

Running head: PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Please note that this is a pre-print version of the manuscript that was

sent to the Journal of Individual Differences on January 15th, 2010. This

document has not been peer-reviewed and has not been accepted for

publication. Further, this manuscript deviates significantly from the

post-print (peer-reviewed) version that was accepted by the Editor on

January 10th, 2011.

This version is in compliance with Hogrefe Group’s terms that state:

“Authors of articles ... may [a]rchive or post on their own

or their institution’s website or in their institutional repository a

pre-print of their submitted manuscript (i.e., manuscript version

before peer-review) for noncommercial purposes at any time”

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Programming Skill, Knowledge and Working Memory

Among Software Developers

from an Investment Theory Perspective

Gunnar Rye Bergersen

Simula Research Laboratory

University of Oslo

Jan-Eric Gustafsson

University of Gothenburg

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Abstract

This study investigates the role of working memory and experience in the development of

programming knowledge and programming skill. An instrument for assessing programming skill

where skill is inferred from programming performance was administered along with tests of

working memory and programming knowledge. We hired 65 professional software developers

from nine companies in eight European countries to participate in a two-day study. Results

indicate that the effect of working memory and experience on programming skill is mediated

through programming knowledge. Programming knowledge was further found to explain

individual differences in programming skill to a large extent. The overall findings support

Cattell’s investment theory. This work contributes to research on individual differences in semi-

realistic work settings where professionals are used as subjects.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY AMONG

SOFTWARE DEVELOPERS FROM AN INVESTMENT THEORY PERSPECTIVE

Software systems are a cornerstone of modern society. Software production is a highly

competitive and globalized industry that is focused on producing high quality software at low

cost. One important way to stay competitive is to recruit and retain highly productive software

developers. Although companies often use different methods for quantifying competence when

recruiting developers, tests of cognitive abilities are frequently employed.

Generally, cognitive abilities can be organized into a hierarchical structure (Gustafsson,

2002). At the apex, general mental ability (g) exerts influence over all lower factors. At the next

stratum are a handful of broad abilities such as crystallized g (Gc, acquired knowledge) and fluid

g (Gf, novel and abstract problem solving), while the lowest stratum specifies a large number of

narrow abilities. Gustafsson (1984) demonstrated that Gf and g are perfectly correlated, and

Valentin Kvist and Gustafsson (2008) showed that this perfect relation holds true only for

homogeneous populations in which the individuals have had reasonably similar opportunities to

acquire the knowledge and skills tested.

According to Cattell’s investment theory (1971/1987), the acquisition of knowledge and

skills and the formation of developed abilities (i.e., Gc) are influenced by Gf, effort, motivation

and interest, and also by previous levels of Gc (Valentin Kvist and Gustafsson, 2008). Because

Gf is involved in all new learning, this ability is identical with g. Gf (and g) also has a wider

breadth of influence than other factors of intelligence, but it does not necessarily exert a strong

influence on performance on any single task (Humphreys, 1962; Coan, 1964; Gustafsson, 2002;

Valentin Kvist & Gustafsson, 2008).

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Based on the investment theory, as well as later extensions to this theory (see Ackerman,

2000), we expect that the influence of Gf and experience on skills as well as job performance to

be mediated through knowledge. That a mediating relationship exists is supported by theories of

skilled behaviour and skill acquisition (Neves & Anderson, 1981; Anderson, Conrad, & Corbett,

1989), in which knowledge is a key component. For example, according to the three phases of

skill acquisition proposed by Fitts and Posner (1967), declarative knowledge is central to the first

cognitive phase where an individual “tries to ‘understand’ the task and what it demands” (p. 11).

Anderson (1987) also states that knowledge initially “comes in declarative form and is used by

weak methods to generate solutions [which] ... form new productions ... [and a] key step is the

knowledge compilation process, which produces the domain specific skill” (p. 187). Further,

knowledge is also a central component of adult intelligence (Ackerman, 2000) and can therefore

be an important factor in the acquisition of new knowledge and skills (Ackerman, 2007).

The investment theory also is consonant with earlier reported results on job performance.

