
Empirical Evaluations on the Cost-Effectiveness of

 State-Based Testing:

 Industrial Case Studies and Extensible Tool

 Thesis submitted for the degree of Ph.D.

by

 Nina Elisabeth Holt

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo, 2012

Kolofonside (dvs. Copyright- siden, settes av forlaget).

i

Abstract
Software testing is often conducted as a manual, ad hoc task, as compared to following an

automated and more systematic procedure. Consequently, testing is likely to be incomplete

and costly to ensure the required level of dependability. Safety-critical software systems must

be tested so as to ensure its safe behavior. Despite the importance of being systematic while

testing, all testing activities take place, even for safety-critical software, under resource

constraints. In order for industry to make the right choices when deciding on how to test their

software, more knowledge about how various testing strategies compare in terms of cost-

effectiveness is necessary. As thorough software testing is an expensive task, reducing the cost

of testing while ensuring sufficient fault-detection effectiveness should be of common interest

to industry. Enabling automated testing to check the compliance of implementations against

their specifications, model-based testing has become a popular area of research and practice.

Test models, for example expressed as UML state machines, describe the expected behavior of

the software and provide the basis for systematic and automated generation of test suites. One

specific area of research is related to how different coverage criteria of the test models affect

the cost-effectiveness of the resulting test suites.

This thesis assesses six state-based coverage criteria and evaluates their cost and fault-

detection effectiveness based on 26 real faults collected in a field study at ABB. Eleven of the

faults were sneak paths – thus, only 15 of the faults could be killed by the six conformance

coverage criteria. Two different test oracles have been applied to compare their cost-

effectiveness. Moreover, this thesis also investigates the effect of increasing the test-model

abstraction level on the cost-effectiveness of the testing strategies. The coverage criteria were

complemented with sneak-path testing. To enable evaluation of the state-based testing

techniques, a model-based testing approach, TRUST, was developed and used to

automatically generate the studied test suites. Four industrial case studies evaluate each of

the testing aspects: coverage criteria, oracles, test models, and sneak paths. The case studies

are based on a research project at ABB where a safety-monitoring component in a control

system was developed using state machines and implemented according to the extended state-

design pattern.

The findings of this thesis include: (1) Development and demonstration of a model-based

testing approach based on model transformations. (2) An empirical investigation of the cost-

effectiveness of six systematic coverage criteria applied in an industrial project and evaluated

by using real faults: all transitions (AT), all round-trip paths (RTP), all transition pairs

ii

(ATP), paths of length 2 (LN2), paths of length 3 (LN3), and paths of length 4 (LN4). (3) A

comparison of two oracles: Oracle O1 checks the state invariant of the resulting state in

addition to that the current state pointer of the system corresponds to the expected state after

the test. Oracle O2 only checks that the state pointer to the current state of the system

corresponds to the expected state after the test. (4) An evaluation of the cost-effectiveness

when varying the level of details in the test model. (5) A demonstration of the importance of

sneak-path testing.

The results show that test suites generated from a precise model according to coverage

criteria AT, RTP, ATP, and LN4 when utilizing oracle O1, yields high-quality test suites

powerful enough to detect the seeded faults (except from sneak paths). The average cost

measured as preparation and execution time were as follows: AT: 5,603 seconds; RTP: 2,731

seconds; ATP: 32,160 seconds; and LN4: 6,145 seconds. LN3 killed 93 percent (14/15) of the

mutants at the cost of 645 seconds. Across all six coverage criteria, 88 percent of the seeded

faults were detected at 7,905 seconds in preparation and execution time. Applying the weaker

oracle O2 at an average decrease in cost around 13 percent, 67 percent of the mutants were

killed. By removing details from the test model, the cost of testing was significantly decreased

with 85 percent (for both oracles O1 and O2), while only reducing the fault-detection ability

by 24 percent for oracle O1 and 37 percent for oracle O2. Note that these results were

obtained in spite of a high number of infeasible test cases in test suites generated from the

less detailed model as a consequence of wrong test data.

Moreover, the sneak-path test suite detected the eleven remaining mutants that could not

be killed by any of the conformance test suites. Thus, the results indicate quite strongly that

sneak-path testing is a necessary step in state-based testing as the presence of sneak paths is

undetectable by conformance testing.

Finally, this thesis has demonstrated how model transformations can enable state-based

testing. The tool was demonstrated to be extensible to support different types of state-based

coverage criteria and oracles.

iii

Acknowledgements
First of all, I would like to thank my highly inspiring and motivating supervisors Richard

Torkar and Lionel Briand for their brilliant advices, encouragement, help and support. Also a

special thank to Erik Arisholm for being my main supervisor from 2009 to 2011. This thesis

would not be possible without you!

Furthermore, I would like to thank:

 Dag Sjøberg for encouraging me to apply for PhD.

 Bente Anda for being my main supervisor from 2006 to 2008.

 ABB NOCRC for including me in their project and helping me to recruit subjects

to a field study in several of ABB’s international departments. In particular, Kai

Hansen, Jan Endresen, Knut Asskildt, Sverre Frøystein, and Ingolf Gullesen.

 ABB’s research departments in Shanghai, Baden, and Västerås for participating in

the field study.

 The Simula Management and Administration, and the Simula School of research

for their guidance and support. In particular, Aslak Tveito, Are Magnus Bruaset,

Kristin Vinje, and Olav Lysne.

 Hadi Hemmati and Shaukat Ali for excellent cooperation on the development of

TRUST.

 My office mates Muhammad Zohaib Iqbal and Amir Reza Yazdanshenas for

inspiring discussions.

 Magne Jørgensen, Hans Christian Benestad, Stein Grimstad, Jo Hannay, Gunnar

Bergersen, Vigdis By Kampenes, James Dzidek, Audun Fosselie Hansen, Kristin

Børte, Aiko Yamashita, Rajwinder Kaur Panesar-Walawege, Tanja Grösche, and

Kjetil Moløkken for fascinating discussions and social gatherings.

 The employees at Simula for making a nice work environment.

 Accedo, Genus, and PDMT for being supportive, understanding, and patient.

Great thanks to my very best friends who have supported me throughout these years, and

given me priceless memories and environmental change. Special thanks to my dearest Petter

Christian Geruldsen and my soul mate Ingrid Schrøen Maudal for their care, support and love.

Last but not least, thanks to my family, especially my mother and father who always back

me up, motivate and encourage me. I owe you everything. An extra thank you to my sister

iv

who accompanied me to Shanghai, being very supportive in a difficult period of my life, and

to my very best brother for enlivening my life with his brilliant and amusing humor.

v

Contents
1 Introduction ... 1

1.1 Motivation .. 1

1.2 Research Goal ... 3

1.3 Research Method .. 5

1.4 Contributions .. 6

1.5 Publications .. 7

1.6 Thesis Organization .. 8

PART I – INTRODUCTION ... 9

2 Background Concepts and Definitions .. 9

2.1 Software Testing ... 9

2.1.1 Basic Testing Concepts .. 9

2.1.2 Model-Based Testing ... 10

2.1.3 Modeling Notations in Model-Based Testing .. 11

2.1.4 State-Based Testing.. 12

2.1.5 State-Based Coverage .. 13

2.1.6 Mutation Analysis .. 15

2.2 Research Methods in Empirical Software Engineering .. 15

2.2.1 Experiments ... 16

2.2.2 Case Studies ... 17

2.2.3 Surveys ... 17

3 Evaluating Testing strategies... 18

3.1 Non-Representative Sample of Related Work .. 18

3.1.1 Coverage Criteria ... 18

3.1.2 Oracle Comparisons ... 26

3.1.3 Test-Suite Reduction .. 27

3.1.4 Sneak-Path Testing .. 27

3.1.5 Tool Development and Practical Evaluations .. 27

3.2 Semi-Structured Literature Review from 2009 to 2011 ... 31

3.2.5 Research Method.. 31

3.2.6 Results .. 31

3.2.7 Summary .. 33

4 Limitations in Existing Research .. 34

vi

5 Development of a Model-Based Testing Tool .. 36

5.1 Requirements, Design, and Implementation of TRUST ... 37

5.1.1 Requirements and Approach .. 37

5.1.2 Development of TRUST using a Model-Transformation Approach 40

5.1.3 Generation of Test Cases ... 48

5.1.4 Execution of Test Cases ... 51

6 Lessons Learned .. 54

6.1 Modeling the SUT .. 54

6.2 Model-to-Model Transformation Technologies ... 54

6.3 Model-to-Text Transformation Technology ... 55

PART III – COST-EFFECTIVENESS ANALYSIS ... 56

Introduction .. 56

7 Design of Case Studies on the Cost-Effectiveness of State-Based Testing 57

7.1 Rationale for Selected Research Method .. 57

7.2 Case Study Design .. 58

7.2.5 Research Objectives ... 58

7.2.6 Case Selection .. 62

7.2.6.1 Organization .. 62

7.2.6.2 Software Process Improvement Project .. 62

7.2.6.3 System Functionality for Selected Sub System .. 63

7.2.6.4 Modeling and Coding ... 63

7.2.7 Data Collection Procedures .. 64

7.2.7.1 (A1) Preparing Test Models .. 65

7.2.7.2 (A2) Collecting Fault Data for Creating Mutants ... 69

7.2.7.3 (A3) Extending and Configuring the Tool .. 71

7.2.7.4 (A4) Generating Test Suites .. 75

7.2.7.5 (A5) Executing Test Suites ... 76

7.2.8 Analysis Procedures ... 78

7.2.8.1 Quantitative Analyses ... 78

7.2.8.2 Qualitative Analyses ... 79

7.2.9 Validity Procedures .. 79

vii

8 Case Study 1 – What is the Cost-Effectiveness of the State-Based Coverage Criteria All

Transitions, All Round-Trip Paths, All Transition Pairs, Paths of Length 2, Paths of Length 3,

and Paths of Length 4? ... 82

8.1 Descriptive Statistics .. 82

8.1.5 Descriptive Statistics for Cost .. 82

8.1.5.1 Test-Suite Size .. 82

8.1.5.2 Time .. 84

8.1.6 Descriptive Statistics for Effectiveness.. 90

8.2 Statistical Tests ... 92

8.3 Cost-Effectiveness .. 95

8.4 Analysis of Mutant Survival ... 98

8.5 Related Work .. 99

8.6 Discussion ... 102

8.7 Summary ... 103

9 Case Study 2 – How does Varying the Oracle Affect the Cost-Effectiveness? 105

9.1 Descriptive Statistics .. 105

9.1.1 Descriptive Statistics for Cost .. 105

9.1.1.1 Test-Suite Size .. 105

9.1.1.2 Time .. 106

9.1.2 Descriptive Statistics for Effectiveness.. 111

9.2 Statistical Tests ... 113

9.3 Cost-Effectiveness – Oracle O1 versus Oracle O2 ... 116

9.4 Analysis of Mutant Survival ... 120

9.5 Related Work .. 121

9.6 Discussion ... 125

9.7 Summary ... 126

10 Case Study 3 – What is the Influence of the Test Model Abstraction Level on the Cost-

Effectiveness? ... 128

10.1 Descriptive Statistics .. 128

10.1.1 Descriptive Statistics for Cost .. 128

10.1.1.1 Test-Suite Size .. 129

10.1.1.2 Time .. 130

10.1.2 Descriptive Statistics for Effectiveness .. 139

viii

10.2 Statistical Tests ... 143

10.3 Cost-Effectiveness .. 147

10.4 Analysis of Mutant Survival ... 150

10.5 Related Work .. 151

10.6 Discussion ... 152

10.7 Summary – Cost-Effectiveness for Complete Test Model versus Abstract Test

Model .. 153

11 Case Study 4 – What is the Impact of Sneak-Path Testing on the Cost-Effectiveness?

 .. 156

11.1 Cost ... 156

11.1.1 Test-Suite Size ... 156

11.1.2 Time ... 158

11.2 Effectiveness ... 162

11.3 Summary ... 165

PART IV – SUMMARY .. 166

Introduction .. 166

12 Lessons Learned .. 167

12.1 Remove Illegal State Combinations and Infeasible Transitions from the Flattened

State Machine ... 167

12.2 Modeling and Coding to Facilitate Automation of State-Based Testing 167

12.3 Improving the Model/Code through Iterative State-Based Testing 170

12.4 Test Results provided by the Oracle ... 171

12.5 Practical Issues – Visual Studio caused Re-Run of Test-Suites 172

13 Validity .. 172

13.1 External Validity ... 172

13.2 Internal Validity .. 174

13.3 Construct Validity ... 175

13.4 Reliability ... 176

14 Conclusions ... 177

14.1 Case Study 1 – What is the Cost-Effectiveness of the State-Based Coverage

Criteria All Transitions, All Round-Trip Paths, All Transition Pairs, Paths of Length 2,

Paths of Length 3 and Paths of Length 3? .. 178

14.2 Case Study 2 – How does Varying the Oracle Affect the Cost-Effectiveness? ... 180

ix

14.3 Case Study 3 – What is the Influence of the Test Model Abstraction Level on the

Cost-Effectiveness? .. 181

14.4 Case Study 4 – What is the Impact of Sneak-Path Testing on the Cost-

Effectiveness? ... 183

14.5 Summary ... 185

15 Future Work .. 186

15.1 Oracles .. 186

15.2 Test Models .. 186

15.3 Test Trees.. 186

15.4 Model versus Implementation Coverage .. 187

15.5 Test Data Selection ... 187

15.6 Cost ... 187

15.7 Cost of Initial Investment ... 187

15.8 Industrial Context ... 187

15.9 Tools ... 188

15.10 Guidelines ... 188

15.11 Choice of Research Method.. 188

Bibliography ... 189

A. Overview of Research Activities ... 201

B. Semi-Structured Literature Review ... 203

C. State Machines – Original Version .. 206

D. State Machines – Modified Version of SUT ... 208

E. State Machine – Experiment Version (Complete Test Model) 210

F. State Machine – Experiment Version (Abstract Test Model) 211

G. Data Material – AT, RTP, and ATP – Complete Model – Oracle O1 212

H. Data Material – AT, RTP, and ATP – Complete Model – Oracle O2 215

I. Data Material – AT, RTP, and ATP – Abstract Model – Oracle O1 218

J. Data Material – AT, RTP, and ATP – Abstract Model – Oracle O2 221

K. Statistical Tests for Case Study 1 .. 224

L. Statistical Tests for Case Study 2 .. 227

M. Statistical Tests for Case Study 3 .. 230

x

1

1 Introduction

1.1 Motivation

Today’s society highly depends on advanced software, both in private and public sectors.

More importantly, as certain uses of software are safety-critical, in the sense that faults in the

software may cause serious damage to human beings and physical items, our society depends

on software that behaves as intended. Examples of safety critical software are the control

systems that monitor industrial productions. A typical characteristic of such control systems is

that their behaviours depend on the current state of the system.

With software comes the potential of increasing efficiency. Unfortunately, however, along

comes the risk of introducing software faults that can cause software to behave undesirable.

Both fatal and severe incidents due to software failures during the last decades motivate the

need for continuous research on software testing. In short, there is a need for evolving the

procedures of software testing.

One approach to software testing derives test cases from a behaviour model of a system,

known as Model-Based Testing (MBT) [1]. MBT is not a new domain of research in software

engineering [2]. However, in recent years, the level of interest in industry and academia has

been rapidly increasing. This interest can be seen from the many academic studies [1, 3, 4, 5,

6, 7] and industrial projects [8, 9, 10, 11] on model-based testing being reported. This

suggests that there is an increasing awareness of the benefits offered by MBT [1].

Being one of several possible input models to MBT, state machines are widely used to

specify the behaviour of the most critical and complex classes that exhibit state-driven

behaviour [12]. State machines are also highly appropriate to facilitate class design; one

approach is to follow the state design pattern [13] as demonstrated in [14]. Many object-

oriented methodologies recommend modelling components with a state-dependent behaviour

with state models for the purpose of testing [12]. This is particularly due to the fact that the

specification of a software product can be used as a guide for designing functional tests for

the product [15]. As stated by Offutt et al. [16], formal specifications represent a significant

opportunity for testing because they precisely describe what functions the software is

supposed to provide. In particular, such specifications enable automatic generation of test

cases using model-based testing tools.

2

Tool support for MBT has dramatically improved in recent years, but most of the tools

specifically target an application context and cannot easily be adapted to others. Many tools

have been developed to support MBT [8, 17, 18, 19, 20, 21, 11]. However, all of them have at

least one of the following drawbacks:

 They do not support well-established standards for modelling the System Under

Test (SUT). This makes it difficult to integrate MBT with the rest of the

development process, which in turn makes the adaptation and use of MBT more

costly.

 They cannot be easily customized to different needs and contexts. For example, a

tester may want to experiment with different testing strategies to help target

specific kinds of faults. Furthermore, constraints can evolve, e.g., the test-scripting

language in a company can change.

Coverage criteria define how thoroughly the software is tested. The cost-effectiveness of

testing significantly depends on the coverage criteria being applied, and constitutes a tradeoff

between increasing fault-detection effectiveness and reducing the size of the test suite

(affecting costs). Hence, evidence on the cost-effectiveness should be a useful guide for the

industry on how to select the appropriate coverage criterion related to cost and criticality of

the system under test (SUT). Evaluating the cost-effectiveness of different coverage criteria,

however, cannot be performed by analytical means [22]. Empirical studies are crucial to

software testing research in order to compare and improve software testing techniques and

practices [23].

There are several challenges related to investigating fault-detection effectiveness, amongst

others the number of faults to be present in the SUT [22]. Previous work has addressed this

problem by seeding artificial faults into correct versions of the SUT using so-called mutation

operators [24, 25]. Although results from studies [26, 27, 28] have suggested that faults

seeded using mutation operators under certain conditions may be representative of real faults,

there is still a need to increase the external validity of results by studying fault-detection

effectiveness in more realistic settings, using real faults. A few studies, e.g., [16], partly used

naturally occurring faults. However, these constituted only a minor percentage of the total

number of faults. Thus, this research was motivated by the lack of empirical evidence in

testing software with real faults, and thus complements studies conducted in artificial settings.

3

Another key challenge in software testing is how to define the test oracle, which

automatically provides answers to whether or not the system behaves as intended during test

execution. This deserves more research as the cost and fault-detection ability of different

oracles may vary substantially [12].

Yet another interesting area of state-based testing, which has been given little attention, is

the possible benefits of increasing cost-effectiveness by raising the test model abstraction

level. Several studies, e.g. [29, 30], focus on lowering the cost of testing by reducing the size

of the test suites, preserving the original coverage. There are conflicting results on how the

reduction influences the fault-detection ability of the test suites, in particular with respect to

how rigorous the test criteria are. Heimdahl and George [29] thus express a concern for using

this technique on structural coverage due to the possible loss of fault-detection. Whereas such

test-reduction techniques are based on removing tests in a test suite that do not affect the

achieved coverage, this thesis rather focuses on abstracting the test model itself. This means

that not only will the cost of testing potentially be reduced due to a lower number of test cases

that needs to be generated and maintained, but also due to a less detailed test model that

requires less maintenance effort.

1.2 Research Goal

The lack of extensible and configurable model-based testing tools, as well as the need for

empirical results to increase the external validity of cost-effectiveness of state-based testing

leads to the following research goal: the main goal of this thesis is to empirically evaluate the

cost-effectiveness of state-based testing in the context of safety-critical systems by (1)

developing an extensible tool for automating the test procedure, and (2) using this tool to

empirically evaluate, by means of four industrial case studies, aspects related to the cost-

effectiveness of model-based testing.

The first part of the goal includes experiences regarding the design and application of

TRUST, a TRansformation-based tool for Uml-baSed Testing. More specifically, the

experiences concern:

 The extensibility and configurability in MBT: As motivated in the previous

section, most of the existing model-based tools specifically target an application

context and cannot easily be adapted to others. There is a lack of tool

environments that are extensible and configurable for various application

contexts. Therefore, this thesis presents TRUST which is based on model-

4

transformation technologies and features an architecture with clear separation of

concerns and interfaces, thus making it easily extensible and configurable for

different context factors such as input models, test models, coverage criteria, test

data generation strategies, and test-scripting languages.

 The practical challenges of applying MBT: There are several important concerns

that must be addressed when applying MBT, in particular (1) the selection of

environment values to increase feasible transitions, and (2) the detection and

handling of infeasible test cases due to conflicting guard conditions. Ignoring the

former issue may lead to a high number of infeasible transitions due to external

variables in guard conditions that never appear with satisfying values; ignoring

the latter may also result in a large number of infeasible transitions, though due to

a different reason – when combining states from several regions in a state

machine, situations may occur where guards on transitions conflict with the

source state. This implies that the transition will never be fired.

The studied aspects in the second part of the goal regard:

 State-based coverage criteria: Evaluations of state-based coverage criteria are

important in order to provide evidence on how effective the criteria are at

detecting faults and at which costs. The following six criteria are addressed in this

thesis: (1) all transitions (AT), (2) all round-trip paths (RTP), (3) all transition

pairs (ATP), (4) paths of length 2 (LN2), (5) paths of length 3 (LN3), and (6)

paths of length 4 (LN4).

 Oracles: Another aspect of model-based testing that may affect the cost-

effectiveness is the applied oracle. Hence, two oracles at different abstraction

levels are applied in this thesis: (1) oracle O1 checks that the pointer to the current

state of the system corresponds to the expected state after the test, in addition to

the state invariant of that state, whereas (2) oracle O2 only checks that the pointer

to the current state of the system corresponds to the expected state after the test.

 Test model abstraction levels: To identify possible benefits of removing details

from the test model on the cost, two different abstraction levels were evaluated in

this thesis: (1) a precise model of the system under test, and (2) a less precise

model where the contents of every composite state (states that contain other

states) were removed.

5

 Sneak-path testing: The applied coverage criteria provide conformance testing,

i.e., checking that the system under test reacts according to the specified

behaviour. What is also required, however, is to ensure that the implementation

does not include additional behaviour other from what is specified. For this

purpose, the system under test is positioned in every possible state and exposed to

unexpected, unspecified events. Expected behaviour would be that the state

remains unchanged. This approach, which we have applied in this thesis, is

referred to as sneak-path testing [31].

1.3 Research Method

In this thesis, model-based testing was evaluated in four industrial case studies conducted in

the research department in ABB Norway. The case studies concern a research project in ABB

where a safety monitoring component in a safety-critical control system was developed using

UML state machines [32] and implemented according to the extended state-design pattern

[13]. The extended state-design pattern localizes state-specific behaviour in an individual

class for each state, and hence puts all the behaviour for that state in one class. The pattern

allows a system to change its behaviour when its internal state changes. This is accomplished

by letting the system change the class representing the state of the object. The pattern

specifies how and where to implement state and transition actions.

Twelve state-based testing strategies, including the combination of six coverage criteria

with two oracles, were compared in terms of cost and effectiveness at two test model

abstraction levels. For this purpose, real fault data was collected in a global field study to

generate mutated versions of the system under test. The field study included 11 developers

from three ABB research departments to solve a maintenance task on the safety-monitoring

component. Manual code inspections were used to collect actual faults.

To enable such an evaluation, a model-based testing tool TRUST [33] was developed and

used to automatically generate the test suites. To avoid possible randomness in the obtained

test results, 30 test suites were generated for each of AT, RTP, and ATP. The reason for

randomness in the results is that it is possible to create several test trees that satisfy the same

criterion. For the remaining criteria, LN2, LN3, and LN4, the generation of test trees is

deterministic. Thus, only one test suite was generated for each of them.

6

1.4 Contributions

The contributions in this thesis are two-fold: (1) development of an extensible tool that

enables automated state-based testing, and (2) four industrial case studies evaluating the cost-

effectiveness of model-based testing.

The first part regards the design and application of TRUST, a TRansformation-based tool

for Uml-baSed Testing, which can be extended and configured for various application

contexts. TRUST is based on model-transformation technologies and features an architecture

with clear separation of concerns and interfaces, thus making it easily extensible and

configurable for different context factors such as input models, test models, coverage criteria,

test data generation strategies, and test-scripting languages.

Using TRUST offers many other potential advantages that are, however, difficult to

quantify. For example, it should make the generation of test scripts less error-prone, enable

the easy re-generation of test cases when the SUT specifications change, and ensure that

testing is systematic and not redundant, an objective hard to achieve for a human tester. In

terms of scalability, the only issue seems to be with the flattening of concurrent states, which

may take a few hours on complex, highly concurrent state machines. Otherwise, the required

processing time involved in TRUST has shown to be, in the worst case, a matter of minutes.

The second part of the contributions was obtained from the four industrial case studies

empirically evaluating the cost-effectiveness of state-based testing strategies. The

contributions include:

 a field study where real fault data was collected for the purpose of creating

mutants to measure the cost-effectiveness,

 a comparison of oracles on different abstraction levels,

 an investigation of the influence of raising the abstraction level of the test model

on the cost-effectiveness of the testing strategies, and

 demonstrations of the importance of sneak-path testing for the purpose of

detecting unspecified behavior.

Obtained results from the case studies indicate that evaluations of coverage criteria

regarding fault-detection are in accordance with results obtained using artificial faults in

existing research, thus increasing the external validity of those results.

7

Applying the more rigorous oracle is proved to be worthwhile as the increase in fault-

detection effectiveness exceeds the additional cost as compared to applying the weakest

oracle.

Interestingly, removing a rather substantial part of the state machine details resulted in

comparable cost-effectiveness as compared to the precise test model. The significant cost

reduction (85 percent across all six strategies for both oracles O1 and O2), at an average

reduction in fault-detection of 24 percent for oracle O1 and 37 percent for oracle O2, may

encourage further research on this type of test-suite reduction.

The application of sneak-path testing stresses the importance of also this type of testing;

each of the mutants that remained undetected after applying conformance testing (as

expected) were killed by the sneak-path test suite.

In terms of benefits, the comparison of the cost of modeling with the number of test cases

generated has shown that using TRUST should yield significant cost savings when applying

standard state-machine coverage criteria. In other words, the cost of writing manually the

same test cases is likely to be larger than the cost of modeling the system under test (SUT)

and generating the test cases.

The findings just presented are relevant both for industry and academia. Research on

software testing that is to be adopted in an industrial setting must give evidence of relevance

to the industry in terms of being cost-effective. For this, case studies are important in that they

give the opportunity to test concepts in realistic contexts. In addition, the effort required by

keeping models updated may be easier to accept by practitioners when having evidence of the

cost-effectiveness of state-based testing.

Moreover, the research methods used to conduct this study are hoped to prove valuable to

researchers who are planning similar studies. Finally, the directions for future work should be

useful as guidance in research on state-based testing.

To study the potential for using state-based automated testing, a number of activities were

conducted. An overview of these research activities as regards the division of labor can be

found in Appendix A.

1.5 Publications

The approach of presenting a PhD thesis as a collection of papers is more and more common.

Consisting of numerous parts and pieces, however, this thesis was presented as a monograph

as to be able to describe the complete history in a more straightforward manner. Nevertheless,

8

the four case studies presented in this thesis have been submitted to the journal Information

and Software Technology. Chapter 11 has also been submitted to the 23rd IEEE International

Symposium on Software Reliability Engineering

Moreover, the development process of the SUT was published at MODELS’06 [14].

Finally, two technical reports regarding the development of the model-based testing tool

TRUST [33] and the state-machine flattening component of TRUST [34] were published at

Simula as technical reports.

1.6 Thesis Organization

This thesis consists of four main parts: (Part I) introduction, (Part II) development of an

extensible model-based testing tool, (Part III) cost-effectiveness evaluation of state-based

testing strategies using the prototype described in (Part II), and (Part IV) summary of the

thesis. The chapters are organized as follows.

Part I – Introduction

 Chapter 2 introduces the concepts and definitions used in software testing.

 Chapter 3 presents related work as for evaluations of testing techniques.

 Chapter 4 regards limitations in existing research.

Part II – Development of an extensible model-based testing tool

 Chapter 5 addresses the development of the automated testing tool.

 Chapter 6 presents lessons learned and experiences from the development.

Part III – Cost-effectiveness analysis

 Chapter 7 describes the design of the four case studies that present cost-

effectiveness analyses of (1) six state-based coverage criteria, (2) two oracles, (3)

two test model abstraction levels, and (4) sneak-path testing.

 Chapter 8 to Chapter 11 present results for each of the four case studies.

Part IV – Summary

 Chapter 12 presents lessons learned from applying state-based testing.

 Chapter 13 addresses threats to validity.

 Chapter 14 concludes the thesis.

 Chapter 15 gives directions for future work.

9

PART I – INTRODUCTION

Part I introduces concepts and definitions (Chapter 2). Moreover, it motivates the study by

presenting related work (Chapter 3) and identifies gaps in existing research on cost-

effectiveness evaluations of state-based testing (Chapter 4). Chapter 4 also explains how the

thesis complements and extends existing research on the cost-effectiveness of state-based

testing.

2 Background Concepts and Definitions

This section introduces background concepts and definitions, used throughout the thesis, for

software testing concepts and empirical research methods used in software engineering.

2.1 Software Testing

2.1.1 Basic Testing Concepts

According to McGregor and Sykes, software testing is the process of uncovering evidence of

defects in software systems [35, p. 3]. If a fault exists in the software, it must be exercised to

be revealed [31]. The process consists in determining test inputs and expected behavior of the

system under test (SUT), executing the test, observing the actual behavior, and finally

comparing the expected and actual behavior as evidence of whether the test passed or failed.

Debugging and repair of faults, on the other hand, are not considered as testing activities.

Important to know is that the SUT does not necessarily have to be a complete system. It can in

fact be just a class or a module, but also even a system of systems.

A test case consists of an input-output pair, i.e., the input to the SUT and the expected

result, which is a “description of the output that the SUT should exhibit for the associated

input” [35]. A test oracle evaluates the results of a test case, either as a manual, automated or

partially automated process. The evaluation itself requires a generator for producing expected

results, but also a comparison mechanism to check whether or not the test case passed by

comparing actual with expected results [31, p. 918]. A test suite consists of a number of test

cases, and serves a particular testing goal. The goal may be to create a random selection of

test cases or to satisfy a specific coverage criterion (also known as adequacy criterion) that

specifies the elements of the SUT to be exercised by a test suite. Different types of coverage

criteria are described in Section 2.1.5. If all tests in a test suite together cover 100 percent of

10

the desired program elements in a coverage criterion, the test suite satisfies that coverage

criterion [36] – it is adequate.

Software testing is often separated in categories according to the particular source from

which test cases are derived. Binder characterizes testing in two main categories:

responsibility-based (also known as specification-based or black-box testing) and

implementation-based testing (also known as structural or white box testing) [31, pp. 51-52].

The former type uses specified or expected responsibilities of a unit, subsystem, or system to

design tests. The latter relies on source code analysis to develop test cases.

Depending on when test cases are generated and executed, testing is known as offline or

online. Offline testing generates tests by using various search algorithms prior to test

execution, whereas online testing executes the system to generate the test cases dynamically

by traversing the test model according to how the system reacted to the previous input. That

is, no test cases exist prior to test execution.

The fault-detection ability of a test suite is referred to as its effectiveness, whereas the

average testing cost for detecting a fault in a program is the efficiency of a coverage criterion

[37].

2.1.2 Model-Based Testing

Model-based testing (MBT) is an example of a black-box testing technique. In MBT, test

cases are derived from a model of the SUT and/or its environment [36]. Utting et al. [36]

define MBT as “the automatable derivation of concrete test cases from abstract formal

models, and their execution”. Models of the SUT are of great value to testing, which enables

systematic, focused, and automatic testing [31]. Unlike traditional testing, MBT is known for

being a structured, documented, and reproducible approach, which reduces the correlation

between the individual test engineers’ skills and the test quality [36]. In general, MBT can be

divided in five steps, of which Step 1 and Step 2 distinguish MBT from other kinds of testing:

1. Model the SUT and make it test ready [31].

2. Generate abstract tests (sequences of operation calls) from the model. Due to a, in

some cases, infinite number of possible tests, coverage criteria are used to say which

tests we want to generate from the model. The criteria should be selected according to

test objectives and cost.

3. Create concrete tests from the abstract tests, i.e., to make them executable. This

includes adding low-level SUT details not present in the abstract test cases. For

11

example, test data are added as arguments in operation calls, to represent the SUT

environment, or as values in guards.

4. Execute the concrete tests on the SUT. However, as the test model contains fewer

details than the SUT itself, there is a need to bridge the abstraction gap during

execution. An adaptor is a component that maps abstract operations in the test model

to concrete API calls in the SUT. The adaptor does not necessarily have to be a

separate software component [36] – it is often integrated in the test driver [35], which

executes the test cases and collects the results.

5. Analyse test results to provide data on the correctness of the system as aid in

debugging. Test cases that fail may be due to a real fault in the SUT or fault in the test

case. In addition, false positives can be the reason for a test case to fail. This may for

instance be due to unsatisfied guard conditions related to externally controlled

variables, implying that test data was not correctly selected.

In this thesis, the MBT approach was applied to state-based testing (SBT) in particular,

which will be described in Section 2.1.4.

2.1.3 Modeling Notations in Model-Based Testing

Modeling enables abstraction of system details. This is particularly useful when dealing with

development of complex systems, both related to keeping control of components, and

communicating with customers and colleagues. In MBT, different kinds of modeling

notations are used for the purpose of modeling the behavior of the SUT. Sequences of

interactions (like message-sequence charts), mathematical functions (like algebraic

specifications), executable processes (like Petri net), probabilistic models (like Markov

chains), and data flow modeling (like block diagrams) are all examples of modeling notations

as presented by Utting et al. [36]. More interestingly, in the context of this thesis, Utting et al.

[36] differentiate between yet another two modeling notations: state-based and transition-

based notations. State-based notations model the SUT as a collection of variables whereas

transition-based notations model the SUT as transitions between states. Z [38], B [39], and

JML [40] are examples of state-based notations. SmartTesting [41] is an example of a testing

tool that supports B. Examples of transition-based notations are finite state machines,

Statemate statecharts [42], and Unified Modeling Language (UML) state machines [32].

Rhapsody ATG [19] supports testing from UML state machines.

12

One commonly used modeling notation in software engineering is UML, which is

considered to be the de facto formal modeling language [43, 44]. Unlike code, which is a

detailed modeling language, and natural language, which easily introduces ambiguity, UML

consists of a set of graphical diagrams including use case, activity, class, object, sequence,

communication, timing, interaction overview, component, package, and deployment

diagrams, in addition to state machines. The diagrams are useful in order to present some part

of a model [43]. MBT can make use of several of these diagrams – in particular state

machines, class diagrams and sequence diagrams. In this thesis, MBT was based on the state

machine, a behavioral diagram type.

Many systems, such as embedded real-time systems [45], telecommunication systems [2,

46], and multimedia systems [47], exhibit state-driven behaviour. Such behaviour can be

described in terms of UML state machines that express behavior of the SUT in terms of its

observable states and how the SUT changes states as a result of events that affect the SUT

[35]. UML state machines, which are extensions of traditional finite state machines, can be

used to model such behaviour. The state machine defines allowable transitions and actions as

response to the events that may occur. An event may cause different behaviours according to

the state of the system at the time the event occurred. Transitions between states may be

guarded. A guarded transition implies that the change of state will only occur if the condition

specified by the guard is evaluated to true.

2.1.4 State-Based Testing

The different features of UML state machines make it an expressive notation for specifying

reactive control systems, and may therefore be used as an aid in state-based testing (SBT).

Traditional finite state machines cannot model software systems with concurrent behavior.

Concurrency in UML state machines is modeled using composite states with two or more

regions [32]. When modeling complex software systems with finite state machines, the

number of states and transitions can grow exponentially with system size. This can be handled

by UML state machine features for modeling sub machines. Many tools (e.g., [48, 49])

support the modeling of UML state machines.

SBT derives test cases from state machines that model the expected system behavior. The

SUT is tested with respect to how it reacts to different events and sequences of events. SBT

thus validates whether the transitions that are fired and the states that are reached are

compliant with what is expected given the events that are received. States are normally

defined by their invariant, a condition that must always be true in that particular state.

13

SBT has the potential of enabling test automation when executable test cases can be

automatically generated from state machines. With automation comes the advantage of

reduced effort required by human resources. This regards, not only execution of test suites,

but also the generation of test suites and evaluation of results. To automate testing based on

UML state machines, test data must be generated to fire triggers associated with transitions,

and the triggers typically require parameter values. Test data can be generated randomly from

the possible set of values, or using more sophisticated techniques such as constraint solvers

[50], or search-based techniques (for example using genetic algorithms for test data

generation [51]). Constraints defined on UML state machines, such as state invariants, guards,

and pre/post conditions of triggers, should be evaluated during the execution of the generated

test cases. As has been shown by many studies, this is a very effective way to detect failures

[12, 3]. These constraints are usually written as OCL expressions in the context of UML.

Examples of available OCL evaluators are OCLE 2.0 [52], OSLO [53], IBM OCL parser [54],

and EyeOCL Software (EOS) evaluator [55].

Test suites derived from test models are commonly known as conformance testing since it

checks that the SUT conforms to the explicit behavior model. This is, however, not enough

because the state machine may not be completely specified, e.g. event/state pairs may be

missing in the state machine. This may introduce sneak paths – bugs that allow illegal

transitions (unspecified transitions) or elude guards [31]. In order to address this issue, sneak-

path testing can be applied. In practice, this is done by placing the SUT in each of the possible

states, and then, for each state, trigger every illegal event. The expected behaviour is that the

state is unchanged.

In practice, applying every possible value and input sequence in every possible state,

commonly known as exhaustive testing [31, p. 52], is not feasible. It is necessary to extract a

subset of all possible tests. As we will see next, there are several different coverage criteria

that can be used to help select test cases from state machines.

2.1.5 State-Based Coverage

To apply SBT on UML state machines as the input models, several testing strategies are

presented in the literature, such as piecewise, all transitions, all transitions k-tuples, all round-

trip paths, M-length signature, and exhaustive testing [31, p. 259]. Being a practically

impossible approach, exhaustive testing requires every possible value and sequence of inputs

to be applied in every possible state of the SUT, thereby exercising every possible execution

14

path [31, p. 52]. Therefore, we need to use another testing strategy to make a selection among

all possible tests.

Coverage is a measure of how completely a test suite exercises the capabilities of a piece

of software [35, p. 85]. There are many types of test coverage. Some criteria are based on

covering specific parts of the code structure, such as code coverage (e.g., that certain

percentage of the statements must be covered by the test suite), whereas others are related to

the specification itself, such as all transition coverage where all transitions must be covered by

the test suite.

Previous work on SBT has used coverage criteria that were defined to cover finite-

machines. Being an extension to finite state machine, however, the UML state machine can

also be tested with those criteria if structures like concurrency and hierarchy are removed

[22]. The definitions of the coverage criteria used in the following paragraphs are based on

definitions given by Binder [31, pp. 259-266] and Offutt et al. [56].

All transition coverage is obtained if every specified transition in a state machine is

exercised at least once [31]. The order of the exercised transitions is of no importance.

Applying this criterion ensures that all states, events and actions are exercised, and is

considered to be the minimum coverage that one should achieve when testing software [31].

All round-trip coverage requires that all paths in a state machine that begins and ends with

the same state must be covered. To cover all such paths, a test tree (consisting of nodes and

edges corresponding to states and transitions in a state machine) is constructed by breadth- or

depth-first traversal of the state machine. The test tree corresponding to the all round-trip

strategy is called a transition tree. A node in the transition tree is a terminal node if the node

already exists anywhere in the tree that has been constructed so far or is a final state in the

state machine. Now, by traversing all paths in the transition tree, we cover all round-trip paths

and all simple paths (the paths in the state machine that begins with the initial state and ends

with the final state). According to Binder [31, p. 248], this technique will find incorrect or

missing transitions, incorrect or missing transition outputs and actions, missing states, and

will detect some of the corrupt states.

Another stopping criterion for the transition tree construction is proposed in [22], where a

node is terminal if (i) it is a final state of the state machine or (ii) it is a node that already

exists on the path that leads to the node. This stopping criterion makes the all round-trip

strategy more rigorous, and thus gives more coverage.

15

All transition-pairs coverage is given by a test suite that contains tests covering all pairs

of adjacent transitions. For each pair of adjacent transitions from state Si to Sj and from state

Sj to Sk in the state machine, the test suite contains a test that traverses the pair of transitions

in sequence.

Paths of length n. Sequences of transitions are executed from a particular state. For

example, one may include all possible sequences of transitions of length n from the initial

state.

2.1.6 Mutation Analysis

Mutation analysis is an approach that can be used in the evaluation of the fault-detection

effectiveness of testing strategies. It is carried out by seeding automatically generated faults

into “correct” versions of the SUT. Generally speaking, only one fault is seeded in each

mutant version to avoid interaction effects between faults [22]. Mutants are identified through

the static analysis of the source code by a mutation system like [57]. When a test suite detects

the seeded fault, we say the test suite has killed the mutant. The number of mutants killed by a

specific test suite divided by the number of total mutants, referred to as the mutation score, is

used as a measure of a test suite’s fault-detection effectiveness. Some mutants may be

functionally equivalent to the correct version of the SUT. These are called equivalent mutants

and should not be included in the pool of mutants used for analysis. We will follow the same

procedure in our study, except for the important fact that mutants will be based on actual

faults collected in the field. Having this in mind, un-killed mutants must be analysed and

possibly removed from the data that provides the basis for the mutation score.

2.2 Research Methods in Empirical Software Engineering

Software engineering is defined by Sommerville [58] to be “an engineering discipline which

is concerned with all aspects of software production from the early stages of system

specification through to maintaining the system after it has gone into use”. Empirical methods

have traditionally been used in social sciences and psychology, fields where it is hard to

define formal rules [59, p. 5]. However, as software depends on human effort in order to be

produced, making the human behavior a highly important aspect of software engineering, the

empirical research methods have proved useful also in the more technical software

engineering field.

16

In empirical research, data is collected by observing or experimenting with the item under

study. The data is then used to answer a question or test a hypothesis. Empirical software

engineering [59, 60] is research that uses empirical studies to gain knowledge about software

engineering. Sjøberg et al. presents the following vision for all fields of software engineering:

“empirical research methods should enable the development of scientific knowledge about

how useful different SE [software engineering] technologies are for different kinds of actors,

performing different kinds of activities, on different kinds of systems” [61].

An important aspect of software engineering is that software development is done in a

cost-effective and predictable way [61]. To provide such knowledge, the community should

seek to develop a scientific approach for software engineering, including research methods,

theories, terminology, and a collection of experiences and observations [62]. Results from

empirical software engineering should, according to Sjøberg et al., not only be useful to guide

the development of new software engineering technology, but also to support decisions taken

in the industry. The results are based upon actual evidence, as opposed to theory, and are

important input to the decision-making in improvement seeking organizations [59, p. 17].

Experiments, case studies, and surveys are all typical research methods in empirical

software engineering [59], and will be briefly introduced in the subsequent sections.

2.2.1 Experiments

An experiment is defined by Shadish et al. as follows: “a study in which an intervention is

deliberately introduced to observe its effect” [63]. In situations where an investigator can

manipulate behaviour directly, precisely and systematically, the experiment is preferred as

research method [64, p. 8]. The studied treatments are assigned to subjects at random [59, p.

9], and the objective is to manipulate one or more variables and control all other variables at

fixed levels [64, p. 9]. Experiments can be exploratory, descriptive or explanatory, normally

conducted in a laboratory setting, which provides a high level of control [64, p. 9]. A common

perception, however, is that experiments are often small in size to ensure control of the

variables. This may have a negative influence on the external validity of the study.

Nevertheless, Dzidek demonstrated the feasibility also of larger sized experiments [65]. The

main strength, on the other hand, is according to Wohlin et al., that experiments can

investigate in which situations the claims are true, and they can provide a context in which

certain standards, methods, and tools are recommended for use [59].

17

2.2.2 Case Studies

The case study research method is observational by nature [59], and defined by Yin in the

following manner: “A case study is an empirical inquiry that investigates a contemporary

phenomenon within its real-life context, especially when the boundaries between phenomenon

and context are not clearly evident” [64]. According to Stake, the purpose of a case study

report is “not to represent the world, but to represent the case” [66]. The contribution of case

studies is through analytical generalization [63, pp. 341-373, 64, p. 32], rather than statistical

generalization, where theories are expanded and generalized, although the motive of a case

study may also be a simple presentation of individual cases. Hence, it is important to give a

rich description of the contextual factors so that others may relate their organization to the

case study results with respect to contextual similarities or differences. Yin states that case

studies, like experiments, can be exploratory, descriptive or explanatory. Yin also says that

case study as a research method is favoured when there is a “how” or “why” question and

when the relevant behaviours cannot be manipulated. Case studies imply lower control than

experiments, but high realism [59].

2.2.3 Surveys

Surveys are used to collect answers to questions from a random sample of people in a

population [67]. It can be used for many purposes, descriptive, explanatory or explorative

[67], often conducted in retrospect, e.g., after some technique has been applied in a company

[59]. Typical data collection methods are interviews and questionnaires. Examples of types of

information that are collected are attitudes and opinions. Analysis of the responses can be

both qualitative and/or quantitative depending on how the data are coded. The use of

questionnaires, for instance, allows for collection of highly comparable data due to the format

of the answers. An important characteristic of surveys is that the results are generalized to the

population [59]. As with any research method, the design must be carefully planned, in

particular with respect to the formulation of included questions, and how the sample was

drawn from the population.

Having covered important background concepts and definitions, we now move to related

work. Chapter 3 presents existing research on evaluating the cost-effectiveness of SBT.

18

3 Evaluating Testing strategies

This chapter presents related work on evaluating the cost-effectiveness of SBT related to both

methodical aspects as well as the obtained results, and motivates the research of this thesis.

Although not being a systematic review and hence not a complete overview of related work,

Section 3.1 includes the main pieces of related work based on searches using Google/Google

Scholar and searches in references. Section 3.2, however, provides a semi-structured literature

review from 2009 to 2011 with the intention of picturing state of the art from the most recent

years.

3.1 Non-Representative Sample of Related Work

The main reason for not having conducted a systematic review is simply that the start-up of

the ABB project that I was involved with already had taken place before I started my Ph.D.

studies. There was no time for carrying out a, potentially, time-consuming literature review.

Following the project was more important. What is to be presented in this section must

therefore be called a non-representative sample of related work.

3.1.1 Coverage Criteria

As one of the first studies on deriving tests from finite-state machines (FSM), Chow presented

a testing strategy called automata theoretic [2], later known as the W-method. It was

presented as a “powerful testing tool for checking the correctness of the control structure at

the design level of many software systems” [2]. Chow based his method on test sequences

derived from a spanning tree generated from the FSM. The method was modified by Binder

[31, p. 243] to be used in a UML context – referred to as round-trip path testing (RTP). The

W-method and Binder’s adaption first traversed the transition tree to cover all paths, followed

by identifying the state that was reached. Binder reused the transition tree from Chow’s

method, but assumed that it was possible to directly check the state invariant rather than

having an identification sequence like Chow. Binder defined the set of paths covered by the

tree as round-trip paths as they capture all transition sequences that begin and end with the

same state (with no repetitions of states other than the sequence start and end state) and

simple paths from the initial to the final state of the statechart. A prerequisite to use Binder’s

approach is to use flattened statecharts [31, 34] – i.e., all hierarchy and concurrency [68] must

be removed.

19

Among several other similar testing techniques for FSMs that have been suggested, e.g.

see the survey and discussions by Lee and Yannakakis [69], the main difference from Chow’s

approach is the state identification process. The W-method and its extensions are the mostly

used and studied state-based technique for state-based software testing [12].

Offutt and Abdurazik [15] addressed system level testing by generating test cases from

UML state machines. They defined AT, ATP, and full predicate (FP) coverage in addition to

the complete sequence for the UML statechart. A test suite that achieves FP coverage ensures

that each clause in each predicate on guarded transitions is tested independently [15].

Complete sequence coverage is dependent on a test engineer to define meaningful sequences

of transitions to be tested, and hence, this criterion is not automatable or measurable.

Moreover, to demonstrate the technique and to evaluate the fault-detection effectiveness of

the FP and ATP, they presented an empirical study. The Cruise Control system, developed for

research purposes, was seeded with 25 faults and tested with 54 FP tests (reduced to 34 test

cases when removing duplicates), 34 ATP tests generated from UMLTest tool (a proof-of-

concept test data generation tool), and compared with 27 handmade statement coverage tests.

Four of the seeded faults were actual faults, detected during the initial implementation.

Results showed that the FP criterion killed all 25 mutants, ATP killed 72 percent (18/25), and

the statement coverage tests killed 64 percent (16/25).

Abdurazik et al. [70] compared three specification-based testing criteria in an empirical

study. The FP, ATP, and specification mutation (SM) test criteria [71] were compared on the

basis of a “cross scoring” [72], where tests generated for each criterion are measured against

the other. Second, the three techniques were compared on the basis of the number of test cases

generated to satisfy them, in a rough attempt to compare their relative costs. A model checker

was used to generate tests and to evaluate test sets that fulfilled the selected criteria. The

academic Cruise Control system was used in the comparison and mutated with artificial

mutation operators. The SM score of the FP tests and the FP scores of SM tests were quite

high; in fact the two techniques are relatively similar. However, neither the FP tests nor the

SM tests had high ATP scores, and the ATP tests did not have high FP or SM scores. The

study showed that ATP tests offer something different from FP and SM tests.

Hong et al. [73] presented a test sequence selection method for Statemate statecharts [42]

where it was demonstrated that data flow analysis can be applied to the selection of test

sequences from statecharts. The method included the transformation of statecharts to extended

20

finite state machines (EFSMs) in combination with the methods presented in [74, 75, 76] that

transforms the EFSM into a flow graph.

A method for deriving test sequences based on the AT criteria while retaining hierarchy in

a Statemate statechart was proposed by Bogdanov and Holcombe [77]. The method, which is

a modification of [73], was applied in a case study to an aircraft control system provided by

DaimlerChrysler Research Laboratory. The method appeared to be applicable to the realistic

system, although differences in transition labels between the implementation and the

specification caused problems in testing every transition. The implementation had to be used

in those situations.

The feasibility and effectiveness of AT coverage was again applied in a case study

conducted by Chevalley and Thévenod-Fosse [78]. The criterion had a weakness in that a

fault could possibly not be triggered by the particular test case input value for that particular

transition. For that reason, statistical test case input values were used. Test cases were

automatically generated from UML state machines using a probabilistic algorithm presented

in [79]. The principle of the technique was to compensate the criteria weakness by exercising

each transition several times. The results were based on 1,559 mutants of an avionics system

(6,500 LOC); a mutation score of 91.3 percent was reached (1,423/1,559 mutants were

killed). The Flight Guidance System was a research version provided by the Advanced

Technology Center of Rockwell-Collins.

The effectiveness of the RTP strategy was later investigated by Antoniol et al. [80] in a

case study. The RTP strategy was applied in a C++ example program consisting of 450 LOC:

two classes and 45 methods. The main class under test was a container class, typical of its

kind. Artificial mutation operators were used to seed 44 faults covering 8 mutation operators.

The study concluded that the RTP strategy is reasonably effective at detecting faults; 87.5

percent of the faults were detected as compared to 69 percent for random testing. Moreover,

their results showed that RTP left certain types of faults undetected, and suggested that by

augmenting RTP with category-partition (CP) testing, the fault-detection can be enhanced,

although at an increase in cost that must be taken into account.

In a series of three controlled experiments, Briand et al. [12] evaluated two variants of

RTP testing, and CP testing, in terms of cost-effectiveness, and proposed a way to combine

them that was referred to as logical, intuitive, and that could be tailored to the test budget

available. Students were used as subjects. The following programs were used in the

experiments: (1) a container class from an academic software system, (2) a container class

21

from a real DNS system, and (3) two control classes from a real DNS system. Two different

oracle strategies were compared. Artificial mutation operators were applied in the cost-

effectiveness evaluation. Results showed that RTP testing is not likely to be sufficient in most

situations as significant numbers of faults remained undetected (from 10 percent to 34

percent), on average across subject classes. This is especially true when a weaker form of

round-trip was used where only one of the disjuncts in guard conditions was exercised. By

combining RTP with CP testing, however, a large percentage of latent faults could potentially

be detected by CP after SBT was applied, yet at significant increase in cost, implying that

selection of subsets may be necessary.

