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Abstract 
Software testing is often conducted as a manual, ad hoc task, as compared to following an 

automated and more systematic procedure. Consequently, testing is likely to be incomplete 

and costly to ensure the required level of dependability. Safety-critical software systems must 

be tested so as to ensure its safe behavior. Despite the importance of being systematic while 

testing, all testing activities take place, even for safety-critical software, under resource 

constraints. In order for industry to make the right choices when deciding on how to test their 

software, more knowledge about how various testing strategies compare in terms of cost-

effectiveness is necessary. As thorough software testing is an expensive task, reducing the cost 

of testing while ensuring sufficient fault-detection effectiveness should be of common interest 

to industry. Enabling automated testing to check the compliance of implementations against 

their specifications, model-based testing has become a popular area of research and practice. 

Test models, for example expressed as UML state machines, describe the expected behavior of 

the software and provide the basis for systematic and automated generation of test suites. One 

specific area of research is related to how different coverage criteria of the test models affect 

the cost-effectiveness of the resulting test suites.  

This thesis assesses six state-based coverage criteria and evaluates their cost and fault-

detection effectiveness based on 26 real faults collected in a field study at ABB. Eleven of the 

faults were sneak paths – thus, only 15 of the faults could be killed by the six conformance 

coverage criteria. Two different test oracles have been applied to compare their cost-

effectiveness. Moreover, this thesis also investigates the effect of increasing the test-model 

abstraction level on the cost-effectiveness of the testing strategies. The coverage criteria were 

complemented with sneak-path testing. To enable evaluation of the state-based testing 

techniques, a model-based testing approach, TRUST, was developed and used to 

automatically generate the studied test suites. Four industrial case studies evaluate each of 

the testing aspects: coverage criteria, oracles, test models, and sneak paths.  The case studies 

are based on a research project at ABB where a safety-monitoring component in a control 

system was developed using state machines and implemented according to the extended state-

design pattern.   

The findings of this thesis include: (1) Development and demonstration of a model-based 

testing approach based on model transformations. (2) An empirical investigation of the cost-

effectiveness of six systematic coverage criteria applied in an industrial project and evaluated 

by using real faults: all transitions (AT), all round-trip paths (RTP), all transition pairs 
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(ATP), paths of length 2 (LN2), paths of length 3 (LN3), and paths of length 4 (LN4). (3) A 

comparison of two oracles: Oracle O1 checks the state invariant of the resulting state in 

addition to that the current state pointer of the system corresponds to the expected state after 

the test. Oracle O2 only checks that the state pointer to the current state of the system 

corresponds to the expected state after the test. (4) An evaluation of the cost-effectiveness 

when varying the level of details in the test model. (5) A demonstration of the importance of 

sneak-path testing.   

The results show that test suites generated from a precise model according to coverage 

criteria AT, RTP, ATP, and LN4 when utilizing oracle O1, yields high-quality test suites 

powerful enough to detect the seeded faults (except from sneak paths). The average cost 

measured as preparation and execution time were as follows: AT: 5,603 seconds; RTP: 2,731 

seconds; ATP: 32,160 seconds; and LN4: 6,145 seconds. LN3 killed 93 percent (14/15) of the 

mutants at the cost of 645 seconds. Across all six coverage criteria, 88 percent of the seeded 

faults were detected at 7,905 seconds in preparation and execution time. Applying the weaker 

oracle O2 at an average decrease in cost around 13 percent, 67 percent of the mutants were 

killed. By removing details from the test model, the cost of testing was significantly decreased 

with 85 percent (for both oracles O1 and O2), while only reducing the fault-detection ability 

by 24 percent for oracle O1 and 37 percent for oracle O2. Note that these results were 

obtained in spite of a high number of infeasible test cases in test suites generated from the 

less detailed model as a consequence of wrong test data.  

Moreover, the sneak-path test suite detected the eleven remaining mutants that could not 

be killed by any of the conformance test suites. Thus, the results indicate quite strongly that 

sneak-path testing is a necessary step in state-based testing as the presence of sneak paths is 

undetectable by conformance testing.  

Finally, this thesis has demonstrated how model transformations can enable state-based 

testing. The tool was demonstrated to be extensible to support different types of state-based 

coverage criteria and oracles.   
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1 Introduction 

1.1 Motivation 

Today’s society highly depends on advanced software, both in private and public sectors. 

More importantly, as certain uses of software are safety-critical, in the sense that faults in the 

software may cause serious damage to human beings and physical items, our society depends 

on software that behaves as intended. Examples of safety critical software are the control 

systems that monitor industrial productions. A typical characteristic of such control systems is 

that their behaviours depend on the current state of the system.  

With software comes the potential of increasing efficiency. Unfortunately, however, along 

comes the risk of introducing software faults that can cause software to behave undesirable. 

Both fatal and severe incidents due to software failures during the last decades motivate the 

need for continuous research on software testing. In short, there is a need for evolving the 

procedures of software testing.  

One approach to software testing derives test cases from a behaviour model of a system, 

known as Model-Based Testing (MBT) [1]. MBT is not a new domain of research in software 

engineering [2]. However, in recent years, the level of interest in industry and academia has 

been rapidly increasing. This interest can be seen from the many academic studies [1, 3, 4, 5, 

6, 7] and industrial projects [8, 9, 10, 11] on model-based testing being reported. This 

suggests that there is an increasing awareness of the benefits offered by MBT [1]. 

Being one of several possible input models to MBT, state machines are widely used to 

specify the behaviour of the most critical and complex classes that exhibit state-driven 

behaviour [12]. State machines are also highly appropriate to facilitate class design; one 

approach is to follow the state design pattern [13] as demonstrated in [14]. Many object-

oriented methodologies recommend modelling components with a state-dependent behaviour 

with state models for the purpose of testing [12]. This is particularly due to the fact that the 

specification of a software product can be used as a guide for designing functional tests for 

the product [15]. As stated by Offutt et al. [16], formal specifications represent a significant 

opportunity for testing because they precisely describe what functions the software is 

supposed to provide. In particular, such specifications enable automatic generation of test 

cases using model-based testing tools.   
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Tool support for MBT has dramatically improved in recent years, but most of the tools 

specifically target an application context and cannot easily be adapted to others. Many tools 

have been developed to support MBT [8, 17, 18, 19, 20, 21, 11]. However, all of them have at 

least one of the following drawbacks: 

 They do not support well-established standards for modelling the System Under 

Test (SUT). This makes it difficult to integrate MBT with the rest of the 

development process, which in turn makes the adaptation and use of MBT more 

costly. 

 They cannot be easily customized to different needs and contexts. For example, a 

tester may want to experiment with different testing strategies to help target 

specific kinds of faults. Furthermore, constraints can evolve, e.g., the test-scripting 

language in a company can change. 

 

Coverage criteria define how thoroughly the software is tested. The cost-effectiveness of 

testing significantly depends on the coverage criteria being applied, and constitutes a tradeoff 

between increasing fault-detection effectiveness and reducing the size of the test suite 

(affecting costs). Hence, evidence on the cost-effectiveness should be a useful guide for the 

industry on how to select the appropriate coverage criterion related to cost and criticality of 

the system under test (SUT). Evaluating the cost-effectiveness of different coverage criteria, 

however, cannot be performed by analytical means [22]. Empirical studies are crucial to 

software testing research in order to compare and improve software testing techniques and 

practices [23]. 

There are several challenges related to investigating fault-detection effectiveness, amongst 

others the number of faults to be present in the SUT [22]. Previous work has addressed this 

problem by seeding artificial faults into correct versions of the SUT using so-called mutation 

operators [24, 25]. Although results from studies [26, 27, 28] have suggested that faults 

seeded using mutation operators under certain conditions may be representative of real faults, 

there is still a need to increase the external validity of results by studying fault-detection 

effectiveness in more realistic settings, using real faults. A few studies, e.g., [16], partly used 

naturally occurring faults. However, these constituted only a minor percentage of the total 

number of faults. Thus, this research was motivated by the lack of empirical evidence in 

testing software with real faults, and thus complements studies conducted in artificial settings. 
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Another key challenge in software testing is how to define the test oracle, which 

automatically provides answers to whether or not the system behaves as intended during test 

execution. This deserves more research as the cost and fault-detection ability of different 

oracles may vary substantially [12].  

Yet another interesting area of state-based testing, which has been given little attention, is 

the possible benefits of increasing cost-effectiveness by raising the test model abstraction 

level. Several studies, e.g. [29, 30], focus on lowering the cost of testing by reducing the size 

of the test suites, preserving the original coverage. There are conflicting results on how the 

reduction influences the fault-detection ability of the test suites, in particular with respect to 

how rigorous the test criteria are. Heimdahl and George [29] thus express a concern for using 

this technique on structural coverage due to the possible loss of fault-detection. Whereas such 

test-reduction techniques are based on removing tests in a test suite that do not affect the 

achieved coverage, this thesis rather focuses on abstracting the test model itself. This means 

that not only will the cost of testing potentially be reduced due to a lower number of test cases 

that needs to be generated and maintained, but also due to a less detailed test model that 

requires less maintenance effort.   

1.2 Research Goal 

The lack of extensible and configurable model-based testing tools, as well as the need for 

empirical results to increase the external validity of cost-effectiveness of state-based testing 

leads to the following research goal: the main goal of this thesis is to empirically evaluate the 

cost-effectiveness of state-based testing in the context of safety-critical systems by (1) 

developing an extensible tool for automating the test procedure, and (2) using this tool to 

empirically evaluate, by means of four industrial case studies, aspects related to the cost-

effectiveness of model-based testing.  

The first part of the goal includes experiences regarding the design and application of 

TRUST, a TRansformation-based tool for Uml-baSed Testing. More specifically, the 

experiences concern:  

 The extensibility and configurability in MBT: As motivated in the previous 

section, most of the existing model-based tools specifically target an application 

context and cannot easily be adapted to others. There is a lack of tool 

environments that are extensible and configurable for various application 

contexts. Therefore, this thesis presents TRUST which is based on model-
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transformation technologies and features an architecture with clear separation of 

concerns and interfaces, thus making it easily extensible and configurable for 

different context factors such as input models, test models, coverage criteria, test 

data generation strategies, and test-scripting languages.   

 The practical challenges of applying MBT: There are several important concerns 

that must be addressed when applying MBT, in particular (1) the selection of 

environment values to increase feasible transitions, and (2) the detection and 

handling of infeasible test cases due to conflicting guard conditions. Ignoring the 

former issue may lead to a high number of infeasible transitions due to external 

variables in guard conditions that never appear with satisfying values; ignoring 

the latter may also result in a large number of infeasible transitions, though due to 

a different reason – when combining states from several regions in a state 

machine, situations may occur where guards on transitions conflict with the 

source state. This implies that the transition will never be fired.  

 

The studied aspects in the second part of the goal regard:  

 State-based coverage criteria: Evaluations of state-based coverage criteria are 

important in order to provide evidence on how effective the criteria are at 

detecting faults and at which costs. The following six criteria are addressed in this 

thesis: (1) all transitions (AT), (2) all round-trip paths (RTP), (3) all transition 

pairs (ATP), (4) paths of length 2 (LN2), (5) paths of length 3 (LN3), and (6) 

paths of length 4 (LN4). 

 Oracles: Another aspect of model-based testing that may affect the cost-

effectiveness is the applied oracle. Hence, two oracles at different abstraction 

levels are applied in this thesis: (1) oracle O1 checks that the pointer to the current 

state of the system corresponds to the expected state after the test, in addition to 

the state invariant of that state, whereas (2) oracle O2 only checks that the pointer 

to the current state of the system corresponds to the expected state after the test. 

 Test model abstraction levels: To identify possible benefits of removing details 

from the test model on the cost, two different abstraction levels were evaluated in 

this thesis: (1) a precise model of the system under test, and (2) a less precise 

model where the contents of every composite state (states that contain other 

states) were removed.  
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 Sneak-path testing: The applied coverage criteria provide conformance testing, 

i.e., checking that the system under test reacts according to the specified 

behaviour. What is also required, however, is to ensure that the implementation 

does not include additional behaviour other from what is specified. For this 

purpose, the system under test is positioned in every possible state and exposed to 

unexpected, unspecified events. Expected behaviour would be that the state 

remains unchanged. This approach, which we have applied in this thesis, is 

referred to as sneak-path testing [31].   

1.3 Research Method 

In this thesis, model-based testing was evaluated in four industrial case studies conducted in 

the research department in ABB Norway. The case studies concern a research project in ABB 

where a safety monitoring component in a safety-critical control system was developed using 

UML state machines [32] and implemented according to the extended state-design pattern 

[13]. The extended state-design pattern localizes state-specific behaviour in an individual 

class for each state, and hence puts all the behaviour for that state in one class. The pattern 

allows a system to change its behaviour when its internal state changes. This is accomplished 

by letting the system change the class representing the state of the object. The pattern 

specifies how and where to implement state and transition actions.  

Twelve state-based testing strategies, including the combination of six coverage criteria 

with two oracles, were compared in terms of cost and effectiveness at two test model 

abstraction levels. For this purpose, real fault data was collected in a global field study to 

generate mutated versions of the system under test. The field study included 11 developers 

from three ABB research departments to solve a maintenance task on the safety-monitoring 

component. Manual code inspections were used to collect actual faults.  

To enable such an evaluation, a model-based testing tool TRUST [33] was developed and 

used to automatically generate the test suites. To avoid possible randomness in the obtained 

test results, 30 test suites were generated for each of AT, RTP, and ATP. The reason for 

randomness in the results is that it is possible to create several test trees that satisfy the same 

criterion. For the remaining criteria, LN2, LN3, and LN4, the generation of test trees is 

deterministic. Thus, only one test suite was generated for each of them.   
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1.4 Contributions 

The contributions in this thesis are two-fold: (1) development of an extensible tool that 

enables automated state-based testing, and (2) four industrial case studies evaluating the cost-

effectiveness of model-based testing.  

The first part regards the design and application of TRUST, a TRansformation-based tool 

for Uml-baSed Testing, which can be extended and configured for various application 

contexts. TRUST is based on model-transformation technologies and features an architecture 

with clear separation of concerns and interfaces, thus making it easily extensible and 

configurable for different context factors such as input models, test models, coverage criteria, 

test data generation strategies, and test-scripting languages.  

Using TRUST offers many other potential advantages that are, however, difficult to 

quantify. For example, it should make the generation of test scripts less error-prone, enable 

the easy re-generation of test cases when the SUT specifications change, and ensure that 

testing is systematic and not redundant, an objective hard to achieve for a human tester. In 

terms of scalability, the only issue seems to be with the flattening of concurrent states, which 

may take a few hours on complex, highly concurrent state machines. Otherwise, the required 

processing time involved in TRUST has shown to be, in the worst case, a matter of minutes. 

The second part of the contributions was obtained from the four industrial case studies 

empirically evaluating the cost-effectiveness of state-based testing strategies. The 

contributions include:  

 a field study where real fault data was collected for the purpose of creating 

mutants to measure the cost-effectiveness, 

 a comparison of oracles on different abstraction levels,  

 an investigation of the influence of raising the abstraction level of the test model 

on the cost-effectiveness of the testing strategies, and 

 demonstrations of the importance of sneak-path testing for the purpose of 

detecting unspecified behavior.   

 

Obtained results from the case studies indicate that evaluations of coverage criteria 

regarding fault-detection are in accordance with results obtained using artificial faults in 

existing research, thus increasing the external validity of those results.  
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Applying the more rigorous oracle is proved to be worthwhile as the increase in fault-

detection effectiveness exceeds the additional cost as compared to applying the weakest 

oracle.  

Interestingly, removing a rather substantial part of the state machine details resulted in 

comparable cost-effectiveness as compared to the precise test model. The significant cost 

reduction (85 percent across all six strategies for both oracles O1 and O2), at an average 

reduction in fault-detection of 24 percent for oracle O1 and 37 percent for oracle O2, may 

encourage further research on this type of test-suite reduction.  

The application of sneak-path testing stresses the importance of also this type of testing; 

each of the mutants that remained undetected after applying conformance testing (as 

expected) were killed by the sneak-path test suite. 

In terms of benefits, the comparison of the cost of modeling with the number of test cases 

generated has shown that using TRUST should yield significant cost savings when applying 

standard state-machine coverage criteria. In other words, the cost of writing manually the 

same test cases is likely to be larger than the cost of modeling the system under test (SUT) 

and generating the test cases. 

The findings just presented are relevant both for industry and academia. Research on 

software testing that is to be adopted in an industrial setting must give evidence of relevance 

to the industry in terms of being cost-effective. For this, case studies are important in that they 

give the opportunity to test concepts in realistic contexts. In addition, the effort required by 

keeping models updated may be easier to accept by practitioners when having evidence of the 

cost-effectiveness of state-based testing.  

Moreover, the research methods used to conduct this study are hoped to prove valuable to 

researchers who are planning similar studies. Finally, the directions for future work should be 

useful as guidance in research on state-based testing.  

To study the potential for using state-based automated testing, a number of activities were 

conducted. An overview of these research activities as regards the division of labor can be 

found in Appendix A.  

1.5 Publications 

The approach of presenting a PhD thesis as a collection of papers is more and more common. 

Consisting of numerous parts and pieces, however, this thesis was presented as a monograph 

as to be able to describe the complete history in a more straightforward manner. Nevertheless, 
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the four case studies presented in this thesis have been submitted to the journal Information 

and Software Technology. Chapter 11 has also been submitted to the 23rd IEEE International 

Symposium on Software Reliability Engineering 

Moreover, the development process of the SUT was published at MODELS’06 [14]. 

Finally, two technical reports regarding the development of the model-based testing tool 

TRUST [33] and the state-machine flattening component of TRUST [34] were published at 

Simula as technical reports. 

1.6 Thesis Organization 

This thesis consists of four main parts: (Part I) introduction, (Part II) development of an 

extensible model-based testing tool, (Part III) cost-effectiveness evaluation of state-based 

testing strategies using the prototype described in (Part II), and (Part IV) summary of the 

thesis. The chapters are organized as follows.  

Part I – Introduction 

 Chapter 2 introduces the concepts and definitions used in software testing.  

 Chapter 3 presents related work as for evaluations of testing techniques.  

 Chapter 4 regards limitations in existing research.  

Part II – Development of an extensible model-based testing tool 

 Chapter 5 addresses the development of the automated testing tool.  

 Chapter 6 presents lessons learned and experiences from the development. 

Part III – Cost-effectiveness analysis 

 Chapter 7 describes the design of the four case studies that present cost-

effectiveness analyses of (1) six state-based coverage criteria, (2) two oracles, (3) 

two test model abstraction levels, and (4) sneak-path testing. 

 Chapter 8 to Chapter 11 present results for each of the four case studies. 

Part IV – Summary  

 Chapter 12 presents lessons learned from applying state-based testing.  

 Chapter 13 addresses threats to validity. 

 Chapter 14 concludes the thesis.  

 Chapter 15 gives directions for future work.  
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PART I – INTRODUCTION 

Part I introduces concepts and definitions (Chapter 2). Moreover, it motivates the study by 

presenting related work (Chapter 3) and identifies gaps in existing research on cost-

effectiveness evaluations of state-based testing (Chapter 4). Chapter 4 also explains how the 

thesis complements and extends existing research on the cost-effectiveness of state-based 

testing.   

2 Background Concepts and Definitions 

This section introduces background concepts and definitions, used throughout the thesis, for 

software testing concepts and empirical research methods used in software engineering.  

2.1 Software Testing 

2.1.1 Basic Testing Concepts 

According to McGregor and Sykes, software testing is the process of uncovering evidence of 

defects in software systems [35, p. 3]. If a fault exists in the software, it must be exercised to 

be revealed [31]. The process consists in determining test inputs and expected behavior of the 

system under test (SUT), executing the test, observing the actual behavior, and finally 

comparing the expected and actual behavior as evidence of whether the test passed or failed. 

Debugging and repair of faults, on the other hand, are not considered as testing activities. 

Important to know is that the SUT does not necessarily have to be a complete system. It can in 

fact be just a class or a module, but also even a system of systems.   

A test case consists of an input-output pair, i.e., the input to the SUT and the expected 

result, which is a “description of the output that the SUT should exhibit for the associated 

input” [35]. A test oracle evaluates the results of a test case, either as a manual, automated or 

partially automated process. The evaluation itself requires a generator for producing expected 

results, but also a comparison mechanism to check whether or not the test case passed by 

comparing actual with expected results [31, p. 918]. A test suite consists of a number of test 

cases, and serves a particular testing goal. The goal may be to create a random selection of 

test cases or to satisfy a specific coverage criterion (also known as adequacy criterion) that 

specifies the elements of the SUT to be exercised by a test suite. Different types of coverage 

criteria are described in Section 2.1.5. If all tests in a test suite together cover 100 percent of 
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the desired program elements in a coverage criterion, the test suite satisfies that coverage 

criterion [36] – it is adequate.  

Software testing is often separated in categories according to the particular source from 

which test cases are derived. Binder characterizes testing in two main categories: 

responsibility-based (also known as specification-based or black-box testing) and 

implementation-based testing (also known as structural or white box testing) [31, pp. 51-52]. 

The former type uses specified or expected responsibilities of a unit, subsystem, or system to 

design tests. The latter relies on source code analysis to develop test cases.     

Depending on when test cases are generated and executed, testing is known as offline or 

online. Offline testing generates tests by using various search algorithms prior to test 

execution, whereas online testing executes the system to generate the test cases dynamically 

by traversing the test model according to how the system reacted to the previous input. That 

is, no test cases exist prior to test execution.  

The fault-detection ability of a test suite is referred to as its effectiveness, whereas the 

average testing cost for detecting a fault in a program is the efficiency of a coverage criterion 

[37]. 

2.1.2 Model-Based Testing 

Model-based testing (MBT) is an example of a black-box testing technique. In MBT, test 

cases are derived from a model of the SUT and/or its environment [36]. Utting et al. [36] 

define MBT as “the automatable derivation of concrete test cases from abstract formal 

models, and their execution”. Models of the SUT are of great value to testing, which enables 

systematic, focused, and automatic testing [31]. Unlike traditional testing, MBT is known for 

being a structured, documented, and reproducible approach, which reduces the correlation 

between the individual test engineers’ skills and the test quality [36]. In general, MBT can be 

divided in five steps, of which Step 1 and Step 2 distinguish MBT from other kinds of testing:  

1. Model the SUT and make it test ready [31].  

2. Generate abstract tests (sequences of operation calls) from the model. Due to a, in 

some cases, infinite number of possible tests, coverage criteria are used to say which 

tests we want to generate from the model. The criteria should be selected according to 

test objectives and cost.  

3. Create concrete tests from the abstract tests, i.e., to make them executable. This 

includes adding low-level SUT details not present in the abstract test cases. For 
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example, test data are added as arguments in operation calls, to represent the SUT 

environment, or as values in guards.  

4. Execute the concrete tests on the SUT. However, as the test model contains fewer 

details than the SUT itself, there is a need to bridge the abstraction gap during 

execution. An adaptor is a component that maps abstract operations in the test model 

to concrete API calls in the SUT. The adaptor does not necessarily have to be a 

separate software component [36] – it is often integrated in the test driver [35], which 

executes the test cases and collects the results.  

5. Analyse test results to provide data on the correctness of the system as aid in 

debugging. Test cases that fail may be due to a real fault in the SUT or fault in the test 

case. In addition, false positives can be the reason for a test case to fail. This may for 

instance be due to unsatisfied guard conditions related to externally controlled 

variables, implying that test data was not correctly selected.  

 

In this thesis, the MBT approach was applied to state-based testing (SBT) in particular, 

which will be described in Section 2.1.4.  

2.1.3 Modeling Notations in Model-Based Testing 

Modeling enables abstraction of system details. This is particularly useful when dealing with 

development of complex systems, both related to keeping control of components, and 

communicating with customers and colleagues. In MBT, different kinds of modeling 

notations are used for the purpose of modeling the behavior of the SUT. Sequences of 

interactions (like message-sequence charts), mathematical functions (like algebraic 

specifications), executable processes (like Petri net), probabilistic models (like Markov 

chains), and data flow modeling (like block diagrams) are all examples of modeling notations 

as presented by Utting et al. [36]. More interestingly, in the context of this thesis, Utting et al. 

[36] differentiate between yet another two modeling notations: state-based and transition-

based notations. State-based notations model the SUT as a collection of variables whereas 

transition-based notations model the SUT as transitions between states. Z [38], B [39], and 

JML [40] are examples of state-based notations. SmartTesting [41] is an example of a testing 

tool that supports B. Examples of transition-based notations are finite state machines, 

Statemate statecharts [42], and Unified Modeling Language (UML) state machines [32]. 

Rhapsody ATG [19] supports testing from UML state machines.  
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One commonly used modeling notation in software engineering is UML, which is 

considered to be the de facto formal modeling language [43, 44]. Unlike code, which is a 

detailed modeling language, and natural language, which easily introduces ambiguity, UML 

consists of a set of graphical diagrams including use case, activity, class, object, sequence, 

communication, timing, interaction overview, component, package, and deployment 

diagrams, in addition to state machines. The diagrams are useful in order to present some part 

of a model [43]. MBT can make use of several of these diagrams – in particular state 

machines, class diagrams and sequence diagrams. In this thesis, MBT was based on the state 

machine, a behavioral diagram type.  

Many systems, such as embedded real-time systems [45], telecommunication systems [2, 

46], and multimedia systems [47], exhibit state-driven behaviour. Such behaviour can be 

described in terms of UML state machines that express behavior of the SUT in terms of its 

observable states and how the SUT changes states as a result of events that affect the SUT 

[35]. UML state machines, which are extensions of traditional finite state machines, can be 

used to model such behaviour. The state machine defines allowable transitions and actions as 

response to the events that may occur. An event may cause different behaviours according to 

the state of the system at the time the event occurred. Transitions between states may be 

guarded. A guarded transition implies that the change of state will only occur if the condition 

specified by the guard is evaluated to true.    

2.1.4 State-Based Testing 

The different features of UML state machines make it an expressive notation for specifying 

reactive control systems, and may therefore be used as an aid in state-based testing (SBT). 

Traditional finite state machines cannot model software systems with concurrent behavior. 

Concurrency in UML state machines is modeled using composite states with two or more 

regions [32]. When modeling complex software systems with finite state machines, the 

number of states and transitions can grow exponentially with system size. This can be handled 

by UML state machine features for modeling sub machines. Many tools (e.g., [48, 49]) 

support the modeling of UML state machines.  

SBT derives test cases from state machines that model the expected system behavior. The 

SUT is tested with respect to how it reacts to different events and sequences of events. SBT 

thus validates whether the transitions that are fired and the states that are reached are 

compliant with what is expected given the events that are received. States are normally 

defined by their invariant, a condition that must always be true in that particular state. 
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SBT has the potential of enabling test automation when executable test cases can be 

automatically generated from state machines. With automation comes the advantage of 

reduced effort required by human resources. This regards, not only execution of test suites, 

but also the generation of test suites and evaluation of results. To automate testing based on 

UML state machines, test data must be generated to fire triggers associated with transitions, 

and the triggers typically require parameter values. Test data can be generated randomly from 

the possible set of values, or using more sophisticated techniques such as constraint solvers 

[50], or search-based techniques (for example using genetic algorithms for test data 

generation [51]). Constraints defined on UML state machines, such as state invariants, guards, 

and pre/post conditions of triggers, should be evaluated during the execution of the generated 

test cases. As has been shown by many studies, this is a very effective way to detect failures 

[12, 3]. These constraints are usually written as OCL expressions in the context of UML. 

Examples of available OCL evaluators are OCLE 2.0 [52], OSLO [53], IBM OCL parser [54], 

and EyeOCL Software (EOS) evaluator [55]. 

Test suites derived from test models are commonly known as conformance testing since it 

checks that the SUT conforms to the explicit behavior model. This is, however, not enough 

because the state machine may not be completely specified, e.g. event/state pairs may be 

missing in the state machine. This may introduce sneak paths – bugs that allow illegal 

transitions (unspecified transitions) or elude guards [31]. In order to address this issue, sneak-

path testing can be applied. In practice, this is done by placing the SUT in each of the possible 

states, and then, for each state, trigger every illegal event. The expected behaviour is that the 

state is unchanged.  

In practice, applying every possible value and input sequence in every possible state, 

commonly known as exhaustive testing [31, p. 52], is not feasible. It is necessary to extract a 

subset of all possible tests. As we will see next, there are several different coverage criteria 

that can be used to help select test cases from state machines.  

2.1.5 State-Based Coverage 

To apply SBT on UML state machines as the input models, several testing strategies are 

presented in the literature, such as piecewise, all transitions, all transitions k-tuples, all round-

trip paths, M-length signature, and exhaustive testing [31, p. 259]. Being a practically 

impossible approach, exhaustive testing requires every possible value and sequence of inputs 

to be applied in every possible state of the SUT, thereby exercising every possible execution 
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path [31, p. 52]. Therefore, we need to use another testing strategy to make a selection among 

all possible tests.  

Coverage is a measure of how completely a test suite exercises the capabilities of a piece 

of software [35, p. 85]. There are many types of test coverage. Some criteria are based on 

covering specific parts of the code structure, such as code coverage (e.g., that certain 

percentage of the statements must be covered by the test suite), whereas others are related to 

the specification itself, such as all transition coverage where all transitions must be covered by 

the test suite.  

Previous work on SBT has used coverage criteria that were defined to cover finite-

machines. Being an extension to finite state machine, however, the UML state machine can 

also be tested with those criteria if structures like concurrency and hierarchy are removed 

[22]. The definitions of the coverage criteria used in the following paragraphs are based on 

definitions given by Binder [31, pp. 259-266] and Offutt et al. [56].  

All transition coverage is obtained if every specified transition in a state machine is 

exercised at least once [31]. The order of the exercised transitions is of no importance. 

Applying this criterion ensures that all states, events and actions are exercised, and is 

considered to be the minimum coverage that one should achieve when testing software [31].  

All round-trip coverage requires that all paths in a state machine that begins and ends with 

the same state must be covered. To cover all such paths, a test tree (consisting of nodes and 

edges corresponding to states and transitions in a state machine) is constructed by breadth- or 

depth-first traversal of the state machine. The test tree corresponding to the all round-trip 

strategy is called a transition tree. A node in the transition tree is a terminal node if the node 

already exists anywhere in the tree that has been constructed so far or is a final state in the 

state machine. Now, by traversing all paths in the transition tree, we cover all round-trip paths 

and all simple paths (the paths in the state machine that begins with the initial state and ends 

with the final state). According to Binder [31, p. 248], this technique will find incorrect or 

missing transitions, incorrect or missing transition outputs and actions, missing states, and 

will detect some of the corrupt states.  

Another stopping criterion for the transition tree construction is proposed in [22], where a 

node is terminal if (i) it is a final state of the state machine or (ii) it is a node that already 

exists on the path that leads to the node. This stopping criterion makes the all round-trip 

strategy more rigorous, and thus gives more coverage.  
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All transition-pairs coverage is given by a test suite that contains tests covering all pairs 

of adjacent transitions. For each pair of adjacent transitions from state Si to Sj and from state 

Sj to Sk in the state machine, the test suite contains a test that traverses the pair of transitions 

in sequence.  

Paths of length n. Sequences of transitions are executed from a particular state. For 

example, one may include all possible sequences of transitions of length n from the initial 

state.  

2.1.6 Mutation Analysis 

Mutation analysis is an approach that can be used in the evaluation of the fault-detection 

effectiveness of testing strategies. It is carried out by seeding automatically generated faults 

into “correct” versions of the SUT. Generally speaking, only one fault is seeded in each 

mutant version to avoid interaction effects between faults [22]. Mutants are identified through 

the static analysis of the source code by a mutation system like [57]. When a test suite detects 

the seeded fault, we say the test suite has killed the mutant. The number of mutants killed by a 

specific test suite divided by the number of total mutants, referred to as the mutation score, is 

used as a measure of a test suite’s fault-detection effectiveness. Some mutants may be 

functionally equivalent to the correct version of the SUT. These are called equivalent mutants 

and should not be included in the pool of mutants used for analysis.  We will follow the same 

procedure in our study, except for the important fact that mutants will be based on actual 

faults collected in the field. Having this in mind, un-killed mutants must be analysed and 

possibly removed from the data that provides the basis for the mutation score.   

2.2 Research Methods in Empirical Software Engineering 

Software engineering is defined by Sommerville [58] to be “an engineering discipline which 

is concerned with all aspects of software production from the early stages of system 

specification through to maintaining the system after it has gone into use”. Empirical methods 

have traditionally been used in social sciences and psychology, fields where it is hard to 

define formal rules [59, p. 5]. However, as software depends on human effort in order to be 

produced, making the human behavior a highly important aspect of software engineering, the 

empirical research methods have proved useful also in the more technical software 

engineering field.  
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In empirical research, data is collected by observing or experimenting with the item under 

study. The data is then used to answer a question or test a hypothesis. Empirical software 

engineering [59, 60] is research that uses empirical studies to gain knowledge about software 

engineering. Sjøberg et al. presents the following vision for all fields of software engineering: 

“empirical research methods should enable the development of scientific knowledge about 

how useful different SE [software engineering] technologies are for different kinds of actors, 

performing different kinds of activities, on different kinds of systems” [61].  

An important aspect of software engineering is that software development is done in a 

cost-effective and predictable way [61]. To provide such knowledge, the community should 

seek to develop a scientific approach for software engineering, including research methods, 

theories, terminology, and a collection of experiences and observations [62]. Results from 

empirical software engineering should, according to Sjøberg et al., not only be useful to guide 

the development of new software engineering technology, but also to support decisions taken 

in the industry. The results are based upon actual evidence, as opposed to theory, and are 

important input to the decision-making in improvement seeking organizations [59, p. 17]. 

Experiments, case studies, and surveys are all typical research methods in empirical 

software engineering [59], and will be briefly introduced in the subsequent sections.   

2.2.1 Experiments 

An experiment is defined by Shadish et al. as follows: “a study in which an intervention is 

deliberately introduced to observe its effect” [63]. In situations where an investigator can 

manipulate behaviour directly, precisely and systematically, the experiment is preferred as 

research method [64, p. 8]. The studied treatments are assigned to subjects at random [59, p. 

9], and the objective is to manipulate one or more variables and control all other variables at 

fixed levels [64, p. 9]. Experiments can be exploratory, descriptive or explanatory, normally 

conducted in a laboratory setting, which provides a high level of control [64, p. 9]. A common 

perception, however, is that experiments are often small in size to ensure control of the 

variables. This may have a negative influence on the external validity of the study. 

Nevertheless, Dzidek demonstrated the feasibility also of larger sized experiments [65]. The 

main strength, on the other hand, is according to Wohlin et al., that experiments can 

investigate in which situations the claims are true, and they can provide a context in which 

certain standards, methods, and tools are recommended for use [59].  
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2.2.2 Case Studies 

The case study research method is observational by nature [59], and defined by Yin in the 

following manner: “A case study is an empirical inquiry that investigates a contemporary 

phenomenon within its real-life context, especially when the boundaries between phenomenon 

and context are not clearly evident” [64]. According to Stake, the purpose of a case study 

report is “not to represent the world, but to represent the case” [66]. The contribution of case 

studies is through analytical generalization [63, pp. 341-373, 64, p. 32], rather than statistical 

generalization, where theories are expanded and generalized, although the motive of a case 

study may also be a simple presentation of individual cases. Hence, it is important to give a 

rich description of the contextual factors so that others may relate their organization to the 

case study results with respect to contextual similarities or differences. Yin states that case 

studies, like experiments, can be exploratory, descriptive or explanatory. Yin also says that 

case study as a research method is favoured when there is a “how” or “why” question and 

when the relevant behaviours cannot be manipulated. Case studies imply lower control than 

experiments, but high realism [59].  

2.2.3 Surveys 

Surveys are used to collect answers to questions from a random sample of people in a 

population [67]. It can be used for many purposes, descriptive, explanatory or explorative 

[67], often conducted in retrospect, e.g., after some technique has been applied in a company 

[59]. Typical data collection methods are interviews and questionnaires. Examples of types of 

information that are collected are attitudes and opinions. Analysis of the responses can be 

both qualitative and/or quantitative depending on how the data are coded. The use of 

questionnaires, for instance, allows for collection of highly comparable data due to the format 

of the answers. An important characteristic of surveys is that the results are generalized to the 

population [59]. As with any research method, the design must be carefully planned, in 

particular with respect to the formulation of included questions, and how the sample was 

drawn from the population.  

Having covered important background concepts and definitions, we now move to related 

work. Chapter 3 presents existing research on evaluating the cost-effectiveness of SBT.  
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3 Evaluating Testing strategies 

This chapter presents related work on evaluating the cost-effectiveness of SBT related to both 

methodical aspects as well as the obtained results, and motivates the research of this thesis. 

Although not being a systematic review and hence not a complete overview of related work, 

Section 3.1 includes the main pieces of related work based on searches using Google/Google 

Scholar and searches in references. Section 3.2, however, provides a semi-structured literature 

review from 2009 to 2011 with the intention of picturing state of the art from the most recent 

years.  

3.1 Non-Representative Sample of Related Work 

The main reason for not having conducted a systematic review is simply that the start-up of 

the ABB project that I was involved with already had taken place before I started my Ph.D. 

studies. There was no time for carrying out a, potentially, time-consuming literature review. 

Following the project was more important. What is to be presented in this section must 

therefore be called a non-representative sample of related work. 

3.1.1 Coverage Criteria 

As one of the first studies on deriving tests from finite-state machines (FSM), Chow presented 

a testing strategy called automata theoretic [2], later known as the W-method. It was 

presented as a “powerful testing tool for checking the correctness of the control structure at 

the design level of many software systems” [2]. Chow based his method on test sequences 

derived from a spanning tree generated from the FSM. The method was modified by Binder 

[31, p. 243] to be used in a UML context – referred to as round-trip path testing (RTP). The 

W-method and Binder’s adaption first traversed the transition tree to cover all paths, followed 

by identifying the state that was reached. Binder reused the transition tree from Chow’s 

method, but assumed that it was possible to directly check the state invariant rather than 

having an identification sequence like Chow. Binder defined the set of paths covered by the 

tree as round-trip paths as they capture all transition sequences that begin and end with the 

same state (with no repetitions of states other than the sequence start and end state) and 

simple paths from the initial to the final state of the statechart. A prerequisite to use Binder’s 

approach is to use flattened statecharts [31, 34] – i.e., all hierarchy and concurrency [68] must 

be removed.  
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Among several other similar testing techniques for FSMs that have been suggested, e.g. 

see the survey and discussions by Lee and Yannakakis [69], the main difference from Chow’s 

approach is the state identification process. The W-method and its extensions are the mostly 

used and studied state-based technique for state-based software testing [12].  

Offutt and Abdurazik [15] addressed system level testing by generating test cases from 

UML state machines. They defined AT, ATP, and full predicate (FP) coverage in addition to 

the complete sequence for the UML statechart. A test suite that achieves FP coverage ensures 

that each clause in each predicate on guarded transitions is tested independently [15]. 

