
How Good are Code Smells for Evaluating Software Maintainability?
- Results from a Comparative Case Study -

Aiko Yamashita
Mesan AS &

Simula Research Laboratory, Norway
Email: aiko@simula.no

Abstract—An advantage of code smells over traditional
software measures is that the former are associated with an
explicit set of refactorings to improve the existing design.
Past research on code smells has emphasized the formalization
and automated detection of code smells, but much less has
been done to empirically investigate how good are code smells
for evaluating software maintainability. This paper presents
a summary of the findings in the thesis by Yamashita [1],
which aimed at investigating the strengths and limitations
of code smells for evaluating software maintainability. The
study conducted comprised an outsourced maintenance project
involving four Java web systems with equivalent functionality
but dissimilar implementation, six software professionals, and
two software companies. A main result from the study is that the
usefulness of code smells differs according to the granularity
level (e.g., whether the assessment is done at file or system
level) and the particular operationalization of maintainability
(e.g., maintainability can be measured via maintenance effort,
or problems encountered during maintenance, etc). This paper
summarises the most relevant findings from the thesis, discusses
a series of lessons learned from conducting this study, and
discusses avenues for new research in the area of code smells.

Keywords- Code smells; Bad smells; Empirical study; Com-
parative Case Study, Software maintenance; Software quality.

I. INTRODUCTION

Code smells are indicators of software design shortcom-
ings that can potentially decrease software maintainability.
An advantage of code smells over traditional software mea-
sures (such as maintainability index or cyclomatic complex-
ity) is that code smells are associated with an explicit set
of refactoring strategies. Thus, code smells can potentially
be used to support both assessment and improvement of
software maintainability.

Nevertheless, it is not clear how and to which extent code
smells can reflect or describe how maintainable a system
is. This makes the interpretation and use of code smells
somewhat difficult and hinders the possibility of conducting
cost-effective refactoring. Given that refactoring represents a
certain level of risk (e.g., introduction of defects) and cost
(e.g., time spent by developers modifying the code and cost
of regression testing), it is essential to weigh the effort and
risks of eliminating versus ignoring the presence of code
smells. Furthermore, it is important to understand which
maintenance aspects can be addressed by code smells and
which should be addressed by other means.

Insufficient information on maintenance aspects, such as
severity levels and the range of effects of code smells, makes
refactoring prioritization a nontrivial task. To support cost-
effective refactoring, we need to increase our understanding
of how code smells affect maintenance, what kinds of diffi-
culties they cause, and how they can affect productivity in a
project. If we are to use code smells to assess (and improve)
maintainability, we also need to understand better when
they are useful (e.g., the contexts in which their “predic-
tive power” is acceptable) in predicting maintainability, and
which aspects of maintainability they can measure best. The
thesis summarized in this paper investigates how good code
smells are in: (1) Reflecting system-level maintainability
of software (and how they compare to other system-level
assessment approaches), (2) Identifying source code files that
are likely to require more maintenance effort (time) than
others, (3) Discriminating between source code files that are
likely to be problematic and those that are not likely to be
so during maintenance, and (4) Reflecting maintainability
aspects that are as deemed critical by software developers.
In order to answer these questions, a Comparative Case
Study was conducted. The study consisted of outsourcing
and observing a maintenance project involving 4 Java web
systems, 6 developers and 2 software companies during
seven weeks. The reminder of this paper describes how this
study was conducted, what were the findings, and discusses
some lessons learned from this experience. More specifically:
Section 2 describes the methodology followed in the thesis,
Section 3 presents the main findings from this research, and
discusses some lessons learned from this experience, and
Section 4 discusses potential avenues for research in the area
of code smells.

II. DESCRIPTION OF THE RESEARCH STUDY

To investigate the usefulness of code smells, a maintenance
project was carried out and observed as part of a comparative
case study. This project involved four Java web systems,
six software professionals, and two software companies. The
remainder of this section will provide details for each of the
elements involved in the study, and the design of the study.

