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Abstract 

This study investigates the role of working memory and experience in the development of 

programming knowledge and programming skill. An instrument for assessing programming skill 

where skill is inferred from programming performance was administered along with tests of 

working memory and programming knowledge. We hired 65 professional software developers 

from nine companies in eight European countries to participate in a two-day study. Results 

indicate that the effect of working memory and experience on programming skill is mediated 

through programming knowledge. Programming knowledge was further found to explain 

individual differences in programming skill to a large extent. The overall findings support 

Cattell’s investment theory. This work contributes to research on individual differences in semi-

realistic work settings where professionals are used as subjects. 
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PROGRAMMING SKILL, KNOWLEDGE AND WORKING MEMORY AMONG 

SOFTWARE DEVELOPERS FROM AN INVESTMENT THEORY PERSPECTIVE  

Software systems are a cornerstone of modern society. Software production is a highly 

competitive and globalized industry that is focused on producing high quality software at low 

cost. One important way to stay competitive is to recruit and retain highly productive software 

developers. Although companies often use different methods for quantifying competence when 

recruiting developers, tests of cognitive abilities are frequently employed.  

Generally, cognitive abilities can be organized into a hierarchical structure (Gustafsson, 

2002). At the apex, general mental ability (g) exerts influence over all lower factors. At the next 

stratum are a handful of broad abilities such as crystallized g (Gc, acquired knowledge) and fluid 

g (Gf, novel and abstract problem solving), while the lowest stratum specifies a large number of 

narrow abilities. Gustafsson (1984) demonstrated that Gf and g are perfectly correlated, and 

Valentin Kvist and Gustafsson (2008) showed that this perfect relation holds true only for 

homogeneous populations in which the individuals have had reasonably similar opportunities to 

acquire the knowledge and skills tested.  

According to Cattell’s investment theory (1971/1987), the acquisition of knowledge and 

skills and the formation of developed abilities (i.e., Gc) are influenced by Gf, effort, motivation 

and interest, and also by previous levels of Gc (Valentin Kvist and Gustafsson, 2008). Because 

Gf is involved in all new learning, this ability is identical with g. Gf (and g) also has a wider 

breadth of influence than other factors of intelligence, but it does not necessarily exert a strong 

influence on performance on any single task (Humphreys, 1962; Coan, 1964; Gustafsson, 2002; 

Valentin Kvist & Gustafsson, 2008).  
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Based on the investment theory, as well as later extensions to this theory (see Ackerman, 

2000), we expect that the influence of Gf and experience on skills as well as job performance to 

be mediated through knowledge. That a mediating relationship exists is supported by theories of 

skilled behaviour and skill acquisition (Neves & Anderson, 1981; Anderson, Conrad, & Corbett, 

1989), in which knowledge is a key component. For example, according to the three phases of 

skill acquisition proposed by Fitts and Posner (1967), declarative knowledge is central to the first 

cognitive phase where an individual “tries to ‘understand’ the task and what it demands” (p. 11). 

Anderson (1987) also states that knowledge initially “comes in declarative form and is used by 

weak methods to generate solutions [which] ... form new productions ... [and a] key step is the 

knowledge compilation process, which produces the domain specific skill” (p. 187). Further, 

knowledge is also a central component of adult intelligence (Ackerman, 2000) and can therefore 

be an important factor in the acquisition of new knowledge and skills (Ackerman, 2007).  

The investment theory also is consonant with earlier reported results on job performance. 

For example, in a meta-analysis by Schmidt, Hunter & Outerbridge (1986), the strongest 

determinant of job sample performance was job knowledge (.74), much higher than the direct 

path from experience (.08) or general mental ability (.04). Further, Schmidt (2002) states that 

individuals with high general cognitive ability acquire more job knowledge and acquire it faster, 

which leads to “higher levels of job performance” (p. 201). Also, in another meta-analysis, 

experience and job performance were found to be positively correlated, even though this 

relationship diminished over time (McDaniel, Schmidt & Hunter, 1988).  

Constructs close to the apex of the hierarchical model can be described as having high 

referent generality, and constructs that are highly specific to a limited situation have low referent 

generality (see, e.g., Coan, 1964). For example, programming skill in a single programming 
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language can be regarded as a narrow construct with low referent generality. It is well suited for 

predicting the outcomes of an individual for a specific programming language, but there might 

be limited transfer of knowledge and skills to, for example, other kinds of programming 

languages. When assessing constructs with low referent generality, it is therefore important to 

also assess constructs with high referent generality (Gustafsson, 2002).  

Working memory is a construct that has a close relationship to Gf and g and can further 

be regarded as a construct with high referent generality. Although this relationship is complex 

(Ackerman, Beier, & Boyle, 2002), several researchers have reported a large degree of overlap 

between working memory and g (Ackerman et al., 2002; Colom, Rebollo, Palacious, Juan-

Espinosa, & Kyllonen, 2004; Unsworth, Heitz, Schrock, & Engle, 2005). Working memory also 

has a substantial overlap with perceptual speed (Kyllonen & Stephens, 1990; Ackerman et al., 

2002). In addition to these overlaps, limitations of working memory, which are revealed in 

theories of skilled behaviour, are an important source of error in skilled performance  (Anderson, 

1987). We maintain, therefore, that working memory is a suitable high referent generality 

construct for the purpose of assessing programming skills both from a Gf perspective and from a 

procedural learning perspective (Kyllonen & Stephens, 1990).  

