Formal Analysis of the Probability of Interaction
Fault Detection Using Random Testing

Andrea Arcuri, Member, IEEE and Lionel Briand, Fellow, IEEE.

Abstract—Modern systems are becoming highly configurable to satisfy the varying needs of customers and users. Software product
lines are hence becoming a common trend in software development to reduce cost by enabling systematic, large scale reuse. However,
high levels of configurability entail new challenges. Some faults might be revealed only if a particular combination of features is
selected in the delivered products. But testing all combinations is usually not feasible in practice, due to their extremely large numbers.
Combinatorial testing is a technique to generate smaller test suites for which all combinations of ¢ features are guaranteed to be
tested. In this paper, we present several theorems describing the probability of random testing to detect interaction faults and compare
the results to combinatorial testing when there are no constraints among the features that can be part of a product. For example,
random testing becomes even more effective as the number of features increases and converges towards equal effectiveness with
combinatorial testing. Given that combinatorial testing entails significant computational overhead in the presence of hundreds or
thousands of features, the results suggest that there are realistic scenarios in which random testing may outperform combinatorial
testing in large systems. Furthermore, in the common situations where test budgets are constrained and unlike combinatorial testing,
random testing can still provide minimum guarantees on the probability of fault detection at any interaction level. However, when
constraints are present among features, then random testing can fare arbitrarily worse than combinatorial testing. As a result, in order
to have a practical impact, future research should focus on better understanding the decision process to choose between random
testing and combinatorial testing, and improve combinatorial testing in the presence of feature constraints.

Index Terms—Combinatorial Testing, Random Testing, Interaction Testing, Theory, Constraint, Feature Diagram, Lower Bound

g

1 INTRODUCTION test cases that are effective in revealing failures. Vdiigb
can be expressed with various formalisms, as for example

M ANY softw_are tesltmg aCt'V't:JeS ce;n behautot.m?ted. Tesﬂé'mplates in UML models, domain specific languages, and
NG COMPIISEs a large numaoer of Such activilies actogs,, diagrams, and has been recently surveyed in [33], in
the development life-cycle. Test automation can therefor ich six types of techniques are described. In this paper we
significantly reduce time to market and increase system Sldress point (2) above, with a focus on analyzBamnbina-

pendability. One significant challenge is that many modeES. | Int tion Testina(CIT) 119 0 d ing it
systems are highly configurable, to satisfy wide variagbilit\Ni:ﬁ ragjgi: t'ggtmgs[g‘?([2]) [19], [30] and comparing i

in customers’ needs. For example, in software appllcatlonsIn CIT, the tester usually has to choose a strergthhich

runr;]mg otr% m?blle pfhor;]es, many fetgtures (;an be c(;)r?flgturl éermines the type of interactions to be tested. To inereas
such as the lype of phone, operaling system, and nstaligld ., qpijity of finding faults while keeping the cost down
applications, .Each conﬁgurgtlon representg adlffgremmpnt CIT aims at generating a minimal test suite for which all
and may exh|.b|t d'ﬁefe.”t failure mo_des. In |r.1dustr.|al 88, he t-wise combinations of features are present at least once.
therg are typically millions of pOSS|bI¢ cqnflgurat|oqs,em The underlying assumption is that faults might be due to
possibly only a _sma_II subset of combmgtu_)ns can triggelr f<'?“interactions whert specific features are present in a released
ures. The question is then how to maximize failure detec“%r?oduct Generating minimal test suites that guarameese
when i.t Is not possible_ to te;t al cqnfigurations. This haes ioecoverage is a highly difficult problem which has been the
the objective O_f combmatona} teSt'r_]g') . subject of a great deal of research [19], [30].

One way to introduce configurability is through families of *sjihqgh there are empirical studies in the literature that
software systems. The most known approach to do so is SQffq\y ynder some specific conditions, a better performance
ware produ.ct. lines, which can Iead. to “drastically incragsi of CIT strategies compared to random testing (e.g., [32]),
the productmty of IT—reIated_mdustrles” [35]' Softwapeod- 1 a5 some detractors, such as Bach and Schroder [3]. In
uct Ilnes'have. recelv'ed parﬂculgr gttentloq from the r&:kea their study, when they empirically compared CIT with random
community, with dedu_:ated special issues in Communlcatlort"bsting [13], [2], results showed that random test suitegewe
Or: the ACM [35] and mhIEIFE Software rE27]' In-our context,,iqnivjikely to cover most of the-wise combinations among
t ere .a.re.two main challenges: (1? ow to represent theyy e Successive studies from other authors werestensi
variability in an expressive and practical way and (2) how t sjqing a similar performance for random testing and
use such variability description to automate the genaratio CIT at detecting faults (e.g., [37], [14]). From a practical
standpoint, if such a result is confirmed, then there may be
e Simula Research Laboratory, P.O. Box 134, Lysaker, Norway. situations where one may question the use of sophisticated

E-mail: {arcuri,briand} @simula.no and complex CIT techniques when random testing could be

(nearly) as effective at revealing faults. This questioeven of magnitude worse than CIT tools that handle constraints,
more pressing given the fact that current CIT tools/techedq though this remains a topic of investigation in the contdxt o
[19], [30] display scalability problems to handle large rhars real settings and constraints.
of features, which are common in industrial software. When Based on the theoretical results of this paper, we conclude
automated oracles can be generated, random testing couldHag, in many circumstances involving large numbers of fea-
far more effective if indeed it provides highwise coverage. tures, CIT can be expected to be cost-effective compared
Given the computational overhead entailed by CIT tools to random testingonly when constraints are present among
generate covering arrays [19], [30], in the same amount f&fatures. This suggests that such constrained situatfamgds
time, many more test cases could be run and evaluated with the main focus of CIT research, along with more realistic
random testing when compared to CIT. But to the best ahd thorough empirical studies to better support the datisi
our knowledge, despite the practical importance of thisctop process of choosing between CIT and random testing.
we are aware of no work in the literature investigating and The paper is organized as follows. Section 2 formalizes the
comparing CIT and random testing in a real industrial sgttintesting problem we address in this paper. Section 3 provides
Triggering failures is important to detect faults, but thea formal analysis of CIT compared to random testing. The
characterizing the feature combinations that inducefedlus theory is extended in Section 4 to consider the cases of
required to help the debugging process. There can be sevenaltiple faults rather than just considering the trigggrof at
techniques to achieve this goal, as for example the claasifiteast one failure. Section 5 discusses the practical iraptins
tion trees used in [37]. Different techniques to generast tenf such formal analysis and provides an initial set of przdti
suites would have a different impact on the inferred modelguidelines. Threats to the validity of these theoreticallpses
For example, in their empirical study, Yilmaet al. [37] are discussed in Section 6. Finally, Section 7 concludes the
found that test suites generated with random testing oétdn Ipaper.
to unreliable classification trees. Although debugging s a
important activity, it is out of the scope of this paper Whiclé PROBLEM DEFINITION
focuses on the software testing phase.
In this paper, we address the effectiveness and scalabflityln order to improve the probability of finding faults, CIT am
random testing when used to deteawise interaction faults. at generating test suites with high coverage of featurednte
In particular, we are interested in comparing the effectbgs tions. The “covering array” problem, which is widely studlie
of tests generated with a covering array tool versus testsrge in the mathematical community [11], can be considered to
ated randomly. We provide formal proofs that are independedre a specific strategy to support CIT. In this paper, we use
from specific CIT problem instances, and hence provide mdiee notation provided in [11]. In particular, “A mixed level
general results than what experiments would typicallydyielcovering array MCAN ; t,k,(v1,v2,...,0%)) iS an N x k array.
For example, we formally prove that random testing, whdret {i1,...,i:} C {1,...,k}, and consider the subarray of size
compared to CIT and assuming an equal test suite Bize N x ¢ obtained by selecting columns, ... i, of the MCA.
hasalways even in the worst case, a probability af least There areH,f=1 v; distinct¢-tuples that could appear as rows,
63% to trigger at least one failure relateditwise interaction and an MCA requires that each appears at least once. We use
faults. In other words, with probability equal or greateanh the notation CAN¢,k,(vq,ve,...,vx)) to denote the smallest
63%, there would be one or more test cases ouY dhat fail. N for which such a mixed covering array exists” [11]. In
For larger numbers of features, the probability increasek aother words,N is the number of test cases,is the number
we formally prove that this probability converges to 100%r (f of features,v; is the number of values thé&h feature can
an infinite number of features), thus making random testirgsume, and is the strength of the array. Without loss of
a promising testing strategy for large systems. In additiogenerality, let us consider,;; < v;, i.e., we order the values
we show that in practice, in the common situation where onegin descending order. Furthermore, we map each feature to a
has to deal with test budget constraints, random testing cammerical value in{1,...,v;}. For example, if theth feature
provide minimum guaranteeabout the detection of faults atis binary, its values will be mapped td,2}.
any interaction level. This is something which is very diffic = Once a strengtlt is chosen, then we should obtain a test
to obtain with CIT (we are aware of no formal results osuite of size N where N is as small as possible (ideally,
the topic for CIT), as results would depend on the specifi¥ = CAN(t,k,(v1,v2,...,v%))) and all the t-wise feature
algorithms used to construct the covering arrays. combinations are present. If a fault is revealed when a geeci
The results presented in this paper are valid only wheombination of up ta features is selected for a product, then
there are noconstraintsamong features, i.e., the choice ofCIT will guarantee to reveal such a fault.
a feature is independent from the others, and any combmatio In many cases, there can be constraints among features
of features represents a valid product. Though this is thetmgB], [17], [31], [4]. For example, a particular feature caa b
common case reported in the research literature [19], [38klected only if another specific one is selected as wellréThe
in many industrial systems such constraints are present acah be several ways to represent this type of constraints,
in recent years, CIT approaches that can handle constraimsing for example feature diagrams. At a high level, we can
have been proposed, though very few realistic studies &®e these constraints as first order logic predicates, which
reported (e.g., [8], [17], [31], [4]). In the presence ofti@@ determine whether a particular combination of featureslgvou
constraints, we show that random testing can be severalsordepresent a valid product. In this context, CIT aims to gateer