A. The systems under study

In 2003, Simula Research Laboratory’s Software Engi-
neering department sent out a tender for the development
of a web-based information system to keep track of their

empirical studies and resulting scientific publications. Based
on the submitted bids, four Norwegian consulting companies
were hired to independently develop a version of the system
using the same requirements and specifications. The four
development projects led to the creation of four systems
with the same functionality. We will refer to them as System
A, System B, System C, and System D. The systems were
primarily developed in Java, and they all have similar three-
layered architectures. Although the systems exhibit nearly
identical functionality, there were substantial differences in
how they were designed and coded. The systems were de-
ployed in 2003 over Simula Research Laboratories’ Content
Management System (CMS), but in 2007, due to changes
in the CMS, it was not longer possible for the systems to
remain operational. This provided a realistic setting for a
maintenance project based on a real need for adapting and
enhancing the systems.

B. The tasks and the developers

The maintenance project involved three tasks: 1) To mod-
ify the systems so they could operate in the new CMS
environment of Simula Research Laboratory (i.e., an adaptive
maintenance task where a Data layer based on a relational
DB was to be replaced with a series of calls to external web
services), 2) To modify the authentication system by means
of consuming a web service, and 3) To extend the systems
with a new functionality, which would allow the users to
build customisable reports. Two Eastern European software
companies were hired to carry out the maintenance tasks
between September and December 2008 at a total cost of
50,000 Euros. Thus, the case study was conducted in a way
that resembled, as much as possible, a real-life consultancy
project. The developers were recruited from a pool of 65
participants of a previously completed study on programming
skill [2], and were evaluated to have sufficient English skills
for the purpose of our study.

C. Study design

Having four functionally equivalent systems with differ-
ent code enabled the design of a comparative case study,
with software maintenance tasks embedded within almost
identical maintenance contexts and differing in the variable
of interest: code smells. The design of the study therefore,
enables better control over the moderator variables, such as
system functionality, tasks, programming skills, and devel-
opment technology to better observe the relations between
code smells (our variable of interest) and several dependent
variables (i.e., different maintenance aspects), in a very sim-
ilar way to experimental studies. In this study, we conducted
both theoretical and literal replications1, by asking each of

1 In literal replication, cases that are similar in relation to certain variable(s)
are expected to support the analysis of each and give similar results. When
theoretical replication is used, the cases that vary on the key variable(s) are
expected to have different results [3].

Developer

Round
1

1 2 3 4 5 6

A B C D C A

2 D A D C B B

Figure 1. Assignment of systems to developers in the case study.

the six developers to first conduct all tasks in one system
and then to repeat the same maintenance tasks on a second
system, resulting in 12 observations (six developers × two
systems). Figure 1 describes the order in which the systems
were assigned to each developer. This assignment was done
randomly.

D. Study protocol

First, the developers were given an overview of the
tasks (e.g., the motivation for the maintenance tasks and
the expected activities). Then they were provided with the
specification of the maintenance tasks. When needed, they
could discuss the maintenance tasks with a researcher; one
was always present at the site during the entire duration of
the project. We had daily meetings with the developers where
we tracked their progress and the problems they encountered.

Think-aloud sessions were conducted every other day at a
random point during the day, and they lasted for 30 minutes.
Acceptance tests and individual open interviews, which had
a duration of 20-30 minutes, were conducted once all three
tasks were completed. In the open-ended interviews, the
developers were asked about their opinions of the system,
e.g., about their experiences when maintaining it.

Eclipse was used as a development tool along with
MySQL2 and Apache Tomcat3. Defects were registered in
Trac4, and Subversion5 was used as the versioning system.
A plug-in for Eclipse called Mimec [4] was installed on each
developer’s computer to log all the user actions performed
at the graphical user interface (GUI) level with millisecond
precision.