Complete sequence coverage is dependent on a test engineer to define meaningful sequences 

of transitions to be tested, and hence, this criterion is not automatable or measurable. 

Moreover, to demonstrate the technique and to evaluate the fault-detection effectiveness of 

the FP and ATP, they presented an empirical study. The Cruise Control system, developed for 

research purposes, was seeded with 25 faults and tested with 54 FP tests (reduced to 34 test 

cases when removing duplicates), 34 ATP tests generated from UMLTest tool (a proof-of-

concept test data generation tool), and compared with 27 handmade statement coverage tests. 

Four of the seeded faults were actual faults, detected during the initial implementation. 

Results showed that the FP criterion killed all 25 mutants, ATP killed 72 percent (18/25), and 

the statement coverage tests killed 64 percent (16/25). 

Abdurazik et al. [70] compared three specification-based testing criteria in an empirical 

study. The FP, ATP, and specification mutation (SM) test criteria [71] were compared on the 

basis of a “cross scoring” [72], where tests generated for each criterion are measured against 

the other. Second, the three techniques were compared on the basis of the number of test cases 

generated to satisfy them, in a rough attempt to compare their relative costs. A model checker 

was used to generate tests and to evaluate test sets that fulfilled the selected criteria. The 

academic Cruise Control system was used in the comparison and mutated with artificial 

mutation operators. The SM score of the FP tests and the FP scores of SM tests were quite 

high; in fact the two techniques are relatively similar.  However, neither the FP tests nor the 

SM tests had high ATP scores, and the ATP tests did not have high FP or SM scores. The 

study showed that ATP tests offer something different from FP and SM tests. 

Hong et al. [73] presented a test sequence selection method for Statemate statecharts [42] 

where it was demonstrated that data flow analysis can be applied to the selection of test 

sequences from statecharts. The method included the transformation of statecharts to extended 



 

20 

 

finite state machines (EFSMs) in combination with the methods presented in [74, 75, 76] that 

transforms the EFSM into a flow graph.  

A method for deriving test sequences based on the AT criteria while retaining hierarchy in 

a Statemate statechart was proposed by Bogdanov and Holcombe [77]. The method, which is 

a modification of [73], was applied in a case study to an aircraft control system provided by 

DaimlerChrysler Research Laboratory. The method appeared to be applicable to the realistic 

system, although differences in transition labels between the implementation and the 

specification caused problems in testing every transition. The implementation had to be used 

in those situations.   

The feasibility and effectiveness of AT coverage was again applied in a case study 

conducted by Chevalley and Thévenod-Fosse [78].  The criterion had a weakness in that a 

fault could possibly not be triggered by the particular test case input value for that particular 

transition. For that reason, statistical test case input values were used. Test cases were 

automatically generated from UML state machines using a probabilistic algorithm presented 

in [79]. The principle of the technique was to compensate the criteria weakness by exercising 

each transition several times. The results were based on 1,559 mutants of an avionics system 

(6,500 LOC); a mutation score of 91.3 percent was reached (1,423/1,559 mutants were 

killed). The Flight Guidance System was a research version provided by the Advanced 

Technology Center of Rockwell-Collins.  

The effectiveness of the RTP strategy was later investigated by Antoniol et al. [80] in a 

case study. The RTP strategy was applied in a C++ example program consisting of 450 LOC: 

two classes and 45 methods.  The main class under test was a container class, typical of its 

kind. Artificial mutation operators were used to seed 44 faults covering 8 mutation operators. 

The study concluded that the RTP strategy is reasonably effective at detecting faults; 87.5 

percent of the faults were detected as compared to 69 percent for random testing. Moreover, 

their results showed that RTP left certain types of faults undetected, and suggested that by 

augmenting RTP with category-partition (CP) testing, the fault-detection can be enhanced, 

although at an increase in cost that must be taken into account.  

In a series of three controlled experiments, Briand et al. [12] evaluated two variants of 

RTP testing, and CP testing, in terms of cost-effectiveness, and proposed a way to combine 

them that was referred to as logical, intuitive, and that could be tailored to the test budget 

available. Students were used as subjects. The following programs were used in the 

experiments: (1) a container class from an academic software system, (2) a container class 



 

21 

 

from a real DNS system, and (3) two control classes from a real DNS system. Two different 

oracle strategies were compared. Artificial mutation operators were applied in the cost-

effectiveness evaluation. Results showed that RTP testing is not likely to be sufficient in most 

situations as significant numbers of faults remained undetected (from 10 percent to 34 

percent), on average across subject classes. This is especially true when a weaker form of 

round-trip was used where only one of the disjuncts in guard conditions was exercised. By 

combining RTP with CP testing, however, a large percentage of latent faults could potentially 

be detected by CP after SBT was applied, yet at significant increase in cost, implying that 

selection of subsets may be necessary.  

To see if the specification-based testing criteria could be practically applied, Offutt et al. 

[16] evaluated the efficiency of state-based test criteria in terms of fault-detection 

effectiveness and obtained branch coverage. The AT, FP, and ATP coverage criteria were 

applied in a case study and compared with respect to fault-detection effectiveness and branch 

coverage. A modified version of the Cruise Control system was mutated using 24 faults (of 

which 4 were naturally occurring faults). Obtained results showed that 1) the weakest 

coverage, AT (12 test cases), performed similar to random testing (54 test cases) both in 

detecting faults and in providing branch coverage (62 percent), 2) ATP coverage (34 test 

cases) detected 18/24 faults and achieved 75 percent branch coverage, whereas 3) FP 

coverage (54 test cases) detected 20/24 faults and achieved 83.3 percent branch coverage.  

Briand et al. [22] presented a simulation and analysis procedure to analyze the cost-

effectiveness of statechart based testing techniques, and used this approach to empirically 

investigate the cost and effectiveness for the most referenced coverage criteria based on UML 

statecharts: AT, ATP, and FP [15], and a modified version of the RTP coverage referred to as 

transition tree (TT) [2, 31]. TT is another stopping criterion they proposed for the transition 

tree construction, where a node was considered terminal if (i) it was a final state of the state 

machine or (ii) it was a node that already existed on the path that lead to the node. The new 

stopping criterion made the RTP strategy more rigorous, and thus gave more coverage. Three 

case studies were used in the evaluation:  (1) a container class from an academic example 

program, (2) the Cruise Control system, and (3) an implementation of a video recorder.  The 

two former studies were real-time systems. Artificial mutation operators were used to create 

101, 91, and 139 mutants respectively for the three cases. The following conclusions were 

drawn from the study: (1) AT did not provide an adequate level of fault detection, (2) ATP 

detected nearly all faults, but not without an enormous increase in cost compared to AT, (3) 
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TT was evaluated to be more cost-effective than AT and ATP, although the result depended 

on two factors: the extent to which guard conditions were present in the statechart, and the 

extent to which the transition tree captured realistic and meaningful usage scenarios, and 4) 

FP was as effective at revealing faults as ATP, yet more expensive.  

A study by Briand et al. [81] was conducted that aimed at investigating how data flow 

information could be used to improve the cost-effectiveness of state-based coverage criteria 

when more than one tree existed. Two case studies were carried out: (1) the Cruise Control 

system was inserted with 91 faults using artificial mutation operators, and (2) 131 mutants 

were generated from an implementation of a video recorder. Results showed that data flow 

information was useful for selecting the most cost-effective transition tree. They found that 

the transition tree that contained the largest number of du pairs or definitions would be the 

most effective at detecting mutants. A more optimal RTP strategy was thus proposed, 

including (1) identifying the tree that covers the largest number of definitions, and (2) 

complementing it by tree paths from the other trees that cover definitions not already covered 

by the initial tree. Note, however, that there were neither guards on transitions in the Cruise 

Control case, nor parameters in events. When applying the RTP on state machines without 

guards, the coverage will in fact only cover all transitions.  

AT and ATP coverage criteria were compared to mutation-based criteria by Paradkar [82]. 

The study reported that mutation-based testing had higher fault-detection effectiveness, but at 

a higher cost than the structured criteria.  

Paradkar [83] also conducted an empirical study on fault-detection effectiveness and cost 

(in terms of size) where FP coverage, BZ-TT [84], mutation based testing, and user defined 

test objectives were compared. The BZ-TT method concerns the operations in a model and 

generates tests with boundary inputs when the system is in a state where at least one state 

variable has a minimum or maximum value [83]. Two case studies were conducted: (1) the 

ATM application – a simple academic system (eight classes, 153 mutants), and (2) the VM 

application (one class, 56 mutants). It was found that the mutation based technique provided 

the best fault-detection effectiveness, followed by BZ-TT and FP. FP was more useful for an 

application which had a complex guard condition.  

Mouchawrab et al. [85] addressed the impact of using statecharts for testing class clusters 

that exhibit a state-dependent behavior, and reported on a controlled experiment that 

investigates the effectiveness of SBT using RTP when compared and combined to white-box, 

structural testing. The experiment involved 48 students who were assigned to generate tests 
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for the OrdSet example class, and the Cruise Control system using RTP and block and edges 

coverage. Results could not find differences in the fault-detection effectiveness of the two 

strategies. Combining the strategies, however, proved to be significantly more effective. The 

fault detection effectiveness was found to vary to a large extent depending on how precisely 

the statechart described the behavior of the software under test. A request for more research 

was proposed in order to provide clear and precise guidelines regarding when to use 

statechart-based testing and how to integrate it with other testing strategies.   

An overview of the most relevant work is summarized in Table 1. In terms of empirical 

evaluations, the most studied state-based coverage criteria were FP, ATP, RTP, and AT. The 

FP criterion tends to kill higher or similar number of mutants as ATP, although at higher cost. 

With this in mind, the ATP, RTP, and AT coverage criteria were selected for being studied in 

this thesis. When also considering the experimental setting, we see that only two of the nine 

studies were executed in industrial settings. Of these two studies, the first study [77] did not 

report the nature of the seeded faults, whereas the second study [78] reported the use of 

mutation operators (artificial faults). The two studies [15, 16] that actually did report use of 

real faults (yet only 4/20 and 4/21 of the faults were real) were conducted in laboratory 

settings. A clear conclusion can be drawn regarding the nature of the seeded faults; there is a 

lack of empirical studies applying real faults in the evaluation of testing strategies executed in 

an industrial context.  
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3.1.2 Oracle Comparisons 

Both in practice and research, much focus in today’s software testing is related to the 

generation of test inputs. Furthermore, the important aspect of test oracles, which evaluates 

whether or not the software under test executed as expected, has received little attention. 

Staats et al. [86] claim that by investigating oracle selection in combination with test inputs, 

especially how the two aspects complements or influence each other, improvements in the 

efficiency of testing may be achieved. Studying different types of oracles is an important area 

as it is not a feasible solution to monitor everything due to the high cost of creating and 

maintaining such an oracle [87].       

Furthermore, Staats et al. [88] addressed the lack of a common framework for empirical 

testing research. They provided such a framework, focusing on problematic areas in today’s 

research as the assumptions about research results on fault-detection ability due to missing 

focus on the relationship between structure of system under test, testing strategy and oracle. 

The absence of such a focus may lead to results that can be misleading, cannot be generalized, 

or that do not facilitate comparisons of strategies.  

Applying structured SBT criteria implies a large number of tests, which makes manual 

evaluation of results an impossible task. It is thus a prerequisite that the test oracle is 

automated as to consider SBT of real software a feasible approach.  

Manual testing, on the other hand, usually results in smaller test suites that enable manual 

inspection of results. There are several types of oracles to be used in SBT, e.g. checking the 

abstract state (state invariant) [31], checking the concrete state (i.e., checks all attribute 

values) [31], and checking pre and post conditions for operations and class invariants [89]. To 

the author’s knowledge, however, only the study of Briand et al. [12] has compared various 

oracles in SBT strategies. Two different oracles were compared in terms of fault detection and 

cost. The first oracle was a precise oracle that checks the concrete state of objects; the other 

checks the state invariant (abstract state). They found significant differences between the two 

oracle strategies, which emphasizes the importance of choosing the appropriate oracle. In 

other fields, there are several studies that address this aspect, e.g., GUI testing [90, 91] where 

results reveal that employing expensive oracles leads to the detection of more faults using 

relatively few test cases.  
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3.1.3 Test-Suite Reduction 

Reducing the test-suite size by abstracting the test model is yet another area of related work 

where few studies have been carried out in the context of SBT. Heimdahl and George [29] 

found that the size of the specification-based test suites can be dramatically reduced and that 

the fault detection of the reduced test suites is adversely affected. Wong et al. [30] 

investigated the effect on fault-detection of keeping block and all-uses coverage constant 

while reducing the size of a test suite. They found that effectiveness reduction was not 

significant even for the most difficult faults, which suggests that minimization of test suites 

can reduce the cost of testing at slightly reduced fault-detection effectiveness. 

3.1.4 Sneak-Path Testing 

Well-known state-based testing strategies like all transitions, all transition pairs, and round-

trip paths [31] seek to compare explicitly modelled behaviour to actual software execution. 

However, it is also important to test whether or not the software handles unspecified behavior, 

so called sneak paths [31], in a correct way. State machines are usually incompletely specified 

and this is normally interpreted as events on which the system should not react, that is 

changing states or performing actions. Sneak-path testing sends every unspecified event in all 

states. In other words, sneak-path testing aims to verify the absence of unintentional sneak 

paths in the software under test as they may have catastrophic consequences in safety critical 

systems.   

Investigating the impact of round-trip path (RTP) testing on cost and fault detection when 

compared to structural testing, Mouchawrab et al. [92] conducted a series of controlled 

experiments. The study was a replication of [12] where one of the findings was that not 

testing transitions to self resulted in many faults not being detected. Hence, in the replication 

experiments they extended the testing strategy by complementing the RTP criterion with 

sneak paths as recommended by Binder. Results showed that sneak-path testing clearly 

improved fault detection. The collected data thus strongly suggests complementing RTP with 

sneak-path testing. No other empirical study evaluates the testing of sneak paths and there are 

no studies in realistic industrial contexts. 

3.1.5 Tool Development and Practical Evaluations 

Several well-known, model-based testing tools have been developed in recent years, such as 

TDE/UML (Siemens) [8], SpecExplorer (Microsoft) [11], and IBM Rational Functional 

Tester [10]. Based on just three sources, we were able to find references to more than 50 

model-based testing tools. In this thesis we focus on configurations of TRUST with state 
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machines and thus we are interested in comparing this SBT version of TRUST with other 

SBT tools. Consequently, we focus our discussion of related work to tools that (i) are (partly) 

based on UML state machines, (ii) automatically generate executable test cases including test 

oracles, and (iii) have at least some support for extensibility and configurability. 

After applying these criteria on more than 50 model-based testing tools [1, 9, 93], we were 

left with five tools [21, 17, 18, 19, 94]. We then collected information regarding the 

extensibility and configurability of their different features (input model, testing strategy, and 

output language of the tools). Since TRUST generates test cases from UML state machines, 

the following information was collected related to UML state machines from the tools to 

determine the degree to which their input model can be extended and configured: 

 UML metamodel: As the UML metamodel undergoes changes on a regular basis, a 

test tool must have the ability to accommodate these changes with reasonable 

effort. 

 Constraint evaluation: A UML state machine may contain various types of 

constraints such as state invariants and guards. These constraints can be defined in 

different languages such as OCL, Java, or any other tool-specific language. 

Therefore, the tool architecture should easily accommodate changes in constraint 

language or evaluation technology. 

 Support for UML profiles: UML profiles provide an extension mechanism to 

support modeling for particular domains and platforms, for instance the MARTE 

profile for modeling real-time and embedded systems [95]. An extensible tool 

should be able to accommodate models based on different UML profiles. 

 

The last part of the analysis considered the tools’ extensibility and configurability 

regarding test models and coverage criteria, test data generation techniques, and test-scripting 

languages since these are the components of a testing strategy. We will now provide a 

summary of our analysis regarding the extensibility and configurability of these five tools. 

Conformiq Tool Suite [21] is an eclipse-based tool used to generate test scripts from 

system models specified in QML (Conformiq Modeling Language). This language is based on 

UML and Java/C# compatible syntax and is supported by a tool called Conformiq Modeler 

[21]. Conformiq Tool Suite can be configured for the following state machine coverage 

criteria: state coverage, transition coverage, 2-transition coverage, all paths coverage, and 

implicit consumption (criterion to check that system ignores transitions that are not explicitly 

defined on a state), branch coverage, atomic condition coverage, and boundary value pattern 
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(to cover boundaries of decisions in guards) [21]. Conformiq Tool Suite supports extensibility 

by means of plug-ins, which can be coded in C++ or Java. The plug-ins can be written for 

changing the test-scripting language, logging formats, and test execution type (online vs. 

offline test execution). This means that Conformiq Tool Suite can only be configured for 

predefined coverage criteria and cannot be extended to additional test models, coverage 

criteria, and test data generation other than what is already provided. However, Conformiq 

Tool Suite can be extended for different test-scripting languages by implementing specific 

plug-ins. 

The tool Automatic Test Generator/Rhapsody (ATG) [19] is a module of I-Logix 

STATEMATE and Rhapsody products. ATG can be configured to generate test cases from 

models based on a set of coverage criteria such as state and transition coverage and modified 

condition/decision coverage on guards in state machines. ATG doesn’t provide any extension 

mechanisms, however. 

AGEDIS is a tool for automated model-driven test generation and execution for 

distributed systems. It has been made usable and interoperable with external tools by defining 

clear external interfaces in the tool. In addition, well-defined internal interfaces make 

AGEDIS more reusable. For instance, the user can define or select a coverage criterion 

through a test generation directives interface, which includes coverage criteria, constraints 

(which are additional criteria) on the test suite, and test purposes [96].  

There is also a defined interface for abstract test cases that makes the tool open for later 

extensions to other test-scripting languages than TTCN-3. However, most of these interfaces 

are not defined by standardized well-known languages. For example, standard OCL 

constraints on an input UML model should be transformed into their interface language (IF) 

format [18]. 

ParTeg (Partition Test Generator) [94] is a test generation tool dealing with the reuse of 

state machines for automatic test case generation in the context of product lines. Regarding 

configurability, ParTeg allows the user to choose from a set of coverage criteria: state 

coverage, decision coverage, and modified condition/decision coverage as well as boundary 

value coverage criteria for input data to cover boundaries of decisions in guards. No attempt 

was made for making it extensible and configurable with respect to input models, test data 

generation, and output languages. 

MOTES [17] is a model-based testing tool for generating TTCN-3 tests. MOTES accepts 

Extended Finite State Machines (EFSM) as input and requires test data to be prepared 

manually before the test case generation phase. However, it provides some extensibility 
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opportunities for output models by having a standard input interface. For example, UML state 

machines created using third party CASE tools (for example Poseidon [97]) can be imported 

to MOTES, although state machines must be flat without concurrent and hierarchical states. 

MOTES provides a configurable set of coverage criteria such as selected states, selected 

transitions, and all transitions. 

Table 2 gives a summary of the abovementioned tools regarding their extensibility and 

configurability for respectively the input model, testing strategy, and test-scripting output 

language. A clear conclusion from the summary is that current tools usually support 

configurable coverage criteria (within a limited set) and three of them are extensible regarding 

new output languages. However, hardly any SBT tool provides support for extending it to 

new input models or test data generation strategies. Therefore, we were encouraged to 

develop an extensible and configurable tool with well-defined interfaces and simple 

extensibility mechanisms. The requirements and development of our tool will be introduced in 

Chapter 5.  

 

Table 2 Extensibility and configurability of the current SBT tools 

Tool name Input model Testing strategy Test script 
output 
language 

UML 
metamodel 

Constraint 
evaluator 

UML 
profiles 

Test model and 
coverage criteria 

Test data 
generation 

Conformiq 
Tool Suite 

- - - Configurable Configurable Extensible 
and 

configurable 
ATG - - - Configurable - - 
AGEDIS - Extensible - Extensible and 

configurable 
- Extensible 

MOTES - - - Configurable - Extensible 
ParTeg - - - Configurable - - 

 

   

  



 

31 

 

3.2 Semi-Structured Literature Review from 2009 to 2011 

In order to capture recent work in the field of state-based testing, a semi-structured literature 

review was conducted from the years 2009 to 2011.  

3.2.5 Research Method 

As the purpose of this review is to illustrate an example of state of the art, papers were 

extracted from a selection of what can be considered as the three most relevant journals and 

conferences for software testing (please refer to Table 3).  

 

Table 3 Selection of journals and conferences 

Publication type Database Publication 

Journal ACM Transactions on Software Engineering and 
Methodology (TOSEM) 

Journal IEEE Transactions on Software Engineering (TSE) 

Journal Wiley Online Library Software Testing, Verification, and Reliability (STVR) 

Conference ACM International Symposium on Software Testing and 
Analysis (ISSTA) 

Conference IEEE International Conference on Software Testing, 
Verification and Validation (ICST) 

Conference IEEE International Symposium on Software Reliability 
Engineering (ISSRE) 

 

The following search strings were used as inclusion criteria: “state-based testing”, “state 

based testing”, “state-machine testing”, “state machine testing”, “model-based testing”, and 

“model based testing”. To be included in the selection of papers, the search strings had to be 

present in the title or in the abstract. Also, the search string “UML” had to be found in the 

paper. Furthermore, the criterion for publication year was set to the year range from 2009 to 

2011.  

Papers that did not include empirical studies were excluded from the sample.  

3.2.6 Results 

By executing the searches described in the previous section, 24 papers were found. Only six 

of these, shortly introduced in the following paragraphs, however, appeared to be relevant to 

this thesis. Only one paper (though not relevant) was returned from the search in TOSEM 
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executed on the ACM database. Executing the searches in IEEE for TSE publications resulted 

in one relevant paper. Twelve papers were found among STVR publications in the Wiley 

Online Library, of which two were included. Continuing with the conferences, no papers were 

found in ACM when restricting the search to ISSTA publications. Eight papers, of which one 

was relevant, were returned from searching in ICST publications (IEEE). Finally, two papers 

were found among the ISSRE publications (IEEE) of which both were included in the review. 

Please refer to Appendix B for search results per publication, both numbers of excluded and 

included papers.   

Investigating the impact of state-machine testing (the round-trip path coverage criterion in 

particular) on fault detection and cost when compared with structural testing, Mouchawrab et 

al. [92] conducted a series of controlled experiments. Results showed that there was no 

significant difference between the two strategies regarding fault-detection effectiveness. 

Combining the two strategies, however, yielded significantly more effective results.  

The round-trip path criterion was further studied by Briand et al. [98] in the context of 

UML state machines with focus on how to improve the criterion’s fault-detection 

effectiveness. They investigated how data flow analysis on OCL guard conditions and 

operation contracts could be used to “further refine the selection of a cost-effective test suite 

among alternative, adequate test suites for a given state machine criterion” [98]. A 

methodology on how to perform data flow analysis of UML state machines was presented. 

Results from two case studies suggested that data flow information in a transition tree could 

be used to select the tree with the highest fault-detection ability.  

In [99], Khalil and Labiche addressed the assumptions about the round-trip path strategy 

regarding the equivalency of exercising paths in the tree that do not always trigger complete 

round trip path versus covering round-trip paths. They investigated the consequences of the 

assumption not being held in practice. Finally, they proposed yet a new algorithm for 

generating the transition tree, which resulted in higher efficiency and lower cost. 

From the perspective of executing MBT in practice with respect to limited time and 

resources, three papers on similarity-based test selection address the problem of large test 

suites that are automatically generated by MBT-tools. Addressing the topic of scalability with 

respect to large test-suite sizes when applying model-based testing in practice, Hemmati and 

Briand [100] investigated and compared possible similarity functions to support similarity-

based test selection. Empirical data on the most cost-effective similarity measure was 

collected by applying the proposed similarity measures and a selection strategy to an 

industrial software system. Results from the case study showed that using Jaccard Index to 
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measure the similarity of the test cases (which were represented as a set of trigger-guards) of 

the respective test paths obtained the best results in terms of cost and effectiveness. They 

reported a significant reduction (77 percent) in test execution cost.  

Continuing the work presented in [100], but this time trying to gain insights into why and 

under which circumstances a particular similarity-based selection technique can be expected 

to work, Hemmati et al. [101] investigated the properties of test suites with respect to 

similarities among fault revealing test cases. They conducted experiments based on simulation 

where two industrial case studies were used to guide the simulations. Obtained results 

confirmed their assumptions that similarity-based test case selection would perform better 

when “test cases which detect distinct faults are dissimilar and test cases that detect a common 

fault are similar”. They also found that similarity-based test case selection is less effective in 

cases when a small group of transition paths is mostly disconnected from the rest of the state 

machine. 

Having a motivation similar to Hemmati and Briand [100], Cartaxo et al. [102] also 

addressed the problem of large test suites. A test case selection strategy was compared with 

random selection by considering transition-based and fault-based coverage. Based on results 

from three case studies, they found that the similarity-based test case selection can provide 

more effective test suites than random selection. 

3.2.7 Summary 

As we have seen, there is a clear gap between existing studies from the three recent years 

(2009 to 2011) as compared to the work presented in this thesis. To summarize the findings of 

the semi-structure review, [92] compared the round-trip path coverage with structural testing 

in terms of cost and effectiveness, [98, 99] reported on attempts on improving the round-trip 

path coverage, and finally, [100, 101, 102] addressed test-suite size reduction using similarity-

based test selection. The latter three studies may not be highly relevant for this study. Yet they 

were included due to their practical use in potentially reducing the number of test cases 

generated by the coverage criteria.  

None of the included papers, however, compares cost and effectiveness of AT, RTP, ATP, 

LN2, LN3, and LN4 when varying the oracles and test model abstraction levels by using 

mutation testing with real faults. 

Based on the related work presented in this chapter, Chapter 4 seeks to motivate the 

research in the thesis by identifying gaps in existing research.   



 

34 

 

4 Limitations in Existing Research 

This chapter seeks to identify areas in existing research presented in Section 3.1 and Section 

3.2 that need further exploration, providing a detailed motivation for the research in this 

thesis.  

Although a growing number of studies address the fault-detection effectiveness of state-

based test criteria, very few studies have been conducted on realistic industrial software – in 

particular, studies that evaluate state-based testing strategies using real faults on industrial 

programs. The academic SUT that most studies have used in their evaluations is the well-

known Cruise Control system [103, p. 595]. However, the example is considered to be small 

in size as the flattened specification only contains six states and 19 transitions.  Even though 

the Cruise Control system is known for being a typical control system, there may still be 

issues in other systems not present in the frequently used academic system. The convenient 

reuse may thus be a threat to the external validity of the obtained results. Future research 

should aim at evaluating coverage criteria by varying the SUT instead of using the same SUT 

over and over again.    

Moreover, surveying existing research shows that extremely few studies apply real faults 

when using mutation analysis for evaluating various testing strategies – the use of artificial 

faults is prevalent. As stated by Andrews et al. [28], a problem when evaluating testing 

strategies is that real programs with real faults are rarely available. Except from the two 

studies of Andrews et al. [28, 26], in addition to a few studies where only a small percentage 

of the seeded faults were real [16, 15], artificial faults are used in the reported testing strategy 

evaluations [70, 77, 80, 12, 22]. As a consequence, little is known about how such structured 

test approaches compares in detecting real faults. In this thesis, however, the comparison is 

exclusively based on real faults that were collected during a field experiment at three ABB 

departments, during fall 2008.  

Like in the studies just mentioned, this thesis investigates the effectiveness, i.e., the fault-

detection ability, of SBT criteria. Moreover, this thesis also addresses the cost of SBT. Only a 

few of the presented studies report the cost of SBT. Several aspects of cost are presented in 

this thesis:  

 the cost of modeling,  

 the cost of generating and executing test suites that satisfy six state-based coverage 

criteria, two oracles at two different test model abstraction levels,   

 practical issues regarding test execution, and  
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 tool development.   

 

Furthermore, this thesis explores the use of two test oracles with different precision levels.  

Also, the lack of research on the interesting aspect of increasing the test model abstraction 

level motivates this thesis. The studies addressed in Sections 3.1 and 3.2 provide no focus on 

test model abstraction levels. Several other studies presented in Sections 3.1 and 3.2 focus on 

lowering the cost of testing by reducing the test suites, preserving the original coverage, 

though at the expense of fault-detection ability. Like [29], we investigate the fault-detection 

effectiveness of reduced test suites, yet based on a different idea. Whereas test-reduction 

techniques are based on removing tests in a test suite that do not contribute in increasing the 

fault-detection ability, this thesis rather focuses on abstracting the test model itself. This 

means that not only are the number of test cases in the test suites reduced, but also the detail 

level in the test model.  

Last but not least, as sneak-path testing has appeared to be of high importance in software 

testing, this thesis also seeks to provide more empirical data on this particular type of testing.  

To conclude, existing research have evaluated state-based coverage criteria. As the 

attention has mostly been directed towards fault-detection effectiveness, there is still a lack of 

empirical results regarding the cost of such testing.  Especially, regarding how state-based test 

criteria perform when being exposed to real faults. The majority of the results are based on 

studies where artificial mutation operators have been applied in small academic programs. 

The few studies that do use (or partly use) real faults [15, 16]) tend not to describe how those 

faults were collected.  

In summary, this thesis complements and extends existing research on the cost-

effectiveness of SBT by  

 using  an industrial safety-critical system, 

 using  real faults (from an industrial field study) in mutation analysis,  

 comparing six state-based coverage criteria,  

 performing a comparison of two test oracles,  

 studying the impact of varying the test model abstraction level, and 

 applying sneak-path testing. 

 

The next part of this thesis presents the development of an extensible model-based testing 

tool.   
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PART II – DEVELOPMENT OF AN EXTENSIBLE MODEL-BASED 

TESTING TOOL 
 

Part II regards the first part of the research goal (introduced in Section 1.2), and presents an 

extensible model-based testing tool. Chapter 5 addresses the design and the development of 

the tool, whereas Chapter 6 discusses experiences from the development process.  

5 Development of a Model-Based Testing Tool 

Motivated in Chapter 1 by the lack of extensible and configurable model-based testing tools, 

this section proposes a MBT tool, TRansformation-based tool for Uml-baSed Testing 

(TRUST), whose software architecture and implementation strategy facilitate its 

customization to different contexts by supporting configurable and extensible features such as 

input models, test models, coverage criteria, strategies for test-data generation, and test-

scripting languages.  

In this thesis, configurability is defined as the ability of selecting between several options, 

provided by the tool, for a specific feature. For example, the tool is configurable with respect 

to coverage criteria if it lets the user select among several coverage criteria such as all 

transitions and all round-trip path coverage criteria [31]. Extensibility is defined as the ability 

of providing more options for a feature without any modification in the components that are 

not responsible for the feature. For example, providing support for generating test scripts in 

more languages is considered as extending the tool. 

The approach presented, which is inspired from the Model-Driven Architecture (MDA) 

standard [104], relies on a series of model transformations to generate test cases. The main 

idea is to design a tool in such a way that its different components provide and require 

standard interfaces with input and output models based on standard metamodels. Each 

component in this tool is responsible for one feature (e.g., test model, test data, etc.) involved 

in the process of generating test cases. This separation of concerns and provision of standard 

interfaces make TRUST configurable and extensible. In addition, model transformation 

technology helps the developer upgrade the components with a new set of transformations 

from standard inputs into well-defined outputs. 

The approach allows instantiating new, context specific MBT tools by extending or 

configuring TRUST with customized features, such as input models, test models, coverage 

criteria, strategies for test-data generation, and test-scripting languages.  
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The remainder of this chapter describes in detail the model-based approach to develop the 

automated tool TRUST. 

5.1 Requirements, Design, and Implementation of TRUST 

This section discusses the main requirements of TRUST, define and justify architectural 

decisions, and choices of technologies. In addition, details regarding the test-case generation 

and test-case execution procedure will be provided. 

5.1.1 Requirements and Approach 

To be optimal from a practical standpoint, a tool that supports all features of UML is desired. 

However, as discussed in Chapter 3, this may not be enough – extensibility to various UML 

extension profiles, such as MARTE [95] and UML QoS profile [105], may also become a 

requirement in future applications. What is needed is a tool that shows versatility in various 

contexts. Adding different output scripting languages (such as C++, Python, and Java), test 

models (such as transition trees and testing-flow graph [106]), coverage criteria on test 

models (such as all transition and all round-trip path coverage), and test-data generation 

techniques (such as random and adaptive-random search [107]) for different application 

domains and systems are examples of useful extensions for TRUST. 

In addition, the tool should be easily configurable to satisfy varying requirements, which 

means that the user should be able to easily configure features such as input model, coverage 

criteria and strategies for test-data generation. High configurability enables testers to 

experiment with various techniques without significant effort and changes in the tool 

implementation. This is of practical importance as different test models, coverage criteria, and 

test-data generation techniques helps in targeting different types of faults. Figure 1 shows a 

summary of the tool’s high-level requirements. 

The approach taken for implementing TRUST (Figure 2) is based on model 

transformations. The idea (inspired by MDA concepts, introduced in Chapter 2) is to generate 

a test model using a series of horizontal (endogenous and exogenous) model-to-model 

transformations on an input design model, modeling the platform independent model (PIM) of 

a system. Then, a vertical, exogenous model-to-text transformation is used to generate test 

scripts. 
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This approach was found to be very well-suited for developing TRUST, firstly due to the 

fact that it addresses the stated extensibility and configurability requirements. Each 

component of TRUST implements one set of transformation rules (e.g., transformation from 

test tree to test cases). Each component has well-defined interfaces with other components. 

More specifically, each interface provides output to, or requires inputs from, other 

components by means of intermediate models conforming to metamodels. Secondly, 

separation of concerns among components has made each transformation responsible for 

providing one feature such as test model, test data, and test scripts. Therefore, adding a new 

feature (for example, output test scripts in a new language) can be achieved by writing a new 

set of transformation rules in one of the components, without affecting the other components. 

Thirdly, in the model-transformation based approach, the transformation language provides 

the developer with direct support for navigating, creating, and manipulating a model, based on 

its metamodel. Generally, the transformation rules are relatively compact and easy to read, 

write, and change. 

REQ1.  
 

The tool should handle UML diagrams such as state machines, sequence 
diagrams, activity diagrams, and OCL as the constraint language for UML 
diagrams 

REQ2.  The tool should have a configurable and extensible input model
 REQ2.1. The tool should be extensible for new UML profiles and 

configurable for existing UML profiles 
 REQ2.2. The tool should be extensible for changes in the UML metamodel 

and configurable for existing UML metamodels 
REQ3.  The tool should have a configurable and extensible testing strategy 

 REQ3.1. The tool should be extensible for new test models and criteria and 
configurable for existing ones 

 REQ3.2. The tool should be extensible for new test-data generation 
strategies and configurable for exiting strategies  

REQ4.  
 

The tool should have a configurable and extensible test-scripting output 
language 

REQ5.  Extending the tool should be as easy as possible 
 REQ5.1. Making any extension for the tool should have minimum effect on 

the tool’s architecture 
 REQ5.2. Extending or changing one component of the tool should be 

possible using knowledge of its interfaces and should not require 
any knowledge about inner details of other components of the tool 

 

Figure 1 High-level requirements of TRUST
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Figure 2 Model-transformation based approach for test-case generation 

 

In this thesis, TRUST was configured with UML 2.0 state machines as the input model. 

REQ1 in Figure 1 is refined accordingly as follows: The tool should accept UML 2.0 state 

machines with support for concurrency and hierarchy. Constraints on state machines may be 

written in OCL because it is an OMG standard for writing constraints on UML diagrams. 

Furthermore, the general model-transformation based approach, given in Figure 2, is 

instantiated on UML 2.0 state machines, as shown in Figure 3.  

Required activities, technologies, and the procedure for this approach will be explained in 

the remainder of this section.  
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Figure 3 Model-transformation based approach for TRUST when configured for state machines 

5.1.2  Development of TRUST using a Model-Transformation Approach 

This section describes the activities involved in developing TRUST when configured for 

state-based testing (SBT). Firstly, transformations must be specified and implemented for 

various activities (activities A1, A3, and A6 in Figure 4). Since these transformations are 

applied on metamodels, we may need to define input metamodels (activity A2 in Figure 4). 

However, since some metamodels already exist (e.g., the UML 2.0 metamodel), it is not 

necessary to define all metamodels from scratch. Secondly, to make the test cases executable, 

test data is required (activity A5 in Figure 4). Finally, a method for evaluating the OCL 

constraints that are defined on UML state machines must be developed (activity A4 in Figure 

4). In Figure 4, the notes associated with the activities show the technologies selected to 

implement each activity. These choices will be justified below. 

From UML State Machines to Test Models 

The first SBT activity is flattening the input state machine. As explained, the input behavioral 

model is a UML 2.0 state machine that allows complex structures like simple composite 

states, orthogonal states, and submachine states. Testing can be performed directly on such 

state machines, but this requires rather complex strategies, because such structures complicate 

the traversal and analysis of the state machine. An alternate approach is to flatten the state 

machines first, by removing concurrency and hierarchy, and then apply a testing strategy. In 
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order to obtain a better separation of concerns and lesser analysis complexity, the latter was 

implemented. 

 
Figure 4 Activities and technologies for developing TRUST using model transformations 

 

Several algorithms are reported in the literature to flatten concurrent and hierarchical state 

machines [31, 108]. However, to the author’s knowledge, these algorithms are partial and do 

not provide flattening of both hierarchy and concurrency. Therefore, we decided to implement 

a self-written flattening algorithm for UML 2.0 state machines. The implemented algorithm is 

a stepwise process that allows the user to modify the UML model at several points during the 

transformation towards the flattened version. The first step in the flattening process is to 

search all nested levels for submachine states and transform these into a set of simple 

composite states. Next, all simple composite states with one region are transformed to a set of 

simple states or orthogonal states. If there are orthogonal states present in the model, these 

may now be transformed to simple composite states. Finally, the simple composite state(s) 

created in the previous step are transformed to a set of simple states.  

The result is a state machine consisting of an initial state, simple state(s) and possibly a 

final state. The flattening follows a set of transformation rules implemented in Kermeta [109]. 

The key aspects in these rules address (1) how to combine concurrent states, and (2) how to 

redirect transitions. Redirecting transitions may require duplicating transitions, changing 

source or target states, and combining transition information (triggers, guards, transition 

activities, and state entry/exit activities). Interested readers may consult [34] for more detailed 
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information about the flattening algorithm and its corresponding transformations and 

implementation. 

Figure 5 shows a Kermeta rule used for flattening of simple composite states. Incoming 

transitions to an entry point in a simple composite state are redirected to each of the outgoing 

transitions of the same entry point. The small example below provides the Kermeta rule that 

identifies the incoming transitions that will be redirected by calling another Kermeta rule. 