minimal test suites for which attwise feasible combinations on the problem instances, the probabiliycould significantly
of features are present at least once. vary. For example, on very faulty software we could have
P ~ 1, whereasP could be much lower in cases where only
a single feature combination triggers failures. Becauderbe
3 COMPARISON WITH RANDOM TESTING running any large empirical study it would not be possible
Assume that a CIT tool is used to generate a test suite of sigeknow P in advance, then it would be of practical interest
N for a given strengtit when no constraint among features ito know a lower bound (i.e., P > b) that is valid forany
present. The motivation of doing so would be to detect fe@atuproblem instance.
interaction faults up ta-wise interactions and at the lowest A trivial lower bound isb = 0, but it is practically useless.
execution cost. However, how would random testing perform useful lower bound should be a bound that is “high” (where
in this context? In other words, what would be the probabilitwhat is considered “high” depends on the application cdhtex
that a randomly generated test suite of si¥ewould detect For many probability problems, there can always exist attlea
t-wise interaction faults? In practice, because of the aa@idh one problem instance for which ~ 0. Even if for these types
incurred by CIT to generate covering arrays, one could evef problems for most of the instance? could be high, the
run a number of random test cases that is significantly largact that at least one instance has very [Bwvould result in
than N within the same time that CIT takes to generate useless lower bountd In other wordsp can be considered
and executeN test cases (as long as an automated oragleyuarantee on the worst case scenario (in our case, a problem
is available, e.g., does the program crash?). This quektien instance).
significant practical implications: what would be the poft ~ Another important thing to keep in mind regarding lower
using a complicated and computationally expensive tecknigbounds is the mathematical approximations used to make the
such as CIT if, in some circumstances, random testing offafgeoretical analyses tractable. For examgbe> b does not
a similar performance at a much lower cost? necessarily mean that there exist at least one problenmiresta
In this paper, with the term “random testing” we mean thir which P = b. A lower boundbd might not be tight, in the
following: sampleN test cases at random, where the value gknse that it could be the case that> b*, whereb* > b.
each of the features in thieh column is randomly chosen with This is the same concept of tight bounds as in the analysis of
uniform probability from1,... v;. Notice that this procedure algorithm performance [12]. Assume for example the funrctio
could be repeated times and then select the best test suitg,(x) = 2x+1 representing the performance of an algorithm as
where the best test suite would be the one with highest numlefunction of some variable. One could for example prove
of coveredt-wise interactions. Based on the computational lower boundf(z) = Q(logz), which is correct but not
time we can afford (i.e., the testing budget), we could ruight. In this case, a tight asymptotic lower bound would be
random testing withy as high as necessary to obtain a fulf(z) = Q(z), where a tight asymptotic upper bound would
t-wise coverage. In this paper, however, we only consider the f(z) = O(x). To prove that a lower bounf > b is tight,
caseq = 1. Larger values ofy would of course lead to higher one would need to find at least one instance for whick: b.
fault detection. In a comparison with CIT, we could choose @nless one proves that a lower bound is tight, then it might
value for ¢ that corresponds to the CIT overhead required tge possible that a higher lower bound exists.
generate covering arrays. The first theorem, regarding random testing applied to CIT
As discussed in the introduction, there exists empiricakwoproblems, that we prove in this paper is:
that has shown good performance for random testing wh .
tackling combina?orial tFésting problems (e.g., [3], [3[l[|4£];)- sla‘ﬂeorem 1. Given a strengtht, and a number of featurels

However, because the empirical nature of these works, thdffined bY(vi,v2,....ux), then a random test suite of sizé

results are difficult to generalize to all valuesiofk, v; and would have prok_)abmtyP_t of tnggermg_at least one failure

N. To address this problem, in this paper, we provide geneFSIated tot-wise interaction faults that is at least:

results that are valid for any choice of those parameters. We 1 N

first provide a lower bound to the probability that random P >1- (1 - ti) . 1)

testing triggers at least one failure related itavise faults [Tz vi

for a given test suite sizéV. This theorem is then used to Proof:

prove (1) a high lower bound, that is independent /6f To prove this theorem, we first need to calculate what is the

to the effectiveness of random testing compared to CIT afmivest probabilityp; for which a random test case can reveal

(2) that for a largek the two testing techniques have theat-wise interaction fault. Then, by using the properties & th

same effectiveness. Then, in the next sections, we anaigze geometric distributiorf15], we can analyze the fault detection

probabilities that random testing finds one or more differeprobability for V test cases.

faults. If there is one-wise interaction fault, considering a uniform
In this paper, we mainly deal wittower boundsrelated sampling probability, then the probability of detectingvibuld

to some probabilities that describe the dynamics of randdm lower bounded by the faulty combination that is most diffi-

testing when applied to find interaction faults. Assum& be cult to sample. In other words, the lower bound in Inequality

the probability that random testing triggers at least oflaria corresponds to the situation where only one combinatiot of

