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Abstract

Context: Traceability is one of the basic tenets of all software safety standards
and a key prerequisite for certification of software. Despite this, the safety-critical
software industry is still suffering from a chronic lack of guidelines on traceability.
An acute traceability problem that we have identified through observing software
safety certification processes has to do with the link between safety requirements
and software design. In the current state of practice, this link often lacks sufficient
detail to support the systematic inspections conducted by the certifiers of the soft-
ware safety documentation. As a result, the suppliers often have to remedy the
traceability gaps after the fact which can be very expensive and the outcome often
is far from satisfactory.
Objective: The objective of this article is developing a framework to enable sys-
tematic and efficient software design inspections during safety certification. In
particular, the framework enables safety engineers and certifiers to extract design
slices (model fragments) that filter out irrelevant details but keep enough context
information for the slices to be easy to inspect and understand. This helps reduce
cognitive load and thus makes it less likely that serious safety issues would be
overlooked.
Method: Our framework is grounded on SysML which is rapidly becoming the
notation of choice for developing safety-critical systems. The framework includes
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a traceability information model, a methodology to establish traceability, and
mechanisms to use traceability for extracting slices of models relevant to a particu-
lar safety requirement. The framework is implemented in a tool, named SafeSlice,
that supports establishing the traceability links envisaged by the methodology, au-
tomated consistency checking of these links, and automated generation of SysML
design slices.
Results: We provide a formal proof that our slicing algorithm is sound for tempo-
ral safety properties, and argue about the completeness of the slices based on our
practical experience. We report on the lessons learned from applying our approach
to two case studies, one benchmark case and one industrial case. Both case stud-
ies indicate that our approach offers benefits by substantially reducing the amount
of information that needs to be inspected in order to ensure that a given safety
requirement is met by the design.

Keywords: Safety Certification, SysML, Traceability, Model Slicing

1. Introduction

Safety-critical software is typically subject to a strict safety certification pro-
cess. The goal of the process is for a licensing or regulatory body to review the
safety evidence and arguments provided by the supplier and ensure that the de-
velopment and usage of the software are in compliance with the applicable safety
standards, e.g., IEC 61508 [1] (and its sector-specific specializations) for vari-
ous kinds of programmable devices, DO-178B [2] for airborne systems, and the
upcoming ISO 26262 [3] for the automotive industry.

Traceability is one of the core principles mandated by all these safety stan-
dards, with an overarching effect on all aspects of development. Typically, the
development of a safety-critical system begins with hazard and risk analysis. The
results of this analysis are used to define the overall (system-level) safety require-
ments. The safety requirements for the “software” elements of the system are de-
rived from the overall safety requirements and realized within the software design
and implementation. In such a development context, it is essential to preserve
traceability from hazards and risks to the overall safety requirements on to the
software safety requirements on to the software design on to the software imple-
mentation. Further, the development artifacts built throughout the process must be
traceable to the various verification and validation activities (e.g., static analysis,
testing, formal proofs) that they have been subject to. This web of traceability
information is not only crucial for the maintenance and evolution tasks to be per-
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formed by the supplier, but is also a key prerequisite for any systematic inspection
of software safety by the certifiers.

The work we report in this paper was prompted by the difficulties in the soft-
ware safety certification process that arise from poor traceability. These diffi-
culties were observed during an investigation of the software safety certification
inspections in the maritime and energy industry, but the problems should also be
representative of those faced in other software-intensive safety-critical domains,
such as the automotive industry, where software safety certification is an emerging
topic.

A particularly acute source of traceability problems in software safety certi-
fication is the chain from the overall safety requirements to software safety re-
quirements to software design. In the current state of practice, this chain often
lacks sufficient detail to support the stringent inspections that certifiers conduct to
ensure that the (software-related) safety objectives of a system are adequately ad-
dressed by the software design. Consequently, the suppliers often have to recover
the missing traceability information after the fact, which usually turns out to be a
very costly endeavor with unpredictable and less than satisfactory outcomes.

1.1. Contributions
In this paper, we are going to address the problem of traceability from require-

ments to design in the context of safety certification. This problem is driven by
three main considerations: (1) the way the requirements are expressed, (2) the
way the design is expressed, and (3) the goal to be achieved from traceability. In
our work, requirements are expressed as unrestricted natural language statements,
design is expressed using Systems Modeling Language (SysML) [4], and the goal
is to enable systematic design safety inspections. This combination is novel and
increasingly common in practice, noting that SysML is an INCOSE standard and
represents a significant and increasing segment of the industry. Specifically, we
make the following contributions:

• We characterize, based on our observation of software safety certification
inspections, the traceability information that is necessary for arguing that
the safety requirements are indeed accounted for in the software design.
This is achieved by developing an information model for traceability.

• We provide guidelines on how the traceability links prescribed by our infor-
mation model can be established during SysML modeling.
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• We define a formal mechanism through which design slices relevant to a
safety requirement can be automatically extracted to minimize the effort
required to check design compliance. This facilitates both impact analysis
and the certification’s usual workflow of activities.

• We develop tool support for our methodology. Our tool, named SafeSlice
(http://modelme.simula.no/pub/pub.html#ToolSlice), enables estab-
lishing the traceability links envisaged by the methodology, automated con-
sistency checking of these links, and automated generation of SysML de-
sign slices. Additionally, the tool provides a range of facilities for advanced
model navigation, report generation, and project status monitoring.

• We describe the steps we have taken to validate our approach. In particular,
we provide a formal proof that our slicing algorithm is sound for tempo-
ral safety properties, and argue about the completeness of the generated
slices based on our experience. We report on the lessons learned from ap-
plying our approach to two case studies, one a benchmark case study and
the other an industrial case study concerning a safety IO software module
used on ships and offshore facilities. Both case studies indicate that our ap-
proach offers benefits by substantially reducing the amount of information
that needs to be inspected in order to ensure that a given safety requirement
is met by the design.

1.2. Structure
The reminder of the paper is structured as follows: In Section 2, we describe

some root causes of certification problems. In Section 3, we provide a short
overview of SysML. We propose, in Section 4, a modeling methodology aimed at
facilitating safety certification inspections. The information model upon which the
traceability links in the methodology are based is given in Section 5. In Section 6,
we discuss how the traceability links can be utilized for automation, specifically,
for automatic extraction of the design information relevant to a particular safety
requirement. Section 7 presents tool support. Section 8 provides an evaluation of
our approach. Section 9 reviews the related work; and Section 10 summarizes the
paper and outlines directions for future work.

2. Software Safety Certification

To better understand current software safety certification practices, we at-
tended three certification meetings (totaling approximately 9 hours) between a
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certification body and a supplier of software-intensive safety-critical systems in
the maritime and energy sector. The purpose of these meetings was to determine
if certain software components of the system being certified were compliant to
IEC 61508 up to SIL31. The meetings we attended were exclusively focused
on ensuring the quality of the requirements, design, and architecture specifica-
tions for the software components. Showing compliance to IEC 61508 involves
satisfying a variety of other criteria having to do with V&V plans and results,
the software process, configuration management, handling of faults, developers’
competence, etc. These aspects are orthogonal to our work in this paper and were
not the subject of the meetings we attended.

The communication protocol between the supplier and the certifier was as
follows: The supplier would first send a (versioned) package composed of the
requirements, design, and architecture specifications to the certifier. This was
done long in advance of a scheduled certification meeting, so that the certifier
would have sufficient time to conduct a thorough review of the specifications and
provide feedback. The certifier’s feedback came in the form of a detailed list of
issues to be discussed during a meeting and was provided to the supplier well
ahead of the meeting. During the meeting, these issues were looked at one by one
and the supplier outlined its plan on how it was going to address each issue in
subsequent versions of the specifications. The updated specifications would then
again be reviewed by the certifier, and the process would continue iteratively until
the certifier was fully satisfied with the specifications.

A total of 66 distinct issues were discussed in the meetings we attended. Of
these, 21 (32%) were minor and did not entail any changes to the substance of the
specifications. Examples included terminology discrepancies, and minor omis-
sions and misinterpretations. Five issues (7%) had to do with safety requirements
that were not explicitly stated in the specifications or requirements that were in-
troduced recently into the regulations and had not yet been accounted for by the
supplier. Identifying this class of issues needed significant domain expertise from
the certifier’s side and familiarity with the range of applicable standards. The
remaining 40 issues (61%) arose due to a combination of the following factors:

• Traceability. The certifier demanded traceability (1) between requirements
and their sources (e.g. standards, stakeholders); (2) between system-level
and software-level requirements; (3) between requirements and environ-

1IEC 61508 specifies 4 levels of safety. These are called Safety Integrity Levels (SILs). SIL1
is the lowest and SIL4 is the highest level.
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mental assumptions (4) between software requirements and software blocks;
and (5) between software blocks at different levels abstraction (e.g., subsys-
tem, module, component). These links were either missing, or hard to find
in the specifications due to inadequate structuring (described below).

• Structuring of the specifications. Requirements decomposition was not
explicit; the software workflows were difficult to understand and at times
ambiguous; interaction interfaces between system components and between
the system and the users were not clearly delineated; and getting an over-
all view of the software architecture from the descriptions required signifi-
cant effort. The main cause of these problems was the specifications being
mostly text-based.

