay is the lowest
that is allowed by the streaming system. In our case, this
limit is two seconds (one segment), so the client lags 2s +
initial segment transfer time behind the no-delay broadcast
when playback starts, and skips segments if the lag exceeds
the length of one segment. This limitation can be overcome
by for example using x264-encoding with the zerolatency op-
tion. However, this would involve abandoning the standard
web server and the creation of new request schedulers and
subsegment approaches, and has been left for future work.

3.2 Multilink support
Several changes were made to the DAVVI streaming sys-

tem to support multiple links. We implemented our mul-
tilink HTTP download and pipelining mechanisms [8], as
well as the request scheduler and subsegment approaches
described in section 3.3. The scheduler is responsible for dis-
tributing segment requests among the links efficiently, while
the subsegment approaches try to make sure that each link
is used to its full capacity.

The routing table on the client must be configured prop-
erly to allow DAVVI, or any other application, to use mul-
tiple links simultaneously. The network subsystem must be
aware of the default interface and know how to reach other
machines in the connected networks, and packets must be
sent through the correct interfaces. Once the routing table
is correct, multilink-support in the application is enabled by
binding network sockets to the desired interfaces. This is
supported by all major operating systems.

3.2.1 Subsegments of varying size

Even though DAVVI divides the video into segments, the
segments can still be large. Therefore, they are divided into
smaller logical subsegments to reduce latency, increase the
granularity of the request scheduler and allow the transfer
of video over multiple interfaces simultaneously. Using the
range retrieval request-feature of HTTP/1.1, it is possible to
request a specific part of a file (a subsegment). For example,
if the first 50 kB of a 100 kB large file are requested, bytes 0
- 49 999 are sent from the server. There are other techniques

to request/send data over multiple links simultaneously, see
for example the transparent network-layer proxy presented
in [4]. However, they are outside the scope of this paper.

Figure 1: In this example, two interfaces I0 and I1 have
finished downloading segment s0 of quality Q2. As the
throughput dropped, the links currently collaborate on
downloading the third subsegment of a lower quality seg-
ment.

The subsegment approach decides how complete segments
are divided into subsegments, and how the links are allo-
cated their share of the data. For example, figure 1 shows
how a 200kB subsegment would be divided between two links
with a bandwidth ratio of 3:2, according to the dynamic sub-
segment approach presented in section 3.3. Interface zero
requests 120 kB and interface one 80 kB.

3.2.2 Request pipelining

Figure 2: From a client-side perspective, HTTP pipelining
eliminates the time overhead incurred by a sequential pro-
cessing of requests and replies.

Dividing segments into subsegments introduces two chal-
lenges. First, subsegments cause an increase in the number
of HTTP GET-requests. This reduces performance, as the
client spends more time idle waiting for responses. HTTP
pipelining, illustrated in figure 2, is used to reduce both the
number and duration of these idle periods. Initially, two
subsegments are requested on every interface, and then, a
new subsegment is requested for each one received. This
ensures that the server always has a request to process, and
that there is always incoming data.

The second challenge is related to the size of the sub-
segments, and only applies when fixed size subsegments are
used. If they are too small, an entire subsegment might
have been sent from the server before the next is requested,
causing interfaces to become idle. This can be alleviated
by having a fixed subsegment size. For example, our earlier
work [8] has shown that 100 kB is well suited, as it allows
sufficient flexibility for the request scheduler, and is large
enough to take advantage of HTTP pipelining.

The reason the subsegment size challenge does not apply
to subsegment approaches that calculate the size dynami-



cally, is that the size of the subsegments matches the links’
performance. Thus, the size of the subsegment is equal to
what the link can transfer.

3.3 Quality adaptation and request schedulers
To use multiple links efficiently, segments must be re-

quested according to the available resources. If a slow inter-
face is allocated a large share of a segment, the performance
of the whole application might suffer. For example, the seg-
ment may not be ready when it is supposed to be played out,
causing a deadline miss and an interruption in playback.