Once the flattened state machine is generated, it is transformed into a test model. This 

transformation requires three inputs: the source metamodel, the source model (which is an 

instance of the source metamodel), and the target metamodel. The source metamodel is a 

metamodel for the flattened state machine, which is the same as the target metamodel for the 

flattening-transformation step in Kermeta. The output of the Kermeta transformation, a 

flattened state machine, provides the second input, which is the source model. The last input, 

the target metamodel, is a metamodel for a test model. The expected structure and content of a 

test model is strongly dependent on the selected testing strategy. In the current version of 

TRUST, the test model conforms to a test-tree metamodel. Figure 6 shows the metamodel 

developed as an Ecore file, based on EMF (Eclipse Modeling Framework). The metamodel 

represents a tree with a starting node, called alpha, and its outgoing edges. Each edge in the 

tree has a target node and may have several children that are the target node’s outgoing edges. 

Similar to transitions in a UML state machine, each edge in the test-tree metamodel is 

associated with at least one trigger and may have an associated guard and effect. In addition, 

each node may have an associated state invariant. 
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Figure 6 Test-tree metamodel for the EMF 

 

/** 
* Rule getTransitionsTargetedInEntryPoint identifies the incoming transitions to this 
* vertex which is an entry point. 
*/ 
operation getTransitionsTargetedInEntryPoint (r: Region) : Set<Transition> is do 

 
//create a set of all incoming transitions to this entry point 
var IN : Set<Transition> init Set<Transition>.new 
 
//add each incoming transition to the set 
r.transition.each{t | 

if (t.target.isInstanceOf(Pseudostate)) 
then if (t.target.asType(Pseudostate).kind == PseudostateKind.entryPoint) 

then if (t.target.asType(Pseudostate) == self) 
then IN.add(t) 

end 
end 

end } 
 
//return transition set 
result := IN

Figure 5 Example of Kermeta flattening rule 
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The flattened state machine is transformed into a test tree (e.g., a transition tree for all 

round-trip paths coverage criterion) by a set of ATL transformation rules that take the three 

abovementioned inputs as parameters. We chose the ATL transformation language because 

most mappings in this step are simple (mainly one-to-one), which makes a declarative 

approach the best choice. In declarative approaches, as opposed to imperative ones, control 

flow and the application order of rules are not explicit.  

Usually the transformations in declarative languages have less transformation code and 

are more comprehensible than imperative languages [110]. This transformation could also 

have been implemented with any other declarative, hybrid, or even imperative language. In 

this research, however, it was decided to stick with an Eclipse-based technology so as to 

develop the entire tool on a consistent platform. For example, the transformation rules, 

instantiating a transition tree from the test-tree metamodel, start from the initial state of the 

state machine which is mapped to the root node, called the Alpha node, in the test tree. All 

outgoing transitions of the initial state are also mapped to the outgoing edges from the Alpha 

node. 

This process of mapping transitions to edges is applied recursively on the target state of all 

transitions in the state machine. Finally, the recursive rule stops when it reaches a leaf or a 

state that has already been visited in the same path starting from the Alpha node (all round-

trip paths coverage [111]). An example of ATL transformation rules is shown in Figure 7 that 

maps the Constraint metaclass (SM!Constraint) including its name and value properties 

from UML metamodel (SM) to the Constraint class (transitiontree!Constraint) in the 

test tree metamodel (transitiontree) and its name and value properties. 

rule Constraint2Constraint{ 
from 

a:SM!Constraint 
to 

b:transitiontree!Constraint( 
name <- a.name, 
value <- a.specification.stringValue() 
) 

} 

Figure 7 Example of transformation rule implemented in ATL
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From Test Model to Executable Test Cases 

The generated test tree is the input for the next transformation, which generates the executable 

test cases. The MOFScript [112] transformation language was chosen for several reasons. 

Firstly, it supports the MOF standard [113], which means that it can transform any MOF-

based model-to-text. Secondly, it is an imperative language for writing transformation rules 

similar to many programming and scripting languages. This makes the MOFScript language 

easy to use and understand. Thirdly, MOFScript provides access to external Java libraries. 

This makes the language very suitable for the context of this thesis because of the need to 

access a test-data generator (implemented in Java) during the transformation to obtain test 

data. MOFScript transformations require the source model and its metamodel, which are 

readily available from the previous step. There is no need to provide the grammar of the 

output language as an input to TRUST, but of course defining transformations requires its 

definition. 

Each path in the test tree represents an abstract test case. Thus, an abstract test case 

consists of a sequence of nodes and edges. Nodes are mapped from states in the state machine 

and states are defined by state invariants, which are OCL constraints serving as test oracles. 

An edge contains all the information related to the trigger including event (e.g., an operation 

call or a signal reception), a guard, and an effect from the state machine’s transitions. 

The MOFScript transformation traverses the test tree (e.g., the transition tree) to obtain the 

abstract test cases and transforms them to concrete (executable) test cases, which are written 

in a test-scripting language. However, it is possible to generate several concrete test cases 

from an abstract test case by using different test-data values. There are many possible 

approaches for generation of test-data [114, 115], which are applicable in different situations. 

What was implemented in the first version of TRUST is the simplest method, which is 

random data generation for operation calls. This test-data generator is written in Java and 

provides random values for the parameters of triggers. However, such a test-data generation 

technique is not suitable when transitions are guarded and parameters of the triggers are used 

in the guards. The MOFScript rule shown in Figure 8 illustrates how a trigger is mapped from 

the test tree for all transitions to C++ test cases. The rule maps the name of the trigger event 

operation and then uses another mapping rule mapParameter to map the parameters for the 

trigger event operation. 
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When executing test cases, OCL expressions in guarded transitions should be evaluated at 

runtime to detect failures. For the same reason, the state invariants associated with states must 

also be evaluated at runtime. One way to evaluate such OCL constraints is to translate them 

into a test-scripting language. The constraints will then be evaluated during the execution of 

the test scripts. Compiler technologies [116, 117] may be used to translate constraints in one 

language to constraints in another language. This approach however is not reusable across 

contexts with different test-scripting languages. For example, if we have transformation rules 

that transform OCL constraints to C++ and the test-scripting language changes to Java, it is 

then required to define new transformation rules from OCL constraints to Java expressions. 

An alternate approach is to use an existing OCL evaluator [52, 54, 55, 53] that is called during 

the execution of a test case to evaluate the OCL constraints. This approach requires an object 

model of the SUT at runtime, representing the current state of the system. This model along 

/** 
* rule 'mapTrigger' generates the C++ code to invoke the operation implementing 
* the trigger event. Rule 'mapParameter()' is called to map parameters in the 
* trigger event operation call. Each trigger is either a MethodCall, 
* SignalReception, or Timer. 
* @param triggerWithParam List, the total generated output for a trigger as String. 
* @param noOfParam Integer, temporary helper variable used for counting parameters. 
*/ 
transitiontree.Trigger::mapTrigger(){ 
 

var triggerWithParam : List; 
var noOfParam : Integer = 0; 
if(self.oclGetType().equals("MethodCall") or self.oclGetType().equals("SignalReception") or 
self.oclGetType().equals("Timer")) 

{ 
triggerWithParam = controlClassReference+"->"+self.name + "("; 
 
if(not self.parameters.isEmpty()){ 

self.parameters->forEach(p:transitiontree.Parameter){ 
triggerWithParam += p.mapParameter(); 
noOfParam = noOfParam + 1; 
 
if(noOfParam < self.parameters.size()){ 

triggerWithParam += ", "; 
} 

} 
} 
triggerWithParam += ");"; 

} 
return triggerWithParam; 

} 

Figure 8 Example of transformation rule implemented using MOF Script
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with the constraint to be evaluated is passed to the OCL evaluator, which in turn returns the 

result of the evaluation. This approach is reusable across contexts because the only required 

change for each output language is to use its appropriate invocation method for calling an 

external library (the OCL evaluator). On the other hand, this approach may slow down the test 

execution as the OCL evaluators are being called at runtime. In both approaches, we need a 

mechanism to query the current state of the SUT and evaluate constraints on the current state 

of the SUT. Querying the current state of the system depends on the implementation of the 

SUT and the test-scripting language’s facility to access the state of the SUT. For instance, if 

the SUT is implemented in C++ and test-scripting language is C++, the state of the SUT may 

be queried using getter methods of the SUT.  

Since the tool was preferred to be reusable in different contexts, it was decided to use an 

OCL evaluator that can be invoked from test scripts. Therefore, an efficient evaluator, in 

terms of evaluating expressions, was chosen that, for example does not require to be called 

several times for evaluating a single expression. After investigating several OCL evaluators 

such as OCLE 2.0 [52], OSLO [53], IBM OCL parser [54], and EyeOCL Software (EOS) 

evaluator [55], EOS was chosen as it proved to be the most useful evaluator for the stated 

requirements (see Figure 1). Since EOS is a Java package, to invoke methods from its classes 

we need to have access to Java from a test script. Java Native Interface [118] was used to 

access the EOS in test scripts in C++.  

To evaluate OCL expressions, EOS requires class and object diagrams to be loaded into 

its memory. In order to accomplish this, another MOFScript transformation was written, 

which takes the UML class diagram (modeling state variables, method calls, and signal 

receptions of the SUT) as input and generates a Java wrapper class that includes a set of EOS 

method calls for making class and object diagrams. This wrapper class is generated before 

executing the transformation of the test tree to test scripts. During test executions, the required 

object model is created based on the current values of system state variables. 
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5.1.3  Generation of Test Cases 

This section discusses how the activities introduced in Section 5.1.2 was designed and 

implemented. Figure 9 depicts the architecture of TRUST, which consists of five components. 

Table 4 shows the mapping between each activity and a component. Each component has 

provided and required interfaces with other components to ease extensibility and 

configurability, as discussed in Section 5.1.1. Each interface provides or requires models that 

are instances of well-defined metamodels. For example, the TestModelGenerator component 

in Figure 9 requires an interface from the TestreadyModelMaker component to access the 

flattened state machine, which is an instance of the UML metamodel. In addition, the 

TestModelGenerator component provides an interface to the TestScriptGenerator component 

to access the test tree (e.g., the transition tree), which is an instance of the test tree metamodel. 

The architecture shown in Figure 9 was developed with the aim to support extensibility and 

configurability. For instance, if TRUST needs to be extended to handle C++ as an output test-

scripting language, the only component to modify is the TestScriptGenerator component 

where new transformation rules in MOFScript must be defined. The other components do not 

require any change. Each component also has clearly defined configuration parameters that 

can easily be adjusted. For instance, if the coverage criterion is to be changed from all round-

trip paths to all transitions, we only need to change the input coverage criterion in the 

TestScriptGenerator component.  

 

 
Figure 9 Architecture diagram of TRUST configured for UML state machines 
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Table 4 Activities implemented by each component 

Component Activity 

 

TestreadyModelMaker A1 

TestModelGenerator  A5 

TestScriptGenerator  A6 

OCLEvaluator  A3 

TestDataGenerator  A4 

 

Figure 10 shows interactions between different components that take place at runtime 

when TRUST is executed with an input state machine. The state machine is passed to the 

TestreadyModelMaker component, which flattens the state machine and passes the flattened 

state machine to the TestModelGenerator component. This component generates the test 

model from the flattened state machine and passes it to the TestScriptGenerator component. 

The TestScriptGenerator component determines if a trigger (a method call or a signal 

reception) in a test script needs static test data. Test data can be generated statically if values 

can be determined prior to execution of the test script, or dynamically in the other case. The 

parameters whose values can be determined only at runtime are obtained at this point. Section 

5.1.4 provides more specific examples of static and dynamic test-data generation. 

In the initial version of TRUST, static data for a parameter is generated randomly from the 

possible set of values. Generating random test data may not be appropriate when the 

parameter of a trigger is used in the associated guard. In this case, a parameter value that 

satisfies the guard must be chosen, so that the trigger can be fired. However, if the value of a 

parameter is selected randomly from a large set of possible parameter values, then the 

possibility of selecting the parameter value that satisfies the guard may be very low.  

 



 50
 

     

 

F
ig

ur
e 

10
 I

nt
er

ac
ti

on
s 

be
tw

ee
n 

di
ff

er
en

t 
co

m
po

ne
nt

s 
of

 T
R

U
S

T
 



 

51 

 

5.1.4 Execution of Test Cases 

Figure 11 shows how a test driver interacts with the SUT and other external tools when it 

executes a test case. Each test case consists of a series of triggers (methods or signals) with 

optional guards. The state of the system is checked before and after executing each trigger 

based on state invariants written as OCL constraints. When a test case is executed, the test 

driver initializes EyeOCLWrapper and TestDataGenerator (messages 1.1 and 1.2, 

respectively). Afterwards, the test driver obtains the state of the SUT by interacting with the 

SUT (message 1 in the loop fragment). The state of the SUT can be obtained in many ways. If 

the implementation of the SUT is in an object-oriented language such as in Java or C++, the 

state variables can be accessed using getter methods of classes if they are available. 

Alternatively, if the source code is available, but there are no getter methods, the source code 

needs to be instrumented before and after each method call to obtain the current state of the 

SUT.  

In the other case, if the source code is not available, then there are two possible options. 

The first option is that the system state might be obtained using some facilities of the 

implementation language. For example, if the Java byte code of the SUT is available, then 

Java’s reflection facility [119] can be used to access the system state. The second option is to 

use a test-scripting language that provides some mechanisms to access the state of the SUT.. 

In the implementation of TRUST that was used in this thesis, the test driver retrieves the 

minimum system state information by querying the values of only those state variables that 

are used in the OCL constraint which is to be evaluated, in addition to querying the state 

pointer implemented as an array in the control class of the SUT holding the pointer to the 

current state object. After obtaining the current state of the system, the test driver creates an 

object diagram using OCLEvaluator via the EyeOCLWrapper class (message 2 in the loop 

fragment). This class automatically generates an implementation of the class diagram and 

instantiates the object diagram corresponding to the implementation at runtime, based on the 

current state of the system (message 2.1 and 2.2 in the loop fragment). The test driver then 

evaluates the expected system state using OCLEvaluator via the EyeOCLWrapper class 

(message 3 and 3.1 in the loop fragment). Once the system state is evaluated against the 

expected state, the trigger, which may be guarded, should be executed. If dynamic test data is 

required for the trigger, the test driver communicates with the TestDataGenerator class 

(message 1 in the opt fragment) to obtain required values. Whether the value for a parameter 

must be generated at runtime is indicated in the data model of the SUT. During the test case 
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generation, TRUST checks if a parameter requires dynamic data generation or if static data is 

readily available. 

In the case of guarded triggers, the associated guard must be evaluated before executing 

the trigger and after obtaining the dynamic test data. The guard may contain system variables 

and input parameters of the trigger. This means that in order to evaluate the guard, we need to 

obtain the system state and the values of the parameters (possibly dynamically generated) 

involved in the guards at runtime; the static and dynamic parameters that are used in the guard 

are replaced with their current values obtained from TestDataGenerator dynamically or 

statically. The guard is then evaluated in the same way as the state of the system was 

evaluated (messages 4, 5, 5.1, 5.2, 6, 6.1). Once the guard is evaluated, the appropriate 

method (i.e., the method that implements the trigger event) is invoked on (or signal is sent to) 

the SUT (message 7). After the execution of the method (or reception of the signal), the state 

of the system is evaluated (message 8, 9, 9.1, 9.2, 10, 10.1) in the same way as the previous 

state and guard evaluations. This process is repeated for all triggers in the test case. Finally, 

cleanup operations are performed on the SUT (message 1.3) once all the triggers have been 

executed on the system. These operations release the resources used by a test case such as 

memory and CPU. 

The next chapter presents experiences and lessons learned from the development of 

TRUST. 
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6 Lessons Learned 

Developing TRUST and then applying it to real world case studies taught us some important 

lessons about both modeling and model transformations. In this section, we will discuss the 

lessons learned for these aspects. 

6.1 Modeling the SUT 

In this thesis, precise behavioral modeling of complex industrial systems using standard UML 

2.0 state machines was a prerequisite for using TRUST. The flattening component requires a 

correctly specified state machine; currently, no feedback is provided in case of errors in the 

model. Modeling correctly, however, is not a trivial task and requires careful studies of the 

UML specification. Even though constructs like concurrency and hierarchy are supposed to 

ease the understandability of large state machines, such constructs may actually confuse the 

developer. In particular, we experienced that concurrency, if not carefully applied, could 

introduce modeling errors in practice. For example, concurrent regions sometimes make it 

difficult to see the set of transitions between state combinations. A typical fault could be that a 

guard is missing on a transition, which allows for transitions to state combinations that are 

illegal targets from particular source states. However, we found that it helped to inspect the 

flattened state machine to detect such mistakes. During inspection, it was detected that a 

missing guard on a transition from an initialization state to a system running state in Region 1 

would allow transitions to be incorrectly fired in Region 2. 

Lesson learned: Careful inspections of the interaction between concurrent regions are 

necessary to prevent unintended behavior. Moreover, constructs like concurrency and 

hierarchy must be carefully inspected to ensure that they are used correctly.  

6.2 Model-to-Model Transformation Technologies 

The model-to-model transformations in TRUST used two different transformation languages: 

Kermeta and ATL. Kermeta appeared to be highly appropriate for flattening UML state 

machines. In addition to being an object-oriented language, it allows you to add behavior to 

the metamodel through aspect weaving. However, we experienced that navigating in the 

metamodel was rather time consuming. Alphabetically organized in a super-sub class 

structure, the UML 2.0 metamodel is a complex model that is difficult to navigate. Having 
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tool support integrated in the Kermeta plug-in that could remove abstract classes and instead 

present the concrete classes relevant for a particular purpose would have been very useful.  

Since the metamodel for test trees is relatively simple, the transformation from the 

flattened state machine to the test model was expected to be straightforward and easy to 

implement by depth-first traversal of the state machine using a declarative language (ATL). 

However, we found that the declarative programming style was not intuitive to handle, 

perhaps because most developers are used to imperative programming languages. Even 

though the final ATL code for test model generation is very short, debugging it was quite 

difficult especially when the input model was big. As the input state machine was quite large 

it caused Eclipse to run out of memory while generating a transition tree for all round-trip 

paths coverage criteria. This was due to the many recursive rule calls required to generate the 

transition tree from the flattened state machine. Implementing transition tree generation using 

recursion was the only possible option when writing rules in the ATL language in a 

declarative fashion. Technology-wise, we also faced many problems while debugging the 

ATL rules, especially when the input models are large causing the debugging interface to 

hang.  

Lesson learned: In future expansions of TRUST, alternatives to ATL used for 

transforming state machines to test trees should be explored and considered.  

6.3 Model-to-Text Transformation Technology 

Developing the final set of transformations in MOFScript was the easiest part of developing 

TRUST, because the rules are defined in an imperative form. MOFScript is quite similar to 

programming languages like Java, and provides powerful features that are easy to use for 

querying models, outputting text, and accessing external Java libraries. We did not face any 

special challenges while using MOFScript for generating test scripts. 

Lesson learned: MOFScript is a favorable model-to-text technology in terms of ease of 

use.  
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PART III – COST-EFFECTIVENESS ANALYSIS 

Introduction 

We will now address part (2) of the research goal, introduced in Section 1.2, by presenting a 

cost-effectiveness analysis of  

 six state-based coverage criteria,  

 using two different oracles,   

 using two test models with two different level of details, and 

 sneak path-testing.  

 

Chapter 7 describes the design of four case studies that were conducted. Chapter 8 

presents results from the first case study that addresses cost-effectiveness analysis of the 

coverage criteria all transitions (AT), all round-trip paths (RTP), all transition pairs (ATP), 

paths of length 2 (LN2), paths of length 3 (LN3), and paths of length 4 (LN4). The second 

case study (Chapter 9) raises the question: How does varying the oracle affect the cost-

effectiveness? The influence of the test model abstraction level on the cost-effectiveness is 

subject of Chapter 10. Finally, Chapter 11 studies the impact of sneak-path testing on the cost-

effectiveness.  
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7 Design of Case Studies on the Cost-Effectiveness of State-Based Testing 

Section 7.1 gives the rationale for applying the case study research method for the purpose of 

evaluating the cost-effectiveness of SBT. Section 7.2 describes the study in detail. 

7.1 Rationale for Selected Research Method 

In general, the choice of research method depends on (i) the prerequisites for the 

investigation, (ii) the purpose of it, (iii) available resources, and (iv) how the collected data is 

preferred to be analyzed [59]. A prerequisite for this investigation in particular, as being part 

of and mainly funded by the EVISOFT project, was to conduct research aiming at empirically 

evaluating model-based development using UML state machines at ABB. This implies 

application of the technique within an ABB context. A prerequisite for state-based testing is 

that of state-based modeling. State-based development is a contemporary phenomenon that 

should be studied within its real-life context; it is difficult to separate from its context as its 

use depends on the type of system, the type of maintenance task, the knowledge of the 

developers, and the tools they use. As what comes to resources, the degree of ABB 

involvement during the project expiration varied due to limitations in available resources. At 

the time the project started, four ABB researchers and developers participated in design and 

implementation of the system ABB provided to the EVISOFT project. Also, ABB was highly 

involved in recruiting subjects for the purpose of collecting fault-data. ABB was not involved, 

however, in the development of the model-based tool for making such state-based testing 

feasible, neither in the evaluation of state-based testing. This illustrates the combination of 

involved actors. Finally, both quantitative and qualitative analyses are desired for exploring 

the research objective.  

The preceding paragraph points in the direction of a rather complex investigation; 

different types of data collection from observations of several perspectives are required. The 

case-study method was decided to be a suitable approach due to state-based testing being a 

contemporary phenomenon that should be studied within its context. Furthermore, because it 

is a complex topic, which is difficult to explore purely by quantitative data, the techniques 

used in case studies are relevant for collecting the desired qualitative data. Also, the 

possibilities for triangulation of data will help to reduce misinterpretations of study results. 

Triangulation may be used to collect data from several sources and hence create data 

redundancy – the case may then be seen from different angles: “Triangulation has been 

generally considered a process of using multiple perceptions to clarify meaning, verifying the 
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repeatability of an observation or interpretation” [120, p. 454]. In [121], a case study 

evaluation exercise is defined to be one where a method or tool is tried out on a real project. 

Furthermore, Wohlin et al. [59, p. 12] adds that within software engineering, case studies 

should not only be used to evaluate how or why certain phenomena occur, but also to evaluate 

the differences between, for example, two design methods. Hence, case studies are also 

appropriate when it comes to comparisons of technologies in order to find the best 

technology. The case study method is appropriate for these kinds of studies with respect to the 

type of research question posed, which is explorative; a comparison of different testing 

strategies at two test model abstraction levels with two oracles.  

What is different from traditional case studies, though, is the extent of control the 

investigator has over actual behavioral events in parts of the study; in this study, the 

researcher had high control as regards to the testing phase.  

7.2 Case Study Design 

Four case studies were based on the same SUT, however addressing different research 

questions. Hence, this section describes what is common for the four case studies. Results 

from the case studies are organized in separate chapters (Chapters 8–11).  

The study design describes how an evaluation of the cost-effectiveness of state-based 

testing (SBT) was carried out. The guidelines of Runeson and Höst [122] were followed for 

structuring the design of the study.  

7.2.5 Research Objectives 

This thesis presents an empirical study on automated SBT. The generated test suites were 

executed on a safety-monitoring component with state-based behaviour in a safety-critical 

control system developed in ABB’s research department in Norway.  

The main purpose of the investigation was to compare the cost-effectiveness of state-

based testing using mutation analysis with real faults collected in a field experiment 

conducted in three global ABB departments.  

Generating state-based test suites according to selected coverage criteria, however, is a 

highly demanding task, and not applicable as a manual process. Tools are required in order to 

make this a feasible approach in the industry. The model-based testing tool TRUST [33] was 

developed and used to generate the studied test suites (see Chapter 5 for details on 

requirements, design and implementation of TRUST). TRUST is a research prototype that 
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automates test-case generation according to a given test-scripting language, coverage 

criterion, and oracle through a series of model transformations. 

The well-known coverage criteria (i) all transitions (AT), (ii) all round-trip paths (RTP), 

and (iii) all transition pairs (ATP) were chosen. The rationale for selecting these coverage 

criteria in particular, was that they are suggested by existing research to be representing weak 

to stronger fault-detection at different, yet reasonable, cost. In addition, test suites covering 

(iv) paths of length 2 (LN2), (v) paths of length 3 (LN3), and (vi) paths of length 4 (LN4) 

were also included in the study. Test suites are generated by traversing two, three, and four 

levels from the state machine’s initial state. This is the most easy, uncomplicated approach to 

make a selection of test paths. Moreover, they represent a coverage that has not been included 

in related work. These three coverage criteria are the baseline used as comparison to the 

known AT, RTP, and ATP.  

Two oracles of different precision levels were applied. Oracle O1 checks both the state 

invariant and the state pointer, whereas oracle O2 is restricted to only check the state pointer. 

The state pointer is a pointer to the current state object kept in an array in the control class of 

the SUT. In this particular case, the system was concurrent, thus keeping two pointers in the 

control class.   

Moreover, to the author’s knowledge there is a lack of observations on having the test 

model in different levels of detail. In this thesis, test suites were generated from two test 

models at different abstraction levels for the purpose of investigating the effect of increasing 

the test model abstraction level on the cost-effectiveness of the testing strategies.  

Finally, the test suites were augmented with sneak-path testing to detect possible 

unspecified behaviour in the implementation.   

It is expected that not all faults will be killed by every coverage criteria. Therefore, the 

reason for why faults are not being detected was examined in order to identify whether 

additional approaches could enhance the fault detection as diverse types of test techniques 

may target different types of faults.   

The following research questions were addressed:  

 RQ1: What is the cost-effectiveness of the state-based coverage criteria all transitions 

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), 

paths of length 3 (LN3) and paths of length 4 (LN4)? 

 RQ2: How does varying the oracle affect the cost-effectiveness?  

 RQ3: What is the influence of the test model abstraction level on the cost-

effectiveness?  
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 RQ4: What is the impact of sneak-path testing on the cost-effectiveness? 

 

An overview of the research activities can be seen in Figure 12.  
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Figure 12 Overview research activities 
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7.2.6 Case Selection 

The evaluation of the SBT was carried out in the context of a software process improvement 

project at ABB called EVISOFT.  

7.2.6.1 Organization 

ABB is a global company that operates in more than 100 countries with approximately 

135,0001 employees. A primary business area concerns power and automation technologies 

for which ABB develops software and hardware.  

The ABB Corporate Research Center in Norway, NOCRC, is one of ABB’s eight research 

centers worldwide. Their interests concern industrial communication, human-machine 

interaction, control and optimization of industrial processes, and instrumentation and 

operation of machines and processes. The research center supports the business units of ABB 

through projects and technical studies.  

7.2.6.2 Software Process Improvement Project 

ABB Corporate Research in Norway initiated a software process improvement initiative with 

the aim of improving UML modeling practices throughout the company.2 This initiative was 

supported by the Norwegian Research Council through the project EVISOFT (EVidence 

based Improvement of SOFTware engineering), and conducted in cooperation with 

researchers from Simula Research Laboratory AS. The current project was initiated to 

investigate which UML diagrams may be beneficial to ABB in the process of going from the 

specification to the implementation phase, and for improving testing procedures. It provided a 

unique opportunity to assess the usage of precise, statechart-driven UML modeling and to 

evaluate state-based testing in a realistic safety-critical development environment.  

A Technical Requirements Specification, developed by the business unit in cooperation 

with the scientists from NOCRC, was the starting point for developing a common 

understanding of the system. The modeling was a cooperative activity between Simula and 

NOCRC. Each modeling activity was closely monitored and followed by an introspective 

analysis of what happened. Based on these activities, several lessons are drawn regarding the 

benefits and challenges of precise UML modeling [14].  

                                                 
I From 2011. 
2 Previous results of the process improvement initiative work are reported in [1].  



 

63 

 

7.2.6.3 System Functionality for Selected Sub System 

In order to satisfy safety standards (e.g. EN 954 and IEC 61508) and enhance the safety-

critical behavior of their industrial machines, ABB developed a new version of a safety-

critical system, the safety board, for supervising industrial machines. The safety board can 

safeguard up to six robots by itself and can be interconnected to many more via a 

programmable logic controller (PLC). It was implemented on a hardware redundant computer 

in order to achieve the required safety integrity level (SIL). The focus of this study is a 

subsystem of this system, called the Application Logic Controller (ALC). The main function 

of the ALC module is to supervise the status of all safety related components interacting with 

the machine, and to initiate a stop of the machine in a safe way when one of these components 

requests a stop or if a fault is detected. It shall also interface with an optional safety bus to 

enable a remote stop and a reliable exchange of system status information. The system will be 

configurable with respect to which safety buses the system can interact with.  

The ALC sub system was chosen for this study as it exhibits a complex state-based 

behavior that can be modeled as a UML state machine.  Complemented by constraints 

specifying state invariants, the state machine will be the main source in the process of 

deriving automated test oracles.  

7.2.6.4 Modeling and Coding 

The sub system was built as a joint effort between researchers from ABB SKCRC and Simula 

Research Laboratory. The ALC was developed according to a development method based on 

the use of UML state-machine diagrams for specifying a system’s behavior. ALC was 

designed by using parallel and hierarchical UML state machines. It was implemented in C++ 

and the extended state-design pattern was used to ensure consistency between model and 

code.  The first version of the system (including models and codes) was developed and 

verified by four developers (two coding, four designing) from the company and three 

researchers (one coding, three modeling). 

Four initial meetings took place where the company representatives introduced the 

researchers to the domain and the functionality of the SUT to be developed. In addition to the 

company representatives, the initial requirements specification and design documents served 

as sources for identifying the system behavior. Throughout the meetings, the authors made 

initial versions of the state-based model of the SUT. One of the company representatives took 

an active part in the subsequent modeling iterations. As part of the modeling process, the 

requirements were discussed with several of the company representatives whenever questions 
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were raised and decisions had to be made. On many occasions, disagreements about the 

system specifications arose among stakeholders. In total, we spent approximately 320 person-

hours on understanding (200 person-hours) and modeling the SUT (120 person-hours). It is 

important to note that, as opposed to cases where the system pre-existed the study, the 

modeling effort here could have been significantly smaller if the specifications had been 

stable to start with.  

The SUT is described in a class diagram consisting of one control class, seven abstract 

classes, and 13 concrete classes. At the top most level, the resulting hierarchical state machine 

consists of one orthogonal state with two regions. Enclosed in the first region are two simple 

states, two simple composite states and 24 transitions. Each of the simple composite states 

contains two simple states. The second region encloses three simple composite states that 

again consist of, respectively, two, two, and three simple states. In addition, 18 transitions are 

present in the second region. This adds up to a maximum hierarchy level of two, 13 simple 

states and 42 simple transitions.  

The state machines for the original version of the SUT can be found in Appendix C.  

7.2.7 Data Collection Procedures 

To measure the cost-effectiveness of SBT, four surrogate measures were used, inspired by the 

study of Briand et al. [12] and Briand and Labiche [123].  

Cost is measured in terms of:  

 Test-suite size – defined by the number of test cases in a combination of coverage 

criterion, test model, and oracle. 

 Preparation time – number of seconds spent on preparing a test suite. The 

following actions are included: generating the test tree, and generating and 

building the test suite.  

 Execution time – number of seconds spent on executing the test suite.  

Effectiveness is measured by:  

 Mutation score – defined by the number of faults killed by a test suite divided by 

the total number of seeded faults.  

 

The remainder of this section addresses procedures for how the data collection was carried 

out. The main activities include (A1) preparation of test models, (A2) generation of mutant 

programs, (A3) extending and configuring the tool, (A4) generation of test suites, and (A5) 

execution of test suites on initial and mutated programs.  
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7.2.7.1  (A1) Preparing Test Models 

The following sections address preparations of the original and the modified UML state-

machine versions of the system introduced in Section 7.2.6.3 to be used as test models.  

Original Complete Test Model 

The original model, as first developed during the joint effort, was tested using TRUST and the 

RTP coverage criterion. However, some adjustments had to be done before being used as 

input to TRUST. There are multiple reasons for this.  

Firstly, the implementation of the STATEMACHINEFLATTENER requires an initial state in 

the outermost level. Moreover, the flattening component does not support transitions that 

cross state borders. Hence, those transitions had to be remodeled to and from the super-state 

edges. This also implied adding initial states, entry points, and exit points in several of the 

super states. The STATEMACHINEFLATTENER neither supports multiple events on a single 

transition. Such transitions were thus resolved to one transition per event.  

Secondly, a misinterpretation of the UML superstructure specification [124] caused a 

remodeling activity that involved replacing a choice point that was connected to an initial 

state with a simple state. Another choice-point case was resolved by replacing the initial state 

in a super state with an entry point. The explanation for this misinterpretation was the 

confusion of simple versus compound transitions. The UML specification states that the initial 

state can only have one outgoing transition. This, however, concerns the simple transition. 

Models having initial state directly connected to a choice point would, when flattened, be 

resolved to several outgoing transitions from initial state, which is not allowed. However, this 

is not the intended meaning of UML specification. The combination of initial state and choice 

points is allowed.  

Table 5 Configuration parameters of TRUST for the ABB case 

Parameter  Value 

Input model  UML2.0 state machine 

Test model  Test tree for all transitions  

Coverage criterion  All round-trip paths 

Test scripting language  C++ 

Test data generation technique  Random data generation 

OCL Evaluator  EOS 

 

TRUST was applied with the configuration values presented in Table 5 and the flattened 

state machine (see Appendix D) described in Table 6 as input.  
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Table 6 Features summary of the hierarchical scale of state machines 

State machine feature Unflattened Flattened 

Maximum level of hierarchy 2 - 

Number of submachines 0 - 

Number of simple composite states  5 - 

Number of simple states  14 56 

Number of orthogonal states  1 - 

Number of transitions  53 391 

 

After applying the flattening transformation and removing unreachable state combinations 

due to conflicting state invariants, the flattened state machine consisted of 56 states and 391 

transitions, mostly guarded. In this case, TRUST was configured for the RTP criterion, 

applied on a test tree, which conforms to the same test-tree metamodel presented in [33]. The 

RTP criterion was chosen to provide an initial test run of TRUST.  

Executing the generated test suites showed that a large number of test cases failed. 

Analyses of the execution results showed that this was explained by infeasible test cases as a 

result of (1) not having the correct values in the test data on guarded transitions, and (2) 

transitions between illegal state combinations in the flattened state machine. In order to 

address (1), the MOFScript transformation was modified to provide the required test data. 

Moreover, (2) was handled by removing illegal state combinations and the corresponding 

transitions from the flattened state machine. 

Furthermore, even when a system is carefully designed and implemented, there is always 

a risk for introducing discrepancies between the specification and the implementation. Minor 

inconsistencies between the specification and the original version of the SUT were found 

during AT, RTP, and ATP testing – these inconsistencies, however, had to be resolved in 

order to run the tests without errors before moving on with the experimentation. Examples of 

such inconsistencies are mismatches between the specification and the implementation related 

to parameters in operations. This caused several test cases to fail, as there were no matching 

operations in the SUT. Such inconsistencies had to be handled in order to run the tests without 

errors and before moving on with the experimentation.  

Modified Complete Test Model 

The original version of the system was then modified by the author to include a fourth mode – 

the ExtraSlow mode. The rationale for this modification was a planned field study for the 
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purpose of collecting real fault data to be used in generation of mutants. The field study will 

be described in Section 7.2.7.2. 

The complete UML state machine consists of one orthogonal state with two regions. 

Enclosed in the first region are two simple states and two simple composite states. The simple 

composite states contain two and three simple states. The second region encloses one simple 

state and four simple composite states that again consist of, respectively, two, two, two, and 

three simple states. This adds up to one orthogonal state, 17 simple states, six simple 

composite states, and a maximum hierarchy level of two. The unflattened state machine 

contains 61 transitions.  

Having both concurrent and hierarchical states, the state machine had to be flattened 

before being used as input to test case generation. The STATEMACHINEFLATTENER [34] 

component of TRUST was used for this purpose. In the outset, the flattened model consisted 

of 82 states and 508 transitions, of which 193 were guarded. However, as addressed above, 

the flattened model contained infeasible state combinations and transitions as the current 

version of the STATEMACHINEFLATTENER does not remove these automatically. The user can 

specify preferences in a provided Kermeta transformation. The outcome of the transformation 

is a model where these combinations are excluded. After removing infeasible transitions (both 

due to incompatible state invariants (12 state combination, 145 transitions) and guards that 

will never become true (14 transitions)), the state machine included 68 simple states 

(excluding initial and final state) and 349 transitions, of which 107 are guarded. The 

characteristics of the unflattened and flattened UML state machines are summarized in Table 

7. The unflattened state machine can be found in Appendix E. 

 

Table 7 Details of the modified version of the SUT, complete version 

State 

Machine 

Composite 

States 

Orthogonal 

States 

Sub Machine 

States 

Simple States Transitions 

(guarded) 

Hierarchical 6 1 

(concurrent 

regions = 2) 

0 17 61 (17) 

Flattened - - - 68 349 (107) 
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Modified Abstract Test Model  

To see the effect of having a less precise test model on the cost-effectiveness of the testing 

strategies, the complete test model was modified. By removing one3 level in the state 

hierarchy, the model was abstracted to generate a less complete test model; the contents of 

every simple composite state were removed.  

Raising the abstraction level brought on questions regarding how to set the inclusion 

criterion for transitions connected to those modified super states. In the end, only transitions 

that were sourced or targeted in the edge of the super state were kept. This means that the 

transitions that were targeted in entry points or sourced in exit points contained in the super 

states were deleted. The explanation for this being that those transitions are not common 

behaviour to all sub states of that super state; such behaviour is only common to those sub 

states that have incoming transitions to a particular entry point. The same regards outgoing 

transitions from exit points. Hence, a consequence is that parts of the super-state behaviour 

are overlooked. Transitions sourced in the edge of a super state, on the other hand, concerns 

all sub states.  

Potentially, to capture more of the SUT behaviour, transitions sourced in exit points 

belonging to the super state could also be kept. This entails that more of the possible 

behaviour is tested, though with an increased number of infeasible test cases due to 

unsatisfied guard conditions. This is particularly true when the guard contains state variables 

that are specific to the removed sub states. Though not impossible, it is then hard to know 

upfront whether or not the guard can be satisfied. It would be applicable if analysis of the 

required path in order to satisfy the guard was implemented. 

The outcome of applying the abstraction approach just described was a UML state 

machine consisting of an initial state, a final state, two transitions, and one orthogonal state 

with two regions. The first region contained one initial state, five simple states and 14 

transitions, whereas the second region contained one initial state, one final state, four simple 

states and 15 transitions (of which seven were guarded).  

Due to the concurrent state, also this model had to be flattened. The flattened version 

resulted in one initial state, one final state, 25 simple states, and 123 transitions (of which 35 

were guarded). After removing four incompatible states and 37 infeasible transitions from the 

flattened version, the abstract model was left with one initial state, 21 simple states, one final 

                                                 
3  We can only reduce the model with one level due to the fact that maximum depth in the model is 2.  
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state and 86 feasible transitions, of which 28 was guarded. The characteristics of the 

unflattened and flattened UML state machines are summarized in Table 8. 