For example, in a meta-analysis by Schmidt, Hunter & Outerbridge (1986), the strongest

determinant of job sample performance was job knowledge (.74), much higher than the direct

path from experience (.08) or general mental ability (.04). Further, Schmidt (2002) states that

individuals with high general cognitive ability acquire more job knowledge and acquire it faster,

which leads to “higher levels of job performance” (p. 201). Also, in another meta-analysis,

experience and job performance were found to be positively correlated, even though this

relationship diminished over time (McDaniel, Schmidt & Hunter, 1988).

Constructs close to the apex of the hierarchical model can be described as having high

referent generality, and constructs that are highly specific to a limited situation have low referent

generality (see, e.g., Coan, 1964). For example, programming skill in a single programming

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

language can be regarded as a narrow construct with low referent generality. It is well suited for

predicting the outcomes of an individual for a specific programming language, but there might

be limited transfer of knowledge and skills to, for example, other kinds of programming

languages. When assessing constructs with low referent generality, it is therefore important to

also assess constructs with high referent generality (Gustafsson, 2002).

Working memory is a construct that has a close relationship to Gf and g and can further

be regarded as a construct with high referent generality. Although this relationship is complex

(Ackerman, Beier, & Boyle, 2002), several researchers have reported a large degree of overlap

between working memory and g (Ackerman et al., 2002; Colom, Rebollo, Palacious, Juan-

Espinosa, & Kyllonen, 2004; Unsworth, Heitz, Schrock, & Engle, 2005). Working memory also

has a substantial overlap with perceptual speed (Kyllonen & Stephens, 1990; Ackerman et al.,

2002). In addition to these overlaps, limitations of working memory, which are revealed in

theories of skilled behaviour, are an important source of error in skilled performance (Anderson,

1987). We maintain, therefore, that working memory is a suitable high referent generality

construct for the purpose of assessing programming skills both from a Gf perspective and from a

procedural learning perspective (Kyllonen & Stephens, 1990).

Computer programming is sometimes described as one of several archetypes of complex

cognitive behaviour; overall, programming requires the programmer to have a high level of

declarative knowledge as well as much practice to perform well. Working memory has

previously been found to be a good predictor of programming skill acquisition (Shute, 1991), as

has experience (Arisholm & Sjøberg, 2004). It has also been noted that performance on tasks

operating under skill constraints can be good predictors of other tasks as well. For example, for

programming in the LISP programming language, Anderson (1987) states that “the best predictor

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

of individual subject differences in errors on problems that involved one LISP concept was

number of errors on other problems that involved different concepts” (p. 203). Further, amount

of errors was also correlated with amount of programming experience (see Anderson et al., 1989,

for further details).

Skill as a latent construct is inferred from observed performance that varies in both time

and accuracy (or quality) (Fitts & Posner, 1967; Anderson, 1987). Together with knowledge and

motivation, skill is one of three direct antecedents of performance (Campbell, McCloy, Oppler,

& Sager, 1993). Skill is sometimes also referred to as procedural knowledge, and its acquisition

consists of three overlapping phases. During each phase, different abilities (as antecedents) are

hypothesized to exert different levels of influence on the acquisition of skill (Ackerman, 1988):

General mental ability is predominant during the first cognitive phase, perceptual speed during

the second associative phase, and psychomotor ability during the final and autonomous phase.

Kyllonen and Woltz (1989) refer to the first phase as the “knowledge acquisition phase,” while

phase two and three are skill acquisition and skill refinement, respectively.

Much research on the prediction of job performance has relied on a construct of general

mental ability indexed by test batteries which measure a mixture of Gf and Gc (Valentin Kvist &

Gustafsson, 2008). To distinguish this conception of general mental ability from the apex factor

g, we will refer to it as G. A comprehensive meta-analysis by Schmidt & Hunter (1998) showed

G to be a strong predictor of job performance, but they also showed that the predictive validity of

work sample tests exceeds that of G. For the field computer programming, this would not come

as surprise: if expert performance in programming develops in the same manner as expertise in

other fields (see, e.g., Ericsson & Charness, 1994), an employer should certainly not choose an

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

individual with high G and no programming experience over an individual with average G and

10 years of programming experience.

