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Abstract—Modern systems are becoming highly configurable to satisfy the varying needs of customers and users. Software product
lines are hence becoming a common trend in software development to reduce cost by enabling systematic, large scale reuse. However,
high levels of configurability entail new challenges. Some faults might be revealed only if a particular combination of features is
selected in the delivered products. But testing all combinations is usually not feasible in practice, due to their extremely large numbers.
Combinatorial testing is a technique to generate smaller test suites for which all combinations of t features are guaranteed to be
tested. In this paper, we present several theorems describing the probability of random testing to detect interaction faults and compare
the results to combinatorial testing when there are no constraints among the features that can be part of a product. For example,
random testing becomes even more effective as the number of features increases and converges towards equal effectiveness with
combinatorial testing. Given that combinatorial testing entails significant computational overhead in the presence of hundreds or
thousands of features, the results suggest that there are realistic scenarios in which random testing may outperform combinatorial
testing in large systems. Furthermore, in the common situations where test budgets are constrained and unlike combinatorial testing,
random testing can still provide minimum guarantees on the probability of fault detection at any interaction level. However, when
constraints are present among features, then random testing can fare arbitrarily worse than combinatorial testing. As a result, in order
to have a practical impact, future research should focus on better understanding the decision process to choose between random
testing and combinatorial testing, and improve combinatorial testing in the presence of feature constraints.

Index Terms—Combinatorial Testing, Random Testing, Interaction Testing, Theory, Constraint, Feature Diagram, Lower Bound
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1 INTRODUCTION

M ANY software testing activities can be automated. Test-
ing comprises a large number of such activities across

the development life-cycle. Test automation can therefore
significantly reduce time to market and increase system de-
pendability. One significant challenge is that many modern
systems are highly configurable, to satisfy wide variability
in customers’ needs. For example, in software applications
running on mobile phones, many features can be configured,
such as the type of phone, operating system, and installed
applications. Each configuration represents a different product
and may exhibit different failure modes. In industrial systems,
there are typically millions of possible configurations, where
possibly only a small subset of combinations can trigger fail-
ures. The question is then how to maximize failure detection
when it is not possible to test all configurations. This has been
the objective of combinatorial testing.

One way to introduce configurability is through families of
software systems. The most known approach to do so is soft-
ware product lines, which can lead to “drastically increasing
the productivity of IT-related industries” [35]. Softwareprod-
uct lines have received particular attention from the research
community, with dedicated special issues in Communications
of the ACM [35] and in IEEE Software [27]. In our context,
there are two main challenges: (1) how to represent the
variability in an expressive and practical way and (2) how to
use such variability description to automate the generation of
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test cases that are effective in revealing failures. Variability
can be expressed with various formalisms, as for example
templates in UML models, domain specific languages, and
feature diagrams, and has been recently surveyed in [33], in
which six types of techniques are described. In this paper we
address point (2) above, with a focus on analyzingCombina-
torial Interaction Testing(CIT) [19], [30] and comparing it
with random testing [13], [2].

In CIT, the tester usually has to choose a strengtht, which
determines the type of interactions to be tested. To increase
the probability of finding faults while keeping the cost down,
CIT aims at generating a minimal test suite for which all
the t-wise combinations of features are present at least once.
The underlying assumption is that faults might be due to
interactions whent specific features are present in a released
product. Generating minimal test suites that guaranteet-wise
coverage is a highly difficult problem which has been the
subject of a great deal of research [19], [30].

Although there are empirical studies in the literature that
show, under some specific conditions, a better performance
of CIT strategies compared to random testing (e.g., [32]),
CIT has some detractors, such as Bach and Schroder [3]. In
their study, when they empirically compared CIT with random
testing [13], [2], results showed that random test suites were
highly likely to cover most of thet-wise combinations among
features. Successive studies from other authors were consistent
in showing a similar performance for random testing and
CIT at detecting faults (e.g., [37], [14]). From a practical
standpoint, if such a result is confirmed, then there may be
situations where one may question the use of sophisticated
and complex CIT techniques when random testing could be
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(nearly) as effective at revealing faults. This question iseven
more pressing given the fact that current CIT tools/techniques
[19], [30] display scalability problems to handle large numbers
of features, which are common in industrial software. When
automated oracles can be generated, random testing could be
far more effective if indeed it provides hight-wise coverage.
Given the computational overhead entailed by CIT tools to
generate covering arrays [19], [30], in the same amount of
time, many more test cases could be run and evaluated with
random testing when compared to CIT. But to the best of
our knowledge, despite the practical importance of this topic,
we are aware of no work in the literature investigating and
comparing CIT and random testing in a real industrial setting.

Triggering failures is important to detect faults, but then
characterizing the feature combinations that induce failures is
required to help the debugging process. There can be several
techniques to achieve this goal, as for example the classifica-
tion trees used in [37]. Different techniques to generate test
suites would have a different impact on the inferred models.
For example, in their empirical study, Yilmazet al. [37]
found that test suites generated with random testing often led
to unreliable classification trees. Although debugging is an
important activity, it is out of the scope of this paper which
focuses on the software testing phase.

In this paper, we address the effectiveness and scalabilityof
random testing when used to detectt-wise interaction faults.
In particular, we are interested in comparing the effectiveness
of tests generated with a covering array tool versus tests gener-
ated randomly. We provide formal proofs that are independent
from specific CIT problem instances, and hence provide more
general results than what experiments would typically yield.
For example, we formally prove that random testing, when
compared to CIT and assuming an equal test suite sizeN ,
hasalways, even in the worst case, a probability ofat least
63% to trigger at least one failure related tot-wise interaction
faults. In other words, with probability equal or greater than
63%, there would be one or more test cases out ofN that fail.
For larger numbers of features, the probability increases and
we formally prove that this probability converges to 100% (for
an infinite number of features), thus making random testing
a promising testing strategy for large systems. In addition,
we show that in practice, in the common situation where one
has to deal with test budget constraints, random testing can
provide minimum guaranteesabout the detection of faults at
any interaction level. This is something which is very difficult
to obtain with CIT (we are aware of no formal results on
the topic for CIT), as results would depend on the specific
algorithms used to construct the covering arrays.

The results presented in this paper are valid only when
there are noconstraintsamong features, i.e., the choice of
a feature is independent from the others, and any combination
of features represents a valid product. Though this is the most
common case reported in the research literature [19], [30],
in many industrial systems such constraints are present and,
in recent years, CIT approaches that can handle constraints
have been proposed, though very few realistic studies are
reported (e.g., [8], [17], [31], [4]). In the presence of feature
constraints, we show that random testing can be several orders

of magnitude worse than CIT tools that handle constraints,
though this remains a topic of investigation in the context of
real settings and constraints.