A probability is always bounded if0,1]. Random testing features triggers a failure and that combination is the most

might or might not trigger a failure when run once. Dependingnlikely to randomly sample. Gived’; = {fi,....f:} the

indices of the features for which there exists a set of valuesB hmark of CIT BABLE L din 71 E h of
that trigger a failure, then a random test case would onlgcov enchmark o problems used in [17]. For each o

one of thesq [, » v; combinations of features. Therefore: them, In_equahty Lis usedto prqwde a Iowe_r bound to the
s probability P that random testing would trigger at least

N > 1 one failure related to ¢t-wise interaction faults for same
pr = HieFf v; H;?:l vi number N of test cases.
The first inequality above holds since the number of faulty T Foalures Best Reportedl _ Reference Lower Bound
combinations may be higher than one, and the second inequal -~

ity holds sincev; values are ordered in descending order andg 213822 12 [[2:]] 8'22@
therefore the product of the firgty; is the highest among all , 313 15 [26] 0.829
possible subsets of size A random test case would trigger 2 = 4'3%9235 21 [0] 0.839
a failure with probabilityp;. It would not trigger a failure g iif};f;;g; gé [g] 8-222
with probability 1 — py. N test cases would not trigger any , 15163893 30 Eg% 0638
failure with probability (1 — p;)™. The probability that inV 2 7lglpla53893 42 [9] 0.637
test cases at least one triggers a failure would be equal to 2 4120 45 [9] 0.945
minus the probability that none of them triggers any failure ; (;16 gi [[19c]>] g'ggg
Therefore: o gl6 110 [10] 0.823
2 87 111 [10] 0.826

1 N 2 1020 162 [10] 0.804

Po=1-(1-p)¥N>1-(1- —— 3 36 33 5] 0.712

by z

[Lizi vi 3 48 64 5] 0.635

O 3 524232 100 [9] 0.634

. . . 3 5 125 5 0.634

If we use a combinatorial testing tool to generate a test; 7 180 [[1(1] 0.764
suite of sizeN, we can use Inequality 1 from Theorem 1 to 3 ¢ 258 [10] 0.698
provide a lower bound to the effectiveness of random testin% 66?323) 272 [71 0.717
applied on the same problem (i.&/,random test cases). Table § ;2 67473 gfg % 8:233
1 shows the benchmark that is usually employed to evaluatg 77 545 [7] 0.796
unconstrained CIT techniques (used in [17]). The notatmn t 3 996 729 [5] 0.632
represent the features in a CIT problem is as follows: we havé }810 E‘ig [[15‘;] 8-;58;
a list of y7, wherey is a valuev; and j is the number of 5 512 2190 [5] 0.719
features of that type. For examplg! means that there are 3 144 3645 [5] 0.735

four features, each one with = 3 possible values. The “Best
reportedN” column in the table is the lowesV reported in
the literature for each CIT problem, along with the refeeenc Proof: To prove this theorem, we first need consider a
providing it. This is in turn used to compute the “Lower Boungbwer bound for CANt k,(v1,vs,...,u1)). A trivial bound is
for P” using Inequality 1, which ranges in this benchmarlcAN(¢,k,v) > o, which in the case of mixed level arrays
from 0.632 to 0.945. Though we have, however, no guaranteg would be CAN,k,(v1,09,...,0)) > H;l v; [11] (recall
that this range is close to the real range, without the needtk® firstt v; are the largest). Then, we consider the following
run any experiment on that benchmark, we can use Theorenndquality [29], [28]:
to assess whether, for a specific CIT problem, random testing .
would have high probability of detecting at least onwise (1 + E)" < e .
fault, if any is present. z

It could be argued that existing CIT tools presented in By using these two properties, from Theorem 1 it follows:
the literature are not optimal, in the sense that they do not

guarantee to generate test suites of minimal size, Ne= P >1- (1 — UV)N
CAN(t,k,(v1,va,...,03)). Maybean optimal tool could generate s
much smaller test suites than the ones reported in thetlirera >1- (1 + %11,)

(3rd column, Table 1), whichould lead to much worse results >1-—e1>063.

for random testing when compared to an optimal CIT tool. Lo .
. .) The first inequality above comes from Theorem 1. The
However, the following theorem proves this conjecture wvgron . T . -
: : ; : .~ ' second inequality simply results from replacig with its
by showing that random testing has a relatively high minimun o ind
level of effectiveness that is consistent with the resulf$able

1 and is independent aV: -

Since a test suite generated with a CIT tool, if it covers
Theorem 2. For any strengtht, any number of featuresg: all the t-wise combinations, would always satisfy >
defined by(vy,vs,...,vx), @ random test suite of siz& > CAN(¢,k,(v1,v2,...,0%)), We can therefore apply Theorem 2
CAN(t,k,(v1,v2,...,0;)) would have probabilityP; of trigger- when comparing CIT and random testing. Furthermore, as
ing at least one failure related tbwise interaction faults that further evidence, the general lower bound of 63% proven in
is at leastP; > 0.63. Theorem 2 always holds for the bounds shown in Table 1.

Another important point to clarify is that Theorem 1 and 2hat the highest lower bounds are obtained for large nundjers
only providelower bounds The actual fault detection ability features regardless of siZé. For example, the highest lower
of random testing could be much higher, hence the needltound for P (i.e., 0.945) is for 41°°, in which there arel00
perform empirical studies in realistic settings. features, though onlyv = 45 is necessary. On the other hand,
Given that the most important challenge in the software im the trivial case casé?, althoughN = 16 is nearly a third
dustry lies in the testing of large (sub)systems and commtsne of 45, we have a lower bound fa? equal t00.632 because
it is therefore important for test techniques to be scalablenly two features are involved.
One motivation for random testing is its ability to easily Notice that Theorem 3 only shows convergence for an
generate large numbers of test cases and therefore exertifinite number of feature¢. Though Theorem 3 cannot be
large systems with extremely large test suites, assumieig thapplied directly to any realistic scenario, it can be usédbul
is an automated oracle. One important question in the contsgalability analyses since it provides an “expected treind”
of this paper is to determine how scalable is random testipgrformance, i.e., the larger the system the easier it vell b
compared to CIT for a large number of featuies for random testing to perform well. This is a rather non-
Theorem 2 provides & > 0.63 lower bound to the intuitive result as random testing would be expected to work
effectiveness of random testing. What will happen for largéne on small toy problems, but then large systems would
numbers of featureks? Will the effectiveness of random testingbe expected to warrant more sophisticated and cost-eféecti
stay close t00.63 or increase? If the former would be thetesting techniques. Theorem 3 formally proves the opposite
case, then it could be argued that CIT could be still useful,
for example in the context of systems with high dependabilid DETECTION OF MULTIPLE FAULTS

requirements. However, virtually all techniques repoitethe il this point, we have only analyzed random testing from
literature show scalability problems in handling large ®@m ne point of view of triggering at least one failure. Softear

of features [19], [30]. This arises from the fact that mossting can only trigger failures and not directly reveallta

CIT techniques rely on very complex computations, in whiclj one has a test suite in which more than one test case fails,
for example constraint solvers are employed. Interesingé {hen some or all of these failures might or might not be relate
following theorem proves that, for a largewhen we compare (g the same fault. To distinguish among faults, a software
random testing with CIT using same sia& thenP converges tegter has to debug and fix the code, and then re-run the test
to 1, i.e., there is no difference among the fault detectiogjite to see if any test case is still failing. Real-worldteyss
ability of the two techniques. typically contain several faults and it would be hence intgotr

Theorem 3. For any strengtht, for an increasing number t0 study how well random testing fares in revealing a set of
of featuresk defined by (vi,vs,...,v5) With v; < m for combinatorial interaction faults.