The request scheduler is responsible for distributing re-
quests and adjusting the desired video quality, and, in com-
bination with the subsegment approaches, is the most im-
portant part of our multilink streaming approach. Without
a good scheduler and subsegment approach, adding multiple
interfaces can cause a drop in performance and have a signif-
icant effect on the user experience. For example, the quality
adaptation might be too optimistic and select a higher qual-
ity than the links can support, or links are not used to their
full capacity.

In this paper, we compare the performance of two subseg-
ment size approaches. The underlying request scheduler is
identical for both approaches, i.e., the same technique is used
to measure the link characteristics (throughput and RTT)
and adjust the video quality. The video quality adaptation
is outlined in algorithm 1. First, the client calculates how
much content it has already received and is ready for play-
out (transfer deadline), and estimates how long it takes to
receive already requested data (pipeline delay). The
pipeline delay is subtracted from the transfer deadline to
get an estimate of how much time the client can spend re-
ceiving new data without causing a deadline miss. This esti-
mate is then compared against estimates of the time it takes
to receive the desired segment in the different qualities, and
the most suited quality is selected.

Algorithm 1 Quality adaptation mechanism

transfer deadline = time left playout + (segment length *
num completed segments)
pipeline delay = requested bytes left / aggregated throughput

for quality level = “super” to “low” do

transfer time = segment size[quality level] /
aggregated throughput

if transfer time < (transfer deadline - pipeline delay) then

return quality level

end if

reduce quality level

end for

The two approaches differ in how they divide segments.
The static subsegment approach, which is the one that
was used in [5], divides each segment into fixed-sized 100KB
subsegments. Requests for subsegments are distributed
among the links, and provided that there are more subseg-
ments available, new requests are pipelined as soon as pos-
sible.

However, our earlier work did not sufficiently consider the
challenges introduced by limited receive buffers and time-
liness. In addition to the last segment problem [8], caused
by clients having to wait for the slowest interface to receive
the last subsegment of a segment, the static subsegment ap-
proach is unable to reach maximum performance unless the
receive buffer is large enough to compensate for the link

heterogeneity. This problem is discussed in more detail in
section 3.4.

Increasing the buffer size is in many cases not accept-
able, desirable or even possible. We therefore decided to
improve on our old subsegment approach by allocating data
to the links in a more dynamic fashion. The segments are
now divided into subsegments of number of interfaces *
100kB (or as big as possible), where 100kB is a well suited
share of data to request over one link, as discussed earlier
and presented in [8]. These subsegments are divided into
even smaller subsegments that are requested over the inter-
faces, and the size of each requested subsegment is calculated
based on the monitored throughput of the current interface.
Pipelining is still done as soon as possible, and the algorithm
is outlined in algorithm 2.

Algorithm 2 Dynamic subsegment approach [simplified]

share interface = throughput link / aggregated throughput

size allocated data = share interface * subsegment length

if size allocated data > left subsegment then

size allocated data = left subsegment

end if

update left subsegment

request new Subsegment(size allocated data)

By allocating the data dynamically based on performance,
the need for a big buffer is removed, and the effect of the
last segment problem is reduced. The problem can still oc-
cur, but because the performance of the links is used when
allocating data, it has a smaller effect. When dividing seg-
ments dynamically, the performance for a given buffer size
should ideally be the same for all link heterogeneities. This
approach is hereby referred to as the dynamic subsegment

approach.

3.4 Considerations: Static vs. Dynamic
The switch from a static to a dynamic subsegment ap-

proach was motivated by the buffer requirement imposed by
the static subsegment approach. Unless the buffer is large
enough to compensate for the link heterogeneity, the client
is unable to reach maximum performance. With a short
startup delay and small buffer, the request scheduler is only
allowed a little slack when requesting the first segment af-
ter the playout has started. Assuming that the links are
heterogeneous and none exceed the bandwidth requirement
for the stream by a wide margin, this forces the scheduler
to pick a segment of lower quality. Smaller segments con-
sist of fewer subsegments, so the slowest link is allocated a
larger share of the data, and has a more significant effect on
throughput. This continues until the throughput and qual-
ity stabilizes at a lower level than the links might support.
In other words, the request scheduler is caught in a vicious
circle. Furthermore, increasing the receive buffer size and
startup delay improves the situation. A larger receive buffer
allows the scheduler more slack, so the first segment after
the startup delay is requested in a higher quality than with
a small buffer. Larger segments consist of more subsegments
than smaller ones, so the slowest interface is made respon-
sible for less data. Provided that the buffer is large enough,
the links are allocated their correct share of subsegments
(or at least close to). Thus, throughput measurements are
higher and a better video quality distribution is achieved.