This last category of certification issues – concerning traceability and the
structuring of the specifications – can largely be avoided by developing an ap-
propriate development methodology based on models. Doing so is the focus of
the remainder of this paper. As we stated earlier, addressing traceability without
requiring more structure and precision on the development artifacts is unlikely to
succeed because the traceability links cannot be defined at an adequate level of
rigor over poorly structured and imprecise artifacts.

A final note to add here is that the percentages given in this section might
not be representative because we only considered one certification project. In
fact, we anticipate variations if the study was repeated with different parameters,
e.g., a different safety integrity level, different safety standard, different system,
or different certification body. Further, we did not measure the costs incurred
over addressing each class of issues, although we observed that all the non-minor
issues raised by the certifier were very expensive to fix. While additional studies
of certification processes are needed, we believe the current study lends support
to the anecdotal evidence that traceability is a major “bottleneck” during software
safety certification.

3. Background on SysML

In this section, we provide a brief introduction to SysML and highlight its
main advantages. The appeal of SysML in our work comes from the fact that
safety-critical software is typically embedded into some greater technical system
(e.g., one with electronic and mechanical parts). Hence, it is crucial to consider the
interactions of software with the non-software elements as well. Since SysML is
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rapidly becoming a de-facto standard for systems engineering [5], it was a natural
choice to base our work on.

SysML extensively reuses UML 2, while also providing certain extensions to
it. There are two types of SysML diagrams that do not exist in UML 2. These are
(1) the Requirement Diagram, where we can capture/develop the requirements
and relate them to other requirements or model elements, and (2) the Paramet-
ric Diagram, where we can capture continuous constraints for property values of
hardware components. Activity Diagrams, Internal Block Diagrams, and Block
Definition Diagrams are modifications of existing Activity Diagrams, Collabora-
tion Diagrams, and Class Diagrams in UML 2, respectively. Sequence Diagrams,
State Machine Diagrams, Use Case Diagrams, and Package Diagrams in SysML
are identical to their UML 2 counterparts.

Compared to UML, SysML offers the following advantages for specifying
control systems [6]:

• SysML expresses systems engineering semantics (interpretations of mod-
eling constructs) better than UML, thereby reducing the bias UML has
towards software. In particular, UML classes are replaced with a con-
cept called block in SysML. Block is a modular unit of system description.
Blocks are used to describe structural concepts in a system and its environ-
ment.

• SysML has built-in cross-cutting links for interrelating requirement and de-
sign elements. This allows engineers to relate requirements and design ele-
ments/models described at different levels of abstraction.

Our methodology in Section 4 utilizes all SysML diagrams. For a complete
specification of SysML, see [7].

4. Design Methodology

SysML is only a modeling notation and does not provide a methodology on
how to model a system (or system-to-be). To be able to effectively apply SysML,
one needs a specific methodology tailored to the problem domain and the objec-
tives to be achieved from modeling. In this section, we describe a methodology
for modeling safety critical control systems. Our methodology is based on SysML
and adapts the best practices in the existing model-based systems engineering
methods [8] to the needs of software safety certification. The main objective pur-
sued from modeling is to facilitate safety inspections by providing precise and
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 • Robot

The rotary robot (see figure 5) consists of two orthogonal
extendable arms equipped with an electromagnet. The
robot is powered by three bidirectional electric motors
which allow the rotation of the robot and the horizontal
translation of the arms (extension or retraction). The
motors can be started and stopped by the control pro-
gram. The angle of rotation of the robot and the value of
extension of each arm is given by potentiometers. In
order to meet various safety requirements, each arm has
to be retracted while the robot rotates and while the other
arm performs loading or unloading a blank.
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Figure 1: A fragment of the Production Cell System (PCS) [9]

unambiguous specifications of the system requirements and design (structure and
behavior) and establishing traceability links between requirements and design.
These links provide the evidence one needs for arguing that the requirements are
properly addressed by the design.

We use a small fragment of a Production Cell System (PCS) [9] as a work-
ing example. Briefly, the aim of PCS is the transformation of metal blanks into
forged plates (by means of a press) and their transportation from a feed belt into a
container. We focus on interactions between two devices of the cell: the feed belt
and the (rotary) table. The cell operator puts the blanks one by one on the feed
belt and the belt conveys them to the table. The table then rotates and lifts to put
the blanks in the position where a robot arm can take them. A picture of the feed
belt, table, and the robot arms is shown in Figure 1. Several safety requirements
are stated in the specification of PCS to ensure its safe operation including the one
below:
Avoidance of falling metal blanks: The metal blanks must not be dropped outside
safe areas of PCS. The safe areas include the surface of PCS devices and places
that are reachable by the robot arms.

Figure 2 shows an overview of our proposed methodology. The methodol-
ogy includes one or more iterations of the following two main phases: In the first
phase, the system requirements are identified. The second phase is composed of
three parallel but inter-related tasks: Describe the system structure and Describe the
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Figure 2: Methodology for model-driven development of control systems.

system behavior that are concerned with the construction of structural and behav-
ioral design models respectively, and Establish Traceability which is concerned with
the creation of traceability links between the requirements and design.

The input to our methodology is (1) a set of standards for the domain of the
system under analysis, (2) stakeholders’ requirements, and (3) a model captur-
ing domain concepts and their relationships. In Figure 2, the steps within each
phase are depicted as being conducted sequentially, but in reality, the discoveries
made at later stages of the development may affect the decisions made in earlier
stages. Thus, the diagrams developed in the process will co-evolve and none will
be considered final until the design is complete.

There are two main characteristics that distinguish our methodology from
other MDE-based methodologies for systems engineering:

1. The decomposition of system-level requirements is interleaved with the de-
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sign steps rather than preceding them. The reason is that requirements de-
composition implicitly contains a decomposition of the system into its sub-
systems and components. Hence, unless some thought is given to the system
design first, decomposing the requirements may cause a premature commit-
ment to decisions about the system structure. To avoid this problem, we
suggest that an initial decomposition of the system precedes the derivation
of the lower-level requirements.

2. The specific guidelines for capturing requirement and design details are spe-
cific for safety certification inspections.

Below, we briefly describe the steps comprising our methodology, emphasizing
the guidelines related to safety certification inspections. A complete description
of our methodology is available in [10].

Phase I - Requirements Specification. As shown in Figure 2, this phase has
three steps described below:

Step 1: System context diagram. The purpose of the system context dia-
gram is to specify the boundary between the system and its context. The system
context typically includes users, and hardware/software sub-systems that directly
interact with the system, either through the hardware devices or through the soft-
ware embedded in the hardware devices. We use SysML blocks to represent the
context.

Many safety requirements arise from assumptions about the system context,
also known as environmental assumptions. Incorrect environmental assumptions
and incorrect transition from these assumptions to system requirements may cause
catastrophic system failures [11]. Therefore, it is important that the descriptions
of these assumptions allow systematic analysis. This support the assessment of
the validity of requirements, specifications, and design decisions and to verify
that there are no conflicts between the required system properties. We describe
the environmental assumptions using SysML parametric diagrams (for continuous
properties of a hardware entity), or OCL constraints (for discrete properties of a
software entity). We further create traceability links from assumptions to system-
level requirements.

In Figure 3, we have shown an example parametric diagram. The diagram
describes a domain assumption about the physical dimensions of the blanks that
are fed to PCS. The assumption states that the height of a blank is no larger than
1/4 of the length of the feed belt that conveys the blank to the press, and that the
width of a blank is not larger than 3/4 of the width of the feed belt. The former
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blank_widthblank_height

widthlength
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is_acceptable

blank: Blank feedbelt: Feedbelt

feedbelt_length feedbelt_width

constraint : Dimensions Constraints

value = (blank_height < 1/4 * feedbelt_length) AND (blank_width < 3/4 * feedbelt_width) 

Figure 3: A SysML parametric diagram expressing an assumption.

constraint is to ensure that the blank is small enough to be picked up by the robot
arm that places the blank on the press, and the latter – to ensure that blanks would
not fall off the edges of the feed belt while in motion.

Step 2: System-level requirement diagram. System-level requirements ad-
dress the entire system, hardware or software. These requirements may come from
a variety of sources including, standards, customers, domain experts, environmen-
tal assumptions. Our focus here is to capture (1) safety requirements, i.e., quality
requirements ruling out software effects that might result in accidents, degrada-
tions, or losses in the environment [12] (e.g., the PCS requirement described ear-
lier in this section), and (2) safety-relevant requirements, the requirements that in
some way contribute to the satisfaction of the system safety requirements.

Step 3: Use case diagram capturing system’s top-level functions. Use cases
represent the functionality of the software part of a system from an external point
of view. They can be directly traced to the system-level requirements that they are
expected to address.

Phase II - System Design. Software design involves the creation of two main
complementary views: structural and behavioral. Structural views describe orga-
nization of a system in terms its constituent blocks and their interaction points, and
behavioral views describe how the blocks work together and communicate with
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Figure 4: A fragment of design diagrams for PCS: (a) Block Definition Diagram, and (b) Activity
partitions for the blocks in (a).

one another to deliver functionality. Below, we first briefly describe the diagrams
capturing these two views, and then discuss the Establish traceability task.

