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ABSTRACT

Today, adaptive HTTP segment streaming is a popular way
to deliver video content to users. The benefits of HTTP
segment streaming include its scalability, high performance
and easy deployment, especially the possibility to reuse the
already deployed HTTP infrastructure. However, current
research focuses merely on client side statistics like for ex-
ample achieved video qualities and adaption algorithms. To
quantify the properties of such streaming systems from a ser-
vice provider point of view, we have analyzed both sender
and receiver side logging data provided by a popular Nor-
wegian streaming provider. For example, we observe that
more than 90% of live streaming clients send their requests
for the same video segment with an inter-arrival time of
only 10 seconds. Moreover, the logs indicate that the server
sends substantially less data than is actually reported to be
received by the clients, and the origin server streams data
to less clients than there really are. Based on these facts, we
conclude that HTTP segment streaming really makes use of
the HTTP cache infrastructure without the need to change
anything in the parts of Internet that are not controlled by
the streaming provider.

Categories and Subject Descriptors

C.4 [Performance of systems]; D.2.8 [Software Engi-
neering]: Metrics—performance measures; H.3.3 [Infor-
mation Search and Retrieval]

General Terms

Measurement, Performance

Keywords

Live adaptive HTTP segment streaming, streaming, Mi-
crosoft Smooth streaming, streaming performance
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1. INTRODUCTION

The number of video streaming services in the Internet
is rapidly increasing. The number of videos streamed by
these services is on the order of tens of billions per month
where YouTube alone delivers more than four billion video
views globally every day [21]. Furthermore, with only a
few seconds delay, many major (sports) events like NBA
basketball, NFL football and European soccer leagues are
streamed live. For example, using the modern adaptive
HTTP segment streaming technology, events like the 2010
Winter Olympics [22], 2010 FIFA World Cup [14] and NFL
Super Bowl [14] have been streamed to millions of concurrent
users over the Internet, supporting a wide range of devices
ranging from mobile phones to HD displays.

As a video delivery technology, streaming over HTTP has
become popular for various reasons. For example, it is scal-
able, runs on top of TCP, provides NAT friendliness and
is allowed through most firewalls. The idea of splitting
the original stream into segments and upload these to web-
servers in multiple qualities (bitrates) for adaptive delivery
has been ratified for an international standard by ISO/IEC
as MPEGDynamic Adaptive Streaming over HTTP (MPEG-
DASH) [19]. From the users’ perspective, the video segment
bitrate is selected based on observed resource availability
and then downloaded like traditional web objects. Such an
approach where video is streamed over TCP has been shown
to be effective as long as congestion is avoided [20], and adap-
tive HTTP streaming has been proved to scale to millions
of concurrent users [1]. Such a solution is therefore used
by Microsoft’s Smooth Streaming [22], Adobe’s HTTP Dy-
namic Streaming [5] and Apple’s live HTTP streaming [17]
– technologies which are used in video streaming services
from providers like Netflix, HBO, Hulu, TV2 sumo, Viaplay
and Comoyo.

Current research has focused on various aspects of efficient
client side delivery [6, 9, 15, 18]. To quantify the properties
of such streaming systems from a service provider point of
view, we have analyzed both sender and receiver side log-
ging data provided by the Norwegian streaming provider Co-
moyo [7]. In this paper, we focus on live streaming events. In
such scenarios, the segments are produced and made avail-
able for download periodically, i.e., a new segment becomes
available as soon as it has been recorded, completely encoded
and uploaded to a web-server, possibly located in a content
distribution network (CDN) like Akamai or Level 3 [13]. The
question that we answer in this paper is how adaptive HTTP
segment streaming systems behave as a whole from a ser-
vice provider point of view. For example, we observe that



for live streaming, about 90% of clients download the same
video segment within a 10 second period, i.e., 90% of the
users are at most 10 seconds behind the most ”live” client.
Furthermore, we find that the clients report receiving much
more video segments than the server actually sent. Based on
the client IP distribution and the IP distribution as seen by
the server, we conclude that HTTP cache proxies must be
heavily used between the origin server and the clients. This
proves for example that the existing HTTP infrastructure is
efficiently used and offloads the origin server in real world
networks.

The rest of this paper is organized as follows: In Section
2, we discuss examples of related work. Section 3 sketches
the network setup used by Comoyo [7]. Section 4 through 6
analyse the provided logs. The analysis is split into client log
analysis in Section 5 and into server log analysis in Section
6. We conclude the paper in Section 7, where we also discuss
future work.