To see if the specification-based testing criteria could be practically applied, Offutt et al.

[16] evaluated the efficiency of state-based test criteria in terms of fault-detection

effectiveness and obtained branch coverage. The AT, FP, and ATP coverage criteria were

applied in a case study and compared with respect to fault-detection effectiveness and branch

coverage. A modified version of the Cruise Control system was mutated using 24 faults (of

which 4 were naturally occurring faults). Obtained results showed that 1) the weakest

coverage, AT (12 test cases), performed similar to random testing (54 test cases) both in

detecting faults and in providing branch coverage (62 percent), 2) ATP coverage (34 test

cases) detected 18/24 faults and achieved 75 percent branch coverage, whereas 3) FP

coverage (54 test cases) detected 20/24 faults and achieved 83.3 percent branch coverage.

Briand et al. [22] presented a simulation and analysis procedure to analyze the cost-

effectiveness of statechart based testing techniques, and used this approach to empirically

investigate the cost and effectiveness for the most referenced coverage criteria based on UML

statecharts: AT, ATP, and FP [15], and a modified version of the RTP coverage referred to as

transition tree (TT) [2, 31]. TT is another stopping criterion they proposed for the transition

tree construction, where a node was considered terminal if (i) it was a final state of the state

machine or (ii) it was a node that already existed on the path that lead to the node. The new

stopping criterion made the RTP strategy more rigorous, and thus gave more coverage. Three

case studies were used in the evaluation: (1) a container class from an academic example

program, (2) the Cruise Control system, and (3) an implementation of a video recorder. The

two former studies were real-time systems. Artificial mutation operators were used to create

101, 91, and 139 mutants respectively for the three cases. The following conclusions were

drawn from the study: (1) AT did not provide an adequate level of fault detection, (2) ATP

detected nearly all faults, but not without an enormous increase in cost compared to AT, (3)

22

TT was evaluated to be more cost-effective than AT and ATP, although the result depended

on two factors: the extent to which guard conditions were present in the statechart, and the

extent to which the transition tree captured realistic and meaningful usage scenarios, and 4)

FP was as effective at revealing faults as ATP, yet more expensive.

A study by Briand et al. [81] was conducted that aimed at investigating how data flow

information could be used to improve the cost-effectiveness of state-based coverage criteria

when more than one tree existed. Two case studies were carried out: (1) the Cruise Control

system was inserted with 91 faults using artificial mutation operators, and (2) 131 mutants

were generated from an implementation of a video recorder. Results showed that data flow

information was useful for selecting the most cost-effective transition tree. They found that

the transition tree that contained the largest number of du pairs or definitions would be the

most effective at detecting mutants. A more optimal RTP strategy was thus proposed,

including (1) identifying the tree that covers the largest number of definitions, and (2)

complementing it by tree paths from the other trees that cover definitions not already covered

by the initial tree. Note, however, that there were neither guards on transitions in the Cruise

Control case, nor parameters in events. When applying the RTP on state machines without

guards, the coverage will in fact only cover all transitions.

AT and ATP coverage criteria were compared to mutation-based criteria by Paradkar [82].

The study reported that mutation-based testing had higher fault-detection effectiveness, but at

a higher cost than the structured criteria.

Paradkar [83] also conducted an empirical study on fault-detection effectiveness and cost

(in terms of size) where FP coverage, BZ-TT [84], mutation based testing, and user defined

test objectives were compared. The BZ-TT method concerns the operations in a model and

generates tests with boundary inputs when the system is in a state where at least one state

variable has a minimum or maximum value [83]. Two case studies were conducted: (1) the

ATM application – a simple academic system (eight classes, 153 mutants), and (2) the VM

application (one class, 56 mutants). It was found that the mutation based technique provided

the best fault-detection effectiveness, followed by BZ-TT and FP. FP was more useful for an

application which had a complex guard condition.

Mouchawrab et al. [85] addressed the impact of using statecharts for testing class clusters

that exhibit a state-dependent behavior, and reported on a controlled experiment that

investigates the effectiveness of SBT using RTP when compared and combined to white-box,

structural testing. The experiment involved 48 students who were assigned to generate tests

23

for the OrdSet example class, and the Cruise Control system using RTP and block and edges

coverage. Results could not find differences in the fault-detection effectiveness of the two

strategies. Combining the strategies, however, proved to be significantly more effective. The

fault detection effectiveness was found to vary to a large extent depending on how precisely

the statechart described the behavior of the software under test. A request for more research

was proposed in order to provide clear and precise guidelines regarding when to use

statechart-based testing and how to integrate it with other testing strategies.

An overview of the most relevant work is summarized in Table 1. In terms of empirical

evaluations, the most studied state-based coverage criteria were FP, ATP, RTP, and AT. The

FP criterion tends to kill higher or similar number of mutants as ATP, although at higher cost.

With this in mind, the ATP, RTP, and AT coverage criteria were selected for being studied in

this thesis. When also considering the experimental setting, we see that only two of the nine

studies were executed in industrial settings. Of these two studies, the first study [77] did not

report the nature of the seeded faults, whereas the second study [78] reported the use of

mutation operators (artificial faults). The two studies [15, 16] that actually did report use of

real faults (yet only 4/20 and 4/21 of the faults were real) were conducted in laboratory

settings. A clear conclusion can be drawn regarding the nature of the seeded faults; there is a

lack of empirical studies applying real faults in the evaluation of testing strategies executed in

an industrial context.

 24

 T
ab

le
 1

 O
ve

rv
ie

w
 o

f
re

la
te

d
w

or
k

on
 c

ov
er

ag
e

cr
it

er
ia

 e
va

lu
at

io
ns

R
ef

er
en

ce

O
b

je
ct

iv
e

R
es

ea
rc

h

M
et

h
od

C
on

te
xt

A

p
p

lie
d

T

es
ti

n
g

st
ra

te
gy

(i
es

)

S
ee

d
ed

 F
au

lt
s

O
ff

ut
t

an
d

A
bd

ur
az

ik

[1
5]

T
o

ta
ke

 a
dv

an
ta

ge
 o

f
U

M
L

 t
o

pr
od

uc
e

hi
gh

ly
 e

ff
ec

tiv
e

so
ft

w
ar

e
sy

st
em

-l
ev

el
 t

es
ts

.
T

he
y

de
fi

ne
 f

ou
r

st
at

e-
ba

se
d

co
ve

ra
ge

 c
ri

te
ri

a
fo

r
ge

ne
ra

tin
g

te
st

 d
at

a
fr

om
 f

or
m

al
 s

ta
te

-

ba
se

d,
 d

ev
el

op
 a

 t
oo

l,
U

M
L

T
es

t,
an

d
de

m
on

st
ra

te
 s

ys
te

m

le
ve

l t
es

ti
ng

 b
y

ge
ne

ra
ti

ng
 te

st
 c

as
es

 f
ro

m
 U

M
L

 s
ta

te
ch

ar
ts

us
in

g
U

M
L

T
es

t.

E
m

pi
ri

ca
l

ev
al

ua
ti

on

L
ab

or
at

or
y

A
T

,
F

P,
 A

T
P,

 a
nd

 t
he

co
m

pl
et

e
se

qu
en

ce
 f

or

th
e

U
M

L

st
at

ec
ha

rt
.

O
nl

y
F

P
an

d
A

T
P

 w
er

e

ev
al

ua
te

d.

21
 a

rt
if

ic
ia

l,
4

re
al

 f
au

lt
s

A
bd

ur
az

ik

et

al
. [

70
]

T
o

co
m

pa
re

 t
hr

ee
 s

pe
ci

fi
ca

tio
n-

ba
se

d
te

st
in

g
cr

it
er

ia
 i

n
an

em
pi

ri
ca

l s
tu

dy
.

E
m

pi
ri

ca
l

ev
al

ua
ti

on

L
ab

or
at

or
y

F
P

,
A

T
P

,
an

d

sp
ec

if
ic

at
io

n
m

ut
at

io
n

te
st

 c
ri

te
ri

a

A
rt

if
ic

ia
l

B
og

da
no

v
an

d

H
ol

co
m

be

[7
7]

T
o

pr
op

os
e

a
m

et
ho

d
fo

r
de

ri
vi

ng
 t

es
t

se
qu

en
ce

s
ba

se
d

on

th
e

A
T

 c
ri

te
ri

a,
 w

hi
le

 r
et

ai
ni

ng
 h

ie
ra

rc
hy

.

C
as

e
st

ud
y

In
du

st
ry

A

T

N
/A

C
he

va
ll

ey
 a

nd

T
hé

ve
no

d-

F
os

se
 [

78
]

T
o

ev
al

ua
te

th

e
fe

as
ib

ili
ty

an

d
ef

fe
ct

iv
en

es
s

of

A
T

co
ve

ra
ge

 u
si

ng
 s

ta
tis

tic
al

 te
st

 c
as

e
in

pu
t v

al
ue

s.

C
as

e
st

ud
y

In
du

st
ry

A

T

A
rt

if
ic

ia
l

A
nt

on
io

l e
t a

l.

[8
0]

T
o

as
se

ss

th
e

ef
fe

ct
iv

en
es

s
of

R

T
P

,
an

d
to

de

te
rm

in
e

w
he

th
er

it

co
ul

d
be

co

m
pl

em
en

te
d

by

ot
he

r
te

st
in

g

st
ra

te
gi

es
 a

t s
om

e
ad

di
ti

on
al

 c
os

t.

C
as

e
st

ud
y

L

ab
or

at
or

y
R

T
P

A

rt
if

ic
ia

l

O
ff

ut
t

et

al
.

[1
6]

T
o

se
e

if
 t

he
 s

pe
ci

fi
ca

ti
on

-b
as

ed
 t

es
ti

ng
 c

ri
te

ri
a

co
ul

d
be

pr
ac

tic
al

ly
 a

pp
lie

d,
 t

o
m

ak
e

a
pr

el
im

in
ar

y
ev

al
ua

ti
on

 o
f

st
at

e-
ba

se
d

te
st

cr

it
er

ia

w
it

h
re

sp
ec

t
to

fa

ul
t-

de
te

ct
io

n

C
as

e
st

ud
y

L
ab

or
at

or
y

A
T

,
F

P
,

A
T

P
,

an
d

th
e

co
m

pl
et

e
se

qu
en

ce
 f

or

th
e

U
M

L

st
at

ec
ha

rt
.

20
 a

rt
if

ic
ia

l,
4

re
al

 f
au

lt
s

25

ab
il

it
y

an
d

br
an

ch
 c

ov
er

ag
e.

O

nl
y

A
T

,
F

P
,

A
T

P

w
er

e
ev

al
ua

te
d.

B
ri

an
d

et

al
.

[1
2]

T
o

ev
al

ua
te

 t
w

o
va

ri
an

ts
 o

f
ro

un
d-

tr
ip

 p
at

h
(R

T
P

)
te

st
in

g,

an
d

C
P

 t
es

tin
g,

 i
n

te
rm

s
of

 c
os

t-
ef

fe
ct

iv
en

es
s,

 a
nd

 p
ro

po
se

a
w

ay
 to

 c
om

bi
ne

 th
em

. T
w

o
di

ff
er

en
t o

ra
cl

e
st

ra
te

gi
es

 a
re

co
m

pa
re

d.

T
hr

ee

ex
pe

ri
m

en
ts

L
ab

or
at

or
y

T
w

o
va

ri
an

ts
 o

f
R

T
P,

an
d

C
P

 te
st

in
g

A
rt

if
ic

ia
l

B
ri

an
d

et

al
.

[2
2]

T
o

pr
es

en
t a

 p
re

ci
se

 s
im

ul
at

io
n

an
d

an
al

ys
is

 p
ro

ce
du

re
 a

nd

to

em
pi

ri
ca

ll
y

in
ve

st
ig

at
e

th
e

co
st

-e
ff

ec
ti

ve
ne

ss

of

te
st

ca
se

 s
el

ec
ti

on
 s

tr
at

eg
ie

s
ba

se
d

on
 U

M
L

 s
ta

te
ch

ar
ts

.

T
hr

ee

ca
se

st
ud

ie
s

L
ab

or
at

or
y

A
T

,
R

T
P

(T

T
),

A

T
P

,

an
d

F
P

A
rt

if
ic

ia
l

P
ar

ad
ka

r
[8

2]

C
om

pa
re

s
A

T
 a

nd
 A

T
P

 to
 m

ut
at

io
n

ba
se

d
cr

ite
ri

a
C

as
e

st
ud

y
L

ab
or

at
or

y
A

T
, A

T
P

, a
nd

 m
ut

at
io

n

ba
se

d
cr

ite
ri

a

A
rt

if
ic

ia
l

B
ri

an
d

et

al
.

[8
1]

In
ve

st
ig

at
e

ho
w

 d
at

a
fl

ow
 i

nf
or

m
at

io
n

ca
n

be
 u

se
d

to

im
pr

ov
e

co
st

-e
ff

ec
ti

ve
ne

ss
 o

f
st

at
e-

ba
se

d
co

ve
ra

ge
 c

ri
te

ri
a.

T
w

o
ca

se

st
ud

ie
s

L
ab

or
at

or
y

R
T

P

A
rt

if
ic

ia
l

P
ar

ad
ka

r
[8

3]

E
va

lu
at

e
fa

ul
t-

de
te

ct
io

n
ef

fe
ct

iv
en

es
s

an
d

si
ze

 o
f

se
le

ct
ed

m
od

el
-b

as
ed

 te
st

in
g

te
ch

ni
qu

es
.

T
w

o
ca

se

st
ud

ie
s

L
ab

or
at

or
y

F
P

,
B

Z
T

T
,

m
ut

at
io

n

ba
se

d
te

st
in

g,
 a

nd
 u

se
r

de
fi

ne
d

te
st

 o
bj

ec
tiv

es

A
rt

if
ic

ia
l

M
ou

ch
aw

ra
b

et
 a

l.
[8

5]

In
ve

st
ig

at
e

th
e

fa
ul

t-
de

te
ct

io
n

ef
fe

ct
iv

en
es

s
of

U

M
L

st
at

ec
ha

rt
-b

as
ed

 t
es

ti
ng

 w
he

n
co

m
pa

re
d

an
d

co
m

bi
ne

d
to

w
hi

te
-b

ox
, s

tr
uc

tu
ra

l t
es

ti
ng

.

C
on

tr
ol

le
d

ex
pe

ri
m

en
t

L
ab

or
at

or
y

R
T

P

an
d

w
hi

te
-b

ox

te
st

in
g

A
rt

if
ic

ia
l

26

3.1.2 Oracle Comparisons

Both in practice and research, much focus in today’s software testing is related to the

generation of test inputs. Furthermore, the important aspect of test oracles, which evaluates

whether or not the software under test executed as expected, has received little attention.

Staats et al. [86] claim that by investigating oracle selection in combination with test inputs,

especially how the two aspects complements or influence each other, improvements in the

efficiency of testing may be achieved. Studying different types of oracles is an important area

as it is not a feasible solution to monitor everything due to the high cost of creating and

maintaining such an oracle [87].

Furthermore, Staats et al. [88] addressed the lack of a common framework for empirical

testing research. They provided such a framework, focusing on problematic areas in today’s

research as the assumptions about research results on fault-detection ability due to missing

focus on the relationship between structure of system under test, testing strategy and oracle.

The absence of such a focus may lead to results that can be misleading, cannot be generalized,

or that do not facilitate comparisons of strategies.

Applying structured SBT criteria implies a large number of tests, which makes manual

evaluation of results an impossible task. It is thus a prerequisite that the test oracle is

automated as to consider SBT of real software a feasible approach.

Manual testing, on the other hand, usually results in smaller test suites that enable manual

inspection of results. There are several types of oracles to be used in SBT, e.g. checking the

abstract state (state invariant) [31], checking the concrete state (i.e., checks all attribute

values) [31], and checking pre and post conditions for operations and class invariants [89]. To

the author’s knowledge, however, only the study of Briand et al. [12] has compared various

oracles in SBT strategies. Two different oracles were compared in terms of fault detection and

cost. The first oracle was a precise oracle that checks the concrete state of objects; the other

checks the state invariant (abstract state). They found significant differences between the two

oracle strategies, which emphasizes the importance of choosing the appropriate oracle. In

other fields, there are several studies that address this aspect, e.g., GUI testing [90, 91] where

results reveal that employing expensive oracles leads to the detection of more faults using

relatively few test cases.

27

3.1.3 Test-Suite Reduction

Reducing the test-suite size by abstracting the test model is yet another area of related work

where few studies have been carried out in the context of SBT. Heimdahl and George [29]

found that the size of the specification-based test suites can be dramatically reduced and that

the fault detection of the reduced test suites is adversely affected. Wong et al. [30]

investigated the effect on fault-detection of keeping block and all-uses coverage constant

while reducing the size of a test suite. They found that effectiveness reduction was not

significant even for the most difficult faults, which suggests that minimization of test suites

can reduce the cost of testing at slightly reduced fault-detection effectiveness.

3.1.4 Sneak-Path Testing

Well-known state-based testing strategies like all transitions, all transition pairs, and round-

trip paths [31] seek to compare explicitly modelled behaviour to actual software execution.

However, it is also important to test whether or not the software handles unspecified behavior,

so called sneak paths [31], in a correct way. State machines are usually incompletely specified

and this is normally interpreted as events on which the system should not react, that is

changing states or performing actions. Sneak-path testing sends every unspecified event in all

states. In other words, sneak-path testing aims to verify the absence of unintentional sneak

paths in the software under test as they may have catastrophic consequences in safety critical

systems.

Investigating the impact of round-trip path (RTP) testing on cost and fault detection when

compared to structural testing, Mouchawrab et al. [92] conducted a series of controlled

experiments. The study was a replication of [12] where one of the findings was that not

testing transitions to self resulted in many faults not being detected. Hence, in the replication

experiments they extended the testing strategy by complementing the RTP criterion with

sneak paths as recommended by Binder. Results showed that sneak-path testing clearly

improved fault detection. The collected data thus strongly suggests complementing RTP with

sneak-path testing. No other empirical study evaluates the testing of sneak paths and there are

no studies in realistic industrial contexts.

3.1.5 Tool Development and Practical Evaluations

Several well-known, model-based testing tools have been developed in recent years, such as

TDE/UML (Siemens) [8], SpecExplorer (Microsoft) [11], and IBM Rational Functional

Tester [10]. Based on just three sources, we were able to find references to more than 50

model-based testing tools. In this thesis we focus on configurations of TRUST with state

28

machines and thus we are interested in comparing this SBT version of TRUST with other

SBT tools. Consequently, we focus our discussion of related work to tools that (i) are (partly)

based on UML state machines, (ii) automatically generate executable test cases including test

oracles, and (iii) have at least some support for extensibility and configurability.

After applying these criteria on more than 50 model-based testing tools [1, 9, 93], we were

left with five tools [21, 17, 18, 19, 94]. We then collected information regarding the

extensibility and configurability of their different features (input model, testing strategy, and

output language of the tools). Since TRUST generates test cases from UML state machines,

the following information was collected related to UML state machines from the tools to

determine the degree to which their input model can be extended and configured:

 UML metamodel: As the UML metamodel undergoes changes on a regular basis, a

test tool must have the ability to accommodate these changes with reasonable

effort.

 Constraint evaluation: A UML state machine may contain various types of

constraints such as state invariants and guards. These constraints can be defined in

different languages such as OCL, Java, or any other tool-specific language.

Therefore, the tool architecture should easily accommodate changes in constraint

language or evaluation technology.

 Support for UML profiles: UML profiles provide an extension mechanism to

support modeling for particular domains and platforms, for instance the MARTE

profile for modeling real-time and embedded systems [95]. An extensible tool

should be able to accommodate models based on different UML profiles.

The last part of the analysis considered the tools’ extensibility and configurability

regarding test models and coverage criteria, test data generation techniques, and test-scripting

languages since these are the components of a testing strategy. We will now provide a

summary of our analysis regarding the extensibility and configurability of these five tools.

Conformiq Tool Suite [21] is an eclipse-based tool used to generate test scripts from

system models specified in QML (Conformiq Modeling Language). This language is based on

UML and Java/C# compatible syntax and is supported by a tool called Conformiq Modeler

[21]. Conformiq Tool Suite can be configured for the following state machine coverage

criteria: state coverage, transition coverage, 2-transition coverage, all paths coverage, and

implicit consumption (criterion to check that system ignores transitions that are not explicitly

defined on a state), branch coverage, atomic condition coverage, and boundary value pattern

29

(to cover boundaries of decisions in guards) [21]. Conformiq Tool Suite supports extensibility

by means of plug-ins, which can be coded in C++ or Java. The plug-ins can be written for

changing the test-scripting language, logging formats, and test execution type (online vs.

offline test execution). This means that Conformiq Tool Suite can only be configured for

predefined coverage criteria and cannot be extended to additional test models, coverage

criteria, and test data generation other than what is already provided. However, Conformiq

Tool Suite can be extended for different test-scripting languages by implementing specific

plug-ins.

The tool Automatic Test Generator/Rhapsody (ATG) [19] is a module of I-Logix

STATEMATE and Rhapsody products. ATG can be configured to generate test cases from

models based on a set of coverage criteria such as state and transition coverage and modified

condition/decision coverage on guards in state machines. ATG doesn’t provide any extension

mechanisms, however.

AGEDIS is a tool for automated model-driven test generation and execution for

distributed systems. It has been made usable and interoperable with external tools by defining

clear external interfaces in the tool. In addition, well-defined internal interfaces make

AGEDIS more reusable. For instance, the user can define or select a coverage criterion

through a test generation directives interface, which includes coverage criteria, constraints

(which are additional criteria) on the test suite, and test purposes [96].

There is also a defined interface for abstract test cases that makes the tool open for later

extensions to other test-scripting languages than TTCN-3. However, most of these interfaces

are not defined by standardized well-known languages. For example, standard OCL

constraints on an input UML model should be transformed into their interface language (IF)

format [18].

ParTeg (Partition Test Generator) [94] is a test generation tool dealing with the reuse of

state machines for automatic test case generation in the context of product lines. Regarding

configurability, ParTeg allows the user to choose from a set of coverage criteria: state

coverage, decision coverage, and modified condition/decision coverage as well as boundary

value coverage criteria for input data to cover boundaries of decisions in guards. No attempt

was made for making it extensible and configurable with respect to input models, test data

generation, and output languages.

MOTES [17] is a model-based testing tool for generating TTCN-3 tests. MOTES accepts

Extended Finite State Machines (EFSM) as input and requires test data to be prepared

manually before the test case generation phase. However, it provides some extensibility

30

opportunities for output models by having a standard input interface. For example, UML state

machines created using third party CASE tools (for example Poseidon [97]) can be imported

to MOTES, although state machines must be flat without concurrent and hierarchical states.

MOTES provides a configurable set of coverage criteria such as selected states, selected

transitions, and all transitions.

Table 2 gives a summary of the abovementioned tools regarding their extensibility and

configurability for respectively the input model, testing strategy, and test-scripting output

language. A clear conclusion from the summary is that current tools usually support

configurable coverage criteria (within a limited set) and three of them are extensible regarding

new output languages. However, hardly any SBT tool provides support for extending it to

new input models or test data generation strategies. Therefore, we were encouraged to

develop an extensible and configurable tool with well-defined interfaces and simple

extensibility mechanisms. The requirements and development of our tool will be introduced in

Chapter 5.

Table 2 Extensibility and configurability of the current SBT tools

Tool name Input model Testing strategy Test script
output
language

UML
metamodel

Constraint
evaluator

UML
profiles

Test model and
coverage criteria

Test data
generation

Conformiq
Tool Suite

- - - Configurable Configurable Extensible
and

configurable
ATG - - - Configurable - -
AGEDIS - Extensible - Extensible and

configurable
- Extensible

MOTES - - - Configurable - Extensible
ParTeg - - - Configurable - -

31

3.2 Semi-Structured Literature Review from 2009 to 2011

In order to capture recent work in the field of state-based testing, a semi-structured literature

review was conducted from the years 2009 to 2011.

3.2.5 Research Method

As the purpose of this review is to illustrate an example of state of the art, papers were

extracted from a selection of what can be considered as the three most relevant journals and

conferences for software testing (please refer to Table 3).

Table 3 Selection of journals and conferences

Publication type Database Publication

Journal ACM Transactions on Software Engineering and
Methodology (TOSEM)

Journal IEEE Transactions on Software Engineering (TSE)

Journal Wiley Online Library Software Testing, Verification, and Reliability (STVR)

Conference ACM International Symposium on Software Testing and
Analysis (ISSTA)

Conference IEEE International Conference on Software Testing,
Verification and Validation (ICST)

Conference IEEE International Symposium on Software Reliability
Engineering (ISSRE)

The following search strings were used as inclusion criteria: “state-based testing”, “state

based testing”, “state-machine testing”, “state machine testing”, “model-based testing”, and

“model based testing”. To be included in the selection of papers, the search strings had to be

present in the title or in the abstract. Also, the search string “UML” had to be found in the

paper. Furthermore, the criterion for publication year was set to the year range from 2009 to

2011.

Papers that did not include empirical studies were excluded from the sample.

3.2.6 Results

By executing the searches described in the previous section, 24 papers were found. Only six

of these, shortly introduced in the following paragraphs, however, appeared to be relevant to

this thesis. Only one paper (though not relevant) was returned from the search in TOSEM

32

executed on the ACM database. Executing the searches in IEEE for TSE publications resulted

in one relevant paper. Twelve papers were found among STVR publications in the Wiley

Online Library, of which two were included. Continuing with the conferences, no papers were

found in ACM when restricting the search to ISSTA publications. Eight papers, of which one

was relevant, were returned from searching in ICST publications (IEEE). Finally, two papers

were found among the ISSRE publications (IEEE) of which both were included in the review.

Please refer to Appendix B for search results per publication, both numbers of excluded and

included papers.

Investigating the impact of state-machine testing (the round-trip path coverage criterion in

particular) on fault detection and cost when compared with structural testing, Mouchawrab et

al. [92] conducted a series of controlled experiments. Results showed that there was no

significant difference between the two strategies regarding fault-detection effectiveness.

Combining the two strategies, however, yielded significantly more effective results.

The round-trip path criterion was further studied by Briand et al. [98] in the context of

UML state machines with focus on how to improve the criterion’s fault-detection

effectiveness. They investigated how data flow analysis on OCL guard conditions and

operation contracts could be used to “further refine the selection of a cost-effective test suite

among alternative, adequate test suites for a given state machine criterion” [98]. A

methodology on how to perform data flow analysis of UML state machines was presented.

Results from two case studies suggested that data flow information in a transition tree could

be used to select the tree with the highest fault-detection ability.

In [99], Khalil and Labiche addressed the assumptions about the round-trip path strategy

regarding the equivalency of exercising paths in the tree that do not always trigger complete

round trip path versus covering round-trip paths. They investigated the consequences of the

assumption not being held in practice. Finally, they proposed yet a new algorithm for

generating the transition tree, which resulted in higher efficiency and lower cost.

From the perspective of executing MBT in practice with respect to limited time and

resources, three papers on similarity-based test selection address the problem of large test

suites that are automatically generated by MBT-tools. Addressing the topic of scalability with

respect to large test-suite sizes when applying model-based testing in practice, Hemmati and

Briand [100] investigated and compared possible similarity functions to support similarity-

based test selection. Empirical data on the most cost-effective similarity measure was

collected by applying the proposed similarity measures and a selection strategy to an

industrial software system. Results from the case study showed that using Jaccard Index to

33

measure the similarity of the test cases (which were represented as a set of trigger-guards) of

the respective test paths obtained the best results in terms of cost and effectiveness. They

reported a significant reduction (77 percent) in test execution cost.

Continuing the work presented in [100], but this time trying to gain insights into why and

under which circumstances a particular similarity-based selection technique can be expected

to work, Hemmati et al. [101] investigated the properties of test suites with respect to

similarities among fault revealing test cases. They conducted experiments based on simulation

where two industrial case studies were used to guide the simulations. Obtained results

confirmed their assumptions that similarity-based test case selection would perform better

when “test cases which detect distinct faults are dissimilar and test cases that detect a common

fault are similar”. They also found that similarity-based test case selection is less effective in

cases when a small group of transition paths is mostly disconnected from the rest of the state

machine.

Having a motivation similar to Hemmati and Briand [100], Cartaxo et al. [102] also

addressed the problem of large test suites. A test case selection strategy was compared with

random selection by considering transition-based and fault-based coverage. Based on results

from three case studies, they found that the similarity-based test case selection can provide

more effective test suites than random selection.

3.2.7 Summary

As we have seen, there is a clear gap between existing studies from the three recent years

(2009 to 2011) as compared to the work presented in this thesis. To summarize the findings of

the semi-structure review, [92] compared the round-trip path coverage with structural testing

in terms of cost and effectiveness, [98, 99] reported on attempts on improving the round-trip

path coverage, and finally, [100, 101, 102] addressed test-suite size reduction using similarity-

based test selection. The latter three studies may not be highly relevant for this study. Yet they

were included due to their practical use in potentially reducing the number of test cases

generated by the coverage criteria.

None of the included papers, however, compares cost and effectiveness of AT, RTP, ATP,

LN2, LN3, and LN4 when varying the oracles and test model abstraction levels by using

mutation testing with real faults.

Based on the related work presented in this chapter, Chapter 4 seeks to motivate the

research in the thesis by identifying gaps in existing research.

34

4 Limitations in Existing Research

This chapter seeks to identify areas in existing research presented in Section 3.1 and Section

3.2 that need further exploration, providing a detailed motivation for the research in this

thesis.

Although a growing number of studies address the fault-detection effectiveness of state-

based test criteria, very few studies have been conducted on realistic industrial software – in

particular, studies that evaluate state-based testing strategies using real faults on industrial

programs. The academic SUT that most studies have used in their evaluations is the well-

known Cruise Control system [103, p. 595]. However, the example is considered to be small

in size as the flattened specification only contains six states and 19 transitions. Even though

the Cruise Control system is known for being a typical control system, there may still be

issues in other systems not present in the frequently used academic system. The convenient

reuse may thus be a threat to the external validity of the obtained results. Future research

should aim at evaluating coverage criteria by varying the SUT instead of using the same SUT

over and over again.

Moreover, surveying existing research shows that extremely few studies apply real faults

when using mutation analysis for evaluating various testing strategies – the use of artificial

faults is prevalent. As stated by Andrews et al. [28], a problem when evaluating testing

strategies is that real programs with real faults are rarely available. Except from the two

studies of Andrews et al. [28, 26], in addition to a few studies where only a small percentage

of the seeded faults were real [16, 15], artificial faults are used in the reported testing strategy

evaluations [70, 77, 80, 12, 22]. As a consequence, little is known about how such structured

test approaches compares in detecting real faults. In this thesis, however, the comparison is

exclusively based on real faults that were collected during a field experiment at three ABB

departments, during fall 2008.

Like in the studies just mentioned, this thesis investigates the effectiveness, i.e., the fault-

detection ability, of SBT criteria. Moreover, this thesis also addresses the cost of SBT. Only a

few of the presented studies report the cost of SBT. Several aspects of cost are presented in

this thesis:

 the cost of modeling,

 the cost of generating and executing test suites that satisfy six state-based coverage

criteria, two oracles at two different test model abstraction levels,

 practical issues regarding test execution, and

35

 tool development.

Furthermore, this thesis explores the use of two test oracles with different precision levels.

Also, the lack of research on the interesting aspect of increasing the test model abstraction

level motivates this thesis. The studies addressed in Sections 3.1 and 3.2 provide no focus on

test model abstraction levels. Several other studies presented in Sections 3.1 and 3.2 focus on

lowering the cost of testing by reducing the test suites, preserving the original coverage,

though at the expense of fault-detection ability. Like [29], we investigate the fault-detection

effectiveness of reduced test suites, yet based on a different idea. Whereas test-reduction

techniques are based on removing tests in a test suite that do not contribute in increasing the

fault-detection ability, this thesis rather focuses on abstracting the test model itself. This

means that not only are the number of test cases in the test suites reduced, but also the detail

level in the test model.

Last but not least, as sneak-path testing has appeared to be of high importance in software

testing, this thesis also seeks to provide more empirical data on this particular type of testing.

To conclude, existing research have evaluated state-based coverage criteria. As the

attention has mostly been directed towards fault-detection effectiveness, there is still a lack of

empirical results regarding the cost of such testing. Especially, regarding how state-based test

criteria perform when being exposed to real faults. The majority of the results are based on

studies where artificial mutation operators have been applied in small academic programs.

The few studies that do use (or partly use) real faults [15, 16]) tend not to describe how those

faults were collected.

In summary, this thesis complements and extends existing research on the cost-

effectiveness of SBT by

 using an industrial safety-critical system,

 using real faults (from an industrial field study) in mutation analysis,

 comparing six state-based coverage criteria,

 performing a comparison of two test oracles,

 studying the impact of varying the test model abstraction level, and

 applying sneak-path testing.

The next part of this thesis presents the development of an extensible model-based testing

tool.

36

PART II – DEVELOPMENT OF AN EXTENSIBLE MODEL-BASED

TESTING TOOL

Part II regards the first part of the research goal (introduced in Section 1.2), and presents an

extensible model-based testing tool. Chapter 5 addresses the design and the development of

the tool, whereas Chapter 6 discusses experiences from the development process.

5 Development of a Model-Based Testing Tool

Motivated in Chapter 1 by the lack of extensible and configurable model-based testing tools,

this section proposes a MBT tool, TRansformation-based tool for Uml-baSed Testing

(TRUST), whose software architecture and implementation strategy facilitate its

customization to different contexts by supporting configurable and extensible features such as

input models, test models, coverage criteria, strategies for test-data generation, and test-

scripting languages.

In this thesis, configurability is defined as the ability of selecting between several options,

provided by the tool, for a specific feature. For example, the tool is configurable with respect

to coverage criteria if it lets the user select among several coverage criteria such as all

transitions and all round-trip path coverage criteria [31]. Extensibility is defined as the ability

of providing more options for a feature without any modification in the components that are

not responsible for the feature. For example, providing support for generating test scripts in

more languages is considered as extending the tool.

The approach presented, which is inspired from the Model-Driven Architecture (MDA)

standard [104], relies on a series of model transformations to generate test cases. The main

idea is to design a tool in such a way that its different components provide and require

standard interfaces with input and output models based on standard metamodels. Each

component in this tool is responsible for one feature (e.g., test model, test data, etc.) involved

in the process of generating test cases. This separation of concerns and provision of standard

interfaces make TRUST configurable and extensible. In addition, model transformation

technology helps the developer upgrade the components with a new set of transformations

from standard inputs into well-defined outputs.

The approach allows instantiating new, context specific MBT tools by extending or

configuring TRUST with customized features, such as input models, test models, coverage

criteria, strategies for test-data generation, and test-scripting languages.

37

The remainder of this chapter describes in detail the model-based approach to develop the

automated tool TRUST.

5.1 Requirements, Design, and Implementation of TRUST

This section discusses the main requirements of TRUST, define and justify architectural

decisions, and choices of technologies. In addition, details regarding the test-case generation

and test-case execution procedure will be provided.

5.1.1 Requirements and Approach

To be optimal from a practical standpoint, a tool that supports all features of UML is desired.

However, as discussed in Chapter 3, this may not be enough – extensibility to various UML

extension profiles, such as MARTE [95] and UML QoS profile [105], may also become a

requirement in future applications. What is needed is a tool that shows versatility in various

contexts. Adding different output scripting languages (such as C++, Python, and Java), test

models (such as transition trees and testing-flow graph [106]), coverage criteria on test

models (such as all transition and all round-trip path coverage), and test-data generation

techniques (such as random and adaptive-random search [107]) for different application

domains and systems are examples of useful extensions for TRUST.

In addition, the tool should be easily configurable to satisfy varying requirements, which

means that the user should be able to easily configure features such as input model, coverage

criteria and strategies for test-data generation. High configurability enables testers to

experiment with various techniques without significant effort and changes in the tool

implementation. This is of practical importance as different test models, coverage criteria, and

test-data generation techniques helps in targeting different types of faults. Figure 1 shows a

summary of the tool’s high-level requirements.

The approach taken for implementing TRUST (Figure 2) is based on model

transformations. The idea (inspired by MDA concepts, introduced in Chapter 2) is to generate

a test model using a series of horizontal (endogenous and exogenous) model-to-model

transformations on an input design model, modeling the platform independent model (PIM) of

a system. Then, a vertical, exogenous model-to-text transformation is used to generate test

scripts.

38

This approach was found to be very well-suited for developing TRUST, firstly due to the

fact that it addresses the stated extensibility and configurability requirements. Each

component of TRUST implements one set of transformation rules (e.g., transformation from

test tree to test cases). Each component has well-defined interfaces with other components.

More specifically, each interface provides output to, or requires inputs from, other

components by means of intermediate models conforming to metamodels. Secondly,

separation of concerns among components has made each transformation responsible for

providing one feature such as test model, test data, and test scripts. Therefore, adding a new

feature (for example, output test scripts in a new language) can be achieved by writing a new

set of transformation rules in one of the components, without affecting the other components.

Thirdly, in the model-transformation based approach, the transformation language provides

the developer with direct support for navigating, creating, and manipulating a model, based on

its metamodel. Generally, the transformation rules are relatively compact and easy to read,

write, and change.

REQ1.

The tool should handle UML diagrams such as state machines, sequence
diagrams, activity diagrams, and OCL as the constraint language for UML
diagrams

REQ2. The tool should have a configurable and extensible input model
 REQ2.1. The tool should be extensible for new UML profiles and

configurable for existing UML profiles
 REQ2.2. The tool should be extensible for changes in the UML metamodel

and configurable for existing UML metamodels
REQ3. The tool should have a configurable and extensible testing strategy

 REQ3.1. The tool should be extensible for new test models and criteria and
configurable for existing ones

 REQ3.2. The tool should be extensible for new test-data generation
strategies and configurable for exiting strategies

REQ4.

The tool should have a configurable and extensible test-scripting output
language

REQ5. Extending the tool should be as easy as possible
 REQ5.1. Making any extension for the tool should have minimum effect on

the tool’s architecture
 REQ5.2. Extending or changing one component of the tool should be

possible using knowledge of its interfaces and should not require
any knowledge about inner details of other components of the tool

Figure 1 High-level requirements of TRUST

39

Figure 2 Model-transformation based approach for test-case generation

In this thesis, TRUST was configured with UML 2.0 state machines as the input model.

REQ1 in Figure 1 is refined accordingly as follows: The tool should accept UML 2.0 state

machines with support for concurrency and hierarchy. Constraints on state machines may be

written in OCL because it is an OMG standard for writing constraints on UML diagrams.

Furthermore, the general model-transformation based approach, given in Figure 2, is

instantiated on UML 2.0 state machines, as shown in Figure 3.

Required activities, technologies, and the procedure for this approach will be explained in

the remainder of this section.

40

Figure 3 Model-transformation based approach for TRUST when configured for state machines

5.1.2 Development of TRUST using a Model-Transformation Approach

This section describes the activities involved in developing TRUST when configured for

state-based testing (SBT). Firstly, transformations must be specified and implemented for

various activities (activities A1, A3, and A6 in Figure 4). Since these transformations are

applied on metamodels, we may need to define input metamodels (activity A2 in Figure 4).

However, since some metamodels already exist (e.g., the UML 2.0 metamodel), it is not

necessary to define all metamodels from scratch. Secondly, to make the test cases executable,

test data is required (activity A5 in Figure 4). Finally, a method for evaluating the OCL

constraints that are defined on UML state machines must be developed (activity A4 in Figure

4). In Figure 4, the notes associated with the activities show the technologies selected to

implement each activity. These choices will be justified below.

From UML State Machines to Test Models

The first SBT activity is flattening the input state machine. As explained, the input behavioral

model is a UML 2.0 state machine that allows complex structures like simple composite

states, orthogonal states, and submachine states. Testing can be performed directly on such

state machines, but this requires rather complex strategies, because such structures complicate

the traversal and analysis of the state machine. An alternate approach is to flatten the state

machines first, by removing concurrency and hierarchy, and then apply a testing strategy. In

41

order to obtain a better separation of concerns and lesser analysis complexity, the latter was

implemented.

Figure 4 Activities and technologies for developing TRUST using model transformations

Several algorithms are reported in the literature to flatten concurrent and hierarchical state

machines [31, 108]. However, to the author’s knowledge, these algorithms are partial and do

not provide flattening of both hierarchy and concurrency. Therefore, we decided to implement

a self-written flattening algorithm for UML 2.0 state machines. The implemented algorithm is

a stepwise process that allows the user to modify the UML model at several points during the

transformation towards the flattened version. The first step in the flattening process is to

search all nested levels for submachine states and transform these into a set of simple

composite states. Next, all simple composite states with one region are transformed to a set of

simple states or orthogonal states. If there are orthogonal states present in the model, these

may now be transformed to simple composite states. Finally, the simple composite state(s)

created in the previous step are transformed to a set of simple states.

The result is a state machine consisting of an initial state, simple state(s) and possibly a

final state. The flattening follows a set of transformation rules implemented in Kermeta [109].

The key aspects in these rules address (1) how to combine concurrent states, and (2) how to

redirect transitions. Redirecting transitions may require duplicating transitions, changing

source or target states, and combining transition information (triggers, guards, transition

activities, and state entry/exit activities). Interested readers may consult [34] for more detailed

42

information about the flattening algorithm and its corresponding transformations and

implementation.

Figure 5 shows a Kermeta rule used for flattening of simple composite states. Incoming

transitions to an entry point in a simple composite state are redirected to each of the outgoing

transitions of the same entry point. The small example below provides the Kermeta rule that

identifies the incoming transitions that will be redirected by calling another Kermeta rule.

Once the flattened state machine is generated, it is transformed into a test model. This

transformation requires three inputs: the source metamodel, the source model (which is an

instance of the source metamodel), and the target metamodel. The source metamodel is a

metamodel for the flattened state machine, which is the same as the target metamodel for the

flattening-transformation step in Kermeta. The output of the Kermeta transformation, a

flattened state machine, provides the second input, which is the source model. The last input,

the target metamodel, is a metamodel for a test model. The expected structure and content of a

test model is strongly dependent on the selected testing strategy. In the current version of

TRUST, the test model conforms to a test-tree metamodel. Figure 6 shows the metamodel

developed as an Ecore file, based on EMF (Eclipse Modeling Framework). The metamodel

represents a tree with a starting node, called alpha, and its outgoing edges. Each edge in the

tree has a target node and may have several children that are the target node’s outgoing edges.

Similar to transitions in a UML state machine, each edge in the test-tree metamodel is

associated with at least one trigger and may have an associated guard and effect. In addition,

each node may have an associated state invariant.

43

Figure 6 Test-tree metamodel for the EMF

/**
* Rule getTransitionsTargetedInEntryPoint identifies the incoming transitions to this
* vertex which is an entry point.
*/
operation getTransitionsTargetedInEntryPoint (r: Region) : Set<Transition> is do

//create a set of all incoming transitions to this entry point
var IN : Set<Transition> init Set<Transition>.new

//add each incoming transition to the set
r.transition.each{t |

if (t.target.isInstanceOf(Pseudostate))
then if (t.target.asType(Pseudostate).kind == PseudostateKind.entryPoint)

then if (t.target.asType(Pseudostate) == self)
then IN.add(t)

end
end

end }

//return transition set
result := IN

Figure 5 Example of Kermeta flattening rule

44

The flattened state machine is transformed into a test tree (e.g., a transition tree for all

round-trip paths coverage criterion) by a set of ATL transformation rules that take the three

abovementioned inputs as parameters. We chose the ATL transformation language because

most mappings in this step are simple (mainly one-to-one), which makes a declarative

approach the best choice. In declarative approaches, as opposed to imperative ones, control

flow and the application order of rules are not explicit.

Usually the transformations in declarative languages have less transformation code and

are more comprehensible than imperative languages [110]. This transformation could also

have been implemented with any other declarative, hybrid, or even imperative language. In

this research, however, it was decided to stick with an Eclipse-based technology so as to

develop the entire tool on a consistent platform. For example, the transformation rules,

instantiating a transition tree from the test-tree metamodel, start from the initial state of the

state machine which is mapped to the root node, called the Alpha node, in the test tree. All

outgoing transitions of the initial state are also mapped to the outgoing edges from the Alpha

node.

This process of mapping transitions to edges is applied recursively on the target state of all

transitions in the state machine. Finally, the recursive rule stops when it reaches a leaf or a

state that has already been visited in the same path starting from the Alpha node (all round-

trip paths coverage [111]). An example of ATL transformation rules is shown in Figure 7 that

maps the Constraint metaclass (SM!Constraint) including its name and value properties

from UML metamodel (SM) to the Constraint class (transitiontree!Constraint) in the

test tree metamodel (transitiontree) and its name and value properties.

rule Constraint2Constraint{
from

a:SM!Constraint
to

b:transitiontree!Constraint(
name <- a.name,
value <- a.specification.stringValue()
)

}

Figure 7 Example of transformation rule implemented in ATL

45

From Test Model to Executable Test Cases

The generated test tree is the input for the next transformation, which generates the executable

test cases. The MOFScript [112] transformation language was chosen for several reasons.

Firstly, it supports the MOF standard [113], which means that it can transform any MOF-

based model-to-text. Secondly, it is an imperative language for writing transformation rules

similar to many programming and scripting languages. This makes the MOFScript language

easy to use and understand. Thirdly, MOFScript provides access to external Java libraries.

This makes the language very suitable for the context of this thesis because of the need to

access a test-data generator (implemented in Java) during the transformation to obtain test

data. MOFScript transformations require the source model and its metamodel, which are

readily available from the previous step. There is no need to provide the grammar of the

output language as an input to TRUST, but of course defining transformations requires its

definition.

Each path in the test tree represents an abstract test case. Thus, an abstract test case

consists of a sequence of nodes and edges. Nodes are mapped from states in the state machine

and states are defined by state invariants, which are OCL constraints serving as test oracles.

An edge contains all the information related to the trigger including event (e.g., an operation

call or a signal reception), a guard, and an effect from the state machine’s transitions.

The MOFScript transformation traverses the test tree (e.g., the transition tree) to obtain the

abstract test cases and transforms them to concrete (executable) test cases, which are written

in a test-scripting language. However, it is possible to generate several concrete test cases

from an abstract test case by using different test-data values. There are many possible

approaches for generation of test-data [114, 115], which are applicable in different situations.

What was implemented in the first version of TRUST is the simplest method, which is

random data generation for operation calls. This test-data generator is written in Java and

provides random values for the parameters of triggers. However, such a test-data generation

technique is not suitable when transitions are guarded and parameters of the triggers are used

in the guards. The MOFScript rule shown in Figure 8 illustrates how a trigger is mapped from

the test tree for all transitions to C++ test cases. The rule maps the name of the trigger event

operation and then uses another mapping rule mapParameter to map the parameters for the

trigger event operation.

46

When executing test cases, OCL expressions in guarded transitions should be evaluated at

runtime to detect failures. For the same reason, the state invariants associated with states must

also be evaluated at runtime. One way to evaluate such OCL constraints is to translate them

into a test-scripting language. The constraints will then be evaluated during the execution of

the test scripts. Compiler technologies [116, 117] may be used to translate constraints in one

language to constraints in another language. This approach however is not reusable across

contexts with different test-scripting languages. For example, if we have transformation rules

that transform OCL constraints to C++ and the test-scripting language changes to Java, it is

then required to define new transformation rules from OCL constraints to Java expressions.

An alternate approach is to use an existing OCL evaluator [52, 54, 55, 53] that is called during

the execution of a test case to evaluate the OCL constraints. This approach requires an object

model of the SUT at runtime, representing the current state of the system. This model along

/**
* rule 'mapTrigger' generates the C++ code to invoke the operation implementing
* the trigger event. Rule 'mapParameter()' is called to map parameters in the
* trigger event operation call. Each trigger is either a MethodCall,
* SignalReception, or Timer.
* @param triggerWithParam List, the total generated output for a trigger as String.
* @param noOfParam Integer, temporary helper variable used for counting parameters.
*/
transitiontree.Trigger::mapTrigger(){

var triggerWithParam : List;
var noOfParam : Integer = 0;
if(self.oclGetType().equals("MethodCall") or self.oclGetType().equals("SignalReception") or
self.oclGetType().equals("Timer"))

{
triggerWithParam = controlClassReference+"->"+self.name + "(";

if(not self.parameters.isEmpty()){

self.parameters->forEach(p:transitiontree.Parameter){
triggerWithParam += p.mapParameter();
noOfParam = noOfParam + 1;

if(noOfParam < self.parameters.size()){

triggerWithParam += ", ";
}

}
}
triggerWithParam += ");";

}
return triggerWithParam;

}

Figure 8 Example of transformation rule implemented using MOF Script

47

with the constraint to be evaluated is passed to the OCL evaluator, which in turn returns the

result of the evaluation. This approach is reusable across contexts because the only required

change for each output language is to use its appropriate invocation method for calling an

external library (the OCL evaluator). On the other hand, this approach may slow down the test

execution as the OCL evaluators are being called at runtime. In both approaches, we need a

mechanism to query the current state of the SUT and evaluate constraints on the current state

of the SUT. Querying the current state of the system depends on the implementation of the

SUT and the test-scripting language’s facility to access the state of the SUT. For instance, if

the SUT is implemented in C++ and test-scripting language is C++, the state of the SUT may

be queried using getter methods of the SUT.

Since the tool was preferred to be reusable in different contexts, it was decided to use an

OCL evaluator that can be invoked from test scripts. Therefore, an efficient evaluator, in

terms of evaluating expressions, was chosen that, for example does not require to be called

several times for evaluating a single expression. After investigating several OCL evaluators

such as OCLE 2.0 [52], OSLO [53], IBM OCL parser [54], and EyeOCL Software (EOS)

evaluator [55], EOS was chosen as it proved to be the most useful evaluator for the stated

requirements (see Figure 1). Since EOS is a Java package, to invoke methods from its classes

we need to have access to Java from a test script. Java Native Interface [118] was used to

access the EOS in test scripts in C++.

To evaluate OCL expressions, EOS requires class and object diagrams to be loaded into

its memory. In order to accomplish this, another MOFScript transformation was written,

which takes the UML class diagram (modeling state variables, method calls, and signal

receptions of the SUT) as input and generates a Java wrapper class that includes a set of EOS

method calls for making class and object diagrams. This wrapper class is generated before

executing the transformation of the test tree to test scripts. During test executions, the required

object model is created based on the current values of system state variables.

48

5.1.3 Generation of Test Cases

This section discusses how the activities introduced in Section 5.1.2 was designed and

implemented. Figure 9 depicts the architecture of TRUST, which consists of five components.

Table 4 shows the mapping between each activity and a component. Each component has

provided and required interfaces with other components to ease extensibility and

configurability, as discussed in Section 5.1.1. Each interface provides or requires models that

are instances of well-defined metamodels. For example, the TestModelGenerator component

in Figure 9 requires an interface from the TestreadyModelMaker component to access the

flattened state machine, which is an instance of the UML metamodel. In addition, the

TestModelGenerator component provides an interface to the TestScriptGenerator component

to access the test tree (e.g., the transition tree), which is an instance of the test tree metamodel.

The architecture shown in Figure 9 was developed with the aim to support extensibility and

configurability. For instance, if TRUST needs to be extended to handle C++ as an output test-

scripting language, the only component to modify is the TestScriptGenerator component

where new transformation rules in MOFScript must be defined. The other components do not

require any change. Each component also has clearly defined configuration parameters that

can easily be adjusted. For instance, if the coverage criterion is to be changed from all round-

trip paths to all transitions, we only need to change the input coverage criterion in the

TestScriptGenerator component.

Figure 9 Architecture diagram of TRUST configured for UML state machines

49

Table 4 Activities implemented by each component

Component Activity

TestreadyModelMaker A1

TestModelGenerator A5

TestScriptGenerator A6

OCLEvaluator A3

TestDataGenerator A4

Figure 10 shows interactions between different components that take place at runtime

when TRUST is executed with an input state machine. The state machine is passed to the

TestreadyModelMaker component, which flattens the state machine and passes the flattened

state machine to the TestModelGenerator component. This component generates the test

model from the flattened state machine and passes it to the TestScriptGenerator component.