Steps 4,5: Structural Diagrams. We describe the structure of a system using
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SysML Block Definition Diagrams (BDDs) and Internal Block Diagrams (IBDs).
BDDs are used for decomposing a system into its constituent blocks and spec-
ifying conceptual relations between these blocks. We use association relations
to represent communication between software and hardware blocks, and asso-
ciation, dependency and generalization relations to model conceptual relations
between software components. Figure 4(a) shows a fragment of the BDD for the
PCS controller introduced at the beginning of this section. This diagram shows
the decomposition of the PCS controller into software blocks related to the feed
belt and table devices. IBDs are used for specifying communication between the
blocks identified in BDDs. More specifically, we refine the conceptual relation-
ships that we defined between the software/hardware blocks in BDD into a set of
architectural connectors with specific communication interfaces and ports. Mak-
ing the interfaces between different system blocks explicit is a major concern in
safety-critical systems to ensure that components can be integrated properly. See
the “insufficient structure and precision” issues in Section 2.

Steps 6,7: Behavioral Diagrams. Like many existing model-based approaches,
we use sequence/activity diagrams to represent inter-block scenarios, and state
machine diagrams to represent intra-block state-based specifications. For each
software block with control behavior, we create one state machine diagram. Fur-
thermore, each such block is related to a timeline or partition in some sequence
or activity diagram, respectively. We make these relations explicit by creating
SysML allocation links from each block to its related state machine, and to its
related activity partitions and sequence diagram timelines. To keep the blocks
consistent with the behavioral diagrams, the messages communicated between
blocks in sequence diagrams, the actions in activity diagrams, and the transi-
tions’ triggers/effects in state machine diagrams must be added as operations to
the appropriate blocks. For example, Figure 4(b) shows the activity partitions re-
lated to FeedBelt and Table blocks in Figure 4(a). The actions initialize,
add blank, and feed table in the activity partition related to FeedBelt appear
as FeedBelt operations, and similarly the actions initialize, go load position,
and go unload position in the activity partition of Table appear as Table op-
erations in Figure 4(a).

In the rest of the paper, to be consistent with our industrial case study in Sec-
tion 8, we focus on activity diagrams for representing block behaviors. Figure 4(b)
includes a small legend summarizing the notational elements used in our activity
diagrams. Note that our treatment for activity diagrams can be easily generalized
to other behavioral diagrams (see [10]).
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Using behavioural diagrams, we can infer temporal dependencies between
system operations, i.e., we can identify the relative ordering of the occurrence
of system operations. Specifically, from activity diagrams, we can extract the
following dependencies. We can identify that (1) A signal triggers an activ-
ity/action. For example, the FeedTable signal triggers the feed table activity
in Figure 4(b). (2) An activity/action triggers sending of a signal. For exam-
ple, the go load position activity triggers sending of the FeedTable signal.
(3) A signal sent from one activity partition is received by another partition. For
example, the FeedTable signal sent from the activity partition related to Table

is received by the activity partition related to FeedBelt. (4) An activity/action
directly triggers another activity/action via an operation call relation. Note that
call relations between block operations can be reflected to relations between ac-
tivities/actions related to those block operations. For example from the activity
diagram in Figure 4(b), we can infer that the go load position() operation of
Table triggers the feed table() operation of FeedBelt because in their related
activity partitions, upon completion of the go load position activity, Table
sends the FeedTable signal to FeedBelt which triggers the feed table activity.

Steps 8,9: Establish traceability. Through the activities under this task, we
establish traceability links from the system-level requirements down to the design
diagrams adapting and using the SysML traceability links. The traceability links
specify which parts of the design contribute to the satisfaction of each require-
ment. We expect the engineers to undertake the activities under this task only for
selected safety and safety-relevant requirements that are subject to stringent in-
spections during certification. Our approach to establishing traceability links has
the following two steps:

From system-level requirements to block-level requirements. In this step,
we decompose system-level requirements into lower-level requirements that can
be traced to a single or a small set of blocks contributing to the satisfaction of that
requirement. Decomposition of system-level requirements structurally mimics the
decomposition of the system into its constituent blocks discussed in Step 4.

We create explicit links between system-level and block-level requirements
using SysML decompose links, and between block-level requirements and their
related blocks using SysML trace links. For example, Figure 5 shows how a
system-level requirement of the PCS example is decomposed into a block-level
requirement which is traced to FeedBelt and Table blocks from Figure 4(a).

One way to assist engineers in decomposing system-level requirements is to
first trace down the requirement to use cases, and then further down to sequence

14



“feed belt conveys a blank” ↔
feedbelt.feed table()

-initialize()
-add_blank()
-feed_table()

-running:boolean
-blankAtEnd:boolean

FeedBelt

-initialize()
-go_load_position()
-go_unload_position()

-pos:Table_Position
-loaded:boolean

Table

feedbelt table

1 1interact

Avoidance of falling metal blanks

The feed belt conveys a blank to table if the table is in load position

decompose

tracetrace “table is in load position” ←
post(table.go load position())

p1 p2

“table is in load position” ←
post(table.initilize())

Figure 5: Traceability from a system-level requirement to a block-level requirement and from the
block-level requirement to the relevant blocks.

diagrams related to those use cases. Some of these blocks whose instances appear
in the sequence diagrams are responsible for fulfilling system-level requirements.
The next step is then to derive block-level requirements for these blocks by care-
fully analyzing scenarios, their messages, and triggered operations.

Re-express requirements in terms of block operations and states. The
trace links specified in Step 8 are rather too coarse-grained because requirements
often do not concern entire blocks. Rather, they refer to particular operations
or states of the blocks. We make the traceability links to blocks more specific by
augmenting them with mappings from the requirement phrases to block operations
or to block states. Syntactically, the mappings are generated by the following
simple grammar:

mapping ::= phrase from requirements rel block op |
phrase from requirements rel block st

rel ::= ↔ | → | ←

where, mapping and rel are non-terminals, and the rest, which are terminals,
are explained below. We use the requirements and blocks in Figure 5 for exempli-
fication.

• phrase from requirements is a requirement phrase, describing one of
the following situations:

1. an action being performed by a system block, e.g., “feedBelt conveys
a blank”; or
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2. a state or period during which a block is stable, i.e., block attributes
do not change their values, e.g., “table is in load position”.

• block op denotes a block operation and is formalized as
block.blockop(), e.g., feedbelt.feed table().

• block st denotes a boolean expression describing a block state and can be
formalized in the following ways:

1. as a state invariant of a block: (block.attr1 = v1∧. . . ∧ block.attrn = vn)

e.g., table.pos = loadposition; or
2. as a pre condition of a block operation: pre(block.op()),

e.g., pre(feedbelt.feed table()); or
3. as a post condition of a block operation: post(block.op()), e.g.,

post(feedbelt.feed table()).

Note that pre(feedbelt.feed table()) and post(feedbelt.feed table()) de-
scribe the state of the FeedBelt block before and after execution of
feed table(), respectively.

• ↔, →, ← are implication relations describing how a
phrase from requirements is related to a block operation or a block
state. Specifically, we use ↔ when the situation described by
phrase from requirements is fully captured by block op or
block st on the right-hand side, and →, ← when
phrase from requirements respectively describes a less general or more
general situation than the right-hand side.

The guidelines for creating the above mappings are as follows: (1) Decom-
pose the requirement into phrases referring to actions or states of a system. (2)
Determine block operations and block states related to the phrases. (3) Use logical
implication relations introduced above to relate each phrase to a block operation
or a block state.

Suppose we want to augment the trace links in Figure 5 with mappings. The
requirement in Figure 5 has two phrases: p1 = “feedBelt conveys a blank” refer-
ring to a block action, and p2 =“table is in load position” referring to a block state.
The phrase p1 matches the feed table() operation of FeedBelt, as this operation
is responsible for passing the blank to the table, and the phrase p2 refers to a state
where the Table block is in loadposition. This state can be formalized in sev-
eral ways: (1) via the state invariant table.pos = loadposition, (2) via the post
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condition post(table.go load position()) as the operation go load position()
causes the table to move to its load position, (3) via the pre condition
pre(table.go unload position()) as the operation go unload position() assumes
that the table is already in its load position, and (4) via the post condition
post(table.initialize()) as the operation initialize() causes the table to
move to its initialized position which is the load position. We then use logical im-
plication relations to establish the mappings between p1, p2 and block operations
and states:

(1) p1 ↔ feedbelt.feed table()
(2) p2 ↔ table.pos = loadposition

(3) p2 ← post(table.go load position())
(4) p2 ← pre(table.go unload position())
(5) p2 ← post(table.initialize())

In (1) and (2), the phrases are equivalent to the left-hand side expressions,
but not in (3), (4), and (5). Informally, (3), (4), and (5) hold because table being
in load position is one of the conjuncts in post(table.go load position()),
pre(table.go unload position()), and post(table.initialize()), respec-
tively.

In Figure 5, we use mappings (1), (3), and (5) to augment the links from the re-
quirement to FeedBelt and Table, respectively. We could further add mappings
(2) and (4) to our example. The exact choice of the mappings to use depends on
the logical argument that the designer wants to provide to demonstrate the satis-
faction of the requirement in question. Here, mappings (1), (3), and (5) already
provide enough information for a complete argument that the table is in load po-
sition prior to the operation that causes the blanks to move from feed belt to table.
Hence, we did not include mappings (2) and (4).