E. Variables observed

Figure 2 describes the moderator variables (those we
control in the analysis), the variables of interest (those
whose relationships we analyze), and the data sources for
the variables. The variables of interest within this study are
as follows: (1) Code smells: Number of code smells and
code smell density (code smells/kLOC). The definition of
the smells analyzed is provided in [1]. Two commercial tools
were used (Borland Together R© [5] and InCode [6]) to detect
code smells. (2) Developers’ perception of the maintain-
ability of the systems: This includes subjective and quali-
tative aspects of maintainability reported by each developer

2 http://www.genuitec.com 3 http://tomcat.apache.org
4 http://trac.edgewall.org 5 http://subversion.apache.org

System

Project context
Tasks

Source

code

Daily interviews

Audio files/notes

Subversion

database

Programming

Skill

Defects*

Development

Technology

Change

Size**

Effort**

Maintenance outcomes

Think aloud

Video files/notes

Task

progress

sheets

Eclipse

activity

logs

Trac (Issue tracker),

Acceptance test

reports

Open interviews

Audio files/notes

Variables

of interest

Data

sources

Moderator

variables

Code smells
(num. smells**

smell density**)

** System and !le level

* Only at system level

Maintainability

perception*

Maintenance

problems**

Think aloud

Video files/notes
Study

diary

Figure 2. Illustration of variables involved in the study and the corresponding data sources.

once the three maintenance tasks of one system had been
completed. (3) Maintenance problems encountered by the
developers during maintenance: These include a qualitative
aspect of the maintenance process based on problems re-
ported through interviews or think-aloud sessions or observed
by the researcher during the maintenance work. (4) Change
size: This variable constitutes an outcome variable from
the maintenance project, reflecting the sum of LOC added,
changed, and deleted (i.e., file churn). (5) Effort: Another
maintenance outcome, measured by time spent on the tasks
and each of the files in the systems, (6) Defects introduced
during maintenance: This variable is an aspect of the quality
of the system after the tasks were completed.

Figure 2 also discriminates between outcomes/aspects
that were observed at the system level (one asterisk) and
at both system and file levels (two asterisks). The figure
also distinguishes maintenance problems and maintainabil-
ity perception–which are categorized as qualitative aspects
(circles)–from change size, effort, and defects–which are cat-
egorized as quantitative outcomes (squares). This Figure also
depicts the data sources from which each of the maintenance
outcomes/aspects was derived.

F. Analysis Conducted

To investigate “How good are code smells in reflecting
system-level maintainability of software (and how they com-
pare to other system-level assessment approaches)”, code
smells were aggregated at the system level, and each system
was ranked according to the amount of code smells they
contained and their code smell density (i.e., less code smells
and lower smell densities mean better maintainability ranking
of a system). After the systems had undergone maintenance
work, the maintenance outcomes: total effort, and the intro-
duced defects at the system level were collected per system to

rank them accordingly. To avoid the learning effect problems,
we used only the data from the first round per developer.
Cohen’s kappa coefficient6 was used to statistically mea-
sure the degree of agreement between the code-smell-based
and maintenance-outcome-based rankings. Previous main-
tainability assessments of the systems based on a subset of
C&K metrics and expert judgments, as reported in Ref. [7],
were also compared with the maintenance-outcome-based
rankings to analyze the differences in accuracy between the
code-smell-based, expert-judgment-based, and metrics-based
approaches for maintainability assessments.

To investigate “How good code smells are on identifying
source code files that are likely to require more maintenance
effort (time) than others”, we focused on Java files as the
unit of analysis and used multiple regression analysis. Effort
at file level (effort used to view or update a file) was the
variable to be explained. Variables representing the different
code smells, the file size (measured in LOC), the number of
revisions on a file, the system, the developer, and the round
were included as independent variables. Several regression
models, with different subsets of variables, were built to
compare their fit and to discern the predictive capability of
each of the variables considered.