some constantn, then random test suites of siz¥ > Assume that the system under test hasgteraction faults,
CAN(t,k,(v1,v2,...,v5)) Would have probabilityP, of trigger- Whose level of interaction is at mostA test suite generated
ing at least one failure related towise interaction faults that With a CIT tool at strength would be guaranteed to find all of

converges tdimy_,o, P; = 1. these faults (i.e., have at least one test case that failsafon
_ one of thez faults). In this section, for same test suite size,
Proof: we prove lower bounds on how many faults would be found

Apart from the trivial lower boundn® for the number of by applying random testing. LeE be the random variable

required test cased/, as Colbourn states in [11], the onlyyepresenting how many faults are found by random testing,
other known lower bound folV is due to Stevenst al. [34]. hen:

For t = 2, they proved that the minimal size of required test

cases for a covering array increases in the ordelogfk). 1heorem 4. For any strengtht, any number of features:
Because for lower strength and cardinality of valuesy; defined by(vi,vs,....v¢), and z faults detectable at feature
CAN(t,k,(v1,v2,...,0%)) = Q(log(k)) for ¢ > 2 as well. Using CAN{E,(v1,02,...,0)) would detect at leas63% of the 2

1\ Q(og(k)) Proof:
klim P> klim 1-— (1 — ﬁ) =1. For each faulti, let us consider a random variable
— 00 — 00

.) .) representing whether that fault has been revealed=(1)
Given Theorem 1, the inequality above holdsiass always or not (7; = 0) when the test suite has been executed. Using

above or equal to actual values andV is replaced with its {he same method applied in the proof of Theorem 2, then we

lower bound as a function of. can prove:
O
Notice that Theorem 3 has some relations with a theorem E[I] =0P(I=0)+1P(I=1)
proven in [18] which states that, under the constraint> =PI=1)
log(k) and a fixedv for the number of values each feature >1-(1- 1)N
can have, then fok — oo a random test suite of siz& - i—1vi

would cover all possible-wise combinations. When we look
at Table 1 with the result of Theorem 3 in mind, we can see from which it follows:

E[F] ZE[ZL‘] ZZE[IZ'} > 0.63z . A > g) (1_%)]\[2;;8(_1)3‘6;0)(_ﬁ)N
i=1 i=1 . . N
- =225—(=17(}) (1 - ﬁ) :
A test practitioner could also be interested to know what 0

would be the probabilityd, of finding all = faults with a test The lower bound in Inequality 2 is not easy to under-

suite t())f;:_zeN. Fpr rgnd(r)]m fte”stmg, arllower b.ound for suclyrand and interpret without computing illustrative exagspl
a probability is given in the following theorem: In Table 2, we consider the same case studies from Table 1,

Theorem 5. Given a strengtht, a number of features: Where we calculate lower boundd. for » € {2,4,8}. In
defined by(vy,vs,...,v%), and z faults detectable with feature CONtrast to previous bounds in this paper, the lower bounds
interactions not higher than, then a random test suite of sizecoming from Theorem 5 are not particularly useful from a

N would have probability4. of revealing all the: interaction Practical standpoint as they are rather low, though what is
faults that is at least: an acceptable threshold depends on the application context

Recall that having a “low” lower bound doe®t necessarily
mean that the actuall, is low. In fact, lower bounds might

A, > i(_l)j (Z) (1 _ tj N _ (2) hot be tight. Of particular interest is the case of featurés,
= J Il v in which, if z = 8, then it is proven that there is at least2¥%
probability of finding all of those eight faults. This relaly
Proof: high value can be explained by the fact that it is the case with

@ost features (100). If we look back at Table 1, recall thet th
when each test case can reveal at most one fault at the ti %se was also the one with highest lower bound for triggering

This would require to generate and run at leagest cases. at lgast one failure.
On the other hand, if the faulty feature combinations are all Similarly to Theorem 3, we can prove that for a large
dependent on different features, therxik ¢ < k it could be number k of features, the probabilityd, of finding all the

possible to reveal all the faults with a single test case. ~ # faults converges to 1. Formally:

The probability distribution of finding distinct interaction Theorem 6. For any strengtht, for increasing number of
faults with IV test cases is equivalent to theccupancy featuresk defined by(vi,vs,...,vx) With v; < m for some
problem[15]. In the occupancy problemy balls would be constantm, and = faults detectable with feature interactions
randomly assigned te baskets with uniform probability, i.e., not higher thant, then a random test suite of sizZ§ >
a ball will end up in a specific basket with probabilityz. CAN(t,k,(v1,vs,...,v)) would have probability4. of reveal-
The probability distribution of the number of baskets thaté ing all the > interaction faults that converges ton, o, A. =
at least one ball can be found in [15]. 1.

In our casey are the faults, andV are the test cases, which
might or might not trigger any failure. There are two points P "0OF _ _ _
that need to be handled to apply the occupancy problem theory/Sing the lower bound in Inequality 2, using the same
to analyzeA.,. First, because we deal with a lower bound fofethod as in the proof of Theorem 3, then:

A., we should consider the worst probability for a random

test case to trigger a failuret/ [['_, v;. In this case, the N

lower bound for the probability of covering a particular fau lim; .. A, > limj_oo S o(=1)7 (j) (1 — %)

would be equal for all the faults. For simplicity, let us defin . B _ i
w = []'_, vi- A test case would hence reveal a particular fault = limy 00 14375 (=1)7(5) (1 — 17)

Given z faults, the worst case for a testing technique i

triggered by one or more combinations with probability aiste . 2 2 -\ 2log k)
1/w, that is the probability for the combination that is most 2 1+ 1m0 Zq'zl(_l)] () (1 B #)
difficult to sample randomly. Second, since there are masty te =1+ Z;:l(_l)j (j) -0

cases that do not trigger any failufe/w < 1/z and therefore =1.

w > z, and so we cannot directly apply the occupancy

problem theory (as the sum of theseequal probabilities U

does not add up td). We made a simple extension to the However, from a practical point of view, Theorem 6 is of
theory of occupancy problem to handle the cases in whitdss interest compared to the others. Not only it is valid/onl
the probability of a ball ending in a particular basket ifor & — oo, but it also assumes to be constant. For larger
1/w < 1/z, wherew is equal for all the baskets. This couldsystems, one would expect more faults than in a small system.
represent the fact that balls might just be discarded withowe include Theorem 6 in this paper for sake of completeness,
ending in any of the baskets. A complete analysis of thas it can be a starting point for further analyses on the topic
“generalized” occupancy problem is presented in Appendix £e.g., considering in scalability analyses as a functigh of
Using this generalized theory, we can finally prove: k: z = G(k)).