The TestScriptGenerator component determines if a trigger (a method call or a signal

reception) in a test script needs static test data. Test data can be generated statically if values

can be determined prior to execution of the test script, or dynamically in the other case. The

parameters whose values can be determined only at runtime are obtained at this point. Section

5.1.4 provides more specific examples of static and dynamic test-data generation.

In the initial version of TRUST, static data for a parameter is generated randomly from the

possible set of values. Generating random test data may not be appropriate when the

parameter of a trigger is used in the associated guard. In this case, a parameter value that

satisfies the guard must be chosen, so that the trigger can be fired. However, if the value of a

parameter is selected randomly from a large set of possible parameter values, then the

possibility of selecting the parameter value that satisfies the guard may be very low.

 50

F
ig

ur
e

10
 I

nt
er

ac
ti

on
s

be
tw

ee
n

di
ff

er
en

t
co

m
po

ne
nt

s
of

 T
R

U
S

T

51

5.1.4 Execution of Test Cases

Figure 11 shows how a test driver interacts with the SUT and other external tools when it

executes a test case. Each test case consists of a series of triggers (methods or signals) with

optional guards. The state of the system is checked before and after executing each trigger

based on state invariants written as OCL constraints. When a test case is executed, the test

driver initializes EyeOCLWrapper and TestDataGenerator (messages 1.1 and 1.2,

respectively). Afterwards, the test driver obtains the state of the SUT by interacting with the

SUT (message 1 in the loop fragment). The state of the SUT can be obtained in many ways. If

the implementation of the SUT is in an object-oriented language such as in Java or C++, the

state variables can be accessed using getter methods of classes if they are available.

Alternatively, if the source code is available, but there are no getter methods, the source code

needs to be instrumented before and after each method call to obtain the current state of the

SUT.

In the other case, if the source code is not available, then there are two possible options.

The first option is that the system state might be obtained using some facilities of the

implementation language. For example, if the Java byte code of the SUT is available, then

Java’s reflection facility [119] can be used to access the system state. The second option is to

use a test-scripting language that provides some mechanisms to access the state of the SUT..

In the implementation of TRUST that was used in this thesis, the test driver retrieves the

minimum system state information by querying the values of only those state variables that

are used in the OCL constraint which is to be evaluated, in addition to querying the state

pointer implemented as an array in the control class of the SUT holding the pointer to the

current state object. After obtaining the current state of the system, the test driver creates an

object diagram using OCLEvaluator via the EyeOCLWrapper class (message 2 in the loop

fragment). This class automatically generates an implementation of the class diagram and

instantiates the object diagram corresponding to the implementation at runtime, based on the

current state of the system (message 2.1 and 2.2 in the loop fragment). The test driver then

evaluates the expected system state using OCLEvaluator via the EyeOCLWrapper class

(message 3 and 3.1 in the loop fragment). Once the system state is evaluated against the

expected state, the trigger, which may be guarded, should be executed. If dynamic test data is

required for the trigger, the test driver communicates with the TestDataGenerator class

(message 1 in the opt fragment) to obtain required values. Whether the value for a parameter

must be generated at runtime is indicated in the data model of the SUT. During the test case

52

generation, TRUST checks if a parameter requires dynamic data generation or if static data is

readily available.

In the case of guarded triggers, the associated guard must be evaluated before executing

the trigger and after obtaining the dynamic test data. The guard may contain system variables

and input parameters of the trigger. This means that in order to evaluate the guard, we need to

obtain the system state and the values of the parameters (possibly dynamically generated)

involved in the guards at runtime; the static and dynamic parameters that are used in the guard

are replaced with their current values obtained from TestDataGenerator dynamically or

statically. The guard is then evaluated in the same way as the state of the system was

evaluated (messages 4, 5, 5.1, 5.2, 6, 6.1). Once the guard is evaluated, the appropriate

method (i.e., the method that implements the trigger event) is invoked on (or signal is sent to)

the SUT (message 7). After the execution of the method (or reception of the signal), the state

of the system is evaluated (message 8, 9, 9.1, 9.2, 10, 10.1) in the same way as the previous

state and guard evaluations. This process is repeated for all triggers in the test case. Finally,

cleanup operations are performed on the SUT (message 1.3) once all the triggers have been

executed on the system. These operations release the resources used by a test case such as

memory and CPU.

The next chapter presents experiences and lessons learned from the development of

TRUST.

53

F

ig
ur

e
11

 I
nt

er
ac

ti
on

s
be

tw
ee

n
di

ff
er

en
t

co
m

po
ne

nt
s

w
hi

le
 e

xe
cu

ti
ng

 a
 t

es
t

ca
se

54

6 Lessons Learned

Developing TRUST and then applying it to real world case studies taught us some important

lessons about both modeling and model transformations. In this section, we will discuss the

lessons learned for these aspects.

6.1 Modeling the SUT

In this thesis, precise behavioral modeling of complex industrial systems using standard UML

2.0 state machines was a prerequisite for using TRUST. The flattening component requires a

correctly specified state machine; currently, no feedback is provided in case of errors in the

model. Modeling correctly, however, is not a trivial task and requires careful studies of the

UML specification. Even though constructs like concurrency and hierarchy are supposed to

ease the understandability of large state machines, such constructs may actually confuse the

developer. In particular, we experienced that concurrency, if not carefully applied, could

introduce modeling errors in practice. For example, concurrent regions sometimes make it

difficult to see the set of transitions between state combinations. A typical fault could be that a

guard is missing on a transition, which allows for transitions to state combinations that are

illegal targets from particular source states. However, we found that it helped to inspect the

flattened state machine to detect such mistakes. During inspection, it was detected that a

missing guard on a transition from an initialization state to a system running state in Region 1

would allow transitions to be incorrectly fired in Region 2.

Lesson learned: Careful inspections of the interaction between concurrent regions are

necessary to prevent unintended behavior. Moreover, constructs like concurrency and

hierarchy must be carefully inspected to ensure that they are used correctly.

6.2 Model-to-Model Transformation Technologies

The model-to-model transformations in TRUST used two different transformation languages:

Kermeta and ATL. Kermeta appeared to be highly appropriate for flattening UML state

machines. In addition to being an object-oriented language, it allows you to add behavior to

the metamodel through aspect weaving. However, we experienced that navigating in the

metamodel was rather time consuming. Alphabetically organized in a super-sub class

structure, the UML 2.0 metamodel is a complex model that is difficult to navigate. Having

55

tool support integrated in the Kermeta plug-in that could remove abstract classes and instead

present the concrete classes relevant for a particular purpose would have been very useful.

Since the metamodel for test trees is relatively simple, the transformation from the

flattened state machine to the test model was expected to be straightforward and easy to

implement by depth-first traversal of the state machine using a declarative language (ATL).

However, we found that the declarative programming style was not intuitive to handle,

perhaps because most developers are used to imperative programming languages. Even

though the final ATL code for test model generation is very short, debugging it was quite

difficult especially when the input model was big. As the input state machine was quite large

it caused Eclipse to run out of memory while generating a transition tree for all round-trip

paths coverage criteria. This was due to the many recursive rule calls required to generate the

transition tree from the flattened state machine. Implementing transition tree generation using

recursion was the only possible option when writing rules in the ATL language in a

declarative fashion. Technology-wise, we also faced many problems while debugging the

ATL rules, especially when the input models are large causing the debugging interface to

hang.

Lesson learned: In future expansions of TRUST, alternatives to ATL used for

transforming state machines to test trees should be explored and considered.

6.3 Model-to-Text Transformation Technology

Developing the final set of transformations in MOFScript was the easiest part of developing

TRUST, because the rules are defined in an imperative form. MOFScript is quite similar to

programming languages like Java, and provides powerful features that are easy to use for

querying models, outputting text, and accessing external Java libraries. We did not face any

special challenges while using MOFScript for generating test scripts.

Lesson learned: MOFScript is a favorable model-to-text technology in terms of ease of

use.

56

PART III – COST-EFFECTIVENESS ANALYSIS

Introduction

We will now address part (2) of the research goal, introduced in Section 1.2, by presenting a

cost-effectiveness analysis of

 six state-based coverage criteria,

 using two different oracles,

 using two test models with two different level of details, and

 sneak path-testing.

Chapter 7 describes the design of four case studies that were conducted. Chapter 8

presents results from the first case study that addresses cost-effectiveness analysis of the

coverage criteria all transitions (AT), all round-trip paths (RTP), all transition pairs (ATP),

paths of length 2 (LN2), paths of length 3 (LN3), and paths of length 4 (LN4). The second

case study (Chapter 9) raises the question: How does varying the oracle affect the cost-

effectiveness? The influence of the test model abstraction level on the cost-effectiveness is

subject of Chapter 10. Finally, Chapter 11 studies the impact of sneak-path testing on the cost-

effectiveness.

57

7 Design of Case Studies on the Cost-Effectiveness of State-Based Testing

Section 7.1 gives the rationale for applying the case study research method for the purpose of

evaluating the cost-effectiveness of SBT. Section 7.2 describes the study in detail.

7.1 Rationale for Selected Research Method

In general, the choice of research method depends on (i) the prerequisites for the

investigation, (ii) the purpose of it, (iii) available resources, and (iv) how the collected data is

preferred to be analyzed [59]. A prerequisite for this investigation in particular, as being part

of and mainly funded by the EVISOFT project, was to conduct research aiming at empirically

evaluating model-based development using UML state machines at ABB. This implies

application of the technique within an ABB context. A prerequisite for state-based testing is

that of state-based modeling. State-based development is a contemporary phenomenon that

should be studied within its real-life context; it is difficult to separate from its context as its

use depends on the type of system, the type of maintenance task, the knowledge of the

developers, and the tools they use. As what comes to resources, the degree of ABB

involvement during the project expiration varied due to limitations in available resources. At

the time the project started, four ABB researchers and developers participated in design and

implementation of the system ABB provided to the EVISOFT project. Also, ABB was highly

involved in recruiting subjects for the purpose of collecting fault-data. ABB was not involved,

however, in the development of the model-based tool for making such state-based testing

feasible, neither in the evaluation of state-based testing. This illustrates the combination of

involved actors. Finally, both quantitative and qualitative analyses are desired for exploring

the research objective.

The preceding paragraph points in the direction of a rather complex investigation;

different types of data collection from observations of several perspectives are required. The

case-study method was decided to be a suitable approach due to state-based testing being a

contemporary phenomenon that should be studied within its context. Furthermore, because it

is a complex topic, which is difficult to explore purely by quantitative data, the techniques

used in case studies are relevant for collecting the desired qualitative data. Also, the

possibilities for triangulation of data will help to reduce misinterpretations of study results.

Triangulation may be used to collect data from several sources and hence create data

redundancy – the case may then be seen from different angles: “Triangulation has been

generally considered a process of using multiple perceptions to clarify meaning, verifying the

58

repeatability of an observation or interpretation” [120, p. 454]. In [121], a case study

evaluation exercise is defined to be one where a method or tool is tried out on a real project.

Furthermore, Wohlin et al. [59, p. 12] adds that within software engineering, case studies

should not only be used to evaluate how or why certain phenomena occur, but also to evaluate

the differences between, for example, two design methods. Hence, case studies are also

appropriate when it comes to comparisons of technologies in order to find the best

technology. The case study method is appropriate for these kinds of studies with respect to the

type of research question posed, which is explorative; a comparison of different testing

strategies at two test model abstraction levels with two oracles.

What is different from traditional case studies, though, is the extent of control the

investigator has over actual behavioral events in parts of the study; in this study, the

researcher had high control as regards to the testing phase.

7.2 Case Study Design

Four case studies were based on the same SUT, however addressing different research

questions. Hence, this section describes what is common for the four case studies. Results

from the case studies are organized in separate chapters (Chapters 8–11).

The study design describes how an evaluation of the cost-effectiveness of state-based

testing (SBT) was carried out. The guidelines of Runeson and Höst [122] were followed for

structuring the design of the study.

7.2.5 Research Objectives

This thesis presents an empirical study on automated SBT. The generated test suites were

executed on a safety-monitoring component with state-based behaviour in a safety-critical

control system developed in ABB’s research department in Norway.

The main purpose of the investigation was to compare the cost-effectiveness of state-

based testing using mutation analysis with real faults collected in a field experiment

conducted in three global ABB departments.

Generating state-based test suites according to selected coverage criteria, however, is a

highly demanding task, and not applicable as a manual process. Tools are required in order to

make this a feasible approach in the industry. The model-based testing tool TRUST [33] was

developed and used to generate the studied test suites (see Chapter 5 for details on

requirements, design and implementation of TRUST). TRUST is a research prototype that

59

automates test-case generation according to a given test-scripting language, coverage

criterion, and oracle through a series of model transformations.

The well-known coverage criteria (i) all transitions (AT), (ii) all round-trip paths (RTP),

and (iii) all transition pairs (ATP) were chosen. The rationale for selecting these coverage

criteria in particular, was that they are suggested by existing research to be representing weak

to stronger fault-detection at different, yet reasonable, cost. In addition, test suites covering

(iv) paths of length 2 (LN2), (v) paths of length 3 (LN3), and (vi) paths of length 4 (LN4)

were also included in the study. Test suites are generated by traversing two, three, and four

levels from the state machine’s initial state. This is the most easy, uncomplicated approach to

make a selection of test paths. Moreover, they represent a coverage that has not been included

in related work. These three coverage criteria are the baseline used as comparison to the

known AT, RTP, and ATP.

Two oracles of different precision levels were applied. Oracle O1 checks both the state

invariant and the state pointer, whereas oracle O2 is restricted to only check the state pointer.

The state pointer is a pointer to the current state object kept in an array in the control class of

the SUT. In this particular case, the system was concurrent, thus keeping two pointers in the

control class.

Moreover, to the author’s knowledge there is a lack of observations on having the test

model in different levels of detail. In this thesis, test suites were generated from two test

models at different abstraction levels for the purpose of investigating the effect of increasing

the test model abstraction level on the cost-effectiveness of the testing strategies.

Finally, the test suites were augmented with sneak-path testing to detect possible

unspecified behaviour in the implementation.

It is expected that not all faults will be killed by every coverage criteria. Therefore, the

reason for why faults are not being detected was examined in order to identify whether

additional approaches could enhance the fault detection as diverse types of test techniques

may target different types of faults.

The following research questions were addressed:

 RQ1: What is the cost-effectiveness of the state-based coverage criteria all transitions

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2),

paths of length 3 (LN3) and paths of length 4 (LN4)?

 RQ2: How does varying the oracle affect the cost-effectiveness?

 RQ3: What is the influence of the test model abstraction level on the cost-

effectiveness?

60

 RQ4: What is the impact of sneak-path testing on the cost-effectiveness?

An overview of the research activities can be seen in Figure 12.

61

Figure 12 Overview research activities

62

7.2.6 Case Selection

The evaluation of the SBT was carried out in the context of a software process improvement

project at ABB called EVISOFT.

7.2.6.1 Organization

ABB is a global company that operates in more than 100 countries with approximately

135,0001 employees. A primary business area concerns power and automation technologies

for which ABB develops software and hardware.

The ABB Corporate Research Center in Norway, NOCRC, is one of ABB’s eight research

centers worldwide. Their interests concern industrial communication, human-machine

interaction, control and optimization of industrial processes, and instrumentation and

operation of machines and processes. The research center supports the business units of ABB

through projects and technical studies.

7.2.6.2 Software Process Improvement Project

ABB Corporate Research in Norway initiated a software process improvement initiative with

the aim of improving UML modeling practices throughout the company.2 This initiative was

supported by the Norwegian Research Council through the project EVISOFT (EVidence

based Improvement of SOFTware engineering), and conducted in cooperation with

researchers from Simula Research Laboratory AS. The current project was initiated to

investigate which UML diagrams may be beneficial to ABB in the process of going from the

specification to the implementation phase, and for improving testing procedures. It provided a

unique opportunity to assess the usage of precise, statechart-driven UML modeling and to

evaluate state-based testing in a realistic safety-critical development environment.

A Technical Requirements Specification, developed by the business unit in cooperation

with the scientists from NOCRC, was the starting point for developing a common

understanding of the system. The modeling was a cooperative activity between Simula and

NOCRC. Each modeling activity was closely monitored and followed by an introspective

analysis of what happened. Based on these activities, several lessons are drawn regarding the

benefits and challenges of precise UML modeling [14].

I From 2011.
2 Previous results of the process improvement initiative work are reported in [1].

63

7.2.6.3 System Functionality for Selected Sub System

In order to satisfy safety standards (e.g. EN 954 and IEC 61508) and enhance the safety-

critical behavior of their industrial machines, ABB developed a new version of a safety-

critical system, the safety board, for supervising industrial machines. The safety board can

safeguard up to six robots by itself and can be interconnected to many more via a

programmable logic controller (PLC). It was implemented on a hardware redundant computer

in order to achieve the required safety integrity level (SIL). The focus of this study is a

subsystem of this system, called the Application Logic Controller (ALC). The main function

of the ALC module is to supervise the status of all safety related components interacting with

the machine, and to initiate a stop of the machine in a safe way when one of these components

requests a stop or if a fault is detected. It shall also interface with an optional safety bus to

enable a remote stop and a reliable exchange of system status information. The system will be

configurable with respect to which safety buses the system can interact with.

The ALC sub system was chosen for this study as it exhibits a complex state-based

behavior that can be modeled as a UML state machine. Complemented by constraints

specifying state invariants, the state machine will be the main source in the process of

deriving automated test oracles.

7.2.6.4 Modeling and Coding

The sub system was built as a joint effort between researchers from ABB SKCRC and Simula

Research Laboratory. The ALC was developed according to a development method based on

the use of UML state-machine diagrams for specifying a system’s behavior. ALC was

designed by using parallel and hierarchical UML state machines. It was implemented in C++

and the extended state-design pattern was used to ensure consistency between model and

code. The first version of the system (including models and codes) was developed and

verified by four developers (two coding, four designing) from the company and three

researchers (one coding, three modeling).

Four initial meetings took place where the company representatives introduced the

researchers to the domain and the functionality of the SUT to be developed. In addition to the

company representatives, the initial requirements specification and design documents served

as sources for identifying the system behavior. Throughout the meetings, the authors made

initial versions of the state-based model of the SUT. One of the company representatives took

an active part in the subsequent modeling iterations. As part of the modeling process, the

requirements were discussed with several of the company representatives whenever questions

64

were raised and decisions had to be made. On many occasions, disagreements about the

system specifications arose among stakeholders. In total, we spent approximately 320 person-

hours on understanding (200 person-hours) and modeling the SUT (120 person-hours). It is

important to note that, as opposed to cases where the system pre-existed the study, the

modeling effort here could have been significantly smaller if the specifications had been

stable to start with.

The SUT is described in a class diagram consisting of one control class, seven abstract

classes, and 13 concrete classes. At the top most level, the resulting hierarchical state machine

consists of one orthogonal state with two regions. Enclosed in the first region are two simple

states, two simple composite states and 24 transitions. Each of the simple composite states

contains two simple states. The second region encloses three simple composite states that

again consist of, respectively, two, two, and three simple states. In addition, 18 transitions are

present in the second region. This adds up to a maximum hierarchy level of two, 13 simple

states and 42 simple transitions.

The state machines for the original version of the SUT can be found in Appendix C.

7.2.7 Data Collection Procedures

To measure the cost-effectiveness of SBT, four surrogate measures were used, inspired by the

study of Briand et al. [12] and Briand and Labiche [123].

Cost is measured in terms of:

 Test-suite size – defined by the number of test cases in a combination of coverage

criterion, test model, and oracle.

 Preparation time – number of seconds spent on preparing a test suite. The

following actions are included: generating the test tree, and generating and

building the test suite.

 Execution time – number of seconds spent on executing the test suite.

Effectiveness is measured by:

 Mutation score – defined by the number of faults killed by a test suite divided by

the total number of seeded faults.

The remainder of this section addresses procedures for how the data collection was carried

out. The main activities include (A1) preparation of test models, (A2) generation of mutant

programs, (A3) extending and configuring the tool, (A4) generation of test suites, and (A5)

execution of test suites on initial and mutated programs.

65

7.2.7.1 (A1) Preparing Test Models

The following sections address preparations of the original and the modified UML state-

machine versions of the system introduced in Section 7.2.6.3 to be used as test models.

Original Complete Test Model

The original model, as first developed during the joint effort, was tested using TRUST and the

RTP coverage criterion. However, some adjustments had to be done before being used as

input to TRUST. There are multiple reasons for this.

Firstly, the implementation of the STATEMACHINEFLATTENER requires an initial state in

the outermost level. Moreover, the flattening component does not support transitions that

cross state borders. Hence, those transitions had to be remodeled to and from the super-state

edges. This also implied adding initial states, entry points, and exit points in several of the

super states. The STATEMACHINEFLATTENER neither supports multiple events on a single

transition. Such transitions were thus resolved to one transition per event.

Secondly, a misinterpretation of the UML superstructure specification [124] caused a

remodeling activity that involved replacing a choice point that was connected to an initial

state with a simple state. Another choice-point case was resolved by replacing the initial state

in a super state with an entry point. The explanation for this misinterpretation was the

confusion of simple versus compound transitions. The UML specification states that the initial

state can only have one outgoing transition. This, however, concerns the simple transition.

Models having initial state directly connected to a choice point would, when flattened, be

resolved to several outgoing transitions from initial state, which is not allowed. However, this

is not the intended meaning of UML specification. The combination of initial state and choice

points is allowed.

Table 5 Configuration parameters of TRUST for the ABB case

Parameter Value

Input model UML2.0 state machine

Test model Test tree for all transitions

Coverage criterion All round-trip paths

Test scripting language C++

Test data generation technique Random data generation

OCL Evaluator EOS

TRUST was applied with the configuration values presented in Table 5 and the flattened

state machine (see Appendix D) described in Table 6 as input.

66

Table 6 Features summary of the hierarchical scale of state machines

State machine feature Unflattened Flattened

Maximum level of hierarchy 2 -

Number of submachines 0 -

Number of simple composite states 5 -

Number of simple states 14 56

Number of orthogonal states 1 -

Number of transitions 53 391

After applying the flattening transformation and removing unreachable state combinations

due to conflicting state invariants, the flattened state machine consisted of 56 states and 391

transitions, mostly guarded. In this case, TRUST was configured for the RTP criterion,

applied on a test tree, which conforms to the same test-tree metamodel presented in [33]. The

RTP criterion was chosen to provide an initial test run of TRUST.

Executing the generated test suites showed that a large number of test cases failed.

Analyses of the execution results showed that this was explained by infeasible test cases as a

result of (1) not having the correct values in the test data on guarded transitions, and (2)

transitions between illegal state combinations in the flattened state machine. In order to

address (1), the MOFScript transformation was modified to provide the required test data.

Moreover, (2) was handled by removing illegal state combinations and the corresponding

transitions from the flattened state machine.

Furthermore, even when a system is carefully designed and implemented, there is always

a risk for introducing discrepancies between the specification and the implementation. Minor

inconsistencies between the specification and the original version of the SUT were found

during AT, RTP, and ATP testing – these inconsistencies, however, had to be resolved in

order to run the tests without errors before moving on with the experimentation. Examples of

such inconsistencies are mismatches between the specification and the implementation related

to parameters in operations. This caused several test cases to fail, as there were no matching

operations in the SUT. Such inconsistencies had to be handled in order to run the tests without

errors and before moving on with the experimentation.

Modified Complete Test Model

The original version of the system was then modified by the author to include a fourth mode –

the ExtraSlow mode. The rationale for this modification was a planned field study for the

67

purpose of collecting real fault data to be used in generation of mutants. The field study will

be described in Section 7.2.7.2.

The complete UML state machine consists of one orthogonal state with two regions.

Enclosed in the first region are two simple states and two simple composite states. The simple

composite states contain two and three simple states. The second region encloses one simple

state and four simple composite states that again consist of, respectively, two, two, two, and

three simple states. This adds up to one orthogonal state, 17 simple states, six simple

composite states, and a maximum hierarchy level of two. The unflattened state machine

contains 61 transitions.

Having both concurrent and hierarchical states, the state machine had to be flattened

before being used as input to test case generation. The STATEMACHINEFLATTENER [34]

component of TRUST was used for this purpose. In the outset, the flattened model consisted

of 82 states and 508 transitions, of which 193 were guarded. However, as addressed above,

the flattened model contained infeasible state combinations and transitions as the current

version of the STATEMACHINEFLATTENER does not remove these automatically. The user can

specify preferences in a provided Kermeta transformation. The outcome of the transformation

is a model where these combinations are excluded. After removing infeasible transitions (both

due to incompatible state invariants (12 state combination, 145 transitions) and guards that

will never become true (14 transitions)), the state machine included 68 simple states

(excluding initial and final state) and 349 transitions, of which 107 are guarded. The

characteristics of the unflattened and flattened UML state machines are summarized in Table

7. The unflattened state machine can be found in Appendix E.

Table 7 Details of the modified version of the SUT, complete version

State

Machine

Composite

States

Orthogonal

States

Sub Machine

States

Simple States Transitions

(guarded)

Hierarchical 6 1

(concurrent

regions = 2)

0 17 61 (17)

Flattened - - - 68 349 (107)

68

Modified Abstract Test Model

To see the effect of having a less precise test model on the cost-effectiveness of the testing

strategies, the complete test model was modified. By removing one3 level in the state

hierarchy, the model was abstracted to generate a less complete test model; the contents of

every simple composite state were removed.

Raising the abstraction level brought on questions regarding how to set the inclusion

criterion for transitions connected to those modified super states. In the end, only transitions

that were sourced or targeted in the edge of the super state were kept. This means that the

transitions that were targeted in entry points or sourced in exit points contained in the super

states were deleted. The explanation for this being that those transitions are not common

behaviour to all sub states of that super state; such behaviour is only common to those sub

states that have incoming transitions to a particular entry point. The same regards outgoing

transitions from exit points. Hence, a consequence is that parts of the super-state behaviour

are overlooked. Transitions sourced in the edge of a super state, on the other hand, concerns

all sub states.

Potentially, to capture more of the SUT behaviour, transitions sourced in exit points

belonging to the super state could also be kept. This entails that more of the possible

behaviour is tested, though with an increased number of infeasible test cases due to

unsatisfied guard conditions. This is particularly true when the guard contains state variables

that are specific to the removed sub states. Though not impossible, it is then hard to know

upfront whether or not the guard can be satisfied. It would be applicable if analysis of the

required path in order to satisfy the guard was implemented.

The outcome of applying the abstraction approach just described was a UML state

machine consisting of an initial state, a final state, two transitions, and one orthogonal state

with two regions. The first region contained one initial state, five simple states and 14

transitions, whereas the second region contained one initial state, one final state, four simple

states and 15 transitions (of which seven were guarded).

Due to the concurrent state, also this model had to be flattened. The flattened version

resulted in one initial state, one final state, 25 simple states, and 123 transitions (of which 35

were guarded). After removing four incompatible states and 37 infeasible transitions from the

flattened version, the abstract model was left with one initial state, 21 simple states, one final

3 We can only reduce the model with one level due to the fact that maximum depth in the model is 2.

69

state and 86 feasible transitions, of which 28 was guarded. The characteristics of the

unflattened and flattened UML state machines are summarized in Table 8.

Table 8 Details of the modified version of the SUT, abstract version

State

Machine

Composite

States

Orthogonal

States

Sub-Machine

States

Simple States Transitions

(guarded)

Hierarchical 0 1

(concurrent

regions = 2)

0 25 123 (35)

Flattened - - - 21 86 (28)

The abstract test model can be found in Appendix F. The resulting code for the SUT

consisted of 26 classes and 3372 LOC (1227 h, 2145 cpp) (without blank lines).

Please note that from now on, the modified version of the SUT is referred to as the SUT.

7.2.7.2 (A2) Collecting Fault Data for Creating Mutants

The SBT criteria and oracles were evaluated using mutation analysis. As discussed in Chapter

3, such evaluations have mostly been carried out using artificial faults, i.e. mutation operators.

In order to increase the external validity of the results, a field study4 was conducted for the

purpose of collecting real fault data. The collected faults were later used to create mutant

versions of the SUT for the purpose of evaluating the SBT strategies. It is important to note

that the testing strategies were selected before collecting fault data.

The study was carried out in ABB’s departments in Västerås, Baden and Shanghai

October/November 2008. Having different UML and domain knowledge, 11 ABB developers

were asked to implement a change task to the SUT. They were instructed to modify both the

model and code. Participants were strictly asked to work individually. Five participants solved

the task in separate rooms, but due to lack of location resources the other six participants had

to work in shared offices, two in each office. The author supervised the sessions. The

maintenance task itself was initially suggested at a high level by ABB; however, defined and

split in six sub tasks by the author of this thesis, and finally approved by the company. The

maintenance task consisted of adding an extra gear or mode called ExtraSlowSpeed in

which industrial machines may be operated. The subjects attended an introductory session

where the extended state-design pattern was explained. They were also provided with both

4 The original goal was to study the effect of using a state-based development method as compared to a more traditional
baseline method. To ensure the necessary depth and focus in the thesis within a realistic time horizon, however, the goal of
the field study was changed. The main purpose was to gain a better understanding of how efficient state-based testing is in
a realistic context with representative change tasks. Therefore, fault data was collected.

70

textual and graphical documentation, in addition to a manual on how to apply the extended

state-design pattern.

A correct version of the model and code, representing the SUT after implementing the

maintenance task, was made by the author and exhaustively tested with each of the coverage

criteria in focus of this study. The faults extracted from the field experiment data,

immediately introduced, were inserted into this correctly modified version of the SUT.

The 115 solutions were manually inspected by the author. In total, 26 faults were detected

from code inspections. Note that because the objective was to compare the fault-detection

effectiveness of the testing criteria, it is crucial that the seeded faults do not cause compilation

errors. This means that only logical faults that could not be detected by the compiler were

selected. The extracted fault data were used to create 26 faulty versions of the code by seeding

one fault per program. Among these faults, 11 were sneak paths [31] (i.e., implicit illegal

transitions present in the state machine). To detect faults of this type, the model should reflect

the preferred behavior of the system when exposed to unexpected events. At this stage, our

model had no support for the handling of such unexpected behavior. Hence, as sneak paths

could not be caught by any conformance test suite generated from the model, 15 out of 26

mutant programs were detectable by the conformance test suites.

The faults from the code reflect the following modeling errors:

 Missing transitions: An expected guarded transition triggered by a completion

event from ExtraSlowConfirm to ExtraSlowConfirmed was missing from

the model. One of the subjects only accounted for the transition that was explicitly

triggered by the ClearEnableDevice() event. The subject did not consider the

transition that would fire if enableDevice already was false.

 Additional transitions (sneak paths): Another subject erroneously added

transitions from ExtraSlow not only, as specified, to Manual, but also to Auto

and ManualFullSpeed and vice versa.

 Guards that were not correctly updated: One of the subjects added a clause in the

guard on the transition from Disabled state to Active state so that a transition

would be fired only if the mode is ExtraSlow or the speed is extraSlow.

 Guards that were modified which should not have been changed: In one of the

erroneous versions, the event handling operation SetModeSoftStop()’s guard

5 The field experiment originally had 11 participants. However, as one of the participants made no modifications to the code,

that particular solution was considered as irrelevant for this study.

71

was modified so that the state machine would transition from state Active to

state SoftStop only if the mode is ExtraSlow. In a correct version, however,

the state machine should transition regardless of the mode.

 Erroneous on-entry behavior: An operation that handles the on-entry behaviour of

the super state ExtraSlow was introduced with an error: the sub states were

updated with the same value for state variables. The only common value, however,

should be given the speed variable; blockDriveEnable should be true in the

ExtraSlowConfirm state and false in the ExtraSlowConfirmed state.

 Incorrect state invariants: The state variable blockDriveEnable was missing

from ExtraSlow’s state invariant.

 Missing on-entry behavior: OnEntry() was not added for ExtraSlow.

Figure 13 shows one of the mutants where updating a variable (blockDriveEnable) as

part of the onEntry action was left out.

7.2.7.3 (A3) Extending and Configuring the Tool

In order to use the model-based tool TRUST in this study, it had to be extended and

configured to meet the requirements and conditions of the investigation. TRUST was

extended to support the relevant coverage criteria and to support two oracles. Moreover, the

concrete test-case generator was extended for producing C++ code, in addition to providing a

test environment that facilitates selection of values for externally controlled variables in guard

conditions. Finally, TRUST was extended with support for sneak-path testing.

Extending TRUST with Coverage Criteria

void ExtraSlowConfirm::OnEntry(SafetyBoardControl *myControl)
{
 ExtraSlow::OnEntry(myControl);

 //fault 12 missing code: myControl->WriteBlockDriveEnable(true);
 myControl->WriteSpeed(SlowSlow);

 if(!myControl->GetEnableDevice())

 {
 ChangeState(myControl, ExtraSlowConfirmedState);
 }
}

Figure 13 Code showing a mutant version of the SUT

72

The first version of TRUST supported generation of test cases according to the TT criterion

[22], which is a modified, stronger version of RTP, and for AT. The TT criterion was

implemented following the breadth-first algorithm. However, only one test case was

generated for each transition, and hence only useful for models with guard conditions without

OR clauses. The AT criterion was implemented using a depth first traversal of the state

machine.

Unfortunately, generation of TT test suites from the SUT using the first version of TRUST

led to Eclipse running out of memory. It was thus decided to use the weaker stopping criterion

for RTP as first proposed by Binder [31]. Two versions of RTP were implemented following

the breadth-first algorithm: (1) a weak version where guard conditions are traversed once, and

(2) a stronger version where a guarded transition is traversed as many times as there are OR

clauses in the condition. Also the ATP was implemented using a breadth-first algorithm. For

LN2, LN3, and LN4, transition trees were generated by traversing respectively two, three, and

four levels from initial state using breadth-first traversal of the state machine.

To illustrate the scope of the criteria, the following sequences of transitions are generated

from the example model shown in Figure 14:

 AT: {(t1, t2, t6); (t1, t2, t3, t4); (t1, t2, t3, t5)}

 RTP: {(t1, t2, t6); (t1, t2, t3[x=2], t4); (t1, t2, t3[x=2], t5); (t1, t2, t3[y=0])}

t6

t1

t3 [x=2 OR y=0]
t2

A B

C

t4

t5

Figure 14 Example state machine

73

 RTP weak6: {(t1, t2, t6); (t1, t2, t3, t4); (t1, t2, t3, t5)}

 ATP: {(t1, t2, t6, t2); (t1, t2, t3, t4); (t1, t2, t3, t5)}

 LN2: {(t1,t2, t6); (t1, t2, t3)}

 LN3: {(t1, t2, t3, t4); (t1, t2, t6, t2); (t1, t2, t3, t5)}

 LN4:{(t1, t2, t3, t4); (t1, t2, t3, t5, t2); (t1, t2, t6, t2, t6); (t1, t2, t6, t2, t3)}

Extending TRUST with another Oracle

Differing in the level of details that are checked, two oracles were evaluated: oracle O1

checks that the pointer to the expected state is correct, in addition to evaluating the state

invariant; whereas oracle O2 only checks that the pointer to the state after some event has

occurred is as expected. This means that O1 is stronger than O2; an expected result would be

that O1 is more expensive than O2. What is to be shown is the effect such a reduction in

oracle strength has on the cost and effectiveness.

Extending TRUST with Support for Concrete C++ Test Cases

Since the first instantiation of TRUST was implemented for another case supporting a Python-

based scripting language, TRUST needed to be extended to support SBT for the SUT in focus

of this thesis. The SUT was implemented in C++ and thus a language in favor when testing

the SUT in terms of efficient interaction between the SUT and the generated test cases.

TRUST was extended to interact with a new TestscriptGenerator component, i.e., a new test

script generator supporting C++. Extending TRUST for C++ involved adding a new set of

transformation rules according to C++ syntax to the TestscriptGenerator component of

TRUST. This required changes in the MOFScript rules. There was some reuse of the

MOFScript rules used in the tool instantiation for the first version of TRUST. Only the logic

for traversing the tree could be reused, however, because the mapping rules for C++ were

quite different from the Python-based scripting language already supported due to different

language constructs. Test data was in the outset generated by randomly selecting the value for

the parameters based on the data type. Java Native Interface (JNI) [118] was used to access

EOS from the C++ test scripts.

Support for Selecting Appropriate Environment Values

This section addresses infeasible transitions and how these were handled. There are several

reasons for a transition being considered as infeasible. Firstly, in concurrent systems, certain

6 The weak version of RTP gives the same coverage as AT and are thus not further investigated.

74

state combinations may be impossible due to conflicting state invariants. The belonging

incoming and outgoing transitions sourced and targeted in such combinations, will also be

infeasible as those states will never be reached. The incorrect state combinations must be

removed together with the incoming and outgoing transitions as tests including these

transitions expectantly will never pass. Secondly, the value combination of test data in guards

is a common reason for why test cases fail. Such test cases can also be considered as

infeasible because as long as they remain unhandled, these test cases are in fact infeasible.

Obviously, the ‘wrong’ combination causes test cases to fail – even though the system reacts

as intended. The infeasible test cases may thus have a negative impact on the percentage of

the achieved coverage criterion as certain transitions will not be fired. According to Binder,

10–15 percent is a typical allowance for reduced coverage amongst others due to infeasible

test paths [31].

For testers highly familiar to the SUT, the first type of infeasible transitions is easy to

address. The second, however, requires handling of test data to manipulate external variables

that controls the firing of transitions.

The initial instantiation of TRUST supported static test-data generation. However, as

approximately one third of the transitions in the SUT were guarded, test-case execution

showed that hardly any test cases passed. Poor results were obtained in spite of having

infeasible state combinations and the belonging transitions removed. The results thus point in

the direction of presence of infeasible transitions due to unsatisfied guard conditions. The

reason for this is that the provided test data did not satisfy the many guards that relied on

externally controlled variables. As a consequence, test cases expecting the system to

transition from one state to another, failed. Hence, the results were not of great interest as it

was impossible, without analysis, to identify whether a test failed due to a real bug or due to

unsatisfied guard conditions. Manual inspections of all test cases were not applicable due to

the large sizes of the test suites (from 27–1,425 test cases). To illustrate this issue, for the RTP

test suite, as much as 88 percent of the test cases failed due to unsatisfied guard conditions.

Therefore, to reduce this type of infeasibility and to serve interesting test results, TRUST was

extended to support intelligent test-data generation – more precisely to provide test data that

satisfy guard conditions. Automated test-data generation has shown good results for

identifying dynamic test data (e.g., [125]). In this study, however, the dynamic test-data

generation was hard coded due to limited time resources.

As discussed in this section, model-based testing may not be able to achieve 100 percent

coverage of the criterion we request due to infeasible transitions. However, by providing

75

appropriate test data (when possible), the number of infeasible test cases will be reduced and

thus increase the quality of the test suites.

Extending TRUST to Support Sneak-Path Testing

In order to catch sneak paths, it is necessary to augment the test suites with sneak-path testing.

For each state in the SUT, all possible events not specified for the particular state are invoked.

The correct behaviour would be for the SUT to remain in its current state. This technique will

catch faults that introduce undesired additional behaviour, in terms of extra transitions, other

than what is specified in the UML state machine.

The sneak-path test suite was generated using Kermeta. One UML state machine was

created for each state and its expected behaviour to unexpected events. To be able to position

the SUT in the state to be tested, each state machine also contains the states and transitions

from initial state that makes a path to the state under test. The AT coverage criterion was used

to generate the test trees. MOFScript was, as for the previously generated test suites, used to

create the concrete test cases. Sneak-path testing was applied to the abstract and complete

model, using both oracles.

7.2.7.4 (A4) Generating Test Suites

The extended version of TRUST was then configured and used to automatically generate

executable test suites from the two test models previously introduced. The prepared test

models were used as input models to TRUST. As the state-based criteria are defined for finite

state machines, a prerequisite for generating the test suites is to use an input state machine

without concurrency and hierarchy. The first step in TRUST was thus to flatten [31] the test

model, i.e., removing hierarchy and concurrency from the model as previously described.

To create the abstract test cases, in the shape of a test tree, each of the algorithms for

obtaining test suites satisfying the coverage criteria under study were applied on the flattened

state machine. TRUST then created concrete test cases using MOFScript which took the

flattened state machine in addition to the generated test tree as input. In MOFScript, the test

tree was traversed path by path – each path produced one test case. A separate C++ file was

created for each test case. A main C++ file was generated where each of the test cases were

invoked. Each test case was invoked with a new object of the SUT.

The test suites were executed on what is considered being a correct version of the code,

i.e., one which does not cause the test suites to detect failures. Results were then analyzed in

order to remove actual infeasible test cases and to resolve infeasible transitions caused by

76

unsatisfied guard conditions due to externally controlled variables. The latter issue was

handled by providing an environment which enables transitions to be fired (see previous

section), and then re-generating the concrete test cases. When the test suites executed

successfully, the test suites were run on the mutant versions of the SUT.

The following steps summarize the automated experimental process that was followed:

Step 1. Flatten7 input state machine.

Step 2. Select test adequacy criterion.

Step 3. Construct abstract test cases in the form of a test tree. The algorithms used

to traverse the state machine are previously described.

Step 4. Select oracle.

Step 5. Traverse the tree and select test data to generate concrete test cases. One test

suite is generated per tree.

Step 6. Build and execute the test suite on the correct version. Ensure that test

results reveal no errors. Then build and execute the test suite on each of the

26 mutant programs.

Step 7. Analyze test results provided by the state-invariant oracle on all mutants.

7.2.7.5 (A5) Executing Test Suites

Handling Weaknesses in the Implementation

During preparations of the sneak-path testing, some weaknesses were detected in the

implementation of the SUT. These weaknesses had to be resolved in order to run the sneak-

path test suite correctly.

Recall that the physical mode switch was represented in the SUT by an array called the

mode enum. According to the specification of the SUT, it should only be possible to go from

mode manual to mode extra slow speed and vice versa. For instance, it should not be

allowed to go directly from manual full speed to extra slow speed. Eleven of the

seeded faults reflect such mistakes. When running the sneak-path test suite on a correct

version of the SUT (without sneak paths implemented in the code), however, it was

discovered that the test suite erroneously caused changes in the mode enum. That is, as a

response to the sneak-path test suites’s attempt of invoking unexpected behavior, the

implementation made changes to the mode enum even though the physical switch was not

actually carried out. This means that the implementation would set the mode switch regardless

7 The test model only needs to be flattened once.

77

of the transition being fired or not. The change in mode switch status should take place inside

the event handling operation – not before.

This also regards the change in the value of the variable blockDriveEnable; its value

was set regardless of the transition being fired or not. Updating the value of this particular

variable should have taken place in the event handling operation – not before it was invoked.

The third weakness that was detected regards the event reset(). In the original code, it

was implemented as part of the DriveEnable super state – implying that all sub states have

this event handling operation available. It should, however, be specific to the SoftHalt

state and thus only implemented in the concrete SoftHalt class.

A similar weakness was found in relation to the event StartInAuto(). Again, this

should have been implemented as a sub state specific event handling operation for the

concrete class IdentifyingMode.

Practical Issues

To automate the build, execution, and timing when executing the test suites on the correct and

mutated programs, batch files were created for each test criterion, for each oracle. The version

of the SUT to be executed was copied into the Visual Studio project folder. The project was

then rebuilt and executed. One result file in the format of a text file was created for each

version of each coverage criterion. The result file contains the results for the correct version

and the 15 mutants.

Replicating the Experiment

For certain coverage criteria, like AT, RTP, and ATP, the generation of test trees from state

machines is not deterministic as several test trees can satisfy the criterion. The explanation for

this is that the structure of the tree depends on the sequence of the selected outgoing

transitions when traversing the state machine. However, due to possible differences in the

fault-detection level of the various test suites, the results of executing different test suites that

fulfill the same test criterion may differ. Such random variations in the results were accounted

for by repeating the experiment 30 times; 30 different trees were created using random

selection of the order of outgoing transitions from states to generate distinct test suites. Being

selected without replacement from the population of all possible trees that achieves each of

the criteria, only trees distinct from the selected trees were added to the selection. Briand et al.

[81] explain the variation in fault-detection ability in the following way: “In fact, even though

transition trees execute the same methods, those methods are executed in different orders, thus

78

satisfying preconditions in different ways and leading to different outputs and state changes as

specified in different conjuncts of the post conditions.”

The test suites were obtained by traversing each of the 30 test trees covering all paths, and

executed on the mutant programs.

7.2.8 Analysis Procedures

Please recall that the main objective of this research (Section 7.2.5) was to evaluate the cost-

effectiveness of SBT when varying coverage criteria, oracle, and test model abstraction level.

Data was collected on the surrogate measures for cost and effectiveness provided in Table 9,

further described in Section 7.2.7. Hence, the main focus of the analysis was to identify trends

and significant results on cost-effectiveness of SBT.

Table 9 Features of variables

Surrogate Measures for Cost

Dependent Variable Accuracy of Measurement

Test generation time Continuous

Test execution time Continuous

Test-suite size Discrete

Surrogate Measures for Effect

Dependent Variable Accuracy of Measurement

Mutation score Continuous

The analysis procedures are based on both quantitative and qualitative data; quantitative

data were used to explore and compare different aspects of state-based testing, whereas

qualitative data were used to explain further obtained results from analyses of the quantitative

data. The tools JMP 7 [126], Excel 2007, and R [127] were used for data analysis.

7.2.8.1 Quantitative Analyses

Statistical significance [128] provides the probability that differences between observations

actually exist. This means that the groups being compared differ to a greater degree than

would be expected by chance. The conventional level of 5 percent (α = 0.05) was chosen as

significance level in this thesis. Moreover, to describe the magnitude and direction of the

observed differences, the effect size [129] was also provided.

79

Descriptive Statistics

The main features of the collected data, like central tendency, statistical variability, and

distribution shape, were described using descriptive statistics. The summary statistics (the

five-number summary) and the associated box plot were used for this purpose.

Cost-Effectiveness

The cost-effectiveness of SBT, represented by the dependent variables, was compared among

the three independent variables, visualized by graphs showing how the cost and effectiveness

change when varying the independent variables. The graphs enable comparisons of the

strength of killing mutants among testing strategies at which cost. For each dependent

variable, there are 360 data points (15 mutants, 6 coverage criteria, 2 oracles, and 2 test

models).

Potential random variations in the mutation score across test suites for a given coverage

criterion creates a need for analysing the distribution of the mutation scores. Furthermore, as

the collected data was found to be non-normally distributed, the Wilcoxon signed-rank test

[128] was used to provide non-parametric statistical hypothesis tests of whether or not the

dependent variables (preparation time, execution time, and mutation score) are significantly

different. Tests were run on collected data from generating and executing 30 test suites of

each criterion.

By this analysis, we can present an overview of the expected percentage of mutants that

are killed by the testing strategies (including coverage criteria and oracles) at different test

model abstraction levels that implies different cost.

7.2.8.2 Qualitative Analyses

Expectantly, certain mutants could not be killed by every combinations of coverage criteria,

oracle and test model. Analyses of un-killed mutants were performed to identify mutants that

were difficult to kill.

7.2.9 Validity Procedures

The four validity categories as suggested by Runeson and Höst [122] to be used in case

studies are discussed in this section.

Construct validity regards to what extent the operational measure that are studied really

represent what the researcher have in mind and what is investigated according to the research

questions [122]. That is, it concerns the establishment of correct operational measures for the

concepts being studied. This validity issue was handled using multiple sources during data

80

collection. Several surrogate measures were selected to describe cost-effectiveness of SBT.

Also, most of these measures are commonly known measures in cost-effectiveness studies.

Internal validity is of concern when causal relations are examined [122]. Investigated

variables may also be affected by extraneous variables, confounding factors, not accounted

for in the study, thus a threat to the internal validity. What is observed should be attributed to

the studied variable and not to potential confounding factors. One detected risk in terms of

internal validity was the possible randomness in the obtained results for three of the coverage

criteria. This issue was handled by generating 30 test trees for those coverage criteria, thus

replicating the experiment for these criteria 30 times. Statistical hypothesis testing was

applied to the collected data.

External validity is concerned with to what extent it is possible to generalize the findings,

and to what extent the findings are of interest to other people outside the investigated case

[122], i.e., to whether a domain exists to which the results are relevant. How is it possible to

generalize from a single case? Yin [64, p. 10] provides the following answer:

The	 short	 answer	 is	 that	 case	 studies,	 like	 experiments,	 are	 generalizable	 to	

theoretical	propositions	and	not	to	populations	or	universes.	In	this	sense,	the	case	study,	

like	 the	experiment,	does	not	represent	a	“sample”,	and	 in	doing	a	case	study,	your	goal	

will	be	to	expand	and	generalize	theories	(analytic	generalization)	and	not	to	enumerate	

frequencies	(statistical	generalization).	

As stated by Runeson and Höst [122], for case studies, the intention is to enable analytical

generalization where the results are extended to cases which have common characteristics and

hence for which the findings are relevant, i.e., defining a theory.

The main strength of this study is, in fact, its external validity. The system in focus of this

thesis is highly representative of systems with state-based behavior thus improving the

external validity. It is important to provide detailed context descriptions, like system

characteristic, development and testing procedures, such that others can relate the results to

their own context. This information is provided in sections 7.2.6 and 7.2.7. Moreover, in

contrast to the majority of existing studies using artificial faults in such evaluations, the faults

used in the evaluation of SBT are real faults collected in a field study conducted in ABB

(Section 7.2.7.2). The study design of the thesis is based on existing theory, and the results

from these studies are compared to the results of this thesis.

81

A threat to the external validity could be that one researcher was the subject in the case

studies. The rationale for this being lack of resources and a general lack of state-based testing

experience in the company. However, as the test case generation process was automated as

compared to other studies where test cases are manually generated, this is not considered

being a threat.

Reliability concerns to what extent the data and the analysis are dependent on the specific

researchers [122], e.g., unclear descriptions of data collection procedures such that later

replications of the study could give different results. This is addressed by providing as

detailed design and analysis procedures as possible.

Next, the four case studies in Chapter 8–11 present cost-effectiveness analyses for the

purpose of answering the research questions stated in Section 7.1.2.1 based on the data

collected according to procedures described in Section 7.1.2.3.

82

8 Case Study 1 – What is the Cost-Effectiveness of the State-Based Coverage Criteria All

Transitions, All Round-Trip Paths, All Transition Pairs, Paths of Length 2, Paths of

Length 3, and Paths of Length 4?

Based on the case-study design in Chapter 7, this chapter presents results from a case study

which addresses RQ1 regarding the cost-effectiveness of the six state-based coverage criteria:

RQ1: What is the cost-effectiveness of the state-based coverage criteria all transitions

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2),

paths of length 3 (LN3) and paths of length 4 (LN4)?

A number of figures are provided, visualizing how the dependent variables mutation

score, test-suite size, and test suite preparation and execution time are affected by the different

coverage criteria. Section 8.1 provides descriptive statistics for the collected data on cost and

effectiveness, whereas Section 8.2 regards statistical tests applied on the data from Section

8.1. A cost-effectiveness analysis is presented in Section 8.3. A qualitative analysis of

undetected mutants is provided in Section 8.4. Results are discussed towards existing research

in Section 8.5. Furthermore, Section 8.6 discusses results from related work against results

from this study. Finally, Section 8.7 summarizes this chapter.

8.1 Descriptive Statistics

8.1.5 Descriptive Statistics for Cost

This section presents main features of the collected data on cost: the test-suite sizes and the

time spent on preparing and executing these test suites.

8.1.5.1 Test-Suite Size

First of all, consider Table 10 which lists the test-suite sizes for the six testing strategies. For

now, the coverage criteria were applied on the complete test model using the strongest oracle,

O1. The reader is referred to Chapter 7 for details on the complete test model and oracle O1.

As we can see, LN2 resulted in 27 test cases – the smallest test suite among the studied

coverage criteria. More than five times larger, LN3 contained 143 test cases, closely followed

by AT with 166 test cases. Approximately 50 percent increase was shown for RTP with 299

test cases. Again, a major increase in size: LN4 provided 764 test cases. Finally, ATP resulted

in the largest test suite with 1,425 test cases.