Finally, we note that in our methodology, we assume safety requirements are
already linked to the detection method, control, and actions specified for each
failure mode during Failure Mode and Effects Analysis (FMEA) [13], and focus
exclusively on requirements-to-design traceability, which was the main problem
based on our analysis of actual certification meetings.

5. Traceability Information Model

The information model in Figure 6 specifies the well-formedness criteria for
the traceability links underlying our methodology in Section 4. There are three
kinds of relationships in this model. (1) The structural relations between entities:
These are characterized by the generalization and aggregation relations, and the
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association relation between Block and Block Relationship in Figure 6. (2)
The traceability links that engineers manually create between entities: These are
characterized by all the labelled associations in Figure 6. We refer to these links
as explicit traceability links. (3) The links that are not explicitly created by the en-
gineers but rather are induced by the methodology guidelines in Section 4: These
are characterized by the thick dashed-line associations in Figure 6. We refer to
these links as implied traceability links. Below, we discuss the second (explicit
traceability links) and third (implied traceability links) groups of relationships.

Explicit traceability links:

• The derive link between System-Level Safety Requirement and its Source.
When Source is a Stakeholder, this link specifies who has suggested a
requirement. Otherwise, the link specifies what rules, policies, standards,
and practices mandate a requirement (see Section 4, Step 2).

• The derive/justify link between Assumption on the system context and
System-Level Safety Requirement. This link is used to capture the relation be-
tween properties of the system environment and the requirements yielded
by these properties. As discussed in Section 4, Step 1, the assumptions can
be formalized using SysML parametrics or OCL constraints. Recall that the
system context diagram consists of blocks capturing environment entities
(Environment Block) and a single block representing the system of interest
(System Block). The latter block is further decomposed into internal sys-
tem blocks during design (see Section 4, Step 4).

• The refine link relating System-Level Safety Requirement and the Use Case
operationalizing that requirement (see Section 4, Step 3).

• The decompose link relating System-Level Safety Requirement and Block-
Level Safety Requirement (see Section 4, Step 8).

• The derive link between Block-Level Safety Requirement and Block-Level Safety-
Relevant Requirement. Recall that safety-relevant requirements are the non-
safety requirements that are relevant to the fulfillment of the system’s safety
requirements (see Section 4, Step 2). We also use the derive link to spec-
ify sequences of safety-relevant requirements that directly or indirectly con-
tribute to a particular safety requirement. This is indicated by the self-loop
labelled derive in Figure 6.
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Figure 6: Traceability Information Model.

• The trace link between Block-Level Requirement and Block to indicate the
blocks contributing to the satisfaction of those requirements (see Section 4,
Step 8). As discussed in Step 9, we augment trace links with mappings
between requirement phrases and block operations and states. This is shown
through the association class Mapping in Figure 6.
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• The allocate link between Block and design elements representing the
block behavior (see Section 4, Steps 6,7). To save space, in Figure 6, we
have shown only the allocate link for activity diagrams.

Among the links discussed above, the links labelled derive and derive/justify
are new in our work. Though the rest of the links already exist in SysML, we spe-
cialize their semantics and usage to fit our application context. The refine link
in the SysML standard is meant to be used for the same purpose as ours with the
difference that we use this link to relate System-Level Safety Requirements to use
cases, while in the standard, it is used to relate any kind of requirements to use
cases [7]. The decompose link is used to relate complex requirements into sub-
requirements, whereas we specifically use this link to break-down system-level
requirements into block-level ones. The trace link is a general free-form link
connecting a requirement element to any requirement/model element, but we use
trace specifically to link block-level requirements to their related blocks. We
further make the trace links more precise using mappings. The allocate link
is used for making connections between design elements, but the interpretation of
this link is left open in SysML. In our work, we use allocate specifically for
relating a block to the elements representing the behavior of that block.

Implied traceability links:

• As shown in Figure 6 and the example in Figure 5, the Mapping elements are
modeled as association classes attached to trace links connecting block-
level requirements and blocks. The content of the mappings, however,
relates requirement phrases to block states and operations. The implicit
relation between the content of the mappings and block states and opera-
tions is captured using the implied traceability links represented as thick
dashed-line associations connecting Mapping to Block Operation and to
Block State (see Figure 6). For example, in Figure 5, the engineer explic-
itly creates the trace links between the requirement and the FeedBelt and
Table blocks, and further specifies the mapping phrases. From these map-
ping phrases, we can imply the traceability links between the requirement
and the operation feed table() of FeedBelt and the state
post(go load position()) of Table, i.e., the state where Table enters
when it finishes execution of the operation go load position().

• A block is consistent with the activity partitions representing its behavior
if: (1) For every block operation related to a safety requirement, there is at
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least one activity node in some activity partition related to that block. This
is because every block operation related to a safety requirement causes the
block to change its state, and hence appears in the diagrams representing its
behavior. For example, the operation go load position() of Table in Fig-
ure 4(a) appears in the activity partition of Table in Figure 4(b). Note that
block operations unrelated to safety requirements, e.g., getter operations
of a block that simply retrieve values of some variables, do not necessarily
appear as activity nodes. (2) For every block state related to a safety require-
ment, there is an activity edge in some activity partition related to that block.
This is because block states often refer to situations before or after execution
of some block operation, and hence they can be mapped to the incoming or
outgoing edges of the activity node related to that block operation. For ex-
ample, post(go load position()), i.e., the situation where table is in load
position, can be mapped to the edge from the go load position activity
to the node for sending of the signal FeedTable in Figure 4(b).

The consistency conditions (1) and (2) described above are respectively
specified using thick dashed-lines between Block Operation and
Activity Node, and between Block State and Activity Edge in Fig-
ure 6.

6. Automated Generation of Design Slices Relevant to Safety Requirements

This section explains how the traceability links described in Section 5 can be
used to automatically extract slices of the design diagrams relevant to a particular
safety requirement. Specifically, given a set of SysML diagrams conforming to
the information model in Section 5 and given a particular block-level safety re-
quirement r, we present an algorithm for extracting a design slice (i.e., a set of
fragments of the SysML diagrams) that is relevant to r. We provide a proof that
our slicing algorithm is sound for temporal safety properties, and argue about the
completeness of the generated slices based on our practical experience with the
algorithm.

6.1. Slicing Algorithm
Figure 7 shows our algorithm for extracting block and activity diagram slices.

Briefly, the algorithm identifies which model elements (i.e., activity nodes/edges,
block operations/states, and relationships between blocks) can be abstracted away
as they are not required to evaluate the considered requirement. The algorithm
takes as input a block-level safety or safety-relevant requirement r and a set of
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SysML design diagrams conforming to the information model in Figure 6. It gen-
erates a block diagram slice, denoted Block Slicer, as well as an activity diagram
slice, denoted Act Slicer. Specifically, Block Slicer is a set of blocks and rela-
tions between blocks, and Act Slicer is a set of activity partitions. These sets are
constructed such that all the blocks, the block operations/states, and the relations
between blocks in Block Slicer, and all the activity nodes/edges in Act Slicer di-
rectly or indirectly contribute to the satisfaction of r. The algorithm consists of an
initialization phase and three main steps discussed and exemplified below.

Initialization. The algorithm starts by computing the sets Br, Actr, Block Elemr,
and Act Elemr from a set of SysML design diagrams that conform to the infor-
mation model in Figure 6. For example, let r be the block-level requirement of
Figure 5. For this requirement, Br is {Table, FeedBelt}, Actr contains the two
activity partitions in Figure 4(b), Block Elemr is
{feedbelt.feed table(), post(table.go load position()), post(table.initialize())}

and Act Elemr includes (1) the feed table activity, (2) the transition from
the go load position activity to the FeedTable signal, and (3) the transition
from the initialize activity to the FeedTable signal in Figure 4(b). The al-
gorithm also initializes Act Slicer and Block Slicer by setting them to ∅. Note
that in Block Elemr, feedbelt.feed table() refers to a block operation, while
post(table.go load position()) and post(table.initialize()) are block
states. The feed table activity in Act Elemr is related to the block operation
feedbelt.feed table(), the transition in Act Elemr from go load position

to FeedTable is related to the block state post(table.go load position()),
and the transition in Act Elemr from initialize to FeedTable is related to the
block state post(table.initialize()).

Step 1 (Find Design Elemr). This step identifies the design elements that are
temporally related to r. The set Design Elemr is initially set to include the block
and activity diagram elements that are directly related to r via the explicit and im-
plied traceability links suggested by our information model (Figure 6). We then
compute the set of block operations and activity nodes that trigger (or are trig-
gered by) the elements in Design Elemr. We do so by adding to Design Elemr

any block operation or activity node that triggers (or is triggered by) an existing
element in Design Elemr. The resulting Design Elemr is the set of design ele-
ments that are temporally related to r. Recall that in our methodology (Steps 6
and 7 in Section 4), we discussed how the temporal relationships between block
operations and activity nodes can be identified to compute Design Elemr (see
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Algorithm. GENERATESLICE

Input: A block-level safety requirement, r.
A set of SysML design diagrams conforming to the information model in Figure 6.