Although research has been conducted on group differences in the acquisition of

programming skills, individual differences in already acquired skills have not been adequately

quantified. One reason for the lack of research on the quantification of skills is that the construct

validity of programming performance is currently unresolved (Hannay, Arisholm, Engvik, &

Sjøberg, in press); indeed, the construct validity of work samples in general seems unresolved

(Campbell, 1990). Programming usually operates under a time-quality trade-off, making any

single score assigned to a solution an aggregate trade-off where the relative weight of the quality

of the solutions becomes important with respect to the time used to obtain that solution. In

addition, to what degree observed programming performance on one or several programming

tasks can be generalized to other tasks, systems, people or countries is uncertain.

The purpose of this study is to investigate the relationship between programming skill

and its main antecedents, using Cattell’s investment theory (1971/1987) as a conceptual

framework. The study extends previous research in two ways. First, work samples for a specific

programming job have been substituted by a latent variable representing programming skill. In

this study, inferences regarding individual programmers’ standing on the skill construct are

inferred from programming tasks performance operating under skilled constraints (i.e., a high

quality solution obtained with little time spent indicates a high level of skill). Second, the

instrument we propose is unidimensional; task performance for all the tasks in the instrument are

good predictors of each other when task difficulty is accounted for, even though all tasks are

very different from each other.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

We predict that, in line with skilled behaviour theory, investment theory, and previous

research on work samples, programming knowledge is the main causal antecedent of

programming skill. Further, programming knowledge is expected to mediate the relationship

between programming skill and the causal variables of working memory and experience.

Method

Participants

Sixty-five professional software developers were hired from nine companies located in

eight Central/Eastern European countries: Belarus, Czech Republic, Italy, Lithuania, Moldova,

Norway, Poland and Russia. Each participant received their base salary for participation, but they

were not compensated beyond this. From each company we requested voluntary participation,

and all companies and subjects were guaranteed anonymity. Subjects were free to terminate

participation at any time without loss of compensation. Voluntary participation was difficult to

guarantee, however; negotiations were conducted with company project leaders, not the subjects

themselves. All developers were required to be proficient in English and to have at least six

months of consecutive programming experience in the Java programming language prior to study

participation.

The mean age of participants was 28 years (SD = 5.66, range = 21–53) with an average

professional working experience of 5.3 years (SD = 4.94, range 0.3–30). Of this group, 63.1%

had a master’s degree, 33.8% a bachelor’s degree, and 3.1% a high school degree; 10.8 % were

female.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Tests administered

All materials and instructions were in English, which is the de facto business language of

software developers working in the global IT industry. Some minor language problems occurred

during the study for a few of the subjects.

Java programming skill

As a proxy for a job sample test of programming performance, we used an instrument for

assessing programming skill (Bergersen, to be submitted). The instrument contains 12

programming tasks (items) in the Java programming language, which has become one of the

most common programming languages during the last decade. All tasks require either

implementation or modification of programming code and the duration of each task is between

10 and 50 minutes. Between 5 and 10 minutes was also allowed for reading the task instructions

before code was downloaded.

Performance on each task was scored as an aggregate of both the time required to

implement a correct solution and the quality of the solution. Starting from incorrect tasks (or

tasks submitted too late), increasingly higher (ordinal) scores were assigned to more correct

solutions. Further, even higher scores were given to tasks of acceptable quality, but with less

time used. The instrument consists of both automatically and semi-automatically scored tasks, as

some programming quality aspects can only be evaluated by humans. The scoring scheme for

these kinds of tasks used objective criteria (such as, “is functionality x present for attribute y?” 0

= no, 1 = partially, 2 = yes). Some items were testlets, implying that task requirements were to be

solved in consecutive steps until time ran out.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

For subject scaling, task scores were fitted to the polytomous Rasch model (Andrich,

1978). This is a generalization of the Rasch model (1960) where ordinal scores are transformed

to interval scale measurements, provided certain conditions are met.

Programming knowledge

A 30-item multiple choice knowledge test of Java programming was purchased from a

large international (anonymous) test vendor. Items were selected from a large pool of existing

items that are in current use for assessing software professionals globally. All items were

specifically selected to cover the same content domain that was present in the programming skill

instrument. The knowledge test imposes a three-minute time limit per item, but is not speeded.