 

Table 8 Details of the modified version of the SUT, abstract version  

State 

Machine 

Composite 

States 

Orthogonal 

States 

Sub-Machine 

States 

Simple States Transitions 

(guarded) 

Hierarchical 0 1 

(concurrent 

regions = 2) 

0 25 123 (35) 

Flattened - - - 21 86 (28) 

 

The abstract test model can be found in Appendix F. The resulting code for the SUT 

consisted of 26 classes and 3372 LOC (1227 h, 2145 cpp) (without blank lines). 

Please note that from now on, the modified version of the SUT is referred to as the SUT. 

7.2.7.2 (A2) Collecting Fault Data for Creating Mutants 

The SBT criteria and oracles were evaluated using mutation analysis. As discussed in Chapter 

3, such evaluations have mostly been carried out using artificial faults, i.e. mutation operators. 

In order to increase the external validity of the results, a field study4 was conducted for the 

purpose of collecting real fault data. The collected faults were later used to create mutant 

versions of the SUT for the purpose of evaluating the SBT strategies. It is important to note 

that the testing strategies were selected before collecting fault data. 

The study was carried out in ABB’s departments in Västerås, Baden and Shanghai 

October/November 2008. Having different UML and domain knowledge, 11 ABB developers 

were asked to implement a change task to the SUT. They were instructed to modify both the 

model and code. Participants were strictly asked to work individually. Five participants solved 

the task in separate rooms, but due to lack of location resources the other six participants had 

to work in shared offices, two in each office. The author supervised the sessions. The 

maintenance task itself was initially suggested at a high level by ABB; however, defined and 

split in six sub tasks by the author of this thesis, and finally approved by the company. The 

maintenance task consisted of adding an extra gear or mode called ExtraSlowSpeed in 

which industrial machines may be operated. The subjects attended an introductory session 

where the extended state-design pattern was explained. They were also provided with both 
                                                 

4 The original goal was to study the effect of using a state-based development method as compared to a more traditional 
baseline method. To ensure the necessary depth and focus in the thesis within a realistic time horizon, however, the goal of 
the field study was changed. The main purpose was to gain a better understanding of how efficient state-based testing is in 
a realistic context with representative change tasks. Therefore, fault data was collected. 
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textual and graphical documentation, in addition to a manual on how to apply the extended 

state-design pattern.  

A correct version of the model and code, representing the SUT after implementing the 

maintenance task, was made by the author and exhaustively tested with each of the coverage 

criteria in focus of this study. The faults extracted from the field experiment data, 

immediately introduced, were inserted into this correctly modified version of the SUT.  

The 115 solutions were manually inspected by the author. In total, 26 faults were detected 

from code inspections. Note that because the objective was to compare the fault-detection 

effectiveness of the testing criteria, it is crucial that the seeded faults do not cause compilation 

errors. This means that only logical faults that could not be detected by the compiler were 

selected. The extracted fault data were used to create 26 faulty versions of the code by seeding 

one fault per program. Among these faults, 11 were sneak paths [31] (i.e., implicit illegal 

transitions present in the state machine). To detect faults of this type, the model should reflect 

the preferred behavior of the system when exposed to unexpected events. At this stage, our 

model had no support for the handling of such unexpected behavior. Hence, as sneak paths 

could not be caught by any conformance test suite generated from the model, 15 out of 26 

mutant programs were detectable by the conformance test suites.  

The faults from the code reflect the following modeling errors:  

 Missing transitions: An expected guarded transition triggered by a completion 

event from ExtraSlowConfirm to ExtraSlowConfirmed was missing from 

the model. One of the subjects only accounted for the transition that was explicitly 

triggered by the ClearEnableDevice() event. The subject did not consider the 

transition that would fire if enableDevice already was false. 

 Additional transitions (sneak paths): Another subject erroneously added 

transitions from ExtraSlow not only, as specified, to Manual, but also to Auto 

and ManualFullSpeed and vice versa. 

 Guards that were not correctly updated: One of the subjects added a clause in the 

guard on the transition from Disabled state to Active state so that a transition 

would be fired only if the mode is ExtraSlow or the speed is extraSlow. 

 Guards that were modified which should not have been changed: In one of the 

erroneous versions, the event handling operation SetModeSoftStop()’s  guard 

                                                 
5 The field experiment originally had 11 participants. However, as one of the participants made no modifications to the code, 

that particular solution was considered as irrelevant for this study.  
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was modified so that the state machine would transition from state Active to 

state SoftStop only if the mode is ExtraSlow. In a correct version, however, 

the state machine should transition regardless of the mode.  

 Erroneous on-entry behavior: An operation that handles the on-entry behaviour of 

the super state ExtraSlow was introduced with an error: the sub states were 

updated with the same value for state variables. The only common value, however, 

should be given the speed variable; blockDriveEnable should be true in the 

ExtraSlowConfirm state and false in the ExtraSlowConfirmed state.  

 Incorrect state invariants: The state variable blockDriveEnable was missing 

from ExtraSlow’s state invariant.  

 Missing on-entry behavior: OnEntry() was not added for ExtraSlow. 

 

Figure 13 shows one of the mutants where updating a variable (blockDriveEnable) as 

part of the onEntry action was left out.  

 

 

7.2.7.3  (A3) Extending and Configuring the Tool 

In order to use the model-based tool TRUST in this study, it had to be extended and 

configured to meet the requirements and conditions of the investigation. TRUST was 

extended to support the relevant coverage criteria and to support two oracles. Moreover, the 

concrete test-case generator was extended for producing C++ code, in addition to providing a 

test environment that facilitates selection of values for externally controlled variables in guard 

conditions. Finally, TRUST was extended with support for sneak-path testing.  

Extending TRUST with Coverage Criteria 

void ExtraSlowConfirm::OnEntry(SafetyBoardControl *myControl) 
{ 
    ExtraSlow::OnEntry(myControl); 
 
    //fault 12 missing code: myControl->WriteBlockDriveEnable(true); 
  myControl->WriteSpeed(SlowSlow); 

  
 if(!myControl->GetEnableDevice()) 

    { 
        ChangeState(myControl, ExtraSlowConfirmedState); 
    } 
} 

Figure 13 Code showing a mutant version of the SUT
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The first version of TRUST supported generation of test cases according to the TT criterion 

[22], which is a modified, stronger version of RTP, and for AT. The TT criterion was 

implemented following the breadth-first algorithm. However, only one test case was 

generated for each transition, and hence only useful for models with guard conditions without 

OR clauses. The AT criterion was implemented using a depth first traversal of the state 

machine.  

Unfortunately, generation of TT test suites from the SUT using the first version of TRUST 

led to Eclipse running out of memory. It was thus decided to use the weaker stopping criterion 

for RTP as first proposed by Binder [31]. Two versions of RTP were implemented following 

the breadth-first algorithm: (1) a weak version where guard conditions are traversed once, and 

(2) a stronger version where a guarded transition is traversed as many times as there are OR 

clauses in the condition. Also the ATP was implemented using a breadth-first algorithm. For 

LN2, LN3, and LN4, transition trees were generated by traversing respectively two, three, and 

four levels from initial state using breadth-first traversal of the state machine.   

 

 

 

 

To illustrate the scope of the criteria, the following sequences of transitions are generated 

from the example model shown in Figure 14:  

 AT: {(t1, t2, t6); (t1, t2, t3, t4); (t1, t2, t3, t5)} 

 RTP: {(t1, t2, t6); (t1, t2, t3[x=2], t4); (t1, t2, t3[x=2], t5); (t1, t2, t3[y=0])} 

t6 

t1 

t3 [x=2 OR y=0] 
t2 

A B 

C 

t4 

t5 

Figure 14 Example state machine 
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 RTP weak6: {(t1, t2, t6); (t1, t2, t3, t4); (t1, t2, t3, t5)} 

 ATP: {(t1, t2, t6, t2); (t1, t2, t3, t4); (t1, t2, t3, t5)} 

 LN2: {(t1,t2, t6); (t1, t2, t3)} 

 LN3: {(t1, t2, t3, t4); (t1, t2, t6, t2); (t1, t2, t3, t5)} 

 LN4:{(t1, t2, t3, t4); (t1, t2, t3, t5, t2); (t1, t2, t6, t2, t6); (t1, t2, t6, t2, t3)} 

Extending TRUST with another Oracle 

Differing in the level of details that are checked, two oracles were evaluated: oracle O1 

checks that the pointer to the expected state is correct, in addition to evaluating the state 

invariant; whereas oracle O2 only checks that the pointer to the state after some event has 

occurred is as expected. This means that O1 is stronger than O2; an expected result would be 

that O1 is more expensive than O2. What is to be shown is the effect such a reduction in 

oracle strength has on the cost and effectiveness.  

Extending TRUST with Support for Concrete C++ Test Cases 

Since the first instantiation of TRUST was implemented for another case supporting a Python-

based scripting language, TRUST needed to be extended to support SBT for the SUT in focus 

of this thesis. The SUT was implemented in C++ and thus a language in favor when testing 

the SUT in terms of efficient interaction between the SUT and the generated test cases. 

TRUST was extended to interact with a new TestscriptGenerator component, i.e., a new test 

script generator supporting C++. Extending TRUST for C++ involved adding a new set of 

transformation rules according to C++ syntax to the TestscriptGenerator component of 

TRUST. This required changes in the MOFScript rules. There was some reuse of the 

MOFScript rules used in the tool instantiation for the first version of TRUST. Only the logic 

for traversing the tree could be reused, however, because the mapping rules for C++ were 

quite different from the Python-based scripting language already supported due to different 

language constructs. Test data was in the outset generated by randomly selecting the value for 

the parameters based on the data type. Java Native Interface (JNI) [118] was used to access 

EOS from the C++ test scripts. 

Support for Selecting Appropriate Environment Values 

This section addresses infeasible transitions and how these were handled. There are several 

reasons for a transition being considered as infeasible. Firstly, in concurrent systems, certain 

                                                 
6 The weak version of RTP gives the same coverage as AT and are thus not further investigated.  
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state combinations may be impossible due to conflicting state invariants. The belonging 

incoming and outgoing transitions sourced and targeted in such combinations, will also be 

infeasible as those states will never be reached. The incorrect state combinations must be 

removed together with the incoming and outgoing transitions as tests including these 

transitions expectantly will never pass. Secondly, the value combination of test data in guards 

is a common reason for why test cases fail. Such test cases can also be considered as 

infeasible because as long as they remain unhandled, these test cases are in fact infeasible. 

Obviously, the ‘wrong’ combination causes test cases to fail – even though the system reacts 

as intended. The infeasible test cases may thus have a negative impact on the percentage of 

the achieved coverage criterion as certain transitions will not be fired. According to Binder, 

10–15 percent is a typical allowance for reduced coverage amongst others due to infeasible 

test paths [31]. 

For testers highly familiar to the SUT, the first type of infeasible transitions is easy to 

address. The second, however, requires handling of test data to manipulate external variables 

that controls the firing of transitions.  

The initial instantiation of TRUST supported static test-data generation. However, as 

approximately one third of the transitions in the SUT were guarded, test-case execution 

showed that hardly any test cases passed. Poor results were obtained in spite of having 

infeasible state combinations and the belonging transitions removed. The results thus point in 

the direction of presence of infeasible transitions due to unsatisfied guard conditions. The 

reason for this is that the provided test data did not satisfy the many guards that relied on 

externally controlled variables. As a consequence, test cases expecting the system to 

transition from one state to another, failed. Hence, the results were not of great interest as it 

was impossible, without analysis, to identify whether a test failed due to a real bug or due to 

unsatisfied guard conditions. Manual inspections of all test cases were not applicable due to 

the large sizes of the test suites (from 27–1,425 test cases). To illustrate this issue, for the RTP 

test suite, as much as 88 percent of the test cases failed due to unsatisfied guard conditions. 

Therefore, to reduce this type of infeasibility and to serve interesting test results, TRUST was 

extended to support intelligent test-data generation – more precisely to provide test data that 

satisfy guard conditions. Automated test-data generation has shown good results for 

identifying dynamic test data (e.g., [125]). In this study, however, the dynamic test-data 

generation was hard coded due to limited time resources. 

As discussed in this section, model-based testing may not be able to achieve 100 percent 

coverage of the criterion we request due to infeasible transitions. However, by providing 
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appropriate test data (when possible), the number of infeasible test cases will be reduced and 

thus increase the quality of the test suites.   

Extending TRUST to Support Sneak-Path Testing 

In order to catch sneak paths, it is necessary to augment the test suites with sneak-path testing. 

For each state in the SUT, all possible events not specified for the particular state are invoked. 

The correct behaviour would be for the SUT to remain in its current state. This technique will 

catch faults that introduce undesired additional behaviour, in terms of extra transitions, other 

than what is specified in the UML state machine.  

The sneak-path test suite was generated using Kermeta. One UML state machine was 

created for each state and its expected behaviour to unexpected events. To be able to position 

the SUT in the state to be tested, each state machine also contains the states and transitions 

from initial state that makes a path to the state under test. The AT coverage criterion was used 

to generate the test trees. MOFScript was, as for the previously generated test suites, used to 

create the concrete test cases. Sneak-path testing was applied to the abstract and complete 

model, using both oracles.  

7.2.7.4 (A4) Generating Test Suites 

The extended version of TRUST was then configured and used to automatically generate 

executable test suites from the two test models previously introduced. The prepared test 

models were used as input models to TRUST. As the state-based criteria are defined for finite 

state machines, a prerequisite for generating the test suites is to use an input state machine 

without concurrency and hierarchy. The first step in TRUST was thus to flatten [31] the test 

model, i.e., removing hierarchy and concurrency from the model as previously described. 

To create the abstract test cases, in the shape of a test tree, each of the algorithms for 

obtaining test suites satisfying the coverage criteria under study were applied on the flattened 

state machine. TRUST then created concrete test cases using MOFScript which took the 

flattened state machine in addition to the generated test tree as input. In MOFScript, the test 

tree was traversed path by path – each path produced one test case. A separate C++ file was 

created for each test case. A main C++ file was generated where each of the test cases were 

invoked. Each test case was invoked with a new object of the SUT. 

The test suites were executed on what is considered being a correct version of the code, 

i.e., one which does not cause the test suites to detect failures. Results were then analyzed in 

order to remove actual infeasible test cases and to resolve infeasible transitions caused by 
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unsatisfied guard conditions due to externally controlled variables. The latter issue was 

handled by providing an environment which enables transitions to be fired (see previous 

section), and then re-generating the concrete test cases. When the test suites executed 

successfully, the test suites were run on the mutant versions of the SUT. 

The following steps summarize the automated experimental process that was followed:  

Step 1. Flatten7 input state machine. 

Step 2. Select test adequacy criterion.  

Step 3. Construct abstract test cases in the form of a test tree. The algorithms used 

to traverse the state machine are previously described. 

Step 4. Select oracle. 

Step 5. Traverse the tree and select test data to generate concrete test cases. One test 

suite is generated per tree.  

Step 6. Build and execute the test suite on the correct version. Ensure that test 

results reveal no errors. Then build and execute the test suite on each of the 

26 mutant programs. 

Step 7. Analyze test results provided by the state-invariant oracle on all mutants. 

7.2.7.5 (A5) Executing Test Suites 

Handling Weaknesses in the Implementation 

During preparations of the sneak-path testing, some weaknesses were detected in the 

implementation of the SUT. These weaknesses had to be resolved in order to run the sneak-

path test suite correctly.  

Recall that the physical mode switch was represented in the SUT by an array called the 

mode enum. According to the specification of the SUT, it should only be possible to go from 

mode manual to mode extra slow speed and vice versa. For instance, it should not be 

allowed to go directly from manual full speed to extra slow speed. Eleven of the 

seeded faults reflect such mistakes. When running the sneak-path test suite on a correct 

version of the SUT (without sneak paths implemented in the code), however, it was 

discovered that the test suite erroneously caused changes in the mode enum. That is, as a 

response to the sneak-path test suites’s attempt of invoking unexpected behavior, the 

implementation made changes to the mode enum even though the physical switch was not 

actually carried out. This means that the implementation would set the mode switch regardless 

                                                 
7 The test model only needs to be flattened once. 
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of the transition being fired or not. The change in mode switch status should take place inside 

the event handling operation – not before. 

This also regards the change in the value of the variable blockDriveEnable; its value 

was set regardless of the transition being fired or not. Updating the value of this particular 

variable should have taken place in the event handling operation – not before it was invoked.  

The third weakness that was detected regards the event reset(). In the original code, it 

was implemented as part of the DriveEnable super state – implying that all sub states have 

this event handling operation available. It should, however, be specific to the SoftHalt 

state and thus only implemented in the concrete SoftHalt class.   

A similar weakness was found in relation to the event StartInAuto(). Again, this 

should have been implemented as a sub state specific event handling operation for the 

concrete class IdentifyingMode.  

Practical Issues 

To automate the build, execution, and timing when executing the test suites on the correct and 

mutated programs, batch files were created for each test criterion, for each oracle. The version 

of the SUT to be executed was copied into the Visual Studio project folder. The project was 

then rebuilt and executed. One result file in the format of a text file was created for each 

version of each coverage criterion. The result file contains the results for the correct version 

and the 15 mutants. 

Replicating the Experiment 

For certain coverage criteria, like AT, RTP, and ATP, the generation of test trees from state 

machines is not deterministic as several test trees can satisfy the criterion. The explanation for 

this is that the structure of the tree depends on the sequence of the selected outgoing 

transitions when traversing the state machine. However, due to possible differences in the 

fault-detection level of the various test suites, the results of executing different test suites that 

fulfill the same test criterion may differ. Such random variations in the results were accounted 

for by repeating the experiment 30 times; 30 different trees were created using random 

selection of the order of outgoing transitions from states to generate distinct test suites. Being 

selected without replacement from the population of all possible trees that achieves each of 

the criteria, only trees distinct from the selected trees were added to the selection. Briand et al. 

[81] explain the variation in fault-detection ability in the following way: “In fact, even though 

transition trees execute the same methods, those methods are executed in different orders, thus 
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satisfying preconditions in different ways and leading to different outputs and state changes as 

specified in different conjuncts of the post conditions.” 

The test suites were obtained by traversing each of the 30 test trees covering all paths, and 

executed on the mutant programs.   

7.2.8 Analysis Procedures 

Please recall that the main objective of this research (Section 7.2.5) was to evaluate the cost-

effectiveness of SBT when varying coverage criteria, oracle, and test model abstraction level. 

Data was collected on the surrogate measures for cost and effectiveness provided in Table 9, 

further described in Section 7.2.7. Hence, the main focus of the analysis was to identify trends 

and significant results on cost-effectiveness of SBT.  

 

Table 9 Features of variables 

Surrogate Measures for Cost 

Dependent Variable Accuracy of Measurement 

Test generation time  Continuous 

Test execution time Continuous 

Test-suite size Discrete 

Surrogate Measures for Effect 

Dependent Variable Accuracy of Measurement 

Mutation score  Continuous 

 

The analysis procedures are based on both quantitative and qualitative data; quantitative 

data were used to explore and compare different aspects of state-based testing, whereas 

qualitative data were used to explain further obtained results from analyses of the quantitative 

data. The tools JMP 7 [126], Excel 2007, and R [127] were used for data analysis.  

7.2.8.1 Quantitative Analyses 

Statistical significance [128] provides the probability that differences between observations 

actually exist. This means that the groups being compared differ to a greater degree than 

would be expected by chance. The conventional level of 5 percent (α = 0.05) was chosen as 

significance level in this thesis. Moreover, to describe the magnitude and direction of the 

observed differences, the effect size [129] was also provided.  
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Descriptive Statistics 

The main features of the collected data, like central tendency, statistical variability, and 

distribution shape, were described using descriptive statistics. The summary statistics (the 

five-number summary) and the associated box plot were used for this purpose.  

Cost-Effectiveness 

The cost-effectiveness of SBT, represented by the dependent variables, was compared among 

the three independent variables, visualized by graphs showing how the cost and effectiveness 

change when varying the independent variables. The graphs enable comparisons of the 

strength of killing mutants among testing strategies at which cost. For each dependent 

variable, there are 360 data points (15 mutants, 6 coverage criteria, 2 oracles, and 2 test 

models).  

Potential random variations in the mutation score across test suites for a given coverage 

criterion creates a need for analysing the distribution of the mutation scores. Furthermore, as 

the collected data was found to be non-normally distributed, the Wilcoxon signed-rank test 

[128] was used to provide non-parametric statistical hypothesis tests of whether or not the 

dependent variables (preparation time, execution time, and mutation score) are significantly 

different. Tests were run on collected data from generating and executing 30 test suites of 

each criterion.  

By this analysis, we can present an overview of the expected percentage of mutants that 

are killed by the testing strategies (including coverage criteria and oracles) at different test 

model abstraction levels that implies different cost.  

7.2.8.2 Qualitative Analyses 

Expectantly, certain mutants could not be killed by every combinations of coverage criteria, 

oracle and test model. Analyses of un-killed mutants were performed to identify mutants that 

were difficult to kill.  

7.2.9 Validity Procedures 

The four validity categories as suggested by Runeson and Höst [122] to be used in case 

studies are discussed in this section.  

Construct validity regards to what extent the operational measure that are studied really 

represent what the researcher have in mind and what is investigated according to the research 

questions [122]. That is, it concerns the establishment of correct operational measures for the 

concepts being studied. This validity issue was handled using multiple sources during data 
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collection. Several surrogate measures were selected to describe cost-effectiveness of SBT. 

Also, most of these measures are commonly known measures in cost-effectiveness studies.   

Internal validity is of concern when causal relations are examined [122]. Investigated 

variables may also be affected by extraneous variables, confounding factors, not accounted 

for in the study, thus a threat to the internal validity. What is observed should be attributed to 

the studied variable and not to potential confounding factors. One detected risk in terms of 

internal validity was the possible randomness in the obtained results for three of the coverage 

criteria. This issue was handled by generating 30 test trees for those coverage criteria, thus 

replicating the experiment for these criteria 30 times. Statistical hypothesis testing was 

applied to the collected data.  

External validity is concerned with to what extent it is possible to generalize the findings, 

and to what extent the findings are of interest to other people outside the investigated case 

[122], i.e., to whether a domain exists to which the results are relevant. How is it possible to 

generalize from a single case? Yin [64, p. 10] provides the following answer: 

 

The	 short	 answer	 is	 that	 case	 studies,	 like	 experiments,	 are	 generalizable	 to	

theoretical	propositions	and	not	to	populations	or	universes.	In	this	sense,	the	case	study,	

like	 the	experiment,	does	not	represent	a	“sample”,	and	 in	doing	a	case	study,	your	goal	

will	be	to	expand	and	generalize	theories	(analytic	generalization)	and	not	to	enumerate	

frequencies	(statistical	generalization).	

 

As stated by Runeson and Höst [122], for case studies, the intention is to enable analytical 

generalization where the results are extended to cases which have common characteristics and 

hence for which the findings are relevant, i.e., defining a theory.  

The main strength of this study is, in fact, its external validity. The system in focus of this 

thesis is highly representative of systems with state-based behavior thus improving the 

external validity. It is important to provide detailed context descriptions, like system 

characteristic, development and testing procedures, such that others can relate the results to 

their own context. This information is provided in sections 7.2.6 and 7.2.7. Moreover, in 

contrast to the majority of existing studies using artificial faults in such evaluations, the faults 

used in the evaluation of SBT are real faults collected in a field study conducted in ABB 

(Section 7.2.7.2). The study design of the thesis is based on existing theory, and the results 

from these studies are compared to the results of this thesis. 
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A threat to the external validity could be that one researcher was the subject in the case 

studies. The rationale for this being lack of resources and a general lack of state-based testing 

experience in the company. However, as the test case generation process was automated as 

compared to other studies where test cases are manually generated, this is not considered 

being a threat.  

Reliability concerns to what extent the data and the analysis are dependent on the specific 

researchers [122], e.g., unclear descriptions of data collection procedures such that later 

replications of the study could give different results. This is addressed by providing as 

detailed design and analysis procedures as possible.   

Next, the four case studies in Chapter 8–11 present cost-effectiveness analyses for the 

purpose of answering the research questions stated in Section 7.1.2.1 based on the data 

collected according to procedures described in Section 7.1.2.3.  
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8 Case Study 1 – What is the Cost-Effectiveness of the State-Based Coverage Criteria All 

Transitions, All Round-Trip Paths, All Transition Pairs, Paths of Length 2, Paths of 

Length 3, and Paths of Length 4? 

Based on the case-study design in Chapter 7, this chapter presents results from a case study 

which addresses RQ1 regarding the cost-effectiveness of the six state-based coverage criteria:  

 

RQ1: What is the cost-effectiveness of the state-based coverage criteria all transitions 

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), 

paths of length 3 (LN3) and paths of length 4 (LN4)? 

 

A number of figures are provided, visualizing how the dependent variables mutation 

score, test-suite size, and test suite preparation and execution time are affected by the different 

coverage criteria. Section 8.1 provides descriptive statistics for the collected data on cost and 

effectiveness, whereas Section 8.2 regards statistical tests applied on the data from Section 

8.1. A cost-effectiveness analysis is presented in Section 8.3. A qualitative analysis of 

undetected mutants is provided in Section 8.4. Results are discussed towards existing research 

in Section 8.5. Furthermore, Section 8.6 discusses results from related work against results 

from this study. Finally, Section 8.7 summarizes this chapter.  

8.1 Descriptive Statistics 

8.1.5 Descriptive Statistics for Cost 

This section presents main features of the collected data on cost: the test-suite sizes and the 

time spent on preparing and executing these test suites. 

8.1.5.1 Test-Suite Size 

First of all, consider Table 10 which lists the test-suite sizes for the six testing strategies. For 

now, the coverage criteria were applied on the complete test model using the strongest oracle, 

O1. The reader is referred to Chapter 7 for details on the complete test model and oracle O1. 

As we can see, LN2 resulted in 27 test cases – the smallest test suite among the studied 

coverage criteria. More than five times larger, LN3 contained 143 test cases, closely followed 

by AT with 166 test cases. Approximately 50 percent increase was shown for RTP with 299 

test cases. Again, a major increase in size: LN4 provided 764 test cases. Finally, ATP resulted 

in the largest test suite with 1,425 test cases.  
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Table 10 Test-suite sizes – ascending order8 

COVERAGE CRITERION TEST MODEL ORACLE TEST-SUITE SIZE 

LN2 complete O1 27 

LN3 complete O1 143 

AT complete O1 166 

RTP complete O1 299 

LN4 complete O1 764 

ATP complete O1 1,425 

 

It was expected that LN2, LN3, and AT provided small test suites – having their 

definitions in mind. More important to notice, however, is the large difference between the 

smallest and the largest test suite: ATP is almost 53 times larger than LN2 – which must be 

considered being a significant increase in cost.  

Figure 15 shows the distribution of test-suite sizes. The corresponding box plot is shown 

in Figure 16.  

                                                 
8 Please recall the following regarding AT, RTP, and ATP: Numbers are the average of 30 replications. 
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Figure 15 Distribution – test-suite size 

 

Also worth noticing is the difference in mean (470.7 test cases) versus median (232.4 test 

cases). This is explained by the distribution being skewed to the right by ATP.  

 

 
Figure 16 Tendency, dispersion and distribution shape of the test-suite sizes 

 

From the box plot, it is even clearer that the majority of the testing strategies consist of 

less than 800 test cases. Only one testing strategy had a higher number of test cases – as we 

can see from Table 10, this regards ATP with 1,425 test cases.  

8.1.5.2 Time 

Let us look at the second surrogate measure of cost – time, split in preparation and execution 

time. Descriptive statistics are displayed in Table 11 and Table 12. The statistics include the 

minimum, the 25 percent quartile, the mean, the median, the 75 percent quartile, the 

maximum, and the standard deviation in the collected data for each coverage criterion. Timing 

data was collected by running the experiment on a Windows 7 machine with an Intel(R) 
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Core(TM)2 Duo CPU P9400 @ 2.4 GHz processor, and with 2.4 GB memory. Note that time 

is measured in seconds. 

Looking at the mean values, we observe that LN2 had the lowest values for preparation 

time (126 seconds). LN3 had the second lowest value, 509 seconds. RTP ranked third with 

531 seconds. An enormous increase, almost 87 percent, was seen between preparation time 

for RTP and AT (3,995 seconds). The second highest measure collected for preparation time 

was LN4 with 5,295 seconds. The highest value, 28,819 seconds, was observed for ATP.  
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Interestingly, the correlation between preparation and execution time was not consistent. 

As we can see from the results, the mean of LN4 was higher than the measured time for AT, 

what comes to preparation time. Regarding execution time, however, AT had a higher 

measured value than LN4. This can be explained by the way the state machine was traversed 

when generating the AT and LN4 test suites. AT was generated using a depth first algorithm, 

which typically results in few, but long test cases. LN4, on the other hand, was generated by 

breadth first, providing many, but short test cases. The time spent on generating the many 

LN4 test cases would thus take longer time than generating fewer, but longer AT test cases. 

Imagine the additional code required in separate test cases as compared to having one long 

test case. Although LN4 is approximately 4.6 times larger than AT in terms of number of test 

cases, the execution time takes five times longer (2,455 seconds (LN4) versus 489 seconds 

(RTP)) due to the nature of the AT test cases.  

Figure 17 displays a graphical representation of the means. The figure shows a significant 

increase in preparation time for ATP. 

 

 
Figure 17 Preparation and execution time in seconds shown for each coverage criterion  

The figures displayed in Table 11 and Table 12 illustrate the variations in results among 

the generated trees within each of the strategies AT, RTP, and ATP. This will be further 

addressed in the following paragraphs.  
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Comparing Means 

As described in the design chapter (Chapter 7), the collected data presented in the previous 

sections are, for each of AT, RTP, and ATP, based on 30 replications of the experiment. 

Recall that the trees from which the test suites are generated were randomly selected without 

replacement to the population of trees within each strategy. The mean is expected to be an 

estimate of the real value µ of the population, and closer to µ than each of the trees 

independently. Therefore, to reduce the uncertainty in the mean, a number of 30 trees were 

selected for AT, RTP, and ATP. This section investigates those replications for the purpose of 

identifying possible statistical variability. 

The observations for each group (i.e., combinations of coverage criterion, test model and 

oracle) are independent. Being selected without replacement from the population of all 

possible trees that achieves each of the criteria, only trees distinct from the selected trees were 

added to the selection.  

The histograms and box plots in Figure 18 and Figure 19 show the distribution of the time 

spent to prepare and execute the test suites, respectively. The data material can be found in 

Appendix G. 

Figure 18 presents the performance of AT, RTP, and ATP regarding preparation time. 

None of the histograms show a normal distribution.  

 

AT RTP ATP 

Figure 18 Distribution – preparation time 

 

Starting with AT, we see a distribution skewed to the left having the minimum value 

2,506 seconds, the mean at 3,995 seconds, and the maximum value at 15,939 seconds. Worth 

noticing is the relatively significant difference in mean and median, which can be explained 
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by the fact that there were two outliers in the collected data. Looking at the inter quartile 

range (IQR) and the belonging upper and lower limits (see Table 13) for what is considered 

being outliers, we see that 15,781 seconds and 15,939 seconds are outliers as their values 

exceed the upper limit (5,017.8).  

Next, the distribution shown for RTP is skewed to the left. The minimum value was 484, 

the mean was 531 seconds, and the maximum observed value was 607 seconds. A quick 

glance at Table 13 shows that, also for this strategy, there was an outlier present – 

observations above 595 seconds should be considered as outliers, i.e., the observation 607 

seconds. Outliers in the lowest quartile would have to be lower than 462 seconds. Such 

outliers were not present.  

Finally, ATP had 28,377 seconds as the minimum value, 28,819 seconds as the mean, and 

the highest measured value was 29,398 seconds. According to the IQR, outliers would be 

present if observations were seen above 29,706 or below 27,898. However, all observations 

were within the IQR from Q1 and Q3, and thus no outliers.  

 

Table 13 Inter quartile ranges – preparation time 

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 2,763 3,665 902 1,353 1,410 5,018

RTP 512 545 33 50 462 595

ATP 28,576 29,028 452 678 27,898 29,706  

 

Nor Figure 19, which displays the spread in the collected execution-time data, presents 

normally distributed observations. The execution time for AT varies from 1,765 seconds to 

3,617 seconds, for RTP we see a range from 341 seconds to 607 seconds, and for ATP the 

time is spread from 2,607 seconds to 3,978 seconds.  
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AT 

 
RTP 

 

 
ATP 

 
Figure 19 Distribution – execution time 

 

AT’s distribution is skewed to the left. The minimum value among the observations was 

1,765 seconds, the mean was 2,455 seconds, and the maximum value was 3,617 seconds. 

There are no outliers observed.  

The RTP distribution is slightly skewed to the left. Looking at Table 12, we see that the 

minimum value was 341 seconds, the mean was 489 seconds, and the maximum value was 

607 seconds. Being the minimum value (341 seconds), this observation is an outlier as it 

exceeds the lower limit (see Table 14).  

Finally, the collected data for ATP was rather equally distributed. The mean was at 3,341 

seconds, the minimum at 2,607 seconds, and the maximum at 3,978 seconds. No outliers were 

observed for this strategy.  

 

Table 14 Inter quartile ranges – execution time 

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 2,108 2,785 676 1,014 1,094 3,799

RTP 460 524 64 96 364 621

ATP 2,972 3,669 698 1,046 1,925 4,715  

8.1.6 Descriptive Statistics for Effectiveness 

This section describes main features of the collected data on effect, which regards mutation 

score – the surrogate measure of effectiveness. Table 16 presents the five-number summary. 

Again, the summary includes the minimum, the 25 percent quartile, the median, the 75 

percent quartile, the maximum, the mean, and the standard deviation in the collected data for 

each combination of coverage criterion, test model, and oracle. 
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The minimum mutation score (0.333) was observed for LN2. The maximum mutation 

score (1), however, was reached by AT, RTP, ATP, and LN4. Considering the mutation score 

results ranked by mean from low to high, the summary shows that LN2 performs significantly 

poorer than the other coverage criteria. A large gap was to be found between LN2 and the 

next result – LN3 with 0.933. Quite similar, AT resulted in a high mutation score, 0.997. The 

best mean value observed for mutation score came with RTP, ATP, and LN4. Explained by 

similar results within each coverage criteria, the medians closely follow the means. This 

particularly regards LN2, LN3, and LN4 that were only executed with one test suite. Recall 

that AT, RTP, and ATP were replicated 30 times due to possible variations in the results 

regarding several traversal paths providing different trees. This also explains the low standard 

deviation figures, at least for LN2, LN3, and LN4. Moreover, AT, RTP, and ATP provided 

high mutation score means across all 30 replications, and hence, low standard deviations.  

 

Table 15 Descriptive statistics for mutation score 

Strategy Model Oracle Min Q1 Mean Median Q3 Max Std Dev Std Error Mean N

AT complete O1 0.900 1.000 0.997 1.000 1.000 1.000 0.018 0.003 30

RTP complete O1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 30

ATP complete O1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 30

LN2 complete O1 0.333 0.333 0.333 0.333 0.333 0.333 0.000 0.000 1

LN3 complete O1 0.933 0.933 0.933 0.933 0.933 0.933 0.000 0.000 1

LN4 complete O1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1

 

The mutation-score means displayed in Table 15 are graphically visualized in Figure 20. 
We see that the complete test model combined with oracle O1 resulted in an overall high 
mutation score, except from LN2.   

 

 

Figure 20 Mutation score means 
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Comparing Means 

This section investigates the replications of AT, RTP, and ATP for the purpose of identifying 

possible statistical variability in the collected data on mutation scores. Studying the 

distribution of the mutation score in Table 15 and Figure 21, we see hardly any variation in 

the observations. The histograms show consistent distributions of the mutation scores. The 

data material can be found in Appendix G. 

 

AT 

 
RTP ATP 

Figure 21 Distribution – mutation score 

 

From the box plots of RTP and ATP, we see that 100 percent of the test suites achieved 

mutation score means equal to 1. For AT, 29 of the 30 test suites killed every mutant. The 

remaining test suite killed 14/15 seeded errors.  

The next section will present results from tests on significant statistical differences in the 

replicated data.  

8.2 Statistical Tests 

This section provides statistical tests on the data described by descriptive statistics in Section 

8.1. Tests are run in R [127]. The actual tests are listed in Appendix K. The purpose of the 

tests is to confirm/reject the hypothesis:  

 

H0: There are no significant differences in cost and effectiveness when applying the 

testing strategies AT, RTP, and ATP on the complete model when combined with oracle O1.  
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Chapters 8 to 9 show results from comparing all the collected data for the three strategies 

when applied to the complete model and oracle O1. In order to make such a comparison, three 

statistical tests were executed: AT versus ATP, AT versus RTP, and ATP versus RTP. As 

multiple comparisons were made on the same sample, it would be sufficient to present the p-

value. However, as Bonferroni correction is recommended by the literature [128], this kind of 

correction was used to avoid spurious positives when comparing the three strategies AT, RTP, 

and ATP. The original alpha α = 0.05 was thus lowered to α = 0.05 / 3 for the purpose of 

accounting for the number of comparisons.  

Overall, ATP performed significantly better than both RTP and AT as to what mutation 

score regards. Accordingly, the cost when applying ATP was significantly higher than for 

RTP and AT.  

Comparing AT with RTP, we see that for both measures on time the p-values are very low 

(p = 1.86e-09 for preparation time and p = 1.82e-06 for execution time). This means that the 

data is significantly different for the two strategies, even for α = 0.01. When also looking at 

the effect size (Â  = 1 for both preparation time and execution time), we can say that the 

probability of AT’s preparation time and execution time being higher than for RTP is 100 

percent. Interestingly, this does not regard the mutation score. There were no significant 

differences in the mutation scores achieved by AT as compared to RTP. The effect size of 0.5 

shows that there is 50 percent probability for either strategy to perform better.  

The figures for AT and ATP shows that ATP had the highest values for preparation time 

and execution time; the time spent on preparing and executing the test suites were 

significantly higher than for AT (p = 1.863e-09 for preparation time and p = 4.5e-06 for 

execution time). The large effect sizes indicate a 100 percent probability of higher preparation 

time and 91.4 percent probability of higher execution time. Again, no difference was found in 

mutation scores for ATP as compared to AT.  

Furthermore, the differences in preparation time and execution time were significant also 

in the final comparison; RTP versus ATP (p = 1.863e-09 for preparation time and p = 1.863e-

09 for execution time). The Â  statistics also show that RTP always required less time than 

ATP (Â  = 0). Henceforth, the effect size is large.  