83

Table 10 Test-suite sizes – ascending order8

COVERAGE CRITERION TEST MODEL ORACLE TEST-SUITE SIZE

LN2 complete O1 27

LN3 complete O1 143

AT complete O1 166

RTP complete O1 299

LN4 complete O1 764

ATP complete O1 1,425

It was expected that LN2, LN3, and AT provided small test suites – having their

definitions in mind. More important to notice, however, is the large difference between the

smallest and the largest test suite: ATP is almost 53 times larger than LN2 – which must be

considered being a significant increase in cost.

Figure 15 shows the distribution of test-suite sizes. The corresponding box plot is shown

in Figure 16.

8 Please recall the following regarding AT, RTP, and ATP: Numbers are the average of 30 replications.

84

Figure 15 Distribution – test-suite size

Also worth noticing is the difference in mean (470.7 test cases) versus median (232.4 test

cases). This is explained by the distribution being skewed to the right by ATP.

Figure 16 Tendency, dispersion and distribution shape of the test-suite sizes

From the box plot, it is even clearer that the majority of the testing strategies consist of

less than 800 test cases. Only one testing strategy had a higher number of test cases – as we

can see from Table 10, this regards ATP with 1,425 test cases.

8.1.5.2 Time

Let us look at the second surrogate measure of cost – time, split in preparation and execution

time. Descriptive statistics are displayed in Table 11 and Table 12. The statistics include the

minimum, the 25 percent quartile, the mean, the median, the 75 percent quartile, the

maximum, and the standard deviation in the collected data for each coverage criterion. Timing

data was collected by running the experiment on a Windows 7 machine with an Intel(R)

0

0,5

1

1,5

2

2,5

3

3,5

0 200 400 600 800 1000 1200 1400 1600

F
re

q
u

en
cy

Test Suite Size

Histogram

Normal Fit
(Mean=470.7,
SD=533.5)

0 200 400 600 800 1000 1200 1400 1600
Test Suite Size

95% CI Notched Outlier
Boxplot
Median (232.4)
95% CI Mean Diamond
Mean (470.7)

± 3 SD

85

Core(TM)2 Duo CPU P9400 @ 2.4 GHz processor, and with 2.4 GB memory. Note that time

is measured in seconds.

Looking at the mean values, we observe that LN2 had the lowest values for preparation

time (126 seconds). LN3 had the second lowest value, 509 seconds. RTP ranked third with

531 seconds. An enormous increase, almost 87 percent, was seen between preparation time

for RTP and AT (3,995 seconds). The second highest measure collected for preparation time

was LN4 with 5,295 seconds. The highest value, 28,819 seconds, was observed for ATP.

 86

 T
ab

le
 1

1
D

es
cr

ip
ti

ve
 s

ta
ti

st
ic

s
-

pr
ep

ar
at

io
n

ti
m

e

St
ra
te
gy

M
od

el
O
ra
cl
e

M
in

Q
1

M
ea
n

M
ed

ia
n

Q
3

M
ax

St
 D
ev

N
LN
2

C
o
m
p
le
te

O
1

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

‐
1

LN
3

C
o
m
p
le
te

O
1

5
0
9

5
0
9

5
0
9

5
0
9

5
0
9

5
0
9

‐
1

R
TP

C
o
m
p
le
te

O
1

4
8
4

5
1
2

5
3
1

5
2
5

5
4
5

6
0
7

2
8

3
0

A
T

C
o
m
p
le
te

O
1

2
,5
0
6

2
,7
6
3

3
,9
9
5

3
,0
1
3

3
,6
6
5

1
5
,9
3
9

3
,2
6
4

3
0

LN
4

C
o
m
p
le
te

O
1

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

‐
1

A
TP

C
o
m
p
le
te

O
1

2
8
,3
7
7

2
8
,5
7
6

2
8
,8
1
9

2
8
,7
9
7

2
9
,0
2
8

2
9
,3
9
8

2
7
3

3
0

 R
es

ul
ts

 s
ho

w
 f

or
 e

xe
cu

ti
on

 t
im

e
th

at
,

ag
ai

n,
 L

N
2

pr
ov

id
ed

 t
he

 l
ow

es
t

va
lu

e
(1

8
se

co
nd

s)
.

L
N

3
w

as
 m

ea
su

re
d

to
 1

36
 s

ec
on

ds
,

fo
ll

ow
ed

 b
y

R
T

P
 w

it
h

48
9

se
co

nd
s.

 A
lm

os
t

do
ub

li
ng

 (
m

or
e

pr
ec

is
el

y,
 1

.7
4

ti
m

es
 l

ar
ge

r)
 t

he
 t

im
e

se
en

 f
or

 R
T

P
,

L
N

4
w

as
 m

ea
su

re
d

to
 u

se
 8

50
 s

ec
on

ds
 o

n

ex
ec

ut
in

g
th

e
te

st
 s

ui
te

.
T

he
 s

ec
on

d
hi

gh
es

t
ti

m
e

w
as

 m
ea

su
re

d
fo

r
A

T
 –

 2
,4

55
 s

ec
on

ds
.

F
in

al
ly

,
ex

ec
ut

io
n

of
 t

he
 A

T
P

 t
es

t
su

it
e

to
ok

 3
,3

41

se
co

nd
s.

 T
ab

le
 1

2
D

es
cr

ip
ti

ve
 s

ta
ti

st
ic

s
-

ex
ec

ut
io

n
ti

m
e

St
ra
te
gy

M
od

el
O
ra
cle

M
in

Q
1

M
ea
n

M
ed

ia
n

Q
3

M
ax

St
 D
ev

N
LN
2

C
o
m
p
le
te

O
1

1
8

1
8

1
8

1
8

1
8

1
8

‐
1

LN
3

C
o
m
p
le
te

O
1

1
3
6

1
3
6

1
3
6

1
3
6

1
3
6

1
3
6

‐
1

R
TP

C
o
m
p
le
te

O
1

3
4
1

4
6
0

4
8
9

5
0
4

5
2
4

6
0
7

5
4

3
0

LN
4

C
o
m
p
le
te

O
1

8
5
0

8
5
0

8
5
0

8
5
0

8
5
0

8
5
0

‐
1

A
T

C
o
m
p
le
te

O
1

1
,7
6
5

2
,1
0
8

2
,4
5
5

2
,3
7
7

2
,7
8
5

3
,6
1
7

4
6
9

3
0

A
TP

C
o
m
p
le
te

O
1

2
,6
0
7

2
,9
7
2

3
,3
4
1

3
,3
8
1

3
,6
6
9

3
,9
7
8

4
2
9

3
0

87

Interestingly, the correlation between preparation and execution time was not consistent.

As we can see from the results, the mean of LN4 was higher than the measured time for AT,

what comes to preparation time. Regarding execution time, however, AT had a higher

measured value than LN4. This can be explained by the way the state machine was traversed

when generating the AT and LN4 test suites. AT was generated using a depth first algorithm,

which typically results in few, but long test cases. LN4, on the other hand, was generated by

breadth first, providing many, but short test cases. The time spent on generating the many

LN4 test cases would thus take longer time than generating fewer, but longer AT test cases.

Imagine the additional code required in separate test cases as compared to having one long

test case. Although LN4 is approximately 4.6 times larger than AT in terms of number of test

cases, the execution time takes five times longer (2,455 seconds (LN4) versus 489 seconds

(RTP)) due to the nature of the AT test cases.

Figure 17 displays a graphical representation of the means. The figure shows a significant

increase in preparation time for ATP.

Figure 17 Preparation and execution time in seconds shown for each coverage criterion

The figures displayed in Table 11 and Table 12 illustrate the variations in results among

the generated trees within each of the strategies AT, RTP, and ATP. This will be further

addressed in the following paragraphs.

0

5000

10000

15000

20000

25000

30000

35000

LN2
complete

O1

LN3
complete

O1

LN4
complete

O1

AT
complete

O1

RTP
complete

O1

ATP
complete

O1

Execution Time

Preparation Time

88

Comparing Means

As described in the design chapter (Chapter 7), the collected data presented in the previous

sections are, for each of AT, RTP, and ATP, based on 30 replications of the experiment.

Recall that the trees from which the test suites are generated were randomly selected without

replacement to the population of trees within each strategy. The mean is expected to be an

estimate of the real value µ of the population, and closer to µ than each of the trees

independently. Therefore, to reduce the uncertainty in the mean, a number of 30 trees were

selected for AT, RTP, and ATP. This section investigates those replications for the purpose of

identifying possible statistical variability.

The observations for each group (i.e., combinations of coverage criterion, test model and

oracle) are independent. Being selected without replacement from the population of all

possible trees that achieves each of the criteria, only trees distinct from the selected trees were

added to the selection.

The histograms and box plots in Figure 18 and Figure 19 show the distribution of the time

spent to prepare and execute the test suites, respectively. The data material can be found in

Appendix G.

Figure 18 presents the performance of AT, RTP, and ATP regarding preparation time.

None of the histograms show a normal distribution.

AT RTP ATP

Figure 18 Distribution – preparation time

Starting with AT, we see a distribution skewed to the left having the minimum value

2,506 seconds, the mean at 3,995 seconds, and the maximum value at 15,939 seconds. Worth

noticing is the relatively significant difference in mean and median, which can be explained

89

by the fact that there were two outliers in the collected data. Looking at the inter quartile

range (IQR) and the belonging upper and lower limits (see Table 13) for what is considered

being outliers, we see that 15,781 seconds and 15,939 seconds are outliers as their values

exceed the upper limit (5,017.8).

Next, the distribution shown for RTP is skewed to the left. The minimum value was 484,

the mean was 531 seconds, and the maximum observed value was 607 seconds. A quick

glance at Table 13 shows that, also for this strategy, there was an outlier present –

observations above 595 seconds should be considered as outliers, i.e., the observation 607

seconds. Outliers in the lowest quartile would have to be lower than 462 seconds. Such

outliers were not present.

Finally, ATP had 28,377 seconds as the minimum value, 28,819 seconds as the mean, and

the highest measured value was 29,398 seconds. According to the IQR, outliers would be

present if observations were seen above 29,706 or below 27,898. However, all observations

were within the IQR from Q1 and Q3, and thus no outliers.

Table 13 Inter quartile ranges – preparation time

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 2,763 3,665 902 1,353 1,410 5,018

RTP 512 545 33 50 462 595

ATP 28,576 29,028 452 678 27,898 29,706

Nor Figure 19, which displays the spread in the collected execution-time data, presents

normally distributed observations. The execution time for AT varies from 1,765 seconds to

3,617 seconds, for RTP we see a range from 341 seconds to 607 seconds, and for ATP the

time is spread from 2,607 seconds to 3,978 seconds.

90

AT

RTP

ATP

Figure 19 Distribution – execution time

AT’s distribution is skewed to the left. The minimum value among the observations was

1,765 seconds, the mean was 2,455 seconds, and the maximum value was 3,617 seconds.

There are no outliers observed.

The RTP distribution is slightly skewed to the left. Looking at Table 12, we see that the

minimum value was 341 seconds, the mean was 489 seconds, and the maximum value was

607 seconds. Being the minimum value (341 seconds), this observation is an outlier as it

exceeds the lower limit (see Table 14).

Finally, the collected data for ATP was rather equally distributed. The mean was at 3,341

seconds, the minimum at 2,607 seconds, and the maximum at 3,978 seconds. No outliers were

observed for this strategy.

Table 14 Inter quartile ranges – execution time

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 2,108 2,785 676 1,014 1,094 3,799

RTP 460 524 64 96 364 621

ATP 2,972 3,669 698 1,046 1,925 4,715

8.1.6 Descriptive Statistics for Effectiveness

This section describes main features of the collected data on effect, which regards mutation

score – the surrogate measure of effectiveness. Table 16 presents the five-number summary.

Again, the summary includes the minimum, the 25 percent quartile, the median, the 75

percent quartile, the maximum, the mean, and the standard deviation in the collected data for

each combination of coverage criterion, test model, and oracle.

91

The minimum mutation score (0.333) was observed for LN2. The maximum mutation

score (1), however, was reached by AT, RTP, ATP, and LN4. Considering the mutation score

results ranked by mean from low to high, the summary shows that LN2 performs significantly

poorer than the other coverage criteria. A large gap was to be found between LN2 and the

next result – LN3 with 0.933. Quite similar, AT resulted in a high mutation score, 0.997. The

best mean value observed for mutation score came with RTP, ATP, and LN4. Explained by

similar results within each coverage criteria, the medians closely follow the means. This

particularly regards LN2, LN3, and LN4 that were only executed with one test suite. Recall

that AT, RTP, and ATP were replicated 30 times due to possible variations in the results

regarding several traversal paths providing different trees. This also explains the low standard

deviation figures, at least for LN2, LN3, and LN4. Moreover, AT, RTP, and ATP provided

high mutation score means across all 30 replications, and hence, low standard deviations.

Table 15 Descriptive statistics for mutation score

Strategy Model Oracle Min Q1 Mean Median Q3 Max Std Dev Std Error Mean N

AT complete O1 0.900 1.000 0.997 1.000 1.000 1.000 0.018 0.003 30

RTP complete O1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 30

ATP complete O1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 30

LN2 complete O1 0.333 0.333 0.333 0.333 0.333 0.333 0.000 0.000 1

LN3 complete O1 0.933 0.933 0.933 0.933 0.933 0.933 0.000 0.000 1

LN4 complete O1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1

The mutation-score means displayed in Table 15 are graphically visualized in Figure 20.
We see that the complete test model combined with oracle O1 resulted in an overall high
mutation score, except from LN2.

Figure 20 Mutation score means

0,000

0,500

1,000

Mutation Score Means
Complete Model x Oracle O1

AT RTP ATP LN2 LN3 LN4

92

Comparing Means

This section investigates the replications of AT, RTP, and ATP for the purpose of identifying

possible statistical variability in the collected data on mutation scores. Studying the

distribution of the mutation score in Table 15 and Figure 21, we see hardly any variation in

the observations. The histograms show consistent distributions of the mutation scores. The

data material can be found in Appendix G.

AT

RTP ATP

Figure 21 Distribution – mutation score

From the box plots of RTP and ATP, we see that 100 percent of the test suites achieved

mutation score means equal to 1. For AT, 29 of the 30 test suites killed every mutant. The

remaining test suite killed 14/15 seeded errors.

The next section will present results from tests on significant statistical differences in the

replicated data.

8.2 Statistical Tests

This section provides statistical tests on the data described by descriptive statistics in Section

8.1. Tests are run in R [127]. The actual tests are listed in Appendix K. The purpose of the

tests is to confirm/reject the hypothesis:

H0: There are no significant differences in cost and effectiveness when applying the

testing strategies AT, RTP, and ATP on the complete model when combined with oracle O1.

93

Chapters 8 to 9 show results from comparing all the collected data for the three strategies

when applied to the complete model and oracle O1. In order to make such a comparison, three

statistical tests were executed: AT versus ATP, AT versus RTP, and ATP versus RTP. As

multiple comparisons were made on the same sample, it would be sufficient to present the p-

value. However, as Bonferroni correction is recommended by the literature [128], this kind of

correction was used to avoid spurious positives when comparing the three strategies AT, RTP,

and ATP. The original alpha α = 0.05 was thus lowered to α = 0.05 / 3 for the purpose of

accounting for the number of comparisons.

Overall, ATP performed significantly better than both RTP and AT as to what mutation

score regards. Accordingly, the cost when applying ATP was significantly higher than for

RTP and AT.

Comparing AT with RTP, we see that for both measures on time the p-values are very low

(p = 1.86e-09 for preparation time and p = 1.82e-06 for execution time). This means that the

data is significantly different for the two strategies, even for α = 0.01. When also looking at

the effect size (Â = 1 for both preparation time and execution time), we can say that the

probability of AT’s preparation time and execution time being higher than for RTP is 100

percent. Interestingly, this does not regard the mutation score. There were no significant

differences in the mutation scores achieved by AT as compared to RTP. The effect size of 0.5

shows that there is 50 percent probability for either strategy to perform better.

The figures for AT and ATP shows that ATP had the highest values for preparation time

and execution time; the time spent on preparing and executing the test suites were

significantly higher than for AT (p = 1.863e-09 for preparation time and p = 4.5e-06 for

execution time). The large effect sizes indicate a 100 percent probability of higher preparation

time and 91.4 percent probability of higher execution time. Again, no difference was found in

mutation scores for ATP as compared to AT.

Furthermore, the differences in preparation time and execution time were significant also

in the final comparison; RTP versus ATP (p = 1.863e-09 for preparation time and p = 1.863e-

09 for execution time). The Â statistics also show that RTP always required less time than

ATP (Â = 0). Henceforth, the effect size is large.

This implies the following order: ATP costs more than AT which again costs more than

RTP. Regardless of these differences, however, the three strategies performed similar in

killing mutants. Thus, RTP can be considered being the most cost-effective strategy when

using the complete model in combination with oracle O1.

 94

 T
ab

le
 1

6
P

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

pa
ri

n
g

st
ra

te
gi

es
 –

 p
re

p
ar

at
io

n
ti

m
e

H
0

O
ra

cl
e

M
od

el

M
ea

su
re

p-

va
lu

e
Â

E

ff
ec

t
S

iz
e

R
es

u
lt

S

ig
n

. D
if

f.
 (

C
I)

A
T

 =
 R

T
P

O

1
C

om
pl

et
e

P
re

p.
 ti

m
e

1.
86

e-
09

1

L
ar

ge

A
T

 >
 R

T
P

Y

es
 (

99
%

)

A
T

 =
 A

T
P

O

1
C

om
pl

et
e

P
re

p.
 ti

m
e

1.
86

e-
09

1

L
ar

ge

A
T

 <
 A

T
P

Y

es
 (

99
%

)

R
T

P
 =

 A
T

P

O
1

C
om

pl
et

e
P

re
p.

 ti
m

e
1.

86
e-

09

0
L

ar
ge

R

T
P

 <
 A

T
P

Y

es
 (

99
%

)

T
ab

le
 1

7
P

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

pa
ri

n
g

st
ra

te
gi

es
 –

 e
xe

cu
ti

on
 t

im
e

H
0

O
ra

cl
e

M
od

el

M
ea

su
re

p-

va
lu

e
Â

E

ff
ec

t
S

iz
e

R
es

u
lt

S

ig
n

. D
if

f.
 (

C
I)

A
T

 =
 R

T
P

O

1
C

om
pl

et
e

E
xe

c.
 ti

m
e

1.
82

e-
06

1

L
ar

ge

A
T

>
R

T
P

Y

es
 (

99
%

)

A
T

 =
 A

T
P

O

1
C

om
pl

et
e

E
xe

c.
 ti

m
e

4.
50

e-
06

0.

08
6

L
ar

ge

A
T

<
A

T
P

Y

es
 (

99
%

)

R
T

P
 =

 A
T

P

O
1

C
om

pl
et

e
E

xe
c.

 ti
m

e
1.

86
e-

09

0
L

ar
ge

R

T
P

<
A

T
P

Y

es
 (

99
%

)

 T
ab

le
 1

8
P

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

pa
ri

n
g

st
ra

te
gi

es
 –

 m
u

ta
ti

on
 s

co
re

H
0

O
ra

cl
e

M
od

el

M
ea

su
re

p-

va
lu

e
Â

E

ff
ec

t
S

iz
e

R
es

u
lt

S

ig
n

. D
if

f.
 (

C
I)

A
T

 =
 R

T
P

O

1
C

om
pl

et
e

M
ut

. s
co

re

N
A

O

.5

N
o

ef
fe

ct

A
T

 =
 R

T
P

N

o

A
T

 =
 A

T
P

O

1
C

om
pl

et
e

M
ut

. s
co

re

N
A

O

.5

N
o

ef
fe

ct

A
T

 =
 A

T
P

N

o

R
T

P
 =

 A
T

P

O
1

C
om

pl
et

e
M

ut
. s

co
re

N

A

O
.5

N

o
ef

fe
ct

R

T
P

 =
 A

T
P

N

o

 B
as

ed
 o

n
th

e
ob

ta
in

ed
 r

es
ul

ts
, t

he
 n

ul
l

hy
po

th
es

is
 w

as
 r

ej
ec

te
d

fo
r

th
e

su
rr

og
at

e
m

ea
su

re
s

fo
r

co
st

. N
o

ev
id

en
ce

 w
as

 f
ou

nd
 h

ow
ev

er
 t

o
re

je
ct

th
e

nu
ll

 h
yp

ot
he

si
s

w
it

h
re

sp
ec

t t
o

ef
fe

ct
iv

en
es

s.
 T

hu
s,

 th
er

e
ar

e
si

gn
if

ic
an

t d
if

fe
re

nc
es

 in
 c

os
t,

bu
t n

ot
 in

 e
ff

ec
ti

ve
ne

ss
 w

he
n

ap
pl

yi
ng

 th
e

te
st

in
g

st
ra

te
gi

es
 A

T
, R

T
P

, a
nd

 A
T

P
 w

he
n

us
in

g
or

ac
le

 O
1.

95

8.3 Cost-Effectiveness

This section focuses on the relation between cost and effectiveness. Each of the surrogate

measures of cost and effectiveness is graphically illustrated by using colors in Figure 22. Dark

colors indicate high values; light colors represent low values. We easily observe that five of

the criteria provided good mutation score – LN2 had the worst results on mutation score.

Looking at the cost for each strategy, ATP stands out with its high values for all measure on

cost. RTP and LN3 perform quite similar. AT had the second highest cost, but similar

effectiveness as ATP, RTP, and LN4.

Figure 22 Preparation time, execution time, test-suite size and mutation score for each coverage criterion

96

Figure 23–Figure 26 show the relation between the surrogate measures of cost and

effectiveness. In Figure 23–Figure 25 we see the number of killed mutants versus the mean

preparation time, execution time, and total time for each strategy, respectively. Clearly,

although killing all mutants, ATP is the most expensive criteria to prepare. On the other

extreme, LN2 is very cheap; the fault-detection ability is accordingly poor. We observe from

the four figures that the measures provide rather consistent results. There are, however, some

differences in the results, e.g. preparation time versus execution time. Preparing the AT test

suites took slightly more time than RTP but less time than LN4. Looking at the execution

time on the other hand, Figure 23 shows that AT takes significantly more time than both RTP

and LN4.

97

F
ig

u
re

 2
3

m

u
ta

n
ts

 k
il

le
d

 v
er

su
s

p
re

p
ar

at
io

n
 t

im
e

F
ig

u
re

 2
4

m

u
ta

n
ts

 k
il

le
d

 v
er

su
s

ex
ec

u
ti

on
 t

im
e

F

ig
u

re
 2

5

m
u

ta
n

ts
 k

il
le

d
 v

er
su

s
te

st
-s

u
it

e
si

ze

F
ig

u
re

 2
6

m

u
ta

n
ts

 k
il

le
d

 v
er

su
s

to
ta

l t
im

e
(p

re
p

 +
 e

xe
c)

05

1
0

1
5

2
0

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

05

1
0

1
5

2
0

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

05

1
0

1
5

2
0

0
5
0
0

1
0
0
0

1
5
0
0

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

05

1
0

1
5

2
0

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

98

8.4 Analysis of Mutant Survival

We will now take a closer look at the nature of the mutants that were not killed by the applied

test suites. The ATP, RTP, and LN4 test suites killed all mutants when executing each of the

30 test suites.

On average, all mutants were killed by the AT test suites. Investigations of the individual

test suites show that only one of the 30 test suites (AT11) did not kill mutant M15. Recall that

M15 was a fault that consisted of adding a guard to a transition. The guard evaluates the

particular speed mode of the robot; the speed had to be Extra Slow to enable transitioning.

In the correct version, firing of the transition should take place regardless of the speed mode.

Explanations for why this mutant was not killed may be that the generated oracle provided

test data for the other variables in the guard that prevented the transitioning. The remaining 29

test suites killed all of the 15 mutants. Neither LN3 killed M15. This, however, has a logical

explanation in that LN3 does not reach that particular state.

LN2 performed the worst: ten mutants were not killed (only M1, M2, M12, M13, and

M14 were killed).

99

8.5 Related Work

Offutt and Abdurazik [15] addressed system level testing by generating test cases from UML

state machines. In an empirical study, they demonstrated two techniques and evaluated their

fault-detection ability, of which one of the techniques was ATP. The Cruise Control system,

developed for research purposes, was seeded with 25 faults and tested running 34 ATP tests

generated from a proof-of-concept test data generation tool. Four of the seeded faults were

actual faults, detected during the initial implementation. Results showed that ATP killed 72

percent (18/25).

Offutt et al. [16] continued the investigations on state-based testing to see if the

specification-based testing criteria could be practically applied. They evaluated the efficiency

of state-based test criteria in terms of fault-detection ability and obtained branch coverage.

Among other criteria, AT and ATP were applied in a case study and compared with respect to

fault-detection ability and branch coverage. A modified version of the Cruise Control system

(400 LOC of C) was mutated using 24 faults (of which 4 were naturally occurring faults).

Obtained results showed that the weakest coverage, AT (12 test cases), detected 15/24 faults,

and ATP (34 test cases) detected 18/24 faults.

Among several other criteria, the ATP coverage criterion was compared to mutation based

criteria by Paradkar [82]. The study reported that mutation-based testing had higher fault-

detection effectiveness, but at a higher cost than the structured criteria. By running 39 ATP

test cases on the Java implementation (389 LOC) of an ATM application, 89/166 (54 percent)

mutants were killed. The mutants were manually generated by seeding, randomly, faults

according to mutation operators defined in [130]. In addition, they applied Control Flow

Disruption (CFD), and Scalar Variable Replacement (SVR).

Chevalley and Thévenod-Fosse [78] found a weakness of AT in that a fault could possibly

not be triggered by the particular test case input value for a particular transition. For that

reason, the weakness in the criterion was compensated by exercising each transition several

times. The results were based on 1,559 mutants of an avionics system (6,500 LOC); a

mutation score of 91 percent was reached (1,423/1,559 mutants were killed). The Flight

Guidance System was a research version provided by the Advanced Technology Center of

Rockwell-Collins.

100

Briand et al. [22] empirically investigated the cost and fault-detection effectiveness for the

most referenced coverage criteria based on UML statecharts: AT, ATP, and FP [15], and a

modified version of the RTP coverage referred to as transition tree (TT) [2, 31]. Three case

studies were used in the evaluation: (1) a container class from an academic example program,

(2) the Cruise Control system, and (3) an implementation of a video recorder. The two former

studies were real-time systems. Artificial mutation operators were used to create 101, 91, and

139 mutants respectively for the three cases. The following conclusions were drawn from the

study: (1) AT did not provide an adequate level of fault detection, (2) ATP detected nearly all

faults, but not without an enormous increase in cost compared to AT, (3) TT was evaluated to

be more cost-effective than AT and ATP, although the result depended on two factors: the

extent to which guard conditions were present in the statechart, and the extent to which the

transition tree captured realistic and meaningful usage scenarios.

In a series of three controlled experiments, Briand et al. [12] evaluated two variants of

RTP testing, and CP testing, in terms of cost-effectiveness, and proposed a way to combine

them. Students were used as subjects. The following programs were used in the experiments:

(1) a container class from an academic software system, (2) a container class from a real DNS

system, and (3) two control classes from a real DNS system. Two different oracle strategies

were compared; the state-invariant oracle versus the precise oracle. Artificial mutation

operators were applied in order to evaluate the cost-effectiveness. In the three experiments,

24, 42, and 81 mutants were generated. Results showed that RTP testing is not likely to be

sufficient in most situations as significant numbers of faults remained undetected (from 10

percent to 34 percent) on average across subject classes. This is especially true when a weaker

form of round-trip was used where only one of the disjuncts in guard conditions was

exercised. By combining RTP with CP testing, however, a large percentage of latent faults

could potentially be detected by CP after SBT was applied, yet at significant increase in cost,

implying that selection of subsets may be necessary.

The effectiveness of the RTP strategy was later investigated by Antoniol et al. [80] in a

case study. The RTP strategy was applied in a C++ example program consisting of 450 LOC

(two classes and 45 methods). The main class under test was a container class. Artificial

mutation operators were used to seed 44 faults covering 8 mutation operators. The study

concluded that the RTP strategy is reasonably effective at detecting faults; 88 percent of the

faults were detected as compared to 69 percent for random testing. Moreover, their results

showed that RTP left certain types of faults undetected, and suggested that by augmenting

101

RTP with category-partition (CP) testing, the fault-detection can be enhanced, although at an

increase in cost that must be taken into account.

A study by Briand et al. [81] was conducted that aimed at investigating how data flow

information could be used to improve the cost-effectiveness of state-based coverage criteria

when more than one tree existed. Two case studies were carried out: (1) the Cruise Control

system was inserted with 91 faults using artificial mutation operators, and (2) 131 mutants

were generated from an implementation of a video recorder. Results showed that data flow

information was useful for selection of the best cost-effective transition tree.

Mouchawrab et al. [85] addressed the impact of using statecharts for testing class clusters

that exhibit a state-dependent behavior, and reported on a controlled experiment that

investigated the effectiveness of SBT using RTP when compared and combined to white-box,

structural testing. The experiment involved 48 students who were assigned to generate tests

for the OrdSet example class, and the Cruise Control system using RTP, and block and edges

coverage. No differences in the fault-detection effectiveness of the two strategies were found

by executing the generated tests on 624 mutants of the OrdSet class and 386 mutants of the

Cruise Control system. Results from applying RTP showed an average mutation score of

approximately 79 percent in the OrdSet case and as low as 22 percent in the Cruise Control

case. Combining the strategies, however, proved to be significantly more effective. Number

of killed mutants (i.e., killed by RTP and the structural criterion) varied from 80–100 percent

in the OrdSet case and 61–100 percent in the Cruise Control case. The fault detection

effectiveness was found to vary to a large extent depending on how precisely the statechart

described the behavior of the software under test.

Continuing the investigations of the impact of state-machine testing (the round-trip path

coverage criterion in particular) on fault detection and cost when compared with structural

testing, Mouchawrab et al. [92] conducted four controlled experiments. Results showed that

there was no significant difference between the two strategies regarding fault-detection

effectiveness. Combining the two strategies, however, yielded significantly more effective

results. The number of mutants varied from 382 to 1,176.

The round-trip path criterion was further studied by Briand et al. [98] in the context of

UML state machines with focus on how to improve the criterion’s fault-detection

effectiveness. They investigated how data flow analysis on OCL guard conditions and

operation contracts could be used to “further refine the selection of a cost-effective test suite

among alternative, adequate test suites for a given state machine criterion” [98]. A

methodology on how to perform data flow analysis of UML state machines was presented.

102

Results from two case studies, a VCR system (1,000 LOC) and the well-known Cruise

Control system (460 LOC), suggested that data flow information in a transition tree could be

used to select the tree with the highest fault-detection ability. Artificial mutation operators

were used to generate 131 and 91 mutants for VCR and CC, respectively. For VCR, the

number of killed mutants varied from 71–76 percent among the 12 trees generated, whereas

85, 91, and 96 percent of the mutants were killed by the three transition trees generated from

the CC.

In [99], Khalil and Labiche addressed the assumptions about the round-trip path strategy

regarding the equivalency of exercising paths in the tree that do not always trigger complete

round trip path versus covering round-trip paths. They investigated the consequences of the

assumption not being held in practice. Finally, they proposed yet a new algorithm for

generating the transition tree, which resulted in higher efficiency and lower cost. They created

187 mutants for the Cruise Control example and 417 faulty versions of the OrderedSet

example. Cost was measured by several surrogate measures: the number of test cases, the

number of states in trees, and the number of events in trees.

8.6 Discussion

This section compares the observed results to related work as just described in Section 8.5.

Please recall that in this study, a hierarchical orthogonal module in a control system was

applied in the evaluation of six state-based coverage criteria. Twenty-six mutated versions of

the SUT were generated by seeding real faults that were extracted from a global field study

conducted in three of ABB’s departments. Only fifteen of these faults were detectable by

conformance testing, as the remaining eleven faults were sneak paths.

There are several factors that distinguish the abovementioned studies from the study

presented in this thesis. First of all, the majority of existing studies on cost-effectiveness

related to SBT, except for [78], utilize small non-industrial or example cases which are

significantly smaller or less complex than the SUT. The number of tests in the generated test

suites and LOC reflect that difference. For example, recall that the number of tests generated

for ATP in this study was 1,425 as compared to 34 in [15] and [16]. In particular, recall the

frequent use of the Cruise Control case in existing research. Second, the applied oracle is most

often not specified; the lack of oracle information makes it difficult to provide meaningful

comparisons of the results. Only Briand et al. [12] specifically addressed and, in fact,

compared the type of oracles used. Third, the number of seeded mutants is in most cases

103

higher than in this study, but then again, (forth) the seeded faults are primarily artificial in

existing studies. Nevertheless, the latter difference is interesting due to the lack of studies on

artificial versus real faults. Fifth, the level of details in the test model is insufficiently

specified. Sixth, there are no data on cost other than test-suite sizes.

Now, by looking at the reported results on fault-detection ability, we see that ATP killed

more mutants (100 percent) in this study as compared to [15], [16], and [82]. The latter

reported a mutation score as low as 54 percent. This may of course be explained by the

differences in the studies as previously stated. The relationship between the fault-detection

ability of AT versus ATP presented in [16], however, seem to be rather consistent to results in

this study.

As we can see from the existing studies, results show great variations in the fault-detection

ability – from 63 to 91 percent. In spite of the differences between the study of Briand et al.

[22] and this study, results reported in this study support the findings of Briand et al.; except

from the findings regarding AT not providing an adequate level of fault detection. In this

study, by using a complete test model and oracle O1 (checking state invariant and state

pointer), we saw that AT detected as many mutants as ATP. Then again, the study of Briand

et al. involved many more mutants albeit artificial.

Empirical studies on RTP have shown that, in terms of cost and effectiveness, this

particular criterion is a compromise between the weak AT and the more expensive ATP

criteria if the selected transition trees were the most effective in cases where several trees

existed [22]. The results in this study support these findings. Note, however, that also for

RTP, reported results in existing studies are highly variable (22–90 percent).

8.7 Summary

This chapter concerned cost-effectiveness of the state-based coverage criteria all transitions

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of

length 3 (LN3) and paths of length 4 (LN4) when applied to a detailed state-based test model

using oracle O1.

Descriptive statistics for the obtained results on cost and effectiveness in Section 8.1

showed that LN2 (27 test cases) provided the smallest test suite; ATP (1,425 test cases) had

the largest test suite. The median among the test-suite sizes was 232.4 test cases.

Looking at the mean values, we observe that LN2 had the lowest values for preparation

time (126 seconds). LN3 had the second lowest value, 509 seconds. RTP ranked third with

104

531 seconds. A large increase, almost 87 percent, was seen between preparation time for RTP

and AT (3,995 seconds). The second highest measure collected for preparation time was LN4

with 5,295 seconds. The highest value, 28,819 seconds, was observed for ATP.

Results show for execution time that, again, LN2 provided the lowest value (18 seconds).

LN3 was measured to 136 seconds, followed by RTP with 489 seconds. Almost doubling the

time seen for RTP, LN4 was measured to use 850 seconds on executing the test suite. The

second highest time was measured for AT – 2,455 seconds. Finally, execution of the ATP test

suite took 3,341 seconds.

Considering the mutation score results ranked by mean from low to high, the summary

showed that LN2 performed significantly poorer than the other coverage criteria (5/15 killed

mutants). A large gap was to be found between LN2 and the next result; LN3 with 0.933

(14/15 killed mutants). Quite similar, AT resulted in a high mutation score mean, 0.997. The

best mutation score mean came with RTP, ATP, and LN4 – all mutants were killed.

Section 8.2 regarded statistical tests. The paired Wilcoxon signed-rank test was applied to

the replicated data, i.e., for AT, RTP, and ATP. All tests executed on preparation and

execution time resulted in significantly different results – ATP spent significantly more time

on both preparation and execution of the test suites than AT and RTP. No significant

differences were found in data collected on mutation score. Both RTP and ATP killed all

mutants. AT killed all mutants in 29 of 30 test suites – the final test suite killed 14 out of 15

mutants.

Conclusions: The results indicate that LN2 might be too weak as a testing strategy.

The other testing strategies performed similar with respect to mutation score, but with

varying costs – ATP was the most expensive criterion. Having rather similar cost-

effectiveness, LN3 and RPT were suggested by the results as the most cost-effective

strategies.

105

9 Case Study 2 – How does Varying the Oracle Affect the Cost-Effectiveness?

Whereas the previous chapter compared six coverage criteria, executed on the complete

model using one type of oracle, the case study presented in this chapter aims to answer the

second research question:

RQ2: How does varying the oracle affect the cost-effectiveness?

Results are based on running tests when applying a modified version of the oracle used in

Chapter 8. Please recall from Section 7.1 the difference between the two oracles O1 and O2.

The former checks both the state invariant in addition to the pointer to the current system

state, whereas the latter only checks the current system state.

The answer to this question will be provided by investigating the influence of the two

oracles on the cost-effectiveness of the six coverage criteria in focus of this thesis. Section 9.1

presents descriptive statistics, whereas Section 9.2 provides statistical tests. Descriptive

statistics from Section 8.1 are restated in this Chapter for the purpose of making comparisons

between the two oracles. Section 9.3 regards cost versus effectiveness. Undetected mutants

are addressed in Section 9.4. Obtained results are discussed towards existing research in

Section 9.5. Furthermore, Section 9.6 discusses results from related work against results from

this study. Lastly, the obtained results are summarized in Section 9.7. The data material can

be found in Appendix G (regarding oracle O1) and Appendix H (regarding oracle O2).

9.1 Descriptive Statistics

9.1.1 Descriptive Statistics for Cost

9.1.1.1 Test-Suite Size

As the choice of oracle does not affect test-suite sizes, this particular measure is irrelevant for

the second research question and therefore excluded. Sizes are determined by the testing

strategies and the system specification, more precisely the number of transitions in the state-

machine diagram. Hence, changing the oracle will not have impact on this surrogate measure

for cost. More importantly, however, is the oracle’s influence on cost measured as time.

 10
6

9.
1.

1.
2

T
im

e

T
ab

le
 1

9
an

d
T

ab
le

 2
0

sh
ow

 t
he

 d
es

cr
ip

ti
ve

 s
ta

ti
st

ic
s

fo
r

pr
ep

ar
at

io
n

an
d

ex
ec

ut
io

n
ti

m
e,

 r
es

pe
ct

iv
el

y.
 R

ec
al

l
th

at
 t

im
e

w
as

 m
ea

su
re

d
in

se
co

nd
s.

F
ro

m
 T

ab
le

 1
9

w
e

se
e

th
at

 t
hr

ee
 o

f
th

e
si

x
te

st
in

g
st

ra
te

gi
es

 s
pe

nt
 s

li
gh

tl
y

m
or

e
ti

m
e

on
 p

re
pa

ri
ng

 t
he

 t
es

t
su

it
es

 w
he

n
co

m
bi

ne
d

w
it

h
or

ac
le

O
2

th
an

 w
it

h
or

ac
le

 O
1.

 T
hi

s
re

ga
rd

s
L

N
3,

 R
T

P
, a

nd
 L

N
4.

 N
o

di
ff

er
en

ce
 b

et
w

ee
n

th
e

or
ac

le
s

re
ga

rd
in

g
pr

ep
ar

at
io

n
ti

m
e

w
as

 s
ee

n
fo

r
L

N
2.

 T
w

o

st
ra

te
gi

es
 s

pe
nt

 m
or

e
ti

m
e

on
 p

re
pa

ri
ng

 th
e

te
st

 s
ui

te
s

w
he

n
ap

pl
yi

ng
 o

ra
cl

e
O

1
as

 c
om

pa
re

d
to

 O
2,

 n
am

el
y

A
T

 a
nd

 A
T

P
.

 T
ab

le
 1

9
D

es
cr

ip
ti

ve
 s

ta
ti

st
ic

s
fo

r
pr

ep
ar

at
io

n
ti

m
e

w
he

n
ap

pl
yi

ng
 o

ra
cl

e
O

1
an

d
O

2

St
ra
te
gy

M
od

el
O
ra
cl
e

M
in

(s
ec
)

Q
1

(s
ec
)

M
ea
n

(s
ec
)

M
ed

ia
n

(s
ec
)

Q
3

(s
ec
)

M
ax

(s
ec
)

St
 D
ev

(s
ec
)

N
D
iff
 O
1
by

 O
2

(%
)

LN
2

C
o
m
p
le
te

O
1

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

‐
1

0.
0

O
2

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

‐
1

LN
3

C
o
m
p
le
te

O
1

5
0
9

5
0
9

5
0
9

5
0
9

5
0
9

5
0
9

‐
1

‐1
.4

O
2

5
1
6

5
1
6

5
1
6

5
1
6

5
1
6

5
1
6

‐
1

R
TP

C
o
m
p
le
te

O
1

4
8
4

5
1
2

5
3
1

5
2
5

5
4
5

6
0
7

2
8

3
0

‐0
.2

O
2

4
7
6

4
9
2

5
3
3

5
2
3

5
5
9

6
7
5

5
1

3
0

LN
4

C
o
m
p
le
te

O
1

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

‐
1

‐3
.8

O
2

5
,4
9
4

5
,4
9
4

5
,4
9
4

5
,4
9
4

5
,4
9
4

5
,4
9
4

‐
1

A
T

C
o
m
p
le
te

O
1

2
,5
0
6

2
,7
6
3

3
,9
9
5

3
,0
1
3

3
,6
6
5

1
5
,9
3
9

3
,2
6
4

3
0

7.
5

O
2

2
,2
4
9

2
,4
7
4

3
,7
1
5

2
,7
6
6

3
,3
9
4

1
5
,6
6
3

3
,2
8
0

3
0

A
TP

C
o
m
p
le
te

O
1

2
8
,3
7
7

2
8
,5
7
6

2
8
,8
1
9

2
8
,7
9
7

2
9
,0
2
8

2
9
,3
9
8

2
7
3

3
0

0.
6

O
2

2
8
,3
0
5

2
8
,4
0
9

2
8
,6
4
1

2
8
,5
0
4

2
8
,7
8
7

2
9
,5
4
8

3
4
5

3
0

10
7

R
es

ul
ts

 f
or

 e
xe

cu
ti

on
 t

im
e

sh
ow

 t
ha

t
th

er
e

w
er

e
si

gn
if

ic
an

t
co

st
 r

ed
uc

tio
ns

 b
y

us
in

g
or

ac
le

 O
2.

 T
hi

s
re

ga
rd

s
al

l
si

x
te

st
in

g
st

ra
te

gi
es

.
T

he

gr
ea

te
st

 im
pr

ov
em

en
t,

ho
w

ev
er

, w
as

 s
ee

n
fo

r
A

T
 c

lo
se

ly
 f

ol
lo

w
ed

 b
y

A
T

P
.

 T
ab

le
 2

0
D

es
cr

ip
ti

ve
 s

ta
ti

st
ic

s
fo

r
ex

ec
ut

io
n

ti
m

e
w

he
n

ap
pl

yi
ng

 o
ra

cl
e

O
1

an
d

O
2

St
ra
te
gy

M
od

el
O
ra
cl
e

M
in

(s
ec
)

Q
1

(s
ec
)

M
ea
n

(s
ec
)

M
ed

ia
n

(s
ec
)

Q
3

(s
ec
)

M
ax

(s
ec
)

St
 D
ev

(s
ec
)

N
D
iff
 O
1
by

 O
2

(%
)

LN
2

C
o
m
p
le
te

O
1

1
8

1
8

1
8

1
8

1
8

1
8

‐
1

2
6
0
.0

O
2

5
5

5
5

5
5

‐
1

LN
3

C
o
m
p
le
te

O
1

1
3
6

1
3
6

1
3
6

1
3
6

1
3
6

1
3
6

‐
1

3
8
5
.7

O
2

2
8

2
8

2
8

2
8

2
8

2
8

‐
1

R
TP

C
o
m
p
le
te

O
1

3
4
1

4
6
0

4
8
9

5
0
4

5
2
4

6
0
7

5
4

3
0

4
1
2
.5

O
2

8
0

8
8

9
5

9
7

1
0
1

1
1
9

9
3
0

LN
4

C
o
m
p
le
te

O
1

8
5
0

8
5
0

8
5
0

8
5
0

8
5
0

8
5
0

‐
1

3
9
1
.3

O
2

1
7
3

1
7
3

1
7
3

1
7
3

1
7
3

1
7
3

‐
1

A
T

C
o
m
p
le
te

O
1

1
,7
6
5

2
,1
0
8

2
,4
5
5

2
,3
7
7

2
,7
8
5

3
,6
1
7

4
6
9

3
0

4
9
1
.0

O
2

2
9
3

3
5
8

4
1
5

4
1
7

4
7
3

5
7
1

7
1

3
0

A
TP

C
o
m
p
le
te

O
1

2
,6
0
7

2
,9
7
2

3
,3
4
1

3
,3
8
1

3
,6
6
9

3
,9
7
8

4
2
9

3
0

4
8
7
.3

O
2

4
2
9

4
9
3

5
6
9

5
4
7

6
5
4

7
7
3

1
0
1

3
0

 T
he

 m
ea

ns
 f

ro
m

 T
ab

le
 1

9
an

d
T

ab
le

 2
0

ar
e

gr
ap

hi
ca

ll
y

vi
su

al
iz

ed
 in

 F
ig

ur
e

27
. T

he
 f

ig
ur

e
sh

ow
s

co
ns

is
te

nt
 r

es
ul

ts
 b

et
w

ee
n

th
e

or
ac

le
s

w
ha

t

co
m

es
 to

 p
re

pa
ra

ti
on

 ti
m

e.
 T

he
 e

xe
cu

ti
on

 ti
m

es
, h

ow
ev

er
, w

er
e

si
gn

if
ic

an
tl

y
re

du
ce

d
w

he
n

ap
pl

yi
ng

 o
ra

cl
e

O
2.

108

Figure 27 Preparation and execution time in seconds

The standard deviations displayed in Table 19 and Table 20 illustrate the variations in

results among the generated trees within the strategies RTP, AT, and ATP. This will be

further addressed in the following paragraphs.

Comparing Means

The histograms and box plots in Figure 28 and Figure 29 show the distribution of the time

spent on preparing and executing the test suites, respectively.

Figure 28 presents the performance of AT, RTP, and ATP regarding preparation time.

Again, none of the histograms show a normal distribution. The distributions are skewed to the

left.

0,0

5000,0

10000,0

15000,0

20000,0

25000,0

30000,0

35000,0

LN2
O1

LN2
O2

LN3
O1

LN3
O2

RTP
O1

RTP
O2

LN4
O1

LN4
O2

AT
O1

AT
O2

ATP
O1

ATP
O2

Execution time

Preparation time

109

AT RTP ATP

Figure 28 Distribution – preparation time – complete O2

The distribution of AT, is centered around 3,715 seconds. Investigations of the

observations and by looking at the IQR from Table 21, we see that there are two outliers

around 15,600 seconds – whom have a dramatic impact on the standard deviation. Also, the

mean of the distribution significantly differs from the median. This is cause by the presence of

the two outliers, however.

Next, there were 16 observations within the lower and upper quartiles of RTP. The mean

was 533 seconds. In the upper range, we see one outlier at 675 seconds.

Finally, ATP’s distribution has its mean at 28,641 seconds. The observations are located

close to the mean. Yet, there are two outliers among the observations in the upper range

around 29,500 seconds.

This indicate a wide spread in data for AT, whereas RTP and ATP have more consistent

observations. After removing the two outliers in the AT observations, however, we still see a

distribution with a high standard deviation.

Table 21 Inter quartile ranges – preparation time

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 2,474 3,394 920 1,380 1,095 4,774

RTP 492 559 67 100 392 658

ATP 28,409 28,787 378 567 27,842 29,354

110

Figure 29 displays the spread in the collected data on execution time. The execution time

for AT varies from 293 seconds to 571 seconds, for RTP we see a range from 80 seconds to

119 seconds, and for ATP the time is spread from 429 seconds to 773 seconds.

AT RTP ATP

Figure 29 Distribution – execution time – complete O2

AT’s distribution is close to normally distributed. The minimum value among the

observations was 293 seconds, the mean was 416 seconds, and the maximum value was 571

seconds. No outliers were observed.

The RTP distribution is spread from 80 to 119 seconds, having the mean at 95 seconds.

Nor this distribution had any outliers among the observations.

Finally, in the distribution of ATP, we see three peaks around 506, 614, and 717 seconds.

The mean was at 569 seconds, the minimum at 429 seconds, and the maximum at 773

seconds. No outliers were observed for this strategy.

Table 22 Inter quartile ranges – execution time

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 358 473 115 173 185 645

RTP 88 101 14 20 68 122

ATP 493 654 161 242 251 895

111

9.1.2 Descriptive Statistics for Effectiveness

This section describes main features of the collected data on effect, which regards mutation

score – the surrogate measure of effectiveness.

Table 23 Descriptive statistics for mutation score

Strategy Model Oracle Min Q1 Mean Median Q3 Max Std Dev N
Diff O1 by O2
(%)

LN2 complete O1 0.33 0.33 0.33 0.33 0.33 0.33 0.00 1 149.8

O2 0.13 0.13 0.13 0.13 0.13 0.13 ‐ 1

ATP complete O1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 30 36.9

O2 0.60 0.73 0.73 0.73 0.73 0.80 0.03 30

LN3 complete O1 0.93 0.93 0.93 0.93 0.93 0.93 0.00 1 27.2

O2 0.73 0.73 0.73 0.73 0.73 0.73 ‐ 1

AT complete O1 0.90 1.00 1.00 1.00 1.00 1.00 0.02 30 25.3

O2 0.73 0.80 0.80 0.80 0.80 0.80 0.02 30

RTP complete O1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 30 25.0

O2 0.80 0.80 0.80 0.80 0.80 0.80 0.00 30

LN4 complete O1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1 25.0

O2 0.80 0.80 0.80 0.80 0.80 0.80 ‐ 1

Table 23 displays the results for both oracles for each testing strategy. For all strategies,

oracle O1 obtained higher mutation score means than oracle O2. The greatest difference was

found when using LN2, followed by ATP. Rather similar differences were seen for LN3, AT,

RTP, and LN4.

The mutation-score means obtained by applying O1 and O2, displayed in Table 23, are

graphically visualized in Figure 30. We see that the complete test model combined with oracle

O1 resulted in an overall higher mutation score than by combining the complete test model

with oracle O2.

112

Figure 30 Mutation score means

Comparing Means

This section investigates the replications of AT, RTP, and ATP for the purpose of identifying

possible statistical variability in the collected data on mutation scores. Also for this set of

observations we hardly see any deviation from the mean (see Table 23). The histograms in

Figure 31 show quite consistent distributions of the mutation scores.

AT RTP ATP

Figure 31 Distributions mutation score complete O2

From the histogram of AT’s distribution, we see that 28 test suites achieved 0.8 as the

mutation score (killed 12/15 mutants) – the remaining two test suites only killed 11/15

0,000

0,200

0,400

0,600

0,800

1,000

1,200

LN2 ATP LN3 AT RTP LN4

O1

O2

113

mutants, and hence obtained a mutation score of 0.73). The 30 generated RTP test suites all

provided the same mutation score, 0.8. The last distribution, ATP, had some spread in the

results: three test suites killed 12/15 mutants (mutation score: 0.8), 25 test suites killed 11/15

mutants (mutation score: 0.73), whereas the final two test suites only killed 10/15 (mutation

score: 0.6) and 9/15 mutants (mutation score: 0.6).

Table 24 Inter quartile ranges – mutation time

Strategy Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 0.80 0.80 0.00 0.00 0.80 0.80

RTP 0.80 0.80 0.00 0.00 0.80 0.80

ATP 0.73 0.73 0.00 0.00 0.73 0.73

This means that there is little variation present in the collected data on mutation score for

each testing strategy.

The replicated data will be further tested for statistical significance between the three

strategies in the next section.

9.2 Statistical Tests

This section provides statistical tests on the data described by descriptive statistics in

Section 9.1. The paired Wilcoxon signed-rank test with a 0.99 confidence level was executed

on the collected data on preparation time, execution time and mutation score when applying

two different oracles on the complete model. Tests were run in R [127]. The actual tests are

listed in Appendix L. The purpose of the tests is to confirm/reject the hypothesis:

H0: There are no significant differences in cost and effectiveness when applying two

different oracles for each of AT, RTP, and ATP on the complete model.