Output: A block diagram slice related to r, Block Slicer.
An activity diagram slice related to r, Act Slicer.

/* Initialization. */
/*The trace and allocate links, the Mapping elements, and the relations between
activity nodes and edges and block operations and states are represented in Figure 6.*/

1. Let Br be the set of blocks related to r via trace links.
2. Let Actr be the set of activity partitions related to the blocks in Br via allocate links.
3. Let Block Elemr be the set of block states and operations related to r via Mapping elements.
4. Let Act Elemr be the set of activity nodes and edges related to the elements in Block Elemr.
5. Let Block Slicer and Act Slicer be ∅

/* Step 1. Find elements temporally related to r (Design Elemr). */
6. Design Elemr = Block Elemr ∪Act Elemr

7. for any block b ∈ Br and any element e ∈ Design Elemr do
8. if operation op of b triggers (or is triggered by) e then
9. Design Elemr = Design Elemr ∪ {op}
10. for any activity partition a ∈ Actr and any element e ∈ Design Elemr do
11. if activity node n of a triggers (or is triggered by) e then
12. Design Elemr = Design Elemr ∪ {n}

/* Step 2. Extract block diagram slices (Block Slicer). */
13. for every block b ∈ Br do
14. Let bOp and bAttr be the sets of operations and attributes of b, respectively.

/*Remove any operation in bOp that is not in Design Elemr.*/
15. bOp′ = bOp ∩Design Elemr

/*Remove any attribute in bAttr that is not in Design Elemr.*/
16. bAttr ′ = bAttr ∩Design Elemr

17. Let bOp′ and bAttr ′ be the new sets of operations and attributes of b, respectively.
18. Block Slicer = Block Slicer ∪ {b}

/* Add block relationships to the block diagram slice.*/
19. Block Slicer = Block Slicer ∪ {rel | rel is a block relation between blocks in Br}

/* Step 3. Extract activity diagram slices (Act Slicer). */
20. for every activity partition a ∈ Actr do
21. Let aNodes and aEdges be the sets of nodes and edges of a, respectively.
22. Let init be the initial node of a.

/* Remove every node in aNodes except for those in Design Elemr, and
the ending points of the activity edges in Design Elemr.*/

23. aNodes ′ = aNodes ∩
(
Design Elemr ∪ {the ending points of the activity edges in Design Elemr}

)
/* Remove every edge in aEdges except for those whose ending points are in aNodes ′.*/

24. aEdges ′ = {e ∈ aEdges | such that both ending points of e are in aNodes ′}
25. Let aNodes ′ and aEdges ′ be the new sets of nodes and edges of a, respectively.

/* Add stuttering edges.*/
26. for every pair n, n′ ∈ aNodes ′ do
27. if n′ is reachable from n in a through edges none of which are in aEdges ′ then
28. add a stuttering edge from n to n′

/* Pick a new initial node.*/
29. for every node n in activity partition a do
30. if there is a path from init to n that does not go through any node in aNodes ′ then
31. mark n as a new initial node of a.
32. Act Slicer = Act Slicer ∪ {a}

Figure 7: Algorithm for generating design slices.

23



[10] for more details). If the behavioural diagrams do not fully comply with our
methodology, we can still build Design Elemr using existing techniques for con-
trol dependence analysis [14].

For example, Design Elemr for the requirement in Figure 5 is initially set to
the union of Block Elemr and Act Elemr which includes the following elements:

• the block operation feedbelt.feed table()

• the block state post(table.go load position())

• the block state post(table.initialize())

• the activity node feed table

• the activity transition from go load position to FeedTable

• the activity transition from initialize to FeedTable

After executing Step 1, Design Elemr would be extended to include the fol-
lowing elements in addition to the above ones:

• the block operation feedbelt.go load position()

• the block operation feedbelt.initialize()

• the activity node related to receiving signal FeedTable in the activity par-
tition related to FeedBelt in Figure 4(b)

• the activity node related to sending signal Go Unload Position in the ac-
tivity partition related to FeedBelt in Figure 4(b)

The block operations feedbelt.go load position() and feedbelt.initialize()

are added because they trigger the block states post(table.go load position())
and post(table.initialize()), respectively. The two activity nodes in the
above list are added because the former triggers the activity node feed table,
while the latter is triggered by the same activity node.

Step 2 (Extract Block Slicer). This step abstracts away attributes and oper-
ations not present in Design Elemr from blocks in Br. It further removes the
block relationships that are not between the blocks in Br. For example, the block
diagram slice related to the requirement in Figure 5 is shown in Figure 8(a).

Step 3 (Extract Act Slicer). This step abstracts away every activity node from
activity partitions in Actr that is not in Design Elemr or is not an ending point of
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an edge in Design Elemr. It also removes every edge that is not in Design Elemr.
To maintain connectivity between the nodes, after the removal of edges, the last
part of the algorithm adds special edges between those nodes whose connecting
paths are removed. These edges are meant to preserve only the reachability re-
lations between nodes and not the exact number of steps to go from one node to
another. For this reason, we call them stuttering edges [15]. For example, the
activity slice related to the requirement in Figure 5 is shown in Figure 8(b). The
stuttering transitions between activity nodes are shown as dashed arrows. After
adding the stuttering transitions, for each activity partition, we identify an initial
node. To do so, we find a node to which there is a path from the initial node of
the original non-sliced activity partition that does not go through any other node
in the sliced activity partition.

Adding stuttering transitions and identifying initial nodes of activity diagram
slices allow us to reason about the soundness of our algorithm (see the discussion
on soundness in Section 6.2). Note that the notation for activity diagram slices
is slightly different from the conventional SysML/UML activity diagram notation
mainly due to addition of stuttering transitions. However, this notational differ-
ence does not hinder the use of existing standard SysML/UML tools for manipu-
lating the slices because we can develop a profile to extend the SysML notation to
include stuttering transitions, and hence, use such tools to create diagram slices.

6.2. Properties of Design Slices
Ideally, the design slices generated by our algorithm should possess the fol-

lowing two properties in order to be effectively used by certifiers for verifying
safety requirements.

Soundness If a requirement holds over a design slice, it should also hold over the
original (non-sliced) design.

Completeness If a requirement holds over the original (non-sliced) design, then
the design slice related to that requirement should contain enough informa-
tion to conclusively verify that requirement.

The first property (soundness) ensures that our algorithm generates correct
design slices. If not sound, the generated design slices cannot be trusted because
a requirement may hold over a design slice, while the original design does not
satisfy it. The second property (completeness) ensures that certifiers can always
rely on checking the generated design slices and never need to refer to the original

25



feedbelt:FeedBelt

feed_table()

table:Table

go_load_
position()

(b) Activity Slice: 

-feed_table()
FeedBelt

-initialize()
-go_load_position()

Table

feedbelt

table

1

1

interact

(a) Block Slice:

FeedTable

initialize

FeedTable

Go_Unload_Position

Figure 8: The block and activity slices for the requirement in Figure 5 extracted from the SysML
design diagrams in Figure 4.

design. If not complete, then there are requirements for which analysis of the
design slices does not yield a conclusive result, while the original design contains
sufficient information for decisive verification or refutation of those requirements.
Between the above two properties, soundness is a more crucial one. Obviously,
if the algorithm is unsound, it cannot be used in certification. Failure to satisfy
the completeness property, however, does not make the algorithm inapplicable,
but requires certifiers to refer back to the original design whenever the analysis of
slices is inconclusive. Below, we discuss soundness and completeness properties
of our algorithm.

Soundness. As we explained already, the activity diagram slices are created in
such a way that the reachability relations between the nodes in the original activity
diagrams are preserved in the slices. This enables us to keep the temporal order-
ings of the nodes in the slices consistent with those of the nodes in the original
diagrams, and hence, ensure that the slices are sound for requirements express-
ible as temporal constraints. Note that many safety properties are indeed temporal
constraints because they often state in what order the actions should occur so that
the system does not end up in an unsafe or undesirable state [16]. For example, the
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requirement in Figure 5 is a temporal constraint, requiring go load position()
or initialize() to occur before feed table(), and hence ensuring that table is
in the desired position prior to the execution of feed table(). Since the orderings
between sending of signal FeedTable and go load position and initialize

activities, and between receiving of the FeedTable signal and the feed table

activity in the activity diagram slice in Figure 8(b) are the same as the orderings
between these nodes in Figure 4(b), the slice in Figure 8(b) is sound for analysing
the requirement in Figure 5. Below, we formally argue that the design activity
slices generated by the algorithm in Figure 7 are sound for temporal constraints.