Computer programming is sometimes described as one of several archetypes of complex 

cognitive behaviour; overall, programming requires the programmer to have a high level of 

declarative knowledge as well as much practice to perform well. Working memory has 

previously been found to be a good predictor of programming skill acquisition (Shute, 1991), as 

has experience (Arisholm & Sjøberg, 2004). It has also been noted that performance on tasks 

operating under skill constraints can be good predictors of other tasks as well. For example, for 

programming in the LISP programming language, Anderson (1987) states that “the best predictor 
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of individual subject differences in errors on problems that involved one LISP concept was 

number of errors on other problems that involved different concepts” (p. 203). Further, amount 

of errors was also correlated with amount of programming experience (see Anderson et al., 1989, 

for further details). 

Skill as a latent construct is inferred from observed performance that varies in both time 

and accuracy (or quality) (Fitts & Posner, 1967; Anderson, 1987). Together with knowledge and 

motivation, skill is one of three direct antecedents of performance (Campbell, McCloy, Oppler, 

& Sager, 1993). Skill is sometimes also referred to as procedural knowledge, and its acquisition 

consists of three overlapping phases. During each phase, different abilities (as antecedents) are 

hypothesized to exert different levels of influence on the acquisition of skill (Ackerman, 1988): 

General mental ability is predominant during the first cognitive phase, perceptual speed during 

the second associative phase, and psychomotor ability during the final and autonomous phase. 

Kyllonen and Woltz (1989) refer to the first phase as the “knowledge acquisition phase,” while 

phase two and three are skill acquisition and skill refinement, respectively. 

Much research on the prediction of job performance has relied on a construct of general 

mental ability indexed by test batteries which measure a mixture of Gf and Gc (Valentin Kvist & 

Gustafsson, 2008). To distinguish this conception of general mental ability from the apex factor 

g, we will refer to it as G. A comprehensive meta-analysis by Schmidt & Hunter (1998) showed 

G to be a strong predictor of job performance, but they also showed that the predictive validity of 

work sample tests exceeds that of G. For the field computer programming, this would not come 

as surprise: if expert performance in programming develops in the same manner as expertise in 

other fields (see, e.g., Ericsson & Charness, 1994), an employer should certainly not choose an 
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individual with high G and no programming experience over an individual with average G and 

10 years of programming experience.  

Although research has been conducted on group differences in the acquisition of 

programming skills, individual differences in already acquired skills have not been adequately 

quantified. One reason for the lack of research on the quantification of skills is that the construct 

validity of programming performance is currently unresolved (Hannay, Arisholm, Engvik, & 

Sjøberg, in press); indeed, the construct validity of work samples in general seems unresolved 

(Campbell, 1990). Programming usually operates under a time-quality trade-off, making any 

single score assigned to a solution an aggregate trade-off where the relative weight of the quality 

of the solutions becomes important with respect to the time used to obtain that solution. In 

addition, to what degree observed programming performance on one or several programming 

tasks can be generalized to other tasks, systems, people or countries is uncertain. 

The purpose of this study is to investigate the relationship between programming skill 

and its main antecedents, using Cattell’s investment theory (1971/1987) as a conceptual 

framework. The study extends previous research in two ways. First, work samples for a specific 

programming job have been substituted by a latent variable representing programming skill. In 

this study, inferences regarding individual programmers’ standing on the skill construct are 

inferred from programming tasks performance operating under skilled constraints (i.e., a high 

quality solution obtained with little time spent indicates a high level of skill). Second, the 

instrument we propose is unidimensional; task performance for all the tasks in the instrument are 

good predictors of each other when task difficulty is accounted for, even though all tasks are 

very different from each other.  
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We predict that, in line with skilled behaviour theory, investment theory, and previous 

research on work samples, programming knowledge is the main causal antecedent of 

programming skill. Further, programming knowledge is expected to mediate the relationship 

between programming skill and the causal variables of working memory and experience. 

Method 

Participants 

Sixty-five professional software developers were hired from nine companies located in 

eight Central/Eastern European countries: Belarus, Czech Republic, Italy, Lithuania, Moldova, 

Norway, Poland and Russia. Each participant received their base salary for participation, but they 

were not compensated beyond this. From each company we requested voluntary participation, 

and all companies and subjects were guaranteed anonymity. Subjects were free to terminate 

participation at any time without loss of compensation. Voluntary participation was difficult to 

guarantee, however; negotiations were conducted with company project leaders, not the subjects 

themselves. All developers were required to be proficient in English and to have at least six 

months of consecutive programming experience in the Java programming language prior to study 

participation.  