TABLE 2
Benchmark of CIT problems used in [17]. For each of them, we report lower bounds for the probability A, of finding
all z faults for different values of 2.

t Features N Reference Lower Bound fals Lower Bound for A, Lower Bound forAg

2 3% 9 [26] 0.411 0.140 0.005
2 513822 15 [9] 0.406 0.149 0.013
2 313 15 [26] 0.681 0.446 0.161
2 41339235 21 [9] 0.700 0.478 0.202
2 5lg431125 21 [9] 0.428 0.172 0.021
2 415317229 30 [9] 0.730 0.525 0.257
2 6151463823 30 [9] 0.403 0.155 0.019
2 7lelpl453823 42 [9] 0.402 0.156 0.021
2 4100 45 [9] 0.893 0.795 0.626
2 66 62 [9] 0.680 0.458 0.202
2 716 84 [10] 0.676 0.454 0.201
2 g6 110 [10] 0.677 0.456 0.203
2 87 111 [10] 0.681 0.462 0.209
2 1020 162 [10] 0.645 0.415 0.169
3 36 33 [5] 0.503 0.245 0.052
3 46 64 [5] 0.401 0.157 0.023
3 524232 100 9] 0.401 0.158 0.024
3 5 125 [5] 0.400 0.159 0.024
3 57 180 [10] 0.584 0.339 0.113
3 6 258 [10] 0.487 0.236 0.055
3 654222 272 [71 0.514 0.263 0.068
3 101624331 360 9] 0.400 0.159 0.025
3 88 512 [5] 0.400 0.159 0.025
3 7 545 [71 0.634 0.401 0.160
3 9 729 [5] 0.400 0.159 0.025
3 108 1100 [10] 0.445 0.198 0.039
3 100 1219 [5] 0.496 0.246 0.060
3 1212 2190 [5] 0.516 0.266 0.071
3 144 3645 [5] 0.540 0.292 0.085

5 PRACTICAL IMPLICATIONS industrial systems (with real faults) with thousands orreve

The theorems proven in this paper can be used to anab@éﬂdreds of features have be_en analyzed. For example, even
in a new light the applicability of CIT ([6], [36], [23], [25] if there has been WO!’k on relatively large open-source syste
[24]) in practical contexts, in particular in the presende 48], those were only_ in the order of hundreds of features.(e.g
a large number of features. One should consider whether g largest system in [8], GCC, has 199 features). Therefore
expected improvement in fault detection (if any) given by Clat the current moment we dp not know what is the thresh_old
compensates for its much higher computational cost, dueko after which random testing becomes more cost-effective,
the generation of covering arrays, when compared to randé it v_vould require an empirical investigation in specific
testing. As we have seen, even in the unlikely worst cadBdustrial contexts. Our results, however, suggest thelt su
we have proven that random testing is surprisingly effecti\:;nves.tigation _should be performed in any context where CIT
(P, > 0.63) and is likely to be nearly as effective as CIT inS being considered.
detectingt-wise interaction faults for large values bf When no automated oracle is available, the test case outputs
This analysis is particularly relevant whemutomated or- need to be manually evaluated and the CIT computational time
acles are available, as for example in model-based testimyerhead becomes irrelevant when compared to the required
of industrial embedded systems [1]. In this case, given tineanual labor involved. Generating random test cases for as
same computational resources, random testing could tHeng as CIT takes to select test cases would not be a reagonabl
run many more test cases, which could lead to higher fadiption as it would entail to run and evaluate more test cases
detection than CIT for a fixed when accounting for the than CIT. Given a configuration problem, a practitioner doul
detection of faults at higher strength levels. For some-reaise a CIT tool to generate test suites for different streswgth
world industrial problems in which there can be thousand®r example, Table 3 shows test suite sizes fdt°aproblem
of features, then random testimgight outperform CIT unless using the IPOG tool [25], using strengths fram- 3 to ¢t = 6.
CIT’s scalability is improved. However, this all depends ofon this (small) problem, IPOG is pretty efficient in terms of
the number of featurek, the cost of running a CIT tool, andtime (reported time values in [25] range from few milliseden
the computational cost of evaluating the automated orackeshalf an hour). For example, IPOG can generate a test suite
and running the test cases. Based on such informationpfasize 181 that guaranteesthat all 3-wise interactions are
practitioner could decide whether to use random testirtterat covered. Using Theorem 1, we can calculate a lower bound
than CIT. To the best of our knowledge, we are not awafer random testing to trigger at least one failure related-to
of any empirical study in the literature in which real-worldvise faults. Fort = 3, we have a probabilityP; that is at

TABLE 3
Test suite sizes for CIT problem 4'° using the IPOG tool
as reported in [25]. For same sizes and ¢, the table also
shows probability lower bounds of random testing to
trigger failures related to ¢ and ¢ + 1 interaction faults.

at least one failure related towise faults, andat leasta 72%
guaranteedorobability of triggering at least one failure related
to 7-wise faults.

Notice that, as discussed above, if no automated oracle
is available, running and evaluatir)384 test cases would
overshadow any computational cost for test data generation

t Size LowerBoundfory Lower Bound forP Even if we consider a less demanding criterion, as for exampl
2 égi g-g‘% g-ggg t = 3, then running and manually evaluatingl test cases

5 4519 0.088 0668 would st|II_ be_very expensive in _terms of manual labor.
6 20384 0.993 0.712 However, in this case random testing would have at least a

94% probability of triggering failures related t&wise faults,
and at least a guarante&d? probability of triggering failures

least 0.94 (see Table 3). Although the true probability could€ated tod-wise faults. We have no guarantee regarding the

be higher, it cameverbe equal tol because random testinglatter with CIT. ,
is a randomized algorithm. Therefore, under these comgitio 't could be argued that, if one wants to havel@0%
one could argue that CIT is a better option to find tallise guaranteg of finding + 1 faults, then the CIT tool should
faults when automated oracles are missing. be run with strengtht + 1. Unfortunately, this is not always
However, to the best of our knowledge, since empirical andlossible in p_ractlcal contexts with fimited budgets. Bemu
' ' test cases might have to be run on actual hardware or in spe-

yses in the literature do not consider industrial cases iichvh ;" d testing labs. budaet limitati b ite idfile
there could be hundreds or even thousands of parameterg'?tyze testing fabs, budget imitations can be quite X
practice. This practically entails that a tester canimatmany

configure (e.g., in [25] the largest problem instance hay ol ;
20 features), the cost of CIT could be prohibitive in praztic circumstances, run as many test cases as ideally needed. For

But, when accounting for the fact that in practice test bmggample, this is a case we encountered when applying model-

are limited and often severely constrained, even in thesca: éised testing on the_ v_|deo-confere_nce system, for which we
d to develop sophisticated techniques to choose subisets o

in which the CIT overhead is affordable and no automat - .
oracle is available, there are at least two related com:la'tiotest cases tha}t could be run within the tespng budget [20],
under which random testing might still be preferred: [21]. Considering the case In Table 3, a testing budget of 400
) o)) test cases would be significantly more than what CIT yields
1) When information is required about fault detection foyin + — 3 (181) but much less than what is obtained with
interaction faults at a higher strength than the seletted _ 4 (924). Table 4 shows that, if one uses random testing to
: choose those 400 test cases, tH&n> 99% and Py > 79%
2) When there are strict constraints on the testing budggfhe table also shows the cases for test suite siz#¥) and
Let us go into more details regarding these two conditions),000, for which we can see similar trends). From a practical
Following the previous example, a CIT suite k¥l test cases standpoint and in this particular case, it could be better to
would guarantee to find all the faults up to interaction sjthn use random testing since the probability of triggeringuias
3. But what if the system under test has no fault at amglated to3-wise faults is very close to 1 but the probability
level up to 3, and rather it has faults at level = 4? In for 4-wise faults is still rather high, something for which we
practice, a software tester would not know which type dfave no guarantee with CIT at strengtk: 3. It might further
faults are present in the system before performing extensive argued that one could rather extend the test suite gederat
testing. Furthermore, current CIT tools used at streitgdlo at ¢ = 3 by adding 219 new test cases, or reduce 4 by
not give any guarantee on the probability of finding faults aémoving 524 test cases. However, how increasing or regucin
interactions higher than. If a CIT tool is deterministic (or the test suite is actually performed would have strong impac
if it has a bias toward some configuration patterns), thendh the resulting probability of finding-wise faults. But there
would be pretty easy to construct problem instances for vhimight very well be cases in which such an approach could
it cannot, for example, find some+ 1 interaction faults. On be better than generating 400 test cases directly with rando
the other hand, random testing wowtivayshave a non-zero testing. However, even if empirical studies would support
probability of finding any interaction fault at any strength such a conjecture, we would still need to prove what could
But if such probability is low, then it would be of little pracal happen in the worst case. Unfortunately, as already mesdion
interest. We used Theorem 1 to compute the lower bound aifove, current CIT tools do not provide any formally proven
probability P, ; and Table 3 report probability values rangingguarantee on the probability of finding interaction faults a
from 50% to 71%. Let us consider the case whete= 6. higher levels thar. On the other hand, using random testing
Using a tool such IPOG would take half an hour (using then that example woulduarantego haveP, > 79%. In many
same machine as in [25]), and would result in a test suiteitical systems, a guarantee ™% given by random testing
fully guaranteeing the finding df-wise interaction faults and, would be far better than no guarantee at all.
to the best of our knowledge, no guarantee regard@iwgse In case of limited testing budget, say 400 test cases, a CIT
faults. On the other hand, given the same number of test cas®d could be designed to maximize the number of distinct
N = 20384, random testing would take only few seconds toovered configurations (as recently done in [16]). A CIT tool
run, and would havat leasta 99% probability of triggering could guarantee &-wise coverage and try to maximize the