On the other hand, when dividing the segments into sub-
segments dynamically, the buffer size/startup delay problem



is avoided. Each link is allocated their correct share of a seg-
ment (at that time), so the slower links are made responsible
for less data. However, there are challenges when dividing
segments dynamically as well. In the first version of the
dynamic subsegment approach, we used the size of the seg-
ment to determine a link’s share. As it turned out, the per-
formance of this approach suffers when faced with dynamic
network environments. Links are often allocated too much
data, making the approach vulnerable to throughput and
delay variance. Therefore, we limited the amount of data
used for calculating a link’s share to number of interfaces

* 100kB, as presented earlier.

4. EXPERIMENTAL SETUP
To evaluate the performance of the two request schedulers,

two testbeds were created. We wanted to measure the per-
formance in the real world and in a controlled environment,
to fully control all parameters.

Client

Figure 3: Our controlled environment-testbed.

The controlled environment-testbed, shown in figure 3,
consists of a client and a server (Apache 2) connected us-
ing two independent 100 Mbit/s Ethernet links. Both client
and server run Linux 2.6.31, and to control the different link
characteristics, the network emulator netem is used with a
hierarchical token bucket queueing discipline. For measur-
ing the real world performance, we made experiments in a
wireless scenario where the client was connected to one pub-
lic WLAN (IEEE 802.11b) and an HSDPA network. The
characteristics of these networks are summarized in table
1, and the reason we choose wireless networks is that they
present a more challenging environment than fixed links.

WLAN HSDPA
Average experienced throughput 287KB/s 167KB/s
Average RTT for header-only IP packets 20ms 100ms
Average RTT for full-size IP packets 30ms 220ms

Table 1: Observed Characteristics of used Links

To get comparable results, the same video clip was used
in all the experiments. The clip shows a football match, has
a total playout duration of 100 minutes (3127 segments of
two seconds) and was available in four qualities. We chose
a subset of 100 segments, and the bandwidth requirements
are shown in table 2.

Quality level Low Medium High Super
Minimum bitrate (Kbit/s) 524 866 1491 2212
Average bitrate (Kbit/s) 746 1300 2142 3010
Maximum bitrate (Kbit/s) 1057 1923 3293 4884

Table 2: Quality levels and bitrates of the soccer movie

5. RESULTS AND DISCUSSION
When evaluating the performance of the two subsegment

approaches, we measure the video quality and deadline misses.

The video quality is dependent on the bandwidth aggrega-
tion, i.e., an efficient aggregation results in a higher through-
put. Thus, the quality increases. Deadline misses are of
highest importance from a user’s perspective, with respect
to perceived video quality. The number of deadline misses
depend on the subsegment approach. A poor approach al-
locates too much data to slower interfaces, causing data to
arrive late and segments to miss their deadlines.

In our earlier work [5], we compared the single-link and
multilink performance of the static subsegment approach,
as well as the performance of the request scheduler. In this
paper, the focus is on the differences between the two sub-
segment approaches in a multilink scenario. With multiple
links, bandwidth and latency heterogeneity are the two most
significant challenges, so we decided to look at their effect
on performance, both in a completely controlled environ-
ment, with emulated network dynamics and in a real-world
wireless environment. Multilink request schedulers and sub-
segment approaches have to take heterogeneity into account,
otherwise the performance is less than ideal, and sometimes
worse than when only a single link is used [5].