Let us look at Table 25 for the Wilcoxon tests on preparation time. Results show a low p-

value (1.82e-06) for AT, indicating that there was a difference between the collected

preparation time for oracle O1 and O2.

 11
4

 T
he

 d
if

fe
re

nc
e

is
 o

nl
y

si
gn

if
ic

an
t,

ho
w

ev
er

,
at

 a
 9

5
pe

rc
en

t
le

ve
l.

F
ur

th
er

m
or

e,
 t

he
 r

es
ul

ts
 s

ho
w

 a
 m

ed
iu

m
 e

ff
ec

t
si

ze
;

th
e

pr
ob

ab
il

it
y

th
at

 a

pr
ep

ar
at

io
n

ti
m

e
is

 h
ig

he
r

w
he

n
ap

pl
yi

ng
 O

1
as

 c
om

pa
re

d
to

 O
2

is
 6

7
pe

rc
en

t.
F

or
 R

T
P

 o
n

th
e

ot
he

r
ha

nd
,

re
su

lt
s

ca
nn

ot
 b

e
sa

id
 t

o
be

si
gn

if
ic

an
tl

y
di

ff
er

en
t

(p
 =

 1
).

 P
re

pa
ra

ti
on

 t
im

es
 f

or
 O

1
an

d
O

2
in

 c
om

bi
na

ti
on

 w
it

h
A

T
P

 w
er

e
si

gn
if

ic
an

tl
y

di
ff

er
en

t
(p

 =
 0

.0
33

)
at

 a
 9

9
pe

rc
en

t

C
I.

 T
he

 Â
 v

al
ue

 te
ll

s
us

 th
at

 th
er

e
sh

ou
ld

 b
e

a
72

 p
er

ce
nt

 p
ro

ba
bi

li
ty

 o
f

ha
vi

ng
 a

 h
ig

he
r

pr
ep

ar
at

io
n

ti
m

e
w

he
n

ap
pl

yi
ng

 o
ra

cl
e

O
1

co
m

pa
re

d
to

O
2.

 T
ab

le
 2

5
P

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

pa
ri

n
g

or
ac

le
s

O
1

an
d

 O
2

–
p

re
p

ar
at

io
n

 t
im

e

H
0

S
tr

at
eg

y
M

od
el

M

ea
su

re

p-
va

lu
e

Â

E
ff

ec
t

S
iz

e
95

 %
 C

I
fo

r
Â

99

 %
 C

I
fo

r
Â

R

es
u

lt

S
ig

n
. D

if
f.

 (
C

I)

O
1

=
 O

2
A

T

C
om

pl
et

e
P

re
p.

 ti
m

e
1.

82
e-

06

0.
67

M

ed
iu

m

[0
.5

21
, 0

.7
94

]
[0

.4
74

, 0
.8

24
]

O
1>

O
2

Y
es

 (
95

%
)

O
1

=
 O

2
R

T
P

C

om
pl

et
e

P
re

p.
 ti

m
e

1
-

-
[N

A
, N

A
]

[N
A

, N
A

]
O

1=
O

2
N

o

O
1

=
 O

2
A

T
P

C

om
pl

et
e

P
re

p.
 ti

m
e

0.
03

3
0.

72

L
ar

ge

[0
.5

73
, 0

.8
35

]
[0

.5
24

, 0
.8

60
]

O
1>

O
2

Y
es

 (
99

%
)

 T
ab

le
 2

6
di

sp
la

ys
 th

e
te

st
 r

es
ul

ts
 f

or
 e

xe
cu

ti
on

 ti
m

e,
 c

om
pa

ri
ng

 o
ra

cl
e

O
1

an
d

O
2.

 S
ig

ni
fi

ca
nt

 d
if

fe
re

nc
es

 a
t a

 9
9

pe
rc

en
t l

ev
el

 w
er

e
fo

un
d

fo
r

A
T

 (
p

=
 1

.8
2e

-0
6)

, R
T

P
(p

 =
 1

.8
2e

-0
6)

, a
nd

 A
T

P
 (

p
=

 1
.8

6e
-0

9)
. T

he
 e

ff
ec

t
si

ze
 i

s
la

rg
e;

 i
n

fa
ct

 t
he

re
 i

s
a

10
0

pe
rc

en
t

ch
an

ce
 t

ha
t

th
e

ex
ec

ut
io

n

ti
m

e
fo

r
or

ac
le

 O
1

is
 la

rg
er

 th
an

 f
or

 o
ra

cl
e

O
2.

 T
ab

le
 2

6
P

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

pa
ri

n
g

or
ac

le
s

O
1

an
d

 O
2

–
ex

ec
u

ti
on

 t
im

e

H
0

S
tr

at
eg

y
M

od
el

M

ea
su

re

p-
va

lu
e

Â

E
ff

ec
t

S
iz

e
R

es
u

lt

S
ig

n
. D

if
f.

 (
C

I)

O
1

=
 O

2
A

T

C
om

pl
et

e
E

xe
c.

 ti
m

e
1.

82
e-

06

1
L

ar
ge

O

1>
O

2
Y

es
 (

99
%

)

O
1

=
 O

2
R

T
P

C

om
pl

et
e

E
xe

c.
 ti

m
e

1.
82

e-
06

1

L
ar

ge

O
1>

O
2

Y
es

 (
99

%
)

O
1

=
 O

2
A

T
P

C

om
pl

et
e

E
xe

c.
 ti

m
e

1.
86

e-
09

1

L
ar

ge

O
1>

O
2

Y
es

 (
99

%
)

11
5

 M
or

eo
ve

r,
 T

ab
le

 2
7

sh
ow

s
th

at
 th

er
e

is
 a

 1
00

 p
er

ce
nt

 c
ha

nc
e

th
at

 O
1

ki
ll

s
m

or
e

m
ut

an
ts

 th
an

 O
2.

 T
he

 d
if

fe
re

nc
e

is
 s

ig
ni

fi
ca

nt
 a

t a
 9

9
pe

rc
en

t

le
ve

l.

 T
ab

le
 2

7
P

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

pa
ri

n
g

or
ac

le
s

O
1

an
d

 O
2

–
m

ut
at

io
n

 s
co

re

H
0

S
tr

at
eg

y
M

od
el

M

ea
su

re

p-
va

lu
e

Â

E
ff

ec
t

S
iz

e
R

es
u

lt

S
ig

n
. D

if
f.

 (
C

I)

O
1

=
 O

2
A

T

C
om

pl
et

e
M

ut
. S

co
re

1.

08
e-

07

1
L

ar
ge

O

1>
O

2
Y

es
 (

99
%

)

O
1

=
 O

2
R

P
T

C

om
pl

et
e

M
ut

. S
co

re

4.
61

e-
08

1

L
ar

ge

O
1>

O
2

Y
es

 (
99

%
)

O
1

=
 O

2
A

T
P

C

om
pl

et
e

M
ut

. S
co

re

2.
76

e-
07

1

L
ar

ge

O
1>

O
2

Y
es

 (
99

%
)

A
s

w
e

ca
n

se
e

fr
om

 t
he

 s
ta

ti
st

ic
al

 t
es

t
re

su
lt

s,
 t

he
 n

ul
l

hy
po

th
es

is
 w

as
 r

ej
ec

te
d

fo
r

al
l

st
ra

te
gi

es
 e

xc
ep

t
fr

om
 R

T
P

 w
he

n
co

ns
id

er
in

g
th

e

pr
ep

ar
at

io
n

ti
m

e.
 T

ha
t

is
,

w
it

h
th

e
ex

ce
pt

io
n

of
 t

he
 p

re
pa

ra
ti

on
 t

im
e

fo
r

R
T

P
,

th
er

e
ar

e
si

gn
if

ic
an

t
di

ff
er

en
ce

s
in

 c
os

t
an

d
ef

fe
ct

iv
en

es
s

w
he

n

ap
pl

yi
ng

 tw
o

di
ff

er
en

t o
ra

cl
es

 f
or

 e
ac

h
of

 A
T

, R
T

P
 a

nd
 A

T
P

 o
n

th
e

co
m

pl
et

e
m

od
el

.

116

9.3 Cost-Effectiveness – Oracle O1 versus Oracle O2

This section regards the relation between cost and effectiveness for test suites combined with

each of the two oracles. Figure 32 graphically illustrates the relationship between cost and

effectiveness by displaying the surrogate measures for cost, test-suite size and time

(preparation and execution time), and the surrogate measure for effectiveness, namely

mutation score. Obviously, an ideal situation would have been low values for cost, yet high

mutation scores. This is not, however, the case for all combinations of coverage criterion and

oracle. In particular, we observe from Figure 32 that ATP combined with both oracles O1 and

O2 is positioned far away from the desired area. The results suggest that the mutation score is

negatively affected by all coverage criteria when using oracle O2.

One assumption to make is that a stronger coverage criterion should have less need for a

strong oracle as compared to weaker coverage criteria having less code exercised. As we see

from Figure 32, a strong oracle combined with a weaker coverage criterion clearly improves

the fault-detection ability.

117

Figure 32 Oracle O1 versus oracle O2 – mutation score, test-suite size and time

Figure 33–Figure 36 present the number of killed mutants over each of the surrogate

measure for cost. Even though the two oracles achieved rather similar cost-effectiveness when

cost is measured in preparation time, we observe that using oracle O1 resulted in an overall

higher cost-effectiveness as compared to oracle O2. The highest impact was seen for LN2,

followed by LN3. Larger differences were seen for cost-effectiveness when focusing on

execution time; oracle O2 achieved higher cost-effectiveness than oracle O1. When using test-

118

suite size as the surrogate measure of cost, we see that O1 obtained the highest cost-

effectiveness.

11
9

F
ig

u
re

 3
3

N
u

m
b

er
 o

f
m

u
ta

n
ts

 k
il

le
d

 o
ve

r
p

re
p

ar
at

io
n

 t
im

e
F

ig
u

re
 3

4
N

u
m

b
er

 o
f

m
u

ta
n

ts
 k

il
le

d
 o

ve
r

ex
ec

ut
io

n
 t

im
e

F
ig

u
re

 3
5

N
u

m
b

er
 o

f
m

u
ta

n
ts

 k
il

le
d

 o
ve

r
to

ta
l t

im
e

F
ig

u
re

 3
6

N
u

m
b

er
 o

f
m

u
ta

n
ts

 k
il

le
d

 o
ve

r
te

st
-s

u
it

e
si

ze
s

0

0
,0
0
5

0
,0
1

0
,0
1
5

0
,0
2

0
,0
2
5

0
,0
3

0
,0
3
5

0
,0
4

0
,0
4
5

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

0

0
,0
5

0
,1

0
,1
5

0
,2

0
,2
5

0
,3

0
,3
5

0
,4

0
,4
5

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

0

0
,0
0
5

0
,0
1

0
,0
1
5

0
,0
2

0
,0
2
5

0
,0
3

0
,0
3
5

0
,0
4

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

0

0
,0
5

0
,1

0
,1
5

0
,2

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

120

9.4 Analysis of Mutant Survival

This section seeks to identify which types of mutants could not be killed by the stronger

oracle O1 as compared to the weaker oracle O2.

Recall from Section 8.4 that by executing AT generated from the complete test model

using oracle O1, only one of 30 test suites (AT11) did not kill mutant M15. The remaining 29

test suites killed all of the 15 mutants. Switching the type of oracle to O2, two test suites

(AT11 and AT12) did not kill mutant M15. Moreover, three mutants (M2, M12, and M14)

were not killed by any test suites.

We also saw in Section 8.4 that the combination of ATP, the complete test model, and

oracle O1, that all mutants were killed by every test suite. This was not the case, however, for

oracle O2. Two mutants (M2, M14) were not killed by a single test suite. Three mutants (M7,

M8, and M11) were killed by 29 test suites. Mutant M13 was killed by two test suites (ATP1

and ATP13). Finally, mutant M12 was killed by only one test suite (ATP14).

Also for test suites generated from the complete test model following the RTP coverage

criterion in combination with oracle O1, results showed that all mutants were killed by each

of the 30 test suites. By using oracle O2 on the other hand, the three mutants M2, M12, and

M14 were not killed by any of the test suites.

As we now may have become aware of, LN2 did not provide high mutation scores. The

cost on the other hand, was very low. Mutants M3–M11 and M15 were not killed by this

combination of coverage criterion, test model, and oracle. Even worse results were obtained

by applying oracle O2 to LN2; only mutants M1 and M13 were killed.

Bringing the test sequences one step deeper as compared to LN2, the combination of LN3,

the complete test model and oracle O1 killed all mutants but M15. By applying oracle O2, the

mutation score was reduced; M2, M12, and M14, in addition to M15 survived the tests.

Last, by using oracle O1 on tests generated from the complete test model following LN4

(i.e., four levels out from each edge of the initial state), no mutants survived. Again, by

applying oracle O2, the mutation score was reduced; mutants M2, M12, and M14 were not

killed.

To summarize, mutants M2, M12, and M14 were not killed by any of the six coverage

criteria when using oracle O2. Let us look at these three mutants in particular. In mutant M2,

the seeded fault regards an incorrect state invariant. This may explain why M2 was not killed

by any coverage criteria when using the state-pointer oracle (i.e., O2). Regarding M12, the

121

seeded fault was erroneous on-entry behavior for a composite state, and the fault seeded in

M14 was missing on-entry behavior. Checking only the state pointer will not detect such

deviations from the specification.

9.5 Related Work

This section discusses the performance of the two oracles O1 and O2, and positions the results

within existing work. Recall that O2 only evaluated the current state pointer as compared to

O1 which also examined the expected state invariant (i.e., the abstract state).

As shown in Chapter 3, very few studies have compared oracles in the context of SBT; in

fact, the study of Briand et al. [12] appears to be one of a kind in empirical comparison of

oracles within this particular context. Although not being the only focus of their study, results

revealed statistical significant differences between the two oracle strategies. Not surprisingly,

they found that the precise oracle had stronger fault-detection ability than the state-invariant

oracle. Moreover, explained by the fact that less attributes are checked, the state-invariant

oracle required less resources during development and execution. Results varied from an

improvement in fault detection from 11–72 percent for the original RTP strategy. Looking at

the weaker form of RTP, cost was increased as little as just a few percent up to 300 percent.

Staats et al. [86, 88] explored how the selection of variables included in an oracle

influences the effectiveness of the testing process. They proposed a method for supporting test

oracle creation by automatically selecting oracle data (the set of variables monitored during

testing). The purpose was to maximize the fault finding potential of the testing process with

respect to the cost. Mutation analysis was used to rank variables in terms of fault-finding

effectiveness. Experimental results from four commercial sub-systems from the civil avionics

domain suggested that the approach may be cost-effective for producing small, effective

oracle data. More precisely, they found improvements as high as 145.8 percent by using the

new method as compared to monitoring all output variables.

In other fields, there are several studies that address this aspect, e.g., GUI testing [90, 91]

where results revealed that employing expensive oracles leads to the detection of more faults

using relatively few test cases. The importance of the test oracle’s role in determining the cost

and effectiveness of a testing strategy was demonstrated by Xie and Memon [91]. They found

two interesting aspects of a test oracle in the context of GUI-based software – the expected

output and the oracle procedure comparing expected outputs with actual outputs. They

described a technique to specify different types of oracles by varying the level of detail in the

122

expected output and changing the oracle procedure. Results from an experiment comparing

six oracles showed that the oracle has an important impact on the fault-detection ability. Weak

oracles detect fewer faults. They also found that the best cost-benefit ratio is achieved by

applying a stronger oracle at the end a test case execution. The use of thorough and

frequently-executing test oracles can compensate for not having long test cases.

12
3

 T
ab

le
 2

8
Su

m
m

ar
y

of
 r

el
at

ed
 w

or
k

R
ef

er
en

ce

O
bj

ec
ti

ve

R
es

ea
rc

h

M
et

h
od

C
on

te
xt

S

U
T

O

ra
cl

e
A

p
p

li
ed

T
es

ti
n

g

st
ra

te
gy

(i
es

)

N
o

of

m
u

ta
n

ts

R
es

u
lt

s

T
hi

s
st

ud
y

T
o

id
en

ti
fy

 th
e

in
fl

ue
nc

e
of

 th
e

te
st

 o
ra

cl
e

on
 th

e

co
st

-

ef
fe

ct
iv

en
es

s
of

SB
T

 b
y

em
pi

ri
ca

ll
y

ev
al

ua
ti

ng
 tw

o

or
ac

le
s.

C
as

e
st

ud
y

L
ab

or
at

or
y

(R
es

ea
rc

he
r)

In
du

st
ri

al

S
ta

te
 in

va
ri

an
t v

er
su

s

st
at

e
po

in
te

r

A
T

, R
T

P
, A

T
P

,

L
N

2,
 L

N
3,

 L
N

4

26

Fo
r

al
l s

tr
at

eg
ie

s,
 th

e
st

at
e-

in
va

ri
an

t

or
ac

le
 (

O
1)

 o
bt

ai
ne

d
hi

gh
er

 m
ut

at
io

n

sc
or

e
m

ea
ns

 th
an

 th
e

st
at

e
po

in
te

r

(O
2)

. R
es

ul
ts

 s
ho

w
 th

at
 w

he
n

or
ac

le

O
1

w
as

 u
se

d,
 s

ig
ni

fi
ca

nt
ly

 m
or

e
ti

m
e

w
as

 s
pe

nt
 o

n
ex

ec
ut

io
n

as
 c

om
pa

re
d

to

or
ac

le
 O

2.
 S

ig
ni

fi
ca

nt
 d

if
fe

re
nc

es
 w

er
e

fo
un

d
in

 a
ll

 d
at

a
co

ll
ec

te
d

on
 m

ut
at

io
n

sc
or

e;
 O

1
al

w
ay

s
pe

rf
or

m
ed

 b
et

te
r

th
an

 O
2.

B
ri

an
d

et
 a

l.

[1
2]

T
o

em
pi

ri
ca

ll
y

in
ve

st
ig

at
e

th
e

co
st

-

ef
fe

ct
iv

en
es

s
of

S
B

T
.

T
hr

ee

co
nt

ro
ll

ed

ex
pe

ri
m

en
ts

L
ab

or
at

or
y

(S
tu

de
nt

s)

A
rt

if
ic

ia
l

P
re

ci
se

 v
er

su
s

st
at

e

in
va

ri
an

t

R
T

P
(w

ea
k)

,

R
T

P

(2
4,

 2
5)

,

42
, 8

1

R
es

ul
ts

 s
ug

ge
st

 th
at

 th
e

st
ro

ng
er

pr
ec

is
e

or
ac

le
 is

 m
or

e
ef

fe
ct

iv
e

th
an

th
e

st
at

e-
in

va
ri

an
t o

ra
cl

e.
 N

ot
e

ho
w

ev
er

, t
ha

t t
he

 in
cr

ea
se

d
fa

ul
t-

de
te

ct
io

n
m

ay
 c

om
e

at
 a

 s
ig

ni
fi

ca
nt

ex
pe

ns
e

(t
es

t d
ri

ve
r

si
ze

).

St
aa

ts
 e

t a
l.

[8
6,

 8
8]

T
o

su
pp

or
t t

he

cr
ea

ti
on

 o
f

te
st

or
ac

le
s

by

au
to

m
at

ic
al

ly

se
le

ct
in

g
or

ac
le

E
xp

er
im

en
t

L
ab

or
at

or
y

(R
es

ea
rc

he
r)

In
du

st
ri

al

(4
 in

du
st

ri
al

su
bs

ys
te

m
s)

W
hi

ch
 in

te
rn

al
 v

ar
ia

bl
es

to
 b

e
in

cl
ud

ed
 in

 a
n

or
ac

le
 w

er
e

ra
nd

om
ly

se
le

ct
ed

.

B
ra

nc
h

co
ve

ra
ge

,

M
C

/D
C

co
ve

ra
ge

. T
he

y

ra
nd

om
ly

20
0

R
es

ul
ts

 d
em

on
st

ra
te

 th
at

 th
e

pr
op

os
ed

m
et

ho
d

m
ay

 b
e

a
co

st
-e

ff
ec

ti
ve

ap
pr

oa
ch

 f
or

 p
ro

du
ci

ng
 s

m
al

l,

ef
fe

ct
iv

e
or

ac
le

 d
at

a,
 w

it
h

fa
ul

t f
in

di
ng

im
pr

ov
em

en
ts

 o
ve

r
cu

rr
en

t i
nd

us
tr

ia
l

 12
4

da
ta

 th
at

im
pr

ov
es

 f
au

lt
-

de
te

ct
io

n.

T
he

y
al

so
 g

en
er

at
ed

 a
ll

or
ac

le
s

of
 s

iz
e

1
(i

.e
.,

ob
se

rv
in

g
1

va
ri

ab
le

).

ge
ne

ra
te

d
36

su
bs

et
s

of
 th

e

ra
nd

om
iz

ed
 te

st

su
it

e,
 w

it
h

su
bs

et
s

co
nt

ai
ni

ng
 1

0
to

1,
00

0
te

st
s

fr
om

th
e

or
ig

in
al

 te
st

su
it

e.

be
st

 p
ra

ct
ic

e
of

 u
p

to
 1

45
.8

%

ob
se

rv
ed

.

X
ie

 e
t a

l.
[9

1]

T
o

in
ve

st
ig

at
e

th
e

im
po

rt
an

ce
 o

f

th
e

or
ac

le
 r

el
at

ed

to
 e

ff
ec

ti
ve

ne
ss

an
d

co
st

 o
f

th
e

te
st

in
g

pr
oc

es
s.

E
xp

er
im

en
t

L
ab

or
at

or
y

(R
es

ea
rc

he
r)

A
rt

if
ic

ia
l

(4
 s

of
tw

ar
e

sy
st

em
s

de
ve

lo
pe

d

by
 s

tu
de

nt
s)

Si
x

in
st

an
ce

s
of

 te
st

or
ac

le
s

w
er

e
ge

ne
ra

te
d

by
 v

ar
yi

ng
 th

e
le

ve
l o

f

de
ta

il
 o

f
or

ac
le

in
fo

rm
at

io
n

(i
.e

.,

ex
pe

ct
ed

 o
ut

pu
t)

 a
nd

or
ac

le
 p

ro
ce

du
re

 (
i.e

.,

th
e

pr
oc

ed
ur

e
th

at

co
m

pa
re

s
or

ac
le

in
fo

rm
at

io
n

w
ith

 th
e

ac
tu

al
 o

ut
pu

t)
.

N
/A

60
0

te
st

 c
as

es

(s
pl

it
 in

 g
ro

up
s

of
 3

0)

10
0

fa
ul

ty

ve
rs

io
ns

of
 e

ac
h

sy
st

em

R
es

ul
ts

 s
ho

w
ed

 th
at

 th
e

te
st

 o
ra

cl
es

pl
ay

 a
n

im
po

rt
an

t r
ol

e
in

 d
et

er
m

in
in

g

th
e

ef
fe

ct
iv

en
es

s
an

d
co

st
 o

f
th

e

te
st

in
g

pr
oc

es
s.

(1
)

T
es

t c
as

es
 s

ig
ni

fi
ca

nt
ly

 lo
se

 th
ei

r

fa
ul

t d
et

ec
ti

on
 a

bi
li

ty
 w

he
n

us
in

g

“w
ea

k”
 te

st
 o

ra
cl

es
; (

2)
 in

 m
an

y
ca

se
s,

in
vo

ki
ng

 a
 “

th
or

ou
gh

”
or

ac
le

 a
t t

he

en
d

of
 te

st
 c

as
e

ex
ec

ut
io

n
yi

el
ds

 th
e

be
st

 c
os

t-
be

ne
fi

t r
at

io
; (

3)
 c

er
ta

in
 te

st

ca
se

s
de

te
ct

 f
au

lts
 o

nl
y

if
 th

e
or

ac
le

 is

in
vo

ke
d

du
ri

ng
 a

 s
m

al
l “

w
in

do
w

 o
f

op
po

rt
un

it
y”

 d
ur

in
g

te
st

 e
xe

cu
ti

on
;

an
d

(4
)

us
in

g
th

or
ou

gh
 a

nd
 f

re
qu

en
tl

y-

ex
ec

ut
in

g
te

st
 o

ra
cl

es
 c

an
 c

om
pe

ns
at

e

fo
r

no
t h

av
in

g
lo

ng
 te

st
 c

as
es

.

125

9.6 Discussion

As we now have seen, although little in quantity, existing research suggest that the applied

oracle in testing has a large influence on the fault-detection ability [91, 86, 88, 12]. Table 28

summarizes the related work, which overall supports the findings of this study. For all

strategies, the stronger oracle obtained significantly higher mutation scores than what were

obtained by the weaker oracle.

Only the study of Briand et al. [12] is more precisely comparable as they also studied one

of the coverage criteria in focus of this study, namely the RPT. Results for RTP indicated a 25

percent increase in fault-detection when using the strongest oracle. The study of Briand et al.

differs from this study in the following matters: (1) The two oracles that were compared are

not exactly the same. Both studies involve the state-invariant oracle. Nevertheless, Briand et

al. compared the state-invariant oracle to a precise oracle; in this study, an oracle weaker than

the state-invariant oracle was used as comparison. (2) Furthermore, in contrast to this study,

the study of Briand et al. did not provide collected data on preparation time. (3) Briand et al.

used students to perform the testing; in this study, the testing was carried out by the author.

(4) The test suites were automatically generated in this study, but manually generated in the

study of Briand et al. Finally, (5) the SUT was significantly larger in this study. Although

Briand et al. [12] found great variations in the results, both studies suggest improvements in

the fault-detection when using a stronger oracle – yet at a higher cost. For RTP, this regarded

both preparation and execution time.

A common perception when it comes to oracles is that the better the oracle, the more

expensive it is to use. However, there are no answers to the relation between preparation costs

versus execution costs in terms of which parts of the process that takes more time when using

a more complex oracle. In this case study, we saw that for both oracles, AT, RTP and LN4

performed best in terms of mutation score. Of those three strategies, RTP was the least

expensive followed by LN4 and then AT. ATP was as effective as AT, RTP, and LN4, but

only when applying O1; ATP in combination with O2 achieved a slightly lower mutation

score. Note, however, that ATP was the most expensive strategy. Although a slightly lower

mutation score was obtained for O1, LN3 also achieved a good cost-effectiveness – in

particular when emphasizing cost. Finally, LN2 not only appeared to be the least expensive

but also the weakest strategy from a fault-detection perspective. The most cost-effective

126

strategy in this case may seem to be RTP combined with oracle O1. Note, however, that LN3

combined with O1 obtained cost-effectiveness comparable to RTP.

9.7 Summary

In this chapter, we have seen results on how two different oracles influence the cost-

effectiveness of state-based testing when using the strategies all transitions (AT), all round-

trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3)

and paths of length 4 (LN4) on a detailed state-based test model.

Descriptive statistics for the obtained results on cost and effectiveness was presented in

Section 9.1. As changing the oracle will not have impact on the test-suite size, the test-suite

size measure was excluded from this particular research question; sizes are determined by the

testing strategies and the system specification, more precisely the number of transitions in the

state-machine diagram. This leaves us with time as the surrogate measure of cost. Three of the

six testing strategies spent slightly more time on preparing the test suites when combined with

oracle O2 than with oracle O1. This regards LN3, RTP, and LN4. No difference between the

oracles regarding preparation time was seen for LN2. Oracle O1 spent 7.5 percent more time

than O2 for AT. Only a small relative difference (0.6 percent) was seen for ATP; O1 required

more time on preparing the test suites as compared to O2.

For all strategies, oracle O1 obtained higher mutation score means than oracle O2. The

greatest difference was found in results for LN2 (149.8 percent difference), followed by ATP

(36.9 percent difference). Rather similar differences were seen among LN3 (27.2 percent), AT

(25.3 percent), RTP (25 percent), and LN4 (25 percent).

Section 9.2 regarded statistical tests. The paired Wilcoxon signed-rank test was applied to

the replicated data; that is, for AT, RTP, and ATP. Results show that when oracle O1 was

used, significantly more time was spent on execution as compared to oracle O2. Significant

differences were found in all data collected on mutation score; O1 always performed better

than O2.

Overall, varying the oracle shows that there were significant differences in the preparation

time for AT (α = 0.05) and ATP (α = 0.01); O1 spent more time than O2 on preparing the test

suites. For RTP, on the other hand, no significant difference between the two oracles was

found. Execution time was significantly higher when applying oracle O1. This pays off,

however, in that O1 consistently achieves a higher mutation score.

127

For both oracles, AT, RTP and LN4 performed best in terms of mutation score. Of those

three strategies, RTP was the least expensive followed by LN4 and then AT. ATP was as

effective as AT, RTP, and LN4, but only when applying O1. ATP in combination with O2

achieved a slightly lower mutation score. Note, however, that ATP was the most expensive

strategy. Although a slightly lower mutation score was obtained for O1, LN3 also achieved a

good cost-effectiveness – in particular when looking at the cost. Finally, LN2 not only

appeared to be the least expensive but also the weakest strategy from a fault-detection

perspective.

As we have seen, the combinations of coverage criterion and oracle significantly impact

the cost and fault-detection effectiveness of the testing strategies in different directions, in

particular the execution cost. We found that the most cost-effective strategy in this study was

RTP combined with oracle O1. Note, however, that LN3 combined with O1 obtained cost-

effectiveness comparable to RTP.

Conclusions: Minor differences in preparation time were observed when applying

oracle O2. Execution time, on the other hand, was significantly lower when applying

oracle O2 for all six strategies. The large cost savings when using O2, however, had a

negative impact on the effectiveness.

128

10 Case Study 3 – What is the Influence of the Test Model Abstraction Level on the

Cost-Effectiveness?

In the two previous chapters, we have seen how six coverage criteria compares when applied

to a detailed test model combined with two oracles of different strengths. The focus in this

case study will be directed towards the test model itself with respect to the presence of details.

This third case study seeks to answer how a less detailed test model as input to the test case

generation will affect the cost-effectiveness:

RQ3: What is the influence of the test model abstraction level on the cost-effectiveness?

Results are collected by generating test suites and running tests on a less detailed test

model as compared to the complete model used in Chapter 8 and Chapter 9, and organized

similar to the structure of Chapter 9.

Recall that the main difference between the two test models is that the new test model,

which will be investigated in this section, was abstracted one level up (i.e., the contents of

every composite state were removed) – thereby the name, the abstract model. For more

details about the test models, the reader is referred to Section 7.1.

Section 10.1 provides descriptive statistics regarding the impact of varying the oracle on

cost and effectiveness, respectively. Statistical tests are presented in Section 10.2. Descriptive

statistics from Chapter 8 and Chapter 9 are restated in this chapter for the purpose of making

comparisons between the two test models and oracles. Section 10.3 presents an analysis of

cost versus effectiveness. The survival of mutants is addressed in Section 10.4. Obtained

results are further discussed towards existing research in Section 10.5. Furthermore, Section

10.6 discusses results from related work against results from this study. Finally, the obtained

results are summarized in Section 10.7.

10.1 Descriptive Statistics

10.1.1 Descriptive Statistics for Cost

This section presents main features of the collected data on cost – the test-suite sizes and the

time spent on preparing and executing these test suites for the abstract test model.

129

10.1.1.1 Test-Suite Size

Abstracting the test model one level, means that both sub states and the transitions between

these sub states are removed from the state-machine diagram. As a consequence, the test-suite

sizes are reduced.

Consider Table 29 which lists the test-suite sizes for the six testing strategies; both for the

complete and the abstract test model, for oracles O1 and O2. Note that, in this chapter, test

suite sizes are separated for O1 and O2 because we observed infeasible test cases in the

abstract test suites. Removing the sub states made controlling the externally dependent

variables harder. This led to infeasible test cases in the abstract test suites. The number of

infeasible test cases observed for oracle O1 when applied with test suites generated from the

abstract test model is higher than the suggested allowance (which is 10–15 percent for

reduced coverage according to Binder [31]) – one exception is LN2 with 8 percent infeasible

test cases. For oracle O2, the number of infeasible test cases was zero or less than 2 percent.

We see from Table 29 that no differences were observed between complete test suites

when applied with O1 and O2. We also see that the abstract test model in general resulted in

smaller test suites as compared to test suites generated from the complete test model. Figures

vary from 14.8 percent to 89.8 percent smaller test suites for LN2 and AT, respectively, when

generated from the complete model as compared to the abstract model when using O1. Using

O2 instead resulted in a spread from 7.4 percent (LN2) to 80.1 percent (AT).

130

Table 29 Test-suite sizes - complete and abstract test model – oracles O1 and O2

Coverage
Criterion Test Model Oracle

Test‐Suite
Size
Total

Test‐Suite
Size
Feasible

Infeasible
Test Cases
(%)

Diff O1
by O2 (%)

Diff
Abstract
by
Complete
O1 (%)

Diff
Abstract
by
Complete
O2 (%)

LN2 Complete O1 27 27 0 0 ‐14.8 ‐7.4

O2 27 27 0

Abstract O1 25 23 8.0 ‐8.0

O2 25 25 0

LN3 Complete O1 143 143 0 0 ‐29.4 ‐14.0

O2 143 143 0

Abstract O1 123 101 17.9 ‐17.9

O2 123 123 0

LN4 Complete O1 764 764 0 0 ‐45.7 ‐23.6

O2 764 764 0

Abstract O1 585 415 29.1 ‐28.9

O2 585 584 0.2

AT Complete O1 166 166 0 0 ‐89.8 ‐80.1

O2 166 166 0

Abstract O1 33 17 48.5 ‐48.5

O2 33 33 0

RTP Complete O1 299 299 0.0 0 ‐77.9 ‐70.2

O2 299 299 0.0

Abstract O1 89 66 25.8 ‐25.8

O2 89 89 0

ATP Complete O1 1425 1425 0 0 ‐86.5 ‐79.2

O2 1425 1425 0

Abstract O1 301 192 36.2 ‐35.1

O2 301 296 1.7

10.1.1.2 Time

This section presents obtained timing results for the complete and abstract test model when

combined with oracles O1 and O2. Table 30 and Table 31 show the descriptive statistics for

preparation and execution time, respectively. Recall that time was measured in seconds.

13
1

 T
ab

le
 3

0
 D

es
cr

ip
ti

ve
 s

ta
ti

st
ic

s
–

p
re

p
ar

at
io

n
 t

im
e

Co
ve
ra
ge

Cr
it
er
io
n

O
ra
cl
e

M
od

el
M
in

(s
ec
.)

Q
1

(s
ec
.)

M
ea
n

(s
ec
.)

M
ed

ia
n

(s
ec
.)

Q
3

(s
ec
.)

M
ax

(s
ec
.)

St
 D
ev

N
D
iff
 a
bs
tr
ac
t
by

co
m
pl
et
e
(%
)

D
iff
 a
bs
tr
ac
t

O
2
by

 O
1
(%
)

D
iff
 c
om

pl
et
e

O
2
by

 O
1
(%
)

A
T

O
1

a
b
s
tr
a
c
t

1
7
3

1
8
0

2
2
2

1
9
2

2
1
0

9
7
2

1
4
3

3
0

‐9
4
.5

‐3
.8

‐7
.0

c
o
m
p
le
te

2
,5
0
6

2
,7
6
3

3
,9
9
5

3
,0
1
3

3
,6
6
5

1
5
,9
3
9

3
,2
6
4

3
0

O
2

a
b
s
tr
a
c
t

1
6
8

1
7
5

2
1
3

1
8
5

2
0
2

9
6
5

1
4
3

3
0

‐9
4
.3

c
o
m
p
le
te

2
,2
4
9

2
,4
7
4

3
,7
1
5

2
,7
6
6

3
,3
9
4

1
5
,6
6
3

3
,2
8
0

3
0

R
T
P

O
1

a
b
s
tr
a
c
t

1
8
2

1
8
4

2
0
4

1
9
3

2
1
0

3
0
9

3
0

3
0

‐6
1
.6

‐4
.7

0
.2

c
o
m
p
le
te

4
8
4

5
1
2

5
3
1

5
2
5

5
4
5

6
0
7

2
8

3
0

O
2

a
b
s
tr
a
c
t

1
7
9

1
8
4

1
9
4

1
8
9

2
0
0

2
5
0

1
7

3
0

‐6
3
.5

c
o
m
p
le
te

4
7
6

4
9
2

5
3
3

5
2
3

5
5
9

6
7
5

5
1

3
0

A
T
P

O
1

a
b
s
tr
a
c
t

1
,0
8
9

1
,1
0
5

1
,1
1
5

1
,1
1
1

1
,1
2
3

1
,1
5
0

1
4

3
0

‐9
6
.1

2
.3

‐0
.6

c
o
m
p
le
te

2
8
,3
7
7

2
8
,5
7
6

2
8
,8
1
9

2
8
,7
9
7

2
9
,0
2
8

2
9
,3
9
8

2
7
3

3
0

O
2

a
b
s
tr
a
c
t

1
,0
8
8

1
,0
9
7

1
,1
4
1

1
,1
1
6

1
,1
6
1

1
,3
6
8

6
4

3
0

‐9
6
.0

c
o
m
p
le
te

2
8
,3
0
5

2
8
,4
0
9

2
8
,6
4
1

2
8
,5
0
4

2
8
,7
8
7

2
9
,5
4
8

3
4
5

3
0

LN
2

O
1

a
b
s
tr
a
c
t

8
3

8
3

8
3

8
3

8
3

8
3

‐
1

‐3
4
.1

1
.2

0
.0

c
o
m
p
le
te

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

‐
1

O
2

a
b
s
tr
a
c
t

8
4

8
4

8
4

8
4

8
4

8
4

‐
1

‐3
3
.3

c
o
m
p
le
te

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

1
2
6

‐
1

LN
3

O
1

a
b
s
tr
a
c
t

3
1
5

3
1
5

3
1
5

3
1
5

3
1
5

3
1
5

‐
1

‐3
8
.1

‐1
.9

1
.4

c
o
m
p
le
te

5
0
9

5
0
9

5
0
9

5
0
9

5
0
9

5
0
9

‐
1

O
2

a
b
s
tr
a
c
t

3
0
9

3
0
9

3
0
9

3
0
9

3
0
9

3
0
9

‐
1

‐4
0
.1

c
o
m
p
le
te

5
1
6

5
1
6

5
1
6

5
1
6

5
1
6

5
1
6

‐
1

LN
4

O
1

a
b
s
tr
a
c
t

3
,9
4
3

3
,9
4
3

3
,9
4
3

3
,9
4
3

3
,9
4
3

3
,9
4
3

‐
1

‐2
5
.5

1
.3

3
.8

c
o
m
p
le
te

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

5
,2
9
5

‐
1

O
2

a
b
s
tr
a
c
t

3
,9
9
3

3
,9
9
3

3
,9
9
3

3
,9
9
3

3
,9
9
3

3
,9
9
3

‐
1

‐2
7
.3

c
o
m
p
le
te

5
,4
9
4

5
,4
9
4

5
,4
9
4

5
,4
9
4

5
,4
9
4

5
,4
9
4

‐
1

 13
2

T
ab

le
 3

1
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s
–

E
xe

cu
ti

on
 T

im
e

Co
ve
ra
ge

Cr
it
er
io
n

O
ra
cl
e

M
od

el
M
in

(s
ec
.)

Q
1

(s
ec
.)

M
ea
n

(s
ec
.)

M
ed

ia
n

(s
ec
.)

Q
3

(s
ec
.)

M
ax

(s
ec
.)

St
 D
ev

N
D
iff
 a
bs
tr
ac
t
by

co
m
pl
et
e
(%
)

D
iff
 a
bs
tr
ac
t

O
2
by

 O
1
(%
)

D
iff
 c
om

pl
et
e

O
2
by

 O
1
(%
)

A
T

O
1

a
b
s
tr
a
c
t

2
9

4
2

6
4

5
7

8
6

1
2
9

2
7

3
0

‐9
7
.4

‐7
3
.8

‐8
3
.1

c
o
m
p
le
te

1
,7
6
5

2
,1
0
8

2
,4
5
5

2
,3
7
7

2
,7
8
5

3
,6
1
7

4
6
9

3
0

O
2

a
b
s
tr
a
c
t

9
1
2

1
7

1
6

1
9

3
7

7
3
0

‐9
5
.9

c
o
m
p
le
te

2
9
3

3
5
8

4
1
5

4
1
7

4
7
3

5
7
1

7
1

3
0

R
T
P

O
1

a
b
s
tr
a
c
t

5
2

6
2

7
2

7
4

7
6

1
0
0

1
1

3
0

‐8
5
.2

‐6
9
.4

‐8
0
.5

c
o
m
p
le
te

3
4
1

4
6
0

4
8
9

5
0
4

5
2
4

6
0
7

5
4

3
0

O
2

a
b
s
tr
a
c
t

1
4

1
9

2
2

2
1

2
3

4
7

7
3
0

‐7
6
.9

c
o
m
p
le
te

8
0

8
8

9
5

9
7

1
0
1

1
1
9

9
3
0

A
T
P

O
1

a
b
s
tr
a
c
t

2
1
5

3
4
2

3
9
5

3
9
8

4
4
8

5
2
8

7
5

3
0

‐8
8
.2

‐7
0
.6

‐8
3
.0

c
o
m
p
le
te

2
,6
0
7

2
,9
7
2

3
,3
4
1

3
,3
8
1

3
,6
6
9

3
,9
7
8

4
2
9

3
0

O
2

a
b
s
tr
a
c
t

6
5

1
0
0

1
1
6

1
1
7

1
2
7

1
7
7

2
2

3
0

‐7
9
.6

c
o
m
p
le
te

4
2
9

4
9
3

5
6
9

5
4
7

6
5
4

7
7
3

1
0
1

3
0

LN
2

O
1

a
b
s
tr
a
c
t

1
6

1
6

1
6

1
6

1
6

1
6

‐
1

‐1
1
.1

‐6
8
.8

‐7
2
.2

c
o
m
p
le
te

1
8

1
8

1
8

1
8

1
8

1
8

‐
1

O
2

a
b
s
tr
a
c
t

5
5

5
5

5
5

‐
1

0
.0

c
o
m
p
le
te

5
5

5
5

5
5

‐
1

LN
3

O
1

a
b
s
tr
a
c
t

8
5

8
5

8
5

8
5

8
5

8
5

‐
1

‐3
7
.5

‐6
8
.2

‐7
9
.4

c
o
m
p
le
te

1
3
6

1
3
6

1
3
6

1
3
6

1
3
6

1
3
6

‐
1

O
2

a
b
s
tr
a
c
t

2
7

2
7

2
7

2
7

2
7

2
7

‐
1

‐3
.6

c
o
m
p
le
te

2
8

2
8

2
8

2
8

2
8

2
8

‐
1

LN
4

O
1

a
b
s
tr
a
c
t

6
6
7

6
6
7

6
6
7

6
6
7

6
6
7

6
6
7

‐
1

‐2
1
.5

‐7
2
.6

‐7
9
.6

c
o
m
p
le
te

8
5
0

8
5
0

8
5
0

8
5
0

8
5
0

8
5
0

‐
1

O
2

a
b
s
tr
a
c
t

1
8
3

1
8
3

1
8
3

1
8
3

1
8
3

1
8
3

‐
1

5
.8

c
o
m
p
le
te

1
7
3

1
7
3

1
7
3

1
7
3

1
7
3

1
7
3

‐
1

133

Starting with the preparation time, observations show that it takes significantly shorter

time for all strategies to prepare test suites from the abstract test model as compared to the

complete test model. The greatest difference was seen for ATP (96 percent for both O1 and

O2), closely followed by AT (95 percent for O1 and 94 percent for O2). RTP was reduced by

62 percent for O1 and 64 percent for O2. Also LN2 and LN3 were prepared in less time from

the abstract model – LN2: 34 percent for O1 and 33 percent for O2; LN3: 38 percent for O1

and 40 percent for O2. Slightly less difference was seen in the results for LN4: 26 percent and

27 percent for O1 and O2.

Studying the execution time in Table 31, we see a similar trend with great differences

between the times spent on executing the test suites generated from the abstract model as

compared to the complete model. The largest reduction was achieved by AT (97 percent for

O1 and 96 percent for O2), followed by ATP (88 percent for O1 and 80 percent for O2), and

RTP (85 percent for O1 and 77 percent for O2). When O1 was combined with the abstract

model for LN2, LN3, and LN4, results show that the preparation times were reduced by 11

percent, 38 percent, and 22 percent, respectively. No difference was found between the

abstract and complete model when applying O2 to LN2. A minor reduction was found for

LN3 (4 percent). The execution time for LN4, on the other hand, was increased by 6 percent.

Regarding LN2, LN3, and LN4, we see an overall smaller difference between the two

models. This, however, can be explained by the first surrogate measure of cost, test-suite size.

Recall from Table 29 that significantly smaller test-suite sizes were found for the abstract

model versus the complete model for LN2, LN3, and LN4 contra AT, RTP, and ATP. Thus,

lower differences in execution and preparation time would be expected results.

Comparing the two oracles applied to the abstract test model provided rather consistent

results to what was found when applying the two oracles to the complete test model.

Differences in preparation time for the abstract model was in the range from -5 percent to 2

percent compared to -7 percent to 4 percent for the complete model. Regarding execution

time, we see a similar correlation between the abstract and the complete model: for the

abstract model, test suites combined with O2 spent from 68 percent to 74 percent less time on

execution compared to O1, whereas test suites generated from the complete model combined

with O2 spent 72 percent to 83 percent less time on execution compared to O1.

134

Figure 37 Preparation and execution time in seconds

Figure 37 displays a graphical representation of the means. The purpose of this figure is

only to give a perspective of the relationship between the positioning of each strategy and

oracle. Numbers can be found in Appendix G (complete model, oracle O1), Appendix H

(complete model, oracle O2), Appendix I (abstract model, oracle O1), and Appendix J

(abstract model, oracle O2). The figure shows a significant increase in preparation time for

ATP combined with the complete test model and oracles O1 and O2. Other peaks are found

for the four LN4 combinations, and for AT in combination with the complete test model and

oracles O1 and O2.

The Means of AT, RTP, and ATP

We will now investigate the distributions of the observations used to generate the means for

AT, RTP, and ATP. Figure 38 presents the performance of AT, RTP, and ATP regarding

preparation time for oracle O1 when replicated 30 times using different test trees.

0,0

5000,0

10000,0

15000,0

20000,0

25000,0

30000,0

35000,0

Execution time

Preparation time

135

AT RTP ATP

Figure 38 Distribution – preparation time – abstract O1

Let us start with the distribution of AT. The histogram and box plot show that 29/30

observations were found between 173 to 246 seconds. Being the main reason for the presence

of a high standard deviation, one outlier was found at 972 seconds.

The distribution of RTP is skewed to the left. Two outliers were observed at 271 and 309

seconds. The minimum time spent on preparation was 182 seconds, the mean was 204

seconds, whereas the maximum value was found at 309 seconds.

Closer to the shape of a normal distribution, ATP is spread from 1,089 seconds to 1,150

seconds, having its mean at 1,115 seconds.

The means and medians of the AT and RTP distributions were rather closely located – the

means were slightly higher than the medians due to the few outliers in the upper range. The

median of AT was 13.5 percent lower than its mean; the median of RTP was 5.4 percent

lower than its mean. ATP, on the other hand only differed with 0.36 percent.

Table 32 Inter quartile ranges – preparation time – abstract O1

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 180 210 31 46 133 257

RTP 184 210 26 39 145 249

ATP 1,105 1,123 19 28 1,077 1,151

Applying oracle O2 results in the distributions displayed in Figure 39. The AT distribution

has a quite similar shape to AT when applied with oracle O1 (Figure 38). Preparing the AT

136

test suite from the abstract model using O2 only reduced the time with 3.8 percent. The

minimum time was 168 seconds, the mean 213 seconds, and the maximum time 965 seconds.

For RTP, the preparation time was reduced by 4.7 percent when applying oracle O2. The

shapes of the distributions for oracles O1 and O2 are rather similar, but of course slightly

lower minimum and maximum values for O2.

AT RTP ATP

Figure 39 Distribution – preparation time – abstract O2

Apparently, the distribution of ATP when applying oracle O2 has to some extent a

different shape than what was seen for oracle O1. Yet, both distributions are centered very

close, around 1,141 seconds for O2 versus 1,115 for O1. In the O2 distribution, however, we

see, according to Figure 39 and Table 33, an outlier at 1,368 seconds. Sixteen out of thirty

observations were within the lower and upper quartiles for oracle O1. For O2 on the other

hand, as much as 22/30 observations were within the lower and upper quartiles.

Table 33 Inter quartile ranges – preparation time – abstract O2

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 175 202 27 40 135 242

RTP 184 200 16 24 160 225

ATP 1097 1161 65 97 1000 1258

 Figure 40 displays the spread in the collected execution-time data from running test suites

generated from the abstract model using oracle O1.

137

The execution times for AT varies from the minimum observation 29 seconds to the

maximum observation 129 seconds. Being the reason for an 11.5 percent higher mean (64.4

seconds) than median (57 seconds), the seven observations above Q3 had a much higher

spread than the remaining observations below Q1. That is, we see a distribution skewed to the

left, having 16/30 observations within Q1 and Q3.

The minimum value in the RTP distribution was 52 seconds, whereas the mean was 72.1

seconds. According to Table 34, there was one outlier in the RTP observations at 100

seconds, which also was the maximum observed value. In this distribution, the median was

slightly higher than the mean due to more observations in the lower end of the possible value

range.

AT RTP

ATP

Figure 40 Distribution – execution time – abstract O1

ATP’s distribution was spread from 215 seconds to 528 seconds, having its mean

positioned at 394.9. The median is only 0.65 percent lower. No outliers were found in the

distributions of AT and ATP.

Table 34 Inter quartile ranges – execution time – abstract O1

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 42 86 44 66 ‐25 152

RTP 62 76 14 21 41 97

ATP 342 448 106 159 183 606

138

The final set of distributions regard test suites generated from the abstract model when

using oracle O2. Starting with AT, Figure 41 shows a distribution slightly skewed to the left.

The minimum value was observed at 9 seconds, whereas the maximum time was 37 seconds.

The median (16.9 seconds) was 8.3 percent lower than the mean (15.5 seconds). Two outliers

were found in the upper end of the collected data at 36 and 37 seconds.

Continuing with RTP, we see a distribution where the minimum observed time to execute

the test suite at 14 seconds and the maximum time at 47 seconds. The sample presents a

median (21 seconds) that was 5 percent lower than the mean (22.1 seconds). No outliers are

indicated by Table 35.

AT RTP ATP

Figure 41 Distributions – execution time – abstract O2

Last but not least, the distribution of ATP. Observations are positioned in a range between

65 seconds and 177 seconds. The mean (115.9 seconds) was only 0.94 percent lower than the

median (117 seconds). Again, by looking at Table 35, one outlier is suggested at 177 seconds.

Table 35 Inter quartile ranges – execution time – abstract O2

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 12 19 7 11 1 30

RTP 19 23 5 7 12 30

ATP 100 127 27 41 59 168

13
9

10
.1

.2
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s
fo

r
E

ff
ec

ti
ve

n
es

s

T
ab

le
 3

6
pr

es
en

ts
 th

e
m

ai
n

fe
at

ur
es

 o
f

th
e

co
ll

ec
te

d
da

ta
 o

n
m

ut
at

io
n

sc
or

e.