Based on the theoretical results of this paper, we conclude
that, in many circumstances involving large numbers of fea-
tures, CIT can be expected to be cost-effective compared
to random testingonly when constraints are present among
features. This suggests that such constrained situations should
be the main focus of CIT research, along with more realistic
and thorough empirical studies to better support the decision
process of choosing between CIT and random testing.

The paper is organized as follows. Section 2 formalizes the
testing problem we address in this paper. Section 3 provides
a formal analysis of CIT compared to random testing. The
theory is extended in Section 4 to consider the cases of
multiple faults rather than just considering the triggering of at
least one failure. Section 5 discusses the practical implications
of such formal analysis and provides an initial set of practical
guidelines. Threats to the validity of these theoretical analyses
are discussed in Section 6. Finally, Section 7 concludes the
paper.

2 PROBLEM DEFINITION

In order to improve the probability of finding faults, CIT aims
at generating test suites with high coverage of feature interac-
tions. The “covering array” problem, which is widely studied
in the mathematical community [11], can be considered to
be a specific strategy to support CIT. In this paper, we use
the notation provided in [11]. In particular, “A mixed level
covering array MCA(N ; t,k,(v1,v2,...,vk)) is anN × k array.
Let {i1, . . . ,it} ⊆ {1, . . . ,k}, and consider the subarray of size
N × t obtained by selecting columnsi1, . . . ,it of the MCA.
There are

∏t

i=1 vi distinct t-tuples that could appear as rows,
and an MCA requires that each appears at least once. We use
the notation CAN(t,k,(v1,v2,...,vk)) to denote the smallest
N for which such a mixed covering array exists” [11]. In
other words,N is the number of test cases,k is the number
of features,vi is the number of values theith feature can
assume, andt is the strength of the array. Without loss of
generality, let us considervi+1 ≤ vi, i.e., we order the values
vi in descending order. Furthermore, we map each feature to a
numerical value in{1, . . . ,vi}. For example, if theith feature
is binary, its values will be mapped to{1,2}.

Once a strengtht is chosen, then we should obtain a test
suite of sizeN where N is as small as possible (ideally,
N = CAN(t,k,(v1,v2,...,vk))) and all the t-wise feature
combinations are present. If a fault is revealed when a precise
combination of up tot features is selected for a product, then
CIT will guarantee to reveal such a fault.

In many cases, there can be constraints among features
[8], [17], [31], [4]. For example, a particular feature can be
selected only if another specific one is selected as well. There
can be several ways to represent this type of constraints,
using for example feature diagrams. At a high level, we can
see these constraints as first order logic predicates, which
determine whether a particular combination of features would
represent a valid product. In this context, CIT aims to generate
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minimal test suites for which allt-wise feasible combinations
of features are present at least once.

3 COMPARISON WITH RANDOM TESTING

Assume that a CIT tool is used to generate a test suite of size
N for a given strengtht when no constraint among features is
present. The motivation of doing so would be to detect feature
interaction faults up tot-wise interactions and at the lowest
execution cost. However, how would random testing perform
in this context? In other words, what would be the probability
that a randomly generated test suite of sizeN would detect
t-wise interaction faults? In practice, because of the overhead
incurred by CIT to generate covering arrays, one could even
run a number of random test cases that is significantly larger
than N within the same time that CIT takes to generate
and executeN test cases (as long as an automated oracle
is available, e.g., does the program crash?). This questionhas
significant practical implications: what would be the pointof
using a complicated and computationally expensive technique
such as CIT if, in some circumstances, random testing offers
a similar performance at a much lower cost?

In this paper, with the term “random testing” we mean the
following: sampleN test cases at random, where the value of
each of the features in theith column is randomly chosen with
uniform probability from1, . . . ,vi. Notice that this procedure
could be repeatedq times and then select the best test suite,
where the best test suite would be the one with highest number
of coveredt-wise interactions. Based on the computational
time we can afford (i.e., the testing budget), we could run
random testing withq as high as necessary to obtain a full
t-wise coverage. In this paper, however, we only consider the
caseq = 1. Larger values ofq would of course lead to higher
fault detection. In a comparison with CIT, we could choose a
value for q that corresponds to the CIT overhead required to
generate covering arrays.

As discussed in the introduction, there exists empirical work
that has shown good performance for random testing when
tackling combinatorial testing problems (e.g., [3], [37],[14]).
However, because the empirical nature of these works, their
results are difficult to generalize to all values oft, k, vi and
N . To address this problem, in this paper, we provide general
results that are valid for any choice of those parameters. We
first provide a lower bound to the probability that random
testing triggers at least one failure related tot-wise faults
for a given test suite sizeN . This theorem is then used to
prove (1) a high lower bound, that is independent ofN ,
to the effectiveness of random testing compared to CIT and
(2) that for a largek the two testing techniques have the
same effectiveness. Then, in the next sections, we analyze the
probabilities that random testing finds one or more different
faults.

In this paper, we mainly deal withlower boundsrelated
to some probabilities that describe the dynamics of random
testing when applied to find interaction faults. AssumeP to be
the probability that random testing triggers at least one failure.
A probability is always bounded in[0,1]. Random testing
might or might not trigger a failure when run once. Depending

on the problem instances, the probabilityP could significantly
vary. For example, on very faulty software we could have
P ≃ 1, whereasP could be much lower in cases where only
a single feature combination triggers failures. Because before
running any large empirical study it would not be possible
to know P in advance, then it would be of practical interest
to know a lower boundb (i.e., P ≥ b) that is valid forany
problem instance.

A trivial lower bound isb = 0, but it is practically useless.
A useful lower bound should be a bound that is “high” (where
what is considered “high” depends on the application context).
For many probability problems, there can always exist at least
one problem instance for whichP ≃ 0. Even if for these types
of problems for most of the instancesP could be high, the
fact that at least one instance has very lowP would result in
a useless lower boundb. In other words,b can be considered
a guarantee on the worst case scenario (in our case, a problem
instance).

Another important thing to keep in mind regarding lower
boundsb is the mathematical approximations used to make the
theoretical analyses tractable. For example,P ≥ b does not
necessarily mean that there exist at least one problem instance
for which P = b. A lower boundb might not be tight, in the
sense that it could be the case thatP ≥ b∗, whereb∗ > b.
This is the same concept of tight bounds as in the analysis of
algorithm performance [12]. Assume for example the function
f(x) = 2x+1 representing the performance of an algorithm as
a function of some variablex. One could for example prove
a lower boundf(x) = Ω(log x), which is correct but not
tight. In this case, a tight asymptotic lower bound would be
f(x) = Ω(x), where a tight asymptotic upper bound would
be f(x) = O(x). To prove that a lower boundP ≥ b is tight,
one would need to find at least one instance for whichP = b.
Unless one proves that a lower bound is tight, then it might
be possible that a higher lower bound exists.