The test takes approximately one hour to complete and is scored according to the number of

correct items within each item’s time limit.

Working memory

Three 20-minute tests of working memory (Operation Span, Symmetry Span, and

Reading Span) were acquired from Unsworth et al. (2005). Each test requires the memorization

of letters or locations while simultaneously being distracted by having to solve simple math

problems, determining whether a figure is symmetrical, or determining whether an English

sentence is correctly formulated or not. For the distracting task, each subject was informed that

accuracy must be kept over 85%, to limit memorization of letters or locations. However, for

Reading Span, we informed each subject that accuracy below 85% would be acceptable as none

of the subjects were native English speakers. Each test was scored according to the number of

perfectly recalled sets.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Procedure

The programming skill test was administered at each company’s office location during

two full work days (16 hours). The first author was present during the study to answer questions,

but the test was administered online through a specially built experiment support environment

(Arisholm, Sjøberg, Carelius, & Linsjørn, 2002). Subjects were free to use whatever software

development tools they normally used in their job. All subjects were given instructions and a

practice task before the instrument was administered. All items were administered in random

item order and the subjects were only allowed to take breaks between tasks. The working

memory tests were, further, administered in these individual breaks between tasks during the two

days, mainly during the second day. The working memory tests were, however, not available for

the first four companies visited, implying fewer subjects (N=29). The knowledge test was

administered online, 1 to 4 months after the programming skill test, on a sub sample of the

subjects (92.3%, N = 60). Missing developers in this sub sample had either changed employer,

did not want to participate, or were currently involved in other projects.

Statistical analysis and models tested

The hypothesized causal relationship between working memory, experience,

programming knowledge, and programming skill is shown in Figure 1 (Model 1). Working

memory and experience are hypothesized to affect programming knowledge. However,

according to investment theory, direct paths from working memory and experience to skill

should not be present as the causal effect of these two constructs should be mediated through

knowledge. Model 2, also shown in Figure 1, is a competing model where paths from working

memory and experience lead to skill instead and where the path from skill to knowledge is

reversed in direction.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

--- Insert Figure 1 about here ---

In both models, programming skill was represented as a latent variable with a single

indicator, following the procedure described by Jöreskog and Sörbom (as cited in Mathieu,

Tannenbaum, & Salas, 1992):

[T]he path from a latent variable to its corresponding observed variable (lambda) is equal

to the square root of the reliability of the observed score. In addition, the associated

amount of random error variance (theta) is equal to one minus the reliability of the

observed score times the variance of the observed score. (p. 837)

We used person separation index (PSI) as a reliability estimate (see e.g., Streiner, 1995), because

PSI can be calculated with missing data. However, results are virtually identical to those

obtained when using Cronbach’s alpha (α).

Programming knowledge was represented as a latent variable by two indicators with

equal loadings and variances. The 30 items were divided randomly into two parcels, each with

the same average difficulty (items were delivered by the test provider in increasing order of

difficulty based on data from their existing item bank). Working memory was represented by the

three working memory tests, and neither factor loadings nor error variances were constrained.

Programming experience was measured by two indicators, both of which are log

transformed. The first indicator, eLNLOC, is the subject’s estimate of how many lines of code

(LOC) that person has written in the Java programming language in total (during education and

professional career). This indicator is, in part, a productivity indicator, as people perceived as

more productive individuals would be expected to have written more code during their career.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

The other indicator, eLNTotJProg, is the total number of months the individual has programmed

in Java, both during education (if applicable) and professionally.

The models shown in Figure 1 were estimated with Amos 16.0, using maximum

likelihood estimation for missing data which is implemented in this program.