 T
ab

le
 3

6
D

es
cr

ip
ti

ve
 s

ta
ti

st
ic

s
fo

r
m

ut
at

io
n

sc
or

e

Co
ve
ra
ge

Cr
it
er
io
n

O
ra
cl
e

M
od

el
M
in

Q
1

M
ea
n

M
ed

ia
n

Q
3

M
ax

St
 D
ev

N
D
iff
 a
bs
tr
ac
t
by

co
m
pl
et
e
(%
)

D
iff
 a
bs
tr
ac
t

O
2
by

 O
1
(%
)

D
iff
 c
om

pl
et
e

O
2
by

 O
1
(%
)

A
T

O
1

a
b
st
ra
c
t

0
.0
0
0

0
.2
0
0

0
.2
6
2

0
.2
0
0

0
.2
0
0

0
.8
0
0

0
.1
6
8

3
0

‐7
3
.7

‐7
1
.3

‐2
0
.2

c
o
m
p
le
te

0
.9
0
0

1
.0
0
0

0
.9
9
7

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.0
1
8

3
0

O
2

a
b
st
ra
c
t

0
.0
0
0

0
.0
0
0

0
.0
7
5

0
.0
0
0

0
.0
5
0

0
.5
3
0

0
.1
5
1

3
0

‐9
0
.5

c
o
m
p
le
te

0
.7
3
0

0
.8
0
0

0
.7
9
5

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.0
1
8

3
0

R
T
P

O
1

a
b
st
ra
c
t

0
.8
7
0

0
.8
7
0

0
.8
7
0

0
.8
7
0

0
.8
7
0

0
.8
7
0

0
.0
0
0

3
0

‐1
3
.0

‐3
1
.0

‐2
0
.0

c
o
m
p
le
te

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.0
0
0

3
0

O
2

a
b
st
ra
c
t

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.0
0
0

3
0

‐2
5
.0

c
o
m
p
le
te

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.0
0
0

3
0

A
T
P

O
1

a
b
st
ra
c
t

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.0
0
0

3
0

‐1
3
.3

‐2
7
.2

‐2
6
.9

c
o
m
p
le
te

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.0
0
0

3
0

O
2

a
b
st
ra
c
t

0
.6
0
0

0
.6
0
0

0
.6
3
1

0
.6
0
0

0
.6
6
7

0
.6
6
7

0
.0
3
4

3
0

‐1
3
.6

c
o
m
p
le
te

0
.6
0
0

0
.7
3
0

0
.7
3
1

0
.7
3
0

0
.7
3
0

0
.8
0
0

0
.0
3
5

3
0

LN
2

O
1

a
b
st
ra
c
t

0
.2
6
7

0
.2
6
7

0
.2
6
7

0
.2
6
7

0
.2
6
7

0
.2
6
7

‐
1

‐2
0
.0

‐1
0
0
.0

‐6
0
.0

c
o
m
p
le
te

0
.3
3
3

0
.3
3
3

0
.3
3
3

0
.3
3
3

0
.3
3
3

0
.3
3
3

‐
1

O
2

a
b
st
ra
c
t

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

‐
1

‐1
0
0
.0

c
o
m
p
le
te

0
.1
3
3

0
.1
3
3

0
.1
3
3

0
.1
3
3

0
.1
3
3

0
.1
3
3

‐
1

LN
3

O
1

a
b
st
ra
c
t

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

‐
1

‐7
.1

‐3
0
.8

‐ 2
1
.4

c
o
m
p
le
te

0
.9
3
3

0
.9
3
3

0
.9
3
3

0
.9
3
3

0
.9
3
3

0
.9
3
3

‐
1

O
2

a
b
st
ra
c
t

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

‐
1

‐1
8
.2

c
o
m
p
le
te

0
.7
3
3

0
.7
3
3

0
.7
3
3

0
.7
3
3

0
.7
3
3

0
.7
3
3

‐
1

LN
4

O
1

a
b
st
ra
c
t

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

0
.8
6
7

‐
1

‐1
3
.3

‐3
0
.8

‐2
0
.0

c
o
m
p
le
te

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

‐
1

O
2

a
b
st
ra
c
t

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

0
.6
0
0

‐
1

‐2
5
.0

c
o
m
p
le
te

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.8
0
0

0
.8
0
0

‐
1

140

Table 36 displays the results for each testing strategy, both test models and oracles. First

of all, let us consider the abstract versus the complete models. An overall trend in the results

is that the abstract test models obtained lower mutation scores (mean values) than what were

achieved by the complete test models.

In more detail, the largest differences in the ability of killing mutants between the abstract

and complete test models were observed in results for LN2 and AT. By looking at the results

for LN2 combined with oracle O2, we see that no mutants were killed. In comparison, the

complete model provided test cases that killed 2/15 mutants. The mutation score mean for AT

combined with O2 was 0.076 as compared to 0.795 for the complete test model. This means

that the abstract model performed 90.5 percent worse than the complete model. Combining

the AT strategy with the abstract model and oracle O1 provides a slight improvement,

although a 73.7 percent reduction was found in mutation score (0.262 for the abstract model

as compared to 0.997 for the complete model). For both RTP and LN4 combined with oracle

O2, the mutation score was 25 percent reduced as compared to the complete model. Test

suites generated from the abstract model for LN2 with O1 and LN3 with O2 performed 20

percent and 18.2 percent weaker than the test suites generated from the complete models.

ATP O2 (13.6 percent), ATP O1 (13.3 percent), LN4 O1 (13.3 percent), and RTP O1 (13

percent) provided quite similar results. Even less difference was found between the abstract

and complete model for strategy LN3 when combined with oracle O1; the abstract model only

performed 7.1 percent worse than the complete model.

Focusing on the test suites generated from the abstract models only, we see that oracle O1

performed significantly better than oracle O2. This regards all six strategies. The best

improvement with respect to mutation score was found for LN2; no mutants were killed by

oracle O2 whereas 4/15 mutants were killed by oracle O1. On average, 1.13 mutants were

killed by O2 in combination with AT – in comparison, almost four mutants (3.94) were killed

by oracle O1 on average. For RTP, LN3, and LN4, we see that oracle O2 obtained around 31

percent lower mutation scores than oracle O1. Regarding ATP we see a 27.2 percent

reduction in mutation score. The mutation-score means for all combinations, as displayed in

Table 36, are graphically visualized in Figure 42.

.

141

Figure 42 Mutation score means

Comparing Means

This section investigates the replications of AT, RTP, and ATP for the purpose of identifying

possible statistical variability in the collected data on mutation scores. Figure 43 displays the

histograms and box plots.

AT RTP

ATP

Figure 43 Distributions – mutation score – abstract O1

The main part of the AT observations (76.7 percent) had 0.2 as their mutation scores. The

remaining test suites achieved mutation scores spread from 0 to 0.8. Only one test suite did

0,000

0,200

0,400

0,600

0,800

1,000

1,200

AT O1AT O2 RTP
O1

RTP
O2

ATP
O1

ATP
O2

LN2
O1

LN2
O2

LN3
O1

LN3
O2

LN4
O1

LN4
O2

Abstract

Complete

142

not detect any faults. According to Table 37, observations below and above 0.2 are all

outliers.

Both RTP (0.87) and ATP (0.87) obtained the exact same mutation score for every test

suite. The reason for this is that the trees from which the test suites are generated from,

provide the same sequences, but in different orders. Thus, the result will always be the same.

It is, however, also possible to generate truly different trees – i.e., trees with actually different

sequences, not only the order of the sequences.

Table 37 Inter quartile ranges – mutation score – abstract O1

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 0.20 0.20 0.00 0.00 0.20 0.20

RTP 0.87 0.87 0.00 0.00 0.87 0.87

ATP 0.87 0.87 0.00 0.00 0.87 0.87

 Figure 44 presents the distributions of mutation scores achieved by test suites generated

from the abstract model applying oracle O2.

AT RTP

ATP

Figure 44 Distributions – mutation score – abstract O2

From the histogram of AT’s distribution, we see that twenty-four test suites did not kill

any mutants. On average, three test suites killed three mutants, one killed 4.95 mutants, two

killed six mutants, and one killed 7.95 mutants. The IQR displayed in Table 38 shows that

there are seven outliers. The distribution of AT combined with O2 has a similar shape to what

was seen for AT combined with O1. However, the obtained results were lower on average

143

Similar to RTP applied with O1, yet lower, the 30 generated RTP test suites again

provided the same mutation score (0.6) for all test suites.

The final distribution, ATP, a mean mutation score of 0.63 was achieved. The results

among the test suites were spread from 0.6 to 0.67. There were more variations in the

collected data on mutation score for ATP applied with oracle O2 than with oracle O1, in

addition to the mean being lower for O2.

Table 38 Inter quartile ranges – mutation score – abstract O2

Coverage
Criterion Q1 Q3 Q3‐Q1 IQR Lower limit Upper limit
AT 0.000 0.050 0.050 0.075 ‐0.075 0.125

RTP 0.600 0.600 0.000 0.000 0.600 0.600

ATP 0.600 0.667 0.067 0.101 0.500 0.768

10.2 Statistical Tests

This section provides statistical tests on the data described by descriptive statistics in Section

10.1. The purpose of the tests is to confirm/reject the hypothesis:

H0: There are no significant differences in cost and effectiveness for the strategies AT,

RTP, and ATP when varying the level of details in the test models.

Tests are run in R [127]. The actual tests are listed in Appendix M.

 14
4

 D
ue

 t
o

th
e

no
n-

ex
is

ti
ng

 r
el

at
io

n
be

tw
ee

n
te

st
 p

at
hs

 f
or

 e
ac

h
of

 t
he

 3
0

re
pl

ic
at

io
ns

 i
n

th
e

co
m

pl
et

e
ve

rs
us

 t
he

 a
bs

tr
ac

t
m

od
el

, t
he

se
 c

an
no

t
be

co
ns

id
er

ed
 a

s
pa

ir
s

in
 s

ta
ti

st
ic

al
 t

es
ts

.
H

en
ce

,
th

e
no

n-
pa

ir
ed

 W
il

co
xo

n
si

gn
ed

-r
an

k
te

st
 w

as
 u

se
d

fo
r

co
nf

ir
m

in
g/

re
je

ct
in

g
st

at
is

ti
ca

l
si

gn
if

ic
an

t

di
ff

er
en

ce
.

T
ab

le
 3

9
di

sp
la

ys
 r

es
ul

ts
 f

ro
m

 c
om

pa
ri

so
ns

 o
f

co
ll

ec
te

d
da

ta
 o

n
pr

ep
ar

at
io

n
ti

m
e

fo
r

ab
st

ra
ct

 v
er

su
s

co
m

pl
et

e
m

od
el

.
W

e
se

e
th

at
 t

he

co
m

pl
et

e
m

od
el

, b
ot

h
fo

r
O

1
an

d
O

2,
 r

eq
ui

re
d

m
or

e
pr

ep
ar

at
io

n
ti

m
e

th
an

 f
or

 t
he

 a
bs

tr
ac

t
m

od
el

. T
he

 v
er

y
lo

w
 p

-v
al

ue
s

(<
 2

.2
e-

16
 f

or
 b

ot
h

O
1

an
d

O
2)

 s
ho

w
 t

ha
t

th
er

e
is

 a
 s

ig
ni

fi
ca

nt
 d

if
fe

re
nc

e.
 M

or
eo

ve
r,

 t
he

 m
ea

su
re

 o
f

st
oc

ha
st

ic
 s

up
er

io
ri

ty
 t

el
ls

 u
s

th
at

 t
he

 p
ro

ba
bi

lit
y

th
at

 p
re

pa
ra

ti
on

ti
m

es
 f

or
 t

he
 a

bs
tr

ac
t

m
od

el
 i

s
hi

gh
er

 t
ha

n
th

e
co

m
pl

et
e

m
od

el
 i

s
11

.5
 p

er
ce

nt
,

re
ga

rd
le

ss
 o

f
ap

pl
ie

d
or

ac
le

.
T

hi
s

m
ea

ns
 t

ha
t

th
e

ef
fe

ct
 s

iz
e

is

la
rg

e.

 T
ab

le
 3

9
N

on
-p

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

p
ar

in
g

ab
st

ra
ct

 a
n

d
 c

om
pl

et
e

m
od

el
 –

 p
re

p
ar

at
io

n
 t

im
e

H
0

C
ov

er
ag

e
 C

ri
te

ri
on

O

ra
cl

e
M

ea
su

re

p-
va

lu
e

Â

E
ff

ec
t

S
iz

e
R

es
u

lt

S
ig

n
. D

if
f.

 (
C

I)

A
b
s
t
r
a
c
t

=

C
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
1

P
r
e
p
.

t
i
m
e

<

2
.
2
e
-
1
6

0
.
1
1
5

L
a
r
g
e

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

A
b
s
t
r
a
c
t

=

C
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
2

P
r
e
p
.

t
i
m
e

<

2
.
2
e
-
1
6

0
.
1
1
5

L
a
r
g
e

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

 S
im

il
ar

 r
es

ul
ts

 w
er

e
fo

un
d

w
he

n
ru

nn
in

g
te

st
s

on
 e

xe
cu

ti
on

 t
im

e
–

te
st

 s
ui

te
s

ge
ne

ra
te

d
fr

om
 t

he
 c

om
pl

et
e

m
od

el
 s

pe
nt

 m
or

e
ti

m
e

on

ex
ec

ut
io

n
th

an
 f

ro
m

 t
he

 a
bs

tr
ac

t
m

od
el

. A
ga

in
, d

if
fe

re
nc

es
 w

er
e

se
en

 a
t

a
0.

01
 s

ig
ni

fi
ca

nc
e

le
ve

l
(p

<
 2

.2
e-

16
).

 F
ur

th
er

m
or

e,
 t

he
 e

ff
ec

t
si

ze
 w

as

ev
en

 l
ar

ge
r

as
 c

om
pa

re
d

to
 t

he
 p

re
pa

ra
ti

on
 t

im
e;

 f
or

 O
1

w
e

se
e

th
at

 t
he

 p
ro

ba
bi

li
ty

 o
f

ha
vi

ng
 h

ig
he

r
ex

ec
ut

io
n

ti
m

es
 f

or
 t

he
 a

bs
tr

ac
t

m
od

el
 t

ha
n

th
e

co
m

pl
et

e
m

od
el

 is
 o

nl
y

1.
7

pe
rc

en
t.

A
pp

ly
in

g
or

ac
le

 O
2,

 th
e

pr
ob

ab
il

it
y

w
as

 9
.1

 p
er

ce
nt

.

14
5

 T
ab

le
 4

0
N

on
-p

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

p
ar

in
g

ab
st

ra
ct

 a
n

d
 c

om
pl

et
e

m
od

el
 –

 e
xe

cu
ti

on
 t

im
e

H
0

C
ov

er
ag

e
C

ri
te

ri
on

O

ra
cl

e
M

ea
su

re

p-
va

lu
e

Â
12

E

ff
ec

t
S

iz
e

R
es

u
lt

S

ig
n

. D
if

f.
 (

C
I)

A
b
s
t
r
a
c
t

=

C
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
1

E
x
e
c
.

t
i
m
e

<

2
.
2
e
-
1
6

0
.
0
1
7

L
a
r
g
e

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

a
b
s
t
r
a
c
t

=

c
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
2

E
x
e
c
.

t
i
m
e

<

2
.
2
e
-
1
6

0
.
0
9
1

L
a
r
g
e

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

 T
ab

le
 4

1
pr

es
en

ts
 o

bt
ai

ne
d

re
su

lt
s

fo
r

m
ut

at
io

n
sc

or
e.

 S
ig

ni
fi

ca
nt

 d
if

fe
re

nc
es

 w
er

e
fo

un
d

bo
th

 w
he

n
ap

pl
yi

ng
 o

ra
cl

e
O

1
an

d
O

2
at

 a
 0

.0
1

si
gn

if
ic

an
t

le
ve

l.
T

he
 e

ff
ec

t
si

ze
 w

as
 l

ar
ge

 i
n

bo
th

 c
as

es
,

w
hi

ch
 m

ea
ns

 t
ha

t
th

er
e

is
 h

ig
he

r
pr

ob
ab

il
it

y
of

 a
ch

ie
vi

ng
 a

 b
et

te
r

m
ut

at
io

n
sc

or
e

by

us
in

g
a

co
m

pl
et

e
m

od
el

 w
he

n
ge

ne
ra

ti
ng

 te
st

 s
ui

te
s.

 T
ab

le
 4

1
 N

on
-p

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

p
ar

in
g

ab
st

ra
ct

 a
n

d
 c

om
p

le
te

 m
od

el
 –

 m
u

ta
ti

on
 s

co
re

H
0

C
ov

er
ag

e
C

ri
te

ri
on

O

ra
cl

e
M

ea
su

re

p
-v

al
u

e
Â

12

E
ff

ec
t

S
iz

e
R

es
u

lt

S
ig

n
. D

if
f.

 (
C

I)

a
b
s
t
r
a
c
t

=

c
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
1

M
u
t
.

s
c
o
r
e

<

2
.
2
e
-
1
6

0

L
a
r
g
e

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

a
b
s
t
r
a
c
t

=

c
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
2

M
u
t
.

s
c
o
r
e

<

2
.
2
e
-
1
6

0
.
0
0
5

L
a
r
g
e

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

 14
6

 O
ve

ra
ll

,
i.e

.,
co

ns
id

er
in

g
th

e
th

re
e

st
ra

te
gi

es
 c

om
bi

ne
d

w
it

h
ea

ch
 o

f
O

1
an

d
O

2,
 T

ab
le

 4
2

sh
ow

s
th

at
 p

re
pa

ra
ti

on
 t

im
e,

 e
xe

cu
ti

on
 t

im
e

an
d

m
ut

at
io

n
sc

or
e

ar
e

si
gn

if
ic

an
tl

y
di

ff
er

en
t

fo
r

te
st

 s
ui

te
s

ge
ne

ra
te

d
fr

om
 t

he
 a

bs
tr

ac
t

co
m

pa
re

d
to

 t
es

t
su

it
es

 g
en

er
at

ed
 f

ro
m

 t
he

 c
om

pl
et

e
m

od
el

.

S
ig

ni
fi

ca
nc

e
w

as
 f

ou
nd

 f
or

 α
 =

 0
.0

1.
 A

s
w

e
ca

n
se

e,
 th

e
ef

fe
ct

 s
iz

e
is

 la
rg

e
fo

r
pr

ep
ar

at
io

n
ti

m
e,

 e
xe

cu
ti

on
 ti

m
e,

 a
nd

 m
ut

at
io

n
sc

or
e.

 T
ab

le
 4

2
N

on
-p

ai
re

d
 W

il
co

xo
n

 s
ig

n
ed

-r
an

k
 t

es
t

co
m

p
ar

in
g

ab
st

ra
ct

 a
n

d
 c

om
pl

et
e

m
od

el
 –

 a
ll

 m
ea

su
re

s

H
0

C
ov

er
ag

e
C

ri
te

ri
on

O

ra
cl

e
M

ea
su

re

p
-v

al
u

e
Â

12

E
ff

ec
t

S
iz

e
95

 %
 C

I
fo

r
Â

12

99
 %

 C
I

fo
r

Â
12

R

es
u

lt

S
ig

n
. D

if
f.

 (
C

I)

a
b
s
t
r
a
c
t

=

c
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
1
,

O
2

P
r
e
p
.

t
i
m
e

<

2
.
2
e
-
1
6

0
.
1
1
5

L
a
r
g
e

[
0
.
0
8
6
,

0
.
1
5
2
]

[
0
.
0
7
8
,

0
.
1
6
6
]

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

a
b
s
t
r
a
c
t

=

c
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
1
,

O
2

E
x
e
c
.

t
i
m
e

<

2
.
2
e
-
1
6

0
.
0
7
5

L
a
r
g
e

[
0
.
0
5
4
,

0
.
1
0
4
]

[
0
.
0
4
8
,

0
.
1
1
4
]

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

a
b
s
t
r
a
c
t

=

c
o
m
p
l
e
t
e

A
T
,

R
T
P
,

A
T
P

O
1
,

O
2

M
u
t
.

s
c
o
r
e

1
.
0
2
7
e
-
1
0

0
.
1
7
0

L
a
r
g
e

[
0
.
1
3
2
,

0
.
2
1
7
]

[
0
.
1
2
1
,

0
.
2
3
3
]

A
b
s
t
r
a
c
t

<

C
o
m
p
l
e
t
e

Y
e
s

(
9
9

%
)

 T
he

 n
ul

l
hy

po
th

es
is

 w
as

 t
hu

s
re

je
ct

ed
 b

y
th

e
st

at
is

ti
ca

l
te

st
s,

 a
nd

 w
e

ca
n

co
nc

lu
de

 t
ha

t
th

er
e

ar
e

si
gn

if
ic

an
t

di
ff

er
en

ce
s

in
 t

he
 c

os
t-

ef
fe

ct
iv

en
es

s
fo

r
th

e
st

ra
te

gi
es

 A
T

, R
T

P
, a

nd
 A

T
P

 w
he

n
va

ry
in

g
th

e
le

ve
l o

f
de

ta
il

s
in

 th
e

te
st

 m
od

el
.

147

10.3 Cost-Effectiveness

This section presents how raising the test model abstraction level affects the cost-

effectiveness. Figure 45 positions the cost9-effectiveness for the 24 combinations of coverage

criteria, oracles, and test models. Each combination of oracle and test model is represented by

a unique color: sky blue represents oracle O1 and the complete test model; pale blue represent

oracle O2 and the complete test model; oakes yellow represents oracle O1 and the abstract test

model; and finally, salmon pink represents oracle O2 and the abstract test model.

Take a look at the lowest part of the figure at the left hand side. Not surprisingly, we

observe for LN2 that by reducing the level of details in the test model, both for oracle O1 and

O2, the mutation score is lowered even more. Differences of great impact on both cost and

effectiveness were seen for AT when reducing the abstraction level. None of the combinations

of LN2 can be recommended; neither the combinations of AT and the abstract test model.

The influence of the abstract test model on ATP shows a major reduction in cost, yet

retaining an overall high mutation score when using oracle O1. Looking at the results for

LN4, we see that there are significant differences in the cost, both for test-suite size and time.

The reduction in mutation score is also present for both combinations of test model and oracle

(i.e., complete test model and oracle O1 versus abstract test model and oracle O2).

Interestingly, however, we see that the abstract model in combination with the better oracle

(O1) actually performs better with respect to fault-detection as compared to the complete

model combined with oracle O2. The latter also regards LN2, LN3, RTP, and ATP.

Results for RTP when generating test suites from the complete model using oracle O1

show similar fault-detection as compared to LN3 (complete model, oracle O1), AT (complete

model, oracle O1), LN4 (complete model, oracle O1), and ATP (complete model combined

with oracle O1). The cost, however, differ. Notice that the cost of RTP is lower than for AT

LN4, and ATP (complete model).

9 Please note that time is shown as the total of preparation time and execution time

148

Figure 45 Abstract versus complete test model – mutation score, test-suite size and time

For each combination of coverage criterion, test model, and oracle, Figure 46– Figure

49 show the number of killed mutants divided by each of the surrogate measures on cost.

14
9

F
ig

u
re

 4
6

N
u

m
b

er
 o

f
m

u
ta

n
ts

 k
il

le
d

 o
ve

r
p

re
p

ar
at

io
n

 t
im

e
F

ig
u

re
 4

7
N

u
m

b
er

 o
f

m
u

ta
n

ts
 k

il
le

d
 o

ve
r

ex
ec

ut
io

n
 t

im
e

F
ig

u
re

 4
8

N
u

m
b

er
 o

f
m

u
ta

n
ts

 k
il

le
d

 o
ve

r
to

ta
l t

im
e

F
ig

u
re

 4
9

N
u

m
b

er
 o

f
m

u
ta

n
ts

 k
il

le
d

 o
ve

r
te

st
-s

u
it

e
si

ze
s

0

0
,0
1

0
,0
2

0
,0
3

0
,0
4

0
,0
5

0
,0
6

0
,0
7

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
1

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
2

0

0
,0
5

0
,1

0
,1
5

0
,2

0
,2
5

0
,3

0
,3
5

0
,4

0
,4
5

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
1

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
2

0

0
,0
1

0
,0
2

0
,0
3

0
,0
4

0
,0
5

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
1

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
2

0

0
,0
5

0
,1

0
,1
5

0
,2

0
,2
5

LN
2

LN
3

LN
4

A
T

R
TP

A
TP

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
1

C
o
m
p
le
te
 m

o
d
el

O
ra
cl
e
O
2

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
1

A
b
st
ra
ct
 m

o
d
el

O
ra
cl
e
O
2

150

10.4 Analysis of Mutant Survival

We will now take a closer look at the mutants not killed by the remaining testing strategy

combinations that have not already been discussed in Chapter 8 or 9; that is the test suites

generated from the abstract test model.

Only two mutants (M12 and M15) were not killed by any of the AT test suites in

combination with the O1 oracle. Mutants M1, M2, and M14 were killed by 29/30 test suites.

Only one test suite (AT9) killed M9. The other mutants were each killed by 3–4 test suites.

Killing 12 mutants, test suite AT11 achieved the highest mutation score among the AT test

suites. Only M9, M12, and M15 were not killed by AT11.

Six mutants (M1, M2, and M12–M15) were not killed by any of the AT test suites when

using oracle O2. Eight mutants (M3–M8, M10, and M11) were killed by four test suites.

Mutant M9 was killed by two test suites (AT29 and AT9).

Two mutants were not killed by any of the ATP test suites when using oracle O1, namely

M12 and M15. Combining ATP with O2, on the other hand, resulted in more mutants

remaining un-killed: M1, M2, and M12–M15.

M12 and M15 were not killed by any of the RTP test suites when executed together with

the O1 oracle. The remaining mutants were all killed by each of the 30 test suites. No RTP

test suite in combination with oracle O2 could kill any of the six mutants M1, M2, and M12–

M15.

Eleven mutants (M3–M12, and M15) were not killed by the LN2 test suites when used

with oracle O1. By using oracle O2, none of the 15 mutants were killed.

Neither the LN3 test suites in combination with oracle O1 killed M12 and M15. Using

oracle O2, even more mutants remained un-killed: in addition to M12 and M15, also M1, M2,

M13, and M14 were not detected.

Analyzing the LN4 test suites used with oracle O1 showed that two mutants M12 and

M15 were not killed. Combined with oracle O2, the following mutants could not be killed:

M1, M2, and M12–M15.

To summarize, results show that certain mutants were harder to kill by the test suites

generated from the abstract test model. Regardless of coverage criterion applied and oracle

used, M12 and M15 were not killed by any of the test cases generated from the abstract test

model. As for oracle O2, in addition to M12 and M15, mutants M1, M2, M13, and M14 were

not killed by any of the test suites. The seeded faults in these mutants all concerned sub states

163

that were removed from the test model. This explains why the test cases generated from the

abstract test model could not kill those mutants.

10.5 Related Work

Reducing the test-suite size by abstracting the test model is yet another area of related work

where few studies have been carried out in the context of SBT. To the author’s knowledge, no

other empirical studies have been conducted on this particular topic.

Nevertheless, the desire of reducing test-suite sizes has received quite a lot of attention.

Though based on other ideas for reducing the test suites, Heimdahl and George [29] found

that the size of the specification based test-suites can be dramatically reduced and that the

fault detection of the reduced test-suites is adversely affected. Wong et al. [30] investigated

the effect on fault-detection of keeping block and all-uses coverage constant while reducing

the size of a test suite. They found that effectiveness reduction was not significant even for the

most difficult faults, which suggests that minimization of test suites can reduce the cost of

testing at slightly reduced fault-detection effectiveness.

From the perspective of executing MBT in practice with respect to limited time and

resources, three papers on similarity-based test selection address the problem of large test

suites that are automatically generated by MBT-tools. Addressing the topic of scalability with

respect to large test-suite sizes when applying model-based testing in practice, Hemmati and

Briand [4] investigated and compared possible similarity functions to support similarity-based

test selection. Empirical data on the most cost-effective similarity measure was collected by

applying the proposed similarity measures and a selection strategy to an industrial software

system. Results from the case study showed that using Jaccard Index to measure the similarity

of the test cases (which were represented as a set of trigger-guards) of the respective test paths

obtained the best results in terms of cost and effectiveness. They reported a significant

reduction (77 percent) in test execution cost.

Continuing the work presented in [4], but this time trying to gain insights into why and

under which circumstances a particular similarity-based selection technique can be expected

to work, Hemmati et al. [5] investigated the properties of test suites with respect to

similarities among fault revealing test cases. They conducted experiments based on simulation

where two industrial case studies were used to guide the simulations. Obtained results

confirmed their assumptions about similarity-based test case selection would perform better

when “test cases which detect distinct faults are dissimilar and test cases that detect a common

152

fault are similar”. They also found that similarity-based test case selection is less effective in

cases when a small group of transition paths is mostly disconnected from the rest of the state

machine.

Having a motivation similar to Hemmati and Briand, Cartaxo et al. [6] also addressed the

problem of large test suites. A test-case selection strategy was compared with random

selection by considering transition-based and fault-based coverage. Based on results from

three case studies, they found that the similarity-based test case selection can provide more

effective test suites than random selection.

Also, several studies address approaches that identify the differences between versions of

a model for the purpose of reducing the sizes of regression test suites.

10.6 Discussion

There is a trade-off between a sufficiently detailed level in the test model and the quality of

the resulting test cases. Reduced costs of generating tests may on the other hand increase the

number of undetected faults. Removing contents from super states resulted in significantly

smaller test suites, reducing the costs, yet retaining its fault-detection ability at a reasonable

level. As reported in the results, however, a large part of the generated test cases were

infeasible due to guard conditions that could not be satisfied. The reason for this being sub-

state specific values that could not be controlled in the same way as when these sub states

were included in the test model. To increase the number of feasible tests, ulterior work is

necessary with respect to test-data selection. Although our results on using abstract test

models as input to test generation proved acceptable fault-detection effectiveness combined

with certain strategies, we must take into account the omitted details and be aware of those

parts that cannot be tested based on the model [36]. We found that mutants that were seeded

in the removed sub states were not detected.

An interesting observation is that by removing details from the test model and using a

stronger criterion, results show that a comparable cost-effectiveness was obtained as

compared to test suites generated from the complete test model.

Although generated based on a different idea, our results support the findings of Wong et

al. [30] that test set minimization can greatly reduce the evaluation costs, and thus the cost of

testing, at very little loss in fault-detection effectiveness. This is however, dependent on the

choice of strategy.

163

10.7 Summary – Cost-Effectiveness for Complete Test Model versus Abstract Test Model

This chapter addressed whether or not varying the level of details in test models affected the

cost-effectiveness of the state-based coverage criteria all transitions (AT), all round-trip paths

(RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3) and paths

of length 4 (LN4). Two different oracles were applied.

Section 10.1 presented descriptive statistics for the obtained results on cost and

effectiveness. We saw that the test-suite sizes significantly decreased when abstracting the test

model. Infeasible test cases were introduced by the abstract test model due to the sub states

being removed. This implied less control over test data with respect to externally controlled

variables.

For oracle O1, the greatest reduction in test-suite size was seen for AT (from 166 to 17

test cases), closely followed by ATP (1425 to 192 test cases). RTP was reduced from 299 to

66 test cases. The LN4 test suite was reduced from 764 to 415 test cases. The remaining

strategies were not affected to the same extent; LN2 and LN3 were reduced, by 14.8 and 29.4

percent, respectively. By using oracle O2, the reduction was overall lesser due to lower

number of infeasible test cases as compared to using oracle O1, but quite consistent with the

results for O1.

Observations showed that it takes significantly shorter time for all strategies to prepare

test suites from the abstract test model as compared to the complete test model. The greatest

difference was seen for ATP (96 percent for both O1 and O2), closely followed by AT (95

percent for O1 and 94 percent for O2). RTP was reduced by 62 percent for O1 and 64 percent

for O2. Also LN2 and LN3 were prepared in less time from the abstract model – LN2: 34

percent for O1 and 33 percent for O2; LN3: 38 percent for O1 and 40 percent for O2. Slightly

less difference was seen in the results for LN4: 26 percent and 27 percent for O1 and O2.

We saw a similar trend for execution time with great differences between the times spent

on executing the test suites generated from the abstract model as compared to the complete

model. The largest reduction was achieved by AT (97 percent for O1 and 96 percent for O2),

followed by ATP (88 percent for O1 and 80 percent for O2), and RTP (85 percent for O1 and

77 percent for O2). When O1 was combined with the abstract model for LN2, LN3, and LN4,

results show that the preparation times were reduced by 11 percent, 38 percent, and 22

percent, respectively. No difference was found between the abstract and complete model

when applying O2 to LN2. A minor reduction was found for LN3 (4 percent). The execution

time for LN4, on the other hand, was increased by 6 percent.

154

Regarding LN2, LN3, and LN4, we see an overall smaller difference between the two

models. This, however, can be explained by the first surrogate measure of cost, test-suite size.

Recall from Table 29 that significantly smaller test-suite sizes were found for the abstract

model versus the complete model for LN2, LN3, and LN4 contra AT, RTP, and ATP. Thus,

lower differences in execution and preparation time would be expected results.

Comparing the two oracles applied to the abstract test model provided rather consistent

results as compared to what was seen for the complete test model. Differences in preparation

time for the abstract model was in the range from -5 percent to 2 percent compared to -7

percent to 4 percent for the complete model. Regarding execution time, we saw a similar

correlation between the abstract and the complete model: for the abstract model, test suites

combined with O2 spent from 68 percent to 74 percent less time on execution compared to

O1, whereas test suites generated from the complete model combined with O2 spent 72

percent to 83 percent less time on execution compared to O1.

An overall trend in the results for mutation score was that the abstract test models

obtained lower mutation score means than what were achieved by the complete test models.

Section 10.2 regarded statistical tests. The non-paired Wilcoxon signed-rank test was

applied to the replicated data, i.e., for AT, RTP, and ATP. Overall, i.e., considering the three

strategies combined with each of O1 and O2, significant differences were found for each of

preparation time, execution time and mutation score. Significance was found for α = 0.01.

Test suites generated from the complete model required both higher preparation and

execution time (large effect sizes were found for both measures). On the other hand, the

complete models achieved higher mutation scores.

To summarize, the results showed that ATP applied to a detailed model is an expensive

strategy. The high fault-detection effectiveness may be at a too high cost. When combined

with the abstract model, cost was significantly reduced. The effectiveness was also reduced,

but not as much as the cost. On the other extreme, LN2 had the lowest cost but also the lowest

effect; at least for the complete model. Results for the abstract model combined with oracle

O1 showed similar results to what was found for AT applied to the abstract model. The level

of details in the model had an enormous impact on the cost and effectiveness for AT; all

mutants were killed by AT when using the complete model, although at a large increase in

cost. The complete model combined with oracle O1 obtained as good mutation score as ATP

and AT also for RTP and LN4. Of these, RTP had the lowest costs. Overall, the abstract

model performs better with oracle O1.

163

AT, RTP, ATP, and LN4 all provided the highest mutation scores when generated from the

complete model used with oracle O1. Of these, RTP had the lowest costs. Using the weaker

oracle O2, still based on the complete test model, the effectiveness was slightly reduced: AT,

RTP, and LN4 killed 80 % of the mutants. Regarding the abstract test model, we saw that

LN3, LN4, RTP, and ATP killed 87 % of the mutants – interestingly, the cost of ATP was

dramatically reduced as compared to the test suites generated from the complete model.

In the next chapter, we will see the results from applying sneak-path testing.

Conclusions: Reducing the level of detail in the test model significantly influences the

cost-effectiveness. Results show that both costs and fault-detection ability are lower for

test suites generated from the abstract model as compared to the complete model.

156

11 Case Study 4 – What is the Impact of Sneak-Path Testing on the Cost-Effectiveness?

Chapters 8–10 focused on conformance testing, aiming at detecting deviations from specified

system behaviour when expected events were invoked on the SUT. The case study presented

in this chapter, on the other hand, presents the results from augmenting the conformance

testing with sneak-path testing. In contrast to conformance testing, sneak-path testing [31]

feeds the SUT with unexpected events that should not trigger any change of state in the SUT.

For each state in the SUT, all possible events that are not specified for the particular state are

invoked. This technique is intended to catch faults that introduce undesired, additional

behaviour, in terms of extra transitions and actions. In this study, we aimed to investigate how

sneak-path testing affects the cost of testing and its fault detection rates.

RQ4: What is the impact of sneak-path testing on the cost-effectiveness?

Section 11.1 and Section 11.2 present cost and effectiveness, respectively. Results are

discussed in Section 11.3.

11.1 Cost

This section presents the collected data on cost – the test-suite sizes and the time spent on

preparing and executing the sneak-path test suites.

11.1.1 Test-Suite Size

The size of the sneak-path test suite is equal to the number of states in the SUT, and hence is

low compared to the other testing strategies previously addressed in this thesis. The length of

each test case depends on two matters: (1) the length of the path that must be traversed in

order to reach the particular state to be tested, and (2) the number of known unexpected events

for the state.

A Kermeta-transformation was used to generate 68 separate state machines from the

complete test model. Each state machine included a path from the initial state to the state that

was tested, and also the unexpected events for that state. The complete transformation took

2,460 seconds.

Due to limited time, the aim of sneak-path testing in this study was to show that the

mutants actually could be killed – not to show how many of the test cases that could kill each

of the mutants. Therefore, it was decided to select a subset of the test cases which were

163

expected to kill the mutants. From analysis of the total of 68 state machines, 52 were affected

by the seeded sneak paths. Furthermore, only seven distinct single states among the 52

combined states were directly involved in the seeded sneak paths. Thus, seven state machines

that contained the distinct affected states were included in the sneak-path testing. That is, the

size of the complete sneak-path test suite was 68 test cases – only seven, however, were

executed. Table 43 shows the selected state machines.

Table 43 Selected state machines – complete test model

State machine ID Test case from state machine

4 ExtraSlowConfirmInit

12 ManualFSConfirmSoftHalt

16 AutoConfirmEvaluateHalt

15 ExtraSlowConfirmedDEFinal

7 PreManualFSDisabled

18 ManualFSConfirmedSoftStop

8 AutoConfirmedEvaluateHalt

The same strategy as for the complete model was used to make a selection of test cases

from the sneak-path test suite for the abstract model. The Kermeta transformation spent 116

seconds on generating 21 state machines – one state machine for each state in the abstract

model. Table 44 shows the selected state machines that were affected by the seeded sneak

paths. Again, the test suite consisted of 21 test cases of which three were executed on the

mutants.

Table 44 Selected state machines – abstract test model

State machine ID Test case from state machine

3 ManualFSInit

5 AutoEnabled

7 ExtraSlowInit

158

11.1.2 Time

Table 45 shows the time spent on preparing the sneak-path test suite for the complete model.

Please note that each test case was run separately. The time varies from 23 seconds to 34

seconds when using oracle O1, and from 21 seconds to 34 seconds when using oracle O2.

Table 45 also displays the execution time observed for oracles O1 and O2 when combined

with the complete test model. The minimum and maximum times for oracle O1 were,

respectively, three and seven seconds. Compared to oracle O1, we see an overall reduction in

execution time by applying oracle O2 – each test case spent two seconds on execution when

applying O2.

Results for the abstract test model regarding preparation time reveals little distinction

between the two oracles. The minimum time for oracle O1 was 18 seconds, whereas the

maximum measured preparation time was 21 seconds. Regarding O2, we see values from 17

to 18 seconds. Similar was observed for the execution time. Although the differences between

the two oracles vary from 33 percent to 60 percent, the actual values are not so different –

oracle O1 spent three to five seconds on executing the test cases, whereas O2 spent two

seconds.

15
9

 T
ab

le
 4

5
P

re
pa

ra
ti

on
 t

im
e

an
d

 e
xe

cu
ti

on
 t

im
e

–
co

m
pl

et
e

te
st

 m
od

el

St
at
e

m
ac
hi
ne

 ID
Te
st
 c
as
e
ge
ne
ra
te
d
fr
om

 s
ta
te

m
ac
hi
ne

O
ra
cl
e

TI
M
E
PR

EP
A
R
E

TE
ST

 C
A
SE

 (
se
c)

D
if

f
O

2
by

O

1
(%

)
TI
M
E
EX

EC
U
TE

TE
ST

 C
A
SE

 (
se
c)

D
if

f
O

2
 b

y

O
1

 (
%

)
Ex
ec
ut
ed

 o
n

M
ut
an
t

7
Pr
eM

an
ua
lF
S

O
1

25
0
.0

7
-7

1
.4

M
23

O
2

25
2

12
M
an
ua
lF
SC
on
fi
rm

O
1

26
-1

1
.5

4
-5

0
.0

M
18

O
2

23
2

18
M
an
ua
lF
SC
on
fi
rm

ed
O
1

26
0
.0

4
-5

0
.0

M
24

O
2

26
2

16
A
ut
oC
on
fi
rm

O
1

25
-1

2
.0

6
-6

6
.7

M
19

O
2

22
2

8
A
ut
oC
on
fi
rm

ed
O
1

25
-1

2
.0

4
-5

0
.0

M
25

O
2

22
2

4
Ex
tr
aS
lo
w
Co
nf
ir
m

O
1

28
-2

5
.0

3
-3

3
.3

M
16

O
2

21
2

4
Ex
tr
aS
lo
w
Co
nf
ir
m

O
1

25
-1

6
.0

4
-5

0
.0

M
17

O
2

21
2

4
Ex
tr
aS
lo
w
Co
nf
ir
m

O
1

23
-8

.7
5

-6
0

.0
M
20

O
2

21
2

15
Ex
tr
aS
lo
w
Co
nf
ir
m
ed

O
1

34
0
.0

6
-6

6
.7

M
21

O
2

34
2

15
Ex
tr
aS
lo
w
Co
nf
ir
m
ed

O
1

34
0
.0

4
-5

0
.0

M
22

O
2

34
2

15
Ex
tr
aS
lo
w
Co
nf
ir
m
ed

O
1

34
0
.0

4
-5

0
.0

M
26

O
2

34
2

TO
TA

L
TI
M
E
O
1
(s
ec
)

30
5

51
TO

TA
L
TI
M
E
O
2
(s
ec
)

28
3

22

 16
0

 T
ab

le
 4

6
P

re
pa

ra
ti

on
 t

im
e

an
d

 e
xe

cu
ti

on
 t

im
e

–
ab

st
ra

ct
 t

es
t

m
od

el

S
ta

te
 m

a
c
h

in
e

ID

T
e

s
t

c
a
s
e

 f
r
o

m

s
ta

te
 m

a
c
h

in
e

O
r
a

c
le

T
IM

E
 P

R
E

P
A

R
E

T

E
S

T
 C

A
S

E
 (

s
e

c
)

D
if

f
O

2
 b

y

O
1

 (
%

)
T

IM
E

 E
X

E
C

U
T

E

T
E

S
T

 C
A

S
E

 (
s
e

c
)

D
if

f
O

2
 b

y

O
1
 (

%
)

E
x

e
c
u

te
d

o

n
 M

u
ta

n
t

3
M
a
n
u
a
lF
S
E
n
a
b
le
d

O
1

1
9

-1
0

.5
4

-5
0
.0

M
1
8

O
2

1
7

2
3

M
a
n
u
a
lF
S
E
n
a
b
le
d

O
1

1
9

-5
.3

4
-5

0
.0

M
2
3

O
2

1
8

2
3

M
a
n
u
a
lF
S
E
n
a
b
le
d

O
1

1
9

-1
0

.5
4

-5
0
.0

M
2
4

O
2

1
7

2
5

A
u
to
E
n
a
b
le
d

O
1

2
1

-1
4

.3
4

-5
0
.0

M
1
9

O
2

1
8

2
5

A
u
to
E
n
a
b
le
d

O
1

1
9

-1
0

.5
3

-3
3
.3

M
2
5

O
2

1
7

2
7

E
x
tr
a
S
lo
w
In
it

O
1

1
9

-1
0

.5
5

-6
0
.0

M
1
6

O
2

1
7

2
7

E
x
tr
a
S
lo
w
In
it

O
1

2
0

-1
0

.0
4

-5
0
.0

M
1
7

O
2

1
8

2
7

E
x
tr
a
S
lo
w
In
it

O
1

2
0

-1
5

.0
4

-5
0
.0

M
2
0

O
2

1
7

2
7

E
x
tr
a
S
lo
w
In
it

O
1

1
8

-5
.6

4
-5

0
.0

M
2
1

O
2

1
7

2
7

E
x
tr
a
S
lo
w
In
it

O
1

1
9

-1
0

.5
5

-6
0
.0

M
2
2

O
2

1
7

2
7

E
x
tr
a
S
lo
w
In
it

O
1

2
0

-1
0

.0
5

-6
0
.0

M
2
6

O
2

1
8

2

T
O
T
A
L
T
IM

E
 O
1
 (
se
c)

2
1
3

4
6

T
O
T
A
L
T
IM

E
 O
2
 (
se
c)

1
9
1

2
2

161

In practice, the complete sneak-path test suite is required to be run as, of course, the

location is not know. As we did not run the complete sneak-path test suite, the cost of full

execution cannot be provided; however, estimates based on the collected data are presented in

Table 47. When using oracle O1, the collected data shows that preparing the sneak-path tests

from the complete model took 305 seconds, whereas execution of the tests took 51 seconds.

Realistic, but rough, estimates for the total sneak-path test suite are 1,885 seconds ((305 ÷ 11)

× 68) in preparation time and 315 seconds ((51 ÷ 11) × 68) in execution time.

For the abstract test model, the collected data shows that preparing the sneak-path tests

took 213 seconds, whereas execution of the tests took 46 seconds. Realistic, but rough,

estimates for the total sneak-path test suite are 407 seconds ((213 ÷ 11) × 21) in preparation

time and 88 seconds ((46 ÷ 11) × 21) in execution time.

Using oracle O2 when applying sneak-path tests on the complete model resulted in the

following cost: preparing the sneak-path tests took 283 seconds, whereas execution of the

tests took 22 seconds. Realistic, but rough, estimates for the total sneak-path test suite are

1,750 seconds ((283 ÷ 11) × 68) in preparation time and 136 seconds ((22 ÷ 11) × 68) in

execution time.

Preparation time for the abstract test model applied with oracle O2 was 191 seconds;

execution time was 22 seconds. Realistic, but rough, estimates for the total sneak-path test

suite are 365 seconds ((191 ÷ 11) × 21) in preparation time and 42 seconds ((22 ÷ 11) × 21) in

execution time.

Table 47 Estimates preparation and execution time for sneak-path test suites

Preparation time
(estimat)

Execution time
(estimat)

Complete test model Oracle O1 1,885 315

Oracle O2 1,750 136

Abstract test model Oracle O1 407 88

Oracle O2 365 42

162

11.2 Effectiveness

Table 48 shows the observed results on effectiveness for the complete model, both for oracle

O1 and O2. Augmenting the conformance test suites with sneak-path testing generated from

the complete model resulted in the remaining mutants being killed. Each and every mutant

that consisted of additional implemented behaviour beyond specified behaviour was killed by

sneak-path tests.

Table 49 presents the results on killing mutants with sneak-path tests from the abstract

model. Recall that the sub states in the super states were removed from the abstract model.

This implies less control over the testing process; moreover, removing the sub states

particularly regards external variables and infeasible state combinations that may be the

reason for why test cases fail prior to killing the mutant.

The sneak-path test suite generated from the abstract model killed 10/11 sneak paths. The

test case from state machine 5 that did not kill the expected mutant (M19) failed due to an

infeasible step in the test case. This test case failed because of a guard on the transition from

the Initial state to the Enabled state that was not satisfied. The transition required the

variable blockdriveenable to be false. As the current mode sub state was AutoConfirm,

the blockDriveEnable was true and thus in the wrong sub state.

16
3

 T
ab

le
 4

8
R

es
u

lt
s

fr
om

 k
il

li
n

g
m

ut
an

ts
 w

it
h

sn
ea

k
-p

at
h

 t
es

ti
n

g
–

co
m

p
le

te
 t

es
t

m
od

el

S
ta

te

m
a

ch
in

e
 I

D
T

e
st

 c
a
se

 f
ro

m

st
a
te

 m
a
ch

in
e

F
ro

m
 s

ta
te

T
o

 s
ta

te
M

u
ta

n
t

O
ra

cl
e

K
il

le
d
 b

y
 o

p
e
ra

ti
o

n

4
E

x
tr

a
S

lo
w

C
o
n

fi
rm

In
it

E
x

tr
a
S

lo
w

C
o
n

fi
rm

A
u

to
C

o
n

fi
rm

M
1
6

O
1

W
ri

te
M

o
d
e
(A

u
to

)

O
2

W
ri

te
M

o
d
e

(A
u

to
)

E
x

tr
a
S

lo
w

C
o
n

fi
rm

M
a
n

u
a
lF

S
C

o
n

fi
rm

M
1
7

O
1

W
ri

te
M

o
d
e
(M

a
n

u
a
lF

S
)

O
2

W
ri

te
M

o
d
e

(M
a
n

u
a
lF

S
)

E
x

tr
a

S
lo

w
C

o
n

fi
rm

A
u

to
S

ta
te

M
2

0
O

1
S

ta
rt

In
A

u
to

()

O
2

S
ta

rt
In

A
u

to
()

1
2

M
a
n

u
a
lF

S
C

o
n

fi
rm

S
o

ft
H

a
lt

M
a
n

u
a
lF

S
C

o
n

fi
rm

E
x
tr

a
S

lo
w

C
o

n
fi

rm
M

1
8

O
1

W
ri

te
M

o
d
e
(E

x
tr

a
S

lo
w

S
p

e
e
d
)

O
2

W
ri

te
M

o
d
e

(E
x
tr

a
S

lo
w

S
p

e
e

d
)

1
6

A
u

to
C

o
n

fi
rm

E
va

lu
a

te
H

a
lt

A
u

to
C

o
n

fi
rm

E
x
tr

a
S

lo
w

C
o

n
fi

rm
M

1
9

O
1

W
ri

te
M

o
d
e
(E

x
tr

a
S

lo
w

S
p

e
e
d
)

O
2

W
ri

te
M

o
d
e

(E
x
tr

a
S

lo
w

S
p

e
e

d
)

1
5

E
x
tr

a
S

lo
w

C
o

n
fi

rm
e

d
D

E
F

in
a
l

E
x

tr
a
S

lo
w

C
o
n

fi
rm

e
d

A
u

to
C

o
n

fi
rm

M
2
1

O
1

W
ri

te
M

o
d
e
A

u
to

()

O
2

W
ri

te
M

o
d
e

A
u

to
()

E
x

tr
a
S

lo
w

C
o
n

fi
rm

e
d

M
a
n

u
a
lF

S
C

o
n

fi
rm

M
2
2

O
1

W
ri

te
M

o
d
e
(M

a
n

u
a
lF

S
)

O
2

W
ri

te
M

o
d
e

(M
a
n

u
a
lF

S
)

E
x

tr
a

S
lo

w
C

o
n

fi
rm

e
d

A
u

to
S

ta
te

M
2

6
O

1
S

ta
rt

In
A

u
to

()

O
2

S
ta

rt
In

A
u

to
()

7
P

re
M

a
n

u
a
lF

S
D

is
a

b
le

d
P

re
M

a
n

u
a
lF

S
E

x
tr

a
S

lo
w

C
o
n

fi
rm

M
2
3

O
1

W
ri

te
M

o
d
e

(E
x
tr

a
S

lo
w

S
p

e
e

d
)

O
2

W
ri

te
M

o
d
e

(E
x
tr

a
S

lo
w

S
p

e
e

d
)

1
8

M
a
n

u
a
lF

S
C

o
n

fi
rm

e
d
S

o
ft

S
to

p
M

a
n

u
a
lF

S
C

o
n

fi
rm

e
d

E
x
tr

a
S

lo
w

C
o

n
fi

rm
M

2
4

O
1

W
ri

te
M

o
d
e
(E

x
tr

a
S

lo
w

S
p

e
e
d
)

O
2

W
ri

te
M

o
d
e

(E
x
tr

a
S

lo
w

S
p

e
e

d
)

8
A

u
to

C
o

n
fi

rm
e
d
E

va
lu

a
te

H
a

lt
A

u
to

C
o

n
fi

rm
e
d

E
x

tr
a
S

lo
w

C
o
n

fi
rm

M
2

5
O

1
W

ri
te

M
o

d
e
(E

x
tr

a
S

lo
w

S
p

e
e
d
)

O
2

W
ri

te
M

o
d
e

(E
x
tr

a
S

lo
w

S
p

e
e

d
)

 16
4

 T
ab

le
 4

9
R

es
u

lt
s

fr
om

 k
il

li
n

g
m

ut
an

ts
 w

it
h

sn
ea

k
-p

at
h

 t
es

ti
n

g
–

ab
st

ra
ct

 t
es

t
m

od
el

S
ta

te

m
a

ch
in

e
 I

D
T

e
st

 c
a
se

 f
ro

m

st
a
te

 m
a
ch

in
e

F
ro

m
 s

ta
te

T
o

 s
ta

te
M

u
ta

n
t

O
ra

cl
e

K
il

le
d
 b

y
 o

p
e
ra

ti
o
n

3
M

a
n

u
a
lF

S
E

n
a
b

le
d

M
a
n

u
a
lF

S
E

x
tr

a
S

lo
w

M
1
8

O
1

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

O
2

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

M
a
n

u
a
lF

S
E

x
tr

a
S

lo
w

M
2
3

O
1

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

O
2

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

M
a
n

u
a
lF

S
E

x
tr

a
S

lo
w

M
2
4

O
1

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

O
2

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

5
A

u
to

E
n

a
b
le

d

A
u

to
E

x
tr

a
S

lo
w

M
1

9
O

1
N

/A
 -

 i
n

fe
a

si
b
le

 t
e
st

 c
a
se

O
2

N
/A

 -
 i

n
fe

a
si

b
le

 t
e
st

 c
a
se

A
u

to
E

x
tr

a
S

lo
w

M
2
5

O
1

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

O
2

W
ri

te
M

o
d
e

(E
x

tr
a
S

lo
w

S
p
e

e
d
)

7
E

x
tr

a
S

lo
w

In
it

E
x
tr

a
S

lo
w

A
u

to
M

1
6

O
1

W
ri

te
M

o
d
e

(A
u

to
)

O
2

W
ri

te
M

o
d
e

(A
u

to
)

E
x
tr

a
S

lo
w

M
a

n
u

a
lF

S
M

1
7

O
1

W
ri

te
M

o
d
e

(M
a
n

u
a

lF
S

)

O
2

W
ri

te
M

o
d
e

(M
a
n

u
a

lF
S

)

E
x
tr

a
S

lo
w

A
u

to
M

2
0

O
1

S
ta

rt
In

A
u

to
()

O
2

S
ta

rt
In

A
u

to
()

E
x
tr

a
S

lo
w

A
u

to
M

2
1

O
1

W
ri

te
M

o
d
e

A
u

to
()

O
2

W
ri

te
M

o
d
e

A
u

to
()

E
x
tr

a
S

lo
w

M
a

n
u

a
lF

S
M

2
2

O
1

W
ri

te
M

o
d
e

(M
a
n

u
a

lF
S

)

O
2

W
ri

te
M

o
d
e

(M
a
n

u
a

lF
S

)

E
x
tr

a
S

lo
w

A
u

to
M

2
6

O
1

S
ta

rt
In

A
u

to
()

O
2

S
ta

rt
In

A
u

to
()

165

11.3 Summary

In this chapter, sneak-path testing [31] was applied to the SUT. Recall that 11 of 26 seeded

faults were sneak-paths.