The combined bandwidth of the emulated links was al-
ways 3 Mbit/s, which is equal to the average bandwidth
requirement for the highest quality of the video clip used in
our experiments. The startup delay was equal to the buffer
size in all the experiments, forcing the application to fill the
buffer completely before starting playback.

5.1 Bandwidth heterogeneity
For measuring how bandwidth heterogeneity affects the

performance of the two subsegment approaches, the con-
trolled testbed was used and configured to provide different
levels of bandwidth heterogeneity. The goal with using mul-
tiple links simultaneously, was that the performance should
match that of a single 3 Mbit/s link, in other words, the ag-
gregated logical link should perform just as well as an actual
3 Mbit/s link.

5.1.1 On-demand streaming

For an on-demand scenario, figure 4 shows the video qual-
ity distribution for a buffer size of two segments (four second
delay). The bandwidth ratio is shown along the x-axis, and
the X:Y notation means that one link was allocated X % of
the bandwidth, while the other link was allocated Y %. The
bars represents the four video qualities, and the y-value of
each bar is its share of the received segments. The reason
we did not divide the y-axis into the four quality-levels and
plot the average quality, is that the y-value of a bar would
end up between qualities. As the quality level “Medium.5”
(or similar) does not exist, we decided to plot the quality
distributions instead.

When a single link was used, the expected behavior can be
observed. As the available bandwidth increased, so too did
the video quality. Also, the static and dynamic subsegment
approaches achieved more or less the same video quality.

However, the situation was different with multiple links.
The dynamic subsegment approach adapted to the hetero-
geneity, the performance was close to constant irrespective of
link heterogeneity, and significantly better than when a sin-
gle link was used. However, the performance never reached
the level of a single 3 Mbit/s link (even though the difference
was small), due to the additional overhead introduced when
using multiple links.
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Figure 4: Video quality distribution for different bandwidth heterogeneities, buffer size/startup delay of two segments (4
seconds) and on-demand streaming.
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Figure 5: Deadline misses for different levels of bandwidth heterogeneity with on-demand streaming, buffer size/startup delay
of two segments (4 seconds).
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Figure 6: Video quality distribution for different levels of bandwidth heterogeneity, buffer size/startup delay of one segment
(2 second startup delay) and live streaming with buffering.



The static subsegment approach, on the other hand, suf-
fered from the problem discussed in section 3.4, when the
heterogeneity increased, the achieved video quality decreased.
When the bandwidth ratio was 80:20, the single link perfor-
mance exceeded multilink.
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Figure 7: Quality distribution plotted against the startup
delay/buffer size for a bandwidth ratio of 80:20, on-demand
streaming and static subsegment approach.

As discussed in [5], the static subsegment approach re-
quires the buffer to be large enough to compensate for the
bandwidth heterogeneity. A rule of thumb is that the buffer
size shall be equal to the ratio between the links. For exam-
ple, with a bandwidth ratio of 80:20, the ideal buffer size is
five segments, because the fast interface can receive four seg-
ments for every one segment over the slow interface. How-
ever, this is only correct with a CBR-encoded video. With
a VBR-encoded video, the segments are of different sizes
and have different bandwidth requirements. The latter ex-
plains why a buffer size of four segments was sufficient for
the multilink performance to exceed that of a single link
with a bandwidth ratio of 80:20, as seen in figure 7. This
figure shows how increasing the startup delay and buffer size
improved the video quality when the bandwidth ratio was
80:20.

Figure 5 shows the average number of deadline misses
for the bandwidth ratios. As expected when faced with
static links, both subsegment approaches performed well.
The bandwidth measurements and quality adaption were
accurate, there were close to no deadline misses, except for
when the buffer was unable to compensate for heterogene-
ity. The deadline misses when the bandwidth ratio was 80:20
were caused by the slow interface delaying the reception and
thereby playback of some segments. However, all deadline
misses were significantly lower than the segment length, the
worst observed miss was only ˜0.3 seconds.

