

Non-Newtonian Effects in Cerebral Aneurysms

A Computational Study on 12 Patient Specific Aneurysms

Øyvind Evju (M.Sc.), Kristian Valen-Sendstad (Ph.D.), Kent-Andre Mardal (Ph.D.)

The effects of assuming Newtonian fluid not extensively studied

In most computational fluid dynamics (CFD) studies, it is assumed that blood behaves as a Newtonian fluid.

All studies of non-Newtonian effects to date involve either a few anatomically realistic geometries or idealized geometries.

Most comprehensive CFD study of non-Newtonian effects in intracranial aneurysms to date

12 CT-based MCA geometries

$$\mu = \mu(\dot{\gamma}, \mathrm{Hct})$$

4 viscosity models

Pulsatile flow

Statistical analysis (Paired difference t-test)

Most comprehensive CFD study of non-Newtonian effects in intracranial aneurysms to date

$$\mu = \mu(\dot{\gamma}, \mathrm{Hct})$$

12 CT-based MCA geometries

4 viscosity models

Pulsatile flow

Statistical analysis (Paired difference t-test)

To determine the effects of viscosity changes, we have studied three measures of wall shear stress (WSS):

- Maximum WSS.
- 2. Spatial-temporal average WSS
- 3. Area fraction of low WSS (< 0.4 Pa)

A modified Cross viscosity model was compared to a constant Newtonian model

- Modified Cross model chosen from 7 viscosity models as an extreme case.
- Newtonian viscosity model chosen to isolate the shear thinning effects.

Same viscosity at high shear rate!

Example #1: Largest difference in maximum WSS

Example #2: Largest difference in average WSS

Example #3: Largest difference in area of low WSS

Analysis revealed no statistically significant differences

- All differences caused by the modified Cross model were within 9% of the Newtonian reference values.
- All average differences were within 3%.

Effects were compared to those caused by a 2pp hematocrit increase

 Casson model implemented with hematocrit levels of 38% and 40%.

Similar responses to shear rate, with only a slight shift in

viscosity.

Increased levels of hematocrit resulted in comparable differences in WSS

- Statistically significant slight increase in average WSS.
- One outlier at 18%, all other changes within 8%.

Conclusions

- The non-Newtonian effects are comparable to the effects of an hematocrit increase from 38% to 40%.
- No statistically significant effects are found from shear thinning alone.
- Given the uncertainty of other modelling assumptions (image quality, segmentation, boundary conditions etc.), changes in WSS of 0-10% can not be considered dramatic.

Conclusions

- The non-Newtonian effects are comparable to the effects of an hematocrit increase from 38% to 40%.
- No statistically significant effects are found from shear thinning alone.
- Given the uncertainty of other modelling assumptions (image quality, segmentation, boundary conditions etc.), changes in WSS of 0-10% can not be considered dramatic.

The assumption of Newtonian behaviour of blood is reasonable in cerebral aneurysms.