number of4-wise combinations in the constructed 400 testould be better at detecting faults than a test suite chosen
case suite. In this case, eadhwise interaction fault would at random. Notice that the work of Kuket al. [22] was of

be either found or not. If one repeats such an experimentempirical nature and that, as a result, results might beraifft
times, and counts the number of experimemtsr which at on other case studies. However, what is important is that thi
least one4-wise fault is found, then the probability that astudy shows how and why random testing can outperform CIT
CIT tool finds at least ond-wise fault (triggering at least in practice.

one failure related to oné-wise fault) could be estimated From a practical standpoint, a test engineer would need to
with Py(CIT) =~ a/n if n is large enough. If the employedgecide whether to employ a CIT tool or to rely on random
CIT tool is based on a deterministic algorithm, then it WOU'ﬂesting. As we discussed in this paper, this choice is fanfro
be either Py(CIT) = 0 or Py(CIT) = 1, as the covered yjyial, as none of these techniques can be expected to be
configurations would be always the same invaxperiments. s perior to the other in all testing scenarios and caseestudi
On different fault patterns (i.e., combinations of features thatyevertheless, it is important to summarize what we haventear
re?ult in triggering a failure), then we would have differensg far and provide some guidelines that would be valid in
Py (CIT). For example, for a fault patterff where only one most cases in order to help practitioners in choosing thet mos
smglle feature cc_)mblnatlon triggers failures, we wouldeljk appropriate test technique in context. However, it is inguatr
obtain a > that is lower than in the cases of fault patterng, keep in mind that such guidelines might not hold for all
where many combinations trigger a failure. possible cases, as exceptions likely exist, and practit®n

If one considers the space of all possible fault patterggould therefore exercise discretion in using them.
F, it could be possible in principle, based on the previous
example, that such a CIT tool would hawn averagea
higher P, than random testing (RT)_ ;. pPl(cIT)/|F| >
Do fer P{(RT)/|F|. However, particularly in the context of
critical systems, it might be important to give bounds on
the worst case scenario. For example, if the CIT tool is
deterministic, then it is trivial to see that there would be
several fault patterns for whicﬂP4f = 0. If a CIT tool is
based on complex algorithms (as it is usually the case), then
it could be difficult (albeit not impossible) to provide non-
trivial lower bounds to the worst case scenarios. In fact, it
would be necessary to prove a probability lower bound for
the combination that is least likely to be sampled.

« If there are numerous features (e.g., in the order of
hundreds or thousands) and the employed CIT tool does
not scale (i.e, it takes hours/days before generating a test
suite, or it simply runs out of memory and crash), then
random testing is a viable alternative.

« If there are automated oracles, then a software tester

might want to generate test cases until a first failure

is triggered. In this case, especially in cases where the
number of features is large and the overhead of the CIT
tools is expected to be large, random testing can be

a better option as that overhead could rather be spent

in running more test cases. Furthermore, there would

be no need to specify a specific strengti{which is

Using the theorems presented in this paper, we can study the always a difficult decision), which in the context of

effectiveness of random testing to detect failures at &uitwns
higher thant, for a fixed test suite sizé&/. In this context, a

theoretical comparison with CIT techniques is not possible

as it would be tool dependent. However, Kubhal. [22]

constrained resources is also impractical as it entails tha
test engineers should run a test suite of specific size
N that may not be easily accommodated by existing
resources in the presence of numerous features.

report an empirical study that shows one case in which randoms If testing budgets are strictly constrained and only a
testing produces better results than CIT (using IPOG). The specific numbetZ of test cases can be run (e.g., there is
case study was on detecting deadlocks in a grid computer hardware-in-the-loop testing or a test lab needs to booked

network. Given the same test suite size random testing
was better than pairwise testing, but it fared worse than
wise testing (if we ignore the cost of generating the testsps
The explanation was that faults were present up to intenagti

in advance for a specific amount of time), then random
testing can be used to generate the exact number of test
cases that can be run. With a CIT tool, once a strength
is chosen, the number of test cases generated can much

t = 4 and pairwise testing does not give any guarantee for lower or higher thar?.

finding t > 2 faults. In that particular case study, random . If dependability requirements are high and strict testing
test suites were more effective at detecting the latter type guarantees need to be provided (e.g., when testing safety
of faults. On the other handi{-wise testing was of course critical software), then a CIT tool may be a better option
revealingall ¢t = 4 faults, whereas random testing expectedly as it guarantees to find all faults up to strength level
could not. In practice, before testing is completed, thegyp t. However, if only a low strength (e.gt, = 2) can

of faults present in the tested system are not known. Even in practically be used (e.g., the resulting test suite is too
the ideal case in which one would predict the type of faults large to run or be manually evaluated), then random
likely to be present in the system (e.g., faults are preselyt o testing might become a better alternative as it provides
for interactions up ta@ = 6), the resulting test suites generated lower bounds on the probability of finding faults at higher
with a CIT tool could be too large too be evaluated (e.g., due levels thant, whereas current CIT tools do not. For low

to the absence of automated oracles), such that a loméght strength levels, as demonstrated by existing case studies,
need to be chosen. Therefore, it is not possible to claim with random testing may turn out to be better than CIT at
100% certainty that a test suite generated with a CIT tool finding faults at higher levels than

10

TABLE 4
For CIT problem 4'2, three different test suite sizes are considered, with lower bounds of the probability of random
testing to trigger failures related to ¢t-wise faults. Note that the probability values 1 are only due to numerical
approximations.