5.1.2 Live streaming with buffering

When live streaming with buffering was used, the ex-
perimental results were similar to those of the on-demand
streaming tests. The single link performance of the two sub-
segment approaches was more or less the same, and when
multiple links were used, the dynamic subsegment approach
showed similar performance irrespective of bandwidth het-
erogeneity, while the performance of the static subsegment
approach suffered from the buffer being to small to com-
pensate for the link heterogeneity. The number of deadline

misses were also the same as with on-demand streaming.
The reason for these similar results, is that segments were
always ready also when live streaming with buffering was
used. The client was never able to fully catch up with the
no-delay broadcast.

With on-demand streaming, it makes no sense to talk
about liveness. However, in live streaming with buffering,
liveness is one of the most important criteria. With a startup-
delay/buffer size of two segments, the static subsegment ap-
proach added an additional worst-case delay of 4 s com-
pared to the no-delay broadcast. The dynamic subsegment
approach caused an additional worst-case delay of 2.5 s.

Figure 6 shows the effect of increasing the liveness to the
maximum allowed by DAVVI. Both the startup delay and
buffer size was set to one segment (two second delay). The
dynamic subsegment approach was able to cope well with the
increased liveness requirement, and showed a significant in-
crease in performance compared to using a single link. Also,
the performance was independent of the bandwidth hetero-
geneity. The static subsegment approach, on the other hand,
struggled because of the small buffer. In addition to pipelin-
ing loosing almost all effect, it only worked within a segment,
the problem discussed in section 3.4 came into play. The per-
formance hit was reflected in the deadline misses, shown in
figure 8. While the dynamic subsegment approach was able
to avoid almost all deadline misses, the static subsegment
approach caused several misses. When the dynamic subseg-
ment approach was used, a worst-case additional delay of
2.3 seconds was observed, compared to 6 seconds with the
static subsegment approach.

5.1.3 Live streaming without buffering

The goal with skipping segments is that the stream shall
be as live as possible, the client chooses not to request old
segments. Skipping leads to interruptions in playback, but
did not affect the video quality, as shown in figure 9. The re-
sults were the same as for live streaming with buffering and a
buffer size/startup delay of one segment - the dynamic sub-
segment approach improved the performance significantly,
while the static subsegment approach suffered from the prob-
lem discussed in section 3.4. The deadline misses were sim-
ilar to figure 8, in other words, the dynamic subsegment
approach was able to avoid most deadline misses, unlike the
static subsegment approach.

However, the number of skipped segments were the same
for both subsegment approaches, with a worst case of two
segments. This was because of the first segment, which is re-
quested in the highest quality to get the most accurate mea-
surements. The approaches assume that all links are equal
and initially allocates the same amount of data to each. If
the links are not homogeneous, which was the case in al-
most all of our experiments, or able to support the quality,
the segment takes longer than two seconds to receive and
one or more segments are skipped. The deadline misses and
initial segment transfer time with the static subsegment ap-
proach caused a worst case additional total delay of 1.86 sec-
onds, which is less than the length of a single segment, and
explains why the static subsegment approach did not skip
more segments than the dynamic subsegment approach.

5.2 Latency heterogeneity
When measuring the effect of latency heterogeneity on

video quality and deadline misses, we used one link that had
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Figure 8: Deadline misses for a buffer size of one segment (2 second startup delay) and various levels of bandwidth hetero-
geneity, live streaming with buffering.
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Figure 9: Video quality distribution for a buffer size of one segment (2 second startup delay), live streaming without buffering
and bandwidth heterogeneity.
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Figure 10: Video quality distribution for two-segment buffers and various levels of latency heterogeneity.



a constant RTT of 10 ms. The other link was assigned an
RTT of r ms, with r ∈ {10, 20, . . . , 100}. The bandwidth of
each link was limited to 1.5 Mbit/s, and a buffer size of two
segments was used (according to the rule of thumb presented
earlier and [5]).

5.2.1 On-demand streaming

Figure 10 depicts the video quality distribution for dif-
ferent levels of latency heterogeneity. As shown, RTT het-
erogeneity did not have a significant effect on video quality,
independent of subsegment approach. The bandwidth ratio
was 50:50, and both subsegment approaches achieved close
to the same quality distribution as in the on-demand band-
width heterogeneity experiments (for a 50:50 bandwidth ra-
tio), shown in figure 4, for all latency heterogeneities. The
reason for the performance difference between the two ap-
proaches, is that the dynamic subsegment approach is able
to use the links more efficiently.