Results

Descriptive statistics and reliability estimates

Descriptive results are shown in Table 1. The Java skill instrument was sufficiently

reliable to assess individual differences (α = .85 and PSI = .86). As has already been mentioned,

results on the WMC test were only available for approximately half the subjects, while for the

other variables there is little missing data. The programming skills instrument is unidimensional

according to the independent paired t-test for unidimensionality (Smith, 2002), a procedure that

is also implemented in the software used to carry out the Rasch analysis, RUMM2020 (Andrich,

Sheridan, & Luo, 2006). The programming knowledge test had acceptable reliability as well (α =

0.81), but was not unidimensional. We did not calculate reliability of the working memory tests,

but these have previously been reported to have acceptable levels of reliability (Unsworth et al.,

2005). Also, although ceiling effects are present for all the working memory tests, the mean and

SD of our population is highly comparable to results reported elsewhere (Unsworth, Redick,

Heitz, Broadway, & Engle, 2009). All variables used in the analysis, except programming

knowledge, can be regarded as normally distributed by the one-sample Kolmogorov-Smirnov

Test (1KS).

--- Insert Table 1 about here ---

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Model 1—The investment theory model

Model 1, as shown in Figure 2, had a close model fit (χ2[19] = 14.7, n.s., RMSEA =

0.000, LO90 = 0.000, HI90 = 0.081). As shown by the wide confidence interval for RMSEA, the

power to reject a poor-fitting model is relatively low, but the confidence interval is almost

entirely within the range that indicates a well-fitting model (RMSEA < 0.08). We also tested

adding direct paths from working memory and experience to skill; the loadings were -.03, n.s.

and -.08, n.s., respectively, with a slightly reduced model fit (χ2[17] = 14.4, n.s., RMSEA =

0.000, LO90 = 0.000, HI90 = 0.096). We therefore chose to keep Model 1 as presented.

--- Insert Figure 2 about here ---

Model 2—The competing model

In Model 2, as shown in Figure 2, the relations from working memory and experience to

knowledge only changed in a minor way. However, model fit decreased (χ2[19] = 19.1, n.s.,

RMSEA = 0.007, LO90 = 0.000, HI90 = 0.110); χ2 increased by 4.4 units for the same degrees of

freedom and the upper limit of the confidence interval of RMSEA fell above an acceptable value.

Discussion

The good fit of Model 1 and the worse fit of Model 2 compared to Model 1 support

Cattell’s investment theory: the effect of working memory capacity and experience on

programming skill is mediated through programming knowledge, which in turn accounts for a

large degree of variance in programming skill. Furthermore, as is elaborated in theories of skill

acquisition (Ackerman, 2000; Anderson, 1982; Fitts & Posner, 1967), there are good reasons

why skill is mediated by knowledge rather than the other way around.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

We now turn to how the findings can be interpreted in more specific terms. Our research

reveals at least three important similarities between the meta-analysis by Schmidt et al. (1986)

and this investigation, bearing in mind that Schmidt et al. reported on different types of jobs as

well as different job-related constructs. First, knowledge was found in both studies to be the most

important antecedent of skill/job sample performance, although we found the strength of this

relationship to be larger in our study (.86 compared to .74). The greater significance of

knowledge to skill performance in our study can probably be attributed to the content of the

knowledge test being specifically chosen to mirror the required knowledge for successful

completion of the programming tasks in the programming skill instrument. Another similarity is

that the direct effect on skill/job sample performance from working memory/G and experience,

which was small in Schmidt et al. and insignificant and close to zero in our study. Finally,

Schmidt et al. reported a path between G and job knowledge of .65 for civilian data when

excluding experience, while the path from working memory to knowledge in our study is .77

when experience is excluded.

The most obvious difference between our results and those of Schmidt et al., is the high

correlation we observed between working memory and experience; G and experience were not

correlated in their study. We cannot rule out that this result is an artefact due to the low N of the

tests on working memory. However, when we inspected other experience variables such as

number of lines of code written in other programming languages (besides Java), a similar and

significant positive correlation with working memory was found as well. One plausible reason

for this may be that programmers with a low working memory capacity might not continue to

program over many years due to the continuous learning required to stay updated on the

programming language they use for development. Another reason could be that LOC is partially

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

a productivity indicator; from the result in this study, we would expect developers with high

levels of working memory to be more productive.

Further, in the Schmidt et al. (1986) meta-analysis, the impact on knowledge from

experience was .57, which is somewhat larger than for G (.46). In our study, working memory

explained most of the variance, although a lot of this variance was shared with experience.