Complementing state-based testing (Chapter 8–10) with sneak-path testing at an

additional cost in preparation and execution time resulted in that the remaining 11 mutants

were killed – those 11 mutants were not killed by any of the six state-based coverage criteria.

Execution of the sneak-path test suite on the abstract model killed 10/11 sneak-paths. This

was, however, due to an infeasible test case.

Being equal to the number of states in the SUT, the cost of sneak-path test suites are rather

inexpensive as compared to the state-based coverage criteria investigated in this study. Recall

that the length of each test case depends on two matters: (1) the length of the path that must be

traversed in order to reach the particular state to be tested, and (2) the number of known

unexpected events for the state.

The results presented in this chapter demonstrate that the testing strategies are

complementary in order to catch different types of faults. Thus, the results indicate quite

strongly that sneak-path testing is a necessary step in state-based testing due to the following

observations: (1) the proportion of sneak paths in the collected fault data was high (42 %),

and (2) the presence of sneak paths is undetectable by conformance testing.

Our results support the recommendation of Binder [31] and the conclusions drawn in the

study of Mouchawrab et al. [92]: Testing sneak paths is an essential component of state-based

testing in practice. The additional cost is justified by the positive influence on fault-detection

effectiveness.

The next part (Part IV) will now present lessons learned, threats to validity, conclusions,

and, finally, future work.

Conclusions: The obtained results confirm the importance of including sneak-path

testing to improve fault-detection effectiveness of state-based testing, and strongly

indicate that sneak-path testing is a necessary step in state-based testing.

166

PART IV – SUMMARY

Introduction

In this final part (Part IV), we will read about challenges and likely benefits of TRUST in

particular and SBT in general, presented as lessons learned in Chapter 12. Threats to validity

are discussed in Chapter 13. Conclusions of this thesis are presented in Chapter 14. Finally,

Chapter 15 addresses future work.

167

12 Lessons Learned

This chapter reports the lessons learned from modeling to facilitate automatic testing, and

from execution of the automatically generated test suites.

12.1 Remove Illegal State Combinations and Infeasible Transitions from the Flattened State Machine

We experienced that numerous test cases failed due to infeasible paths. Infeasible test cases

exist in the generated test suites because of guards on certain paths that cannot be satisfied.

There are mainly two reasons for why the guards on the illegal test cases cannot be satisfied:

(1) due to illegal state combinations, and (2) because of wrong test data.

One example can be given from the ATP test suite used with the weakest oracle O2

generated from the abstract test model: An infeasible transition from state AutoEnabled to

state AutoDisabled triggered by the event ClearEnableDevice guarded by [mode<>A

and modeSoftStop = false]. This particular transition is infeasible because of the

guard which requires that the mode is not Auto.

Lesson learned: Ensure that all illegal state combinations are removed from a flattened

state machine. Moreover, closely inspect the flattened state machine to ensure that no

transition exists whose guard is in conflict with the source state of the transition.

12.2 Modeling and Coding to Facilitate Automation of State-Based Testing

Certain modeling aspects can be challenging to state-based testing. This section addresses

examples of such aspects.

Example 1: Figure 50 shows a state machine consisting of transition t1, sourced in state A

and targeted in state B; and transition t2, sourced in state A and targeted in state C. Both

transitions are triggered by event e1. Transition t1 is guarded by g1, whereas t2 is guarded

by g2. A typical state-based test case TCa would put the SUT in state A, invoke the event e1,

and expect the SUT to transition to state B, if the guard g1 is satisfied. Another test case TCb

would put the SUT in state A, invoke event e1, and then expect the SUT to transition to state

C, if guard g2 is satisfied. However, if the guards are mutually exclusive, we have a problem

as the SUT will transition in both test cases independent of the evaluation of the guards. Let

us say that guard g1 contains the following expression: x = true, and guard g2 contains: x

= false. This means that test case TCa will fail if x = false because the SUT will

transition to state C. This is correct behavior of the SUT, but will, however, cause erroneous

168

failure of test cases. Hence, in order to successfully test the two transitions, it is necessary to

provide the necessary test data to force a particular path according to the test case.

Example 2: Another modelling aspect that can cause a test case to fail even though the

SUT behaves correctly is the use of a particular type of event; the completion event (i.e.,

events that are the completion of state behaviour). The state machine presented in Figure 51

illustrates a situation where a transition is triggered by the completion event from state E. Test

case TCc checks if the SUT transitions to state E from state D via transition t3. Now, if state E

has an outgoing transition t4 targeted in state F with no explicit event other than the

completion event, the SUT will immediately transition to F unless state E has state behaviour.

In this situation, TCc will fail because the resulting state is F and not the expected state E.

This means that in order for TCc to pass, the test data must be forced to not satisfy g1 at the

point state E is reached and exit of the state is triggered by the completion event.

Figure 51 Example 2 – Modeling Challenges related to Automatic Test Case Generation

A B

C

t1 e1 [g1]

t2 e1[g2]

Figure 50 Example 1 – Modeling Challenges related to Automatic Test Case Generation

D E t3 e1 t4 [g1] F

169

Example 3: The simple transition type and the compound transition type are not always

separated when being referred to in the UML 2.0 specification. This may cause confusion for

instance in relation to the initial pseudostate connected to choice points as the initial state is

defined to have only one outgoing transition. TRUST did not support test-case generation

from state machines having choice points, and as the UML 2.0 specification [124] was to

some extent vague about the different types of transitions, several questions regarding

outgoing transitions from initial state were raised. Unfortunately, the flattening component of

TRUST wrongly resolved, as illustrated in Figure 52, choice points by redirecting each

outgoing transition from a choice point to the target of the incoming transition to that choice

point.

This misunderstanding was, however, clarified with Selic from the OMG group who

stated the following: “A transition in UML is a directed arc between two nodes in the graph –

whether or not the nodes are proper states or pseuedostates. So, the arc between the initial

state and the choice point is a fully-fledged transition. A path from the initial psuedostate

through the choice point and to a state is known as a compound transition.”

In our project, all these cases were re-modelled by adding a new state without behaviour

to replace the choice point as shown in Figure 53.

[g2]

[g3] [g1]

B

A C
[g3] [g2] [g1]

CB A

Figure 52 Example of Wrong Interpretation of the UML 2.0 Superstructure

170

Lesson learned: Ensure that the required test data are correctly selected not only in prior

to invoking the event as to enable firing of the transition (Example 1), but also at the point the

target state has been reached (Example 2) in order to prevent the next transition to be fired

and thus to keep the system in the target state of a test case. Finally, we experienced the UML

2.0 specification [124] to be vague in the description of the different types of transitions

(example 3). As the tool we applied did not support test case generation from state machines

including choice points, one of the questions we had was regarding how to remodel and

resolve this kind of construct. As a choice point may not be resolved by merging the incoming

and outgoing transition to and from the choice point, our best solution was to replace the

choice point with a new state without behaviour.

12.3 Improving the Model/Code through Iterative State-Based Testing

The general idea in model-based testing is to have a model of the SUT that represents its

intended behavior. This model should be at a higher abstraction level than the SUT. A test

model with less precision eases its validation according to SUT behavior before generating

tests from it. A trade-off in model-based testing is thus to find the balance between the test

model abstraction level and the fault-detection ability of the test suites generated from this

model [36].

In this study, however, the test model of the SUT was in fact a precise model of the SUT

behavior. This provided us with test suites that capture the behavior of the SUT at a detailed

level. During initial testing of the SUT, results showed that several test cases failed. We found

that the flattened model of the SUT contained errors. Analyzing test cases that failed helped

G

H [X = FALSE]

G

H [X = FALSE]

[X = TRUE]

I

[X = TRUE]

Figure 53 Example 3 – Modeling Challenges related to Automatic Test Case Generation

171

us to identify illegal state combinations, infeasible transitions, and transitions with incomplete

guard expressions.

For our case studies, precise behavioral modeling of complex industrial systems using

standard UML 2.0 state machines was a prerequisite for using TRUST. The flattening

component requires that it is provided with a correctly specified state machine and currently

does not provide any feedback in case of errors in the model. Modeling correctly, however, is

not a trivial task and requires that the UML specification be carefully studied. Even though

constructs like concurrency and hierarchy are supposed to ease the understandability of large

state machines, such constructs may actually confuse the developer. In particular, we

experienced that concurrency, if not carefully applied, could introduce modeling errors in

practice. For example, concurrent regions sometimes make it difficult to see the set of

transitions between state combinations. A typical fault is that a guard is missing on a

transition, which allows for transitions to state combinations that are illegal targets from

particular source states. However, we found that it helped to inspect the flattened state

machine to detect such mistakes.

Lesson learned: We experienced that iterative state-based testing can contribute in

developing models and code of higher quality in that testing the code based on the model

detects inconsistencies between model and code.

12.4 Test Results provided by the Oracle

Existing research do not report experiences on execution details. This section provides

information regarding the usefulness of the provided information provided by the

implementation of our oracles.

The following information was provided as a result of how we implemented the oracles:

(1) the test case number, (2) whether the test case passed of failed, (3) if the test case failed,

the operation that implemented the event on the transition that caused the test case to fail was

reported, and (4) if the test case failed, the reason for why the test case failed – that is, either

violation of the state invariant or the SUT being in the wrong state.

The reported information eased the analysis of the un-killed mutants in that the relevant

test case could be examined. Moreover, as the operation that caused the test case to fail was

explicitly stated, the specific position in the test case could be quickly identified. We used this

information to stop the re-run of the execution at that particular place in the code to identify

the reason for why the test case failed.

172

Lesson learned: Reporting the particular test case number, the class where the fault

occurred, and the specific operation that caused the test case to fail, was experienced as highly

useful in the analysis of the test cases.

12.5 Practical Issues – Visual Studio caused Re-Run of Test-Suites

Executing the test suites in Microsoft Visual Studio 2008 in combination with the Java Virtual

Machine was extremely time-consuming as the results were only partially reported. We had to

re-execute the test suites numerous times in order to collect complete test results.

Lesson learned: JVM and Microsoft Visual Studio 2008 is not an optimal combination.

Other environments for executing test drivers should be explored.

13 Validity

Empirical studies of cost-effectiveness introduce validity concerns. It is thus important to

identify possible threats to validity to increase the awareness regarding this particular matter

when interpreting the results. Furthermore, prospective replications of the study may then

alter the study design in order to address problematic threats. The subsequent sections discuss

what the author of this thesis considers as threats to the validity.

13.1 External Validity

External validity concerns to what extent it is possible to generalize the findings, and to what

extent the findings are of interest to other people outside the investigated case [122], i.e., to

whether a domain exists to which the results are relevant. But how is it possible to generalize

from a single case? Yin [64, p. 10] provides the following answer:

The short answer is that case studies, like experiments, are generalizable to theoretical

propositions and not to populations or universes. In this sense, the case study, like the experiment,

does not represent a “sample”, and in doing a case study, your goal will be to expand and

generalize theories (analytic generalization) and not to enumerate frequencies (statistical

generalization).

As stated by Runeson and Höst [122], for case studies, the intention is to enable analytical

generalization where the results are extended to cases which have common characteristics and

hence for which the findings are relevant, i.e., defining a theory.

173

The main strength of this study is, in fact, its external validity. Two factors in particular

increase the external validity, namely the industrial context and the use of real faults when

evaluating the testing strategies. The system in focus of this thesis is highly representative of

control systems with state-based behavior thus improving the external validity. It is important

to provide detailed context descriptions, like system characteristic, development and testing

procedures, such that others can relate the results to their own context. This information was

provided in 7.2. Moreover, in contrast to the majority of existing studies, applying artificial

faults, the faults used in this study are real faults collected in a field study conducted in ABB

(Section 7.2.7.2). In spite of these two factors, however, there are several issues that should be

discussed.

First of all, let us consider the SUT. As stated by Briand et al. [22]: “Results will always,

by definition, be specific to the SUT”. An obvious threat to the external validity of this study,

which reduces its potential for contributing with general results, is the fact that only one

system was used in the evaluation. Even though it is a highly appropriate and relevant case, as

it was developed by an external industry group; it is large, it represents a real system, and it is

of real world importance, drawing general conclusions is not possible from this one case.

However, although the obtained results are specific to the SUT, it is an example of a typical

control system. The characteristics of the selected system are expected to be similar for many

control systems, which may increase possibility of these results to be valid for these types of

systems. The SUT was entirely modeled using Boolean and enumerated variables, which most

certainly affects obtained results and makes it impossible to generalize the results to systems

that, for example, contain numeric variables and constraints. This implies that the results may

not be valid for control systems that make use of other types of variables.

In previous studies where artificial mutation operators have been applied in the evaluation

of testing strategies, the question of its impact on the external validity has been raised. The

use of real faults when generating mutant programs is not common practice. In this study,

however, we purely used real faults to generate mutants. Although only 26 mutants were

applied in this study, the seeded faults were real and manually extracted from a field study as

described in Chapter 7. But again, it is not certain that the results apply to other organisations

as it depends on the developer what kind of faults that are introduced to a system. Hence,

further studies are necessary to increase the external validity of the results. Having the

preparation and execution time in mind, the feasibility of the study will be threatened by a

dramatic increase in number of mutants. To avoid masking of faults, only one fault was

seeded per mutant program. Thus, like studies presented in related work (see Table 1), this

174

study only evaluates the detection of single faults. Complex fault patterns have not been

studied in this thesis.

Also note that the SUT was developed in C++. The results may vary for other

programming languages.

Nevertheless, the results are believed to be representative for control systems and can be

used to guide readers when selecting testing strategies. As for any empirical studies, however,

this study should be replicated for other types of faults and other control systems in order to

make the results stronger and prove the results relevant for other similar projects.

13.2 Internal Validity

Internal validity is “of concern when causal relations are examined” [122]. Investigated

variables may also be affected by extraneous variables, confounding factors, not accounted

for in the study, thus a threat to the internal validity. What is observed should be attributed to

the studied variable and not to potential confounding factors. Internal validity thus concerns

situations where the researcher examines the influence of factor A on factor B, when in fact

factor C also has an impact on factor B. Threats to validity occur when the researcher is not

aware of factor C, but concludes that factor A caused factor B.

A threat to internal validity is the fact that the author of this thesis was the subject in the

case studies. The rationale for this being lack of resources and a general lack of state-based

testing experience in the company. Also important to notice is that the purpose of the case

studies was to demonstrate the possible gains ABB could retrieve by applying state-based

testing in the future. That is, the main purpose was not to study the interaction between the

tester and the technology – the focus was directed towards the actual achievements that could

be obtained with respect to cost-effectiveness by introducing state-based and sneak-path

testing. The industry needs help in introducing new techniques, and this is one pragmatic

approach in order to demonstrate possible advantages of this particular technique.

One detected risk in terms of internal validity was the possible randomness in the obtained

results for three of the coverage criteria AT, RTP, and ATP. This issue was handled by

generating 30 test trees for those coverage criteria, thus replicating the experiment for these

criteria 30 times. Statistical hypothesis testing was applied to the collected data to identify

whether or not significant differences were present between the three criteria.

Another threat to internal validity in this study could be related to the fault-detection rate

due to the fact that both the generation of test cases and the insertion of faults to develop

175

mutants were conducted by the author. Because of this, the author could potentially influence

the implementation of the test suites as to be better at detecting certain types of faults. Ideally,

generation of test cases and fault seeding should be conducted by different people.

Nevertheless, as the test suites were automatically generated by following known algorithms,

this is not considered being a threat – the implementation of the algorithms do not suffer a

great risk of being manipulated in favour of detecting specific faults and should be

independent of the person who implements it. Furthermore, the seeded faults were actual

faults introduced by developers from ABB. Hence, the author had no impact on the seeded

faults.

The final threat to internal validity, that we are aware of, is related to the fault-detection

ability due to the problem of infeasible test cases. This particularly regards test suites

generated from the abstract test model due to little control over internal states. In future

studies, more advanced test case selection must be applied in order to remove infeasible test

cases, and moreover, ensure that the coverage is retained after removing infeasible test cases.

13.3 Construct Validity

Construct validity regards to what extent the operational measure that are studied really

represent what the researcher have in mind and what is investigated according to the research

questions [122]. That is, it concerns the establishment of correct operational measures for the

concepts being studied. Wrong choices may affect the quality of the results.

Efforts were made to increase the construct validity in this study. Triangulation – the use

of multiple data sources – helps to ensure construct validity. Several surrogate measures were

selected to describe cost. Moreover, the selected measures are commonly known measures in

cost-effectiveness studies in the field of software testing. In this study, like in similar

experiments (e.g., [12]), cost and effectiveness were measured using surrogate measures. Cost

was measured using not only test-suite size but also the time spent on preparing and executing

the test suites. Effect was measured by the ability of the test suites in detecting faults.

However, as stated by Andrews et al. [28], test-suite size as a measure may fail to capture

all dimensions of testing cost when considering different coverage criteria since it may be

more difficult to find test cases that achieve some coverage criteria than others. In order to

address this issue, selecting the most optimal test trees may reduce the validity threat. This

was not done in this study, and hence, a validity threat can be non-representative figures for

cost as compared to effect.

176

13.4 Reliability

Recall from Chapter 7 that reliability concerns to what extent the data and the analysis are

dependent on the specific researchers [122], e.g., unclear descriptions of data collection

procedures such that later replications of the study could give different results. This is

addressed by providing as detailed design and description of analysis procedures as possible.

177

14 Conclusions

State-based testing based on UML models in industry is not yet a widespread practice. Even

though the use of tools for execution of more intelligent testing is slowly increasing, common

practice is often based on manual testing approaches. Moreover, to avoid the undesirable

cohesion between the skills of a tester and the quality of the testing, the use of SBT in

combination with proper tools facilitate sound, predictable testing that is somewhat

independent of the individual tester.

Existing research has not yet reached a point where useful guidelines are developed as to

advice organizations, not only on how and when to proceed with SBT, and what kind of SBT

to apply, but also on how and when to combine SBT with other types of testing. More studies,

to be suggested in Chapter 15, are essential prerequisites for creating such guidance to support

practitioners when deciding upon which strategy to use. The findings in this thesis, however,

contribute to such work by comparing SBT criteria under different oracle and test model

conditions.

An empirical evaluation on the cost and fault-revealing capabilities of six state-based

coverage criteria applied with two different oracles was presented in this thesis. The following

coverage criteria were evaluated: all transitions (AT), all round-trip paths (RTP), all transition

pairs (ATP), all paths of length two (LN2), all paths of length three (LN3), and all paths of

length four (LN4). Moreover, the testing strategies were applied to both a precise model of the

SUT and to less detailed model of the SUT where sub states and their belonging transitions

were removed from super states.

The study was conducted in cooperation with the ABB Corporate Research Center in

Norway (NOCRC) where a UML state-based technique was applied when developing the

subsystem of a safety system for controlling a machine. The combinations of test coverage,

oracle and model, as described in the previous paragraph, were then evaluated using mutation

analysis with real faults extracted from a global field study at ABB, allowing us to compare

the cost-effectiveness for the generated test suites. Test suites were automatically generated

by using the model-based testing tool TRansformation-based tool for Uml-baSed Testing

(TRUST). TRUST was developed motivated by the lack of extensible and configurable

model-based testing tools. The software architecture and the implementation strategy of

TRUST facilitate its customization to different contexts by supporting configurable and

extensible features such as input models, test models, coverage criteria, test data generation

strategies, and test-scripting languages.

178

Reported in this thesis, are results and experiences that may be helpful when selecting

coverage criteria, type of oracle, and the level of details in the test model. As most studies

evaluating coverage criteria are based on artificial mutation operators, this thesis contributes

with its results from applying real faults on a module of a system from an industrial context.

The subsequent sections summarize the results from each of the case studies presented in

Chapter 8–11.

14.1 Case Study 1 – What is the Cost-Effectiveness of the State-Based Coverage Criteria All Transitions,

All Round-Trip Paths, All Transition Pairs, Paths of Length 2, Paths of Length 3 and Paths of Length 3?

This chapter concerned cost-effectiveness of the state-based coverage criteria all transitions

(AT), all round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of

length 3 (LN3) and paths of length 4 (LN4) when applied to a detailed state-based test model

using oracle O1.

Results showed that LN2 provided the smallest test suite (27 test cases); whereas ATP

generated the largest test suite (1,425 test cases). The median among the test-suite sizes was

232 test cases.

In compliance with the test suite sizes, LN2 had the lowest mean values for preparation

time (126 seconds). The highest value, 28,819 seconds, was observed for ATP. Criteria LN3

(509 seconds) and RTP (531 seconds) had quite similar values. A large increase from LN3

and RTP was seen for AT (3,995 seconds). The second highest measure collected for

preparation time was LN4 with 5,295 seconds.

Results show for execution time that, again, LN2 provided the lowest value (18 seconds).

LN3 was measured to 136 seconds, followed by RTP with 489 seconds. Almost doubling the

time seen for RTP, LN4 was measured to use 850 seconds on executing the test suite. The

second highest time was measured for AT – 2,455 seconds. Finally, execution of the ATP test

suite took 3,341 seconds.

Considering the mutation score results ranked by mean from low to high, results showed

that LN2 performed significantly poorer than the other coverage criteria (5/15 killed mutants).

A large gap was to be found between LN2 and the next result; LN3 killed 14/15 of the

mutants. Quite similar, AT resulted in a high mutation score mean, 0.997. The best mutation

score mean came with RTP, ATP, and LN4 – all mutants were killed.

The paired Wilcoxon signed-rank test was applied to the replicated data, i.e., for AT, RTP,

and ATP. All tests executed on preparation and execution time resulted in significantly

179

different results – ATP spent significantly more time on both preparation and execution of the

test suites than AT and RTP. No significant differences were found in data collected on

mutation score.

Conclusions: The results indicate that LN2 might be too weak as a testing strategy.

The other testing strategies performed similar with respect to mutation score, but with

varying costs – ATP was the most expensive criterion. Having rather similar cost-

effectiveness, LN3 and RPT were suggested by the results as the most cost-effective

strategies.

180

14.2 Case Study 2 – How does Varying the Oracle Affect the Cost-Effectiveness?

Case study 2 addressed research question 2 regarding how two different oracles influenced the

cost-effectiveness of state-based testing when using the strategies all transitions (AT), all

round-trip paths (RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3

(LN3) and paths of length 4 (LN4) on a detailed state-based test model.

Overall, varying the oracle shows that there were small differences in the preparation

time. Three of six criteria spent similar or slightly more time when using oracle O2, whereas

the remaining three criteria spent slightly less time when using oracle O2. Execution time, on

the other hand, was significantly lower when applying oracle O2. Large cost savings was

achieved. However, the higher mutation score was negatively affected. For all strategies,

oracle O2 obtained lower mutation score means than oracle O1. The greatest difference was

found in results for LN2 (149.8 percent difference), followed by ATP (36.9 percent

difference). Rather similar differences were seen among LN3 (27.2 percent), AT (25.3

percent), RTP (25 percent), and LN4 (25 percent).

For both oracles, AT, RTP and LN4 performed best in terms of mutation score. Of those

three strategies, RTP was the least expensive followed by LN4 and then AT. ATP was as

effective as AT, RTP, and LN4, but only when applying O1. ATP in combination with O2

achieved a slightly lower mutation score. Note, however, that ATP was the most expensive

strategy. Although a slightly lower mutation score was obtained for O1, LN3 also achieved a

good cost-effectiveness – in particular when looking at the cost. Finally, LN2 not only

appeared to be the least expensive but also the weakest strategy from a fault-detection

perspective.

As we have seen, the combinations of coverage criterion and oracle significantly impact

the cost and fault-detection effectiveness of the testing strategies in different directions, in

particular the execution cost. We found that the most cost-effective strategy in this study was

RTP combined with oracle O1. Note, however, that LN3 combined with O1 obtained cost-

effectiveness comparable to RTP.

Conclusions: Minor differences in preparation time were observed when applying

oracle O2. Execution time, on the other hand, was significantly lower when applying

oracle O2 for all six strategies. The large cost savings when using O2, however, had a

negative impact on the effectiveness.

181

14.3 Case Study 3 – What is the Influence of the Test Model Abstraction Level on the Cost-Effectiveness?

This chapter addressed whether or not varying the level of details in test models affect the

cost-effectiveness of the state-based coverage criteria all transitions (AT), all round-trip paths

(RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3) and paths

of length 4 (LN4). Both oracles that were applied in Case Study 2 were also applied in this

study.

Results showed that the test-suite sizes significantly decreased when abstracting the test

model. However, the number was further reduced by the fact that infeasible test cases were

introduced as a result of the sub states being removed in the abstract test model. This implied

less control over test data with respect to externally controlled variables and caused infeasible

test cases. Only feasible test cases were included in the results.

For oracle O1, the greatest reduction in test-suite size was seen for AT (from 166 to 17

test cases), closely followed by ATP (1425 to 192 test cases). RTP was reduced from 299 to

66 test cases. The LN4 test suite was reduced from 764 to 415 test cases. The remaining

strategies were not affected to the same extent; LN2 and LN3 were reduced, by 14.8 and 29.4

percent, respectively. By using oracle O2, the difference in test-suite sizes was overall lower

due to lower number of infeasible test cases as compared to using oracle O1, but quite

consistent with the results for O1.

Across all criteria, results showed that it takes significantly shorter time for all strategies

to prepare test suites from the abstract test model as compared to the complete test model. The

greatest difference was seen for ATP (96 percent for both O1 and O2), closely followed by

AT (95 percent for O1 and 94 percent for O2). RTP was reduced by 62 percent for O1 and 64

percent for O2. Also LN2, LN3, and LN4 spent less time on generating test suites from the

abstract model (from 26 to 40 percent reduction as compared to the complete model).

We saw a similar trend for execution time with great differences between the times spent

on executing the test suites generated from the abstract model as compared to the complete

model. The largest reduction was achieved by AT (97 percent for O1 and 96 percent for O2),

followed by ATP (88 percent for O1 and 80 percent for O2), and RTP (85 percent for O1 and

77 percent for O2). When O1 was combined with the abstract model for LN2, LN3, and LN4,

results show that the preparation times were reduced by 11 percent, 38 percent, and 22

percent, respectively. No difference was found between the abstract and complete model

when applying O2 to LN2. A minor reduction was found for LN3 (4 percent). The execution

time for LN4, on the other hand, was increased by 6 percent.

182

Significantly smaller test-suite sizes were found for the abstract model versus the

complete model for LN2, LN3, and LN4 contra AT, RTP, and ATP. Thus, smaller differences

in execution and preparation time would be expected results.

Comparing the two oracles applied to the abstract test model provided rather consistent

results as compared to what was seen for the complete test model: Differences in preparation

time for the abstract model was in the range from -5 percent to 2 percent compared to -7

percent to 4 percent for the complete model. Regarding execution time, we saw a similar

correlation between the abstract and the complete model – for the abstract model, test suites

combined with O2 spent from 68 percent to 74 percent less time on execution compared to

O1, whereas test suites generated from the complete model combined with O2 spent 72

percent to 83 percent less time on execution compared to O1.

An overall trend in the results for mutation score was that the abstract test models

obtained lower mutation score means than what were achieved by the complete test models.

The non-paired Wilcoxon signed-rank test was applied to the replicated data, i.e., for AT,

RTP, and ATP. Overall, i.e., considering the three strategies combined with each of O1 and

O2, significant differences were found for each of preparation time, execution time and

mutation score. Significance was found for α = 0.01. Test suites generated from the complete

model required both higher preparation and execution time (large effect sizes were found for

both measures). On the other hand, the complete models achieved higher mutation scores.

To summarize, the results showed that ATP applied to a detailed model is an expensive

strategy. The high fault-detection effectiveness may be at a too high cost. When combined

with the abstract model, cost was significantly reduced. The effectiveness was also reduced,

but not as much as the cost. On the other extreme, LN2 had the lowest cost but also the lowest

effect; at least for the complete model. Results for the abstract model combined with oracle

O1 showed similar results to what was found for AT applied to the abstract model. The level

of details in the model had an enormous impact on the cost and effectiveness for AT; all

mutants were killed by AT when using the complete model, although at a large increase in

cost. The complete model combined with oracle O1 obtained as good mutation score as ATP

and AT also for RTP and LN4. Of these, RTP had the lowest costs. Overall, the abstract

model performs better with oracle O1.

AT, RTP, ATP, and LN4 all provided the highest mutation scores when generated from the

complete model used with oracle O1. Of these, RTP had the lowest costs. Using the weaker

oracle O2, still based on the complete test model, the effectiveness was slightly reduced: AT,

RTP, and LN4 killed 80 % of the mutants. Regarding the abstract test model, we saw that

183

LN3, LN4, RTP, and ATP killed 87 % of the mutants – the cost of ATP was dramatically

reduced as compared to the test suites generated from the complete model.

14.4 Case Study 4 – What is the Impact of Sneak-Path Testing on the Cost-Effectiveness?

In Case Study 4, sneak-path testing was applied to the SUT. Recall that 11 of 26 seeded faults

were sneak paths.

Complementing state-based testing (Chapter 8–10) with sneak-path testing at an

additional cost in preparation and execution time resulted in that the remaining 11 mutants

were killed – those 11 mutants were not killed by any of the six state-based coverage criteria.

Execution of the sneak-path test suite on the abstract model killed 10/11 sneak paths. This

was, however, due to an infeasible test case.

Being equal to the number of states in the SUT, the cost of sneak-path test suites are rather

inexpensive as compared to the state-based coverage criteria investigated in this study. Recall

that the length of each test case depends on two matters: (1) the length of the path that must be

traversed in order to reach the particular state to be tested, and (2) the number of known

unexpected events for the state.

The results from this case study demonstrate that both conformance testing and sneak-path

testing are complementary in order to detect faults of varying nature. Thus, the results indicate

quite strongly that sneak-path testing is a necessary step in state-based testing due to the

following observations: (1) the proportion of sneak paths in the collected fault data was high

(42 %), and (2) the presence of sneak paths is undetectable by conformance testing.

Our results support the recommendation of Binder [31] and the conclusions drawn in the

study of Mouchawrab et al. [92]: Testing sneak paths is an essential component of state-based

testing in practice. The additional cost is justified by the positive influence on fault-detection

effectiveness.

Conclusions: Reducing the level of detail in the test model significantly influences the

cost-effectiveness. Results show that both costs and fault-detection ability are lower for

test suites generated from the abstract model as compared to the complete model.

184

Conclusions: The obtained results confirm the importance of including sneak-path

testing to improve fault-detection effectiveness of state-based testing, and strongly

indicate that sneak-path testing is a necessary step in state-based testing.

185

14.5 Summary

In summary, this thesis complements and extends existing research on the cost-effectiveness

of SBT by:

 developing an extensible and configurable model-based testing tool,

 using an industrial safety-critical control system,

 using real faults collected from a global, industrial field study when evaluating testing

strategies,

 comparing six state-based coverage criteria,

 performing a comparison of two test oracles,

 studying the impact of varying the test model abstraction level on cost and

effectiveness, and

 studying the benefits of sneak-path testing.

We experienced that the iterative process of generating tests from the specifications was

useful in finding inconsistencies not only between the model and the implementation, but also

in detecting ambiguities in the specifications. Furthermore, the use of SBT enables predictable

testing which is repeatable, and automation in particular enables thorough, systematic testing

that may seem impossible to conduct manually. On the other hand, the benefits do not come

for free – initial investments not only include training and tool setup; the use of tools also

comes with the cost of initial mappings between the test model and the specific programming

language, and the cost of test-data generation. Although state-based testing requires an initial

investment, changing the test cases for re-test according to changes in the model and code is

not as labor intensive as compared to manual testing.

The choice of selecting the type of testing strategy, oracle, and test model abstraction level

depends on several factors such as the criticality of the SUT, and the available resources and

time. As both cost and effectiveness are reported in this thesis, it is hoped that the presented

results will be useful when considering the use of SBT.

Ultimately, Chapter 15 presents suggestions for future work.

186

15 Future Work

This chapter suggests areas that deserve more focus in future work identified from the gap in

existing research and during execution of this study.

15.1 Oracles

When searching for related work, few studies were identified that compare test oracles

applied in an SBT-context. A test oracle can check the output of a test in different detailed

levels. As we have seen in the few existing studies and from the results of this thesis, the

choice of oracle influences both cost and effectiveness. In what way varying the oracle will

influence fault detection of the applied test coverage criteria, should be further studied.

15.2 Test Models

There is a lack of research on the interesting aspect of comparing test models of different

levels of detail. Several studies focus on reducing the test suite using various reduction

techniques. In this thesis, however, we investigate the fault-detection effectiveness of reduced

test suites based on a different idea; whereas test-reduction techniques are based on removing

tests in a test suite that do not contribute in increasing the fault-detection ability, this thesis

rather focuses on abstracting the test model itself by removing details, e.g. removing sub

states from composite states. To the author’s knowledge, no other studies are conducted on

this particular topic in an SBT-context.

15.3 Test Trees

Being non-deterministic approaches, the all transition (AT), all round-trip paths (RTP) and all

transition pairs (ATP) criteria may provide a number of different test trees that cover these

criteria. Due to the numerous trees, obtained results can differ from tree to tree. Hence, the

empirical evaluation of the state-based coverage criteria from this study should be replicated

using test tree selection approaches to ensure that the most optimal trees are selected, e.g. like

Briand et al. [81] which selects the trees with the highest fault-detection ability.

187

15.4 Model versus Implementation Coverage

Yet another interesting research area is comparisons of model coverage versus

implementation coverage to see the influence of differences in coverage on the fault-detection

effectiveness.

15.5 Test Data Selection

The selected test data have a large impact on the feasibility of the generated test suites. In this

study, the selection of test data for environment variables (i.e., externally controlled variables)

was carefully chosen; though only semi-automated, to enable the execution of the test suites.

However, the evaluations should be replicated also when varying the test data.

15.6 Cost

Existing research have evaluated state-based coverage criteria. Most studies that regard

effectiveness, however, do not report cost. As the attention has mostly been directed towards

effectiveness, there is still a lack of empirical results regarding the cost of such testing.

Especially, regarding how state-based test criteria perform when being exposed to real faults.

15.7 Cost of Initial Investment

Applying systematic strategies in software testing reduces the dependency between the

tester’s skills and the achieved test coverage, and furthermore leaves the company with an

assurance on how thorough their software is tested. The advantages of state-based testing

require an initial investment in tools and training. Future work should explore the cost of said

investment.

15.8 Industrial Context

As for any empirical studies, replications of this study are needed. Further evaluations on

testing strategies should be carried out, in particular conducted on industrial systems in order

to increase the external validity of the results. Future research should aim at evaluating

coverage criteria by varying the SUT instead of reusing the same SUT. Moreover, as stated in

Chapter 3, existing research shows that extremely few studies10 apply real faults when using

10 Table 1 shows two studies where as few as 4/21 and 4/20 faults were real.

188

mutation analysis for evaluating various testing strategies – the use of artificial faults is

prevalent. As a consequence, little is known about how such structured test approaches

compares in detecting real faults. Another interesting study would be to compare the results of

this study to a study where mutation operators are used to create mutant programs.

15.9 Tools

In general, the community should continuously seek to improve model-based automated tools

in order to make model-based testing a feasible approach to the industry. Regarding TRUST

in particular, as we saw in Section 5.1.3, more efficient test data generation techniques based

on search or optimization techniques [115] should be considered implemented in future

versions.

15.10 Guidelines

In order to provide the industry with useful guidelines, we are dependent on future studies in

all of the abovementioned areas.

15.11 Choice of Research Method

As a final remark, the case study is a useful research method for software engineering as

software engineering takes place within a context. It is important not to factor out the effect of

the context when validating technologies for use in industrial development [131]. However,

surveys on the use of research methods in software engineering show a fairly low percentage

of case studies [131, 132, 64]. More studies should be applied within a realistic context in

combination with experiments that offers more control. Experiments provide useful insight,

but are, however difficult to execute amongst others due to the large number of variables that

cause differences in reality [133] as compared to the few variables that are studied in

experiments. Executing several studies following different types of research methods on a

particular research area are necessary in order to provide a more “complete” picture.

189

Bibliography

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach,

Morgan-Kaufmann, 2006.

[2] T. Chow, "Testing Software Design Modeled by Finite-State Machines," IEEE

Transactions on Software Engineering, vol. 4, no. 3, pp. 178-187, 1978.

[3] L. Briand and Y. Labiche, "A UML-Based Approach to System Testing," in

Proceedings of the 4th International Conference on The Unified Modeling

Language, Modeling Languages, Concepts, and Tools, 2001.

[4] I. El-Far and J. Whittaker, Model-Based Software Testing, Encyclopedia of

Software Engineering (edited by J. J. Marciniak), 2002.

[5] S. Ali, L. Briand, M. Rehman, H. Asghar, M. Iqbal and A. Nadeem, "A State-

Based Approach to Integration Testing Based on UML Models," Information and

Software Technology, vol. 49, pp. 1087-1106, 2007.

[6] A. Neto, R. Subramanyan, M. Vieira and G. Travassos, "A Survey on Model-

based Testing Approaches: A Systematic Review," in Proceedings of the 1st

ACM International Workshop on Empirical Assessment of Software Engineering

Languages and Technologies, Atlanta, Georgia, 2007.

[7] D. Drusinsky, Modeling and Verification using UML Statecharts: A Working

Guide to Reactive System Design, Runtime Monitoring and Execution-based

Model Checking, 1st edition ed., Newnes, 2006.

[8] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella and B. Hasling, "Applying

Model-Based Testing to Healthcare Products: Preliminary Experiences," in

Proceedings of the 30th International Conference on Software Engineering,

Leipzig, Germany, 2008.

[9] "D-MINT, Deployment of Model-Based Technologies to Industrial Testing,"

[Online]. Available: http://www.d-mint.org/. [Accessed 13 June 2012].

[10] J. Feldstein, "Model-based Testing using IBM Rational Functional Tester,"

DeveloperWorks, IBM, 2005.

[11] Y. Gurevich, W. Schulte, N. Tillmann and M. Veanes, "Model-Based Testing

with SpecExplorer," Microsoft research, 2009.

190

[12] L. Briand, M. Di Penta and Y. Labiche, "Assessing and Improving State-Based

Class Testing: A Series of Experiments," IEEE Transactions on SoftWare

Engineering, vol. 30, no. 11, pp. 770-793, 2004.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.

[14] N. Holt, B. Anda, K. Asskildt, L. Briand, J. Endresen and S. Frøystein,

"Experiences with Precise State Modeling in an Industrial Safety Critical

System," in Critical Systems Development Using Modeling Lanuguages,

CSDUML'06, Genova, 2006.

[15] J. Offutt and A. Abdurazik, "Generating Tests from UML Specifications," in

Proceedings of the 2nd International Conference on the Unified Modeling

Language, 1999.

[16] J. Offutt, S. Liu, A. Abdurazik and P. Ammann, "Generating Test Data from

State-based Specifications," Software: Testing, Verification and Reliability, vol.

13, no. 1, pp. 25-53, 2003.

[17] "MOTES," [Online]. Available: http://www.elvior.ee/motes. [Accessed 13 June

2012].

[18] A. Hartman and K. Nagin, "The AGEDIS Tools for Model Based Testing," in

International Symposium on Software Testing and Analysis (ISSTA '04), 2004.

[19] "Working with TestConductor and Automatic Test Generation (ATG)," IBM,

[Online]. Available:

http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r6/index.jsp?topic=%2Fcom.

ibm.rhp.integ.testingtools.doc%2Ftopics%2Frhp_r_dm_vendor_doc_testing.html

. [Accessed 13 June 2012].

[20] D. Seifert, "The TEAGER Tool Suite: Test Execution and Generation

Framework for Reactive Systems," [Online]. Available: http://user.cs.tu-

berlin.de/~seifert/teager.html. [Accessed September 2009].

[21] "Conformiq Tool Suite," [Online]. Available: http://www.conformiq.com/.

[Accessed 13 June 2012].

[22] L. Briand, Y. Labiche and Y. Wang, "Using Simulation to Empirically

Investigate Test Coverage Criteria Based on Statechart," in ICSE '04 Proceedings

of the 26th International Conference on Software Engineering, 2004.

191

[23] L. Briand, "A Critical Analysis of Empirical Research in Software Testing," in

First International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), 2007.

[24] P. Black, V. Okun and Y. Yesha, "Mutation Operators for Specifications," in

ASE’2000, 15th Automated Software Engineering Conference, Grenoble, France,

2000.

[25] A. Offutt, A. Lee, G. Rothermel, R. Untch and C. Zapf, "An Experimental

Determination of Sufficient Mutation Operators," ACM Trans. Software Eng. and

Methodology, vol. 5, no. 2, pp. 99-118, 1996.

[26] J. Andrews, L. Briand and Y. Labiche, "Is Mutation an Appropriate Tool for

Testing Experiments?," in In ICSE ’05: Proceedings of the 27th international

conference on Software engineering, 2005.

[27] M. Thévenod-Fosse and P. Daran, "Software Error Analysis: a Real Case Study

involving Real Faults and Mutations," in In Proceedings of the 1996 ACM

SIGSOFT International Symposium on Software Testing and Analysis, 1996.

[28] J. Andrews, L. Briand, Y. Labiche and A. Namin, "Using Mutation Analysis for

Assessing and Comparing Testing Coverage Criteria," IEEE Transactions on

Software Engineering, vol. 32, no. 8, pp. 608-624, August 2006.

[29] M. Heimdahl and D. George, "Test-Suite Reduction for Model Based Tests:

Effects on Test Quality and Implications for Testing," in 19th IEEE International

Conference on Automated Software Engineering (ASE'04), Linz, 2004.

[30] W. Wong, J. Horgan, S. London and A. Mathur, "Effect of Test Set Minimization

of Fault Detection Effectiveness," in International Conference on Software

Engineering, Proceedings of the 17th international conference on Software

engineering, Seattle, 1995.

[31] R. Binder, Testing Object-Oriented Systems, Addison-Wesley, 2000.

[32] T. Pender, UML Bible, Wiley, 2003.

[33] S. Ali, H. Hemmati, N. Holt, E. Arisholm and L. Briand, "Technical Report

2010-01: Model Transformations as a Strategy to Automate Model-Based

Testing: A Tool and Industrial Case Studies," Simula Research Laboratory,

Lysaker, 2010.

[34] N. Holt, E. Arisholm and L. Briand, "Technical Report 2009-06: An Eclipse

192

Plug-in for the Flattening of Concurrency and Hierarchy in UML State

Machines," Simula Research Laboratory, Lysaker, 2009.

[35] J. McGregor and D. Sykes, A Practical Guide to Testing Object-Oriented

Software, Addison-Wesley, 2001.

[36] M. Utting, A. Pretschner and B. Legeard, "A Taxonomy of Model-Based

Testing," Working paper series. University of Waikato, Department of Computer

Science. No. 04/2006, 2006.

[37] A. Gupta and P. Jalote, "An Approach for Experimentally Evaluating

Effectiveness and Efficiency of Coverage Criteria for Software Testing,"

International Journal of Software Tools and Technology Transfer, vol. 10, no. 2,

pp. 145-160, 2008.

[38] J. Spivey, The Z Notation: A Reference Manual, 2nd ed., Prentice-Hall:

Englewood Cliffs, N.J., 1992.

[39] J. Abrial, The B-BOOK: Assigning Programs to Meanings, Cambridge

University Press: Cambridge, 1996.

[40] "The Java Modeling Language (JML)," [Online]. Available:

http://www.eecs.ucf.edu/~leavens/JML/. [Accessed 13 June 2012].

[41] "Smartesting," [Online]. Available:

http://www.smartesting.com/index.php/cms/en/home. [Accessed 27 July 2010].

[42] D. Harel and A. Naamad, "The STATEMATE Semantics of Statecharts," ACM

Transactions on Software Engineering and Methodology, vol. 5, no. 4, p. 293–

333, 1996.

[43] R. Miles and K. Hamilton, Learning UML 2.0, First edition ed., O'Reilly, 2006.

[44] "Unified Modelling Language Specification, Version 2.0," Object Management

Group, September 2009. [Online]. Available:

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML.

[45] L. Lavagno, G. Martin and B. Selic, UML for Real: Design of Embedded Real-

Time Systems, Springer, 2003.

[46] T. Weigert and R. Reed, "Specifying Telecommunications Systems with UML,"

in UML for Real: Design of Embedded Real-time Systems, Kluwer Academic

Publishers, 2003, pp. 301-322.

193

[47] S. Sauer and G. Engels, "UML-Based Behavior Specification of Interactive

Multimedia Applications," in Proceedings of the IEEE 2001 Symposia on Human

Centric Computing Languages and Environments (HCC'01), 2001.

[48] "Papyrus," September 2009. [Online]. Available: http://www.papyrusuml.org.

[49] "Rational Software Architect for WebSphere Software," IBM, [Online].

Available: http://www-01.ibm.com/software/awdtools/swarchitect/websphere/.

[Accessed 14 June 2012].

[50] J. Zhang, C. Xu and X. Wang, "Path-Oriented Test Data Generation Using

Symbolic Execution and Constraint Solving Techniques," in Second

International Conference on Software Engineering and Formal Methods

(SEFM'04), 2004.

[51] R. Lefticaru and F. Ipate, "Automatic State-Based Test Generation Using Genetic

Algorithms," in 9th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, 2008.

[52] D. Chiorean, M. Bortes, D. Corutiu, C. Botiza and A. Cârcu, "OCLE," [Online].

Available: http://lci.cs.ubbcluj.ro/ocle/. [Accessed 14 June 2012].

[53] C. Hein, T. Ritter and M. Wagner, "Open Source Library for OCL," [Online].

Available: http://oslo-project.berlios.de/. [Accessed 14 June 2012].

[54] "IBM OCL Parser," [Online]. Available: http://www-

01.ibm.com/software/awdtools/library/standards/ocl-download.html. [Accessed

14 June 2012].

[55] M. Egea, "EyeOCL Software," [Online]. Available:

http://www.bm1software.com/eos/. [Accessed 14 June 2012].

[56] A. Offutt, Y. Xiong and S. Liu, "Criteria for Generating Specification-Based

Tests," in In Proceedings of the Fifth IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS ’99), 1999.

[57] Y.-S. Ma, J. Offutt and Y. Kwon, "MuJava : An Automated Class Mutation

System," Software: Testing, Verification and Reliability, vol. 15, no. 2, pp. 97-

133, 2005.

[58] I. Sommerville, Software Engineering, Addison-Wesley, 2001.

[59] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell and A. Wesslén,

194

Experimentation in Software Engineering: An Introduction, Kluwer Academic

Publishers, 2000.

[60] V. Basili, "The Role of Experimentation in Software Engineering: Past, Current,

and Future," in Proceedings of ICSE-18, 1996.

[61] D. Sjoberg, T. Dybå and M. Jørgensen, "The Future of Empirical Methods in

Software Engineering Research," in FOSE '07 2007 Future of Software

Engineering, Washington, DC, 2007.

[62] S. Sørumgård, Verification of Process Conformance in Empirical Studies of

Software Development, PhD Thesis, Department of Computer and Information

Sciences, The Norwegian University of Science and Technology, Norway, 1997.

[63] W. Shadish, T. Cook and D. Campbell, Experimental an Quasi-Experimental

Designs for Generalized Causal Inference, Houghton Mifflin Company, 2002.

[64] R. Yin, Case Study Research Design and Methods, Sage Publications, 2003.

[65] W. J. Dzidek, Empirical Evaluation of the Costs and Benefits of UML in

Software Maintenance, Faculty of Mathematics and Natural Sciences, University

of Oslo, 2008.

[66] R. Stake, The Art of Case Study Research, SAGE Publications, 1995.

[67] E. Babbie, Survey Research Methods, Wadsworth, 1990.

[68] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User

Guide, Addison Wesley, 1999.

[69] D. Lee and M. Yannakakis, "Principles and Methods of Testing Finite State

Machines - A Survey," Proceedings of the IEEE, vol. 84, no. 8, pp. 1090 - 1123,

August 1996.

[70] A. Abdurazik, P. Ammann, W. Ding and J. Offutt, "Evaluation of Three

Specification-based Testing Criteria," in Proceedings of the 6th IEEE

International Conference on Complex Computer Systems, 2000.

[71] P. Ammann, P. Black and W. Majurski, "Using Model Checking to Generate

Tests from Specifications," in Proceedings of the Second IEEE International

Conference on Formal Engineering Methods (ICFEM'98), 1998.

[72] A. P. Mathur, "On the Relative Strengths of Data Flow and Mutation Based Test

Adequacy Criteria," in Proceedings of the Sixth Annual Pacific Northwest

195

Software Quality Conference, 1991.

[73] H. Hong, Y. Kim, S. Cha, D. Bae and H. Ural, "A Test Sequence Selection

Method for Statecharts," Software: Testing, Verification and Reliability, vol. 10,

no. 4, pp. 203-227, 2000.

[74] H. Ural, "Test sequence selection based on static data flow analysis," Computer

Communications, vol. 10, no. 5, pp. 234-242, 1987.

[75] H. Ural and B. Yang, "A Test Sequence Selection Method for Protocol Testing,"

IEEE Transactions on Communications, vol. 39, no. 4, pp. 514-523, 1991.

[76] H. Ural and A. Williams, "Test Generation by Exposing Control and Data

Dependencies within System Specifications in SDL," in In Proceedings of IFIP

6th International Conference on Formal Description Techniques, FORTE’93,

1993.

[77] K. Bogdanov and M. Holcombe, "Statechart Testing Method for Aircraft Control

Systems," Software Testing, Verification and Reliability, vol. 11, no. 1, pp. 39-

54, 2001.