Temporal sequences. Let Σ be an alphabet. We define a trace σ over Σ to be a
finite sequence σ0σ1 . . . σn, where ∀i · 0 ≤ i ≤ n, σi ∈ Σ. We denote by Σ∗ the
set of all finite traces over Σ. Temporal safety requirements can be formalized as
traces of block operations. For example, the trace formalizing the requirement in
Figure 5 is

go load position() · feed table() | initialize() · feed table()

Activity partitions. An activity partition AP is a tuple (Σ, S, S0, R, L), where Σ
is a set of activity node labels, S is a finite set of activity nodes, S0 ⊆ S is a
set of initial activity nodes, R ⊆ S × S is a transition relation, and L : S → Σ
is a labelling function. A trace σ = σ0σ1...σk is a behaviour produced by AP
iff there is a sequence s0s1...sk+1 of activity nodes s.t. s0 ∈ S0, and for every
0 ≤ j ≤ k, (sj, sj+1) ∈ R and L(sj) = σj . The set of behaviours of AP , L(AP ),
is the set of all traces that can be produced by AP . Note that in our formalization
of activity partitions, we treat the nodes for sending and receiving of a signal,
sig, as activities labelled send sig and receive sig, respectively. For example,
the set of activity node labels for the FeedBelt activity partition in Figure 4(b)
is { receive turnON, receive AddBlank, receive FeedTable, initialize,
add blank, feed table, send Go Unload Position}. The initial node of this
activity partition is receive turnON. An example of a behaviour of this activity
diagram is

receive turnON · initialize · add blank · feed table · send Go Unload Position

Activity partition slices. Let AP = (Σ, S, S0, R, L) be an activity partition. Let r
be a safety requirement over the set of alphabet Σ1. An activity partition slice of
AP with respect to a safety requirement r is denoted by APr = (Σ′, S ′, S ′

0, R
′, L′)

where (Σ1 ∩ Σ) ⊆ Σ′ ⊆ Σ, S ′
0 ⊆ S ′ ⊆ S, and L′ ⊆ L. Further, the set of nodes

in S ′ to which there is a path from a node in S0 that does not go through any node
in S ′ is S ′

0. For example, the activity partitions in Figure 8(b) are slices of the
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partitions in Figure 4(b) with respect to the requirement trace:
receive turnON · initialize · add blank · feed table · send Go Unload Position

The set of alphabet for the activity diagram slice for FeedBelt is
{receive FeedTable, feed table, sendGo Unload Position}which is a sub-
set of the alphabet of the activity diagram for FeedBelt in Figure 4(b) and a su-
perset of the alphabet of the requirement trace when it is constrained by the alpha-
bet of FeedBelt. Similarly, the set of alphabet for the activity diagram slice for
Table is {send FeedTable, go load position, initialize} which is a sub-
set of the alphabet of the activity diagram for Table in Figure 4(b) and a superset
of the alphabet of the requirement trace when it is constrained by the alphabet of
Table.

An activity diagram slice APr is temporally sound if its set of behaviours
L(APr) is preserved in the set of behaviours of its corresponding original (non-
sliced) activity diagram L(AP ). Hence, any temporal requirement that holds over
the slice will hold over the original design as well. To prove this argument, we
note that some of the activity node labels of the original activity partition are
abstracted away in the slice. Hence, we first define a notion of projection on the
temporal traces to formalize the act of abstracting away some labels from a trace.
Let Σ′ ⊆ Σ be an alphabet, and σ = σ0 . . . σn be a trace over Σ. The projection of
σ to Σ′, denoted σ ↓Σ′ , is defined as:

σ ↓Σ′= (σ0 ↓Σ′)(σ1 ↓Σ′)...(σn ↓Σ′)

where σi ↓Σ′ = σi if σi ∈ Σ′, and ε otherwise. Further, let T ⊆ Σ∗. The projection
of T to Σ′ is denoted T ↓Σ′ and is defined as:

T ↓Σ′= {σ | ∃σ′ ∈ T · σ = σ′ ↓Σ′}

Theorem 1. Let AP = (Σ, S, S0, R, L) be an activity diagram, let r be a tempo-
ral safety requirement with the set of alphabet Σ1 ⊆ Σ, and let
APr = (Σ′, S ′, S ′

0, R
′, L′) be an activity diagram slice of AP with respect to r

generated by the algorithm in Figure 7. Then, APr is a sound activity diagram
slice of AP . That is,

I (Σ1 ∩ Σ) ⊆ Σ′ ⊆ Σ, S ′ ⊆ S, and L′ ⊆ L.

II Any node in S ′ to which there is a path from S0 that does not go through any
node in S ′ is in S ′

0.

III L(APr) ⊆ L(AP ) ↓Σ′
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Proof:
The argument I follows from the construction of slices in the algorithm in Fig-
ure 7. Specifically, the set of states and state labels of an activity diagram slice
APr consists of the elements present in Design Elemr, and further, Design Elemr

is a subset of the set of states and state labels of the activity diagram AP . More-
over, Design Elemr contains all the elements that are explicitly present in the
requirement r, i.e., Σ1.

The argument II holds by lines 29–31 of the algorithm in Figure 7.
For the argument III, note that based on the construction in the algorithm in

Figure 7, we have (1) the ending points of every (non-stuttering) transition in an
activity slice are the same as the ending points of that transition in the original
activity diagram; and (2) stuttering transitions replace sequences of consecutive
transitions. By (1) and (2), it can be shown that the temporal ordering of transition
labels are preserved, and hence, the set of traces of an activity diagram slice is a
subset of the set of traces of its original corresponding activity diagram projected
to the alphabet of the slice.

The above theorem shows that our slicing algorithm in Figure 7 generates ac-
tivity diagram slices that are sound for verifying temporal safety requirements.
The semantics of activity diagrams is typically described using Petri nets [17],
where an action becomes active when it has received all its input tokens, i.e., sig-
nal tokens or control tokens received upon completion of an activity. Here, we
take a trace-based semantic approach by abstracting away the data that is being
communicated, and interpreting sending and receiving of signals as actions (See
formalization of Activity Partitions above). This is because a trace-based seman-
tics allows us to reason about soundness with respect to temporal logic in a more
convenient way than the token-flow semantics of Petri nets.

Completeness. As mentioned above, completeness is a less crucial property than
soundness. Automated techniques are often partially complete. In our work, it
is difficult to demonstrate that the generated design slices always contain suffi-
cient information for analysing safety requirements because: First, completeness
of a generated design slice depends on the completeness of the traceability links
and mappings attached to the traceability links. For example, if we remove from
Figure 5 either of the mappings related to post(table.go load position())
or post(table.initialilize()), the resulting activity partition slices in Fig-
ure 8(b) will not include the activity nodes go load position and initialize

respectively. Second, the ability of certifiers to analyse the design depends on
several factors, in particular, their background on the language used for the design
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and their knowledge of the domain under analysis. As a result, different people
may require different amount of information to verify certain requirements. Due
to the subjectiveness of this issue, we plan to evaluate completeness of our slicing
algorithm using empirical techniques by running controlled experiments. How-
ever, we expect our slicing algorithm to be complete for a large number of safety
requirements. In particular, our analysis has shown that our algorithm is complete
for all of the safety requirements in our case studies described in Section 8 when
sufficient traceability links and sufficient mapping elements are provided.

For example, we can argue that the block and activity diagram slices in Fig-
ure 8 contains enough information to check the requirement (r) in Figure 5. To
check r, we need to demonstrate that (1) in the block diagram slice, there is an
association relation between the blocks referred to by r, and (2) the sequence of
interactions in the activity diagram slice satisfies r. The block diagram slice in
Figure 8(a) fulfills the former condition. To show the latter, we need to show that
p1 ∧ ¬p2 never happens in the design (see Figure 5 for p1 and p2). In this ex-
ample, this translates into showing that feed table of FeedBelt cannot occur
unless either go load position or initialize of Table has already happened.
The activity slice in Figure 8(b) shows this is the case, i.e., feed table can only
occur when it has received the signal FeedTable. This signal is sent only after
go load position or initialize is executed. Note that the stuttering transi-
tions between sending of FeedTable signal and go load position activity indi-
cates that the go load position activity does not necessary occur immediately
after sending of FeedTable as this edge abstracts several steps that perhaps may
involve receiving of several signals from the environment. But there is no delay
during the execution of normal activity diagram transitions, i.e., the feed table

activity occurs immediately after receipt of the FeedTable signal. Based on this
discussion it can be seen that the slices in Figure 8 are complete for analysing the
requirement in Figure 5.

7. Tool Support

This section presents a tool, named SafeSlice (http://modelme.simula.no/
pub/pub.html#ToolSlice), implementing our approach. Specifically, SafeSlice
enables users to: 1) specify the traceability links envisaged by the traceability
information model described in Section 5, 2) check the consistency of the estab-
lished links, and 3) automatically extract slices of design with respect to require-
ments using the slicing algorithm in Section 6. These slices are in turn used for
conducting inspections and ensuring that the design satisfies the safety require-
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ments. In addition to implementing our proposed traceability mechanism and
slicing algorithm, the tool provides facilities for managing inspections and report
generation.

To make sure that our tool can be seamlessly applied in real development
settings and easily maintained and improved, we built the tool as a plugin for
an existing model-based development environment. Among the possible alterna-
tives, we chose Enterprise Architect (EA) (http://www.sparxsystems.com.au)
as the base UML/SysML modeling environment due to EA’s usability, wide in-
dustrial adoption (confirmed by our industrial partners), availability of detailed
guidelines for plugin construction, and built-in support for storing and linking het-
erogeneous development artifacts (natural language requirements specifications,
UML/SysML models, Word documents, source code, etc.).