The first theorem, regarding random testing applied to CIT
problems, that we prove in this paper is:

Theorem 1. Given a strengtht, and a number of featuresk
defined by(v1,v2,...,vk), then a random test suite of sizeN
would have probabilityPt of triggering at least one failure
related tot-wise interaction faults that is at least:

Pt ≥ 1−
(

1−
1

∏t

i=1 vi

)N

. (1)

Proof:
To prove this theorem, we first need to calculate what is the

lowest probabilitypf for which a random test case can reveal
a t-wise interaction fault. Then, by using the properties of the
geometric distribution[15], we can analyze the fault detection
probability forN test cases.

If there is onet-wise interaction fault, considering a uniform
sampling probability, then the probability of detecting itwould
be lower bounded by the faulty combination that is most diffi-
cult to sample. In other words, the lower bound in Inequality1
corresponds to the situation where only one combination oft
features triggers a failure and that combination is the most
unlikely to randomly sample. GivenFf = {f1, . . . ,ft} the



4

indices of the features for which there exists a set of values
that trigger a failure, then a random test case would only cover
one of these

∏

i∈Ff
vi combinations oft features. Therefore:

pf ≥
1

∏

i∈Ff
vi

≥
1

∏t

i=1 vi
.

The first inequality above holds since the number of faulty
combinations may be higher than one, and the second inequal-
ity holds sincevi values are ordered in descending order and
therefore the product of the firstt vi is the highest among all
possible subsets of sizet. A random test case would trigger
a failure with probabilitypf . It would not trigger a failure
with probability 1 − pf . N test cases would not trigger any
failure with probability(1− pf )

N . The probability that inN
test cases at least one triggers a failure would be equal to1
minus the probability that none of them triggers any failure.
Therefore:

Pt = 1− (1− pf )
N ≥ 1−

(

1−
1

∏t

i=1 vi

)N

.

If we use a combinatorial testing tool to generate a test
suite of sizeN , we can use Inequality 1 from Theorem 1 to
provide a lower bound to the effectiveness of random testing
applied on the same problem (i.e.,N random test cases). Table
1 shows the benchmark that is usually employed to evaluate
unconstrained CIT techniques (used in [17]). The notation to
represent the features in a CIT problem is as follows: we have
a list of yj , wherey is a valuevi and j is the number of
features of that type. For example,34 means that there are
four features, each one withvi = 3 possible values. The “Best
reportedN ” column in the table is the lowestN reported in
the literature for each CIT problem, along with the reference
providing it. This is in turn used to compute the “Lower Bound
for P ” using Inequality 1, which ranges in this benchmark
from 0.632 to 0.945. Though we have, however, no guarantee
that this range is close to the real range, without the need to
run any experiment on that benchmark, we can use Theorem 1
to assess whether, for a specific CIT problem, random testing
would have high probability of detecting at least onet-wise
fault, if any is present.

It could be argued that existing CIT tools presented in
the literature are not optimal, in the sense that they do not
guarantee to generate test suites of minimal size, i.e.,N =
CAN(t,k,(v1,v2,...,vk)). Maybean optimal tool could generate
much smaller test suites than the ones reported in the literature
(3rd column, Table 1), whichcould lead to much worse results
for random testing when compared to an optimal CIT tool.
However, the following theorem proves this conjecture wrong
by showing that random testing has a relatively high minimum
level of effectiveness that is consistent with the results in Table
1 and is independent ofN :

Theorem 2. For any strength t, any number of featuresk
defined by(v1,v2,...,vk), a random test suite of sizeN ≥
CAN(t,k,(v1,v2,...,vk)) would have probabilityPt of trigger-
ing at least one failure related tot-wise interaction faults that
is at leastPt > 0.63.

TABLE 1
Benchmark of CIT problems used in [17]. For each of

them, Inequality 1 is used to provide a lower bound to the
probability P that random testing would trigger at least
one failure related to t-wise interaction faults for same

number N of test cases.

t Features Best ReportedN Reference Lower Bound

2 3
4 9 [26] 0.654

2 5
1
3
8
2
2 15 [9] 0.645

2 3
13 15 [26] 0.829

2 4
1
3
39
2
35 21 [9] 0.839

2 5
1
4
4
3
11
2
5 21 [9] 0.659

2 4
15
3
17
2
29 30 [9] 0.856

2 6
1
5
1
4
6
3
8
2
3 30 [9] 0.638

2 7
1
6
1
5
1
4
5
3
8
2
3 42 [9] 0.637

2 4
100 45 [9] 0.945

2 6
16 62 [9] 0.826

2 7
16 84 [10] 0.823

2 8
16 110 [10] 0.823

2 8
17 111 [10] 0.826

2 10
20 162 [10] 0.804

3 3
6 33 [5] 0.712

3 4
6 64 [5] 0.635

3 5
2
4
2
3
2 100 [9] 0.634

3 5
6 125 [5] 0.634

3 5
7 180 [10] 0.764

3 6
6 258 [10] 0.698

3 6
6
4
2
2
2 272 [7] 0.717

3 10
1
6
2
4
3
3
1 360 [9] 0.633

3 8
8 512 [5] 0.632

3 7
7 545 [7] 0.796

3 9
9 729 [5] 0.632

3 10
6 1100 [10] 0.667

3 10
10 1219 [5] 0.705

3 12
12 2190 [5] 0.719

3 14
14 3645 [5] 0.735

Proof: To prove this theorem, we first need consider a
lower bound for CAN(t,k,(v1,v2,...,vk)). A trivial bound is
CAN(t,k,v) ≥ vt, which in the case of mixed level arrays
it would be CAN(t,k,(v1,v2,...,vk)) ≥

∏t

i=1 vi [11] (recall
the firstt vi are the largest). Then, we consider the following
inequality [29], [28]:

(

1 +
w

x

)x

< ew .

By using these two properties, from Theorem 1 it follows:

Pt ≥ 1−
(

1− 1∏
t
i=1

vi

)N

≥ 1−
(

1 + −1∏
t
i=1

vi

)

∏t
i=1

vi

≥ 1− e−1 > 0.63 .

The first inequality above comes from Theorem 1. The
second inequality simply results from replacingN with its
lower bound.

Since a test suite generated with a CIT tool, if it covers
all the t-wise combinations, would always satisfyN ≥
CAN(t,k,(v1,v2,...,vk)), we can therefore apply Theorem 2
when comparing CIT and random testing. Furthermore, as
further evidence, the general lower bound of 63% proven in
Theorem 2 always holds for the bounds shown in Table 1.



5

Another important point to clarify is that Theorem 1 and 2
only provide lower bounds. The actual fault detection ability
of random testing could be much higher, hence the need to
perform empirical studies in realistic settings.

