
Is today’s public cloud suited to deploy hardcore
realtime services?
A CPU perspective

Kjetil Raaen1,2,3, Andreas Petlund2,3, and Pål Halvorsen2,3

1 NITH, Norway
2 Simula Research Laboratory, Norway

3 Department of Informatics, University of Oslo, Norway

Abstract. ”Cloud computing” is a popular way for application providers
to obtain a flexible server and network infrastructure. Providers deploy-
ing applications with tight response time requirements such as games,
are reluctant to use clouds. An important reason is the lack of real-
time guarantees. This paper evaluates the actual, practical soft real-time
CPU performance of current cloud services, with a special focus on online
games. To perform this evaluation, we created a small benchmark and
calibrated it to take a few milliseconds to run (often referred to as a mi-
crobenchmrak). Repeating this benchmark at a high frequency gives an
overview of available resources over time. From the experimental results,
we find that public cloud services deliver performance mostly within
the requirements of popular online games, where Microsoft Azure Vir-
tual machines give a significantly more stable performance than Amazon
EC2.

1 Introduction

A game company planning to deploy an online game will traditionally have to
face huge costs for data centre space and bandwidth capacity. Because it is
hard to predict a game’s popularity before it is launched, the game provider
is prone to choose over-provisioning in order to meet potential high demands.
Over-provisioning boosts the costs of deployment further. "Cloud computing"
is a popular way for other application areas to address this problem. Here, the
customer is billed based on the resources used, and can scale resources dynami-
cally. Game companies have, however, been reluctant to place their game servers
in a virtualized cloud environment. This reluctance is mainly due to the highly
time-dependent nature of games. Many studies have reported that the quality
of user experience is highly dependent on latency [3] [4]. For example, Chen
et al. [3] examine network latency, but it is safe to assume that delays caused
by processing will be perceived identically by players. They find that perceived
quality of services in games depends strongly on response time, and variations in
response time (jitter) from the server are more important than absolute values.
The scale of the delays these papers describe as detrimental to the players lays



between 50 and 100 ms. Since providers must allow for normal network latencies
in addition to processing time, any significant proportion of this delay incurred
by overhead due to the cloud infrastructure should be noted.

The term ”Cloud gaming”, as currently used, represents ”Software as a Ser-
vice” (SaaS) [10], where the software in question is a game. The players will
only run a simple thin client, sending player input to the servers, and receiv-
ing video and audio from the server. This is the approach followed by OnLive,
Gaikai and others. Cloud gaming thus trades the need for local computing power
for increased network throughput requirements as well as QoS demands. These
services usually use a custom cloud infrastructure optimised for games.

Streaming the game in this way has some disadvantages. First of all, it has
significant computing and bandwidth requirements. Many games require the full
power of a modern computer to run, and the network traffic is equivalent to
video streaming. Using a thin client which simply receives input and outputs
video also precludes using any client-side latency-hiding techniques, so games
run this way will be more latency sensitive. ”Cloud gaming” in this sense is not
the topic of this paper.

Conversely, this paper considers using general purpose public clouds to run
traditional game servers, serving fully featured game clients. This configuration
can be described as online games using cloud infrastructure. Time-dependent ap-
plications, like networked games, usually need to be custom-made, and can rarely
be built upon typical web- or enterprise frameworks. Hence we need the kind
of cloud service known as ”Infrastructure as a Service” (IaaS) [10]. This allows
the developers to access complete virtual machines, with full access privileges,
allowing them to run their fully customised programs in the cloud.

Barker et al.(2010) [2] have investigated many aspects of latency sensitive
applications on the Amazon EC2 cloud service. Investigating CPU, disk IO and
network performance as well as running an actual game server, they conclude
that the variable access to these resources, especially disk and CPU, are enough
to degrade performance of latency sensitive applications.

In this paper build on [2] reexamining the CPU stability three years later
and add data from one of the competitors that have entered the scene after
Amazon: Microsoft Azure. We evaluate the applicability of public infrastructure
clouds for use as infrastructure for online games and other highly time-sensitive
applications. The work isolates CPU performance, leaving network and other
subsystems for further work. We compare response time stability, with respect
to processor availability, between cloud services and natively running software,
as well as between two different cloud providers. The result is an updated recc-
ommendation for services providers.

Other than [2], work on performance in clouds have so far primarily focused
on the typical large, bulk jobs of scientific computing. Schad et al. (2010) [9],
Ostermann et al. (2010) [7] and [5] have all worked on long term tasks, most
finding relevant variation between runs. For the large workloads investigated in
this work, transient performance degradations at a millisecond scale, and even



stalls will be averaged out and difficult to detect. These issues are, however,
highly relevant for game servers, as well as other soft realtime applications.