This implies the following order: ATP costs more than AT which again costs more than 

RTP. Regardless of these differences, however, the three strategies performed similar in 

killing mutants. Thus, RTP can be considered being the most cost-effective strategy when 

using the complete model in combination with oracle O1.  
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8.3 Cost-Effectiveness 

This section focuses on the relation between cost and effectiveness. Each of the surrogate 

measures of cost and effectiveness is graphically illustrated by using colors in Figure 22. Dark 

colors indicate high values; light colors represent low values. We easily observe that five of 

the criteria provided good mutation score – LN2 had the worst results on mutation score. 

Looking at the cost for each strategy, ATP stands out with its high values for all measure on 

cost. RTP and LN3 perform quite similar. AT had the second highest cost, but similar 

effectiveness as ATP, RTP, and LN4.  

 

Figure 22 Preparation time, execution time, test-suite size and mutation score for each coverage criterion 
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Figure 23–Figure 26 show the relation between the surrogate measures of cost and 

effectiveness. In Figure 23–Figure 25 we see the number of killed mutants versus the mean 

preparation time, execution time, and total time for each strategy, respectively. Clearly, 

although killing all mutants, ATP is the most expensive criteria to prepare. On the other 

extreme, LN2 is very cheap; the fault-detection ability is accordingly poor. We observe from 

the four figures that the measures provide rather consistent results. There are, however, some 

differences in the results, e.g. preparation time versus execution time. Preparing the AT test 

suites took slightly more time than RTP but less time than LN4. Looking at the execution 

time on the other hand, Figure 23 shows that AT takes significantly more time than both RTP 

and LN4.  
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8.4 Analysis of Mutant Survival 

We will now take a closer look at the nature of the mutants that were not killed by the applied 

test suites. The ATP, RTP, and LN4 test suites killed all mutants when executing each of the 

30 test suites.  

On average, all mutants were killed by the AT test suites. Investigations of the individual 

test suites show that only one of the 30 test suites (AT11) did not kill mutant M15. Recall that 

M15 was a fault that consisted of adding a guard to a transition. The guard evaluates the 

particular speed mode of the robot; the speed had to be Extra Slow to enable transitioning. 

In the correct version, firing of the transition should take place regardless of the speed mode. 

Explanations for why this mutant was not killed may be that the generated oracle provided 

test data for the other variables in the guard that prevented the transitioning. The remaining 29 

test suites killed all of the 15 mutants. Neither LN3 killed M15. This, however, has a logical 

explanation in that LN3 does not reach that particular state.  

LN2 performed the worst: ten mutants were not killed (only M1, M2, M12, M13, and 

M14 were killed).  
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8.5 Related Work 

Offutt and Abdurazik [15] addressed system level testing by generating test cases from UML 

state machines. In an empirical study, they demonstrated two techniques and evaluated their 

fault-detection ability, of which one of the techniques was ATP. The Cruise Control system, 

developed for research purposes, was seeded with 25 faults and tested running 34 ATP tests 

generated from a proof-of-concept test data generation tool. Four of the seeded faults were 

actual faults, detected during the initial implementation. Results showed that ATP killed 72 

percent (18/25).  

Offutt et al. [16] continued the investigations on state-based testing to see if the 

specification-based testing criteria could be practically applied. They evaluated the efficiency 

of state-based test criteria in terms of fault-detection ability and obtained branch coverage. 

Among other criteria, AT and ATP were applied in a case study and compared with respect to 

fault-detection ability and branch coverage. A modified version of the Cruise Control system 

(400 LOC of C) was mutated using 24 faults (of which 4 were naturally occurring faults). 

Obtained results showed that the weakest coverage, AT (12 test cases), detected 15/24 faults, 

and ATP (34 test cases) detected 18/24 faults.  

Among several other criteria, the ATP coverage criterion was compared to mutation based 

criteria by Paradkar [82]. The study reported that mutation-based testing had higher fault-

detection effectiveness, but at a higher cost than the structured criteria. By running 39 ATP 

test cases on the Java implementation (389 LOC) of an ATM application, 89/166 (54 percent) 

mutants were killed. The mutants were manually generated by seeding, randomly, faults 

according to mutation operators defined in [130]. In addition, they applied Control Flow 

Disruption (CFD), and Scalar Variable Replacement (SVR).  

Chevalley and Thévenod-Fosse [78] found a weakness of AT in that a fault could possibly 

not be triggered by the particular test case input value for a particular transition. For that 

reason, the weakness in the criterion was compensated by exercising each transition several 

times. The results were based on 1,559 mutants of an avionics system (6,500 LOC); a 

mutation score of 91 percent was reached (1,423/1,559 mutants were killed). The Flight 

Guidance System was a research version provided by the Advanced Technology Center of 

Rockwell-Collins.  
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Briand et al. [22] empirically investigated the cost and fault-detection effectiveness for the 

most referenced coverage criteria based on UML statecharts: AT, ATP, and FP [15], and a 

modified version of the RTP coverage referred to as transition tree (TT) [2, 31]. Three case 

studies were used in the evaluation:  (1) a container class from an academic example program, 

(2) the Cruise Control system, and (3) an implementation of a video recorder.  The two former 

studies were real-time systems. Artificial mutation operators were used to create 101, 91, and 

139 mutants respectively for the three cases. The following conclusions were drawn from the 

study: (1) AT did not provide an adequate level of fault detection, (2) ATP detected nearly all 

faults, but not without an enormous increase in cost compared to AT, (3) TT was evaluated to 

be more cost-effective than AT and ATP, although the result depended on two factors: the 

extent to which guard conditions were present in the statechart, and the extent to which the 

transition tree captured realistic and meaningful usage scenarios.  

In a series of three controlled experiments, Briand et al. [12] evaluated two variants of 

RTP testing, and CP testing, in terms of cost-effectiveness, and proposed a way to combine 

them. Students were used as subjects. The following programs were used in the experiments: 

(1) a container class from an academic software system, (2) a container class from a real DNS 

system, and (3) two control classes from a real DNS system. Two different oracle strategies 

were compared; the state-invariant oracle versus the precise oracle. Artificial mutation 

operators were applied in order to evaluate the cost-effectiveness. In the three experiments, 

24, 42, and 81 mutants were generated. Results showed that RTP testing is not likely to be 

sufficient in most situations as significant numbers of faults remained undetected (from 10 

percent to 34 percent) on average across subject classes. This is especially true when a weaker 

form of round-trip was used where only one of the disjuncts in guard conditions was 

exercised. By combining RTP with CP testing, however, a large percentage of latent faults 

could potentially be detected by CP after SBT was applied, yet at significant increase in cost, 

implying that selection of subsets may be necessary.  

The effectiveness of the RTP strategy was later investigated by Antoniol et al. [80] in a 

case study. The RTP strategy was applied in a C++ example program consisting of 450 LOC 

(two classes and 45 methods).  The main class under test was a container class. Artificial 

mutation operators were used to seed 44 faults covering 8 mutation operators. The study 

concluded that the RTP strategy is reasonably effective at detecting faults; 88 percent of the 

faults were detected as compared to 69 percent for random testing. Moreover, their results 

showed that RTP left certain types of faults undetected, and suggested that by augmenting 
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RTP with category-partition (CP) testing, the fault-detection can be enhanced, although at an 

increase in cost that must be taken into account.  

A study by Briand et al. [81] was conducted that aimed at investigating how data flow 

information could be used to improve the cost-effectiveness of state-based coverage criteria 

when more than one tree existed. Two case studies were carried out: (1) the Cruise Control 

system was inserted with 91 faults using artificial mutation operators, and (2) 131 mutants 

were generated from an implementation of a video recorder. Results showed that data flow 

information was useful for selection of the best cost-effective transition tree.  

Mouchawrab et al. [85] addressed the impact of using statecharts for testing class clusters 

that exhibit a state-dependent behavior, and reported on a controlled experiment that 

investigated the effectiveness of SBT using RTP when compared and combined to white-box, 

structural testing. The experiment involved 48 students who were assigned to generate tests 

for the OrdSet example class, and the Cruise Control system using RTP, and block and edges 

coverage. No differences in the fault-detection effectiveness of the two strategies were found 

by executing the generated tests on 624 mutants of the OrdSet class and 386 mutants of the 

Cruise Control system. Results from applying RTP showed an average mutation score of 

approximately 79 percent in the OrdSet case and as low as 22 percent in the Cruise Control 

case. Combining the strategies, however, proved to be significantly more effective. Number 

of killed mutants (i.e., killed by RTP and the structural criterion) varied from 80–100 percent 

in the OrdSet case and 61–100 percent in the Cruise Control case. The fault detection 

effectiveness was found to vary to a large extent depending on how precisely the statechart 

described the behavior of the software under test.  

Continuing the investigations of the impact of state-machine testing (the round-trip path 

coverage criterion in particular) on fault detection and cost when compared with structural 

testing, Mouchawrab et al. [92] conducted four controlled experiments. Results showed that 

there was no significant difference between the two strategies regarding fault-detection 

effectiveness. Combining the two strategies, however, yielded significantly more effective 

results. The number of mutants varied from 382 to 1,176.  

The round-trip path criterion was further studied by Briand et al. [98] in the context of 

UML state machines with focus on how to improve the criterion’s fault-detection 

effectiveness. They investigated how data flow analysis on OCL guard conditions and 

operation contracts could be used to “further refine the selection of a cost-effective test suite 

among alternative, adequate test suites for a given state machine criterion” [98]. A 

methodology on how to perform data flow analysis of UML state machines was presented. 
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Results from two case studies, a VCR system (1,000 LOC) and the well-known Cruise 

Control system (460 LOC), suggested that data flow information in a transition tree could be 

used to select the tree with the highest fault-detection ability. Artificial mutation operators 

were used to generate 131 and 91 mutants for VCR and CC, respectively. For VCR, the 

number of killed mutants varied from 71–76 percent among the 12 trees generated, whereas 

85, 91, and 96 percent of the mutants were killed by the three transition trees generated from 

the CC.  

In [99], Khalil and Labiche addressed the assumptions about the round-trip path strategy 

regarding the equivalency of exercising paths in the tree that do not always trigger complete 

round trip path versus covering round-trip paths. They investigated the consequences of the 

assumption not being held in practice. Finally, they proposed yet a new algorithm for 

generating the transition tree, which resulted in higher efficiency and lower cost. They created 

187 mutants for the Cruise Control example and 417 faulty versions of the OrderedSet 

example. Cost was measured by several surrogate measures: the number of test cases, the 

number of states in trees, and the number of events in trees.  

8.6 Discussion 

This section compares the observed results to related work as just described in Section 8.5. 

Please recall that in this study, a hierarchical orthogonal module in a control system was 

applied in the evaluation of six state-based coverage criteria. Twenty-six mutated versions of 

the SUT were generated by seeding real faults that were extracted from a global field study 

conducted in three of ABB’s departments. Only fifteen of these faults were detectable by 

conformance testing, as the remaining eleven faults were sneak paths.  

There are several factors that distinguish the abovementioned studies from the study 

presented in this thesis. First of all, the majority of existing studies on cost-effectiveness 

related to SBT, except for [78], utilize small non-industrial or example cases which are 

significantly smaller or less complex than the SUT. The number of tests in the generated test 

suites and LOC reflect that difference. For example, recall that the number of tests generated 

for ATP in this study was 1,425 as compared to 34 in [15] and [16]. In particular, recall the 

frequent use of the Cruise Control case in existing research. Second, the applied oracle is most 

often not specified; the lack of oracle information makes it difficult to provide meaningful 

comparisons of the results. Only Briand et al. [12] specifically addressed and, in fact, 

compared the type of oracles used. Third, the number of seeded mutants is in most cases 



 

103 

 

higher than in this study, but then again, (forth) the seeded faults are primarily artificial in 

existing studies. Nevertheless, the latter difference is interesting due to the lack of studies on 

artificial versus real faults. Fifth, the level of details in the test model is insufficiently 

specified. Sixth, there are no data on cost other than test-suite sizes.  

Now, by looking at the reported results on fault-detection ability, we see that ATP killed 

more mutants (100 percent) in this study as compared to [15], [16], and [82]. The latter 

reported a mutation score as low as 54 percent. This may of course be explained by the 

differences in the studies as previously stated. The relationship between the fault-detection 

ability of AT versus ATP presented in [16], however, seem to be rather consistent to results in 

this study.  

As we can see from the existing studies, results show great variations in the fault-detection 

ability – from 63 to 91 percent. In spite of the differences between the study of Briand et al. 

[22] and this study, results reported in this study support the findings of Briand et al.; except 

from the findings regarding AT not providing an adequate level of fault detection. In this 

study, by using a complete test model and oracle O1 (checking state invariant and state 

pointer), we saw that AT detected as many mutants as ATP. Then again, the study of Briand 

et al. involved many more mutants albeit artificial. 

Empirical studies on RTP have shown that, in terms of cost and effectiveness, this 

particular criterion is a compromise between the weak AT and the more expensive ATP 

criteria if the selected transition trees were the most effective in cases where several trees 

existed [22]. The results in this study support these findings. Note, however, that also for 

RTP, reported results in existing studies are highly variable (22–90 percent).  

8.7 Summary 

This chapter concerned cost-effectiveness of the state-based coverage criteria all transitions 

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of 

length 3 (LN3) and paths of length 4 (LN4) when applied to a detailed state-based test model 

using oracle O1.  

Descriptive statistics for the obtained results on cost and effectiveness in Section 8.1 

showed that LN2 (27 test cases) provided the smallest test suite; ATP (1,425 test cases) had 

the largest test suite. The median among the test-suite sizes was 232.4 test cases.  

Looking at the mean values, we observe that LN2 had the lowest values for preparation 

time (126 seconds). LN3 had the second lowest value, 509 seconds. RTP ranked third with 
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531 seconds. A large increase, almost 87 percent, was seen between preparation time for RTP 

and AT (3,995 seconds). The second highest measure collected for preparation time was LN4 

with 5,295 seconds. The highest value, 28,819 seconds, was observed for ATP.  

Results show for execution time that, again, LN2 provided the lowest value (18 seconds). 

LN3 was measured to 136 seconds, followed by RTP with 489 seconds. Almost doubling the 

time seen for RTP, LN4 was measured to use 850 seconds on executing the test suite. The 

second highest time was measured for AT – 2,455 seconds. Finally, execution of the ATP test 

suite took 3,341 seconds.  

Considering the mutation score results ranked by mean from low to high, the summary 

showed that LN2 performed significantly poorer than the other coverage criteria (5/15 killed 

mutants). A large gap was to be found between LN2 and the next result; LN3 with 0.933 

(14/15 killed mutants). Quite similar, AT resulted in a high mutation score mean, 0.997. The 

best mutation score mean came with RTP, ATP, and LN4 – all mutants were killed.  

Section 8.2 regarded statistical tests. The paired Wilcoxon signed-rank test was applied to 

the replicated data, i.e., for AT, RTP, and ATP. All tests executed on preparation and 

execution time resulted in significantly different results – ATP spent significantly more time 

on both preparation and execution of the test suites than AT and RTP. No significant 

differences were found in data collected on mutation score. Both RTP and ATP killed all 

mutants. AT killed all mutants in 29 of 30 test suites – the final test suite killed 14 out of 15 

mutants.  

 

 

  

Conclusions: The results indicate that LN2 might be too weak as a testing strategy. 

The other testing strategies performed similar with respect to mutation score, but with 

varying costs – ATP was the most expensive criterion. Having rather similar cost-

effectiveness, LN3 and RPT were suggested by the results as the most cost-effective 

strategies. 
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9 Case Study 2 – How does Varying the Oracle Affect the Cost-Effectiveness? 

Whereas the previous chapter compared six coverage criteria, executed on the complete 

model using one type of oracle, the case study presented in this chapter aims to answer the 

second research question:  

 

RQ2: How does varying the oracle affect the cost-effectiveness?  

 

Results are based on running tests when applying a modified version of the oracle used in 

Chapter 8. Please recall from Section 7.1 the difference between the two oracles O1 and O2. 

The former checks both the state invariant in addition to the pointer to the current system 

state, whereas the latter only checks the current system state.  

The answer to this question will be provided by investigating the influence of the two 

oracles on the cost-effectiveness of the six coverage criteria in focus of this thesis. Section 9.1 

presents descriptive statistics, whereas Section 9.2 provides statistical tests. Descriptive 

statistics from Section 8.1 are restated in this Chapter for the purpose of making comparisons 

between the two oracles. Section 9.3 regards cost versus effectiveness. Undetected mutants 

are addressed in Section 9.4. Obtained results are discussed towards existing research in 

Section 9.5. Furthermore, Section 9.6 discusses results from related work against results from 

this study. Lastly, the obtained results are summarized in Section 9.7. The data material can 

be found in Appendix G (regarding oracle O1) and Appendix H (regarding oracle O2).  

9.1 Descriptive Statistics 

9.1.1 Descriptive Statistics for Cost 

9.1.1.1 Test-Suite Size 

As the choice of oracle does not affect test-suite sizes, this particular measure is irrelevant for 

the second research question and therefore excluded. Sizes are determined by the testing 

strategies and the system specification, more precisely the number of transitions in the state-

machine diagram. Hence, changing the oracle will not have impact on this surrogate measure 

for cost. More importantly, however, is the oracle’s influence on cost measured as time. 
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Figure 27 Preparation and execution time in seconds 

The standard deviations displayed in Table 19 and Table 20 illustrate the variations in 

results among the generated trees within the strategies RTP, AT, and ATP. This will be 

further addressed in the following paragraphs. 

Comparing Means 

The histograms and box plots in Figure 28 and Figure 29 show the distribution of the time 

spent on preparing and executing the test suites, respectively. 

Figure 28 presents the performance of AT, RTP, and ATP regarding preparation time. 

Again, none of the histograms show a normal distribution. The distributions are skewed to the 

left. 
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AT RTP ATP 

Figure 28 Distribution – preparation time – complete O2 

 

The distribution of AT, is centered around 3,715 seconds. Investigations of the 

observations and by looking at the IQR from Table 21, we see that there are two outliers 

around 15,600 seconds – whom have a dramatic impact on the standard deviation. Also, the 

mean of the distribution significantly differs from the median. This is cause by the presence of 

the two outliers, however. 

Next, there were 16 observations within the lower and upper quartiles of RTP. The mean 

was 533 seconds. In the upper range, we see one outlier at 675 seconds. 

Finally, ATP’s distribution has its mean at 28,641 seconds. The observations are located 

close to the mean. Yet, there are two outliers among the observations in the upper range 

around 29,500 seconds.  

This indicate a wide spread in data for AT, whereas RTP and ATP have more consistent 

observations. After removing the two outliers in the AT observations, however, we still see a 

distribution with a high standard deviation.  

 

Table 21 Inter quartile ranges – preparation time 

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 2,474 3,394 920 1,380 1,095 4,774

RTP 492 559 67 100 392 658

ATP 28,409 28,787 378 567 27,842 29,354  
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Figure 29 displays the spread in the collected data on execution time. The execution time 

for AT varies from 293 seconds to 571 seconds, for RTP we see a range from 80 seconds to 

119 seconds, and for ATP the time is spread from 429 seconds to 773 seconds.  

 

AT RTP ATP 

Figure 29 Distribution – execution time – complete O2 

 

AT’s distribution is close to normally distributed. The minimum value among the 

observations was 293 seconds, the mean was 416 seconds, and the maximum value was 571 

seconds. No outliers were observed.  

The RTP distribution is spread from 80 to 119 seconds, having the mean at 95 seconds. 

Nor this distribution had any outliers among the observations.   

Finally, in the distribution of ATP, we see three peaks around 506, 614, and 717 seconds. 

The mean was at 569 seconds, the minimum at 429 seconds, and the maximum at 773 

seconds. No outliers were observed for this strategy.  

 

Table 22 Inter quartile ranges – execution time 

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 358 473 115 173 185 645

RTP 88 101 14 20 68 122

ATP 493 654 161 242 251 895  
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9.1.2 Descriptive Statistics for Effectiveness 

This section describes main features of the collected data on effect, which regards mutation 

score – the surrogate measure of effectiveness. 

 

Table 23 Descriptive statistics for mutation score 

Strategy Model Oracle Min Q1 Mean Median Q3 Max Std Dev N
Diff O1 by O2
(%)

LN2 complete O1 0.33 0.33 0.33 0.33 0.33 0.33 0.00 1 149.8

O2 0.13 0.13 0.13 0.13 0.13 0.13 ‐ 1

ATP complete O1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 30 36.9

O2 0.60 0.73 0.73 0.73 0.73 0.80 0.03 30

LN3 complete O1 0.93 0.93 0.93 0.93 0.93 0.93 0.00 1 27.2

O2 0.73 0.73 0.73 0.73 0.73 0.73 ‐ 1

AT complete O1 0.90 1.00 1.00 1.00 1.00 1.00 0.02 30 25.3

O2 0.73 0.80 0.80 0.80 0.80 0.80 0.02 30

RTP complete O1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 30 25.0

O2 0.80 0.80 0.80 0.80 0.80 0.80 0.00 30

LN4 complete O1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1 25.0

O2 0.80 0.80 0.80 0.80 0.80 0.80 ‐ 1

 

Table 23 displays the results for both oracles for each testing strategy. For all strategies, 

oracle O1 obtained higher mutation score means than oracle O2. The greatest difference was 

found when using LN2, followed by ATP. Rather similar differences were seen for LN3, AT, 

RTP, and LN4.  

The mutation-score means obtained by applying O1 and O2, displayed in Table 23, are 

graphically visualized in Figure 30. We see that the complete test model combined with oracle 

O1 resulted in an overall higher mutation score than by combining the complete test model 

with oracle O2.   
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Figure 30 Mutation score means 

Comparing Means 

This section investigates the replications of AT, RTP, and ATP for the purpose of identifying 

possible statistical variability in the collected data on mutation scores. Also for this set of 

observations we hardly see any deviation from the mean (see Table 23). The histograms in 

Figure 31 show quite consistent distributions of the mutation scores.  

 

AT RTP ATP 

Figure 31 Distributions mutation score complete O2 

   

From the histogram of AT’s distribution, we see that 28 test suites achieved 0.8 as the 

mutation score (killed 12/15 mutants) – the remaining two test suites only killed 11/15 
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mutants, and hence obtained a mutation score of 0.73). The 30 generated RTP test suites all 

provided the same mutation score, 0.8. The last distribution, ATP, had some spread in the 

results: three test suites killed 12/15 mutants (mutation score: 0.8), 25 test suites killed 11/15 

mutants (mutation score: 0.73), whereas the final two test suites only killed 10/15 (mutation 

score: 0.6) and 9/15 mutants (mutation score: 0.6).  

 

Table 24 Inter quartile ranges – mutation time 

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 0.80 0.80 0.00 0.00 0.80 0.80

RTP 0.80 0.80 0.00 0.00 0.80 0.80

ATP 0.73 0.73 0.00 0.00 0.73 0.73  

 

This means that there is little variation present in the collected data on mutation score for 

each testing strategy.  

The replicated data will be further tested for statistical significance between the three 

strategies in the next section.  

9.2 Statistical Tests 

This section provides statistical tests on the data described by descriptive statistics in 

Section 9.1. The paired Wilcoxon signed-rank test with a 0.99 confidence level was executed 

on the collected data on preparation time, execution time and mutation score when applying 

two different oracles on the complete model. Tests were run in R [127]. The actual tests are 

listed in Appendix L. The purpose of the tests is to confirm/reject the hypothesis:  

 

H0: There are no significant differences in cost and effectiveness when applying two 

different oracles for each of AT, RTP, and ATP on the complete model.  

 

Let us look at Table 25 for the Wilcoxon tests on preparation time. Results show a low p-

value (1.82e-06) for AT, indicating that there was a difference between the collected 

preparation time for oracle O1 and O2. 
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9.3 Cost-Effectiveness – Oracle O1 versus Oracle O2 

This section regards the relation between cost and effectiveness for test suites combined with 

each of the two oracles. Figure 32 graphically illustrates the relationship between cost and 

effectiveness by displaying the surrogate measures for cost, test-suite size and time 

(preparation and execution time), and the surrogate measure for effectiveness, namely 

mutation score. Obviously, an ideal situation would have been low values for cost, yet high 

mutation scores. This is not, however, the case for all combinations of coverage criterion and 

oracle. In particular, we observe from Figure 32 that ATP combined with both oracles O1 and 

O2 is positioned far away from the desired area. The results suggest that the mutation score is 

negatively affected by all coverage criteria when using oracle O2.  

One assumption to make is that a stronger coverage criterion should have less need for a 

strong oracle as compared to weaker coverage criteria having less code exercised. As we see 

from Figure 32, a strong oracle combined with a weaker coverage criterion clearly improves 

the fault-detection ability.  
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Figure 32 Oracle O1 versus oracle O2 – mutation score, test-suite size and time 

 

Figure 33–Figure 36 present the number of killed mutants over each of the surrogate 

measure for cost. Even though the two oracles achieved rather similar cost-effectiveness when 

cost is measured in preparation time, we observe that using oracle O1 resulted in an overall 

higher cost-effectiveness as compared to oracle O2. The highest impact was seen for LN2, 

followed by LN3. Larger differences were seen for cost-effectiveness when focusing on 

execution time; oracle O2 achieved higher cost-effectiveness than oracle O1. When using test-
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suite size as the surrogate measure of cost, we see that O1 obtained the highest cost-

effectiveness.   
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9.4 Analysis of Mutant Survival 

This section seeks to identify which types of mutants could not be killed by the stronger 

oracle O1 as compared to the weaker oracle O2.  

Recall from Section 8.4 that by executing AT generated from the complete test model 

using oracle O1, only one of 30 test suites (AT11) did not kill mutant M15. The remaining 29 

test suites killed all of the 15 mutants. Switching the type of oracle to O2, two test suites 

(AT11 and AT12) did not kill mutant M15. Moreover, three mutants (M2, M12, and M14) 

were not killed by any test suites.  

We also saw in Section 8.4 that the combination of ATP, the complete test model, and 

oracle O1, that all mutants were killed by every test suite. This was not the case, however, for 

oracle O2. Two mutants (M2, M14) were not killed by a single test suite. Three mutants (M7, 

M8, and M11) were killed by 29 test suites. Mutant M13 was killed by two test suites (ATP1 

and ATP13). Finally, mutant M12 was killed by only one test suite (ATP14).  

Also for test suites generated from the complete test model following the RTP coverage 

criterion in combination with oracle O1, results showed that all mutants were killed by each 

of the 30 test suites. By using oracle O2 on the other hand, the three mutants M2, M12, and 

M14 were not killed by any of the test suites.  

As we now may have become aware of, LN2 did not provide high mutation scores. The 

cost on the other hand, was very low. Mutants M3–M11 and M15 were not killed by this 

combination of coverage criterion, test model, and oracle. Even worse results were obtained 

by applying oracle O2 to LN2; only mutants M1 and M13 were killed.  

Bringing the test sequences one step deeper as compared to LN2, the combination of LN3, 

the complete test model and oracle O1 killed all mutants but M15. By applying oracle O2, the 

mutation score was reduced; M2, M12, and M14, in addition to M15 survived the tests.  

Last, by using oracle O1 on tests generated from the complete test model following LN4 

(i.e., four levels out from each edge of the initial state), no mutants survived. Again, by 

applying oracle O2, the mutation score was reduced; mutants M2, M12, and M14 were not 

killed.  

To summarize, mutants M2, M12, and M14 were not killed by any of the six coverage 

criteria when using oracle O2. Let us look at these three mutants in particular. In mutant M2, 

the seeded fault regards an incorrect state invariant. This may explain why M2 was not killed 

by any coverage criteria when using the state-pointer oracle (i.e., O2). Regarding M12, the 
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seeded fault was erroneous on-entry behavior for a composite state, and the fault seeded in 

M14 was missing on-entry behavior. Checking only the state pointer will not detect such 

deviations from the specification.   

9.5 Related Work 

This section discusses the performance of the two oracles O1 and O2, and positions the results 

within existing work. Recall that O2 only evaluated the current state pointer as compared to 

O1 which also examined the expected state invariant (i.e., the abstract state).  

As shown in Chapter 3, very few studies have compared oracles in the context of SBT; in 

fact, the study of Briand et al. [12] appears to be one of a kind in empirical comparison of 

oracles within this particular context. Although not being the only focus of their study, results 

revealed statistical significant differences between the two oracle strategies. Not surprisingly, 

they found that the precise oracle had stronger fault-detection ability than the state-invariant 

oracle. Moreover, explained by the fact that less attributes are checked, the state-invariant 

oracle required less resources during development and execution. Results varied from an 

improvement in fault detection from 11–72 percent for the original RTP strategy. Looking at 

the weaker form of RTP, cost was increased as little as just a few percent up to 300 percent.  

Staats et al. [86, 88] explored how the selection of variables included in an oracle 

influences the effectiveness of the testing process. They proposed a method for supporting test 

oracle creation by automatically selecting oracle data (the set of variables monitored during 

testing). The purpose was to maximize the fault finding potential of the testing process with 

respect to the cost. Mutation analysis was used to rank variables in terms of fault-finding 

effectiveness. Experimental results from four commercial sub-systems from the civil avionics 

domain suggested that the approach may be cost-effective for producing small, effective 

oracle data. More precisely, they found improvements as high as 145.8 percent by using the 

new method as compared to monitoring all output variables. 

In other fields, there are several studies that address this aspect, e.g., GUI testing [90, 91] 

where results revealed that employing expensive oracles leads to the detection of more faults 

using relatively few test cases. The importance of the test oracle’s role in determining the cost 

and effectiveness of a testing strategy was demonstrated by Xie and Memon [91]. They found 

two interesting aspects of a test oracle in the context of GUI-based software – the expected 

output and the oracle procedure comparing expected outputs with actual outputs. They 

described a technique to specify different types of oracles by varying the level of detail in the 
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expected output and changing the oracle procedure. Results from an experiment comparing 

six oracles showed that the oracle has an important impact on the fault-detection ability. Weak 

oracles detect fewer faults. They also found that the best cost-benefit ratio is achieved by 

applying a stronger oracle at the end a test case execution. The use of thorough and 

frequently-executing test oracles can compensate for not having long test cases.  
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9.6 Discussion 

As we now have seen, although little in quantity, existing research suggest that the applied 

oracle in testing has a large influence on the fault-detection ability [91, 86, 88, 12]. Table 28 

summarizes the related work, which overall supports the findings of this study. For all 

strategies, the stronger oracle obtained significantly higher mutation scores than what were 

obtained by the weaker oracle.  

Only the study of Briand et al. [12] is more precisely comparable as they also studied one 

of the coverage criteria in focus of this study, namely the RPT. Results for RTP indicated a 25 

percent increase in fault-detection when using the strongest oracle. The study of Briand et al. 

differs from this study in the following matters: (1) The two oracles that were compared are 

not exactly the same. Both studies involve the state-invariant oracle. Nevertheless, Briand et 

al. compared the state-invariant oracle to a precise oracle; in this study, an oracle weaker than 

the state-invariant oracle was used as comparison. (2) Furthermore, in contrast to this study, 

the study of Briand et al. did not provide collected data on preparation time. (3) Briand et al. 

used students to perform the testing; in this study, the testing was carried out by the author.  

(4) The test suites were automatically generated in this study, but manually generated in the 

study of Briand et al. Finally, (5) the SUT was significantly larger in this study. Although 

Briand et al. [12] found great variations in the results, both studies suggest improvements in 

the fault-detection when using a stronger oracle – yet at a higher cost. For RTP, this regarded 

both preparation and execution time. 

A common perception when it comes to oracles is that the better the oracle, the more 

expensive it is to use. However, there are no answers to the relation between preparation costs 

versus execution costs in terms of which parts of the process that takes more time when using 

a more complex oracle. In this case study, we saw that for both oracles, AT, RTP and LN4 

performed best in terms of mutation score. Of those three strategies, RTP was the least 

expensive followed by LN4 and then AT. ATP was as effective as AT, RTP, and LN4, but 

only when applying O1; ATP in combination with O2 achieved a slightly lower mutation 

score. Note, however, that ATP was the most expensive strategy. Although a slightly lower 

mutation score was obtained for O1, LN3 also achieved a good cost-effectiveness – in 

particular when emphasizing cost. Finally, LN2 not only appeared to be the least expensive 

but also the weakest strategy from a fault-detection perspective. The most cost-effective 
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strategy in this case may seem to be RTP combined with oracle O1. Note, however, that LN3 

combined with O1 obtained cost-effectiveness comparable to RTP.   

9.7 Summary  

In this chapter, we have seen results on how two different oracles influence the cost-

effectiveness of state-based testing when using the strategies all transitions (AT), all round-

trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3) 

and paths of length 4 (LN4) on a detailed state-based test model.  

Descriptive statistics for the obtained results on cost and effectiveness was presented in 

Section 9.1. As changing the oracle will not have impact on the test-suite size, the test-suite 

size measure was excluded from this particular research question; sizes are determined by the 

testing strategies and the system specification, more precisely the number of transitions in the 

state-machine diagram. This leaves us with time as the surrogate measure of cost. Three of the 

six testing strategies spent slightly more time on preparing the test suites when combined with 

oracle O2 than with oracle O1. This regards LN3, RTP, and LN4. No difference between the 

oracles regarding preparation time was seen for LN2. Oracle O1 spent 7.5 percent more time 

than O2 for AT. Only a small relative difference (0.6 percent) was seen for ATP; O1 required 

more time on preparing the test suites as compared to O2.  

For all strategies, oracle O1 obtained higher mutation score means than oracle O2. The 

greatest difference was found in results for LN2 (149.8 percent difference), followed by ATP 

(36.9 percent difference). Rather similar differences were seen among LN3 (27.2 percent), AT 

(25.3 percent), RTP (25 percent), and LN4 (25 percent).  

Section 9.2 regarded statistical tests. The paired Wilcoxon signed-rank test was applied to 

the replicated data; that is, for AT, RTP, and ATP. Results show that when oracle O1 was 

used, significantly more time was spent on execution as compared to oracle O2. Significant 

differences were found in all data collected on mutation score; O1 always performed better 

than O2.  

Overall, varying the oracle shows that there were significant differences in the preparation 

time for AT (α = 0.05) and ATP (α = 0.01); O1 spent more time than O2 on preparing the test 

suites. For RTP, on the other hand, no significant difference between the two oracles was 

found. Execution time was significantly higher when applying oracle O1. This pays off, 

however, in that O1 consistently achieves a higher mutation score.  
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For both oracles, AT, RTP and LN4 performed best in terms of mutation score. Of those 

three strategies, RTP was the least expensive followed by LN4 and then AT. ATP was as 

effective as AT, RTP, and LN4, but only when applying O1. ATP in combination with O2 

achieved a slightly lower mutation score. Note, however, that ATP was the most expensive 

strategy. Although a slightly lower mutation score was obtained for O1, LN3 also achieved a 

good cost-effectiveness – in particular when looking at the cost. Finally, LN2 not only 

appeared to be the least expensive but also the weakest strategy from a fault-detection 

perspective.  

As we have seen, the combinations of coverage criterion and oracle significantly impact 

the cost and fault-detection effectiveness of the testing strategies in different directions, in 

particular the execution cost. We found that the most cost-effective strategy in this study was 

RTP combined with oracle O1. Note, however, that LN3 combined with O1 obtained cost-

effectiveness comparable to RTP. 

 

  

Conclusions: Minor differences in preparation time were observed when applying 

oracle O2. Execution time, on the other hand, was significantly lower when applying 

oracle O2 for all six strategies. The large cost savings when using O2, however, had a 

negative impact on the effectiveness.  
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10 Case Study 3 – What is the Influence of the Test Model Abstraction Level on the 

Cost-Effectiveness? 

In the two previous chapters, we have seen how six coverage criteria compares when applied 

to a detailed test model combined with two oracles of different strengths. The focus in this 

case study will be directed towards the test model itself with respect to the presence of details. 

This third case study seeks to answer how a less detailed test model as input to the test case 

generation will affect the cost-effectiveness:  

 

RQ3: What is the influence of the test model abstraction level on the cost-effectiveness?  

 

Results are collected by generating test suites and running tests on a less detailed test 

model as compared to the complete model used in Chapter 8 and Chapter 9, and organized 

similar to the structure of Chapter 9.  

Recall that the main difference between the two test models is that the new test model, 

which will be investigated in this section, was abstracted one level up (i.e., the contents of 

every composite state were removed) – thereby the name, the abstract model. For more 

details about the test models, the reader is referred to Section 7.1.  

Section 10.1 provides descriptive statistics regarding the impact of varying the oracle on 

cost and effectiveness, respectively. Statistical tests are presented in Section 10.2. Descriptive 

statistics from Chapter 8 and Chapter 9 are restated in this chapter for the purpose of making 

comparisons between the two test models and oracles. Section 10.3 presents an analysis of 

cost versus effectiveness. The survival of mutants is addressed in Section 10.4. Obtained 

results are further discussed towards existing research in Section 10.5. Furthermore, Section 

10.6 discusses results from related work against results from this study. Finally, the obtained 

results are summarized in Section 10.7.  

10.1 Descriptive Statistics 

10.1.1 Descriptive Statistics for Cost 

This section presents main features of the collected data on cost – the test-suite sizes and the 

time spent on preparing and executing these test suites for the abstract test model. 
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10.1.1.1 Test-Suite Size 

Abstracting the test model one level, means that both sub states and the transitions between 

these sub states are removed from the state-machine diagram. As a consequence, the test-suite 

sizes are reduced.  

Consider Table 29 which lists the test-suite sizes for the six testing strategies; both for the 

complete and the abstract test model, for oracles O1 and O2. Note that, in this chapter, test 

suite sizes are separated for O1 and O2 because we observed infeasible test cases in the 

abstract test suites. Removing the sub states made controlling the externally dependent 

variables harder. This led to infeasible test cases in the abstract test suites.  The number of 

infeasible test cases observed for oracle O1 when applied with test suites generated from the 

abstract test model is higher than the suggested allowance (which is 10–15 percent for 

reduced coverage according to Binder [31]) – one exception is LN2 with 8 percent infeasible 

test cases. For oracle O2, the number of infeasible test cases was zero or less than 2 percent.  