For both subsegment approaches, a slight decrease in qual-
ity as the heterogeneity increased can be observed, indicat-
ing that the RTT heterogeneity at some point will have an
effect. The reason for the quality decrease, is that it takes
longer to request, and thereby receive, each segment. The
approaches measure a lower throughput, and potentially re-
duces the quality of the requested segments.

HTTP pipelining is used to compensate for high RTT and
RTT heterogeneities. However, pipelining is not possible
when the buffer is full and the next segment can’t be re-
quested immediately. Also, TCP throughput is lower for
short transfers and high delay.

The deadline misses were also similar to the 50:50-case
in the bandwidth heterogeneity experiments, shown in fig-
ure 5. As expected in a static environment, both subsegment
approaches made accurate decisions and no deadline misses
were observed.

5.2.2 Live streaming with buffering

As with bandwidth heterogeneity, the results when mea-
suring the effect of latency heterogeneity on live streaming
with buffering were very similar to those with on-demand
streaming. The quality distribution and deadline misses
were not affected for the levels of heterogeneity we have used.
However, a slight decrease in video quality as the RTT het-
erogeneity increases can be seen also here. The worst case
observer additional delay compared to the no-delay broad-
cast was 2 s for both subsegment approaches.

Reducing the buffer size/startup delay to one, caused a
similar reduction in performance to the ones seen in fig-
ures 6 and 8 (for a 50:50 bandwidth ratio). However, as for
a buffer size of two segments, the latency heterogeneity did
not affect the quality distribution or deadline misses. Both
subsegment approached caused a worst additional case ad-
ditional delay of 2.5 s.

5.2.3 Live streaming without buffering

The observed video quality and deadline misses using live
streaming without buffering, were similar to the earlier la-
tency heterogeneity experiments. RTT heterogeneity did
not have a significant impact on video quality, however, a
slight decrease can be observed, indicating that the RTT
heterogeneity will affect the performance of the approaches
at some point. As in the bandwidth heterogeneity experi-
ments for live streaming without buffering, the number of
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Figure 14: Deadline misses with on-demand streaming and
emulated dynamics.

skipped segments and the total delay compared to the no-
delay broadcast were the same for both approaches. When
multiple links were used, zero segments were skipped, and a
worst case additional delay of 1.86 seconds was observed for
both subsegment approaches, caused by the first segment.
Even though the initial assumptions that both links are ho-
mogeneous were correct, the links were unable to support
the bandwidth requirement for this segment.

5.3 Emulated dynamics
Dynamic links impose different challenges than static links,

the scheduler has to adapt to often rapid changes in the net-
work. To expose the two subsegment approaches to dynamic
links while still having some control over the parameters, we
created a script which emulates our observed real-world net-
work behavior. The sum of the bandwidth of the two links
was always 3 Mbit/s, but at random intervals of t seconds,
t ∈ {2, . . . , 10}, the bandwidth bw Mbit/s, bw ∈ {0.5, . . . ,
2.5} of each link was updated. The RTT of link 1 was nor-
mally distributed between 0 ms and 20 ms, while the RTT of
link 2 was uniformly distributed between 20 ms and 80 ms.
A buffer size of six segments was used to compensate for the
worst case bandwidth heterogeneity, according to the rule
of thumb presented earlier and in [5], except for in the live
streaming without buffering experiments. Each subsegment
approach was tested 30 times for each type of streaming,
and the results shown are the averages of all measurements.

5.3.1 On-demand streaming

The aggregated throughput when combining emulated link
dynamics with on-demand streaming, is shown in figure 11.
With both subsegment approaches, adding a second link
gave a significant increase in throughput, and thereby achieved
video quality. Also, as in the other experiments where the
buffer size was large enough to compensate for link hetero-
geneity, both approaches gave close to the same video quality
distribution, with a slight advantage to the dynamic subseg-
ment approach. The average aggregated throughput oscil-
lated between the average bandwidth requirement for“High”
and “Super” quality, the quality distribution is presented in
table 3.