Given that the most important challenge in the software in-
dustry lies in the testing of large (sub)systems and components,
it is therefore important for test techniques to be scalable.
One motivation for random testing is its ability to easily
generate large numbers of test cases and therefore exercise
large systems with extremely large test suites, assuming there
is an automated oracle. One important question in the context
of this paper is to determine how scalable is random testing
compared to CIT for a large number of featuresk.

Theorem 2 provides aP > 0.63 lower bound to the
effectiveness of random testing. What will happen for large
numbers of featuresk? Will the effectiveness of random testing
stay close to0.63 or increase? If the former would be the
case, then it could be argued that CIT could be still useful,
for example in the context of systems with high dependability
requirements. However, virtually all techniques reportedin the
literature show scalability problems in handling large number
of features [19], [30]. This arises from the fact that most
CIT techniques rely on very complex computations, in which
for example constraint solvers are employed. Interestingly, the
following theorem proves that, for a largek, when we compare
random testing with CIT using same sizeN , thenP converges
to 1, i.e., there is no difference among the fault detection
ability of the two techniques.

Theorem 3. For any strength t, for an increasing number
of featuresk defined by(v1,v2,...,vk) with vi ≤ m for
some constantm, then random test suites of sizeN ≥
CAN(t,k,(v1,v2,...,vk)) would have probabilityPt of trigger-
ing at least one failure related tot-wise interaction faults that
converges tolimk→∞ Pt = 1.

Proof:
Apart from the trivial lower boundmt for the number of

required test casesN , as Colbourn states in [11], the only
other known lower bound forN is due to Stevenset al. [34].
For t = 2, they proved that the minimal size of required test
cases for a covering array increases in the order oflog(k).
Because for lower strengtht and cardinality of valuesvi
we need less test casesN [11], from [34] it follows that
CAN(t,k,(v1,v2,...,vk)) = Ω(log(k)) for t > 2 as well. Using
Theorem 1, we can hence prove:

lim
k→∞

Pt ≥ lim
k→∞

1−
(

1−
1

mt

)Ω(log(k))

= 1 .

Given Theorem 1, the inequality above holds asm is always
above or equal to actualvi values andN is replaced with its
lower bound as a function ofk.

Notice that Theorem 3 has some relations with a theorem
proven in [18] which states that, under the constraintN ≥
log(k) and a fixedv for the number of values each feature
can have, then fork → ∞ a random test suite of sizeN
would cover all possiblet-wise combinations. When we look
at Table 1 with the result of Theorem 3 in mind, we can see

that the highest lower bounds are obtained for large numbersof
features regardless of sizeN . For example, the highest lower
bound forP (i.e., 0.945) is for 4100, in which there are100
features, though onlyN = 45 is necessary. On the other hand,
in the trivial case case42, althoughN = 16 is nearly a third
of 45, we have a lower bound forP equal to0.632 because
only two features are involved.

Notice that Theorem 3 only shows convergence for an
infinite number of featuresk. Though Theorem 3 cannot be
applied directly to any realistic scenario, it can be usefulfor
scalability analyses since it provides an “expected trend”in
performance, i.e., the larger the system the easier it will be
for random testing to perform well. This is a rather non-
intuitive result as random testing would be expected to work
fine on small toy problems, but then large systems would
be expected to warrant more sophisticated and cost-effective
testing techniques. Theorem 3 formally proves the opposite.

4 DETECTION OF MULTIPLE FAULTS

Until this point, we have only analyzed random testing from
the point of view of triggering at least one failure. Software
testing can only trigger failures and not directly reveal faults.
If one has a test suite in which more than one test case fails,
then some or all of these failures might or might not be related
to the same fault. To distinguish among faults, a software
tester has to debug and fix the code, and then re-run the test
suite to see if any test case is still failing. Real-world systems
typically contain several faults and it would be hence important
to study how well random testing fares in revealing a set of
combinatorial interaction faults.

Assume that the system under test hasz interaction faults,
whose level of interaction is at mostt. A test suite generated
with a CIT tool at strengtht would be guaranteed to find all of
these faults (i.e., have at least one test case that fails foreach
one of thez faults). In this section, for same test suite size,
we prove lower bounds on how many faults would be found
by applying random testing. LetF be the random variable
representing how many faults are found by random testing,
then:

Theorem 4. For any strength t, any number of featuresk
defined by(v1,v2,...,vk), and z faults detectable at feature
interactions not higher thant, a random test suite of sizeN ≥
CAN(t,k,(v1,v2,...,vk)) would detect at least63% of the z
faults on average, i.e.,E[F ] > 0.63z.

Proof:
For each faulti, let us consider a random variableIi

representing whether that fault has been revealed (Ii = 1)
or not (Ii = 0) when the test suite has been executed. Using
the same method applied in the proof of Theorem 2, then we
can prove:

E[I] = 0P (I = 0) + 1P (I = 1)
= P (I = 1)

≥ 1−
(

1− 1∏
t
i=1

vi

)N

> 0.63 ,

from which it follows:
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E[F ] = E[
z

∑

i=1

Ii] =
z

∑

i=1

E[Ii] > 0.63z .

A test practitioner could also be interested to know what
would be the probabilityAz of finding all z faults with a test
suite of sizeN . For random testing, a lower bound for such
a probability is given in the following theorem:

Theorem 5. Given a strengtht, a number of featuresk
defined by(v1,v2,...,vk), and z faults detectable with feature
interactions not higher thant, then a random test suite of size
N would have probabilityAz of revealing all thez interaction
faults that is at least:

Az ≥
z

∑

j=0

(−1)j
(

z

j

)

(

1−
j

∏t

i=1 vi

)N

. (2)

Proof:
Given z faults, the worst case for a testing technique is

when each test case can reveal at most one fault at the time.
This would require to generate and run at leastz test cases.
On the other hand, if the faulty feature combinations are all
dependent on different features, then ifz × t ≤ k it could be
possible to reveal all the faults with a single test case.

The probability distribution of findingz distinct interaction
faults with N test cases is equivalent to theoccupancy
problem [15]. In the occupancy problem,N balls would be
randomly assigned toz baskets with uniform probability, i.e.,
a ball will end up in a specific basket with probability1/z.
The probability distribution of the number of baskets that have
at least one ball can be found in [15].