We see from Table 29 that no differences were observed between complete test suites 

when applied with O1 and O2. We also see that the abstract test model in general resulted in 

smaller test suites as compared to test suites generated from the complete test model. Figures 

vary from 14.8 percent to 89.8 percent smaller test suites for LN2 and AT, respectively, when 

generated from the complete model as compared to the abstract model when using O1. Using 

O2 instead resulted in a spread from 7.4 percent (LN2) to 80.1 percent (AT).   
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Table 29 Test-suite sizes - complete and abstract test model – oracles O1 and O2 

Coverage
Criterion Test Model Oracle

Test‐Suite 
Size
Total

Test‐Suite 
Size
Feasible

Infeasible 
Test Cases 
(%)

Diff O1
by O2 (%)

Diff 
Abstract 
by 
Complete 
O1 (%)

Diff 
Abstract 
by 
Complete 
O2 (%)

LN2 Complete O1 27 27 0 0 ‐14.8 ‐7.4

O2 27 27 0

Abstract O1 25 23 8.0 ‐8.0

O2 25 25 0

LN3 Complete O1 143 143 0 0 ‐29.4 ‐14.0

O2 143 143 0

Abstract O1 123 101 17.9 ‐17.9

O2 123 123 0

LN4 Complete O1 764 764 0 0 ‐45.7 ‐23.6

O2 764 764 0

Abstract O1 585 415 29.1 ‐28.9

O2 585 584 0.2

AT Complete O1 166 166 0 0 ‐89.8 ‐80.1

O2 166 166 0

Abstract O1 33 17 48.5 ‐48.5

O2 33 33 0

RTP Complete O1 299 299 0.0 0 ‐77.9 ‐70.2

O2 299 299 0.0

Abstract O1 89 66 25.8 ‐25.8

O2 89 89 0

ATP Complete O1 1425 1425 0 0 ‐86.5 ‐79.2

O2 1425 1425 0

Abstract O1 301 192 36.2 ‐35.1

O2 301 296 1.7  

 

10.1.1.2 Time 

This section presents obtained timing results for the complete and abstract test model when 

combined with oracles O1 and O2. Table 30 and Table 31 show the descriptive statistics for 

preparation and execution time, respectively. Recall that time was measured in seconds.  
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Starting with the preparation time, observations show that it takes significantly shorter 

time for all strategies to prepare test suites from the abstract test model as compared to the 

complete test model. The greatest difference was seen for ATP (96 percent for both O1 and 

O2), closely followed by AT (95 percent for O1 and 94 percent for O2). RTP was reduced by 

62 percent for O1 and 64 percent for O2. Also LN2 and LN3 were prepared in less time from 

the abstract model – LN2: 34 percent for O1 and 33 percent for O2; LN3: 38 percent for O1 

and 40 percent for O2. Slightly less difference was seen in the results for LN4: 26 percent and 

27 percent for O1 and O2.  

Studying the execution time in Table 31, we see a similar trend with great differences 

between the times spent on executing the test suites generated from the abstract model as 

compared to the complete model. The largest reduction was achieved by AT (97 percent for 

O1 and 96 percent for O2), followed by ATP (88 percent for O1 and 80 percent for O2), and 

RTP (85 percent for O1 and 77 percent for O2). When O1 was combined with the abstract 

model for LN2, LN3, and LN4, results show that the preparation times were reduced by 11 

percent, 38 percent, and 22 percent, respectively. No difference was found between the 

abstract and complete model when applying O2 to LN2. A minor reduction was found for 

LN3 (4 percent). The execution time for LN4, on the other hand, was increased by 6 percent.  

Regarding LN2, LN3, and LN4, we see an overall smaller difference between the two 

models. This, however, can be explained by the first surrogate measure of cost, test-suite size. 

Recall from Table 29 that significantly smaller test-suite sizes were found for the abstract 

model versus the complete model for LN2, LN3, and LN4 contra AT, RTP, and ATP. Thus, 

lower differences in execution and preparation time would be expected results.    

Comparing the two oracles applied to the abstract test model provided rather consistent 

results to what was found when applying the two oracles to the complete test model. 

Differences in preparation time for the abstract model was in the range from -5 percent to 2 

percent compared to -7 percent to 4 percent for the complete model.  Regarding execution 

time, we see a similar correlation between the abstract and the complete model: for the 

abstract model, test suites combined with O2 spent from 68 percent to 74 percent less time on 

execution compared to O1, whereas test suites generated from the complete model combined 

with O2 spent 72 percent to 83 percent less time on execution compared to O1.  

 



 

134 

 

  

 
Figure 37 Preparation and execution time in seconds 

 

Figure 37 displays a graphical representation of the means. The purpose of this figure is 

only to give a perspective of the relationship between the positioning of each strategy and 

oracle. Numbers can be found in Appendix G (complete model, oracle O1), Appendix H 

(complete model, oracle O2), Appendix I (abstract model, oracle O1), and Appendix J 

(abstract model, oracle O2). The figure shows a significant increase in preparation time for 

ATP combined with the complete test model and oracles O1 and O2. Other peaks are found 

for the four LN4 combinations, and for AT in combination with the complete test model and 

oracles O1 and O2.  

The Means of AT, RTP, and ATP 

We will now investigate the distributions of the observations used to generate the means for 

AT, RTP, and ATP. Figure 38 presents the performance of AT, RTP, and ATP regarding 

preparation time for oracle O1 when replicated 30 times using different test trees.  
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AT RTP ATP 

Figure 38 Distribution – preparation time – abstract O1 

 

Let us start with the distribution of AT. The histogram and box plot show that 29/30 

observations were found between 173 to 246 seconds. Being the main reason for the presence 

of a high standard deviation, one outlier was found at 972 seconds. 

The distribution of RTP is skewed to the left. Two outliers were observed at 271 and 309 

seconds. The minimum time spent on preparation was 182 seconds, the mean was 204 

seconds, whereas the maximum value was found at 309 seconds.  

Closer to the shape of a normal distribution, ATP is spread from 1,089 seconds to 1,150 

seconds, having its mean at 1,115 seconds.  

The means and medians of the AT and RTP distributions were rather closely located – the 

means were slightly higher than the medians due to the few outliers in the upper range. The 

median of AT was 13.5 percent lower than its mean; the median of RTP was 5.4 percent 

lower than its mean. ATP, on the other hand only differed with 0.36 percent.  

 

Table 32 Inter quartile ranges – preparation time – abstract O1 

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 180 210 31 46 133 257

RTP 184 210 26 39 145 249

ATP 1,105 1,123 19 28 1,077 1,151  

 

Applying oracle O2 results in the distributions displayed in Figure 39. The AT distribution 

has a quite similar shape to AT when applied with oracle O1 (Figure 38). Preparing the AT 
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test suite from the abstract model using O2 only reduced the time with 3.8 percent. The 

minimum time was 168 seconds, the mean 213 seconds, and the maximum time 965 seconds.  

For RTP, the preparation time was reduced by 4.7 percent when applying oracle O2. The 

shapes of the distributions for oracles O1 and O2 are rather similar, but of course slightly 

lower minimum and maximum values for O2.  

 

AT RTP ATP 

Figure 39 Distribution – preparation time – abstract O2 

 

Apparently, the distribution of ATP when applying oracle O2 has to some extent a 

different shape than what was seen for oracle O1. Yet, both distributions are centered very 

close, around 1,141 seconds for O2 versus 1,115 for O1. In the O2 distribution, however, we 

see, according to Figure 39 and Table 33, an outlier at 1,368 seconds. Sixteen out of thirty 

observations were within the lower and upper quartiles for oracle O1. For O2 on the other 

hand, as much as 22/30 observations were within the lower and upper quartiles.  

 

Table 33 Inter quartile ranges – preparation time – abstract O2 

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 175 202 27 40 135 242

RTP 184 200 16 24 160 225

ATP 1097 1161 65 97 1000 1258  

 

 Figure 40 displays the spread in the collected execution-time data from running test suites 

generated from the abstract model using oracle O1.  
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The execution times for AT varies from the minimum observation 29 seconds to the 

maximum observation 129 seconds. Being the reason for an 11.5 percent higher mean (64.4 

seconds) than median (57 seconds), the seven observations above Q3 had a much higher 

spread than the remaining observations below Q1. That is, we see a distribution skewed to the 

left, having 16/30 observations within Q1 and Q3.  

The minimum value in the RTP distribution was 52 seconds, whereas the mean was 72.1 

seconds. According to Table 34, there was one outlier in the RTP observations at 100 

seconds, which also was the maximum observed value. In this distribution, the median was 

slightly higher than the mean due to more observations in the lower end of the possible value 

range.  

 

AT RTP 

 

ATP 

Figure 40 Distribution – execution time – abstract O1 

 

ATP’s distribution was spread from 215 seconds to 528 seconds, having its mean 

positioned at 394.9. The median is only 0.65 percent lower. No outliers were found in the 

distributions of AT and ATP.  

 

Table 34 Inter quartile ranges – execution time – abstract O1 

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 42 86 44 66 ‐25 152

RTP 62 76 14 21 41 97

ATP 342 448 106 159 183 606  
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The final set of distributions regard test suites generated from the abstract model when 

using oracle O2. Starting with AT, Figure 41 shows a distribution slightly skewed to the left. 

The minimum value was observed at 9 seconds, whereas the maximum time was 37 seconds. 

The median (16.9 seconds) was 8.3 percent lower than the mean (15.5 seconds). Two outliers 

were found in the upper end of the collected data at 36 and 37 seconds.  

Continuing with RTP, we see a distribution where the minimum observed time to execute 

the test suite at 14 seconds and the maximum time at 47 seconds. The sample presents a 

median (21 seconds) that was 5 percent lower than the mean (22.1 seconds). No outliers are 

indicated by Table 35.  

 

AT RTP ATP 

Figure 41 Distributions – execution time – abstract O2 

 

Last but not least, the distribution of ATP. Observations are positioned in a range between 

65 seconds and 177 seconds. The mean (115.9 seconds) was only 0.94 percent lower than the 

median (117 seconds). Again, by looking at Table 35, one outlier is suggested at 177 seconds. 

Table 35 Inter quartile ranges – execution time – abstract O2 

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 12 19 7 11 1 30

RTP 19 23 5 7 12 30

ATP 100 127 27 41 59 168  
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Table 36 displays the results for each testing strategy, both test models and oracles. First 

of all, let us consider the abstract versus the complete models. An overall trend in the results 

is that the abstract test models obtained lower mutation scores (mean values) than what were 

achieved by the complete test models.  

In more detail, the largest differences in the ability of killing mutants between the abstract 

and complete test models were observed in results for LN2 and AT. By looking at the results 

for LN2 combined with oracle O2, we see that no mutants were killed. In comparison, the 

complete model provided test cases that killed 2/15 mutants. The mutation score mean for AT 

combined with O2 was 0.076 as compared to 0.795 for the complete test model. This means 

that the abstract model performed 90.5 percent worse than the complete model. Combining 

the AT strategy with the abstract model and oracle O1 provides a slight improvement, 

although a 73.7 percent reduction was found in mutation score (0.262 for the abstract model 

as compared to 0.997 for the complete model). For both RTP and LN4 combined with oracle 

O2, the mutation score was 25 percent reduced as compared to the complete model. Test 

suites generated from the abstract model for LN2 with O1 and LN3 with O2 performed 20 

percent and 18.2 percent weaker than the test suites generated from the complete models. 

ATP O2 (13.6 percent), ATP O1 (13.3 percent), LN4 O1 (13.3 percent), and RTP O1 (13 

percent) provided quite similar results. Even less difference was found between the abstract 

and complete model for strategy LN3 when combined with oracle O1; the abstract model only 

performed 7.1 percent worse than the complete model.  

Focusing on the test suites generated from the abstract models only, we see that oracle O1 

performed significantly better than oracle O2. This regards all six strategies. The best 

improvement with respect to mutation score was found for LN2; no mutants were killed by 

oracle O2 whereas 4/15 mutants were killed by oracle O1. On average, 1.13 mutants were 

killed by O2 in combination with AT – in comparison, almost four mutants (3.94) were killed 

by oracle O1 on average. For RTP, LN3, and LN4, we see that oracle O2 obtained around 31 

percent lower mutation scores than oracle O1. Regarding ATP we see a 27.2 percent 

reduction in mutation score. The mutation-score means for all combinations, as displayed in 

Table 36, are graphically visualized in Figure 42.  

.   
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Figure 42 Mutation score means 

Comparing Means 

This section investigates the replications of AT, RTP, and ATP for the purpose of identifying 

possible statistical variability in the collected data on mutation scores. Figure 43 displays the 

histograms and box plots.  

 

AT RTP 

 

ATP 

Figure 43 Distributions – mutation score – abstract O1 

 

The main part of the AT observations (76.7 percent) had 0.2 as their mutation scores. The 

remaining test suites achieved mutation scores spread from 0 to 0.8. Only one test suite did 
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not detect any faults. According to Table 37, observations below and above 0.2 are all 

outliers.  

Both RTP (0.87) and ATP (0.87) obtained the exact same mutation score for every test 

suite. The reason for this is that the trees from which the test suites are generated from, 

provide the same sequences, but in different orders. Thus, the result will always be the same. 

It is, however, also possible to generate truly different trees – i.e., trees with actually different 

sequences, not only the order of the sequences.  

 

Table 37 Inter quartile ranges – mutation score – abstract O1 

Coverage 
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 0.20 0.20 0.00 0.00 0.20 0.20

RTP 0.87 0.87 0.00 0.00 0.87 0.87

ATP 0.87 0.87 0.00 0.00 0.87 0.87  

 

 Figure 44 presents the distributions of mutation scores achieved by test suites generated 

from the abstract model applying oracle O2.  

 

AT RTP 

 

ATP 

Figure 44 Distributions – mutation score – abstract O2 

 

From the histogram of AT’s distribution, we see that twenty-four test suites did not kill 

any mutants. On average, three test suites killed three mutants, one killed 4.95 mutants, two 

killed six mutants, and one killed 7.95 mutants. The IQR displayed in Table 38 shows that 

there are seven outliers. The distribution of AT combined with O2 has a similar shape to what 

was seen for AT combined with O1. However, the obtained results were lower on average 
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Similar to RTP applied with O1, yet lower, the 30 generated RTP test suites again 

provided the same mutation score (0.6) for all test suites.  

The final distribution, ATP, a mean mutation score of 0.63 was achieved. The results 

among the test suites were spread from 0.6 to 0.67. There were more variations in the 

collected data on mutation score for ATP applied with oracle O2 than with oracle O1, in 

addition to the mean being lower for O2.  

 

Table 38 Inter quartile ranges – mutation score – abstract O2  

Coverage 
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 0.000 0.050 0.050 0.075 ‐0.075 0.125

RTP 0.600 0.600 0.000 0.000 0.600 0.600

ATP 0.600 0.667 0.067 0.101 0.500 0.768  

10.2 Statistical Tests 

This section provides statistical tests on the data described by descriptive statistics in Section 

10.1. The purpose of the tests is to confirm/reject the hypothesis:  

 

H0: There are no significant differences in cost and effectiveness for the strategies AT, 

RTP, and ATP when varying the level of details in the test models.  

 

Tests are run in R [127]. The actual tests are listed in Appendix M.  
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10.3 Cost-Effectiveness 

This section presents how raising the test model abstraction level affects the cost-

effectiveness. Figure 45 positions the cost9-effectiveness for the 24 combinations of coverage 

criteria, oracles, and test models. Each combination of oracle and test model is represented by 

a unique color: sky blue represents oracle O1 and the complete test model; pale blue represent 

oracle O2 and the complete test model; oakes yellow represents oracle O1 and the abstract test 

model; and finally, salmon pink represents oracle O2 and the abstract test model.  

Take a look at the lowest part of the figure at the left hand side. Not surprisingly, we 

observe for LN2 that by reducing the level of details in the test model, both for oracle O1 and 

O2, the mutation score is lowered even more. Differences of great impact on both cost and 

effectiveness were seen for AT when reducing the abstraction level. None of the combinations 

of LN2 can be recommended; neither the combinations of AT and the abstract test model.  

The influence of the abstract test model on ATP shows a major reduction in cost, yet 

retaining an overall high mutation score when using oracle O1. Looking at the results for 

LN4, we see that there are significant differences in the cost, both for test-suite size and time. 

The reduction in mutation score is also present for both combinations of test model and oracle 

(i.e., complete test model and oracle O1 versus abstract test model and oracle O2). 

Interestingly, however, we see that the abstract model in combination with the better oracle 

(O1) actually performs better with respect to fault-detection as compared to the complete 

model combined with oracle O2. The latter also regards LN2, LN3, RTP, and ATP.  

Results for RTP when generating test suites from the complete model using oracle O1 

show similar fault-detection as compared to LN3 (complete model, oracle O1), AT (complete 

model, oracle O1), LN4 (complete model, oracle O1), and ATP (complete model combined 

with oracle O1). The cost, however, differ. Notice that the cost of RTP is lower than for AT 

LN4, and ATP (complete model).  

 

 

 

                                                 
9 Please note that time is shown as the total of preparation time and execution time 
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Figure 45 Abstract versus complete test model – mutation score, test-suite size and time 

 

For each combination of coverage criterion, test model, and oracle, Figure 46–      Figure 

49 show the number of killed mutants divided by each of the surrogate measures on cost. 
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10.4 Analysis of Mutant Survival 

We will now take a closer look at the mutants not killed by the remaining testing strategy 

combinations that have not already been discussed in Chapter 8 or 9; that is the test suites 

generated from the abstract test model.  

Only two mutants (M12 and M15) were not killed by any of the AT test suites in 

combination with the O1 oracle. Mutants M1, M2, and M14 were killed by 29/30 test suites. 

Only one test suite (AT9) killed M9. The other mutants were each killed by 3–4 test suites. 

Killing 12 mutants, test suite AT11 achieved the highest mutation score among the AT test 

suites. Only M9, M12, and M15 were not killed by AT11.  

Six mutants (M1, M2, and M12–M15) were not killed by any of the AT test suites when 

using oracle O2. Eight mutants (M3–M8, M10, and M11) were killed by four test suites. 

Mutant M9 was killed by two test suites (AT29 and AT9).  

Two mutants were not killed by any of the ATP test suites when using oracle O1, namely 

M12 and M15. Combining ATP with O2, on the other hand, resulted in more mutants 

remaining un-killed: M1, M2, and M12–M15.  

M12 and M15 were not killed by any of the RTP test suites when executed together with 

the O1 oracle. The remaining mutants were all killed by each of the 30 test suites. No RTP 

test suite in combination with oracle O2 could kill any of the six mutants M1, M2, and M12–

M15.  

Eleven mutants (M3–M12, and M15) were not killed by the LN2 test suites when used 

with oracle O1. By using oracle O2, none of the 15 mutants were killed.   

Neither the LN3 test suites in combination with oracle O1 killed M12 and M15. Using 

oracle O2, even more mutants remained un-killed: in addition to M12 and M15, also M1, M2, 

M13, and M14 were not detected.  

Analyzing the LN4 test suites used with oracle O1 showed that two mutants M12 and 

M15 were not killed. Combined with oracle O2, the following mutants could not be killed: 

M1, M2, and M12–M15. 

To summarize, results show that certain mutants were harder to kill by the test suites 

generated from the abstract test model. Regardless of coverage criterion applied and oracle 

used, M12 and M15 were not killed by any of the test cases generated from the abstract test 

model. As for oracle O2, in addition to M12 and M15, mutants M1, M2, M13, and M14 were 

not killed by any of the test suites. The seeded faults in these mutants all concerned sub states 
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that were removed from the test model. This explains why the test cases generated from the 

abstract test model could not kill those mutants.  

10.5 Related Work 

Reducing the test-suite size by abstracting the test model is yet another area of related work 

where few studies have been carried out in the context of SBT. To the author’s knowledge, no 

other empirical studies have been conducted on this particular topic.  

Nevertheless, the desire of reducing test-suite sizes has received quite a lot of attention. 

Though based on other ideas for reducing the test suites, Heimdahl and George [29] found 

that the size of the specification based test-suites can be dramatically reduced and that the 

fault detection of the reduced test-suites is adversely affected. Wong et al. [30] investigated 

the effect on fault-detection of keeping block and all-uses coverage constant while reducing 

the size of a test suite. They found that effectiveness reduction was not significant even for the 

most difficult faults, which suggests that minimization of test suites can reduce the cost of 

testing at slightly reduced fault-detection effectiveness. 

From the perspective of executing MBT in practice with respect to limited time and 

resources, three papers on similarity-based test selection address the problem of large test 

suites that are automatically generated by MBT-tools. Addressing the topic of scalability with 

respect to large test-suite sizes when applying model-based testing in practice, Hemmati and 

Briand [4] investigated and compared possible similarity functions to support similarity-based 

test selection. Empirical data on the most cost-effective similarity measure was collected by 

applying the proposed similarity measures and a selection strategy to an industrial software 

system. Results from the case study showed that using Jaccard Index to measure the similarity 

of the test cases (which were represented as a set of trigger-guards) of the respective test paths 

obtained the best results in terms of cost and effectiveness. They reported a significant 

reduction (77 percent) in test execution cost.  

Continuing the work presented in [4], but this time trying to gain insights into why and 

under which circumstances a particular similarity-based selection technique can be expected 

to work, Hemmati et al. [5] investigated the properties of test suites with respect to 

similarities among fault revealing test cases. They conducted experiments based on simulation 

where two industrial case studies were used to guide the simulations. Obtained results 

confirmed their assumptions about similarity-based test case selection would perform better 

when “test cases which detect distinct faults are dissimilar and test cases that detect a common 
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fault are similar”. They also found that similarity-based test case selection is less effective in 

cases when a small group of transition paths is mostly disconnected from the rest of the state 

machine. 

Having a motivation similar to Hemmati and Briand, Cartaxo et al. [6] also addressed the 

problem of large test suites. A test-case selection strategy was compared with random 

selection by considering transition-based and fault-based coverage. Based on results from 

three case studies, they found that the similarity-based test case selection can provide more 

effective test suites than random selection. 

Also, several studies address approaches that identify the differences between versions of 

a model for the purpose of reducing the sizes of regression test suites.  

10.6 Discussion 

There is a trade-off between a sufficiently detailed level in the test model and the quality of 

the resulting test cases. Reduced costs of generating tests may on the other hand increase the 

number of undetected faults. Removing contents from super states resulted in significantly 

smaller test suites, reducing the costs, yet retaining its fault-detection ability at a reasonable 

level. As reported in the results, however, a large part of the generated test cases were 

infeasible due to guard conditions that could not be satisfied. The reason for this being sub-

state specific values that could not be controlled in the same way as when these sub states 

were included in the test model. To increase the number of feasible tests, ulterior work is 

necessary with respect to test-data selection. Although our results on using abstract test 

models as input to test generation proved acceptable fault-detection effectiveness combined 

with certain strategies, we must take into account the omitted details and be aware of those 

parts that cannot be tested based on the model [36]. We found that mutants that were seeded 

in the removed sub states were not detected.  

An interesting observation is that by removing details from the test model and using a 

stronger criterion, results show that a comparable cost-effectiveness was obtained as 

compared to test suites generated from the complete test model.   

Although generated based on a different idea, our results support the findings of Wong et 

al. [30] that test set minimization can greatly reduce the evaluation costs, and thus the cost of 

testing, at very little loss in fault-detection effectiveness. This is however, dependent on the 

choice of strategy.  
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10.7 Summary – Cost-Effectiveness for Complete Test Model versus Abstract Test Model 

This chapter addressed whether or not varying the level of details in test models affected the 

cost-effectiveness of the state-based coverage criteria all transitions (AT), all round-trip paths 

(RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3) and paths 

of length 4 (LN4). Two different oracles were applied.   

Section 10.1 presented descriptive statistics for the obtained results on cost and 

effectiveness. We saw that the test-suite sizes significantly decreased when abstracting the test 

model. Infeasible test cases were introduced by the abstract test model due to the sub states 

being removed. This implied less control over test data with respect to externally controlled 

variables.  

For oracle O1, the greatest reduction in test-suite size was seen for AT (from 166 to 17 

test cases), closely followed by ATP (1425 to 192 test cases). RTP was reduced from 299 to 

66 test cases. The LN4 test suite was reduced from 764 to 415 test cases. The remaining 

strategies were not affected to the same extent; LN2 and LN3 were reduced, by 14.8 and 29.4 

percent, respectively. By using oracle O2, the reduction was overall lesser due to lower 

number of infeasible test cases as compared to using oracle O1, but quite consistent with the 

results for O1.  

Observations showed that it takes significantly shorter time for all strategies to prepare 

test suites from the abstract test model as compared to the complete test model. The greatest 

difference was seen for ATP (96 percent for both O1 and O2), closely followed by AT (95 

percent for O1 and 94 percent for O2). RTP was reduced by 62 percent for O1 and 64 percent 

for O2. Also LN2 and LN3 were prepared in less time from the abstract model – LN2: 34 

percent for O1 and 33 percent for O2; LN3: 38 percent for O1 and 40 percent for O2. Slightly 

less difference was seen in the results for LN4: 26 percent and 27 percent for O1 and O2.  

We saw a similar trend for execution time with great differences between the times spent 

on executing the test suites generated from the abstract model as compared to the complete 

model. The largest reduction was achieved by AT (97 percent for O1 and 96 percent for O2), 

followed by ATP (88 percent for O1 and 80 percent for O2), and RTP (85 percent for O1 and 

77 percent for O2). When O1 was combined with the abstract model for LN2, LN3, and LN4, 

results show that the preparation times were reduced by 11 percent, 38 percent, and 22 

percent, respectively. No difference was found between the abstract and complete model 

when applying O2 to LN2. A minor reduction was found for LN3 (4 percent). The execution 

time for LN4, on the other hand, was increased by 6 percent.  
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Regarding LN2, LN3, and LN4, we see an overall smaller difference between the two 

models. This, however, can be explained by the first surrogate measure of cost, test-suite size. 

Recall from Table 29 that significantly smaller test-suite sizes were found for the abstract 

model versus the complete model for LN2, LN3, and LN4 contra AT, RTP, and ATP. Thus, 

lower differences in execution and preparation time would be expected results.    

Comparing the two oracles applied to the abstract test model provided rather consistent 

results as compared to what was seen for the complete test model. Differences in preparation 

time for the abstract model was in the range from -5 percent to 2 percent compared to -7 

percent to 4 percent for the complete model.  Regarding execution time, we saw a similar 

correlation between the abstract and the complete model: for the abstract model, test suites 

combined with O2 spent from 68 percent to 74 percent less time on execution compared to 

O1, whereas test suites generated from the complete model combined with O2 spent 72 

percent to 83 percent less time on execution compared to O1.  

An overall trend in the results for mutation score was that the abstract test models 

obtained lower mutation score means than what were achieved by the complete test models.  

Section 10.2 regarded statistical tests. The non-paired Wilcoxon signed-rank test was 

applied to the replicated data, i.e., for AT, RTP, and ATP. Overall, i.e., considering the three 

strategies combined with each of O1 and O2, significant differences were found for each of 

preparation time, execution time and mutation score. Significance was found for α = 0.01. 

Test suites generated from the complete model required both higher preparation and 

execution time (large effect sizes were found for both measures). On the other hand, the 

complete models achieved higher mutation scores.  

To summarize, the results showed that ATP applied to a detailed model is an expensive 

strategy. The high fault-detection effectiveness may be at a too high cost. When combined 

with the abstract model, cost was significantly reduced. The effectiveness was also reduced, 

but not as much as the cost. On the other extreme, LN2 had the lowest cost but also the lowest 

effect; at least for the complete model. Results for the abstract model combined with oracle 

O1 showed similar results to what was found for AT applied to the abstract model. The level 

of details in the model had an enormous impact on the cost and effectiveness for AT; all 

mutants were killed by AT when using the complete model, although at a large increase in 

cost. The complete model combined with oracle O1 obtained as good mutation score as ATP 

and AT also for RTP and LN4. Of these, RTP had the lowest costs. Overall, the abstract 

model performs better with oracle O1.  
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AT, RTP, ATP, and LN4 all provided the highest mutation scores when generated from the 

complete model used with oracle O1. Of these, RTP had the lowest costs. Using the weaker 

oracle O2, still based on the complete test model, the effectiveness was slightly reduced: AT, 

RTP, and LN4 killed 80 % of the mutants. Regarding the abstract test model, we saw that 

LN3, LN4, RTP, and ATP killed 87 % of the mutants – interestingly, the cost of ATP was 

dramatically reduced as compared to the test suites generated from the complete model. 

  

 

 

In the next chapter, we will see the results from applying sneak-path testing.  

  

Conclusions: Reducing the level of detail in the test model significantly influences the 

cost-effectiveness. Results show that both costs and fault-detection ability are lower for 

test suites generated from the abstract model as compared to the complete model.  
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11 Case Study 4 – What is the Impact of Sneak-Path Testing on the Cost-Effectiveness? 

Chapters 8–10 focused on conformance testing, aiming at detecting deviations from specified 

system behaviour when expected events were invoked on the SUT. The case study presented 

in this chapter, on the other hand, presents the results from augmenting the conformance 

testing with sneak-path testing. In contrast to conformance testing, sneak-path testing [31] 

feeds the SUT with unexpected events that should not trigger any change of state in the SUT. 

For each state in the SUT, all possible events that are not specified for the particular state are 

invoked. This technique is intended to catch faults that introduce undesired, additional 

behaviour, in terms of extra transitions and actions. In this study, we aimed to investigate how 

sneak-path testing affects the cost of testing and its fault detection rates.  

 

RQ4: What is the impact of sneak-path testing on the cost-effectiveness? 

 

Section 11.1 and Section 11.2 present cost and effectiveness, respectively. Results are 

discussed in Section 11.3. 

11.1 Cost 

This section presents the collected data on cost – the test-suite sizes and the time spent on 

preparing and executing the sneak-path test suites. 

11.1.1 Test-Suite Size 

The size of the sneak-path test suite is equal to the number of states in the SUT, and hence is 

low compared to the other testing strategies previously addressed in this thesis. The length of 

each test case depends on two matters: (1) the length of the path that must be traversed in 

order to reach the particular state to be tested, and (2) the number of known unexpected events 

for the state.  

A Kermeta-transformation was used to generate 68 separate state machines from the 

complete test model. Each state machine included a path from the initial state to the state that 

was tested, and also the unexpected events for that state. The complete transformation took 

2,460 seconds.  

Due to limited time, the aim of sneak-path testing in this study was to show that the 

mutants actually could be killed – not to show how many of the test cases that could kill each 

of the mutants. Therefore, it was decided to select a subset of the test cases which were 
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expected to kill the mutants. From analysis of the total of 68 state machines, 52 were affected 

by the seeded sneak paths. Furthermore, only seven distinct single states among the 52 

combined states were directly involved in the seeded sneak paths. Thus, seven state machines 

that contained the distinct affected states were included in the sneak-path testing. That is, the 

size of the complete sneak-path test suite was 68 test cases – only seven, however, were 

executed. Table 43 shows the selected state machines. 

 

Table 43 Selected state machines – complete test model 

State machine ID Test case from state machine 

4 ExtraSlowConfirmInit 

12 ManualFSConfirmSoftHalt 

16 AutoConfirmEvaluateHalt 

15 ExtraSlowConfirmedDEFinal 

7 PreManualFSDisabled 

18 ManualFSConfirmedSoftStop 

8 AutoConfirmedEvaluateHalt 

 

The same strategy as for the complete model was used to make a selection of test cases 

from the sneak-path test suite for the abstract model. The Kermeta transformation spent 116 

seconds on generating 21 state machines – one state machine for each state in the abstract 

model. Table 44 shows the selected state machines that were affected by the seeded sneak 

paths. Again, the test suite consisted of 21 test cases of which three were executed on the 

mutants.  

 

Table 44 Selected state machines – abstract test model  

State machine ID Test case from state machine 

3 ManualFSInit 

5 AutoEnabled 

7 ExtraSlowInit 
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11.1.2 Time 

Table 45 shows the time spent on preparing the sneak-path test suite for the complete model. 

Please note that each test case was run separately. The time varies from 23 seconds to 34 

seconds when using oracle O1, and from 21 seconds to 34 seconds when using oracle O2.  

  

Table 45 also displays the execution time observed for oracles O1 and O2 when combined 

with the complete test model. The minimum and maximum times for oracle O1 were, 

respectively, three and seven seconds. Compared to oracle O1, we see an overall reduction in 

execution time by applying oracle O2 – each test case spent two seconds on execution when 

applying O2.  

Results for the abstract test model regarding preparation time reveals little distinction 

between the two oracles. The minimum time for oracle O1 was 18 seconds, whereas the 

maximum measured preparation time was 21 seconds. Regarding O2, we see values from 17 

to 18 seconds. Similar was observed for the execution time. Although the differences between 

the two oracles vary from 33 percent to 60 percent, the actual values are not so different – 

oracle O1 spent three to five seconds on executing the test cases, whereas O2 spent two 

seconds.  
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In practice, the complete sneak-path test suite is required to be run as, of course, the 

location is not know. As we did not run the complete sneak-path test suite, the cost of full 

execution cannot be provided; however, estimates based on the collected data are presented in 

Table 47. When using oracle O1, the collected data shows that preparing the sneak-path tests 

from the complete model took 305 seconds, whereas execution of the tests took 51 seconds. 

Realistic, but rough, estimates for the total sneak-path test suite are 1,885 seconds ((305 ÷ 11) 

× 68) in preparation time and 315 seconds ((51 ÷ 11) × 68) in execution time.  

For the abstract test model, the collected data shows that preparing the sneak-path tests 

took 213 seconds, whereas execution of the tests took 46 seconds. Realistic, but rough, 

estimates for the total sneak-path test suite are 407 seconds ((213 ÷ 11) × 21) in preparation 

time and 88 seconds ((46 ÷ 11) × 21) in execution time.  

Using oracle O2 when applying sneak-path tests on the complete model resulted in the 

following cost: preparing the sneak-path tests took 283 seconds, whereas execution of the 

tests took 22 seconds. Realistic, but rough, estimates for the total sneak-path test suite are 

1,750 seconds ((283 ÷ 11) × 68) in preparation time and 136 seconds ((22 ÷ 11) × 68) in 

execution time.  

Preparation time for the abstract test model applied with oracle O2 was 191 seconds; 

execution time was 22 seconds. Realistic, but rough, estimates for the total sneak-path test 

suite are 365 seconds ((191 ÷ 11) × 21) in preparation time and 42 seconds ((22 ÷ 11) × 21) in 

execution time. 

Table 47 Estimates preparation and execution time for sneak-path test suites 

Preparation time 
(estimat) 

Execution time 
(estimat) 

Complete test model  Oracle O1  1,885 315

Oracle O2  1,750 136

Abstract test model  Oracle O1  407 88

Oracle O2  365 42
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11.2 Effectiveness 

Table 48 shows the observed results on effectiveness for the complete model, both for oracle 

O1 and O2. Augmenting the conformance test suites with sneak-path testing generated from 

the complete model resulted in the remaining mutants being killed. Each and every mutant 

that consisted of additional implemented behaviour beyond specified behaviour was killed by 

sneak-path tests. 

Table 49 presents the results on killing mutants with sneak-path tests from the abstract 

model. Recall that the sub states in the super states were removed from the abstract model. 

This implies less control over the testing process; moreover, removing the sub states 

particularly regards external variables and infeasible state combinations that may be the 

reason for why test cases fail prior to killing the mutant.  

The sneak-path test suite generated from the abstract model killed 10/11 sneak paths. The 

test case from state machine 5 that did not kill the expected mutant (M19) failed due to an 

infeasible step in the test case. This test case failed because of a guard on the transition from 

the Initial state to the Enabled state that was not satisfied. The transition required the 

variable blockdriveenable to be false. As the current mode sub state was AutoConfirm, 

the blockDriveEnable was true and thus in the wrong sub state.   
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11.3 Summary 

In this chapter, sneak-path testing [31] was applied to the SUT. Recall that 11 of 26 seeded 

faults were sneak-paths.  

Complementing state-based testing (Chapter 8–10) with sneak-path testing at an 

additional cost in preparation and execution time resulted in that the remaining 11 mutants 

were killed – those 11 mutants were not killed by any of the six state-based coverage criteria. 

Execution of the sneak-path test suite on the abstract model killed 10/11 sneak-paths. This 

was, however, due to an infeasible test case.  

Being equal to the number of states in the SUT, the cost of sneak-path test suites are rather 

inexpensive as compared to the state-based coverage criteria investigated in this study. Recall 

that the length of each test case depends on two matters: (1) the length of the path that must be 

traversed in order to reach the particular state to be tested, and (2) the number of known 

unexpected events for the state.   

The results presented in this chapter demonstrate that the testing strategies are 

complementary in order to catch different types of faults. Thus, the results indicate quite 

strongly that sneak-path testing is a necessary step in state-based testing due to the following 

observations: (1) the proportion of sneak paths in the collected fault data was high (42 %), 

and (2) the presence of sneak paths is undetectable by conformance testing. 

Our results support the recommendation of Binder [31] and the conclusions drawn in the 

study of Mouchawrab et al. [92]: Testing sneak paths is an essential component of state-based 

testing in practice. The additional cost is justified by the positive influence on fault-detection 

effectiveness. 

 

 

 

The next part (Part IV) will now present lessons learned, threats to validity, conclusions, 

and, finally, future work.  

 

  

Conclusions: The obtained results confirm the importance of including sneak-path 

testing to improve fault-detection effectiveness of state-based testing, and strongly 

indicate that sneak-path testing is a necessary step in state-based testing.  
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PART IV – SUMMARY 

Introduction 

In this final part (Part IV), we will read about challenges and likely benefits of TRUST in 

particular and SBT in general, presented as lessons learned in Chapter 12. Threats to validity 

are discussed in Chapter 13. Conclusions of this thesis are presented in Chapter 14. Finally, 

Chapter 15 addresses future work.  
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12 Lessons Learned 

This chapter reports the lessons learned from modeling to facilitate automatic testing, and 

from execution of the automatically generated test suites.  

12.1 Remove Illegal State Combinations and Infeasible Transitions from the Flattened State Machine 

We experienced that numerous test cases failed due to infeasible paths. Infeasible test cases 

exist in the generated test suites because of guards on certain paths that cannot be satisfied. 

There are mainly two reasons for why the guards on the illegal test cases cannot be satisfied: 

(1) due to illegal state combinations, and (2) because of wrong test data.  

One example can be given from the ATP test suite used with the weakest oracle O2 

generated from the abstract test model: An infeasible transition from state AutoEnabled to 

state AutoDisabled triggered by the event ClearEnableDevice guarded by [mode<>A 

and modeSoftStop = false]. This particular transition is infeasible because of the 

guard which requires that the mode is not Auto.  

Lesson learned: Ensure that all illegal state combinations are removed from a flattened 

state machine. Moreover, closely inspect the flattened state machine to ensure that no 

transition exists whose guard is in conflict with the source state of the transition.  

12.2 Modeling and Coding to Facilitate Automation of State-Based Testing 

Certain modeling aspects can be challenging to state-based testing. This section addresses 

examples of such aspects.  

Example 1: Figure 50 shows a state machine consisting of transition t1, sourced in state A 

and targeted in state B; and transition t2, sourced in state A and targeted in state C. Both 

transitions are triggered by event e1. Transition t1 is guarded by g1, whereas t2 is guarded 

by g2. A typical state-based test case TCa would put the SUT in state A, invoke the event e1, 

and expect the SUT to transition to state B, if the guard g1 is satisfied. Another test case TCb 

would put the SUT in state A, invoke event e1, and then expect the SUT to transition to state 

C, if guard g2 is satisfied. However, if the guards are mutually exclusive, we have a problem 

as the SUT will transition in both test cases independent of the evaluation of the guards. Let 

us say that guard g1 contains the following expression: x = true, and guard g2 contains: x 

= false. This means that test case TCa will fail if x = false because the SUT will 

transition to state C. This is correct behavior of the SUT, but will, however, cause erroneous 
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failure of test cases. Hence, in order to successfully test the two transitions, it is necessary to 

provide the necessary test data to force a particular path according to the test case.  