2. RELATED WORK

The popularity of HTTP segment streaming led to many
real world studies for example, Müller et al. [15] collected
data using different commercial streaming solutions as well
as the emerging MPEG-DASH standard over 3G while driv-
ing a car. They compared the average bitrate, number of
quality switches, the buffer level and the number of times
the playout was paused because of re-buffering. A similar
study was performed by Riiser et al. [18]. In their paper,
they evaluated commercial players when on the move and
streaming over 3G. They additionally proposed a location
aware algorithm that pre-buffers segments if a network out-
age is expected on a certain part of a journey (based on
previous historical records for that location). Houdaille et
al. [9] focused on a fair sharing of network resources when
multiple clients share the same home gateway and Akhshabi
et al. [6] compared rate adaption schemes for HTTP seg-
ment streaming using synthetic workloads.

However, in general, studies, that we are aware of, focus
all on the client side. In other words, they measure the user
experience in one form or an other from the client side per-
spective. We believe this is mainly because the commercial
content providers are protective of their data, and it is not
easy to get any statistics or logs. However, the server-side
performance is equally important in order to scale the service
to 1000s of users. In this respect, we have a collaboration
with a commercial streaming provider Comoyo [7], and we
present the insights gained from both server and client side
log analysis in this paper.

3. COMOYO’S STREAMING SETUP

Comoyo [7] is a Norwegian streaming provider, provid-
ing access to an extensive movie database of about 4000
movies. Additionally, Comoyo provides live streaming of
various events like the Norwegian premier league. Most
of the soccer games are played on Sundays and some on
Wednesdays, and hence, these two days are the busiest times
for football live streaming. The logs that are analysed in
this paper are from a Wednesday, but first, we shall look at
Comoyo’s network infrastructure.

The network infrastructure for both on-demand and live
services is illustrated in Figure 1. The difference is only in
the source of the stream, which can be a live stream com-

Figure 1: Streaming network infrastructure

ing in over a satellite or a pre-recorded stream coming from
the movie database. The on-demand movies are streamed
either using the classic progressive streaming based on Win-
dows Media Video (wmv) or via Microsoft’s Smooth stream-
ing [22] based on HTTP segment streaming, which is also
used for live streaming. For live streaming, the video con-
tent is available in 0.5, 1, 2 and 4 MBit/s, and the audio in
96 Kbit/s.

Since, we focus only on Smooth streaming in this paper,
we shall describe it briefly here. Smooth streaming [22] is a
streaming technology by Microsoft. The file format used is
based on ISO/IEC 14496-12 ISO Base Media File Format [2].
The reason for choosing it as its base is that it natively
supports fragmentation. There are two formats specified,
the disk file format and the wire file format. Each video
(there is one for each bitrate) is stored as a single file in
the disk file format. Additionally to the files containing the
video data there are two more files on the server. One of
these files (the .ism file) describes the relationship between
the media tracks, bitrates and files on the disk. This file is
only used by the server. The other file is for the client. It
describes the available streams (codec, bitrates, resolutions,
fragments, etc.) and it is the first file that the client requests
to get information about the stream.

The Smooth streaming clients use a special URL structure
to request a video fragment. For example, a client uses the
following URL to request a SOCCER stream fragment that
begins 123456789 time units from the content start1 in a 1
Mbit/s bitrate from comoyo.com:

http://comoyo.com/SOCCER.ism/QualityLevels(1000000)/

Fragments(video=123456789)

The server parses the URL and extracts the requested
fragment from the requested file. The official server that
has these capabilities is the IIS server [16] with an installed
Live Smooth Streaming extension [3]. It looks up in the
.ism file the corresponding video stream and extracts from
it the requested fragment. The fragment is then send to
the client. Note that the fragments are cacheable since the
request URLs of the same fragment (in the same bitrate)
from two different clients look exactly the same and as such
can be cached and delivered by the cache without consulting
the origin server.
1The exact unit size is configurable, but is usually 100ns.



As Figure 1 shows, a number of IIS servers is deployed be-
hind a load balancer that distributes the incoming requests.
The load balancer is connected directly to the Internet, i.e.,
ISP 1 in the figure. However, content is not served exclu-
sively to subscribers of ISP 1, but also to subscribers of other
ISPs as illustrated in the figure. Besides the IIS servers; an
analytics server is deployed and connected to the Internet.
This server’s role is to collect various information from the
video clients. For example, the clients notify the analytics
server when the video playout is started, stopped or when
the quality changes.