2 Experiment Design

To evaluate the virtual machines provided by different cloud services for their
suitability in real-time applications, we created a benchmark and calibrated it
to take a few milliseconds to run. The absolute average values of the benchmark
runtime is not important, as we are only interested in the stability of the result.
Neither does the load need to behave like any specific realistic load. This evalu-
ation is only concerned with the actual availability of computing resources on a
fine-grained time resolution.

With this in mind, the benchmark was designed as a small loop using array
lookups and arithmetic, where the array is sized to be significantly larger than
the cache size. This allows us to examine the memory subsystem and the CPU
performance in isolation, ignoring external I/O. The tight loop of the benchmark
is designed as a ”worst case” load scenario for a virtual machine. Each machine
was tested with a number of threads equal to the number of cores available to the
virtual machine. Note that each instance of the benchmark is single-threaded,
and will not show ”better” results by increasing the number of cores. For these
reasons, the most relevant single metric is the coefficient of variation. This value
is defined as: cv = σ

µ , where σ is the standard deviation and µ is the mean.
In addition to the benchmark code, the utility ”mpstat” was run in the back-

ground. Mpstat gives us ”% steal”, a metric that reports how much of the physical
CPU is unavailable to the current OS instance because the hypervisor has as-
signed it to other instances.

Although the paper’s main concern is to investigate the variance in execution
time for the benchmark, a by-product is that we get an indication of the pro-
cessing power provided by the different providers/service levels. This may also
be of interest to game providers considering cloud deployment.

The benchmark was run on three different instances in Amazon EC2, in the
zone ”us-east-1d” (Table 1), as well as three different instances in Windows Azure
(Table 2).

Micro
Instance

613 MiB memory Up to 2 EC2 Compute Units (for short periodic
bursts) I/O Performance: Low

USD 0.020
per Hour

Medium
Instance

3.75 GiB memory 2 EC2 Compute Unit (1 virtual core with 2
EC2 Compute Unit) I/O Performance: Moderate

USD 0.120
per Hour

High-CPU
Medium
Instance

1.7 GiB of memory 5 EC2 Compute Units (2 virtual cores with
2.5 EC2 Compute Units each) I/O Performance: Moderate

USD 0.145
per Hour

Table 1. Technical specifications. from amazon [1].



Extra
small
instance

768 MiB memory 1 shared core USD 0.020
per Hour

Small
Instance

1.75 GiB memory 1 CPU Core USD 0.085
per Hour

Medium
Instance

3.5 GiB memory 2 CPU Cores USD 0.160
per Hour

Table 2. Technical specifications from Microsoft [6]

.2.1 Short-term runs

To compare the different instances, the benchmarks were run for 18 hours each
under the configurations shown in tables 1 and 2. To create a baseline for com-
paring the cloud services with native dedicated hardware, the same benchmark
was run a standalone PC (Intel Core 2 Duo CPU E7500 @ 2.93GHz, 4GB RAM)
without any visualization, chosen to be approximately the same class of perfor-
mance as the cloud computers.

2.2 Time series

Schad et al. [9] suggest that there might be differences in performance of the
cloud systems based on when the benchmark is run, either by time of day or day
of week. To investigate this, we ran the benchmark described above for three
minutes every half hour for a week (the week of 27th of May, 2013). Between
each run, we stopped the instance, and started it again before the next run.
According to [9], this should allow us to get a different physical machine every
time.

3 Evaluation

3.1 Reference system

The reference system (figure 1) shows the baseline of consistency we can expect
from this benchmark while running natively. Deviations from this baseline can
be assumed to result from the hypervisor or other aspects of the cloud system.
As we can observe, the benchmark here reports extremely consistent results. The
cv is 0.02.

3.2 Amazon EC2

CPU Steal This metric is only sampled once a second, and so has a low res-
olution, but with sufficient samples we build up a picture of how much CPU is
allocated to each instance, as well as the distribution over time.

The first thing to note in this data (figure 2) is the fact that all the instance
types have a significant number of samples where the current instance has full use



Benchmark runtime

F
re

q
u

e
n

c
y

0 200 400 600 800

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Cv = 0.0213

σ = 1.53

Fig. 1. Benchmark results from reference system.

of the CPU. These situations will pull the average CPU availability significantly
up, allowing the provider to fulfil their obligations despite other samples with
much less available resources.

The next point standing out is the ”medium” instance. According to the
pricing information, the available CPU resources on this instance type equals
exactly one core of the current hardware. This seems to create a situation where
our instance gets full use of the core most of the time, with very little steal.
Increasing the available CPU power to the ”high cpu” instance adds another
core, but since the instance on average only has access to part of this core, the
cpu steal value increases again.