However, when we omitted working memory from Model 1, the path from experience to

knowledge increased to .58, indicating a similar result.

One obvious reason for these differences is that Schmidt et al. used number of months on

the present job for the experience variable, while we used both the number of months

programming in Java (irrespective of job changes) and number of lines of code written in Java.

As programming should be seen as a high complexity job, it would be expected that the effect of

experience on knowledge would be less than for low complexity jobs (McDaniel et al., 1988).

The reason for this is that initial experience with programming is often obtained through the

educational system rather than on the job (in our subject sample, 96.9% had a bachelor’s degree

or higher).

Unidimensionality was a requirement for the programming skill instrument. However, to

what degree an instrument is considered unidimensional or not is a relative matter; the

instrument might not have the precision to distinguish between highly correlated dimensions that

constitute separate constructs. We also had an extended version of the skill instrument that

contained several programming tasks on Java debugging (finding errors in program code). These

tasks were shorter and more akin to sudden insight problems (Smith & Kounios, 1996). Overall,

the results for the two versions of the instrument were almost identical (r > .99), which is

unsurprising given that they have 12 programming tasks in common. However, the least

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

unidimensional version of the instrument displayed worse model fit as well as slightly, but not

significantly, higher correlation with both working memory and knowledge. It may well be that

the more unidimensional version of the instrument is better at capturing the idiosyncrasies of

programming skill as a construct, when inspecting the correlations with programming

knowledge, experience and working memory.

Other questions remain. We do not know to what degree the strictly unidimensional

version of the instrument does a better job of predicting programming performance “on the job.”

Also, we still do not know if the skill inferred from programming performance and attested by a

unidimensional instrument can partially resolve the poorly understood construct validity of work

samples (see Campbell, 1990). However, this study does meet Campbell, Gasser, and Oswald’s

criticism (1996) that using the dependent variable in SEM models as a rating of overall job

performance is inadequate; we used instead a unidimensional measure of programming skill.

The main limitation of this study is low power, and in particular the number of

observations for working memory. Due to the low power, the confidence intervals for RMSEA

were wide. Another possible concern was the parcelling procedure used for the knowledge test.

As a post hoc analysis, we investigated several alternative parcelling procedures for knowledge,

but found only insubstantial differences for regression weights. However, RMSEA estimates

were somewhat more affected, both for better and for worse, by different combinations of items

in each parcel, but well within the reported 90% confidence limits.

Clearly, there are several loose ends requiring further work. In addition to including more

subjects, we want to include a purer g measure, such as Ravens. Also, it could have been

interesting to devise new tests of working memory capacity for programmers that use

programming concepts as memorization or distracting elements. These tests would allow

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

experienced software developers to better use their expected superior chunking capacity (see

Miller, 1956) for programming concepts. Such data could provide additional information on the

structure of the abilities, knowledge and skill required by programmers to achieve superior job

performance.

Our overall results support Cattell’s investment theory. The results are also similar to

those reported by Schmidt et al. (1986), albeit with some differences in operationalizations.

Although the power of this study is low, the results show close fit to an investment theory model

framed within a high-realism setting of software developers from multiple countries.

Acknowledgements

This research was supported by the FORNY programme at the research council of

Norway. It is based on the first author’s ongoing PhD thesis at Simula Research Laboratory with

Dag Sjøberg, Erik Arisholm and Tore Dybå as supervisors. We thank Steinar Haugen for his

programming assistance and Jo Hannay for his useful insights. We also thank the project

managers, developers and companies involved in this study, as well as the test vendor company

for allowing us to use their tests.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

References

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition:

Cognitive abilities and information processing. Journal of Experimental Psychology:

General, 117(3), 288–318.

Ackerman, P. L. (2000). Domain-specific knowledge as the "Dark Matter" of adult intelligence:

Gf/Gc, personality and interest correlates. Journal of Gerontology, 55B(2), P69-P84.

Ackerman, P. L. (2007). New developments in understanding skilled performance. Current

Directions in Psychological Science, 16(5), 235-239.

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2002). Individual differences in working

memory within a nomological network of cognitive and perceptual speed abilities.