[78] P. Chevalley and P. Thévenod-Fosse, "An Empirical Evaluation of Statistical

Testing Designed from UML State Diagrams: the Flight Guidance System Case

Study," in Proceedings of the 12th International Symposium on Software

Reliability Engineering (ISSRE'01), 2001.

[79] P. Chevalley and P. Thévenod-Fosse, "Automated Generation of Statistical Test

Cases from UML State Diagrams," in Computer Software and Applications

Conference, 2001. COMPSAC 2001, 2001.

[80] G. Antoniol, L. Briand, M. Di Penta and Y. Labiche, "A Case Study Using the

Round-Trip Strategy for State-Based Class Testing," in Proceedings of the 13 th

International Symposium on Software Reliability Engineering (ISSRE'02), 2002.

[81] L. Briand, Y. Labiche and Q. Lin, "Improving Statechart Testing Criteria Using

Data Flow Information," in Proceedings of the 16th IEEE International

Symposium on Software Reliability Engineering (ISSRE'05), 2005.

[82] A. Paradkar, "Plannable Test Selection Criteria for FSMs Extracted from

Operational Specifications," in Proc. of Int. Symp. on Software Reliability Eng.

'2004, 2004.

[83] A. Paradkar, "Case Studies on Fault Detection Effectiveness of Model Based

196

Test Generation Techniques," in Advances in Model-Based Software Testing (A-

MOST'05), 2005.

[84] B. Legeard, F. Peureux and M. Utting, "A Comparison of the BTT and TTF Test-

Generation Methods," in Proc. of ZB '02: Formal Specification and Development

in Z and B, 2002.

[85] S. Mouchawrab, L. Briand and Y. Labiche, "Assessing, Comparing, and

Combining Statechart-based testing and Structural testing: An Experiment," in

First International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), 2007.

[86] M. Staats, M. Whalen and M. Heimdahl, "Better Testing Through Oracle

Selection," in ICSE '11: Proceeding of the 33rd International Conference on

Software Engineering, 2011.

[87] M. Staats, G. Gay and M. Heimdahl, "Automated Oracle Creation Support, or:

How I Learned to Stop Worrying About Fault Propagation and Love Mutation

Testing," in ICSE 2012, 2012.

[88] M. Staats, M. Whalen and M. Heimdahl, "Programs, Tests, and Oracles: The

Foundations of Testing Revisited," in ICSE '11: Proceeding of the 33rd

International Conference on Software Engineering, 2011.

[89] L. Briand, W. Dzidek and Y. Labiche, "Using Aspect-Oriented Programming to

Instrument OCL Contracts in Java," Carleton University, 2004.

[90] A. Memon, I. Banerjee and A. Nagarajan, "What Test Oracle Should I Use for

Effective GUI Testing?," in Proceedings of the IEEE International Conference

on Automated Software Engineering, Montreal, Canada, 2003.

[91] Q. Xie and A. Memon, "Designing and Comparing Automated Test Oracles for

GUI-Based Software Applications," ACM Transactions on Software Engineering

and Methodology, vol. 16, no. 1, February 2007.

[92] S. Mouchawrab, L. Briand, Y. Labiche and M. Di Penta, "Assessing, Comparing,

and Combining State Machine-Based Testing and Structural Testing: A Series of

Experiments," IEEE Transactions on Software Engineering, vol. 37, no. 2, pp.

161 - 187, 2011.

[93] "Model-Based Testing Tools," [Online]. Available:

http://en.wikipedia.org/wiki/Model-based_testing_tools. [Accessed 13 June

197

2012].

[94] S. Weißleder, "Partition Test Generator (ParTeG)," [Online]. Available:

http://parteg.sourceforge.net/. [Accessed June13 2012].

[95] "MARTE: Modeling and Analysis of Real-time and Embedded systems,"

[Online]. Available: http://www.omgmarte.org/node/4. [Accessed 13 June 2012].

[96] R. Cavarra, C. Crichton, J. Davies, A. Hartman and L. Mounier, "Using UML for

Automatic Test Generation," in In International Symposium on Software Testing

and Analysis (ISSTA '02), 2002.

[97] "Poseidon for UML," [Online]. Available: http://www.gentleware.com.

[Accessed 13 June 2012].

[98] L. Briand, Y. Labiche and Q. Lin, "Improving the Coverage Criteria of UML

State Machines using Data Flow Analysis," Software Testing, Verification and

Reliability, vol. 20, no. 3, p. 177–207, 2010.

[99] M. Khalil and Y. Labiche, "On the Round Trip Path Testing Strategy," in IEEE

21st International Symposium on Software Reliability Engineering (ISSRE),

2010.

[100] H. Hemmati and L. Briand, "An Industrial Investigation of Similarity Measures

for Model-Based Test Case Selection," in IEEE, Software Reliability Engineering

(ISSRE), 2010.

[101] H. Hemmati, A. Arcuri and L. Briand, "Empirical Investigation of the Effects of

Test Suite Properties on Similarity-Based Test Case Selection," in IEEE,

Software Testing, Verification and Validation (ICST), 2011.

[102] E. Cartaxo, P. Machado and F. Neto, "On the Use of a Similarity Function for

Test Case Selection in the Context of Model-Based Testing," Software Testing,

Verification and Reliability, vol. 21, no. 2, p. 75–100, 2011.

[103] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with

UML, Addison-Wesley, 2000.

[104] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven

Architecture: Practice and Promise, Addison Wesley, 2003.

[105] "UML Profile for Modeling QoS and Fault Tolerance Characteristics and

Mechanisms," [Online]. Available: http://www.omg.org/spec/QFTP/1.1/.

198

[Accessed 13 June 2012].

[106] S. Kansomkeat and W. Rivepiboon, "Automated-generating test case using UML

statechart diagrams," in Proceedings of the 2003 annual research conference of

the South African institute of computer scientists and information technologists

on Enablement through technology, 2003.

[107] T. Chen, F.-C. Kuo, R. Merkel and T. Tse, "Adaptive Random Testing: The ART

of Test Case Diversity," Journal of Systems and Software, vol. 83, no. 1, p. 60–

66, 2010.

[108] T. Jussila, J. Dubrovin, T. Junttila, T. Latvala and I. Porres, "Model Checking

Dynamic and Hierarchical UML State Machines," in Proceedings of the 3rd

Workshop on Model Design and Validation (MoDeVa06), 2006.

[109] "Kermeta – Breathe Life into Your Metamodels," [Online]. Available:

http://www.kermeta.org/. [Accessed 13 June 2012].

[110] P. Huber, "The Model Transformation Language Jungle - An Evaluation and

Extension of Existing Approaches," Business Informatics Group: Institut für

Softwaretechnik und Interaktive Systeme, 2008.

[111] L. Briand, Y. Labiche and Y. Wang, "Using Simulation to Empirically

Investigate Test Coverage Criteria on Statecharts," Carleton University Technical

Report SCE-02-09, 2002.

[112] "MOFScript Home page," [Online]. Available:

http://www.eclipse.org/gmt/mofscript/. [Accessed 14 June 2012].

[113] "OMG's MetaObject Facility," [Online]. Available: http://www.omg.org/mof/.

[Accessed 14 June 2012].

[114] R. DeMillo and A. Offutt, "Constraint-Based Automatic Test Data Generation,"

IEEE Transactions on Software Engineering, vol. 17, no. 9, pp. 900-910, 1991.

[115] P. McMinn, "Search-Based Software Test Data Generation: A Survey," Software:

Testing, Verification, and Reliability, vol. 14, no. 2, pp. 105-156, 2004.

[116] H. Mössenböck, M. Löberbauer and A. Wöß, "The Compiler Generator Coco/R,"

[Online]. Available: http://ssw.jku.at/coco/. [Accessed 14 June 2012].

[117] T. Parr, "ANTLR v3," [Online]. Available: http://www.antlr.org/. [Accessed 14

June 2012].

199

[118] S. Liang, Java Native Interface: Programmer's Guide and Specification, Addison-

Wesley Publishing, 1999.

[119] G. McCluskey, "Using Java Reflection," [Online]. Available:

http://java.sun.com/developer/technicalArticles/ALT/Reflection/. [Accessed 14

June 2012].

[120] N. Denzin and Y. Lincoln, The Sage Handbook of Qualitative Research, Third

edition ed., Sage Publications, 2005.

[121] B. Kitchenham, "Evaluating Software Engineering Methods and Tool," Software

Engineering Notes, vol. 22, no. 4, pp. 21-24, July 1997.

[122] P. Runeson and M. Höst, "Guidelines for Conducting and Reporting Case Study

Research in Software Engineering," Empirical Software Engineering, vol. 14, no.

2, pp. 131-164, December 2009.

[123] L. Briand and Y. Labiche, "Empirical Studies of Software Testing Techniques:

Challenges, Practical Strategies, and Future Research," ACM SIGSOFT Software

Engineering Notes, vol. 29, no. 5, pp. 1-3, 2004.

[124] "OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2.,"

[Online]. Available: http://www.omg.org/spec/UML/2.1.2/. [Accessed 14 June

2012].

[125] M. Alshraideh and L. Bottaci, "Search-Based Software Test Data Generation for

String Data Using Program-Specific Search Operators," Software Testing,

Verification and Reliability, vol. 16, no. 3, p. 175–203, 2006.

[126] "JMP," [Online]. Available: http://www.jmp.com/. [Accessed 15 July 2010].

[127] "The R Project for Statistical Computing," [Online]. Available: http://www.r-

project.org/. [Accessed 14 June 2012].

[128] W. Conover, Practical Nonparametric Statistics, Wiley, 1999.

[129] M. Schervish, Theory of Statistics, Springer, 1995.

[130] S. Kim, J. Clark and J. McDermid, "The Rigorous Generation of Java Mutation

Using Hazop," in 12 th International Conference Software & Systems

Engineering and their Applications (ICSSEA`99), 1999.

[131] J. Segal, A. Grinyer and H. Sharp, "The Type of Evidence Produced by Empirical

Software Engineers," in Proceedings of the Workshop on Realising Evidence-

200

Based Software Engineering, ICSE 2005, 2005.

[132] R. Glass, I. Vessey and V. Ramesh, "Research in Software Engineering: An

Analysis of the Literature," Information and Software Technology, vol. 44, no. 8,

pp. 491-506, 2002.

[133] V. Basili, "What's So Hard About Replication of Software Engineering

Experiments?," [Online]. Available:

http://www.cs.umd.edu/~basili/presentations/RESER%20Keynote.pdf. [Accessed

14 June 2012].

201

A. Overview of Research Activities

Period ID Activity Role

2006 June –

2007 Feb

A1. Specification, design, and implementation of a module

in a safety-critical software system in ABB using UML

state machines and the extended state design pattern.

Participatory role, in

collaboration with ABB

and supervisors.

2006 Sept A2. Presentation of accepted work shop paper, CSDUML

’06.

Primary role, in

collaboration with

supervisors and ABB.

2007 Jan –

2007 May

A3. Manual state-based testing of the module. Primary role.

2007 May –

2007 Nov

A4. Development of the same system in accordance to

typical development ABB development (baseline).

Primary role, in

collaboration with

external developer

Simen Hagen.

2008 Jan –

2008 April

A5. Write-up of report from the action research related to

activity A1, A3, and A4.

Primary role.

 A6. Field study on maintenance. The following sub tasks

were conducted:

2007 Jan –

2007 Feb

 A6.1) A guideline for how to use the extended state

design pattern.

Primary role.

2007 March –

2007 April

 A6.2) A pilot study was designed and conducted. The

subject was a researcher/developer from ABB.

Participatory role, in

collaboration with main

supervisor.

2008 May –

2008 Sept

 A6.3) Design of a maintenance field study in ABB. Primary role, in

collaboration with main

supervisor. Kai Hansen

assisted recruitment of

subjects.

2008 Oct –

2008 Nov

 A6.4) Execution of field study in ABB’s departments

in Västerås, Baden and Shanghai.

Primary role.

202

2008 Dec A6.5) Analysis of the collected data. Primary role.

2009 Jan –

2009 April

A7. Development of an automated test tool in cooperation

with the PhD students Shaukat Ali and Hadi Hemmati.

I was responsible for the following tasks:

Participatory role, in

collaboration with Hadi

Hemmati, Shaukat Ali

and supervisors.

2009 Jan –

2009 May

 A7.1) Development of a transformation tool, an Eclipse

plug-in, for flattening complex UML state machines.

Primary role, advised by

supervisors.

2009 May –

2009 June

 A7.2) Adjustment of TRUST to support C++ to enable

the generation of concrete test cases from abstract test

cases. The tool was also extended to support the all

round-trip path transition coverage. The test cases were

generated from the state machines developed in activity

A1 and used to test the state-based implementation of

ALC.

Primary role.

2009 June –

2009 Sept

A8. Technical report based on the tool development. Participatory role, in

collaboration with

Shaukat Ali, Hadi

Hemmati, and

supervisors.

 2009 Oct –

2010 Feb

A9. Technical report based on the state-machine flattening

Eclipse plug-in.

Primary role.

2009 July –

2010 May

A10. Evaluation of testing strategies, including the work of

extending TRUST to support generation of test cases

that satisfy additional five coverage criteria and an

additional oracle. The testing strategies were evaluated

by analyzing the fault-detection effectiveness of the

test suites using real fault-data (collected in activity

A6) and mutation analysis.

Primary role. Extensions

are based on the tool

TRUST developed in

collaboration with Hadi

Hemmati and Shaukat

Ali.

2010 Jan –

2010 July

A11. Write-up of the thesis. Full-time position as a PhD

student.

Primary role.

2010 Aug –

2012 June

A12. Continuing write-up of the thesis. Part-time position

(10-20 percent) as a PhD student.

Primary role.

2012 May A13. Conference paper based on Case Study 4 is submitted

for publication.

Primary role.

2012 April –

2012 Aug

A14. Journal paper based on Case Study 1–4 is submitted for

publication.

Primary role.

203

B. Semi-Structured Literature Review

JOURNALS

Database Publication Search string Where All Papers Included
papers

ACM TOSEM “state based testing” title 0 0
ACM TOSEM “state-based testing” title 0 0
ACM TOSEM “state machine testing” title 0 0
ACM TOSEM “state-machine testing” title 0 0
ACM TOSEM “model based testing” title 0 0
ACM TOSEM “model-based testing” title 0 0
ACM TOSEM “state based testing” abstract 1 0
ACM TOSEM “state-based testing” abstract 1 0
ACM TOSEM “state machine testing” abstract 0 0
ACM TOSEM “state-machine testing” abstract 0 0
ACM TOSEM “model based testing” abstract 0 0
ACM TOSEM “model-based testing” abstract 0 0
unique papers 1 0
Database Publication Search string Where All Papers Included

papers
IEEE TSE “state based testing” title 0 0
IEEE TSE “state-based testing” title 0 0
IEEE TSE “state machine testing” title 0 0
IEEE TSE “state-machine testing” title 0 0
IEEE TSE “model based testing” title 0 0
IEEE TSE “model-based testing” title 0 0
IEEE TSE “state based testing” abstract 0 0
IEEE TSE “state-based testing” abstract 0 0
IEEE TSE “state machine testing” abstract 1 1
IEEE TSE “state-machine testing” abstract 1 1
IEEE TSE “model based testing” abstract 1 1
IEEE TSE “model-based testing” abstract 1 1
unique papers 1 1
Database Publication Search string Where All Papers Included

papers
Wiley STVR “state based testing” title 0 0
Wiley STVR “state-based testing” title 0 0
Wiley STVR “state machine testing” title 1 0
Wiley STVR “state-machine testing” title 1 0
Wiley STVR “model based testing” title 4 1
Wiley STVR “model-based testing” title 4 1
Wiley STVR “state based testing” abstract 3 0
Wiley STVR “state-based testing” abstract 3 0
Wiley STVR “state machine testing” abstract 1 1
Wiley STVR “state-machine testing” abstract 1 1
Wiley STVR “model based testing” abstract 9 1
Wiley STVR “model-based testing” abstract 9 1

204

unique papers 12 2
Total # unique papers from TOSEM, TSE, and STVR 14 3

CONFERENCES

Database Publication Search string Where All Papers Included
papers

ACM ISSTA “state based testing” title 0 0
ACM ISSTA “state-based testing” title 0 0
ACM ISSTA “state machine testing” title 0 0
ACM ISSTA “state-machine testing” title 0 0
ACM ISSTA “model based testing” title 0 0
ACM ISSTA “model-based testing” title 0 0
ACM ISSTA “state based testing” abstract 0 0
ACM ISSTA “state-based testing” abstract 0 0
ACM ISSTA “state machine testing” abstract 0 0
ACM ISSTA “state-machine testing” abstract 0 0
ACM ISSTA “model based testing” abstract 0 0
ACM ISSTA “model-based testing” abstract 0 0
unique papers 0 0
Database Publication Search string Where All Papers Included

papers
IEEE ICST “state based testing” title 0 0
IEEE ICST “state-based testing” title 0 0
IEEE ICST “state machine testing” title 0 0
IEEE ICST “state-machine testing” title 0 0
IEEE ICST “model based testing” title 3 0
IEEE ICST “model-based testing” title 3 0
IEEE ICST “state based testing” abstract 0 0
IEEE ICST “state-based testing” abstract 0 0
IEEE ICST “state machine testing” abstract 0 0
IEEE ICST “state-machine testing” abstract 0 0
IEEE ICST “model based testing” abstract 7 1
IEEE ICST “model-based testing” abstract 7 1
unique papers 8 1
Database Publication Search string Where All Papers Included

papers
IEEE ISSRE “state based testing” title 0 0
IEEE ISSRE “state-based testing” title 0 0
IEEE ISSRE “state machine testing” title 0 0
IEEE ISSRE “state-machine testing” title 0 0
IEEE ISSRE “model based testing” title 0 0
IEEE ISSRE “model-based testing” title 0 0
IEEE ISSRE “state based testing” abstract 1 1
IEEE ISSRE “state-based testing” abstract 1 1
IEEE ISSRE “state machine testing” abstract 1 1
IEEE ISSRE “state-machine testing” abstract 1 1
IEEE ISSRE “model based testing” abstract 0 0

205

IEEE ISSRE “model-based testing” abstract 0 0
unique papers 2 2
Total # unique papers from ISSTA, ICST, and ISSRE 10 3

206

C. State Machines – Original Version

Mode State Machine

The diagram can be provided upon request.

207

Drive Enable State Machine

The diagram can be provided upon request.

208

D. State Machines – Modified Version of SUT

Mode State Machine

The diagram can be provided upon request.

209

Drive Enable State Machine

The diagram can be provided upon request.

210

E. State Machine – Experiment Version (Complete Test Model)

The diagram displays the Mode state machine which was involved in the change task.

State ExtraSlow and its belonging transitions are the only differences from the state

machine shown in Appendix D.

The diagram can be provided upon request.

211

F. State Machine – Experiment Version (Abstract Test Model)

The diagram can be provided upon request.

212

G. Data Material – AT, RTP, and ATP – Complete Model – Oracle O1

All transitions (AT), complete test model, and state-invariant oracle (O1)

AT Complete
O1 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE TEST
SUITE

EXECUTE TEST
SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

AT1 166 1858 399 249 2506 1881 1

AT2 165 2034 402 240 2676 3102 1

AT3 169 2172 441 338 2951 2115 1

AT4 166 1858 389 292 2539 2315 1

AT5 168 2236 543 204 2983 2625 1

AT6 168 2236 473 267 2976 2432 1

AT7 162 2346 425 292 3063 2383 1

AT8 167 2445 490 368 3303 2810 1

AT9 170 2567 488 257 3312 2458 1

AT10 162 2346 422 245 3013 1858 1

AT11 168 2236 409 211 2856 2432 0.933

AT12 173 2861 408 270 3539 3361 1

AT13 164 2936 476 354 3766 2851 1

AT14 165 2034 470 258 2762 3122 1

AT15 162 2346 487 275 3108 2163 1

AT16 166 1858 479 261 2598 1854 1

AT17 171 3269 464 241 3974 2169 1

AT18 163 15124 378 279 15781 2088 1

AT19 162 2346 413 269 3028 2020 1

AT20 169 2172 430 270 2872 2298 1

AT21 160 3675 361 246 4282 1765 1

AT22 160 3675 443 367 4485 2210 1

AT23 163 15124 477 338 15939 2022 1

AT24 164 2936 492 230 3658 3096 1

AT25 168 2236 506 206 2948 3617 1

AT26 165 2034 443 249 2726 2274 1

AT27 168 2236 434 342 3012 2370 1

AT28 165 2034 467 262 2763 2776 1

AT29 173 2861 536 288 3685 2564 1

AT30 165 2034 470 242 2746 2631 1

Avg 165.9 3270.8 450.5 273.7 3995 2455.4 0.998

213

All round-trip paths (RTP), complete test model, and state-invariant oracle (O1)

RTP
Complete O1 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

RTP1 328 105 128 374 607 465 1

RTP2 328 66 108 406 580 419 1

RTP3 328 85 99 408 592 341 1

RTP4 328 116 83 353 552 524 1

RTP5 328 71 96 354 521 434 1

RTP6 328 68 82 367 517 409 1

RTP7 328 68 83 359 510 517 1

RTP8 328 89 84 349 522 497 1

RTP9 328 67 85 334 486 528 1

RTP10 328 66 85 333 484 552 1

RTP11 328 98 83 348 529 515 1

RTP12 328 109 82 343 534 514 1

RTP13 328 106 85 349 540 536 1

RTP14 328 114 91 356 561 525 1

RTP15 328 84 90 338 512 607 1

RTP16 328 93 87 340 520 511 1

RTP17 328 92 81 354 527 515 1

RTP18 328 77 87 346 510 406 1

RTP19 328 95 87 376 558 493 1

RTP20 328 81 89 360 530 483 1

RTP21 328 97 84 354 535 511 1

RTP22 328 84 84 344 512 468 1

RTP23 328 76 86 347 509 495 1

RTP24 328 84 89 334 507 533 1

RTP25 328 76 87 353 516 528 1

RTP26 328 78 107 374 559 460 1

RTP27 328 77 101 365 543 410 1

RTP28 328 70 86 377 533 460 1

RTP29 328 74 92 354 520 514 1

RTP30 328 76 81 355 512 493 1

Avg 328 84.7 89.7 356.8 531.3 488.8 1

214

All transition-pairs (ATP), complete test model, and state-invariant oracle (O1)

ATP Complete
O1 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE TEST
SUITE

EXECUTE TEST
SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

ATP1 1425 26340 520 1722 28582 3377 1

ATP2 1425 26340 429 1794 28563 3260 1

ATP3 1425 26340 474 1685 28499 2680 1

ATP4 1425 26340 488 1850 28678 3465 1

ATP5 1425 26340 527 2260 29127 3418 1

ATP6 1425 26340 507 2374 29221 3582 1

ATP7 1425 26340 483 1916 28739 3747 1

ATP8 1425 26340 531 2258 29129 2665 1

ATP9 1425 26340 469 1991 28800 2612 1

ATP10 1425 26340 518 1860 28718 2607 1

ATP11 1425 26340 629 2131 29100 3110 1

ATP12 1425 26340 512 1720 28572 2861 1

ATP13 1425 26340 386 1851 28577 2958 1

ATP14 1425 26340 518 2018 28876 3618 1

ATP15 1425 26340 549 1632 28521 3944 1

ATP16 1425 26340 636 2361 29337 2830 1

ATP17 1425 26340 519 2539 29398 3124 1

ATP18 1425 26340 555 2045 28940 3310 1

ATP19 1425 26340 528 1827 28695 2976 1

ATP20 1425 26340 576 1859 28775 3542 1

ATP21 1425 26340 542 1597 28479 3959 1

ATP22 1425 26340 523 1553 28416 3175 1

ATP23 1425 26340 491 1546 28377 3909 1

ATP24 1425 26340 493 2038 28871 3978 1

ATP25 1425 26340 506 2158 29004 3906 1

ATP26 1425 26340 529 1987 28856 3298 1

ATP27 1425 26340 548 2012 28900 3774 1

ATP28 1425 26340 563 1890 28793 3643 1

ATP29 1425 26340 573 1973 28886 3385 1

ATP30 1425 26340 520 2274 29134 3527 1

Avg
 142

5 26340.0 521.4 1957.4 28818.8 3341.3 1

215

H. Data Material – AT, RTP, and ATP – Complete Model – Oracle O2

All transitions (AT), complete test model, and state-pointer oracle (O2)

AT Complete
O2 GEN. TREE

GEN. TEST
SUITE BUILD TEST SUITE

PREPARE TEST
SUITE

EXECUTE TEST
SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

AT1 166 1858 206 185 2249 293 0.8

AT2 165 2034 212 197 2443 386 0.8

AT3 169 2172 223 197 2592 325 0.8

AT4 166 1858 210 235 2303 571 0.8

AT5 168 2236 261 192 2689 318 0.8

AT6 168 2236 250 329 2815 336 0.8

AT7 162 2346 245 182 2773 495 0.8

AT8 167 2445 262 190 2897 454 0.8

AT9 170 2567 253 197 3017 365 0.8

AT10 162 2346 220 193 2759 373 0.8

AT11 168 2236 219 186 2641 312 0.7

AT12 173 2861 262 274 3397 427 0.7

AT13 164 2936 276 210 3422 407 0.8

AT14 165 2034 262 185 2481 510 0.8

AT15 162 2346 241 186 2773 442 0.8

AT16 166 1858 240 179 2277 411 0.8

AT17 171 3269 259 209 3737 359 0.8

AT18 163 15124 240 259 15623 425 0.8

AT19 162 2346 258 196 2800 410 0.8

AT20 169 2172 211 208 2591 348 0.8

AT21 160 3675 227 199 4101 475 0.8

AT22 160 3675 212 220 4107 354 0.8

AT23 163 15124 241 298 15663 433 0.8

AT24 164 2936 272 185 3393 487 0.8

AT25 168 2236 212 183 2631 434 0.8

AT26 165 2034 225 185 2444 386 0.8

AT27 168 2236 230 183 2649 423 0.8

AT28 165 2034 241 179 2454 556 0.8

AT29 173 2861 238 201 3300 472 0.8

AT30 165 2034 226 176 2436 477 0.8

Avg 165.9 3270.8 237.8 206.6 3715.2 415.5 0.796

216

All round-trip paths (RTP), complete test model, and state-pointer oracle (O2)

RTP
Complete O2 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

RTP1 328 105 105 341 551 99 0.8

RTP2 328 66 66 344 476 102 0.8

RTP3 328 85 85 347 517 84 0.8

RTP4 328 116 116 443 675 119 0.8

RTP5 328 71 71 336 478 89 0.8

RTP6 328 68 68 342 478 89 0.8

RTP7 328 68 68 350 486 86 0.8

RTP8 328 89 89 348 526 85 0.8

RTP9 328 67 67 360 494 87 0.8

RTP10 328 66 66 348 480 80 0.8

RTP11 328 98 98 402 598 101 0.8

RTP12 328 109 109 370 588 98 0.8

RTP13 328 106 106 348 560 97 0.8

RTP14 328 114 114 381 609 91 0.8

RTP15 328 84 84 377 545 87 0.8

RTP16 328 93 93 363 549 95 0.8

RTP17 328 92 92 374 558 88 0.8

RTP18 328 77 77 369 523 89 0.8

RTP19 328 95 95 454 644 104 0.8

RTP20 328 81 81 390 552 91 0.8

RTP21 328 97 97 379 573 87 0.8

RTP22 328 84 84 355 523 106 0.8

RTP23 328 76 76 347 499 105 0.8

RTP24 328 84 84 363 531 107 0.8

RTP25 328 76 76 345 497 103 0.8

RTP26 328 78 78 352 508 101 0.8

RTP27 328 77 77 343 497 98 0.8

RTP28 328 70 70 344 484 97 0.8

RTP29 328 74 74 332 480 100 0.8

RTP30 328 76 76 345 497 96 0.8

Avg 84.7 84.7 363.1 532.5 95.4 0.8

217

All transition-pairs (ATP), complete test model, and state-pointer oracle (O2)

ATP Complete
O2 GEN. TREE

GEN. TEST
SUITE BUILD TEST SUITE

PREPARE TEST
SUITE

EXECUTE
TEST SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

AT1 1425 26340 420 1746 28506 536 0.80

AT2 1425 26340 383 1829 28552 525 0.73

AT3 1425 26340 430 2319 29089 773 0.73

AT4 1425 26340 417 1595 28352 679 0.73

AT5 1425 26340 451 1514 28305 563 0.73

AT6 1425 26340 428 1544 28312 504 0.73

AT7 1425 26340 449 1654 28443 594 0.73

AT8 1425 26340 437 1560 28337 489 0.73

AT9 1425 26340 437 1556 28333 577 0.73

AT10 1425 26340 408 1673 28421 558 0.73

AT11 1425 26340 637 1713 28690 608 0.73

AT12 1425 26340 447 1901 28688 649 0.73

AT13 1425 26340 426 1711 28477 508 0.80

AT14 1425 26340 562 2646 29548 723 0.80

AT15 1425 26340 424 2530 29294 623 0.67

AT16 1425 26340 434 2304 29078 717 0.73

AT17 1425 26340 514 2662 29516 611 0.73

AT18 1425 26340 430 1723 28493 712 0.73

AT19 1425 26340 401 1873 28614 496 0.73

AT20 1425 26340 370 1791 28501 745 0.73

AT21 1425 26340 650 1803 28793 668 0.73

AT22 1425 26340 464 1845 28649 509 0.73

AT23 1425 26340 465 2033 28838 446 0.60

AT24 1425 26340 429 1621 28390 429 0.73

AT25 1425 26340 454 1630 28424 494 0.73

AT26 1425 26340 491 1636 28467 462 0.73

AT27 1425 26340 382 1650 28372 464 0.73

AT28 1425 26340 450 1995 28785 502 0.73

AT29 1425 26340 486 1716 28542 463 0.73

AT30 1425 26340 509 1566 28415 441 0.73

Avg 26340.0 456.2 1844.6 28640.8 568.9 0.733

218

I. Data Material – AT, RTP, and ATP – Abstract Model – Oracle O1

All transitions (AT), abstract test model, and state-invariant oracle (O1)

AT Abstract
O1 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

AT1 33 110 28 47 185 44 0.20

AT2 33 110 22 45 177 79 0.20

AT3 31 119 26 44 189 91 0.20

AT4 34 123 28 46 197 53 0

AT5 33 110 30 46 186 57 0.20

AT6 35 139 27 50 216 129 0.53

AT7 35 139 26 45 210 40 0.2

AT8 33 110 22 46 178 51 0.2

AT9 33 110 24 44 178 105 0.67

AT10 31 119 25 44 188 70 0.20

AT11 33 110 23 47 180 102 0.80

AT12 33 110 22 45 177 115 0.60

AT13 32 149 27 70 246 84 0.20

AT14 34 123 24 45 192 39 0.20

AT15 34 123 21 47 191 91 0.40

AT16 33 110 19 44 173 53 0.20

AT17 32 149 25 52 226 61 0.20

AT18 31 119 22 56 197 35 0.20

AT19 37 899 23 50 972 71 0.20

AT20 32 149 21 62 232 38 0.20

AT21 33 110 23 44 177 35 0.20

AT22 33 110 24 47 181 61 0.27

AT23 32 149 23 51 223 42 0.20

AT24 31 119 25 50 194 37 0.20

AT25 31 119 23 55 197 29 0.20

AT26 29 128 21 49 198 52 0.20

AT27 35 139 19 48 206 57 0.20

AT28 34 123 22 45 190 51 0.20

AT29 33 110 23 45 178 99 0.20

AT30 29 128 26 57 211 61 0.20

Avg 32.7 148.8 23.8 48.9 221.5 64.4 0.262

219

All round-trip paths (RTP), abstract test model, and state-invariant oracle (O1)

RTP Abstract
O1 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION SCORE

Test Suite
Test‐suite
size

Sec. Gen.
Tree

Sec. Gen. Test
Suite Sec. Build Sec. Sec. Run

RTP1 89 89 19 87 195 75 0.87

RTP2 89 89 20 87 196 72 0.87

RTP3 89 89 23 78 190 64 0.87

RTP4 89 89 15 88 192 62 0.87

RTP5 89 89 18 87 194 62 0.87

RTP6 89 89 16 102 207 62 0.87

RTP7 89 89 17 115 221 52 0.87

RTP8 89 89 24 78 191 58 0.87

RTP9 89 89 32 78 199 60 0.87

RTP10 89 89 20 83 192 77 0.87
RTP11 89 89 15 82 186 60 0.87

RTP12 89 89 15 143 247 52 0.87

RTP13 89 89 28 102 219 75 0.87

RTP14 89 89 21 161 271 71 0.87

RTP15 89 89 22 198 309 88 0.87

RTP16 89 89 21 121 231 84 0.87

RTP17 89 89 16 93 198 84 0.87

RTP18 89 89 21 95 205 89 0.87

RTP19 89 89 18 134 241 100 0.87

RTP20 89 89 24 90 203 73 0.87

RTP21 89 89 15 82 186 76 0.87

RTP22 89 89 15 78 182 74 0.87

RTP23 89 89 17 76 182 74 0.87

RTP24 89 89 17 78 184 76 0.87

RTP25 89 89 17 77 183 75 0.87

RTP26 89 89 16 81 186 73 0.87

RTP27 89 89 16 77 182 73 0.87

RTP28 89 89 16 77 182 75 0.87

RTP29 89 89 15 78 182 73 0.87

RTP30 89 89 15 79 183 75 0.87

Avg 89 89.0 18.8 96.2 204.0 72.1 0.87

220

All transition pairs (ATP), abstract test model, and state-invariant oracle (O1)

ATP
Abstract O1 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE TEST
SUITE

EXECUTE
TEST SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

ATP1 301 703 104 312 1119 313 0.867

ATP2 301 703 78 317 1098 312 0.867

ATP3 301 703 80 319 1102 358 0.867

ATP4 301 703 89 319 1111 478 0.867

ATP5 301 703 92 315 1110 313 0.867

ATP6 301 703 88 319 1110 406 0.867

ATP7 301 703 90 316 1109 215 0.867

ATP8 301 703 89 344 1136 366 0.867

ATP9 301 703 91 344 1138 338 0.867

ATP10 301 703 87 334 1124 427 0.867

ATP11 301 703 72 314 1089 401 0.867

ATP12 301 703 83 353 1139 348 0.867

ATP13 301 703 80 315 1098 343 0.867

ATP14 301 703 83 324 1110 415 0.867

ATP15 301 703 82 348 1133 467 0.867

ATP16 301 703 85 313 1101 495 0.867

ATP17 301 703 84 321 1108 330 0.867

ATP18 301 703 86 339 1128 441 0.867

ATP19 301 703 87 331 1121 509 0.867

ATP20 301 703 89 330 1122 356 0.867

ATP21 301 703 93 354 1150 405 0.867

ATP22 301 703 83 333 1119 504 0.867

ATP23 301 703 85 317 1105 515 0.867

ATP24 301 703 86 323 1112 394 0.867

ATP25 301 703 89 314 1106 436 0.867

ATP26 301 703 89 325 1117 296 0.867

ATP27 301 703 89 331 1123 372 0.867

ATP28 301 703 85 316 1104 362 0.867

ATP29 301 703 88 310 1101 403 0.867

ATP30 301 703 92 311 1106 528 0.867

Avg 301 703.0 86.6 325.4 1115.0 394.9 0.867

221

J. Data Material – AT, RTP, and ATP – Abstract Model – Oracle O2

All transitions (AT), abstract test model, and state-pointer oracle (O2)

AT Abstract
O2 GEN. TREE

GEN. TEST
SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

AT1 33 110 22 62 194 24 0.20

AT2 33 110 14 50 174 18 0

AT3 31 119 16 44 179 19 0

AT4 34 123 15 50 188 18 0

AT5 33 110 14 45 169 16 0.33

AT6 35 139 15 49 203 21 0

AT7 35 139 14 46 199 11 0

AT8 33 110 15 49 174 14 0.40

AT9 33 110 14 49 173 14 0

AT10 31 119 13 53 185 13 0.53

AT11 33 110 19 81 210 25 0.40

AT12 33 110 15 56 181 36 0

AT13 32 149 17 57 223 13 0

AT14 34 123 15 63 201 12 0.20

AT15 34 123 14 57 194 18 0

AT16 33 110 22 44 176 10 0

AT17 32 149 16 43 208 15 0

AT18 31 119 14 42 175 12 0

AT19 37 899 14 52 965 20 0

AT20 32 149 14 43 206 11 0

AT21 33 110 14 47 171 13 0

AT22 33 110 14 44 168 18 0

AT23 32 149 14 43 206 13 0

AT24 31 119 14 42 175 9 0

AT25 31 119 14 44 177 11 0

AT26 29 128 14 43 185 19 0

AT27 35 139 14 46 199 22 0

AT28 34 123 14 46 183 9 0.20

AT29 33 110 14 44 168 37 0

AT30 29 128 15 42 185 16 0.20

Avg 32.7 148.8 15.1 49.2 213.1 16.9 0.076

222

All round-trip paths (RTP), abstract test model, and state-pointer oracle (O2)

RTP Abstract
O2 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

RTP1 89 89 19 79 187 45 0.6

RTP2 89 89 25 92 206 23 0.6

RTP3 89 89 14 97 200 20 0.6

RTP4 89 89 15 80 184 21 0.6

RTP5 89 89 15 83 187 22 0.6

RTP6 89 89 15 81 185 21 0.6

RTP7 89 89 12 85 186 17 0.6

RTP8 89 89 13 80 182 19 0.6

RTP9 89 89 14 86 189 17 0.6

RTP10 89 89 13 86 188 23 0.6

RTP11 89 89 13 88 190 27 0.6

RTP12 89 89 17 95 201 15 0.6

RTP13 89 89 14 78 181 17 0.6

RTP14 89 89 15 76 180 20 0.6

RTP15 89 89 17 78 184 21 0.6

RTP16 89 89 13 82 184 14 0.6

RTP17 89 89 13 78 180 19 0.6

RTP18 89 89 13 77 179 15 0.6

RTP19 89 89 13 106 208 15 0.6

RTP20 89 89 13 90 192 21 0.6

RTP21 89 89 35 122 246 47 0.6

RTP22 89 89 17 144 250 22 0.6

RTP23 89 89 22 91 202 21 0.6

RTP24 89 89 16 89 194 25 0.6

RTP25 89 89 18 91 198 23 0.6

RTP26 89 89 17 91 197 22 0.6

RTP27 89 89 16 98 203 22 0.6

RTP28 89 89 14 82 185 26 0.6

RTP29 89 89 16 82 187 20 0.6

RTP30 89 89 20 87 196 22 0.6

Avg 89 89.0 16.2 89.1 194.4 22.1 0.6

223

All transition pairs (ATP), abstract test model, and state-pointer oracle (O2)

ATP Abstract
O2 GEN. TREE GEN. TEST SUITE BUILD TEST SUITE

PREPARE
TEST SUITE

EXECUTE
TEST SUITE

MUTATION
SCORE

Test Suite
Test‐suite
size Sec. Sec. Sec. Sec. Sec.

ATP1 301 703 93 355 1151 93 0.60

ATP2 301 703 71 318 1092 83 0.60

ATP3 301 703 71 314 1088 99 0.60

ATP4 301 703 75 312 1090 117 0.67

ATP5 301 703 74 313 1090 91 0.67

ATP6 301 703 82 318 1103 122 0.67

ATP7 301 703 77 314 1094 65 0.60

ATP8 301 703 76 325 1104 116 0.67

ATP9 301 703 77 318 1098 106 0.60

ATP10 301 703 82 337 1122 124 0.60

ATP11 301 703 69 316 1088 115 0.60

ATP12 301 703 63 348 1114 122 0.67

ATP13 301 703 69 324 1096 100 0.67

ATP14 301 703 70 344 1117 105 0.60

ATP15 301 703 82 326 1111 135 0.60

ATP16 301 703 69 325 1097 101 0.67

ATP17 301 703 69 333 1105 126 0.67

ATP18 301 703 68 388 1159 132 0.67

ATP19 301 703 68 349 1120 177 0.67

ATP20 301 703 95 341 1139 113 0.60

ATP21 301 703 65 472 1240 122 0.60

ATP22 301 703 80 409 1192 130 0.60

ATP23 301 703 93 372 1168 145 0.67

ATP24 301 703 92 315 1110 97 0.67

ATP25 301 703 100 322 1125 123 0.60

ATP26 301 703 114 394 1211 95 0.67

ATP27 301 703 89 447 1239 124 0.60

ATP28 301 703 126 415 1244 117 0.60

ATP29 301 703 115 550 1368 142 0.60

ATP30 301 703 71 385 1159 140 0.67

Avg 301 703.0 81.5 356.6 1141.1 115.9 0.63

224

K. Statistical Tests for Case Study 1

The paired Wilcoxon signed-rank test was used for comparing the testing strategies. The

following abbreviates are used in the tests:

 AT: the all transitions coverage criterion

 RTP: the all round-trip paths coverage criterion

 ATP: the all transition pairs coverage criterion

 Complete: the detailed test model

 Abstract: the test model where contents in super states were removed

 O1: the state-invariant oracle

 O2: the state-pointer oracle

 Prep: the time spent on preparing the test suite

 Exec: the time spent on executing the test suite

 Mut. score: the mutation score; that is, the number of non-equivalent mutants

killed divided by the total number of non-equivalent mutants

The following paired Wilcoxon signed-rank test was run:

Preparation time

RTP versus ATP

H_O: Complete_O1_RTP_Prep.time = Complete_O1_ATP_Prep.time

data: x$RTP.prep.complete.O1 and x$ATP.prep.complete.O1

V = 0, p-value = 1.863e-09

A statistic = 0

AT versus RTP

H_0: Complete_O1_AT_Prep.time = Complete_RTP_O1_Prep.time

wilcox.test(x, y, paired=TRUE, conf.level=0.99)

a.statistic.default(x$strategy.measure.test model.oracle,

x$strategy.measure.test model.oracle)

225

data: x$AT.prep.complete.O1 and x$RTP.prep.complete.O1

V = 465, p-value = 1.863e-09

A statistic = 1

AT versus ATP

H_0: Complete_O1_AT_Prep.time = Complete_ATP_O1_Prep.time

data: x$AT.prep.complete.O1 and x$ATP.prep.complete.O1

V = 0, p-value = 1.863e-09 (sign!)

A statistics = 1

Execution time

RPT versus ATP

H_O: Complete_O1_RTP_Exec.time = Complete_ATP_O1_Exec.time

data: x$RTP.exec.complete.O1 and x$ATP.exec.complete.O1

V = 0, p-value = 1.863e-09

A statistic = 0

AT versus RTP

H_0: Complete_O1_AT_Exec.time = Complete_RTP_O1_Exec.time

data: x$AT.exec.complete.O1 and x$RTP.exec.complete.O1

V = 465, p-value = 1.824e-06

A statistics = 1

AT versus ATP

H_0: Complete_O1_AT_Exec.time = Complete_ATP_O1_Exec.time

data: x$AT.exec.complete.O1 and x$ATP.exec.complete.O1

V = 9, p-value = 4.5e-06

A statistic = 0.08555556

226

Mutation score

RTP versus ATP

H_O: Complete_O1_RTP_Mut.score = Complete_ATP_O1_Mut.score

data: x$RTP.Mut.Score.O1 and x$ATP.Mut.Score.O1

V = 0, p-value = NA

A statistics = 0.5

AT versus RTP

H_0: Complete_O1_AT_Mut.score = Complete_RTP_O1_Mut.score

data: x$AT.Mut.Score.O1 and x$RTP.Mut.Score.O1

V = 0, p-value = NA

A statistics = 0.5

AT versus ATP

H_0: Complete_O1_AT_Mut.score = Complete_ATP_O1_Mut.score

data: x$AT.Mut.Score.O1 and x$ATP.Mut.Score.O1

V = 0, p-value = NA

A statistics = 0.5 (no effect)

227

L. Statistical Tests for Case Study 2

The paired Wilcoxon signed-rank test was used for comparing the test oracles. The

following abbreviates are used in the tests:

 AT: the all transitions coverage criterion

 RTP: the all round-trip paths coverage criterion

 ATP: the all transition pairs coverage criterion

 Complete: the detailed test model

 Abstract: the test model where contents in super states were removed

 O1: the state-invariant oracle

 O2: the state-pointer oracle

 Prep: the time spent on preparing the test suite

 Exec: the time spent on executing the test suite

 Mut. score: the mutation score; that is, the number of non-equivalent mutants

killed divided by the total number of non-equivalent mutants

The following paired Wilcoxon signed-rank test was run:

Preparation time

AT – The state-invariant oracle versus the state-pointer oracle

AT.prep.complete.[O1|O2]: 1.824e-06 (they are different)

a.statistic.default(sample1 = f$AT.prep.complete.O1, sample2 =

f$AT.prep.complete.O2)

A statistic = 0.6722222

95% confidence interval for A = [0.521, 0.794]

99% confidence interval for A = [0.474, 0.824]

wilcox.test(x, y, paired=TRUE, conf.level=0.99)

a.statistic.default(x$strategy.measure.test model.oracle,

x$strategy.measure.test model.oracle)

228

RTP – The state-invariant oracle versus the state-pointer oracle

RTP.-"-: p=1 (no SSD)

ATP – The state-invariant oracle versus the state-pointer oracle

ATP.-"-: p=0.03272 (they are different)

a.statistic.default(sample1 = f$ATP.prep.complete.O1, sample2 =

f$ATP.prep.complete.O2)

A statistic = 0.7227778

95% confidence interval for A = [0.573, 0.835]

99% confidence interval for A = [0.524, 0.860]

Execution time

AT – The state-invariant oracle versus the state-pointer oracle

AT.exec.complete.[O1|O2]: 1.824e-06

a.statistic.default(sample1 = f$AT.exec.complete.O1, sample2 =

f$AT.exec.complete.O2)

A statistic = 1

95% confidence interval for A = [NA, NA]

99% confidence interval for A = [NA, NA]

RTP – The state-invariant oracle versus the state-pointer oracle

RTP.-"-: 1.822e-06

a.statistic.default(sample1 = f$RTP.exec.complete.O1, sample2 =

f$RTP.exec.complete.O2)

A statistic = 1

95% confidence interval for A = [NA, NA]

99% confidence interval for A = [NA, NA]

ATP – The state-invariant oracle versus the state-pointer oracle

ATP.-"-: 1.863e-09

229

a.statistic.default(sample1 = f$ATP.exec.complete.O1, sample2 =

f$ATP.exec.complete.O2)

A statistic = 1

95% confidence interval for A = [NA, NA]

99% confidence interval for A = [NA, NA]

Mutations score – The complete test model

AT – The state-invariant oracle versus the state-pointer oracle

AT.mut.score[O1|O2]: p=1.08e-07

a.statistic.default(sample1 = f$AT.Mut.Score.O1, sample2 =

f$AT.Mut.Score.O2)

A statistic = 1

95% confidence interval for A = [NA, NA]

99% confidence interval for A = [NA, NA]

RTP – The state-invariant oracle versus the state-pointer oracle

RTP.mut.score[O1|O2]: p=4.616e-08

a.statistic.default(sample1 = f$RTP.Mut.Score.O1, sample2 =

f$RTP.Mut.Score.O2)

A statistic = 1

95% confidence interval for A = [NA, NA]

99% confidence interval for A = [NA, NA]

ATP – The state-invariant oracle versus the state-pointer oracle

ATP.mut.score[O1|O2]: p=2.765e-07

a.statistic.default(sample1 = f$ATP.Mut.Score.O1, sample2 =

f$ATP.Mut.Score.O2)

A statistic = 1

95% confidence interval for A = [NA, NA]

99% confidence interval for A = [NA, NA]

230

M. Statistical Tests for Case Study 3

The non-paired Wilcoxon signed-rank test was used for comparing the abstract and

complete test models. The following abbreviates are used in the tests:

 AT: the all transitions coverage criterion

 RTP: the all round-trip paths coverage criterion

 ATP: the all transition pairs coverage criterion

 Complete: the detailed test model

 Abstract: the test model where contents in super states were removed

 O1: the state-invariant oracle

 O2: the state-pointer oracle

 Prep: the time spent on preparing the test suite

 Exec: the time spent on executing the test suite

 Mut. score: the mutation score; that is, the number of non-equivalent mutants

killed divided by the total number of non-equivalent mutants

The following non-paired Wilcoxon signed-rank test was run:

Preparation time

The abstract test model versus the complete test model using the state-invariant oracle

H_0: ABSTRACT_O1_PREP.TIME = COMPLETE_O1_PREP.TIME (non-paired)

data: x$ABS.PREP.TIME.O1 and x$COMP.PREP.TIME.O1

W = 930, p-value < 2.2e-16

The abstract test model versus the complete test model using the state-pointer oracle

H_0: ABSTRACT_O2_PREP.TIME = COMPLETE_O2_PREP.TIME (non-paired)

data: x$ABS.PREP.TIME.O2 and x$COMP.PREP.TIME.O2

W = 930, p-value < 2.2e-16

wilcox.test(x, y, paired=FALSE, conf.level=0.95)

a.statistic.default(x$strategy.measure.test model.oracle,

x$strategy.measure.test model.oracle)

231

The abstract test model versus the complete test model using the state-invariant oracle and the state-

pointer oracle

H_0: ALL_ABSTRACT_PREP.TIME = ALL_COMPLETE_PREP.TIME (non-paired)

data: x$ABS.PREP.TIME and x$COMP.PREP.TIME

W = 3720, p-value < 2.2e-16

A statistics:

a.statistic.default(sample1 = x$ABS.PREP.TIME, sample2 =

x$COMP.PREP.TIME)

A statistic = 0.1148148

95% confidence interval for A = [0.086, 0.152]

99% confidence interval for A = [0.078, 0.166]

Execution time

The abstract test model versus the complete test model using the state-invariant oracle

H_0: ABSTRACT_O1_EXEC.TIME = COMPLETE_O1_EXEC.TIME (non-paired)

data: x$ABS.EXEC.TIME.O1 and x$COMP.EXEC.TIME.O1

W = 141, p-value < 2.2e-16

The abstract test model versus the complete test model using the state-pointer oracle

H_0: ABSTRACT_O2_EXEC.TIME = COMPLETE_O2_EXEC.TIME (non-paired)

data: x$ABS.EXEC.TIME.O2 and x$COMP.EXEC.TIME.O2

W = 736.5, p-value < 2.2e-16

The abstract test model versus the complete test model using the state-invariant oracle and the state-

pointer oracle

H_0: ALL_ABSTRACT_EXEC.TIME = ALL_COMPLETE_EXEC.TIME (non-paired)

data: x$ABS_EXEC and x$COMP_EXEC

W = 2426.5, p-value < 2.2e-16

A statistics:

a.statistic.default(sample1 = x$ABS_EXEC, sample2 = x$COMP_EXEC)

A statistic = 0.07489198

95% confidence interval for A = [0.054, 0.104]

232

99% confidence interval for A = [0.048, 0.114]

Mutation score

The abstract test model versus the complete test model using the state-invariant oracle

H_0: ABSTRACT_O1_MUT.SCORE = COMPLETE_O1_MUT.SCORE (non-paired)

data: x$ABS.MUT.SCORE.O1 and x$COMP.MUT.SCORE.O1

W = 0, p-value < 2.2e-16

The abstract test model versus the complete test model using the state-pointer oracle

H_0: ABSTRACT_O2_MUT.SCORE = COMPLETE_O2_MUT.SCORE (non-paired)

data: x$ABS.MUT.SCORE.O2 and x$COMP.MUT.SCORE.O2

W = 44, p-value < 2.2e-16

The abstract test model versus the complete test model using the state-invariant oracle and the state-

pointer oracle

H_0: ALL_ABSTRACT_MUT = ALL_COMPLETE_MUT (non-paired)

data: x$All.Abstract and x$All.Complete

W = 5505.5, p-value < 2.2e-16

A statistics:

a.statistic.default(sample1 = x$All.Abstract, sample2 =

x$All.Complete)

A statistic = 0.1699228

95% confidence interval for A = [0.132, 0.217]

99% confidence interval for A = [0.121, 0.233]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