4. LOG ANALYSIS

For our study, we were provided with two types of logs.
We call these the server log and the client log based on
where the information is collected and logged. We picked
one server log and the corresponding client log from the
same day, 23.05.2012. These logs were found representative
for similar live streaming events. The logs are 24-hour logs
collected for 8 soccer games. The server log contains infor-
mation about every segment request as received by the load
balancer. The most important information is the time of
the request, the request URL, client’s IP address, response
size and streaming type, which can be progressive stream-
ing, on-demand Smooth streaming or live Smooth stream-
ing. Table 1 lists all the other important information that
is logged about each request.

The client log is a collection of events collected from all the
clients by the analytics server while the clients are streaming.
Collected events are described in Table 2. The information
logged for every event is described in Table 3. Specifically,
every client event includes the information to which user in
which session and at what time the event happened. Note
that within a session a user can only stream one content, and
a session can not be shared between multiple users. A typical
sequence of events in one session is shown in Figure 2. In our
analysis, we first analyse the logs separately and then point
out the differences and inconsistencies and draw conclusions.

Figure 2: An example of events sent within a session

5. SERVER LOG ANALYSIS

Our analysis of the server log showed that there were 1328
unique client IP addresses in the log over the tracked 24-
hour period. From all the IP addresses, 56% was tagged as
live Smooth streaming, 6% as on-demand Smooth streaming
and 44% as progressive streaming. 6% of all IP addresses
was associated with more than one type of streaming, e.g.,
showed up one time as live Smooth streaming and another
time as progressive streaming. In other words, if each user
had a unique IP address there would had been 744 people
watching the live stream.

Client IP Client’s IP address
HTTP
method

HTTP method used (e.g. GET)

Request URL The URL of the request
Response size Response size in bytes
Useragent Client’s user agent
Cookie Cookie information in the request
HTTP status Status code of the response
Time taken Time taken by the server in ms
Streaming
type

The type of streaming. Possible values are
progressive streaming, on-demand Smooth
streaming, live Smooth streaming

Timestamp Timestamp of the request in UNIX epoch
format

Table 1: Information about every request in the
server log file

play The start of the playout
playing Regularly sent every 60 seconds when the

playout is in progress
position Sent when the user seeks to a different po-

sition in the video
pause Sent when the user pauses the playout
bitrate Sent when the player switches to a different

bitrate, i.e., resutling in a different video
quality

buffer Sent when an buffer underrun occurs on
the client side

stop Sent at the end of streaming
subtitles:on Turn on subtitles
subtitles:off Turn off subtitles
fullscreen:on Switch to fullscreen
fullscreen:off Quit fullscreen mode

Table 2: The reported client events

User device
info.

This information includes the type of
browser, OS, etc.

User ID Identification of the user
Content ID Identification of the content
Event ID See Table 2
Event times-
tamp

Time of the event in seconds that elapsed
since midnight

Event data E.g. for bitrate event the bitrate the player
switched to

Session ID The session identification
Viewer Always SilverlightPlayer v. 1.6.1.1
Client IP Client’s IP address as seen by the analytics

server
Geographic
info.

This information includes country, city etc.

ISP Client’s ISP

Table 3: Information about every client event
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Figure 3: Sessions statistics based on the server log

Sessions.
Since the IIS server is basically a ”dumb” HTTP server,

it does not keep state about an ongoing session. It therefore
does not log the user identification, content id or the session
id (as is done by the analytics server in the client log, see
Table 3). For this reason, we assumed (only for the server
log) that a client is uniquely identified by its IP address, i.e.,
we assumed there is one client per IP address2 (this proved
to be a reasonable assumption, see Section 6).

The content streamed can be extracted from the URL
that is included in the server log, since the URL has a fixed
format for Smooth streaming as is described in Section 3.
It is therefore possible to find out the content id, bitrate
and the playout time in seconds of the segment within a
video stream by parsing the URL. Unfortunately, it does
not include the session id. We therefore approximated the
session id with the combination of the client IP address (=
client id) and the content id, e.g., if a user downloaded URLs
with the content id A and B we say that the user had two
sessions. Figure 3(a) shows that most of the clients had
only one session. This is not what we find in the client
logs as we will see later. It is also interesting to measure
the live session duration. To do this, we calculated the time
difference between the first and last request within a session.
The session duration distribution is shown in Figure 3(b).
The average session duration is 42 minutes (related to the
break after 45 minutes in the game). Note that 107 clients
are associated with multiple sessions, that is why there are
more live sessions than live clients.