In our case,z are the faults, andN are the test cases, which
might or might not trigger any failure. There are two points
that need to be handled to apply the occupancy problem theory
to analyzeAz. First, because we deal with a lower bound for
Az, we should consider the worst probability for a random
test case to trigger a failure:1/

∏t

i=1 vi. In this case, the
lower bound for the probability of covering a particular fault
would be equal for all the faults. For simplicity, let us define
w =

∏t

i=1 vi. A test case would hence reveal a particular fault
triggered by one or more combinations with probability at least
1/w, that is the probability for the combination that is most
difficult to sample randomly. Second, since there are many test
cases that do not trigger any failure,1/w < 1/z and therefore
w > z, and so we cannot directly apply the occupancy
problem theory (as the sum of thesez equal probabilities
does not add up to1). We made a simple extension to the
theory of occupancy problem to handle the cases in which
the probability of a ball ending in a particular basket is
1/w ≤ 1/z, wherew is equal for all the baskets. This could
represent the fact that balls might just be discarded without
ending in any of the baskets. A complete analysis of this
“generalized” occupancy problem is presented in Appendix A.
Using this generalized theory, we can finally prove:

Az ≥
(

z
0

)

(

1− 0
w

)N
∑z−0

j=0(−1)j
(

z−0
j

)(

1− j
w−0

)N

=
∑z

j=0(−1)j
(

z
j

)

(

1− j∏
t
i=1

vi

)N

.

The lower bound in Inequality 2 is not easy to under-
stand and interpret without computing illustrative examples.
In Table 2, we consider the same case studies from Table 1,
where we calculate lower boundsAz for z ∈ {2,4,8}. In
contrast to previous bounds in this paper, the lower bounds
coming from Theorem 5 are not particularly useful from a
practical standpoint as they are rather low, though what is
an acceptable threshold depends on the application context.
Recall that having a “low” lower bound doesnot necessarily
mean that the actualAz is low. In fact, lower bounds might
not be tight. Of particular interest is the case of features4100,
in which, if z = 8, then it is proven that there is at least a62%
probability of finding all of those eight faults. This relatively
high value can be explained by the fact that it is the case with
most features (100). If we look back at Table 1, recall that this
case was also the one with highest lower bound for triggering
at least one failure.

Similarly to Theorem 3, we can prove that for a large
numberk of features, the probabilityAz of finding all the
z faults converges to 1. Formally:

Theorem 6. For any strength t, for increasing number of
featuresk defined by(v1,v2,...,vk) with vi ≤ m for some
constantm, and z faults detectable with feature interactions
not higher thant, then a random test suite of sizeN ≥
CAN(t,k,(v1,v2,...,vk)) would have probabilityAz of reveal-
ing all thez interaction faults that converges tolimk→∞ Az =
1.

Proof:
Using the lower bound in Inequality 2, using the same

method as in the proof of Theorem 3, then:

limk→∞ Az ≥ limk→∞

∑z

j=0(−1)j
(

z
j

)

(

1− j∏
t
i=1

vi

)N

= limk→∞ 1 +
∑z

j=1(−1)j
(

z
j

)

(

1− j∏
t
i=1

vi

)N

≥ 1 + limk→∞

∑z

j=1(−1)j
(

z
j

)

(

1− j
mt

)Ω(log k)

= 1 +
∑z

j=1(−1)j
(

z
j

)

· 0

= 1 .

However, from a practical point of view, Theorem 6 is of
less interest compared to the others. Not only it is valid only
for k → ∞, but it also assumesz to be constant. For larger
systems, one would expect more faults than in a small system.
We include Theorem 6 in this paper for sake of completeness,
as it can be a starting point for further analyses on the topic
(e.g., consideringz in scalability analyses as a functionG of
k: z = G(k)).
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TABLE 2
Benchmark of CIT problems used in [17]. For each of them, we report lower bounds for the probability Az of finding

all z faults for different values of z.

t Features N Reference Lower Bound forA2 Lower Bound forA4 Lower Bound forA8

2 3
4 9 [26] 0.411 0.140 0.005

2 5
1
3
8
2
2 15 [9] 0.406 0.149 0.013

2 3
13 15 [26] 0.681 0.446 0.161

2 4
1
3
39
2
35 21 [9] 0.700 0.478 0.202

2 5
1
4
4
3
11
2
5 21 [9] 0.428 0.172 0.021

2 4
15
3
17
2
29 30 [9] 0.730 0.525 0.257

2 6
1
5
1
4
6
3
8
2
3 30 [9] 0.403 0.155 0.019

2 7
1
6
1
5
1
4
5
3
8
2
3 42 [9] 0.402 0.156 0.021

2 4
100 45 [9] 0.893 0.795 0.626

2 6
16 62 [9] 0.680 0.458 0.202

2 7
16 84 [10] 0.676 0.454 0.201

2 8
16 110 [10] 0.677 0.456 0.203

2 8
17 111 [10] 0.681 0.462 0.209

2 10
20 162 [10] 0.645 0.415 0.169

3 3
6 33 [5] 0.503 0.245 0.052

3 4
6 64 [5] 0.401 0.157 0.023

3 5
2
4
2
3
2 100 [9] 0.401 0.158 0.024

3 5
6 125 [5] 0.400 0.159 0.024

3 5
7 180 [10] 0.584 0.339 0.113

3 6
6 258 [10] 0.487 0.236 0.055

3 6
6
4
2
2
2 272 [7] 0.514 0.263 0.068

3 10
1
6
2
4
3
3
1 360 [9] 0.400 0.159 0.025

3 8
8 512 [5] 0.400 0.159 0.025

3 7
7 545 [7] 0.634 0.401 0.160

3 9
9 729 [5] 0.400 0.159 0.025

3 10
6 1100 [10] 0.445 0.198 0.039

3 10
10 1219 [5] 0.496 0.246 0.060

3 12
12 2190 [5] 0.516 0.266 0.071

3 14
14 3645 [5] 0.540 0.292 0.085

5 PRACTICAL IMPLICATIONS

The theorems proven in this paper can be used to analyze
in a new light the applicability of CIT ([6], [36], [23], [25],
[24]) in practical contexts, in particular in the presence of
a large number of features. One should consider whether the
expected improvement in fault detection (if any) given by CIT
compensates for its much higher computational cost, due to
the generation of covering arrays, when compared to random
testing. As we have seen, even in the unlikely worst case,
we have proven that random testing is surprisingly effective
(Pt ≥ 0.63) and is likely to be nearly as effective as CIT in
detectingt-wise interaction faults for large values ofk.

This analysis is particularly relevant whenautomated or-
acles are available, as for example in model-based testing
of industrial embedded systems [1]. In this case, given the
same computational resources, random testing could then
run many more test cases, which could lead to higher fault
detection than CIT for a fixedt when accounting for the
detection of faults at higher strength levels. For some real-
world industrial problems in which there can be thousands
of features, then random testingmight outperform CIT unless
CIT’s scalability is improved. However, this all depends on
the number of featuresk, the cost of running a CIT tool, and
the computational cost of evaluating the automated oracles
and running the test cases. Based on such information, a
practitioner could decide whether to use random testing rather
than CIT. To the best of our knowledge, we are not aware
of any empirical study in the literature in which real-world

industrial systems (with real faults) with thousands or even
hundreds of features have been analyzed. For example, even
if there has been work on relatively large open-source systems
[8], those were only in the order of hundreds of features (e.g.,
the largest system in [8], GCC, has 199 features). Therefore,
at the current moment we do not know what is the threshold
k∗ after which random testing becomes more cost-effective,
as it would require an empirical investigation in specific
industrial contexts. Our results, however, suggest that such an
investigation should be performed in any context where CIT
is being considered.