SafeSlice builds on Microsoft ActiveX COM technology. We used Microsoft
.NET Framework 2.0 and Visual Studio 2008 as the development platform. SafeS-
lice is written entirely in Visual C# and is roughly 10,000 lines of code excluding
comments and third-party libraries.

Figure 9 shows the overall architecture of SafeSlice. It communicates asyn-
chronously with EA via events. All the information related to a development
project is stored by EA in a database. The plugin can read from and write to
this database via EA’s API. In particular, the additional traceability information
required in our methodology, previously-generated design slices and reports, and
the decisions made by users during inspections are all stored and retrieved by
the plugin via the API; this communication layer assures reliability and it hides
the underlying database technology. In the remainder of this section, we present
the main features of SafeSlice: Rule Assistant, Slice Generator, and Inspection
Assistant.

7.1. Rule Assistant
Rules Assistant is a feature of SafeSlice to help users with the correct appli-

cation of the traceability information model presented in Section 5. Compliance
with this information model is necessary for automatic generating of design slices.
Rule Assistant provides support for checking the multiplicity and navigation con-
straints specified in the information model. These constraints are encoded using a
spreadsheet to be easily modifiable by the user.

If a violation is detected, Rule Assistant provides diagnostic information about
the violated rule, the model element(s) involved, and the action(s) to be taken to
resolve the issue. For instance, in Figure 10, we show the diagnostic information
generated by the Rule Assistant for the situation where a safety requirement has
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Figure 9: Architecture of SafeSlice

Figure 10: Example Output from Rules Assistant.

been defined but it is unspecified whether the requirement is at the system level
or at the block level. In this example, the user can read the “How to fix” field and
then click on “Find the element” to quickly navigate to the element in question
and apply the necessary fix.

Rule Assistant can check the compliance rules in two modes: investigator and
listening. In the investigator mode, the compliance of an entire project is checked.
In this mode, the user waits until the compliance checking process is finished
and then applies the suggested changes if violations are detected. In the listen-
ing mode, Rule Assistant is always active in the background and monitors every
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change made by the user and checks that the change is consistent with the infor-
mation model. If a violation is detected, feedback is immediately shown in the
the diagnostic window. The time required by Rule Assistant to check all the rules
is small. On a standard laptop, it took less than half a minute to check a SysML
design with about a thousand elements (blocks, relations, activities, transitions,
states, attributes, and operations) against all the rules.

7.2. Slice Generator
Slice Generator is an implementation of the slicing algorithm in Section 6.

As we discussed in Section 5, a system safety requirement is refined into safety
requirements at the level of blocks. If necessary, more detailed safety-relevant
requirements could be defined in order to satisfy block-level safety requirements.
In our tool, slices are constructed for atomic requirements, i.e., requirements that
are directly related to design via traceability links. System-level requirements
are never related to the design directly, because even in the simplest case where
these requirements do not need to be decomposed, they still need to be allocated
to some block and restated as a block-level requirement. If a block-level safety
requirement is atomic, then our tool will generate a slice directly for the block-
level requirement; otherwise, one slice will be generated for each of the atomic
safety-relevant requirements contributing to the satisfaction of a block-level safety
requirement. An example slice generated by our tool was already shown in Figure
8 and is not repeated here.

7.3. Inspection Assistant
The Inspection Assistant feature aims to help users better manage the inspec-

tion process. In particular, Inspection Assistant can record the decisions made
during (1) inspections of atomic requirements (conducted over design slices), and
(2) inspections done to ensure that the atomic requirements together lead to the
satisfaction of higher-level requirements and ultimately the system-level safety
requirements.

Figure 11 shows the various states an atomic requirement can go through dur-
ing the inspection process. The initial state is “Yet to approve”. The user then
reviews the design and marks the requirement as “Approved” or “Not approved”,
depending on whether s/he deems the design as satisfying the requirement or not.
Because the design evolves over time, it is important to check the impact of design
changes on safety requirements. Based on the traceability information, Inspection
Assistant detects the requirements that need to be re-inspected due to changes.
Specifically, if there is a change made to any of the block operations or attributes
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Figure 11: Inspection states for an atomic requirement

to which an atomic requirement is traced, then that requirement needs to be re-
inspected. The status of an atomic requirement that needs to be re-inspected is set
to “Out of date”; the status of the related higher-level requirements is set to “Out
of date” as well. In addition, any change to the textual description of a require-
ment (at any level) would render the state of that requirement “Out of date” and
the state will be propagated up to all the higher-level requirements.

To facilitate monitoring the progress of the inspection activities, Inspection
Assistant can generate pie charts to visualize the relative proportion of require-
ments in different states. An example is shown in Figure 12. This pie chart de-
picts the status of the safety-relevant requirements that contribute to a selected
system-level requirement (intermediate block-level requirements were filtered in
this chart). The chart indicates that there are three safety-relevant requirements
for the given system-level requirement and out of these, two have been already
approved and the third is awaiting inspection.

7.3.1. Report Generator
Report generation is an important feature for supporting safety inspections.

Reports are useful, for example, when a printed document needs to be signed off
for legal obligations or simply for sequential reading of the inspection material.
SafeSlice supports the automated generation of reports in PDF format. In partic-
ular, the tool allows the user to select the information to include in the report (e.g.

34



Figure 12: Monitoring the inspection progress using pie charts

design slice, whole design, statistics, pie charts). This is shown in the snapshot of
Figure 13. For instance, it is possible to generate a document reporting the inspec-
tion details of a given requirement or one that reports all the inspection details of
all the requirements in a project.

7.3.2. Advanced Navigator
To make the inspection process more effective, SafeSlice supports advanced

search and navigation of model elements. The Advanced Navigator feature allows
the user to select an element x (e.g., a requirement, class, block, etc.) and retrieve
the elements of given types (e.g., a specific requirements, classes, blocks, etc.) that
have a given type of relationship with x (e.g., satisfy, trace, derive, etc.). Figure
14 shows a screenshot of the advanced navigation search box. The user specifies
the element/relation types to search for from a pre-defined list. This list can be
modified by the user if needed, e.g., when a new SysML stereotype is defined for
capturing new types of elements.

8. Case Studies and Lessons Learned

To validate the feasibility and usefulness of our methodology (Section 6), we
have conducted two case studies: the first case study is the Production Cell Sys-
tem, a small fragment of which was introduced in Section 4 as the running exam-
ple for this article; the second case study is a real-world industrial system from
the maritime and energy domain. Below, we first describe each of these two case
studies (Section 8.1), and then report on the experience gained from applying our
methodology to the case studies (Section 8.2).
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Figure 13: Screenshot of Automated Report Generation. The user can select the information to
include in the report to be generated.

Figure 14: A screenshot of the advanced navigation feature of SafeSlice. The user can select the
specific types of elements having a specific types of relations with the current element.

8.1. Description of the Case Studies
8.1.1. Benchmark Case Study

In our first case study, we applied our methodology to the Production Cell
System (PCS), described earlier in Section 4. PCS is a well-known exemplar in
system engineering and has been previously used as a benchmark to evaluate the
capabilities of various specification methods for the purpose of safety analysis and
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verification [9]. The goal of this case study was to have an initial validation of the
methodology before applying it to a real industrial system (see Secion 8.1.2). A
complete SysML model of the PCS was developed based on the methodology pro-
posed in this article. The model built for the PCS includes all the SysML diagrams
in our methodology. In particular, the PCS design consists of 58 diagrams, 479
elements having 419 relations and 189 attributes. The PCS specification has 10
safety requirements, for which 10 design slices were generated using our slicing
algorithm.

8.1.2. Industrial Case Study
Our industrial study concerns a safety critical IO module developed at a mar-

itime and energy company specializing in computerized systems designed for
safety monitoring and automatic corrective actions on unacceptable hazardous sit-
uations. These systems include, among others, emergency and process shutdown,
and fire and gas detection systems. The role of the IO modules in these systems is
to connect software control components to hardware and mechanical devices.

The IO module in our study was designed to transfer specific commands from
a remote control unit to a fire detection panel. The panel was intended for marine
applications (e.g., general cargo and passenger vessels, and offshore installations)
and could be set up to control a variety of fire detection sensors. Our main criterion
in choosing this particular IO module from the several candidate IO modules was
representativeness. The decision was made by the lead engineer of the IO modules
at the company where we conducted our study, as she deemed the structure and the
behavior of the selected IO module to be representative of the significant majority
of the IO modules developed at the company.

We applied our methodology to the IO module under study and developed a
complete SysML design with traceability to the module’s requirements. To de-
velop the SysML design and the requirements traceability links, we relied on in-
terviews with the developers and an analysis of the existing documentation and
source code. The resulting design and traceability links were iteratively validated
and refined in collaboration with the lead engineer of the IO modules.

Since the IO modules at the partner company are used in safety monitoring
and control systems, most of the modules’ requirements are safety-relevant. As
we stated earlier, this means that their requirements in some way contribute to
the satisfaction of the system-level safety goals. An example of safety relevant
requirement is “It shall be possible to manually trigger data transmission”.

The SysML design in our industrial case study includes all the SysML dia-
grams envisaged in our methodology. Specifically, the design consists of 23 dia-
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grams, 194 elements having 186 relations and 57 attributes. The IO module under
study included 30 safety-relevant requirements, all of which where related to the
SysML design through appropriate traceability links. Subsequently, 30 design
slices were generated for the IO module, one for each requirement.