Journal of Experimental Psychology: General, 131(4), 567-589.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions.

Psychological Review, 94(2), 192-210.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP Tutor.

Cognitive Science, 13, 467-505.

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika 43(4):

561-573.

Andrich, D., Sheridan, B., & Luo, G. (2006). RUMM2020 [computer software]. Perth: RUMM

Laboratory.

Arisholm, E. & Sjøberg, D. I. K. (2004). Evaluating the effect of a delegated versus centralized

control style on the maintainability of object-oriented software. IEEE Transactions on

Software Engineering, 30(8), 521-534.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Arisholm, E., Sjøberg, D. I. K., Carelius, G. J., & Lindsjørn, Y. (2002). A web-based support

environment for software engineering experiments. Nordic Journal of Computing, 9(3),

231-247.

Bergersen, G. R. (to be submitted in 2010). Assessing programming skill. PhD diss., University

of Oslo.

Campbell, J. P. (1990). Modeling the performance prediction problem in industrial and

organizational psychology. In M. D. Dunnette & L. M. Hough (Eds.), Handbook of

industrial and organizational psychology (2nd ed.; Vol 1, pp. 687-732). Palo Alto:

Consulting Psychology Press.

Campbell, J. P., Gasser, M. B., & Oswald, F. L. (1996). The substantive nature of job

performance variability. In K. R. Murphy (Ed.), Individual differences and behavior in

organizations (pp. 258-299). San Francisco: Jossey-Bass Inc.

Campbell, J. P., McCloy, R. A., Oppler, S. H., & Sager, C. E. (1993). A Theory of Performance.

In N. Schmitt and W. C. Borman (Eds.) Personnel selection in organizations (pp. 35-70).

San Francisco: Jossey-Bass.

Cattell, R. B. (1971/1987). Abilities: Their structure, growth, and action. Boston: Houghton-

Mifflin. (Revised and reprinted in Intelligence: Its structure, growth, and action. New

York: North-Holland).

Coan, R. B. (1964). Facts, factors and artifacts: The quest for psychological meaning.

Psychological Review, 71, 123-140.

Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. (2004). Working

memory is (almost) perfectly predicted by g. Intelligence, 32, 277-296.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Ericsson, K. A. & Charness, N. (1994). Expert performance: Its structure and acquisition.

American Psychologist, 49(8), 725-747.

Fitts, P. M. & Posner, M. I. (1967). Human Performance. Belmont, California: Brooks/Cole

Publishing Company.

Gustafsson, J. -E. (1984). A unifying model for the structure of intellectual abilities. Intelligence,

8, 179-203.

Gustafsson, J. -E. (2002). Measurement from a hierarchical point of view. In H. I. Braun, D. N.

Jackson, & D. E. Wiley (Eds.), The Role of Constructs in Psychological and Educational

Measurement (pp. 73-95). London: Lawrence Erlbaum Associates, Publishers.

Hannay, J. E., Arisholm, E., Engvik, H., & Sjøberg, D. I. K. (in press). Effects of personality on

pair programming. IEEE Transactions on Software Engineering.

Humphreys, L. G. (1962). The organization of human abilities. American Psychologist, 17(7),

475-483.

Kyllonen, P. C. & Stephens, D. L. (1990). Cognitive abilities as determinants of success in

acquiring logic skill. Learning and Individual Differences, 2(2), 129-160.

Kyllonen, P. C., & Woltz, D. J. (1989). Role of cognitive factors in the acquisition of cognitive

skill. In R. Kanfer, P. L. Ackerman, & R. Cudeck (Eds.), Abilities, motivation, and

methodology: The Minneapolis symposium on learning and individual differences (pp.

239-280). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Mathieu, J. E., Tannenbaum, S. I., & Salas, E. (1992). Influences of individual and situational

characteristics on measures of training effectiveness. The Academy of Management

Journal, 35(4), 828-847.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

McDaniel, M. A., Schmidt, F. L., & Hunter, J. E. (1988). Job experience correlates of job

performance. Journal of Applied Psychology, 73(2), 327-330.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity

for processing information. Psychological Review, 61(2), 81-97.