When no automated oracle is available, the test case outputs
need to be manually evaluated and the CIT computational time
overhead becomes irrelevant when compared to the required
manual labor involved. Generating random test cases for as
long as CIT takes to select test cases would not be a reasonable
option as it would entail to run and evaluate more test cases
than CIT. Given a configuration problem, a practitioner could
use a CIT tool to generate test suites for different strengths t.
For example, Table 3 shows test suite sizes for a415 problem
using the IPOG tool [25], using strengths fromt = 3 to t = 6.
On this (small) problem, IPOG is pretty efficient in terms of
time (reported time values in [25] range from few milliseconds
to half an hour). For example, IPOG can generate a test suite
of size 181 that guaranteesthat all 3-wise interactions are
covered. Using Theorem 1, we can calculate a lower bound
for random testing to trigger at least one failure related tot-
wise faults. Fort = 3, we have a probabilityPt that is at
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TABLE 3
Test suite sizes for CIT problem 415 using the IPOG tool
as reported in [25]. For same sizes and t, the table also

shows probability lower bounds of random testing to
trigger failures related to t and t+ 1 interaction faults.

t Size Lower Bound forPt Lower Bound forPt+1

3 181 0.942 0.508
4 924 0.973 0.595
5 4519 0.988 0.668
6 20384 0.993 0.712

least 0.94 (see Table 3). Although the true probability could
be higher, it canneverbe equal to1 because random testing
is a randomized algorithm. Therefore, under these conditions
one could argue that CIT is a better option to find allt-wise
faults when automated oracles are missing.

However, to the best of our knowledge, since empirical anal-
yses in the literature do not consider industrial cases in which
there could be hundreds or even thousands of parameters to
configure (e.g., in [25] the largest problem instance has only
20 features), the cost of CIT could be prohibitive in practice.
But, when accounting for the fact that in practice test budgets
are limited and often severely constrained, even in the cases
in which the CIT overhead is affordable and no automated
oracle is available, there are at least two related conditions
under which random testing might still be preferred:

1) When information is required about fault detection for
interaction faults at a higher strength than the selectedt
.

2) When there are strict constraints on the testing budget.

Let us go into more details regarding these two conditions.
Following the previous example, a CIT suite of181 test cases
would guarantee to find all the faults up to interaction strength
3. But what if the system under test has no fault at any
level up to 3, and rather it has faults at levelt = 4? In
practice, a software tester would not know which type of
faults are present in the system before performing extensive
testing. Furthermore, current CIT tools used at strengtht do
not give any guarantee on the probability of finding faults at
interactions higher thant. If a CIT tool is deterministic (or
if it has a bias toward some configuration patterns), then it
would be pretty easy to construct problem instances for which
it cannot, for example, find somet+ 1 interaction faults. On
the other hand, random testing wouldalwayshave a non-zero
probability of finding any interaction fault at any strengtht.
But if such probability is low, then it would be of little practical
interest. We used Theorem 1 to compute the lower bound of
probabilityPt+1 and Table 3 report probability values ranging
from 50% to 71%. Let us consider the case wheret = 6.
Using a tool such IPOG would take half an hour (using the
same machine as in [25]), and would result in a test suite
fully guaranteeing the finding of6-wise interaction faults and,
to the best of our knowledge, no guarantee regarding7-wise
faults. On the other hand, given the same number of test cases
N = 20384, random testing would take only few seconds to
run, and would haveat leasta 99% probability of triggering

at least one failure related to6-wise faults, andat leasta 72%
guaranteedprobability of triggering at least one failure related
to 7-wise faults.

Notice that, as discussed above, if no automated oracle
is available, running and evaluating20384 test cases would
overshadow any computational cost for test data generation.
Even if we consider a less demanding criterion, as for example
t = 3, then running and manually evaluating181 test cases
would still be very expensive in terms of manual labor.
However, in this case random testing would have at least a
94% probability of triggering failures related to3-wise faults,
and at least a guaranteed50% probability of triggering failures
related to4-wise faults. We have no guarantee regarding the
latter with CIT.

It could be argued that, if one wants to have a100%
guarantee of findingt + 1 faults, then the CIT tool should
be run with strengtht + 1. Unfortunately, this is not always
possible in practical contexts with limited budgets. Because
test cases might have to be run on actual hardware or in spe-
cialized testing labs, budget limitations can be quite inflexible
in practice. This practically entails that a tester cannot,in many
circumstances, run as many test cases as ideally needed. For
example, this is a case we encountered when applying model-
based testing on the video-conference system, for which we
had to develop sophisticated techniques to choose subsets of
test cases that could be run within the testing budget [20],
[21]. Considering the case in Table 3, a testing budget of 400
test cases would be significantly more than what CIT yields
with t = 3 (181) but much less than what is obtained with
t = 4 (924). Table 4 shows that, if one uses random testing to
choose those 400 test cases, thenP3 ≥ 99% andP4 ≥ 79%
(the table also shows the cases for test suite sizes2,000 and
10,000, for which we can see similar trends). From a practical
standpoint and in this particular case, it could be better to
use random testing since the probability of triggering failures
related to3-wise faults is very close to 1 but the probability
for 4-wise faults is still rather high, something for which we
have no guarantee with CIT at strengtht = 3. It might further
be argued that one could rather extend the test suite generated
at t = 3 by adding 219 new test cases, or reducet = 4 by
removing 524 test cases. However, how increasing or reducing
the test suite is actually performed would have strong impact
on the resulting probability of finding4-wise faults. But there
might very well be cases in which such an approach could
be better than generating 400 test cases directly with random
testing. However, even if empirical studies would support
such a conjecture, we would still need to prove what could
happen in the worst case. Unfortunately, as already mentioned
above, current CIT tools do not provide any formally proven
guarantee on the probability of finding interaction faults at
higher levels thant. On the other hand, using random testing
on that example wouldguaranteeto haveP4 ≥ 79%. In many
critical systems, a guarantee of79% given by random testing
would be far better than no guarantee at all.