To investigate “How good code smells are on discriminat-
ing between source code files that are likely to be problematic
and those that are not likely to be so during maintenance”,
we focused on Java files as the unit of analysis and by
used binary logistic regression analysis. The variable to
explain was the variable “problematic,” which was true (1)
if a file was deemed problematic during maintenance by
at least one developer who worked with the file, but false
otherwise (0). The different types of code smells, files size
6 Cohen’s kappa coefficient is a statistical measure to represent inter-rater
agreement for categorical items.

(measured in LOC), and change size (churn) were used as
independent variables. A follow-up qualitative analysis based
on the data from the interviews and the think-aloud sessions
was performed (1) to support/challenge the findings from the
binary logistic regression and (2) to understand better how
the presence of a code smell contributed to the problems
experienced by the developers during maintenance.

To investigate “How good code smells reflect maintain-
ability aspects that are as deemed critical by software devel-
opers”, we conducted qualitative analysis, which compared
the developers’ perceptions on the maintainability of the
systems with the goal of identifying a set of factors relevant
to maintainability. These factors were related to current
definitions of code smells to observe their conceptual re-
latedness. The transcripts of the open-ended interviews were
analyzed through open and axial coding [8]. The identified
factors were summarized and compared across cases using a
technique called cross-case synthesis [3]. The factors derived
from this analysis were compared with the factors reported
in a previous study [7], which were extracted via expert
judgment.

III. FINDINGS AND LEARNINGS

This section discusses the main findings from this thesis
and some lessons learned along the research process.

A. Finding 1: Aggregated code smells are not so good
indicators of system-level maintainability

System-level indicators of maintainability based on ag-
gregated number of code smells were investigated in the
four systems where a system’s maintainability was ranked
according to code smell measures and compared with respect
to the maintenance outcome measures – change effort, and
number of defects. Given that many code smells definitions
are based on size-related parameters, aggregating them at
system level would not provide more information than the
more traditional system size measured in LOC. It was found
that expert-judgment-based assessment was the most flexible
of all the three approaches (i.e., code smell, C&K metrics,
and expert-judgment) because it considered both the effect
of the system size and the potential maintenance scenarios
(e.g., small versus large extensions). However, we found
that if smell density (code smells/LOC) is used to compare
systems of similar size, it is likely to provide a more accurate
assessment than the expert-judgment based one. We conclude
that an advantage of the use of code smells is that when
comparing similarly sized systems, they can spot critical
areas that experts may overlook. This finding is reported in
detail in [9].

B. Finding 2: Code smells are not good indicators of effort
at file level

We conducted multiple regression, including the number
of different code smells per file, the file size (LOC), and

number of changes in the file, as the explanatory variables
for file effort. We found that although with an R2 if 0.58,
the only code smell that constituted a significant independent
variable of effort (α < 0.01) in the regression model is
Refused Bequest, which interestingly, displayed a decreasing
effect on effort. If we exclude the code smells from this
model (i.e., leaving only file size and number of changes
as variables), the R2 remained at 0.58. This implies that
code smells may not provide additional explanatory power
than file size and the number of revisions in the context of
explaining effort usage per file. This finding is reported in
detail in [10]

C. Finding 3: Code smells may be promising indicators of
problematic files during maintenance

To investigate the capability of code smells to uncover
problematic codes, binary logistic regression was conducted.
We built a model in which the variables related to the
different code smells, the file size, and the file churn were
entered in a single step. The R2 values (Hosmer & Lemeshow
= 0.864, Cox & Snell = 0.233, and Nagelkerke = 0.367)
confirm that our model provided a reasonably good fit of
the data. In the model, the odds ratio for the code smell ISP
Violation was the largest [Exp(B) = 7.610, p = 0.032], which
suggests that this code smell was able to explain much of the
maintenance problems at the file level. The model also finds
Data Clump7 as a significant contributor [Exp(B) = 0.053,
p = 0.029], but contrary to ISP Violation8, this code smell
indicates less maintenance problems. Some of the problems
caused by ISP Violation were: (1) Error propagation, (2)
Change propagation, (3) Difficulties identifying the task
context, and (4) Confusion due to inconsistent design. This
finding, is reported in detail in [11].