 

  

 

Example 2: Another modelling aspect that can cause a test case to fail even though the 

SUT behaves correctly is the use of a particular type of event; the completion event (i.e., 

events that are the completion of state behaviour). The state machine presented in Figure 51 

illustrates a situation where a transition is triggered by the completion event from state E. Test 

case TCc checks if the SUT transitions to state E from state D via transition t3. Now, if state E 

has an outgoing transition t4 targeted in state F with no explicit event other than the 

completion event, the SUT will immediately transition to F unless state E has state behaviour. 

In this situation, TCc will fail because the resulting state is F and not the expected state E. 

This means that in order for TCc to pass, the test data must be forced to not satisfy g1 at the 

point state E is reached and exit of the state is triggered by the completion event.  

 

 

Figure 51 Example 2 – Modeling Challenges related to Automatic Test Case Generation 

A B 

C 

t1 e1 [g1] 

t2 e1[g2] 

Figure 50 Example 1 – Modeling Challenges related to Automatic Test Case Generation 

D E t3 e1 t4 [g1] F 
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Example 3: The simple transition type and the compound transition type are not always 

separated when being referred to in the UML 2.0 specification. This may cause confusion for 

instance in relation to the initial pseudostate connected to choice points as the initial state is 

defined to have only one outgoing transition. TRUST did not support test-case generation 

from state machines having choice points, and as the UML 2.0 specification [124] was to 

some extent vague about the different types of transitions, several questions regarding 

outgoing transitions from initial state were raised. Unfortunately, the flattening component of 

TRUST wrongly resolved, as illustrated in Figure 52, choice points by redirecting each 

outgoing transition from a choice point to the target of the incoming transition to that choice 

point.  

This misunderstanding was, however, clarified with Selic from the OMG group who 

stated the following: “A transition in UML is a directed arc between two nodes in the graph – 

whether or not the nodes are proper states or pseuedostates. So, the arc between the initial 

state and the choice point is a fully-fledged transition. A path from the initial psuedostate 

through the choice point and to a state is known as a compound transition.”  

 

 

 

In our project, all these cases were re-modelled by adding a new state without behaviour 

to replace the choice point as shown in Figure 53.  

[g2] 

[g3] [g1] 

B 

A C
[g3] [g2] [g1] 

CB A

Figure 52 Example of Wrong Interpretation of the UML 2.0 Superstructure
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Lesson learned: Ensure that the required test data are correctly selected not only in prior 

to invoking the event as to enable firing of the transition (Example 1), but also at the point the 

target state has been reached (Example 2) in order to prevent the next transition to be fired 

and thus to keep the system in the target state of a test case. Finally, we experienced the UML 

2.0 specification [124] to be vague in the description of the different types of transitions 

(example 3). As the tool we applied did not support test case generation from state machines 

including choice points, one of the questions we had was regarding how to remodel and 

resolve this kind of construct. As a choice point may not be resolved by merging the incoming 

and outgoing transition to and from the choice point, our best solution was to replace the 

choice point with a new state without behaviour.  

12.3 Improving the Model/Code through Iterative State-Based Testing 

The general idea in model-based testing is to have a model of the SUT that represents its 

intended behavior. This model should be at a higher abstraction level than the SUT. A test 

model with less precision eases its validation according to SUT behavior before generating 

tests from it. A trade-off in model-based testing is thus to find the balance between the test 

model abstraction level and the fault-detection ability of the test suites generated from this 

model [36].  

In this study, however, the test model of the SUT was in fact a precise model of the SUT 

behavior. This provided us with test suites that capture the behavior of the SUT at a detailed 

level. During initial testing of the SUT, results showed that several test cases failed. We found 

that the flattened model of the SUT contained errors. Analyzing test cases that failed helped 

G 

H [X = FALSE] 

G 

H [X = FALSE] 

[X = TRUE] 

I 

[X = TRUE] 

Figure 53 Example 3 – Modeling Challenges related to Automatic Test Case Generation 
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us to identify illegal state combinations, infeasible transitions, and transitions with incomplete 

guard expressions.  

For our case studies, precise behavioral modeling of complex industrial systems using 

standard UML 2.0 state machines was a prerequisite for using TRUST. The flattening 

component requires that it is provided with a correctly specified state machine and currently 

does not provide any feedback in case of errors in the model. Modeling correctly, however, is 

not a trivial task and requires that the UML specification be carefully studied. Even though 

constructs like concurrency and hierarchy are supposed to ease the understandability of large 

state machines, such constructs may actually confuse the developer. In particular, we 

experienced that concurrency, if not carefully applied, could introduce modeling errors in 

practice. For example, concurrent regions sometimes make it difficult to see the set of 

transitions between state combinations. A typical fault is that a guard is missing on a 

transition, which allows for transitions to state combinations that are illegal targets from 

particular source states. However, we found that it helped to inspect the flattened state 

machine to detect such mistakes.  

Lesson learned: We experienced that iterative state-based testing can contribute in 

developing models and code of higher quality in that testing the code based on the model 

detects inconsistencies between model and code.  

12.4 Test Results provided by the Oracle 

Existing research do not report experiences on execution details. This section provides 

information regarding the usefulness of the provided information provided by the 

implementation of our oracles.  

The following information was provided as a result of how we implemented the oracles: 

(1) the test case number, (2) whether the test case passed of failed, (3) if the test case failed, 

the operation that implemented the event on the transition that caused the test case to fail was 

reported, and (4) if the test case failed, the reason for why the test case failed – that is, either 

violation of the state invariant or the SUT being in the wrong state.  

The reported information eased the analysis of the un-killed mutants in that the relevant 

test case could be examined. Moreover, as the operation that caused the test case to fail was 

explicitly stated, the specific position in the test case could be quickly identified. We used this 

information to stop the re-run of the execution at that particular place in the code to identify 

the reason for why the test case failed.  
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Lesson learned: Reporting the particular test case number, the class where the fault 

occurred, and the specific operation that caused the test case to fail, was experienced as highly 

useful in the analysis of the test cases.  

12.5 Practical Issues – Visual Studio caused Re-Run of Test-Suites 

Executing the test suites in Microsoft Visual Studio 2008 in combination with the Java Virtual 

Machine was extremely time-consuming as the results were only partially reported. We had to 

re-execute the test suites numerous times in order to collect complete test results.  

Lesson learned: JVM and Microsoft Visual Studio 2008 is not an optimal combination. 

Other environments for executing test drivers should be explored.  

13 Validity  

Empirical studies of cost-effectiveness introduce validity concerns. It is thus important to 

identify possible threats to validity to increase the awareness regarding this particular matter 

when interpreting the results. Furthermore, prospective replications of the study may then 

alter the study design in order to address problematic threats. The subsequent sections discuss 

what the author of this thesis considers as threats to the validity.  

13.1 External Validity 

External validity concerns to what extent it is possible to generalize the findings, and to what 

extent the findings are of interest to other people outside the investigated case [122], i.e., to 

whether a domain exists to which the results are relevant. But how is it possible to generalize 

from a single case? Yin [64, p. 10] provides the following answer: 

 

The short answer is that case studies, like experiments, are generalizable to theoretical 

propositions and not to populations or universes. In this sense, the case study, like the experiment, 

does not represent a “sample”, and in doing a case study, your goal will be to expand and 

generalize theories (analytic generalization) and not to enumerate frequencies (statistical 

generalization). 

 

As stated by Runeson and Höst [122], for case studies, the intention is to enable analytical 

generalization where the results are extended to cases which have common characteristics and 

hence for which the findings are relevant, i.e., defining a theory.  
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The main strength of this study is, in fact, its external validity. Two factors in particular 

increase the external validity, namely the industrial context and the use of real faults when 

evaluating the testing strategies. The system in focus of this thesis is highly representative of 

control systems with state-based behavior thus improving the external validity. It is important 

to provide detailed context descriptions, like system characteristic, development and testing 

procedures, such that others can relate the results to their own context. This information was 

provided in 7.2. Moreover, in contrast to the majority of existing studies, applying artificial 

faults, the faults used in this study are real faults collected in a field study conducted in ABB 

(Section 7.2.7.2). In spite of these two factors, however, there are several issues that should be 

discussed.  

First of all, let us consider the SUT. As stated by Briand et al. [22]:  “Results will always, 

by definition, be specific to the SUT”. An obvious threat to the external validity of this study, 

which reduces its potential for contributing with general results, is the fact that only one 

system was used in the evaluation. Even though it is a highly appropriate and relevant case, as 

it was developed by an external industry group; it is large, it represents a real system, and it is 

of real world importance, drawing general conclusions is not possible from this one case. 

However, although the obtained results are specific to the SUT, it is an example of a typical 

control system. The characteristics of the selected system are expected to be similar for many 

control systems, which may increase possibility of these results to be valid for these types of 

systems. The SUT was entirely modeled using Boolean and enumerated variables, which most 

certainly affects obtained results and makes it impossible to generalize the results to systems 

that, for example, contain numeric variables and constraints. This implies that the results may 

not be valid for control systems that make use of other types of variables.  

In previous studies where artificial mutation operators have been applied in the evaluation 

of testing strategies, the question of its impact on the external validity has been raised. The 

use of real faults when generating mutant programs is not common practice. In this study, 

however, we purely used real faults to generate mutants. Although only 26 mutants were 

applied in this study, the seeded faults were real and manually extracted from a field study as 

described in Chapter 7. But again, it is not certain that the results apply to other organisations 

as it depends on the developer what kind of faults that are introduced to a system. Hence, 

further studies are necessary to increase the external validity of the results. Having the 

preparation and execution time in mind, the feasibility of the study will be threatened by a 

dramatic increase in number of mutants. To avoid masking of faults, only one fault was 

seeded per mutant program. Thus, like studies presented in related work (see Table 1), this 
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study only evaluates the detection of single faults. Complex fault patterns have not been 

studied in this thesis.  

Also note that the SUT was developed in C++. The results may vary for other 

programming languages.  

Nevertheless, the results are believed to be representative for control systems and can be 

used to guide readers when selecting testing strategies. As for any empirical studies, however, 

this study should be replicated for other types of faults and other control systems in order to 

make the results stronger and prove the results relevant for other similar projects.  

13.2 Internal Validity 

Internal validity is “of concern when causal relations are examined” [122]. Investigated 

variables may also be affected by extraneous variables, confounding factors, not accounted 

for in the study, thus a threat to the internal validity. What is observed should be attributed to 

the studied variable and not to potential confounding factors. Internal validity thus concerns 

situations where the researcher examines the influence of factor A on factor B, when in fact 

factor C also has an impact on factor B. Threats to validity occur when the researcher is not 

aware of factor C, but concludes that factor A caused factor B.  

A threat to internal validity is the fact that the author of this thesis was the subject in the 

case studies. The rationale for this being lack of resources and a general lack of state-based 

testing experience in the company. Also important to notice is that the purpose of the case 

studies was to demonstrate the possible gains ABB could retrieve by applying state-based 

testing in the future. That is, the main purpose was not to study the interaction between the 

tester and the technology – the focus was directed towards the actual achievements that could 

be obtained with respect to cost-effectiveness by introducing state-based and sneak-path 

testing. The industry needs help in introducing new techniques, and this is one pragmatic 

approach in order to demonstrate possible advantages of this particular technique.   

One detected risk in terms of internal validity was the possible randomness in the obtained 

results for three of the coverage criteria AT, RTP, and ATP. This issue was handled by 

generating 30 test trees for those coverage criteria, thus replicating the experiment for these 

criteria 30 times. Statistical hypothesis testing was applied to the collected data to identify 

whether or not significant differences were present between the three criteria.  

Another threat to internal validity in this study could be related to the fault-detection rate 

due to the fact that both the generation of test cases and the insertion of faults to develop 
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mutants were conducted by the author. Because of this, the author could potentially influence 

the implementation of the test suites as to be better at detecting certain types of faults. Ideally, 

generation of test cases and fault seeding should be conducted by different people. 

Nevertheless, as the test suites were automatically generated by following known algorithms, 

this is not considered being a threat – the implementation of the algorithms do not suffer a 

great risk of being manipulated in favour of detecting specific faults and should be 

independent of the person who implements it. Furthermore, the seeded faults were actual 

faults introduced by developers from ABB. Hence, the author had no impact on the seeded 

faults.  

The final threat to internal validity, that we are aware of, is related to the fault-detection 

ability due to the problem of infeasible test cases. This particularly regards test suites 

generated from the abstract test model due to little control over internal states. In future 

studies, more advanced test case selection must be applied in order to remove infeasible test 

cases, and moreover, ensure that the coverage is retained after removing infeasible test cases.   

13.3 Construct Validity 

Construct validity regards to what extent the operational measure that are studied really 

represent what the researcher have in mind and what is investigated according to the research 

questions [122]. That is, it concerns the establishment of correct operational measures for the 

concepts being studied. Wrong choices may affect the quality of the results.  

Efforts were made to increase the construct validity in this study. Triangulation – the use 

of multiple data sources – helps to ensure construct validity. Several surrogate measures were 

selected to describe cost. Moreover, the selected measures are commonly known measures in 

cost-effectiveness studies in the field of software testing. In this study, like in similar 

experiments (e.g., [12]), cost and effectiveness were measured using surrogate measures. Cost 

was measured using not only test-suite size but also the time spent on preparing and executing 

the test suites. Effect was measured by the ability of the test suites in detecting faults.   

However, as stated by Andrews et al. [28], test-suite size as a measure may fail to capture 

all dimensions of testing cost when considering different coverage criteria since it may be 

more difficult to find test cases that achieve some coverage criteria than others. In order to 

address this issue, selecting the most optimal test trees may reduce the validity threat. This 

was not done in this study, and hence, a validity threat can be non-representative figures for 

cost as compared to effect.  
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13.4 Reliability 

Recall from Chapter 7 that reliability concerns to what extent the data and the analysis are 

dependent on the specific researchers [122], e.g., unclear descriptions of data collection 

procedures such that later replications of the study could give different results. This is 

addressed by providing as detailed design and description of analysis procedures as possible. 
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14 Conclusions 

State-based testing based on UML models in industry is not yet a widespread practice. Even 

though the use of tools for execution of more intelligent testing is slowly increasing, common 

practice is often based on manual testing approaches. Moreover, to avoid the undesirable 

cohesion between the skills of a tester and the quality of the testing, the use of SBT in 

combination with proper tools facilitate sound, predictable testing that is somewhat 

independent of the individual tester.  

Existing research has not yet reached a point where useful guidelines are developed as to 

advice organizations, not only on how and when to proceed with SBT, and what kind of SBT 

to apply, but also on how and when to combine SBT with other types of testing. More studies, 

to be suggested in Chapter 15, are essential prerequisites for creating such guidance to support 

practitioners when deciding upon which strategy to use. The findings in this thesis, however, 

contribute to such work by comparing SBT criteria under different oracle and test model 

conditions.  

An empirical evaluation on the cost and fault-revealing capabilities of six state-based 

coverage criteria applied with two different oracles was presented in this thesis. The following 

coverage criteria were evaluated: all transitions (AT), all round-trip paths (RTP), all transition 

pairs (ATP), all paths of length two (LN2), all paths of length three (LN3), and all paths of 

length four (LN4). Moreover, the testing strategies were applied to both a precise model of the 

SUT and to less detailed model of the SUT where sub states and their belonging transitions 

were removed from super states.   

The study was conducted in cooperation with the ABB Corporate Research Center in 

Norway (NOCRC) where a UML state-based technique was applied when developing the 

subsystem of a safety system for controlling a machine. The combinations of test coverage, 

oracle and model, as described in the previous paragraph, were then evaluated using mutation 

analysis with real faults extracted from a global field study at ABB, allowing us to compare 

the cost-effectiveness for the generated test suites. Test suites were automatically generated 

by using the model-based testing tool TRansformation-based tool for Uml-baSed Testing 

(TRUST). TRUST was developed motivated by the lack of extensible and configurable 

model-based testing tools. The software architecture and the implementation strategy of 

TRUST facilitate its customization to different contexts by supporting configurable and 

extensible features such as input models, test models, coverage criteria, test data generation 

strategies, and test-scripting languages.  
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Reported in this thesis, are results and experiences that may be helpful when selecting 

coverage criteria, type of oracle, and the level of details in the test model. As most studies 

evaluating coverage criteria are based on artificial mutation operators, this thesis contributes 

with its results from applying real faults on a module of a system from an industrial context. 

The subsequent sections summarize the results from each of the case studies presented in 

Chapter 8–11. 

14.1 Case Study 1 – What is the Cost-Effectiveness of the State-Based Coverage Criteria All Transitions, 

All Round-Trip Paths, All Transition Pairs, Paths of Length 2, Paths of Length 3 and Paths of Length 3? 

This chapter concerned cost-effectiveness of the state-based coverage criteria all transitions 

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of 

length 3 (LN3) and paths of length 4 (LN4) when applied to a detailed state-based test model 

using oracle O1.  

Results showed that LN2 provided the smallest test suite (27 test cases); whereas ATP 

generated the largest test suite (1,425 test cases). The median among the test-suite sizes was 

232 test cases.  

In compliance with the test suite sizes, LN2 had the lowest mean values for preparation 

time (126 seconds). The highest value, 28,819 seconds, was observed for ATP. Criteria LN3 

(509 seconds) and RTP (531 seconds) had quite similar values. A large increase from LN3 

and RTP was seen for AT (3,995 seconds). The second highest measure collected for 

preparation time was LN4 with 5,295 seconds.  

Results show for execution time that, again, LN2 provided the lowest value (18 seconds). 

LN3 was measured to 136 seconds, followed by RTP with 489 seconds. Almost doubling the 

time seen for RTP, LN4 was measured to use 850 seconds on executing the test suite. The 

second highest time was measured for AT – 2,455 seconds. Finally, execution of the ATP test 

suite took 3,341 seconds.  

Considering the mutation score results ranked by mean from low to high, results showed 

that LN2 performed significantly poorer than the other coverage criteria (5/15 killed mutants). 

A large gap was to be found between LN2 and the next result; LN3 killed 14/15 of the 

mutants. Quite similar, AT resulted in a high mutation score mean, 0.997. The best mutation 

score mean came with RTP, ATP, and LN4 – all mutants were killed.  

The paired Wilcoxon signed-rank test was applied to the replicated data, i.e., for AT, RTP, 

and ATP. All tests executed on preparation and execution time resulted in significantly 
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different results – ATP spent significantly more time on both preparation and execution of the 

test suites than AT and RTP. No significant differences were found in data collected on 

mutation score.  

 

 

  

Conclusions: The results indicate that LN2 might be too weak as a testing strategy. 

The other testing strategies performed similar with respect to mutation score, but with 

varying costs – ATP was the most expensive criterion. Having rather similar cost-

effectiveness, LN3 and RPT were suggested by the results as the most cost-effective 

strategies. 
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14.2 Case Study 2 – How does Varying the Oracle Affect the Cost-Effectiveness?  

Case study 2 addressed research question 2 regarding how two different oracles influenced the 

cost-effectiveness of state-based testing when using the strategies all transitions (AT), all 

round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 

(LN3) and paths of length 4 (LN4) on a detailed state-based test model.  

Overall, varying the oracle shows that there were small differences in the preparation 

time. Three of six criteria spent similar or slightly more time when using oracle O2, whereas 

the remaining three criteria spent slightly less time when using oracle O2. Execution time, on 

the other hand, was significantly lower when applying oracle O2. Large cost savings was 

achieved. However, the higher mutation score was negatively affected. For all strategies, 

oracle O2 obtained lower mutation score means than oracle O1. The greatest difference was 

found in results for LN2 (149.8 percent difference), followed by ATP (36.9 percent 

difference). Rather similar differences were seen among LN3 (27.2 percent), AT (25.3 

percent), RTP (25 percent), and LN4 (25 percent).  

For both oracles, AT, RTP and LN4 performed best in terms of mutation score. Of those 

three strategies, RTP was the least expensive followed by LN4 and then AT. ATP was as 

effective as AT, RTP, and LN4, but only when applying O1. ATP in combination with O2 

achieved a slightly lower mutation score. Note, however, that ATP was the most expensive 

strategy. Although a slightly lower mutation score was obtained for O1, LN3 also achieved a 

good cost-effectiveness – in particular when looking at the cost. Finally, LN2 not only 

appeared to be the least expensive but also the weakest strategy from a fault-detection 

perspective.  

As we have seen, the combinations of coverage criterion and oracle significantly impact 

the cost and fault-detection effectiveness of the testing strategies in different directions, in 

particular the execution cost. We found that the most cost-effective strategy in this study was 

RTP combined with oracle O1. Note, however, that LN3 combined with O1 obtained cost-

effectiveness comparable to RTP. 

 

 

Conclusions: Minor differences in preparation time were observed when applying 

oracle O2. Execution time, on the other hand, was significantly lower when applying 

oracle O2 for all six strategies. The large cost savings when using O2, however, had a 

negative impact on the effectiveness.  
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14.3 Case Study 3 – What is the Influence of the Test Model Abstraction Level on the Cost-Effectiveness? 

This chapter addressed whether or not varying the level of details in test models affect the 

cost-effectiveness of the state-based coverage criteria all transitions (AT), all round-trip paths 

(RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3) and paths 

of length 4 (LN4). Both oracles that were applied in Case Study 2 were also applied in this 

study.  

Results showed that the test-suite sizes significantly decreased when abstracting the test 

model. However, the number was further reduced by the fact that infeasible test cases were 

introduced as a result of the sub states being removed in the abstract test model. This implied 

less control over test data with respect to externally controlled variables and caused infeasible 

test cases. Only feasible test cases were included in the results.  

For oracle O1, the greatest reduction in test-suite size was seen for AT (from 166 to 17 

test cases), closely followed by ATP (1425 to 192 test cases). RTP was reduced from 299 to 

66 test cases. The LN4 test suite was reduced from 764 to 415 test cases. The remaining 

strategies were not affected to the same extent; LN2 and LN3 were reduced, by 14.8 and 29.4 

percent, respectively. By using oracle O2, the difference in test-suite sizes was overall lower 

due to lower number of infeasible test cases as compared to using oracle O1, but quite 

consistent with the results for O1.  

Across all criteria, results showed that it takes significantly shorter time for all strategies 

to prepare test suites from the abstract test model as compared to the complete test model. The 

greatest difference was seen for ATP (96 percent for both O1 and O2), closely followed by 

AT (95 percent for O1 and 94 percent for O2). RTP was reduced by 62 percent for O1 and 64 

percent for O2. Also LN2, LN3, and LN4 spent less time on generating test suites from the 

abstract model (from 26 to 40 percent reduction as compared to the complete model).  

We saw a similar trend for execution time with great differences between the times spent 

on executing the test suites generated from the abstract model as compared to the complete 

model. The largest reduction was achieved by AT (97 percent for O1 and 96 percent for O2), 

followed by ATP (88 percent for O1 and 80 percent for O2), and RTP (85 percent for O1 and 

77 percent for O2). When O1 was combined with the abstract model for LN2, LN3, and LN4, 

results show that the preparation times were reduced by 11 percent, 38 percent, and 22 

percent, respectively. No difference was found between the abstract and complete model 

when applying O2 to LN2. A minor reduction was found for LN3 (4 percent). The execution 

time for LN4, on the other hand, was increased by 6 percent.  
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Significantly smaller test-suite sizes were found for the abstract model versus the 

complete model for LN2, LN3, and LN4 contra AT, RTP, and ATP. Thus, smaller differences 

in execution and preparation time would be expected results.    

Comparing the two oracles applied to the abstract test model provided rather consistent 

results as compared to what was seen for the complete test model: Differences in preparation 

time for the abstract model was in the range from -5 percent to 2 percent compared to -7 

percent to 4 percent for the complete model.  Regarding execution time, we saw a similar 

correlation between the abstract and the complete model – for the abstract model, test suites 

combined with O2 spent from 68 percent to 74 percent less time on execution compared to 

O1, whereas test suites generated from the complete model combined with O2 spent 72 

percent to 83 percent less time on execution compared to O1.  

An overall trend in the results for mutation score was that the abstract test models 

obtained lower mutation score means than what were achieved by the complete test models.  

The non-paired Wilcoxon signed-rank test was applied to the replicated data, i.e., for AT, 

RTP, and ATP. Overall, i.e., considering the three strategies combined with each of O1 and 

O2, significant differences were found for each of preparation time, execution time and 

mutation score. Significance was found for α = 0.01. Test suites generated from the complete 

model required both higher preparation and execution time (large effect sizes were found for 

both measures). On the other hand, the complete models achieved higher mutation scores.  

To summarize, the results showed that ATP applied to a detailed model is an expensive 

strategy. The high fault-detection effectiveness may be at a too high cost. When combined 

with the abstract model, cost was significantly reduced. The effectiveness was also reduced, 

but not as much as the cost. On the other extreme, LN2 had the lowest cost but also the lowest 

effect; at least for the complete model. Results for the abstract model combined with oracle 

O1 showed similar results to what was found for AT applied to the abstract model. The level 

of details in the model had an enormous impact on the cost and effectiveness for AT; all 

mutants were killed by AT when using the complete model, although at a large increase in 

cost. The complete model combined with oracle O1 obtained as good mutation score as ATP 

and AT also for RTP and LN4. Of these, RTP had the lowest costs. Overall, the abstract 

model performs better with oracle O1.  

AT, RTP, ATP, and LN4 all provided the highest mutation scores when generated from the 

complete model used with oracle O1. Of these, RTP had the lowest costs. Using the weaker 

oracle O2, still based on the complete test model, the effectiveness was slightly reduced: AT, 

RTP, and LN4 killed 80 % of the mutants. Regarding the abstract test model, we saw that 
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LN3, LN4, RTP, and ATP killed 87 % of the mutants – the cost of ATP was dramatically 

reduced as compared to the test suites generated from the complete model. 

  

 

 

14.4 Case Study 4 – What is the Impact of Sneak-Path Testing on the Cost-Effectiveness? 

In Case Study 4, sneak-path testing was applied to the SUT. Recall that 11 of 26 seeded faults 

were sneak paths.  

Complementing state-based testing (Chapter 8–10) with sneak-path testing at an 

additional cost in preparation and execution time resulted in that the remaining 11 mutants 

were killed – those 11 mutants were not killed by any of the six state-based coverage criteria. 

Execution of the sneak-path test suite on the abstract model killed 10/11 sneak paths. This 

was, however, due to an infeasible test case.  

Being equal to the number of states in the SUT, the cost of sneak-path test suites are rather 

inexpensive as compared to the state-based coverage criteria investigated in this study. Recall 

that the length of each test case depends on two matters: (1) the length of the path that must be 

traversed in order to reach the particular state to be tested, and (2) the number of known 

unexpected events for the state.   

The results from this case study demonstrate that both conformance testing and sneak-path 

testing are complementary in order to detect faults of varying nature. Thus, the results indicate 

quite strongly that sneak-path testing is a necessary step in state-based testing due to the 

following observations: (1) the proportion of sneak paths in the collected fault data was high 

(42 %), and (2) the presence of sneak paths is undetectable by conformance testing. 

Our results support the recommendation of Binder [31] and the conclusions drawn in the 

study of Mouchawrab et al. [92]: Testing sneak paths is an essential component of state-based 

testing in practice. The additional cost is justified by the positive influence on fault-detection 

effectiveness. 

 

Conclusions: Reducing the level of detail in the test model significantly influences the 

cost-effectiveness. Results show that both costs and fault-detection ability are lower for 

test suites generated from the abstract model as compared to the complete model.  
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Conclusions: The obtained results confirm the importance of including sneak-path 

testing to improve fault-detection effectiveness of state-based testing, and strongly 

indicate that sneak-path testing is a necessary step in state-based testing.  
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14.5 Summary 

In summary, this thesis complements and extends existing research on the cost-effectiveness 

of SBT by: 

 developing an extensible and configurable model-based testing tool,  

 using  an industrial safety-critical control system, 

 using  real faults collected from a global, industrial field study when evaluating testing 

strategies,  

 comparing six state-based coverage criteria,  

 performing a comparison of two test oracles,  

 studying the impact of varying the test model abstraction level on cost and 

effectiveness, and  

 studying the benefits of sneak-path testing. 

 

We experienced that the iterative process of generating tests from the specifications was 

useful in finding inconsistencies not only between the model and the implementation, but also 

in detecting ambiguities in the specifications. Furthermore, the use of SBT enables predictable 

testing which is repeatable, and automation in particular enables thorough, systematic testing 

that may seem impossible to conduct manually. On the other hand, the benefits do not come 

for free – initial investments not only include training and tool setup; the use of tools also 

comes with the cost of initial mappings between the test model and the specific programming 

language, and the cost of test-data generation. Although state-based testing requires an initial 

investment, changing the test cases for re-test according to changes in the model and code is 

not as labor intensive as compared to manual testing. 

The choice of selecting the type of testing strategy, oracle, and test model abstraction level 

depends on several factors such as the criticality of the SUT, and the available resources and 

time. As both cost and effectiveness are reported in this thesis, it is hoped that the presented 

results will be useful when considering the use of SBT.  

Ultimately, Chapter 15 presents suggestions for future work.  
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15 Future Work 

This chapter suggests areas that deserve more focus in future work identified from the gap in 

existing research and during execution of this study.  

15.1 Oracles 

When searching for related work, few studies were identified that compare test oracles 

applied in an SBT-context. A test oracle can check the output of a test in different detailed 

levels. As we have seen in the few existing studies and from the results of this thesis, the 

choice of oracle influences both cost and effectiveness. In what way varying the oracle will 

influence fault detection of the applied test coverage criteria, should be further studied.  

15.2 Test Models 

There is a lack of research on the interesting aspect of comparing test models of different 

levels of detail. Several studies focus on reducing the test suite using various reduction 

techniques. In this thesis, however, we investigate the fault-detection effectiveness of reduced 

test suites based on a different idea; whereas test-reduction techniques are based on removing 

tests in a test suite that do not contribute in increasing the fault-detection ability, this thesis 

rather focuses on abstracting the test model itself by removing details, e.g. removing sub 

states from composite states. To the author’s knowledge, no other studies are conducted on 

this particular topic in an SBT-context.  

15.3 Test Trees 

Being non-deterministic approaches, the all transition (AT), all round-trip paths (RTP) and all 

transition pairs (ATP) criteria may provide a number of different test trees that cover these 

criteria. Due to the numerous trees, obtained results can differ from tree to tree. Hence, the 

empirical evaluation of the state-based coverage criteria from this study should be replicated 

using test tree selection approaches to ensure that the most optimal trees are selected, e.g. like 

Briand et al. [81] which selects the trees with the highest fault-detection ability.  
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15.4 Model versus Implementation Coverage 

Yet another interesting research area is comparisons of model coverage versus 

implementation coverage to see the influence of differences in coverage on the fault-detection 

effectiveness.   

15.5 Test Data Selection 

The selected test data have a large impact on the feasibility of the generated test suites. In this 

study, the selection of test data for environment variables (i.e., externally controlled variables) 

was carefully chosen; though only semi-automated, to enable the execution of the test suites. 

However, the evaluations should be replicated also when varying the test data.  

15.6 Cost 

Existing research have evaluated state-based coverage criteria. Most studies that regard 

effectiveness, however, do not report cost. As the attention has mostly been directed towards 

effectiveness, there is still a lack of empirical results regarding the cost of such testing.  

Especially, regarding how state-based test criteria perform when being exposed to real faults.  

15.7 Cost of Initial Investment 

Applying systematic strategies in software testing reduces the dependency between the 

tester’s skills and the achieved test coverage, and furthermore leaves the company with an 

assurance on how thorough their software is tested. The advantages of state-based testing 

require an initial investment in tools and training.  Future work should explore the cost of said 

investment.  

15.8 Industrial Context 

As for any empirical studies, replications of this study are needed. Further evaluations on 

testing strategies should be carried out, in particular conducted on industrial systems in order 

to increase the external validity of the results. Future research should aim at evaluating 

coverage criteria by varying the SUT instead of reusing the same SUT.  Moreover, as stated in 

Chapter 3, existing research shows that extremely few studies10 apply real faults when using 

                                                 
10 Table 1 shows two studies where as few as 4/21 and 4/20 faults were real. 
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mutation analysis for evaluating various testing strategies – the use of artificial faults is 

prevalent. As a consequence, little is known about how such structured test approaches 

compares in detecting real faults. Another interesting study would be to compare the results of 

this study to a study where mutation operators are used to create mutant programs.  

15.9 Tools 

In general, the community should continuously seek to improve model-based automated tools 

in order to make model-based testing a feasible approach to the industry. Regarding TRUST 

in particular, as we saw in Section 5.1.3, more efficient test data generation techniques based 

on search or optimization techniques [115] should be considered implemented in future 

versions. 

15.10 Guidelines 

In order to provide the industry with useful guidelines, we are dependent on future studies in 

all of the abovementioned areas.  

15.11 Choice of Research Method 

As a final remark, the case study is a useful research method for software engineering as 

software engineering takes place within a context. It is important not to factor out the effect of 

the context when validating technologies for use in industrial development [131]. However, 

surveys on the use of research methods in software engineering show a fairly low percentage 

of case studies [131, 132, 64]. More studies should be applied within a realistic context in 

combination with experiments that offers more control. Experiments provide useful insight, 

but are, however difficult to execute amongst others due to the large number of variables that 

cause differences in reality [133] as compared to the few variables that are studied in 

experiments. Executing several studies following different types of research methods on a 

particular research area are necessary in order to provide a more “complete” picture.  
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A. Overview of Research Activities 

Period ID Activity Role 

2006 June – 

2007 Feb 

A1.  Specification, design, and implementation of a module 

in a safety-critical software system in ABB using UML 

state machines and the extended state design pattern. 

Participatory role, in 

collaboration with ABB 

and supervisors.  

2006 Sept A2.  Presentation of accepted work shop paper, CSDUML 

’06. 

Primary role, in 

collaboration with 

supervisors and ABB.  

2007 Jan – 

2007 May 

A3.  Manual state-based testing of the module. Primary role.  

2007 May – 

2007 Nov 

 

A4.  Development of the same system in accordance to 

typical development ABB development (baseline). 

 

Primary role, in 

collaboration with 

external developer 

Simen Hagen. 

2008 Jan – 

2008 April 

A5.  Write-up of report from the action research related to 

activity A1, A3, and A4.  

Primary role.  

 A6.  Field study on maintenance. The following sub tasks 

were conducted:  

 

2007 Jan – 

2007 Feb 

 A6.1) A guideline for how to use the extended state 

design pattern. 

Primary role.  

2007 March – 

2007 April 

 A6.2) A pilot study was designed and conducted. The 

subject was a researcher/developer from ABB.  

Participatory role, in 

collaboration with main 

supervisor. 

2008 May – 

2008 Sept 

 A6.3) Design of a maintenance field study in ABB.  Primary role, in 

collaboration with main 

supervisor. Kai Hansen 

assisted recruitment of 

subjects.  

2008 Oct – 

2008 Nov 

 A6.4) Execution of field study in ABB’s departments 

in Västerås, Baden and Shanghai.   

Primary role.  
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2008 Dec  A6.5) Analysis of the collected data.  Primary role.  

2009 Jan – 

2009 April 

A7.  Development of an automated test tool in cooperation 

with the PhD students Shaukat Ali and Hadi Hemmati. 

I was responsible for the following tasks:  

Participatory role, in 

collaboration with Hadi 

Hemmati, Shaukat Ali 

and supervisors. 

2009 Jan – 

2009 May 

 A7.1) Development of a transformation tool, an Eclipse 

plug-in, for flattening complex UML state machines.  

Primary role, advised by 

supervisors.  

2009 May – 

2009 June 

 A7.2) Adjustment of TRUST to support C++ to enable 

the generation of concrete test cases from abstract test 

cases. The tool was also extended to support the all 

round-trip path transition coverage. The test cases were 

generated from the state machines developed in activity 

A1 and used to test the state-based implementation of 

ALC.    

Primary role.  

2009 June – 

2009 Sept  

A8.  Technical report based on the tool development.   Participatory role, in 

collaboration with 

Shaukat Ali, Hadi 

Hemmati, and 

supervisors.  

 2009 Oct – 

2010 Feb 

A9.  Technical report based on the state-machine flattening 

Eclipse plug-in.  

Primary role.  

2009 July – 

2010 May 

A10. Evaluation of testing strategies, including the work of 

extending TRUST to support generation of test cases 

that satisfy additional five coverage criteria and an 

additional oracle. The testing strategies were evaluated 

by analyzing the fault-detection effectiveness of the 

test suites using real fault-data (collected in activity 

A6) and mutation analysis.   

Primary role. Extensions 

are based on the tool 

TRUST developed in 

collaboration with Hadi 

Hemmati and Shaukat 

Ali. 

2010 Jan – 

2010 July 

A11. Write-up of the thesis. Full-time position as a PhD 

student. 

Primary role.  

2010 Aug – 

2012 June 

A12. Continuing write-up of the thesis. Part-time position 

(10-20 percent) as a PhD student. 

Primary role.  

2012 May A13. Conference paper based on Case Study 4 is submitted 

for publication. 

Primary role. 

2012 April – 

2012 Aug 

A14. Journal paper based on Case Study 1–4 is submitted for 

publication.  