In case of limited testing budget, say 400 test cases, a CIT
tool could be designed to maximize the number of distinct
covered configurations (as recently done in [16]). A CIT tool
could guarantee a3-wise coverage and try to maximize the
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number of4-wise combinations in the constructed 400 test
case suite. In this case, each4-wise interaction fault would
be either found or not. If one repeats such an experimentn
times, and counts the number of experimentsa in which at
least one4-wise fault is found, then the probability that a
CIT tool finds at least one4-wise fault (triggering at least
one failure related to one4-wise fault) could be estimated
with P4(CIT ) ≃ a/n if n is large enough. If the employed
CIT tool is based on a deterministic algorithm, then it would
be eitherP4(CIT ) = 0 or P4(CIT ) = 1, as the covered
configurations would be always the same in alln experiments.
On different fault patternsf (i.e., combinations of features that
result in triggering a failure), then we would have different
P f
t (CIT ). For example, for a fault patternf ′ where only one

single feature combination triggers failures, we would likely
obtain aP that is lower than in the cases of fault patterns
where many combinations trigger a failure.

If one considers the space of all possible fault patterns
F , it could be possible in principle, based on the previous
example, that such a CIT tool would haveon averagea
higherP4 than random testing (RT):

∑

f∈F P f
4 (CIT )/|F | >

∑

f∈F P f
4 (RT )/|F |. However, particularly in the context of

critical systems, it might be important to give bounds on
the worst case scenario. For example, if the CIT tool is
deterministic, then it is trivial to see that there would be
several fault patterns for whichP f

4 = 0. If a CIT tool is
based on complex algorithms (as it is usually the case), then
it could be difficult (albeit not impossible) to provide non-
trivial lower bounds to the worst case scenarios. In fact, it
would be necessary to prove a probability lower bound for
the combination that is least likely to be sampled.

Using the theorems presented in this paper, we can study the
effectiveness of random testing to detect failures at interactions
higher thant, for a fixed test suite sizeN . In this context, a
theoretical comparison with CIT techniques is not possible,
as it would be tool dependent. However, Kuhnet al. [22]
report an empirical study that shows one case in which random
testing produces better results than CIT (using IPOG). The
case study was on detecting deadlocks in a grid computer
network. Given the same test suite sizeN , random testing
was better than pairwise testing, but it fared worse than4-
wise testing (if we ignore the cost of generating the test cases).
The explanation was that faults were present up to interactions
t = 4 and pairwise testing does not give any guarantee for
finding t > 2 faults. In that particular case study, random
test suites were more effective at detecting the latter type
of faults. On the other hand,4-wise testing was of course
revealingall t = 4 faults, whereas random testing expectedly
could not. In practice, before testing is completed, the types
of faults present in the tested system are not known. Even in
the ideal case in which one would predict the type of faults
likely to be present in the system (e.g., faults are present only
for interactions up tot = 6), the resulting test suites generated
with a CIT tool could be too large too be evaluated (e.g., due
to the absence of automated oracles), such that a lowert might
need to be chosen. Therefore, it is not possible to claim with
100% certainty that a test suite generated with a CIT tool

would be better at detecting faults than a test suite chosen
at random. Notice that the work of Kuhnet al. [22] was of
empirical nature and that, as a result, results might be different
on other case studies. However, what is important is that this
study shows how and why random testing can outperform CIT
in practice.

From a practical standpoint, a test engineer would need to
decide whether to employ a CIT tool or to rely on random
testing. As we discussed in this paper, this choice is far from
trivial, as none of these techniques can be expected to be
superior to the other in all testing scenarios and case studies.
Nevertheless, it is important to summarize what we have learnt
so far and provide some guidelines that would be valid in
most cases in order to help practitioners in choosing the most
appropriate test technique in context. However, it is important
to keep in mind that such guidelines might not hold for all
possible cases, as exceptions likely exist, and practitioners
should therefore exercise discretion in using them.

• If there are numerous features (e.g., in the order of
hundreds or thousands) and the employed CIT tool does
not scale (i.e, it takes hours/days before generating a test
suite, or it simply runs out of memory and crash), then
random testing is a viable alternative.

• If there are automated oracles, then a software tester
might want to generate test cases until a first failure
is triggered. In this case, especially in cases where the
number of features is large and the overhead of the CIT
tools is expected to be large, random testing can be
a better option as that overhead could rather be spent
in running more test cases. Furthermore, there would
be no need to specify a specific strengtht (which is
always a difficult decision), which in the context of
constrained resources is also impractical as it entails that
test engineers should run a test suite of specific size
N that may not be easily accommodated by existing
resources in the presence of numerous features.

• If testing budgets are strictly constrained and only a
specific numberZ of test cases can be run (e.g., there is
hardware-in-the-loop testing or a test lab needs to booked
in advance for a specific amount of time), then random
testing can be used to generate the exact number of test
cases that can be run. With a CIT tool, once a strengtht
is chosen, the number of test cases generated can much
lower or higher thanZ.

• If dependability requirements are high and strict testing
guarantees need to be provided (e.g., when testing safety
critical software), then a CIT tool may be a better option
as it guarantees to find all faults up to strength level
t. However, if only a low strength (e.g.,t = 2) can
practically be used (e.g., the resulting test suite is too
large to run or be manually evaluated), then random
testing might become a better alternative as it provides
lower bounds on the probability of finding faults at higher
levels thant, whereas current CIT tools do not. For low
strength levels, as demonstrated by existing case studies,
random testing may turn out to be better than CIT at
finding faults at higher levels thant.
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TABLE 4
For CIT problem 415, three different test suite sizes are considered, with lower bounds of the probability of random

testing to trigger failures related to t-wise faults. Note that the probability values 1 are only due to numerical
approximations.

Size Lower Bound forP3 Lower Bound forP4 Lower Bound forP5 Lower Bound forP6

400 0.998 0.791 0.323 0.093
2000 1.000 1.000 0.858 0.386
10000 1.000 1.000 1.000 0.913

• In all the other cases in which there are no automated
oracles, the number of features is not so high as to lead
CIT tools to large computational overheads, and there are
no strict testing budgets, then CIT is likely to be a better
option than random testing.

Our analysis relies on the assumption that there are no con-
straints among features. However, in the case of constraints,
the performance of random testing could be arbitrarily low
compared to CIT. To clarify this point, consider the following
example: pairwise testing (t = 2), k binary featuresXi and
the constraintX1 ∧X2 ⇒ X3 ∧ . . . ∧Xk. In other words, if
the first two features are selected, then all the others have to
be selected. Assume also that failures are triggered only ifX1

andX2 are both selected. CIT tools such as [8], [17], [31], [4]
would not have any particular problem in generating2-wise
test suites (in fact, that constraint is pretty easy to solvewith a
constraint solver) and hence reveal a fault. On the other hand, a
random test case would have probabilityPX1∧X2

to generate a
valid test case that reveals a fault, that is onlyPX1∧X2

= 1/2k,
which would be extremely low even with a small number of
featuresk. But in the general case, whether constraint solvers
can be effective for this task still remains to be empirically
investigated in realistic settings, with large numbers of real
constraints.