Byte transfers.
We noticed that some segments with the same playout

2We assume that, for example, there are no two clients shar-
ing the same IP because they are behind the same NAT.
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Figure 4: Per client bytes statistics

time (included in URL, see Section 3) and within the same
session were downloaded more than once, each time in a
different bitrate. We conjecture this can happen because
of two different reasons. First, multiple clients with differ-
ent bandwidth limitations can be hiding behind the same IP
(which can not be distinguished based on the available infor-
mation). Second, the bitrate adaptation algorithm changes
its decision and re-downloads the same segment in a differ-
ent bitrate. Either way, bytes are unnecessarily downloaded,
i.e., if there were multiple clients behind the same IP they
could have downloaded the segment once and shared it via a
cache; if the adaptation algorithm downloaded multiple bi-
trates of a segment it could have just downloaded the high-
est bitrate. We calculated the number of wasted bytes as
the total number of bytes downloaded minus the bytes ac-
tually used. For this purpose, we assumed that only the
highest bitrate segment for the same playout time within
the same session is used by the client, i.e., if the same IP
address downloads for the same playout time segments with
1 Mbit/s, 2 Mbit/s and 3 Mbit/s bitrate, only the 3 Mbit/s
segment is played out and the other two segments are dis-
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Figure 5: Liveness (absolute value) of segments based on the server log

carded (wasted). Based on the server log, approximately 13
GB out of the 467 GB downloaded in total were wasted this
way. The 13 GB or 3% of the whole data could have been
possibly saved if a different adaptation strategy or an HTTP
streaming aware cache was used.

Figure 4 shows that there are clients that waste more than
50% of their downloaded bytes. Specifically, there is one
client from Greece that contributes with 15.5% (2 GB) to the
total amount of wasted bytes, even though its share on the
total amount of downloaded bytes is only 0.85%. We think
that this person might have recorded the stream in every
quality, so there is also room for improvement on detecting
and preventing behaviour like this (if stated in the service
agreement).

Liveness.
Each log entry, i.e., request of segment i of a particular

game, includes the server timestamp when the server served
that particular download request, T d

i . It also includes the
timestamp of the playout time of the video segment, T p

i .
Since we do not know the relationship between T d

i and T p
i

(we just know that they increase with the same rate), we find
the minimum of T p

i − T d
i over all segments i for each game

and assume that this is the minimal liveness (time the client
is behind the live stream) for that game. In other words, the
video segment with the minimal T p −T d has liveness 0, i.e.,
is as live as possible. In this respect, we compute the liveness
of all other segments in each game. The results are plotted
in Figure 5 for the 5 most popular games. We see that about
90% of all segments in each game was less than 10 seconds
behind the live stream (the liveness measured relatively to
the most live segment as explained above). This means that
90% of the requests for a particular segment came within a
10 seconds period. There are also some video segments that
were sent with quite some delay. One plausible explanation
is that these are from people that joined the stream later
and played it from the start.

6. CLIENT LOG ANALYSIS

Every player that streams a live soccer game reports to the
analytics server the events described in Table 3. The type
of events reported is summarized in Table 2. The client log
includes all reported events for a duration of 24-hours. The
general statistics based on the client log are summarized in
Table 4.

Client Location.
There were 6567 unique client IP addresses in the client

log. This is significantly more than the corresponding 748

Number of IP addresses 6567
Number of users 6365
Number of sessions 20401 (or 3.21 per user on

average)
Number of sessions with at
least one buffer underrun

9495 (or 46% of total)

Number of sessions with at
least one bitrate switch

20312 (or 99.5% of total)

Number of content ids 15
Number of countries 36
Number of cities 562
Number of ISPs 194
Number of users with multi-
ple ISPs

113 (or 2% of all users)

Number of IPs with multiple
users

31

Table 4: Statistics from the client log

Figure 6: Geographical client distribution in Nor-
way (the highest density of clients is in the red ar-
eas).

live streaming client addresses found in the corresponding
server log. Not surprisingly most of the IP addresses was
located in Norway (Figure 6), but there were also IP ad-
dresses from almost all corners of the world (Figure 7). The
international IP addresses correlated with the areas that are



Figure 7: Geographical client distribution in the world (the highest density of clients is in the red areas).

know for high Norwegian population like Spain and England.
Furthermore, the assumption in the server log analysis was
that an IP address matches one user/client. Figure 8 shows
that this assumption is quite reasonable. Only a very small
number of users used more than one IP address, and an IP
address was mostly used by only one user.