Benchmark runtime These results (figure 3) show several interesting values.
First of all, for both the ”micro” as well as the ”medium, high-CPU” instance,
there are two clear peaks. This matches the CPU-steal data, where the low
values represent the situations where our instance got full use of the CPU, and
the high run-times are the result of periods of higher CPU-steal. Again we see the
advantage of the ”medium” instance, in that it has a much more stable runtime,
with cv equal to 0.04. This more stable instance type depends on the fact that it
allocates exactly one core to the instance. As the processing power granted each
instance type is defined by an abstract, hardware independent metric, clients
have no guarantee that this situation will continue indefinitely. Rather, when
the underlying hardware is upgraded, it is very likely that each core will provide
more power, and the currently stable instance type will become unstable.

3.3 Microsoft Azure

CPU Steal On the ”Microsoft Azure Virtual Machine” cloud, the operating
system always reports 0 CPU steal, as if it was running on its own dedicated
machine. This implies that the hypervisor hides these details from the operating
system, or that our instance actually has a dedicated CPU resource.



0 20 40 60 80 100

0
5
0
0
0

1
0
0
0
0

2
0
0
0
0

(a) Amazon Micro
0 2 4 6 8 10

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

(b) Amazon Medium

0 20 40 60

0
1
0
0
0
0

3
0
0
0
0

5
0
0
0
0

(c) Amazon Medium High CPU

Fig. 2. CPU Steal histograms. Samples every second.

Benchmark runtime Compared to the Amazon case, access to the CPU is
significantly more stable in the Azure cloud (figure 4). Regardless of instance
type, the runtime of the benchmark is almost completely predictable and stable,
cv is 0.05 for all instance types. The deviation is however twice that of the
reference case. Depending on the exact level of time-sensitivity of the load, and
its computational cost, this could be acceptable or not. The single-threaded
nature of the benchmark explains why the ”small” and ”medium” show almost
identical results.

3.4 Time series

Figure 5 shows the results of running the benchmark repeatedly over a week on
an EC2 Medium Highcpu instance. The two bands of performance are visible
throughout the week, and there is no clear difference based on weekday or time
of day.



Benchmark runtime

F
re

q
u

e
n

c
y

0 500 1000 2000

0
.0

0
0

0
.0

0
4

0
.0

0
8

Cv = 0.448

σ = 698

(a) EC2 Micro

Benchmark runtime

F
re

q
u

e
n

c
y

0 200 400 600 800

0
.0

0
0

.0
2

0
.0

4

Cv = 0.0394

σ = 8.91

(b) EC2 Medium

Benchmark runtime

F
re

q
u

e
n

c
y

0 200 400 600 800

0
.0

0
0

.0
2

0
.0

4

Cv = 0.192

σ = 18

(c) EC2 Medium High CPU

Fig. 3. Amazon EC2: Histogram of benchmark runtimes. Note different scale on the
axis of 3(a).

3.5 Overview

Putting it all together (figure 6) we see the quite clear differences between the
providers. The low-end instance from Amazon has variations far above the ac-
ceptable level for any time-sensitive application. Interestingly the ”Amazon EC2
Medium High CPU” is also quite unpredictable, though this configuration is sold
as higher performing than the ”Medium” type. Among the Amazon offerings ex-
amined only the ”Medium” instance type is near acceptable. From Microsoft
Azure, all instance types are reasonably stable in performance. All show vari-
ations above our native machine reference. The significance of these variations
depend on the requirements of the application.



Benchmark runtime

F
re

q
u

e
n

c
y

0 200 400 600 800

0
.0

0
0

0
.0

1
0

0
.0

2
0

Cv = 0.0501

σ = 34.4

(a) Azure Extra Small

Benchmark runtime

F
re

q
u

e
n

c
y

0 200 400 600 800

0
.0

0
0

0
.0

1
0

0
.0

2
0 Cv = 0.0478

σ = 30.3

(b) Azure Small

Benchmark runtime

F
re

q
u

e
n

c
y

0 200 400 600 800

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Cv = 0.0466

σ = 14.6

(c) Azure Medium

Fig. 4. Microsoft Azure: Histograms of benchmark runtimes.

4 Conclusion

From these simple tests, it seems that the conclusions about CPU usage from [2]
still hold for Amazon EC2. For the more time sensitive class of games [4], these
delays can add up with network latency to unacceptable levels. Even for less
sensitive applications there are some caveats. We do get rare samples where the
CPU seems to have stalled for multiple seconds which could discourage users.
Microsoft Azure Virtual machines seem to give more stable performance than
Amazon EC2, without the extreme latency peaks. Utilizing these results can
allow providers of interactive online services to be much more agile and react
faster to changes in demand.