8.2. Lessons Learned
In this section, we discuss the lessons learned from applying our methodology

to the two case studies described in Section 8.1.

Use of the SysML Language. Overall, we found SysML to be a good fit for cap-
turing the behavioural and structural characteristics of the systems in our
studies. We did not encounter challenges that would indicate an inadequacy
in the expressive power of the SysML language for system design, nor did
we come across areas where using SysML made the design more complex
than necessary (i.e., accidental complexity). In comparison to the UML
language, we found two aspects of the SysML language to be advantageous
for systems engineering. Firstly, SysML can be used for capturing both
object-oriented and non-object-oriented systems, whereas UML is aimed at
only the former type of systems. The ability to handle non-object-oriented
systems is particularly important for embedded control systems, because
a significant proportion of these systems, including the IO module in our
industrial case study, are not object-oriented. In our case studies, we ap-
plied the same methodology with an equal degree of success for capturing
both object-oriented (PCS) and non-object-oriented systems (IO module).
A second main advantage of SysML is the introduction of parametric dia-
grams, an example of which was shown in Figure 3. We found parametric
diagrams very useful and a natural mechanism for specifying the operating
environment for software in the presence of electrical and mechanical parts.

Level of Required Effort. The effort required by the methodology was manage-
able. In our industrial case study, the design and tracing activities took about
three weeks, involving approximately 40 man-hours of effort. In the PCS
case study, these activities took about five weeks, involving approximately
90 man-hours of effort. In both cases, the required effort is manageable,
considering that: 1) such systems have a long lifetime, 2) the use of SysML
include additional benefits like reuse, standard compliance, and reduced am-
biguity and inconsistency, and finally, 3) the methodology is intrinsically it-
erative and the level of details to model is decided by the designer according
to time and schedule availability.
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Figure 15: Frequency distribution and quantile box for slicing reduction

Usefulness of Slicing. The slicing procedure significantly reduced the size of the
design models that needed to be reviewed in order to determine whether the
design satisfied a requirement of interest. The average reduction rate was
98% both over the PCS requirements and over the IO module requirements,
thus giving an average reduction rate of 98% for the combined set of re-
quirements from both systems. Figure 15 shows the reduction frequency
distribution and quantile box plot for the combined set of requirements. As
indicated by the distribution, the variation range is very small, considering
that the two systems are in different domains, and were modelled by differ-
ent people. We therefore anticipate reduction rates to be close to the values
observed here for other systems modelled according to our methodology.

In Section 6.2, we provided a formal proof of soundness for our slicing algo-
rithm, showing that the temporal sequencing of activities is preserved from
the source (activity) models to the sliced models. This means that the slices
never provide misleading information to the inspectors about the ordering of
activities. For whether a slice provides complete information to conduct the
task the slice is intended for, as we already argued in 6.2, one cannot give
a formal proof, unless one enforces major restrictions on the requirements
and design specifications, and introduces more sophisticated formal meth-
ods which could in turn reduce the applicability of our methodology. In the
two case studies we performed, we observed that the sliced models provided
adequate information for performing the task at hand (namely, checking if
a given requirement is properly realized by the design). This was mainly
attributable to the fact that we had high-quality traceability links from the
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requirements to the design, thus mitigating the possibility that slicing would
filter out too much information. In general, if a certain piece of information
is deemed missing from a slice, the inspectors can always access the origi-
nal model. Further, they can update the traceability links so as to ensure that
the missing information will included in the slices that will be generated in
the future.

Slicing Performance. Our tool, SafeSlice, requires a negligible amount of exe-
cution time. We recorded the time required by SafeSlice to produce a design
slice and to check compliance to the traceability information model in Sec-
tion 5. For the larger of the two systems in our studies (i.e., PCS), SafeSlice
had a worst-case time of ten seconds to produce a design slice and took
about half a minute to check the compliance of the entire system to the
traceability information model in Figure 6.

9. Related Work

Existing work on traceability primarily addresses the question of how to auto-
matically discover the traceability links. Various techniques have been proposed,
among many others: Cleland-Huang et al. [18] apply information retrieval tech-
niques to find candidate links between development artifacts; Egyed [19] utilizes
run-time information to suggest links between the system’s models and the sys-
tem’s implementation; and Jirapanthong and Zisman [20] provide a rule-based
approach for inferring links between product-line artifacts. These techniques are
all applicable for systems that are subject to safety certification. However, they
must be viewed as complementary to, and not a replacement for, methodologies
that help developers manually create complete and correct links at the right level
of detail and thus mitigate the risk of a very lengthy certification process whose
cost would dwarf the overhead associated with manual traceability links. Further,
safety-critical software is often several folds more expensive to build than non-
safety-critical software; hence, the traceability overhead makes up for a much
smaller part of the total development cost.

Using a traceability information model to systematize the construction of trace-
ability links is not new. Generic information models already exist for character-
izing the links for various development tasks. For example, Ramesh and Jarke
[21] provide such an information model based on an observation of the practices
in several software organizations, and Panesar et al. [22] – based on an analysis
of the traceability criteria in the IEC 61508 standard. These information models
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aim to be independent from the development artifacts and hence cannot specify
either the detailed structure of the traceability links or the methodology that must
be followed for establishing them. In contrast, in our work, we assume that the
design artifacts are expressed using SysML models, thus enabling us to elaborate
the structure of the links and provide a concrete methodology for creating them.

More recently, there has been a growing interest in traceability information
models for MDE [23], the insight being that such models must be built for the
specific needs of a problem, and the notations used throughout development. Our
work in this paper applies this general idea to develop an information model for the
specific needs of “unrestricted natural language requirements”, “software safety
certification” and the “SysML” notation.

Slicing techniques have been studied for a long time as means to reduce the
complexity of software development. Most of the existing work on slicing is con-
cerned with program code, where slicing is mainly used as a debugging aid [24].
Various other applications for code slicing have been described in the literature in-
cluding program comprehension, software maintenance, and testing (see [25, 26]
for surveys). For models, slicing has been studied primarily as a way to reducing
cognitive load and to improve understanding, inspection and modification of mod-
els. Various model slicing techniques have been proposed, e.g., Korel et al. [27]
provide a technique for the slicing of state-based models using dependence anal-
ysis, and Kagdi et al. [28] a technique for slicing UML class models based on
predicates defined over the model’s features. These approaches, in contrast to
ours, are not aimed at expressing the relationships between the requirements and
the design, and hence cannot be used for extracting design slices with respect to a
given requirement.

Our concept of design slice is similar in theme and aim to architectural views [29].
In fact, both slices and architectural views capture a fragment of the whole design,
consisting of several diagram types (e.g., class diagrams and activity diagrams). In
both cases, the fragment is extracted with the aim of reducing complexity and the
effort needed for analysis and review. However, in the context of software archi-
tecture, the design is typically at a higher level of abstraction than in our context.
Moreover, a design slice is related to a given (safety) requirement whereas an
architectural view is related to a set of concerns which, in contrast to our work,
represent higher-level goals, including non technical aspects such as social, psy-
chological, and managerial issues [29, 30, 31].
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10. Conclusion

In this paper, we developed a traceability framework to facilitate the soft-
ware safety certification process. Our framework is grounded on SysML which
is rapidly becoming the notation of choice for developing safety-critical systems.
The framework includes a traceability information model, a methodology to estab-
lish traceability, and mechanisms to use traceability for extracting slices of models
relevant to a particular safety requirement. Our slicing algorithm enables certifiers
and safety engineers to narrow the scope of their analysis to the small fragments
of the design related to the task at hand. This helps reduce cognitive load and thus
makes it less likely that serious safety issues would be overlooked. We have val-
idated our approach on one benchmark and one industrial case study. Lastly, we
have developed tool support for our methodology, implemented via plug-ins in a
leading SysML modeling environment. The tool guides the construction of trace-
ability links, maintains consistency between the links and the information model,
and provides facilities for automatic slicing.

Our work in this paper matches a major industrial need. On the one hand,
the industry has long recognized the value of model-based engineering for man-
aging complexity, but on the other hand, the developers are left without proper
guidelines on how to build and relate their models in a way that is suitable for
the analyses they intend to perform over the models, e.g., certification, impact
analysis, automated testing and verification. As a result, they often do not model
the right aspects of the system or miss crucial details. This problem must be
addressed through the development of more concrete and validated methodolo-
gies. Our work here was a step towards this goal, focused on safety certification.
Although there is certainly a cost overhead for using our proposed framework,
we believe the overhead is justified given the overall development costs and the
formidable cost and schedule risks that poor traceability can pose during certifica-
tion. Further, our framework targets safety requirements. Hence, traceability costs
are driven by the extent of safety-relevant aspects, not the size of the entire system.
These aspects are typically small size-wise, but need very careful analysis.

Future work will include the development of templates for writing require-
ments so that requirements can be more systematically mapped onto design el-
ements, e.g., block operations and states. Ultimately, we plan to conduct larger
industrial case studies to assess the extent to which developers benefit from our
framework so as to obtain a more conclusive picture of the cost-benefit trade-offs
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for traceability in the context of safety certification.
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