Furthermore, Figure 10 shows that most of the users used
only one ISP (an IP address is hosted by one ISP only).
Moreover, we saw that the majority of users used either
Canal Digital Kabel TV AS (2560) or Telenor Norge AS
(2454) as their ISPs. The other 1442 users were served by
other providers (192 different network providers in total).
We could see that the quality of the streaming in terms of
the number of buffer underruns (periods the streaming is
paused because of slow download) depends on the ISP, see
Figure 9. For example, the majority of sessions at the Oslo
Airport experienced buffer underruns (the airport provides
a WiFi network).

Proxy Caching.
We hypothesise that the significant difference in the num-

ber of IP addresses in the server log and the client log is
due to the use of cache proxies as known from traditional
HTTP networks. The proxies reply to client requests before
they get to the load balancer (Figure 1) and are logged. We
expect the caches to be somehow related to ISPs, i.e., we
would expect a cache on the ISP level to reply to all but
the first request of the same segment, e.g., the open source
proxy Squid [4] only sends the first request to the origin
server all consecutive requests are served from the partially
downloaded data in the cache.

Our hypothesis is supported by the IP to ISP ratio. The
server log IP to ISP ratio for live streaming is 0.08 whereas
the client log ratio is 0.03. In other words, we find 11% of the
client log IP addresses in the server log, but find over 30% of
ISPs from the client log in the server log (see Table 5 for ex-
act numbers). We therefore hypothesise that HTTP caches
located between the client and the server reply to a large
number of client requests. This means that, as expected,
one of the large benefits of HTTP segment streaming is the
reuse of existing HTTP infrastructure.
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Figure 8: User to IP address mapping

Content and Sessions.
On the content side, we observe in Figure 11 that only

about 2000 users streamed more than one content, i.e., one
football game. The most popular content was game 1 with
over 7500 sessions followed by 4 games with about 2000 to
about 4000 sessions.

We also estimated the session durations based on the client
log. This is not a straightforward task since only a small
fraction of the sessions is started with a play event and ter-
minated with a stop event (we suspect the user closes the
browser window without first clicking on the stop button in



Type Server log Match in client log
live Smooth streaming 748 IPs 723 IPs (or 97%) hosted by 58 ISPs
on-demand Smooth streaming 74 IPs 5 IPs (or 7%) hosted by 3 ISPs
progressive streaming 581 IPs 390 IPs (or 67%) hosted by 32 ISPs

Table 5: IP to ISP statistics
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Figure 9: The percentage of sessions with at least
one buffer underrun by ISP
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Figure 10: ISP to user statistics

the player). We therefore calculated the session duration as
the time difference between the first and last playing event3.
Session durations calculated this way are, in general, shorter
than they really were because they do not include the time
before the first playing event and the time after the last play-

3The playing event is sent regularly when the live stream is
playing.
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Figure 11: Content statistics

ing event. Note also that the session duration represents the
time the player was playing. Particularly, it does not rep-
resent the time the player window was open, but rather the
time the player was playing a stream, e.g., the time when
the stream was paused is excluded. Figure 12(b) shows that
the calculated session durations ranged from 100 seconds to
more than 3 hours. Please note that 6826 sessions did not
contain a playing event and therefore are not represented in
this graph (e.g., they were too short for a playing event to
be sent).

Figure 12(c) shows that in the majority of sessions the
bitrate was switched at least 3 times. However, Figure 12(d)
shows that even with bitrate (quality) switching, the clients
were not able to prevent buffer underruns. The logs report
that more than a half of the sessions experienced at least
one buffer underrun.