For future work on clouds and other virtual machines, we found that the cv
metric of multiple runs of a small, simple benchmark is a good starting point for
measuring the consistency of computing resources.



Monday:00:05 Monday:22:05 Tuesday:20:35 Wednesday:21:05 Thursday:23:05 Friday:20:35 Saturday:18:05 Sunday:16:05

0
10

0
20

0
30

0
40

0

Experiment time

B
en

ch
m

ar
k 

ru
nt

im
e(

m
s)

Fig. 5. Time series of Amazon EC2 Medium High CPU.

Based on our measurements, access to processors is sufficiently stable on to-
day’s IaaS cloud systems to allow for real-time services to be deployed, assuming
the servers are run on the right instance types.

Amazon EC2 is better at the higher service levels, although variance at all
levels is larger than for Azure. An important element to keep in mind for Amazon
EC2 is that migration to a different instance is necessary if a change in service
level is needed.

Azure cloud shows less variance in processor availability results than Ama-
zon. Although you get less processor speed for the same price, it is more reliable
for planning stability, reducing the need for a specialized service for managing
changes between service levels. If a change in service level is needed, though,
Azure allows for dynamic changes without the need to migrate the virtual ma-
chine.

In this paper we have evaluated Amazon EC2 and Microsoft Azure Cloud. To
give wider recommendations we are planning similar experiments using Rackspace
and Google Cloud. Google Cloud currently requires the customer to go through
an application process for access. We did not get any reply from Google on our
request. Rackspace have not been included due to time and space requirements.

To provide a complete view of the conditions for running real-time services
on IaaS instances, we need to extend our result with networking measurements,
extending [2].

In order to minimize the experienced processing time variance, monitoring
the experienced processing time cv and changing the service level based on the
results should be explored. This will require different methods in Amazon EC2



C
o
e
ff
ic
ie
n
t 
o
f 
v
a
ri
a
ti
o
n
, 
b
e
n
c
h
m
a
rk
 r
u
n
ti
m
e

0
.0

0
.1

0
.2

0
.3

0
.4

R
e
fe
re
n
c
e
 S
y
s
te
m

E
C
2
 M
ic
ro

E
C
2
 S
m
a
ll

E
C
2
 M
e
d
iu
m
 H
ig
h
 C
P
U

A
z
u
re
 E
x
tr
a
 S
m
a
ll

A
z
u
re
 S
m
a
ll

A
z
u
re
 M
e
d
iu
m

Fig. 6. Summary of benchmarks for the different systems.
and Azure, but should be a useful tool for game service providers that are con-
cerned about processing jitter.

With more detailed knowledge of how virtual machines in the cloud respond,
it would be relevant to experiment with more realistic, preferably highly parallel
workloads such as LEARS [8].

References

1. Amazon. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-
types/, 2013.

2. Barker, S. K., and Shenoy, P. Empirical evaluation of latency-sensitive appli-
cation performance in the cloud. In Proceedings of ACM SIGMM on Multimedia
systems (New York, NY, USA, 2010), MMSys ’10, ACM, pp. 35–46.

3. Chen, K.-t., Huang, P., Wang, G.-s., Huang, C.-y., and Lei, C.-l. On the
Sensitivity of Online Game Playing Time to Network QoS. Proceedings of IEEE
INFOCOM 2006 00, c (2006).

4. Claypool, M., and Claypool, K. Latency Can Kill : Precision and Deadline
in Online Games. ACM Multimedia Systems Conference (2010).

5. El-Khamra, Y., Kim, H., Jha, S., and Parashar, M. Exploring the Perfor-
mance Fluctuations of HPC Workloads on Clouds. 2010 IEEE Cloud Computing
Technology and Science (Nov. 2010), 383–387.

6. Microsoft. Microsoft Azure Pricing Details. http://www.windowsazure.com/en-
us/pricing/details/, 2013.

7. Ostermann, S., Iosup, A., and Yigitbasi, N. A performance analysis of EC2
cloud computing services for scientific computing. Cloud Computing (2010).

8. Raaen, K., and Espeland, H. LEARS: A Lockless, Relaxed-Atomicity State
Model for Parallel Execution of a Game Server Partition. In Parallel Processing
. . . (Sept. 2012), Ieee, pp. 382–389.

9. Schad, J., Dittrich, J., and Quiané-Ruiz, J. Runtime measurements in the
cloud: observing, analyzing, and reducing variance. Proceedings of the VLDB . . . 3,
1 (2010).

10. Vaquero, L. M., Rodero-merino, L., Caceres, J., and Lindner, M. A Break
in the Clouds : Towards a Cloud Definition. Computer Communication Review 39,
1 (2009), 50–55.