In terms of deadline misses, shown in figure 14, both ap-
proaches were as accurate. When a single link was used,
misses occurred, however, none were severe. The worst case
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Figure 11: Average achieved throughput of the schedulers with emulated dynamic network behaviour, on-demand streaming.
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Figure 12: Average achieved throughput of the schedulers with emulated dynamic network behaviour, live streaming without
buffering.
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Figure 13: Average achieved throughput of the schedulers with real-world networks, on-demand streaming.



Subsegment approach Low Medium High Super
Static, single-link 31% 27% 28% 15%
Static, multilink 4% 4% 11% 81%
Dynamic, single-link 30% 26% 29% 15%
Dynamic, multilink 3% 3% 10% 83%

Table 3: Quality distribution, emulated dynamics and on-
demand streaming

observed miss for both approaches was less than 0.5 seconds.
With multiple links, both approaches avoided all deadline
misses.

5.3.2 Live streaming with buffering

As with both bandwidth and latency heterogeneity, the
performance of live streaming with buffering was similar to
the on-demand streaming experiments, seen in figure 11. A
significant increase in performance was seen when a second
link was added, and the quality distributions are found in
table 4. The deadline misses were also the same as in the on-
demand experiments (figure 14), when multiple links were
used no misses occurred. The worst-case additional delay
compared to the no-delay broadcast was 2.3 s, caused exclu-
sively by the initial segment transfer time.

Subsegment approach Low Medium High Super
Static, single-link 30% 26% 28% 16%
Static, multilink 4% 4% 11% 81%
Dynamic, single-link 29% 26% 29% 15%
Dynamic, multilink 3% 3% 11% 82%

Table 4: Quality distribution, emulated dynamics and live
streaming with buffering

5.3.3 Live streaming without buffering

The live streaming without buffering experiments were
performed with the same settings as the other emulated dy-
namics experiments, except that a buffer size and startup de-
lay of one segment was used. This was, as discussed earlier,
done to increase the liveness to the maximum that DAVVI
allows (one segment).

As in the earlier live streaming without buffering exper-
iments, the two subsegment approaches performed differ-
ently, the static approach was outperformed by the dynamic
approach. This was because the dynamic subsegment ap-
proach adapts better to smaller buffers, and the performance
difference is reflected in the quality distribution, presented
in table 5, and seen in figure 12. While the static subseg-
ment approach most of the time achieved a throughput that
exceeded the average requirement for “Medium” quality, the
dynamic subsegment approach exceeded the requirement for
“High” quality.

Subsegment approach Low Medium High Super
Static, single-link 41% 44% 14% 1%
Static, multilink 15% 45% 35% 5%
Dynamic, single-link 44% 41% 14% 1%
Dynamic, multilink 2% 28% 55% 15%

Table 5: Quality distribution, emulated dynamics and live
streaming without buffering

However, both subsegment approaches experienced dead-
line misses, as shown in figure 15. None were severe, as
earlier, the worst case observed miss was around 0.5 second.
However, if continuous playback had been important, a big-
ger buffer and startup delay should have been used. This,
of course, would involve making a trade-off between liveness
and quality of the user experience. The deadline misses are
also reflected in the number of skipped segments, on average
both subsegment approaches skipped five segments.
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Figure 15: Deadline misses with live streaming without
buffering and emulated dynamics.

5.4 Real world networks
Our real world experiments were conducted with the net-

works described in table 1, and a buffer size of three was
used to compensate for the worst-case measured bandwidth
heterogeneity (except when measuring the performance for
live streaming without buffering). The tests were run inter-
leaved to get comparable results, and the experiments were
performed during peak hours (08-16) to get the most real-
istic network conditions. I.e., we did not want to have the
full capacity of the networks to ourself.