6 THREATS TO VALIDITY

Threats tointernal validity for this work come from the fact
that mathematical analyses can be subject to errors. To reduce
the probability of this being the case, we have also carried
out simulations to verify them (whose details are not reported
in this paper as they do not add any valuable information).
This would be equivalent, in empirical studies, to “test” the
software tools (e.g., using JUnit for software written in Java)
that have been used to carry out the experiments. However,
simulations cannot be used to prove that a proof is error-free
though they are useful as supportive evidence.

Threats to theexternal validityof formal analyses depend
on the assumptions that are made. Depending on the validity of
these assumptions, the application of the theoretical results to
real-world scenarios could be compromised. In our theoretical
analyses, we have proved lower bounds to some probabilities
regarding the application of random testing applied to CIT
problems. We have not made any explicit assumptions in these
theorems. Some theorems, however, cannot be directly applied
in practical contexts, as they consider the theoretical case of an
infinite number of features (Theorem 3 and Theorem 6). Those
theorems are anyway valuable in scalability analyses, when

for example varying the number of features, to understand
and explain trends when comparing performance of CIT and
random testing. One possible threat to external validity isthat
we have only formally analyzed unconstrained CIT problems.
Although most CIT publications are on this subject [19], [30],
most CIT problems in industry could be of the constrained
type. But the research literature currently does not contain
enough empirical evidence to either accept or reject such an
hypothesis.

7 CONCLUSION

In this paper we have formally proven six theorems regarding
the effectiveness of random testing when applied to un-
constrained combinatorial interaction testing (CIT) problems.
These theorems provide general results that cannot be obtained
with empirical studies, though the latter are necessary to
refine our understanding. First, we proved that for anyt-wise
CIT problem (independently of its properties), random testing
would alwayshaveat leasta 63% probability of triggering at
least one failure related tot-wise interaction faults (if any is
present) when compared againstany CIT tool using the same
number of test cases. Second, perhaps more importantly, this
probability increases with the number of features present in the
software under test and converges to 1 (for infinite number of
features), that is to equal effectiveness with CIT techniques.
Given that current CIT tools suffer severe scalability problems
in the presence of large numbers of features, thus leading to
significant execution overheads to generate covering arrays,
this additional time could be easily used by random testing to
run more test cases if an automated oracle is available. Our
results suggest that in such situations random testing would
be effective at detecting interaction faults.

When no automated oracle is available, we have identified
realistic situations in which random testing might still bepre-
ferred: when there are strict constraints on the testing budget
and it is necessary to provide guarantees on the probabilityof
finding faults at interaction levels higher than the chosent. We
have shown that such guarantees, which are not provided with
current CIT techniques, can actually be obtained with random
testing.

Since one cannot assume that in practice CIT techniques
are necessarily better than random testing, our work motivates
the need for more empirical studies in realistic contexts to
compare the two approaches. The main goal should be to
refine the decision guidelines we provide in this paper in order
to help testers select, in practical contexts, between random
testing and CIT techniques.
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The theoretical results presented in this paper are only valid
in the absence of constraint among features. When there are
constraints (as it often happens in industrial systems), we
have shown that random testing might become very inefficient.
Therefore, the results of this paper should also be seen as a
way to motivate further research in CIT for the cases in which
feature constraints are present. These types of applications are
not so common in the literature [19], [30], but they have started
to get more attention in recent years (e.g., [8], [17], [31],[4]).

In the future, it will be important to study whether it is
possible to provide lower and upper bounds to the effectiveness
of random testing applied to constrained CIT problems. Such
results would help to quantify how much improvement a CIT
technique could achieve compared to simple and practical
testing techniques such as random testing.
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APPENDIX

In this appendix, we provide a simple extension to the occu-
pancy problem [15], in which we consider the case when balls
end up in a specific basket with probability1/w ≤ 1/z rather
than with probabilty1/z. Notice that, due to the simplicity
of this extension, and the wide applications of probability
analysis, it is likely that such generalized version has already
been studied in the literature (although we have not found any
reference). The formal proof in this appendix has hence been
included in this paper to make it self-contained. LetY be the
random variable representing the number of baskets that are
empty after samplingN balls. The following theorem provides
the probability mass function forY :

Theorem 7. In the generalized occupancy problem where
there arez baskets,N balls and each of them can end up in
a specific basket with probability1/w ≤ 1/z, then the mass
function of the number of empty basketsY is described by:

P (Y = y) =

(

z

y

)

(

1−
y

w

)N
z−y
∑

i=0

(−1)i
(

z − y

i

)

(

1−
i

w − y

)N
.

Proof:
The proof of this theorem follows the same structure of the

proof in [15] for the standard occupancy problem.P (Y = y)
can be described as the probability thaty baskets are empty
(A = y) and, given that event, the remainingz − y basket
are occupied (B = z − y|A = y), i.e. P (Y = y) = P (A =
y)× P (B = z − y|A = y). A set of y baskets would remain
empty with probability(1 − y/w)N , and there are

(

z
y

)

ways
to choose a sub-set ofy baskets fromz of them. Therefore,
P (A = y) =

(

z
y

)(

1− y
w

)N
. CalculatingP (B = z− y|A = y)

is lengthy, and requires quite a few extra intermediary steps.
Let us considerVi representing whether a specific basket

with index i is empty (after samplingN balls) given the fact
thaty other baskets are empty. If we know thaty other baskets

are empty, then the conditional probabilitypi of sampling
a ball that ends in basketi would be higher than1/w, as
we know that it cannot end up in any of thesey baskets. In
particular, we would have:

pi =
1

w
×

1

1− y
w

=
1

w − y
.

Therefore:

P (Vi) = (1− pi)
N =

(

1−
1

w − y

)N

,

where the probability thatm baskets are all empty at the
same time would be:

P (V1 ∧ . . . ∧ Vm) =
(

1−
m

w − y

)N

.

Now, we can use theinclusion-exclusion principle[15] to
calculate the probability that at least one of thesem baskets
remain empty:

P (V1 ∨ . . . ∨ Vm) =
∑m

i=1(−1)i+1
∑

J⊆{1,...,m};|J|=i

P (VJ(1) ∧ . . . ∧ VJ(i))

=
∑m

i=1(−1)i+1
(

m
i

)

(

1− i
w−y

)N

.

The probability thatz−y baskets are occupied is equal to1
minus the probability that any of them is not empty, formally:

P (B = z − y|A = y) = 1− P (V1 ∨ . . . ∨ Vz−y)

= 1−
∑z−y

i=1 (−1)i+1
(

z−y
i

)

(

1− i
w−y

)N

=
∑z−y

i=0 (−1)i
(

z−y
i

)

(

1− i
w−y

)N

.

Finally, we can conclude the proof with:

P (Y = y) = P (A = y)× P (B = z − y|A = y)

=
(

z
y

)

(

1− y
w

)N
∑z−y

i=0 (−1)i
(

z−y
i

)

(

1− i
w−y

)N
.
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