Neves, D. M. & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the

automatization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their

acquisition. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.

Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests.

(Copenhagen: Danish Institute for Educational Research) Expanded edition, with a

forward and afterword by B. D. Wright, Chicago: University of Chicago Press, 1980.

Schmidt, F. L. (2002). The role of general cognitive ability and job performance: Why there

cannot be a debate. Human Performance, 15, 187-210.

Schmidt, F. L. & Hunter, J. E. (1998). The validity and utility of selection methods in personnel

psychology: Practical and theoretical implications of 85 years of research findings.

Psychological Bulletin, 124(2), 262-274.

Schmidt, F. L., Hunter, J. E., & Outerbridge, A. N. (1986). Impact of job experience and ability

on job knowledge, work sample performance, and supervisory ratings of job

performance. Journal of Applied Psychology, 71(3), 432-439.Shute, V. J. (1991). Who is

likely to acquire programming skills? Journal of Educational Computing Research, 7(1),

1-24.

Smith, E. V. Jr. (2002). Detecting and evaluating the impact of multidimensionality using item

fit statistics and principal component analysis of residuals. Journal of Applied

Measurement, 3(2), 205-231.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Smith, R. W. & Kounios, J. (1996). Sudden insight: All-or-none processing revealed by speed-

accuracy decomposition. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 22(6), 1443-1462.

Streiner, D. L. (1995). Health measurement scales. Oxford: Oxford University Press.

Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the

operation span task. Behavior Research Methods, 37(3), 498-505.

Unsworth, N., Redick, T., Heitz, R. P., Broadway, J. M., & Engle, R. W. (2009). Complex

working memory span tasks and higher-order cognition: A latent-variable analysis of the

relationship between processing and storage. Memory, 17(6), 635-654.

Valentin Kvist, A., & Gustafsson, J. -E. (2008). The relation between fluid intelligence and the

general factor as a function of cultural background: A test of Cattell's Investment theory.

Intelligence, 36, 422-436.

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Table 1

Descriptives of all variables used

Variable Score N Min Max Mean SD 1KS

Java programming skill (ProgSkill) LGT 65 -4.12 1.58 -0.83 1.30 .489

Java programming knowledge (Know) NC 60 7 29 21.72 4.80 .013

Working Memory (WMC)

 Symmetry Span NR 28 10 42 25.11 8.36 .979

 Operation Span NR 29 21 75 52.14 15.33 .945

 Reading Span NR 28 25 75 54.25 14.48 .750

Experience

 Total lines of code written in Java Ln(LOC) 64 6.21 13.82 10.46 1.76 .806

 Total Java programming experience Ln(months) 65 .69 4.87 3.45 0.79 .161

Notes: LGT = logits (0 is defined in the Rasch model as the average difficulty of items), C = number correct, NR = number of perfectly recalled

sets

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Figure Captions

Figure 1. Hypothesized structure of regression weights for Model 1 (left) and Model 2 (right)

Figure 2. Results for Model 1 (left) and Model 2 (right)

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Figure 1:

WMC

ProgSkill Know

wOwRwS

k2P1 k2P2

11

0, b 0, b
1

1 1

1

skill12i

1.2

0, 0.23
1

eLNTotJProg
1

1

1

Experience

eLNLOC
1

1

1

1

WMC

ProgSkill Know

wOwRwS

k2P1 k2P2

11

0, b 0, b
1

1 1

1

skill12i

1.2

0, 0.23
1

eLNTotJProg
1

1

1

Experience

eLNLOC
1

1

1

1

 PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY

Figure 2:

WMC

.74

ProgSkill

.66

Know

.53

wO
.26

wR
.29

wS

.72

k2P1
.72

k2P2

.73.51

.85 .85

skill12i

.93

.55

eLNTotJProg

.54

Experience

.53

eLNLOC

.73 .74

.64

.74 .10

.86

WMC

ProgSkill Know

.48

wO
.25

wR
.33

wS

.72

k2P1
.72

k2P2

.70.50

.85 .85

skill12i

.93

.54

eLNTotJProg

.57

Experience

.54

eLNLOC

.74 .73

.66

.74 .03

.88