Size Lower Bound forP; Lower Bound forP; Lower Bound forPs Lower Bound forPg

400 0.998 0.791 0.323 0.093
2000 1.000 1.000 0.858 0.386
10000 1.000 1.000 1.000 0.913

« In all the other cases in which there are no automatéar example varying the number of features, to understand
oracles, the number of features is not so high as to leadd explain trends when comparing performance of CIT and
CIT tools to large computational overheads, and there amndom testing. One possible threat to external validity&
no strict testing budgets, then CIT is likely to be a bettewe have only formally analyzed unconstrained CIT problems.
option than random testing. Although most CIT publications are on this subject [19],]]30
Our analysis relies on the assumption that there are no cofest CIT problems in industry could be of the constrained
straints among features. However, in the case of consdraifype. But the research literature currently does not contai
the performance of random testing could be arbitrarily lo@nough empirical evidence to either accept or reject such an
compared to CIT. To clarify this point, consider the folloagi hypothesis.
example: pairwise testing & 2), k binary featuresX; and
the constraintXy; A Xo = X3 A ... A Xi. In other words, if 7 CONCLUSION

the first two features are selecte_d, then all t.he others rtgvelrli this paper we have formally proven six theorems regarding
be selected. Assume also that failures are triggered onty if ihe effectiveness of random testing when applied to un-

and X3 are both selected. CIT tools such as [8], [17], [31], [4, onstrained combinatorial interaction testing (CIT) peois.

would _not ha\:ce an{] partlcular_pr(_)blem In generatii;g/:e These theorems provide general results that cannot benebtai
test suites (in fact, that consiraint is pretty easy to salth a empirical studies, though the latter are necessary to

constraint solver) and hence reveal a fault. On the othe,lean refine our understanding. First, we proved that for amyise

random test case would have probability, x, to generate a CIT problem (independently of its properties), randomitest

i i _ 1 /9k
valid test case that reveals a fault, that is aflly, nx, = 1/2" would alwayshaveat leasta 63% probability of triggering at

which would b_e extremely low even with a small n_umber %ast one failure related tbwise interaction faults (if any is
featurest. BUt. in the ge_neral case, whet_her constraint _Sf)lveﬁ‘esent) when compared agaiasty CIT tool using the same
can b.e effecpve for th|s tagk still remains to be emplrbcallnumber of test cases. Second, perhaps more importantly, thi
mvestlggted in realistic settings, with large numbers edlr probability increases with the number of features presetitaé
constraints. software under test and converges to 1 (for infinite number of
features), that is to equal effectiveness with CIT techesqu
6 THREATS TO VALIDITY Given that current CIT tools suffer severe scalability feots
Threats tointernal validity for this work come from the fact in the presence of large numbers of features, thus leading to
that mathematical analyses can be subject to errors. Taeedsignificant execution overheads to generate covering syray
the probability of this being the case, we have also carri¢his additional time could be easily used by random testing t
out simulations to verify them (whose details are not regmbrt run more test cases if an automated oracle is available. Our
in this paper as they do not add any valuable informatiomesults suggest that in such situations random testing dvoul
This would be equivalent, in empirical studies, to “testéthbe effective at detecting interaction faults.
software tools (e.g., using JUnit for software written iva)a ~ When no automated oracle is available, we have identified
that have been used to carry out the experiments. Howeveslistic situations in which random testing might still jnes-
simulations cannot be used to prove that a proof is err@-fréerred: when there are strict constraints on the testingyéud
though they are useful as supportive evidence. and it is necessary to provide guarantees on the probabflity
Threats to theexternal validityof formal analyses dependfinding faults at interaction levels higher than the chosaie
on the assumptions that are made. Depending on the validityhave shown that such guarantees, which are not provided with
these assumptions, the application of the theoreticalteetu current CIT techniques, can actually be obtained with rando
real-world scenarios could be compromised. In our thecakti testing.
analyses, we have proved lower bounds to some probabilitiesSince one cannot assume that in practice CIT techniques
regarding the application of random testing applied to Clare necessarily better than random testing, our work ntetva
problems. We have not made any explicit assumptions in thehe need for more empirical studies in realistic contexts to
theorems. Some theorems, however, cannot be directlyegbplcompare the two approaches. The main goal should be to
in practical contexts, as they consider the theoreticad ohsn refine the decision guidelines we provide in this paper ireord
infinite number of features (Theorem 3 and Theorem 6). Thos®e help testers select, in practical contexts, betweenarand
theorems are anyway valuable in scalability analyses, whesting and CIT techniques.

11

The theoretical results presented in this paper are onigl vahre empty, then the conditional probabilipy of sampling
in the absence of constraint among features. When there arball that ends in basket would be higher thanl /w, as
constraints (as it often happens in industrial systems), we know that it cannot end up in any of thegebaskets. In
have shown that random testing might become very inefficieptarticular, we would have:

Therefore, the results of this paper should also be seen as a 1 1 1

way to motivate further research in CIT for the cases in which P = — ’ .
feature constraints are present. These types of applisatice wol-g w-y

not so common in the literature [19], [30], but they havetsthr Therefore:

to get more attention in recent years (e.g., [8], [17], [34]). N

In the future, it will be important to study whether it is P(Vy)=(1—-p)N = (1 _ L) :
possible to provide lower and upper bounds to the effectisen w—y
of random testing applied to constrained CIT problems. Suchwhere the probability thatn baskets are all empty at the
results would help to quantify how much improvement a Cl§ame time would be:
technique could achieve compared to simple and practical

. . . m \N
testing techniques such as random testing. PVIA...AVy) = (1 - 7))
w—y
ACKNOWLEDGMENTS Now, we can use théclusion-exclusion principlg¢15] to
calculate the probability that at least one of theséaskets

The work described in this paper was supported by tpg
Norwegian Research Council. This paper was produced as pal
of the ITEA-2 project called VERDE.

main empty:

PViV...VV,) = Z£1(_1)i+1 EJQ{1,...,m};|J|:i

APPENDIX P(Vyy Ao AViy)

In this appendix, we provide a simple extension to the occu- =3 (D7) (1 - wiy)
pancy problem [15], in which we consider the case when ballsqy,4 probability that —y baskets are occupied is equalito

end up_in a specific hasket With probabilityw < 1/2, rath.e.r minus the probability that any of them is not empty, formally
than with probabiltyl/z. Notice that, due to the simplicity

of this extension, and the wide applications of probability
analysis, it is likely that such generalized version hasaly

PB=z—-ylA=y) =1-P(ViV...VV._,)

been studied in the literature (although we have not fouryd an =1- Ef:f!(_]%[)“rl(ziy)
reference). The formal proof in this appendix has hence been (1 S)

included in this paper to make it self-contained. kebe the v y, ‘
random variable representing the number of baskets that are =Y J DY) (1 - ﬁ)

empty after samplingv balls. The following theorem provides

the probability mass function for Finally, we can conclude the proof with:

Theorem 7. In the generalized occupancy problem where P(Y=y) =P(A=y)xP(B=z—ylA=y)
there arez baskets,V balls and each of them can end up in . A\ ey iy

a specific basket with probability/w < 1/z, then the mass - y) (1 N E) ise (Z1()
function of the number of empty bask&tss described by: (1- wiy)N

z—y .
z y\N Mz—y 1 \N
P(Y =y) = (1_7) _1yi 1- .
¥'=v) (y) w Z;() (i)(w3 * REFERENCES
Proof: [1] A. Arcuri, M. Z. Igbal, and L. Briand. Black-box systemsting of
root. real-time embedded systems using random and search-based. tést

The proof of this theorem follows the same structure of the IFIP International Conference on Testing Software and @yst(ICTSS)

proof in [15] for the standard occupancy probleR(Y = y) 2 KagAeS 95_—1,;0,220}05 | and L Briand. F | veis of dh
. o . Arcuri, M. Z. Igbal, and L. Briand. ormal analysis o

can be descrlbgd as the probability t@abas!(ets are empty effectiveness and predictability of random testingA@M International

(A = y) and, given that event, the remaining— y basket Symposium on Software Testing and Analysis (ISSTeges 219-229,

are occupiedB = z —y|A =y), i.e. P(Y = y) = P(A = 2010. o _ o

y) % P(B - yIA _ y) A set ofy baskets would remain [3] J. Bach and P. Schroeder. Pairwise testing: A best pedhat isn't.