D. Finding 4: Some code smells may deserve more attention
from a practical maintenance perspective

Several factors were identified as critical by the develop-
ers: appropriate technical platform, coherent naming, design
suited to the problem domain, encapsulation, inheritance,
(proprietary) libraries, simplicity, architecture, design con-
sistency, duplicated code, initial defects, logic spread, and
use of components, where design consistency was considered
as one of the most important factors. We found that there
are code smells capable of supporting the analysis of the
several of the maintainability factors–encapsulation, design
consistency, logic spread, simplicity, and use of components.

For example, simplicity is a factor traditionally addressed
by static analysis means, but it is also closely related to
God Class, God Method, Lazy Class, Message Chains, and
Long Parameter List. Similarly, logic spread is related to

7 Clumps of variables appearing repetitively across the code. 8 The viola-
tion of the Interface Segregation Principle, which dictates that there should
not be ‘all-purpose’ interfaces with wide-spread incoming dependencies.

Feature Envy, Shotgun Surgery, and ISP Violation, and de-
sign consistency is related to several code smells: Alternative
Classes with Different Interfaces, ISP Violation, Divergent
Change, and Temporary Field. We concluded that in some
cases, code smells would need to be complemented with
alternative approaches, such as expert judgment (see Refs.
[7, 12]) and semantic analysis techniques (for example, see
Maletic et al. [13]) to achieve a comprehensive assessment
of maintainability. This finding is reported in detail in [14].

E. Finding 5: Code smells can ‘interact’ with each other, or
with other types of design shortcomings

In this study, we discovered that interaction effects occur
between code smells and also between other kinds of design
shortcomings, often causing more maintenance problems
than when interactions do not occur. Code smells that ap-
pear together in the same artifact (file) can interact with
each other, but also interaction effects can occur between
code smells that are distributed across coupled artifacts
(e.g., artifacts that display data/functional dependencies).
Consequently, in practice, there is no difference between
the interaction effects of coupled smells and the interaction
effects of collocated smells. This finding has considerable
implications for further studies on code smells, since it means
that, to get a more complete understanding of the role of code
smells in software maintenance, dependency analysis should
be included in the code smell analysis process. This finding
is reported in detail in [15].

F. Lessons learned

Despite the intricacies and challenges involved, this study
design allowed us to conduct both theoretical and literal
replication in a case study, which is often very difficult
to attain. This enabled the cross-validation of the obser-
vations across cases, and strengthened the internal validity
of findings derived from qualitative sources. By combining
qualitative and quantitative data collection, we were also
able to used a mixed method approach, which not only can
identify trends or connections between variables, but also
help to derive theories or explanations for those relationships.

Although the element of ‘control’ introduced a certain
degree of artificiality in a case study, the degree of “intru-
siveness” was not found to differ greatly from “normal” case
studies. Considering the fact that designs as the one presented
here can provide richness in details (from an in-vivo context)
that cannot be achieved by experimental settings, we suggest
that this approach may deserve further exploration and usage.

One particular challenge was that although it is impor-
tant to adhere to protocols in normal case studies, within
case studies that need a certain element of control, this
becomes of paramount importance for the validity of certain
results. Since the environment for studies of this nature
often constitute an industrial setting, we often face situations
where certain factors cannot be controlled for. Consequently,

it is important to prepare adequately beforehand, building
contingency plans on potential issues from practical and
research perspective. This study also showed the importance
of a study protocol that can be “tested” through a pilot study.
Pilot studies can allow the identification of potential threats
to validity, and practical issues not contemplated in the
protocol. A pilot study helps also to adjust the time that is al-
located to each of the different activities (project-related and
research related), which can support better management of
the study, and the prioritization of data collection activities.
Consequently, whenever possible, we strongly recommend to
run a pilot study, even if it constitutes a down-scaled version
of the final study.