5.4.1 On-demand streaming

The average aggregated throughput for on-demand stream-
ing and real world networks can be found in figure 13. There
was a significant difference in performance between the two
subsegment approaches. While the dynamic subsegment ap-
proach showed an increase in performance when a second
link was added, the static subsegment approach did not ben-
efit that much. In fact, sometimes the aggregated through-
put was less than when a single link was used. The reason
for the performance difference was, as earlier, that the dy-
namic subsegment approach is able to utilize the links more
efficiently, it adapts better to the buffer size. The perfor-
mance difference is also reflected in the quality distribution,
shown in table 6.

Subsegment approach Low Medium High Super
Static, single-link 1% 8% 51% 40%
Static, multilink 5% 6% 10% 79%
Dynamic, single-link 3% 11% 46% 41%
Dynamic, multilink 3% 2% 9% 86%

Table 6: Quality distribution, real world networks and on-
demand streaming

In terms of deadline misses, both subsegment approaches
performed equally. Except for some outliers caused by sig-
nificant and rapid changes in the network conditions, like
congestion and interference, both approaches were able to
avoid all misses when multiple links were used.

5.4.2 Live streaming with buffering

The performance with live streaming with buffering was,
as in the other live streaming with buffering experiments,
similar to the on-demand performance. The quality distri-
bution is shown in table 7, and both approaches avoided



almost all deadline misses when multiple links were used. A
worst-case additional delay compared to the no-delay broad-
cast of 4 s was observed for both subsegment approaches.

Subsegment approach Low Medium High Super
Static, single-link 1% 10% 49% 40%
Static, multilink 5% 4% 7% 84%
Dynamic, single-link 1% 9% 49% 41%
Dynamic, multilink 3% 2% 5% 91%

Table 7: Quality distribution, real world networks and live
streaming with buffering

5.4.3 Live streaming without buffering

When live streaming without buffering was combined with
our real world networks, the performance was similar to that
presented in section 5.3.3. The static subsegment approach
struggled with the small buffer, while the dynamic approach
adapts better, which resulted in a significantly improved per-
formance. The only significant difference compared to the
results in section 5.3.3, is that the quality distribution for
both approaches were better due to more available band-
width and more stable links, as can be seen in table 8. This
was also reflected in the deadline misses and a lower number
of skipped segments.

Subsegment approach Low Medium High Super
Static, single-link 0% 27% 68% 5%
Static, multilink 10% 12% 45% 32%
Dynamic, single-link 0% 27% 68% 5%
Dynamic, multilink 1% 10% 35% 55%

Table 8: Quality distribution, real world networks and live
streaming without buffering

6. CONCLUSION
In this paper, we have presented and evaluated two dif-

ferent subsegment approaches. The approaches were im-
plemented in the DAVVI streaming system together with a
request scheduler which retrieve video segments in several
different bitrates for quality adaption over multiple hetero-
geneous network interfaces simultaneously. The static sub-
segment approach was based on our earlier work, presented
in [5], and divides the segments into smaller fixed-sized sub-
segments to achieve efficient bandwidth aggregation. This
increases performance compared to a single link, but for the
client to reach maximum performance with this approach,
the buffer size has to be large enough to compensate for link
heterogeneity.

To avoid the buffer requirement and allow quasi-live stream-
ing at high quality, we developed a subsegment approach
which calculates the sizes of the subsegments dynamically,
based on the current interfaces’ throughput. The two ap-
proaches were evaluated in the context of on-demand and
live streaming with and without buffering (startup delay)
over both emulated and real networks. Only when the buffers
were large enough to compensate for link heterogeneity, the
static and dynamic subsegment approaches performed the
same. In all the other scenarios, the dynamic subsegment
approach was able to alleviate the buffer problem and showed
similar performance independent of link heterogeneity for a
given buffer size.

In our future work, we plan to analyze how increasing or
decreasing the duration of a segment affects quality decisions
and the performance of the subsegment approaches. In addi-
tion, we want to look into tweaking the dynamic subsegment
approach, e.g., by adding weights to different measurements

and calculations, and experimenting with x264-encoding and
live streaming without buffering.
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