Primary role.  
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B. Semi-Structured Literature Review 

JOURNALS 

Database Publication Search string Where All Papers Included 
papers 

ACM TOSEM “state based testing” title 0 0 
ACM TOSEM “state-based testing” title 0 0 
ACM TOSEM “state machine testing” title 0 0 
ACM TOSEM “state-machine testing” title 0 0 
ACM TOSEM “model based testing” title 0 0 
ACM TOSEM “model-based testing” title 0 0 
ACM TOSEM “state based testing” abstract 1 0 
ACM TOSEM “state-based testing” abstract 1 0 
ACM TOSEM “state machine testing” abstract 0 0 
ACM TOSEM “state-machine testing” abstract 0 0 
ACM TOSEM “model based testing” abstract 0 0 
ACM TOSEM “model-based testing” abstract 0 0 
# unique papers 1 0 
Database Publication Search string Where All Papers Included 

papers 
IEEE TSE “state based testing” title 0 0 
IEEE TSE “state-based testing” title 0 0 
IEEE TSE “state machine testing” title 0 0 
IEEE TSE “state-machine testing” title 0 0 
IEEE TSE “model based testing” title 0 0 
IEEE TSE “model-based testing” title 0 0 
IEEE TSE “state based testing” abstract 0 0 
IEEE TSE “state-based testing” abstract 0 0 
IEEE TSE “state machine testing” abstract 1 1 
IEEE TSE “state-machine testing” abstract 1 1 
IEEE TSE “model based testing” abstract 1 1 
IEEE TSE “model-based testing” abstract 1 1 
# unique papers 1 1 
Database Publication Search string Where All Papers Included 

papers 
Wiley STVR “state based testing” title 0 0 
Wiley STVR “state-based testing” title 0 0 
Wiley STVR “state machine testing” title 1 0 
Wiley STVR “state-machine testing” title 1 0 
Wiley STVR “model based testing” title 4 1 
Wiley STVR “model-based testing” title 4 1 
Wiley STVR “state based testing” abstract 3 0 
Wiley STVR “state-based testing” abstract 3 0 
Wiley STVR “state machine testing” abstract 1 1 
Wiley STVR “state-machine testing” abstract 1 1 
Wiley STVR “model based testing” abstract 9 1 
Wiley STVR “model-based testing” abstract 9 1 
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# unique papers 12 2 
Total # unique papers from TOSEM, TSE, and STVR 14 3 
 

CONFERENCES  

Database Publication Search string Where All Papers Included 
papers 

ACM ISSTA “state based testing” title 0 0 
ACM ISSTA “state-based testing” title 0 0 
ACM ISSTA “state machine testing” title 0 0 
ACM ISSTA “state-machine testing” title 0 0 
ACM ISSTA “model based testing” title 0 0 
ACM ISSTA “model-based testing” title 0 0 
ACM ISSTA “state based testing” abstract 0 0 
ACM ISSTA “state-based testing” abstract 0 0 
ACM ISSTA “state machine testing” abstract 0 0 
ACM ISSTA “state-machine testing” abstract 0 0 
ACM ISSTA “model based testing” abstract 0 0 
ACM ISSTA “model-based testing” abstract 0 0 
# unique papers 0 0 
Database Publication Search string Where All Papers Included 

papers 
IEEE ICST “state based testing” title 0 0 
IEEE ICST “state-based testing” title 0 0 
IEEE ICST “state machine testing” title 0 0 
IEEE ICST “state-machine testing” title 0 0 
IEEE ICST “model based testing” title 3 0 
IEEE ICST “model-based testing” title 3 0 
IEEE ICST “state based testing” abstract 0 0 
IEEE ICST “state-based testing” abstract 0 0 
IEEE ICST “state machine testing” abstract 0 0 
IEEE ICST “state-machine testing” abstract 0 0 
IEEE ICST “model based testing” abstract 7 1 
IEEE ICST “model-based testing” abstract 7 1 
# unique papers 8 1 
Database Publication Search string Where All Papers Included 

papers 
IEEE ISSRE “state based testing” title 0 0 
IEEE ISSRE “state-based testing” title 0 0 
IEEE ISSRE “state machine testing” title 0 0 
IEEE ISSRE “state-machine testing” title 0 0 
IEEE ISSRE “model based testing” title 0 0 
IEEE ISSRE “model-based testing” title 0 0 
IEEE ISSRE “state based testing” abstract 1 1 
IEEE ISSRE “state-based testing” abstract 1 1 
IEEE ISSRE “state machine testing” abstract 1 1 
IEEE ISSRE “state-machine testing” abstract 1 1 
IEEE ISSRE “model based testing” abstract 0 0 
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IEEE ISSRE “model-based testing” abstract 0 0 
# unique papers 2 2 
Total # unique papers from ISSTA, ICST, and ISSRE 10 3 
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C. State Machines – Original Version 

Mode State Machine 

The diagram can be provided upon request.  
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Drive Enable State Machine 

The diagram can be provided upon request.  
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D. State Machines – Modified Version of SUT 

Mode State Machine 

The diagram can be provided upon request. 
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Drive Enable State Machine 

The diagram can be provided upon request. 
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E. State Machine – Experiment Version (Complete Test Model) 

The diagram displays the Mode state machine which was involved in the change task. 

State ExtraSlow and its belonging transitions are the only differences from the state 

machine shown in Appendix D.  

 

The diagram can be provided upon request.  
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F. State Machine – Experiment Version (Abstract Test Model) 

The diagram can be provided upon request. 
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G. Data Material – AT, RTP, and ATP – Complete Model – Oracle O1 

All transitions (AT), complete test model, and state-invariant oracle (O1) 

AT Complete 
O1     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE  TEST 
SUITE 

EXECUTE  TEST 
SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

AT1  166  1858  399 249 2506 1881  1

AT2  165  2034  402 240 2676 3102  1

AT3  169  2172  441 338 2951 2115  1

AT4  166  1858  389 292 2539 2315  1

AT5  168  2236  543 204 2983 2625  1

AT6  168  2236  473 267 2976 2432  1

AT7  162  2346  425 292 3063 2383  1

AT8  167  2445  490 368 3303 2810  1

AT9  170  2567  488 257 3312 2458  1

AT10  162  2346  422 245 3013 1858  1

AT11  168  2236  409 211 2856 2432  0.933

AT12  173  2861  408 270 3539 3361  1

AT13  164  2936  476 354 3766 2851  1

AT14  165  2034  470 258 2762 3122  1

AT15  162  2346  487 275 3108 2163  1

AT16  166  1858  479 261 2598 1854  1

AT17  171  3269  464 241 3974 2169  1

AT18  163  15124  378 279 15781 2088  1

AT19  162  2346  413 269 3028 2020  1

AT20  169  2172  430 270 2872 2298  1

AT21  160  3675  361 246 4282 1765  1

AT22  160  3675  443 367 4485 2210  1

AT23  163  15124  477 338 15939 2022  1

AT24  164  2936  492 230 3658 3096  1

AT25  168  2236  506 206 2948 3617  1

AT26  165  2034  443 249 2726 2274  1

AT27  168  2236  434 342 3012 2370  1

AT28  165  2034  467 262 2763 2776  1

AT29  173  2861  536 288 3685 2564  1

AT30  165  2034  470 242 2746 2631  1

Avg  165.9  3270.8  450.5 273.7 3995 2455.4  0.998
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All round-trip paths (RTP), complete test model, and state-invariant oracle (O1) 

RTP 
Complete O1     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION SCORE

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

RTP1  328  105  128 374 607 465  1

RTP2  328  66  108 406 580 419  1

RTP3  328  85  99 408 592 341  1

RTP4  328  116  83 353 552 524  1

RTP5  328  71  96 354 521 434  1

RTP6  328  68  82 367 517 409  1

RTP7  328  68  83 359 510 517  1

RTP8  328  89  84 349 522 497  1

RTP9  328  67  85 334 486 528  1

RTP10  328  66  85 333 484 552  1

RTP11  328  98  83 348 529 515  1

RTP12  328  109  82 343 534 514  1

RTP13  328  106  85 349 540 536  1

RTP14  328  114  91 356 561 525  1

RTP15  328  84  90 338 512 607  1

RTP16  328  93  87 340 520 511  1

RTP17  328  92  81 354 527 515  1

RTP18  328  77  87 346 510 406  1

RTP19  328  95  87 376 558 493  1

RTP20  328  81  89 360 530 483  1

RTP21  328  97  84 354 535 511  1

RTP22  328  84  84 344 512 468  1

RTP23  328  76  86 347 509 495  1

RTP24  328  84  89 334 507 533  1

RTP25  328  76  87 353 516 528  1

RTP26  328  78  107 374 559 460  1

RTP27  328  77  101 365 543 410  1

RTP28  328  70  86 377 533 460  1

RTP29  328  74  92 354 520 514  1

RTP30  328  76  81 355 512 493  1

Avg   328  84.7  89.7 356.8 531.3 488.8  1
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All transition-pairs (ATP), complete test model, and state-invariant oracle (O1) 

ATP  Complete 
O1     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE TEST 
SUITE 

EXECUTE TEST 
SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.  Sec.   Sec.  Sec.   Sec.  

 

ATP1  1425  26340  520 1722 28582 3377  1

ATP2  1425  26340  429 1794 28563 3260  1

ATP3  1425  26340  474 1685 28499 2680  1

ATP4  1425  26340  488 1850 28678 3465  1

ATP5  1425  26340  527 2260 29127 3418  1

ATP6  1425  26340  507 2374 29221 3582  1

ATP7  1425  26340  483 1916 28739 3747  1

ATP8  1425  26340  531 2258 29129 2665  1

ATP9  1425  26340  469 1991 28800 2612  1

ATP10  1425  26340  518 1860 28718 2607  1

ATP11  1425  26340  629 2131 29100 3110  1

ATP12  1425  26340  512 1720 28572 2861  1

ATP13  1425  26340  386 1851 28577 2958  1

ATP14  1425  26340  518 2018 28876 3618  1

ATP15  1425  26340  549 1632 28521 3944  1

ATP16  1425  26340  636 2361 29337 2830  1

ATP17  1425  26340  519 2539 29398 3124  1

ATP18  1425  26340  555 2045 28940 3310  1

ATP19  1425  26340  528 1827 28695 2976  1

ATP20  1425  26340  576 1859 28775 3542  1

ATP21  1425  26340  542 1597 28479 3959  1

ATP22  1425  26340  523 1553 28416 3175  1

ATP23  1425  26340  491 1546 28377 3909  1

ATP24  1425  26340  493 2038 28871 3978  1

ATP25  1425  26340  506 2158 29004 3906  1

ATP26  1425  26340  529 1987 28856 3298  1

ATP27  1425  26340  548 2012 28900 3774  1

ATP28  1425  26340  563 1890 28793 3643  1

ATP29  1425  26340  573 1973 28886 3385  1

ATP30  1425  26340  520 2274 29134 3527  1

Avg 
 142

5  26340.0  521.4 1957.4 28818.8 3341.3  1
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H. Data Material – AT, RTP, and ATP – Complete Model – Oracle O2 

All transitions (AT), complete test model, and state-pointer oracle (O2) 

AT Complete 
O2     GEN. TREE 

GEN.  TEST 
SUITE  BUILD TEST SUITE 

PREPARE  TEST 
SUITE 

EXECUTE  TEST 
SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

AT1  166  1858  206 185 2249 293  0.8

AT2  165  2034  212 197 2443 386  0.8

AT3  169  2172  223 197 2592 325  0.8

AT4  166  1858  210 235 2303 571  0.8

AT5  168  2236  261 192 2689 318  0.8

AT6  168  2236  250 329 2815 336  0.8

AT7  162  2346  245 182 2773 495  0.8

AT8  167  2445  262 190 2897 454  0.8

AT9  170  2567  253 197 3017 365  0.8

AT10  162  2346  220 193 2759 373  0.8

AT11  168  2236  219 186 2641 312  0.7

AT12  173  2861  262 274 3397 427  0.7

AT13  164  2936  276 210 3422 407  0.8

AT14  165  2034  262 185 2481 510  0.8

AT15  162  2346  241 186 2773 442  0.8

AT16  166  1858  240 179 2277 411  0.8

AT17  171  3269  259 209 3737 359  0.8

AT18  163  15124  240 259 15623 425  0.8

AT19  162  2346  258 196 2800 410  0.8

AT20  169  2172  211 208 2591 348  0.8

AT21  160  3675  227 199 4101 475  0.8

AT22  160  3675  212 220 4107 354  0.8

AT23  163  15124  241 298 15663 433  0.8

AT24  164  2936  272 185 3393 487  0.8

AT25  168  2236  212 183 2631 434  0.8

AT26  165  2034  225 185 2444 386  0.8

AT27  168  2236  230 183 2649 423  0.8

AT28  165  2034  241 179 2454 556  0.8

AT29  173  2861  238 201 3300 472  0.8

AT30  165  2034  226 176 2436 477  0.8

Avg  165.9  3270.8  237.8 206.6 3715.2 415.5  0.796
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All round-trip paths (RTP), complete test model, and state-pointer oracle (O2) 

RTP 
Complete O2     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION SCORE

Test Suite 
Test‐suite 
size  Sec.   Sec.  Sec.  Sec.  Sec. 

 

RTP1  328  105  105 341 551 99  0.8

RTP2  328  66  66 344 476 102  0.8

RTP3  328  85  85 347 517 84  0.8

RTP4  328  116  116 443 675 119  0.8

RTP5  328  71  71 336 478 89  0.8

RTP6  328  68  68 342 478 89  0.8

RTP7  328  68  68 350 486 86  0.8

RTP8  328  89  89 348 526 85  0.8

RTP9  328  67  67 360 494 87  0.8

RTP10  328  66  66 348 480 80  0.8

RTP11  328  98  98 402 598 101  0.8

RTP12  328  109  109 370 588 98  0.8

RTP13  328  106  106 348 560 97  0.8

RTP14  328  114  114 381 609 91  0.8

RTP15  328  84  84 377 545 87  0.8

RTP16  328  93  93 363 549 95  0.8

RTP17  328  92  92 374 558 88  0.8

RTP18  328  77  77 369 523 89  0.8

RTP19  328  95  95 454 644 104  0.8

RTP20  328  81  81 390 552 91  0.8

RTP21  328  97  97 379 573 87  0.8

RTP22  328  84  84 355 523 106  0.8

RTP23  328  76  76 347 499 105  0.8

RTP24  328  84  84 363 531 107  0.8

RTP25  328  76  76 345 497 103  0.8

RTP26  328  78  78 352 508 101  0.8

RTP27  328  77  77 343 497 98  0.8

RTP28  328  70  70 344 484 97  0.8

RTP29  328  74  74 332 480 100  0.8

RTP30  328  76  76 345 497 96  0.8

Avg     84.7  84.7 363.1 532.5 95.4  0.8
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All transition-pairs (ATP), complete test model, and state-pointer oracle (O2) 

ATP  Complete 
O2     GEN. TREE 

GEN.  TEST 
SUITE  BUILD TEST SUITE 

PREPARE  TEST 
SUITE 

EXECUTE 
TEST SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

AT1  1425  26340  420 1746 28506 536  0.80

AT2  1425  26340  383 1829 28552 525  0.73

AT3  1425  26340  430 2319 29089 773  0.73

AT4  1425  26340  417 1595 28352 679  0.73

AT5  1425  26340  451 1514 28305 563  0.73

AT6  1425  26340  428 1544 28312 504  0.73

AT7  1425  26340  449 1654 28443 594  0.73

AT8  1425  26340  437 1560 28337 489  0.73

AT9  1425  26340  437 1556 28333 577  0.73

AT10  1425  26340  408 1673 28421 558  0.73

AT11  1425  26340  637 1713 28690 608  0.73

AT12  1425  26340  447 1901 28688 649  0.73

AT13  1425  26340  426 1711 28477 508  0.80

AT14  1425  26340  562 2646 29548 723  0.80

AT15  1425  26340  424 2530 29294 623  0.67

AT16  1425  26340  434 2304 29078 717  0.73

AT17  1425  26340  514 2662 29516 611  0.73

AT18  1425  26340  430 1723 28493 712  0.73

AT19  1425  26340  401 1873 28614 496  0.73

AT20  1425  26340  370 1791 28501 745  0.73

AT21  1425  26340  650 1803 28793 668  0.73

AT22  1425  26340  464 1845 28649 509  0.73

AT23  1425  26340  465 2033 28838 446  0.60

AT24  1425  26340  429 1621 28390 429  0.73

AT25  1425  26340  454 1630 28424 494  0.73

AT26  1425  26340  491 1636 28467 462  0.73

AT27  1425  26340  382 1650 28372 464  0.73

AT28  1425  26340  450 1995 28785 502  0.73

AT29  1425  26340  486 1716 28542 463  0.73

AT30  1425  26340  509 1566 28415 441  0.73

Avg     26340.0  456.2 1844.6 28640.8 568.9  0.733
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I. Data Material – AT, RTP, and ATP – Abstract Model – Oracle O1 

All transitions (AT), abstract test model, and state-invariant oracle (O1) 

AT  Abstract 
O1     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

AT1  33  110  28 47 185 44  0.20

AT2  33  110  22 45 177 79  0.20

AT3  31  119  26 44 189 91  0.20

AT4  34  123  28 46 197 53  0

AT5  33  110  30 46 186 57  0.20

AT6  35  139  27 50 216 129  0.53

AT7  35  139  26 45 210 40  0.2

AT8  33  110  22 46 178 51  0.2

AT9  33  110  24 44 178 105  0.67

AT10  31  119  25 44 188 70  0.20

AT11  33  110  23 47 180 102  0.80

AT12  33  110  22 45 177 115  0.60

AT13  32  149  27 70 246 84  0.20

AT14  34  123  24 45 192 39  0.20

AT15  34  123  21 47 191 91  0.40

AT16  33  110  19 44 173 53  0.20

AT17  32  149  25 52 226 61  0.20

AT18  31  119  22 56 197 35  0.20

AT19  37  899  23 50 972 71  0.20

AT20  32  149  21 62 232 38  0.20

AT21  33  110  23 44 177 35  0.20

AT22  33  110  24 47 181 61  0.27

AT23  32  149  23 51 223 42  0.20

AT24  31  119  25 50 194 37  0.20

AT25  31  119  23 55 197 29  0.20

AT26  29  128  21 49 198 52  0.20

AT27  35  139  19 48 206 57  0.20

AT28  34  123  22 45 190 51  0.20

AT29  33  110  23 45 178 99  0.20

AT30  29  128  26 57 211 61  0.20

Avg  32.7  148.8  23.8 48.9 221.5 64.4  0.262

 

  



 

219 

 

All round-trip paths (RTP), abstract test model, and state-invariant oracle (O1) 

RTP  Abstract 
O1     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION SCORE

Test Suite 
Test‐suite 
size 

Sec.  Gen. 
Tree 

Sec.  Gen.  Test 
Suite  Sec. Build  Sec.  Sec. Run 

 

RTP1   89  89  19 87 195 75  0.87

RTP2   89  89  20 87 196 72  0.87

RTP3   89  89  23 78 190 64  0.87

RTP4   89  89  15 88 192 62  0.87

RTP5   89  89  18 87 194 62  0.87

RTP6   89  89  16 102 207 62  0.87

RTP7   89  89  17 115 221 52  0.87

RTP8   89  89  24 78 191 58  0.87

RTP9   89  89  32 78 199 60  0.87

RTP10   89  89  20 83 192 77  0.87
RTP11   89  89  15 82 186 60  0.87

RTP12   89  89  15 143 247 52  0.87

RTP13   89  89  28 102 219 75  0.87

RTP14   89  89  21 161 271 71  0.87

RTP15   89  89  22 198 309 88  0.87

RTP16   89  89  21 121 231 84  0.87

RTP17   89  89  16 93 198 84  0.87

RTP18   89  89  21 95 205 89  0.87

RTP19   89  89  18 134 241 100  0.87

RTP20   89  89  24 90 203 73  0.87

RTP21   89  89  15 82 186 76  0.87

RTP22   89  89  15 78 182 74  0.87

RTP23   89  89  17 76 182 74  0.87

RTP24   89  89  17 78 184 76  0.87

RTP25   89  89  17 77 183 75  0.87

RTP26   89  89  16 81 186 73  0.87

RTP27   89  89  16 77 182 73  0.87

RTP28   89  89  16 77 182 75  0.87

RTP29   89  89  15 78 182 73  0.87

RTP30   89  89  15 79 183 75  0.87

Avg   89  89.0  18.8 96.2 204.0 72.1  0.87
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All transition pairs (ATP), abstract test model, and state-invariant oracle (O1) 

ATP 
Abstract O1     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE TEST 
SUITE 

EXECUTE 
TEST SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

ATP1  301  703  104 312 1119 313  0.867 

ATP2  301  703  78 317 1098 312  0.867 

ATP3  301  703  80 319 1102 358  0.867 

ATP4  301  703  89 319 1111 478  0.867 

ATP5  301  703  92 315 1110 313  0.867 

ATP6  301  703  88 319 1110 406  0.867 

ATP7  301  703  90 316 1109 215  0.867 

ATP8  301  703  89 344 1136 366  0.867 

ATP9  301  703  91 344 1138 338  0.867 

ATP10  301  703  87 334 1124 427  0.867 

ATP11  301  703  72 314 1089 401  0.867 

ATP12  301  703  83 353 1139 348  0.867 

ATP13  301  703  80 315 1098 343  0.867 

ATP14  301  703  83 324 1110 415  0.867 

ATP15  301  703  82 348 1133 467  0.867 

ATP16  301  703  85 313 1101 495  0.867 

ATP17  301  703  84 321 1108 330  0.867 

ATP18  301  703  86 339 1128 441  0.867 

ATP19  301  703  87 331 1121 509  0.867 

ATP20  301  703  89 330 1122 356  0.867 

ATP21  301  703  93 354 1150 405  0.867 

ATP22  301  703  83 333 1119 504  0.867 

ATP23  301  703  85 317 1105 515  0.867 

ATP24  301  703  86 323 1112 394  0.867 

ATP25  301  703  89 314 1106 436  0.867 

ATP26  301  703  89 325 1117 296  0.867 

ATP27  301  703  89 331 1123 372  0.867 

ATP28  301  703  85 316 1104 362  0.867 

ATP29  301  703  88 310 1101 403  0.867 

ATP30  301  703  92 311 1106 528  0.867 

Avg   301  703.0  86.6 325.4 1115.0 394.9  0.867 
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J. Data Material – AT, RTP, and ATP – Abstract Model – Oracle O2 

All transitions (AT), abstract test model, and state-pointer oracle (O2) 

AT  Abstract 
O2     GEN. TREE 

GEN.  TEST 
SUITE  BUILD TEST SUITE

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION SCORE

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.  Sec.  Sec. 

 

AT1  33  110  22 62 194 24  0.20

AT2  33  110  14 50 174 18  0

AT3  31  119  16 44 179 19  0

AT4  34  123  15 50 188 18  0

AT5  33  110  14 45 169 16  0.33

AT6  35  139  15 49 203 21  0

AT7  35  139  14 46 199 11  0

AT8  33  110  15 49 174 14  0.40

AT9  33  110  14 49 173 14  0

AT10  31  119  13 53 185 13  0.53

AT11  33  110  19 81 210 25  0.40

AT12  33  110  15 56 181 36  0

AT13  32  149  17 57 223 13  0

AT14  34  123  15 63 201 12  0.20

AT15  34  123  14 57 194 18  0

AT16  33  110  22 44 176 10  0

AT17  32  149  16 43 208 15  0

AT18  31  119  14 42 175 12  0

AT19  37  899  14 52 965 20  0

AT20  32  149  14 43 206 11  0

AT21  33  110  14 47 171 13  0

AT22  33  110  14 44 168 18  0

AT23  32  149  14 43 206 13  0

AT24  31  119  14 42 175 9  0

AT25  31  119  14 44 177 11  0

AT26  29  128  14 43 185 19  0

AT27  35  139  14 46 199 22  0

AT28  34  123  14 46 183 9  0.20

AT29  33  110  14 44 168 37  0

AT30  29  128  15 42 185 16  0.20

Avg  32.7  148.8  15.1 49.2 213.1 16.9  0.076
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All round-trip paths (RTP), abstract test model, and state-pointer oracle (O2) 

RTP Abstract 
O2     GEN. TREE  GEN. TEST SUITE BUILD TEST SUITE

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION SCORE

Test Suite 
Test‐suite 
size  Sec.  Sec.  Sec.   Sec.   Sec.  

 

RTP1   89 89  19 79 187 45  0.6

RTP2   89 89  25 92 206 23  0.6

RTP3   89 89  14 97 200 20  0.6

RTP4   89 89  15 80 184 21  0.6

RTP5   89 89  15 83 187 22  0.6

RTP6   89 89  15 81 185 21  0.6

RTP7   89 89  12 85 186 17  0.6

RTP8   89 89  13 80 182 19  0.6

RTP9   89 89  14 86 189 17  0.6

RTP10   89 89  13 86 188 23  0.6

RTP11   89 89  13 88 190 27  0.6

RTP12   89 89  17 95 201 15  0.6

RTP13   89 89  14 78 181 17  0.6

RTP14   89 89  15 76 180 20  0.6

RTP15   89 89  17 78 184 21  0.6

RTP16   89 89  13 82 184 14  0.6

RTP17   89 89  13 78 180 19  0.6

RTP18   89 89  13 77 179 15  0.6

RTP19   89 89  13 106 208 15  0.6

RTP20   89 89  13 90 192 21  0.6

RTP21   89 89  35 122 246 47  0.6

RTP22   89 89  17 144 250 22  0.6

RTP23   89 89  22 91 202 21  0.6

RTP24   89 89  16 89 194 25  0.6

RTP25   89 89  18 91 198 23  0.6

RTP26   89 89  17 91 197 22  0.6

RTP27   89 89  16 98 203 22  0.6

RTP28   89 89  14 82 185 26  0.6

RTP29   89 89  16 82 187 20  0.6

RTP30   89 89  20 87 196 22  0.6

Avg   89 89.0  16.2 89.1 194.4 22.1  0.6
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All transition pairs (ATP), abstract test model, and state-pointer oracle (O2) 

ATP  Abstract 
O2     GEN. TREE  GEN. TEST SUITE  BUILD TEST SUITE 

PREPARE 
TEST SUITE 

EXECUTE 
TEST SUITE 

MUTATION 
SCORE 

Test Suite 
Test‐suite 
size  Sec.   Sec.   Sec.   Sec.   Sec.  

 

ATP1  301  703  93 355 1151 93  0.60 

ATP2  301  703  71 318 1092 83  0.60 

ATP3  301  703  71 314 1088 99  0.60 

ATP4  301  703  75 312 1090 117  0.67 

ATP5  301  703  74 313 1090 91  0.67 

ATP6  301  703  82 318 1103 122  0.67 

ATP7  301  703  77 314 1094 65  0.60 

ATP8  301  703  76 325 1104 116  0.67 

ATP9  301  703  77 318 1098 106  0.60 

ATP10  301  703  82 337 1122 124  0.60 

ATP11  301  703  69 316 1088 115  0.60 

ATP12  301  703  63 348 1114 122  0.67 

ATP13  301  703  69 324 1096 100  0.67 

ATP14  301  703  70 344 1117 105  0.60 

ATP15  301  703  82 326 1111 135  0.60 

ATP16  301  703  69 325 1097 101  0.67 

ATP17  301  703  69 333 1105 126  0.67 

ATP18  301  703  68 388 1159 132  0.67 

ATP19  301  703  68 349 1120 177  0.67 

ATP20  301  703  95 341 1139 113  0.60 

ATP21  301  703  65 472 1240 122  0.60 

ATP22  301  703  80 409 1192 130  0.60 

ATP23  301  703  93 372 1168 145  0.67 

ATP24  301  703  92 315 1110 97  0.67 

ATP25  301  703  100 322 1125 123  0.60 

ATP26  301  703  114 394 1211 95  0.67 

ATP27  301  703  89 447 1239 124  0.60 

ATP28  301  703  126 415 1244 117  0.60 

ATP29  301  703  115 550 1368 142  0.60 

ATP30  301  703  71 385 1159 140  0.67 

Avg   301  703.0  81.5 356.6 1141.1 115.9  0.63 
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K. Statistical Tests for Case Study 1 

The paired Wilcoxon signed-rank test was used for comparing the testing strategies. The 

following abbreviates are used in the tests:  

 AT: the all transitions coverage criterion 

 RTP: the all round-trip paths coverage criterion 

 ATP: the all transition pairs coverage criterion 

 Complete: the detailed test model 

 Abstract: the test model where contents in super states were removed 

 O1: the state-invariant oracle 

 O2: the state-pointer oracle 

 Prep: the time spent on preparing the test suite 

 Exec: the time spent on executing the test suite 

 Mut. score: the mutation score; that is, the number of non-equivalent mutants 

killed divided by the total number of non-equivalent mutants 

 

The following paired Wilcoxon signed-rank test was run: 

 

Preparation time 

RTP versus ATP 

H_O: Complete_O1_RTP_Prep.time = Complete_O1_ATP_Prep.time  

data:  x$RTP.prep.complete.O1 and x$ATP.prep.complete.O1 

V = 0, p-value = 1.863e-09 

A statistic = 0  

 

AT versus RTP 

H_0: Complete_O1_AT_Prep.time = Complete_RTP_O1_Prep.time  

wilcox.test(x, y, paired=TRUE, conf.level=0.99) 

a.statistic.default(x$strategy.measure.test model.oracle,  

x$strategy.measure.test model.oracle) 
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data:  x$AT.prep.complete.O1 and x$RTP.prep.complete.O1 

V = 465, p-value = 1.863e-09 

A statistic = 1 

AT versus ATP 

H_0: Complete_O1_AT_Prep.time = Complete_ATP_O1_Prep.time   

data:  x$AT.prep.complete.O1 and x$ATP.prep.complete.O1 

V = 0, p-value = 1.863e-09 (sign!) 

A statistics = 1 

Execution time 

RPT versus ATP 

H_O: Complete_O1_RTP_Exec.time = Complete_ATP_O1_Exec.time  

data:  x$RTP.exec.complete.O1 and x$ATP.exec.complete.O1 

V = 0, p-value = 1.863e-09 

A statistic = 0 

AT versus RTP 

H_0: Complete_O1_AT_Exec.time = Complete_RTP_O1_Exec.time  

data:  x$AT.exec.complete.O1 and x$RTP.exec.complete.O1 

V = 465, p-value = 1.824e-06  

A statistics = 1 

AT versus ATP 

H_0: Complete_O1_AT_Exec.time = Complete_ATP_O1_Exec.time  

data:  x$AT.exec.complete.O1 and x$ATP.exec.complete.O1 

V = 9, p-value = 4.5e-06 

A statistic = 0.08555556 
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Mutation score 

RTP versus ATP 

H_O: Complete_O1_RTP_Mut.score = Complete_ATP_O1_Mut.score  

data:  x$RTP.Mut.Score.O1 and x$ATP.Mut.Score.O1 

V = 0, p-value = NA  

A statistics = 0.5  

AT versus RTP 

H_0: Complete_O1_AT_Mut.score = Complete_RTP_O1_Mut.score  

data:  x$AT.Mut.Score.O1 and x$RTP.Mut.Score.O1 

V = 0, p-value = NA  

A statistics = 0.5  

AT versus ATP 

H_0: Complete_O1_AT_Mut.score = Complete_ATP_O1_Mut.score  

data:  x$AT.Mut.Score.O1 and x$ATP.Mut.Score.O1 

V = 0, p-value = NA  

A statistics = 0.5 (no effect) 
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L. Statistical Tests for Case Study 2 

The paired Wilcoxon signed-rank test was used for comparing the test oracles. The 

following abbreviates are used in the tests:  

 AT: the all transitions coverage criterion 

 RTP: the all round-trip paths coverage criterion 

 ATP: the all transition pairs coverage criterion 

 Complete: the detailed test model 

 Abstract: the test model where contents in super states were removed 

 O1: the state-invariant oracle 

 O2: the state-pointer oracle 

 Prep: the time spent on preparing the test suite 

 Exec: the time spent on executing the test suite 

 Mut. score: the mutation score; that is, the number of non-equivalent mutants 

killed divided by the total number of non-equivalent mutants 

 

The following paired Wilcoxon signed-rank test was run: 

 

Preparation time 

AT – The state-invariant oracle versus the state-pointer oracle 

AT.prep.complete.[O1|O2]: 1.824e-06 (they are different) 

a.statistic.default(sample1 = f$AT.prep.complete.O1, sample2 = 

f$AT.prep.complete.O2) 

A statistic = 0.6722222 

95% confidence interval for A = [0.521, 0.794] 

99% confidence interval for A = [0.474, 0.824] 

wilcox.test(x, y, paired=TRUE, conf.level=0.99) 

a.statistic.default(x$strategy.measure.test model.oracle,  

x$strategy.measure.test model.oracle) 
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RTP – The state-invariant oracle versus the state-pointer oracle 

RTP.-"-: p=1 (no SSD) 

ATP – The state-invariant oracle versus the state-pointer oracle 

ATP.-"-: p=0.03272 (they are different) 

a.statistic.default(sample1 = f$ATP.prep.complete.O1, sample2 = 

f$ATP.prep.complete.O2) 

A statistic = 0.7227778 

95% confidence interval for A = [0.573, 0.835] 

99% confidence interval for A = [0.524, 0.860] 

 

Execution time 

AT – The state-invariant oracle versus the state-pointer oracle 

AT.exec.complete.[O1|O2]: 1.824e-06 

a.statistic.default(sample1 = f$AT.exec.complete.O1, sample2 = 

f$AT.exec.complete.O2) 

A statistic = 1  

95% confidence interval for A = [NA, NA] 

99% confidence interval for A = [NA, NA] 

RTP – The state-invariant oracle versus the state-pointer oracle 

RTP.-"-: 1.822e-06 

a.statistic.default(sample1 = f$RTP.exec.complete.O1, sample2 = 

f$RTP.exec.complete.O2) 

A statistic = 1 

95% confidence interval for A = [NA, NA] 

99% confidence interval for A = [NA, NA] 

ATP – The state-invariant oracle versus the state-pointer oracle 

ATP.-"-: 1.863e-09 
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a.statistic.default(sample1 = f$ATP.exec.complete.O1, sample2 = 

f$ATP.exec.complete.O2) 

A statistic = 1 

95% confidence interval for A = [NA, NA] 

99% confidence interval for A = [NA, NA] 

 

Mutations score – The complete test model 

AT – The state-invariant oracle versus the state-pointer oracle 

AT.mut.score[O1|O2]: p=1.08e-07 

a.statistic.default(sample1 = f$AT.Mut.Score.O1, sample2 = 

f$AT.Mut.Score.O2) 

A statistic = 1 

95% confidence interval for A = [NA, NA] 

99% confidence interval for A = [NA, NA] 

RTP – The state-invariant oracle versus the state-pointer oracle 

RTP.mut.score[O1|O2]: p=4.616e-08 

a.statistic.default(sample1 = f$RTP.Mut.Score.O1, sample2 = 

f$RTP.Mut.Score.O2) 

A statistic = 1 

95% confidence interval for A = [NA, NA] 

99% confidence interval for A = [NA, NA] 

ATP – The state-invariant oracle versus the state-pointer oracle 

ATP.mut.score[O1|O2]: p=2.765e-07 

a.statistic.default(sample1 = f$ATP.Mut.Score.O1, sample2 = 

f$ATP.Mut.Score.O2) 

A statistic = 1 

95% confidence interval for A = [NA, NA] 

99% confidence interval for A = [NA, NA] 
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M. Statistical Tests for Case Study 3 

The non-paired Wilcoxon signed-rank test was used for comparing the abstract and 

complete test models. The following abbreviates are used in the tests:  

 AT: the all transitions coverage criterion 

 RTP: the all round-trip paths coverage criterion 

 ATP: the all transition pairs coverage criterion 

 Complete: the detailed test model 

 Abstract: the test model where contents in super states were removed 

 O1: the state-invariant oracle 

 O2: the state-pointer oracle 

 Prep: the time spent on preparing the test suite 

 Exec: the time spent on executing the test suite 

 Mut. score: the mutation score; that is, the number of non-equivalent mutants 

killed divided by the total number of non-equivalent mutants 

 

The following non-paired Wilcoxon signed-rank test was run: 

 

Preparation time 

The abstract test model versus the complete test model using the state-invariant oracle 

H_0: ABSTRACT_O1_PREP.TIME = COMPLETE_O1_PREP.TIME (non-paired)  

data:  x$ABS.PREP.TIME.O1 and x$COMP.PREP.TIME.O1 

W = 930, p-value < 2.2e-16 

The abstract test model versus the complete test model using the state-pointer oracle 

H_0: ABSTRACT_O2_PREP.TIME = COMPLETE_O2_PREP.TIME (non-paired) 

data:  x$ABS.PREP.TIME.O2 and x$COMP.PREP.TIME.O2 

W = 930, p-value < 2.2e-16  

wilcox.test(x, y, paired=FALSE, conf.level=0.95) 

a.statistic.default(x$strategy.measure.test model.oracle,  

x$strategy.measure.test model.oracle) 
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The abstract test model versus the complete test model using the state-invariant oracle and the state-

pointer oracle 

H_0: ALL_ABSTRACT_PREP.TIME = ALL_COMPLETE_PREP.TIME (non-paired) 

data:  x$ABS.PREP.TIME and x$COMP.PREP.TIME 

W = 3720, p-value < 2.2e-16 

A statistics: 

a.statistic.default(sample1 = x$ABS.PREP.TIME, sample2 = 

x$COMP.PREP.TIME) 

A statistic = 0.1148148 

95% confidence interval for A = [0.086, 0.152] 

99% confidence interval for A = [0.078, 0.166] 

Execution time 

The abstract test model versus the complete test model using the state-invariant oracle 

H_0: ABSTRACT_O1_EXEC.TIME = COMPLETE_O1_EXEC.TIME (non-paired) 

data:  x$ABS.EXEC.TIME.O1 and x$COMP.EXEC.TIME.O1 

W = 141, p-value < 2.2e-16 

The abstract test model versus the complete test model using the state-pointer oracle 

H_0: ABSTRACT_O2_EXEC.TIME = COMPLETE_O2_EXEC.TIME (non-paired) 

data:  x$ABS.EXEC.TIME.O2 and x$COMP.EXEC.TIME.O2 

W = 736.5, p-value < 2.2e-16 

The abstract test model versus the complete test model using the state-invariant oracle and the state-

pointer oracle 

H_0: ALL_ABSTRACT_EXEC.TIME = ALL_COMPLETE_EXEC.TIME (non-paired) 

data:  x$ABS_EXEC and x$COMP_EXEC 

W = 2426.5, p-value < 2.2e-16 

 

A statistics: 

a.statistic.default(sample1 = x$ABS_EXEC, sample2 = x$COMP_EXEC) 

A statistic = 0.07489198 

95% confidence interval for A = [0.054, 0.104] 
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99% confidence interval for A = [0.048, 0.114] 

Mutation score 

The abstract test model versus the complete test model using the state-invariant oracle 

H_0: ABSTRACT_O1_MUT.SCORE = COMPLETE_O1_MUT.SCORE (non-paired) 

data:  x$ABS.MUT.SCORE.O1 and x$COMP.MUT.SCORE.O1 

W = 0, p-value < 2.2e-16 

The abstract test model versus the complete test model using the state-pointer oracle 

H_0: ABSTRACT_O2_MUT.SCORE = COMPLETE_O2_MUT.SCORE (non-paired) 

data:  x$ABS.MUT.SCORE.O2 and x$COMP.MUT.SCORE.O2 

W = 44, p-value < 2.2e-16 

The abstract test model versus the complete test model using the state-invariant oracle and the state-

pointer oracle 

H_0: ALL_ABSTRACT_MUT = ALL_COMPLETE_MUT (non-paired) 

data:  x$All.Abstract and x$All.Complete 

W = 5505.5, p-value < 2.2e-16 

 

A statistics:  

a.statistic.default(sample1 = x$All.Abstract, sample2 = 

x$All.Complete) 

 

A statistic = 0.1699228 

95% confidence interval for A = [0.132, 0.217] 

99% confidence interval for A = [0.121, 0.233] 
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