Another great challenge of this study after the data was
collected, was the summarisation, integration and analysis of
the data. In particular, processing and indexing large amounts
of log-data (e.g., the MimEc logs amounted for 1400 hours in
approx. 87MB of .csv files) and qualitative data (e.g., 3000
minutes for daily interviews and 480 minutes of recorded
audio from the open interviews) was found extremely time
consuming. Also, the integration of the different data sources
for the purposes of data triangulation had to be automated
via a Java program written for that purpose. Although
we counted with a structured and functional repository for
storing the data from the study, more “on the fly” analysis
and summarization would have been preferred, as this would
have eased the navigation of the data in latter stages. In our
study, the lack of human resources during the study execution
limited the amount of “on the fly” analysis that could have
been conducted otherwise.

A very useful approach for facilitating the indexing of data
in this study was a logbook, where the researcher logged all
her observations during the study. This was an invaluable
resource to pinpoint and identify observations of interest that
could be further examined in through other data sources,
and to synchronise time-wise the different events during the
project across the different data sources. For example, as
the logbook contained the dates of the observations, it was
an intuitive way to navigate the progress of the project and
validate the events via multiple sources sharing the same
date, such as the SVN or the progress report written by the
developers.

In conclusion, an adequate balance should be seek for;
for example, “how much data” should be collected, versus
how much resources should be used in terms of time, staff
and funds. Our experiences in this study warns researchers
against focusing on a too wide research scope, in detriment
of an adequate number of human resources/staff that can
carry out, summarise and analyse the data in a large study.

IV. FUTURE WORK FOR THE COMMUNITY

The areas for future work identified through this research
include the following:

1) Interaction effects among code smells: More focus is
needed on the implications of combinations of code smells
(and other types of design flaws) on maintainability instead
of investigating only the effects of individual code smells
(this corresponds with the ideas of Walter and Pietrzak
[16]). This entails building more comprehensive symptomatic
characterizations of different types of potential maintenance
problems (e.g., in the form of inter-smell relations) and
uncovering the causal mechanisms that lead to them.

2) Study of collocated smells and coupled smells: More focus
is needed on dependency analysis alongside the analysis of
interaction effects across code smells. We suggest this among
others because interactions between code smells can occur
across coupled files. This interaction is currently ignored
due to the fact that code smells are mostly analyzed at
the file level and “coupled code smells” are not identified.
Also, the dependency analysis should focus on types of
dependencies (e.g., data, functional, abstract definition, and
inheritance) and their quantifiable attributes (e.g., intensity,
spread, depth).

3) Nature and severity of maintenance problems: Future work
should focus on quantifying the severity and the degree of
the impact of different types of maintenance problems in
different contexts to establish the relative importance and
context dependency of code smells. This way, it may be
possible to assess not only whether and how code smells
cause maintenance problems, but also how much those prob-
lems matter on concrete outcomes of maintenance projects
compared with other problems and in different contexts.

4) Cost-/benefit-based definition/detection of code smells:
Further research should focus on defining and extending a
catalog of design factors that have empirical evidence of their
relevance on maintainability. This catalog may be used to
guide further efforts in new definitions of code smells and
corresponding detection methods/tools.

As a final remark, we cite Hannay et al. [17] who
asserted that theory-driven research is not yet a major issue
in empirical software engineering and referred to several
articles that commented explicitly on the lack of relevant
theory. Case study research could significantly contribute to
the development of theories from observations in relevant
fields and contexts (i.e., inductive research [3]). Runeson
[18] equally argues for the adequacy of case studies in the
Software Engineering field, given the commonalities of our
discipline to fields as Social and Political Sciences, where
the complexity of the context plays an intrinsic role on the
different phenomena being investigated.