It is clear, from Figure 13, that the pressure on a stream-
ing system like this is the biggest when a event begins. In
this case all the games started at 5 PM UTC, and that is the
time most of the clients joined. Figure 14 shows the number
of active sessions over time.
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Figure 12: Session statistics based on the client log
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Figure 13: Number of sessions that were started per
minute (all games started at 17:00 UTC)

Byte transfers.
We also estimated the number of downloaded bytes based

on the client log. We were very conservative and our estima-
tions were very likely smaller than what the reality was. We
split every session into periods bordered by playing events
and/or bitrate events so that there was no pause, stop, posi-
tion, play or buffer (buffer underrun) event inside a period.
This ensures that the player was really playing during a pe-
riod of time defined like this (session examples with bitrate
switching are shown in Figure 15). A bitrate (the video
content was available in 0.5, 1, 2 and 4 Mbit/s, and the au-
dio in 96 KBit/s) was additionally assigned to each period
based on the client bitrate event reports. The period dura-
tion multiplied by the corresponding bitrate gave us a good
estimate of the bytes downloaded by the client in that pe-
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Figure 14: Number of sessions at each point in time
(minute resolution)

riod since Constant BitRate (CBR) encoding is used for the
live streaming. The sum of bytes received in each period of
a session gave us the total number of bytes downloaded in a
session.

It is interesting that the final sum of bytes received by
all sessions is many times higher than the number of bytes
served by the server. The server log reports 551 GB in to-
tal whereas the estimate based on the client log is about
4.5 times higher. Even if only the smallest available bitrate
is assigned to every period, the total amount of data re-
ceived by the clients is 2.5 times higher than the value from
the server log. This is another evidence for the presence of
HTTP caches that respond to a significant number of re-
quests.
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(a) Dynamic bandwidth session.

 0
 1
 2
 3
 4
 5

 10110  10125  10140  10155  10170  10185  10200

 b
itr

at
e 

[M
bit

/s]
 

 time [s] 

 

(b) Zoomed in to minutes 168 to 170.

Figure 15: Example of bitrate adaptation through-
out a session based on client reports

7. CONCLUSION AND FUTURE WORK

In this paper, we analysed the logs of adaptive HTTP
segment streaming provided by Comoyo [7], a Norwegian
streaming provider. We analysed two types of logs; one from
the origin server and one from the analytics server to which
the clients report. The analysed data included all streaming
sessions ranging from very dynamic to very static sessions,
see example in Figure 15.

We observed that about 90% of the requests for the same
segment in live streaming is sent within a period of 3 to 10
seconds depending on the content (analysed football game).
This gives a great potential for caching. This also means
that a HTTP proxy cache needs to cache a segment only
very shortly.

We also deduced from the segments downloaded multiple
times that at least 3% of the bytes downloaded could have
been saved if more HTTP caches or a different adaptation
strategy had been used. Moreover, based on the number
of bytes downloaded and the IP address distribution in the
server and the client log, we found evidence that segments
must be delivered from other sources than from the exam-
ined servers. This suggests the presence of HTTP caching
proxies in the Internet that had served the requests before
they got to the load balancer. This means that the origin
server is offloaded and that the idea of reusing the (unmod-
ified) HTTP infrastructure really works in real scenarios.

Furthermore, since a significant portion of the data is dis-
tributed by HTTP caches that are most likely not aware of
what they are serving, we conclude that it is important to
look at how HTTP streaming unaware server performance
can be increased by client side or very light server side mod-
ifications. In other words, it is important to look at the per-
formance of HTTP servers that actually deal with HTTP
segment streaming traffic.

The increase of the performance of such a server is, of
course, only interesting if there is some kind of bottleneck.
We can eliminate the disk as being the bottleneck for live
streaming as the segments are small and clients are inter-

ested only in the most recent segments of the live stream.
As such, the disk I/O poses no problem with current hard-
ware. After the disk bottleneck elimination, we are left with
the problem of a network bottleneck.

There are two types of bottlenecks - a client side and a
server side bottleneck. The difference is that the client side
bottleneck cannot be dealt with with a faster server, i.e., the
server has the capacity to serve higher bitrate segments, but
the client link is not fast enough to receive them in time.
The obvious solution is to throw money at the problem and
upgrade the client link. In our previous work we looked at
how to deal with the client bottleneck using multiple links
the client might have [8].

If the bottleneck is on the server side, the server capacity
needs to be upgraded to deal with the bottleneck. This can
be either done by using multiple servers or by increasing the
capacity of the server already deployed. We looked at how
to increase the capacity of a server without upgrading its
physical link, i.e., by using different client request strategy,
changing the TCP congestion control etc., in [11, 12].

As ongoing work, we are investigating new functionality
provided to the user in order to further use the data after
the large drop at 19:00 UTC in Figure 13. One idea is to
allow the users to search for events and make their own
video playlists on-the-fly [10] which again could be shared
in social media etc. Such interactions will change the video
access patterns, and new analysis will be needed.
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