. . N - In Proceedings of 22nd Pacific Northwest Software Quality ©emice
empty with probability(1 — y/w)", and there arg’) ways pages 180-196, 2004.

to choose a sub-set of baskets fromz of them. T%erefore, [4] A. Calvagna and A. Gargantini. A Formal Logic Approach torc

N . strained Combinatorial Testingournal of Automated Reasoningages

is lengthy, and requires quite a few extra intermediarystep[s] M. Chateauneuf and D. Kreher. On the state of strengthetitovering

Let us considerV; representing whether a specific basket arrays.Journal of Combinatorial Designsl0(4):217-238, 2002.
) D. Cohen, S. Dalal, J. Parelius, and G. Patton. The cortdniiah design

L o . . i6]
with index: is empty (after samplingv balls) given the fact approach to automatic test generatioSoftware, |IEEE 13(5):83-88,
thaty other baskets are empty. If we know thadther baskets 1996.

(71

(8]

(9]

(20]

[11]
(12]
(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]
(31]

(32]

(33]

M. Cohen, C. Colbourn, and A. Ling. Augmenting simulatechealing
to build interaction test suites. Imternational Symposium on Software
Reliability Engineering pages 394-405, 2003.

M. Cohen, M. Dwyer, and J. Shi. Constructing interactiest suites for
highly-configurable systems in the presence of constrafntgeedy ap-
proach.lEEE Transactions on Software Engineering (TSE)(5):633—
650, 2008.

M. Cohen, P. Gibbons, W. Mugridge, and C. Colbourn. Carcting test
suites for interaction testing. IACM/IEEE International Conference on
Software Engineering (ICSEpages 38-48, 2003.

C. Colbourn. Covering array tables. Available
http://Iwww.public.asu.edu/ccolbou/src/tabby/catable.html.
28 September 2009.

C. Colbourn. Combinatorial aspects of covering arrdysMatematiche
58:121-167, 2004.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéitroduction
to Algorithms.MIT Press and McGraw-Hill, second edition, 2001.

J. W. Duran and S. C. Ntafos. An evaluation of randomingstiIEEE
Transactions on Software Engineering (TSE)(4):438—-444, 1984.

M. Ellims, D. Ince, and M. Petre. The Effectiveness of By\VTest
Data GenerationComputer Safety, Reliability, and Securipages 16—
29, 2008.

W. Feller. An Introduction to Probability Theory and Its Applicatigns
Vol. 1L Wiley, 3 edition, 1968.

S. Foucle, M. Cohen, and A. Porter. Incremental covering array failur,

characterization in large configuration spaces. A®GM International
Symposium on Software Testing and Analysis (ISST#ges 177-188,
2009.

B. Garvin, M. Cohen, and M. Dwyer. Evaluating improvengemt
a meta-heuristic search for constrained interaction tgstiBmpirical
Software Engineeringpages 1-42, 2010.

A. Godbole, D. Skipper, and R. Sunley. t-covering astaypper
bounds and Poisson approximation€ombinatorics, Probability and
Computing 5(02):105-117, 1996.

M. Grindal, J. Offutt, and S. Andler. Combination tesfistrategies: A
survey.Software Testing, Verification and Reliability (STYE)(3):167—
199, 2005.

H. Hemmati, A. Arcuri, and L. Briand. Reducing the cost of daeb
based testing through test case diversitylRIP International Confer-
ence on Testing Software and Systems (ICTi&R8)es 63-78, 2010.
H. Hemmati, A. Arcuri, and L. Briand. Empirical investiga of the
effects of test suite properties on similarity-based tese cselection.
In IEEE International Conference on Software Testing, Vexiftn and
Validation (ICST) pages 327-336, 2011.

D. Kuhn, R. Kacker, and Y. Lei. Random vs. combinatoriakimoels for
discrete event simulation of a grid computer netwoFkoceedings of
the Mod Sim World, NASA CP-2010-216205, National Aeronalgnd
Space Administratignpages 14-17, 2009.

D. Kuhn, D. Wallace, and A. Gallo Jr. Software fault irgetions
and implications for software testinEEE Transactions on Software
Engineering (TSE)30(6):418-421, 2004.

R. Kuhn, Y. Lei, and R. Kacker. Practical combinatoriesting: Beyond
pairwise. IT Professiongl pages 19-23, 2008.

Y. Lei, R. Kacker, D. Kuhn, V. Okun, and J. Lawrence. IPORDG-D:
efficient test generation for multi-way combinatorial tegtirSoftware
Testing, Verification and Reliability (STV,R)8(3):125-148, 2008.

Y. Lei and K. Tai. In-parameter-order: a test generatirategy for

12

[34] B. Stevens, L. Moura, and E. Mendelsohn. Lower bounds¢rémsversal
covers.Designs, codes and cryptographys(3):279—-299, 1998.

[35] V. Sugumaran, S. Park, and K. C. Kang. Introducti@@mmunications

of the ACM 49(12):28-32, 2006.

K. Tai and Y. Lei. A test generation strategy for paireviesting.|EEE

Transactions on Software Engineering (TSE3(1):109-111, 2002.

C. Yilmaz, M. Cohen, and A. Porter. Covering arrays fdicgnt fault

characterization in complex configuration spade&&E Transactions on

Software Engineering (TSEpages 20-34, 2006.

(36]

(37]

at
Accessed

Andrea Arcuri received a BSc and a MSc de-
gree in computer science from the University
of Pisa, ltaly, in 2004 and 2006, respectively.
He received a PhD in computer science from
the University of Birmingham, England, in 2009.
Since then, he has been a research scientist
at Simula Research Laboratory, Norway. His re-
search interests include search based software
testing and analyses of randomized algorithms.

PLACE
PHOTO
HERE

Lionel Briand is a professor of software engi-
neering at the Simula Research Laboratory and
University of Oslo, leading the project on soft-
ware verification and validation. Before that, he
was on the faculty of the Department of Systems
and Computer Engineering, Carleton University,
Ottawa, Canada, where he was a full professor
and held the Canada Research Chair in Soft-
ware Quality Engineering. He has also been
the Software Quality Engineering Department
head at the Fraunhofer Institute for Experimental
Software Engineering, Germany, and worked as a research scientist

PLACE
PHOTO
HERE

pairwise testing. IrHigh-Assurance Systems Engineering Sympasiurfor the Software Engineering Laboratory, a consortium of the NASA

pages 254-261, 1998.

J. McGregor, D. Muthig, K. Yoshimura, and P. Jensen. G&ektors’
Introduction: Successful Software Product Line Practicé&oftware,
IEEE, 27(3):16-21, 2010.

D. Mitrinovi¢ and P. Vadi. Analytic inequalities Springer, 1970.

M. Motwani and P. RaghavanRandomized Algorithms Cambridge
University Press, 1995.

C. Nie and H. Leung. A survey of combinatorial testingACM
Computing Surveyst3(2):1-29, 2011. Article 11.

G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Tradwmtomated
and scalable t-wise test case generation strategies ftwagef product
lines. INIEEE International Conference on Software Testing, Vexiftn
and Validation (ICST,)pages 459-468, 2010.

A. Pretschner, T. Mouelhi, and Y. Le Traon. Model-bagests for access

Goddard Space Flight Center, CSC, and the University of Maryland.
He has been on the program, steering, or organization committees of
many international IEEE and ACM conferences. He is the editor-in-chief
of the Empirical Software Engineering (Springer) and is a member of
the editorial boards of Systems and Software Modeling (Springer) and
Software Testing, Verification, and Reliability (Wiley). He was on the
board of the IEEE Transactions on Software Engineering from 2000 to
2004. His research interests include: model-driven development, testing
and quality assurance, and empirical software engineering. He is a
fellow of the IEEE.

control policies. INIEEE International Conference on Software Testing,

Verification and Validation (ICST)pages 338-347, 2008.

M. Sinnema and S. Deelstra. Classifying variability miodg tech-
niques. Information and Software Technology (IS®9(7):717-739,
2007.