We hope that the example and experiences described
here can help further on the design and conduction of
“mixed approaches” not only combining ‘quantitative’ and
‘qualitative’ techniques, but also combining features from

‘case studies’ with ‘experimental’ approaches in the field of
Software Engineering.

REFERENCES
[1] A. Yamashita, “Assessing the Capability of Code Smells

to Support Software Maintainability Assessments: Empirical
Inquiry and Methodological Approach,” Doctoral Thesis, Uni-
versity of Oslo, 2012.

[2] G. R. Bergersen and J.-E. Gustafsson, “Programming Skill,
Knowledge, and Working Memory Among Professional Soft-
ware Developers from an Investment Theory Perspective,”
Journal of Individual Differences, vol. 32, no. 4, pp. 201–209,
2011.

[3] R. Yin, Case Study Research : Design and Methods (Applied
Social Research Methods). SAGE, 2002.

[4] L. M. Layman, L. A. Williams, and R. St. Amant, “MimEc,”
in Int’l Ws. Cooperative and Human Aspects of Softw. Eng.
(CHASE). New York, New York, USA: ACM Press, 2008,
pp. 73–76.

[5] Borland, “Borland Together.
http://www.borland.com/us/products/together. Accessed
10 May 2012,” 2012.

[6] Intooitus, “InCode. http://www.intooitus.com/inCode.html.
Accessed 10 May 2012,” 2012.

[7] B. C. D. Anda, “Assessing Software System Maintainability
using Structural Measures and Expert Assessments,” in IEEE
Int’l Conf. Softw. Maintenance (ICSM), 2007, pp. 204–213.

[8] A. Strauss and J. Corbin, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
SAGE, 1998.

[9] A. Yamashita and S. Counsell, “Code smells as system-level
indicators of maintainability: An Empirical Study,” Journal of
Systems and Software, 2013.

[10] D. Sjøberg, A. Yamashita, B. Anda, A. Mockus, and T. Dybå,
“Quantifying the Effect of Code Smells on Maintenance
Effort,” Software Engineering, IEEE Transactions on, vol. PP,
no. 99, p. 1, 2013.

[11] A. Yamashita, “Assessing the capability of code smells to
explain maintenance problems: an empirical study combining
quantitative and qualitative data,” Empirical Software Engi-
neering, pp. 1–33, 2013.

[12] M. Jorgensen, “Estimation of Software Development Work
Effort:Evidence on Expert Judgment and Formal Models,”
International Journal of Forecasting, vol. 23, no. 3, pp. 449–
462, 2007.

[13] J. I. Maletic and A. Marcus, “Supporting program compre-
hension using semantic and structural information,” in Int’l
Conf. Softw. Eng. (ICSE), ser. ICSE ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 103–112.

[14] A. Yamashita and L. Moonen, “Do code smells reflect im-
portant maintainability aspects?” in IEEE Int’l Conf. Softw.
Maintenance (ICSM), 2012, pp. 306–315.

[15] A. Yamashita and L. Moonen, “Exploring the Impact of Inter-
Smell Relations on Software Maintainability: An Empirical
Study,” in Int’l Conf. Softw. Eng. (ICSE), 2013, pp. 682–691.

[16] B. Walter and B. Pietrzak, “Multi-criteria Detection of Bad
Smells in Code with UTA Method 2 Data Sources for Smell
Detection,” in Extreme Programming and Agile Processes in
Softw. Eng. (XP). Springer Berlin / Heidelberg, 2005, pp.
154–161.

[17] J. E. Hannay, D. I. K. Sjøberg, and T. Dybå, “A Systematic
Review of Theory Use in Software Engineering Experiments,”
IEEE Transactions on Software Engineering, vol. 33, no. 2,
pp. 87–107, 2007.

[18] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” Empir-
ical Software Engineering, vol. 14, no. 2, pp. 131–164, 2009.