The mean age of participants was 28 years (SD = 5.66, range = 21–53) with an average 

professional working experience of 5.3 years (SD = 4.94, range 0.3–30). Of this group, 63.1% 

had a master’s degree, 33.8% a bachelor’s degree, and 3.1% a high school degree; 10.8 % were 

female. 
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Tests administered 

All materials and instructions were in English, which is the de facto business language of 

software developers working in the global IT industry. Some minor language problems occurred 

during the study for a few of the subjects.  

Java programming skill 

As a proxy for a job sample test of programming performance, we used an instrument for 

assessing programming skill (Bergersen, to be submitted). The instrument contains 12 

programming tasks (items) in the Java programming language, which has become one of the 

most common programming languages during the last decade. All tasks require either 

implementation or modification of programming code and the duration of each task is between 

10 and 50 minutes. Between 5 and 10 minutes was also allowed for reading the task instructions 

before code was downloaded.  

Performance on each task was scored as an aggregate of both the time required to 

implement a correct solution and the quality of the solution. Starting from incorrect tasks (or 

tasks submitted too late), increasingly higher (ordinal) scores were assigned to more correct 

solutions. Further, even higher scores were given to tasks of acceptable quality, but with less 

time used. The instrument consists of both automatically and semi-automatically scored tasks, as 

some programming quality aspects can only be evaluated by humans. The scoring scheme for 

these kinds of tasks used objective criteria (such as, “is functionality x present for attribute y?” 0 

= no, 1 = partially, 2 = yes). Some items were testlets, implying that task requirements were to be 

solved in consecutive steps until time ran out.  
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For subject scaling, task scores were fitted to the polytomous Rasch model (Andrich, 

1978). This is a generalization of the Rasch model (1960) where ordinal scores are transformed 

to interval scale measurements, provided certain conditions are met.  

Programming knowledge 

A 30-item multiple choice knowledge test of Java programming was purchased from a 

large international (anonymous) test vendor. Items were selected from a large pool of existing 

items that are in current use for assessing software professionals globally. All items were 

specifically selected to cover the same content domain that was present in the programming skill 

instrument. The knowledge test imposes a three-minute time limit per item, but is not speeded. 

The test takes approximately one hour to complete and is scored according to the number of 

correct items within each item’s time limit.  

Working memory 

Three 20-minute tests of working memory (Operation Span, Symmetry Span, and 

Reading Span) were acquired from Unsworth et al. (2005). Each test requires the memorization 

of letters or locations while simultaneously being distracted by having to solve simple math 

problems, determining whether a figure is symmetrical, or determining whether an English 

sentence is correctly formulated or not. For the distracting task, each subject was informed that 

accuracy must be kept over 85%, to limit memorization of letters or locations. However, for 

Reading Span, we informed each subject that accuracy below 85% would be acceptable as none 

of the subjects were native English speakers. Each test was scored according to the number of 

perfectly recalled sets. 
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Procedure 

The programming skill test was administered at each company’s office location during 

two full work days (16 hours). The first author was present during the study to answer questions, 

but the test was administered online through a specially built experiment support environment 

(Arisholm, Sjøberg, Carelius, & Linsjørn, 2002). Subjects were free to use whatever software 

development tools they normally used in their job. All subjects were given instructions and a 

practice task before the instrument was administered. All items were administered in random 

item order and the subjects were only allowed to take breaks between tasks. The working 

memory tests were, further, administered in these individual breaks between tasks during the two 

days, mainly during the second day. The working memory tests were, however, not available for 

the first four companies visited, implying fewer subjects (N=29). The knowledge test was 

administered online, 1 to 4 months after the programming skill test, on a sub sample of the 

subjects (92.3%, N = 60). Missing developers in this sub sample had either changed employer, 

did not want to participate, or were currently involved in other projects.  

Statistical analysis and models tested 

The hypothesized causal relationship between working memory, experience, 

programming knowledge, and programming skill is shown in Figure 1 (Model 1). Working 

memory and experience are hypothesized to affect programming knowledge. However, 

according to investment theory, direct paths from working memory and experience to skill 

should not be present as the causal effect of these two constructs should be mediated through 

knowledge. Model 2, also shown in Figure 1, is a competing model where paths from working 

memory and experience lead to skill instead and where the path from skill to knowledge is 

reversed in direction.  
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--- Insert Figure 1 about here --- 

 

In both models, programming skill was represented as a latent variable with a single 

indicator, following the procedure described by Jöreskog and Sörbom (as cited in Mathieu, 

Tannenbaum, & Salas, 1992):  

[T]he path from a latent variable to its corresponding observed variable (lambda) is equal 

to the square root of the reliability of the observed score. In addition, the associated 

amount of random error variance (theta) is equal to one minus the reliability of the 

observed score times the variance of the observed score. (p. 837)  

We used person separation index (PSI) as a reliability estimate (see e.g., Streiner, 1995), because 

PSI can be calculated with missing data. However, results are virtually identical to those 

obtained when using Cronbach’s alpha (α).  

Programming knowledge was represented as a latent variable by two indicators with 

equal loadings and variances. The 30 items were divided randomly into two parcels, each with 

the same average difficulty (items were delivered by the test provider in increasing order of 

difficulty based on data from their existing item bank). Working memory was represented by the 

three working memory tests, and neither factor loadings nor error variances were constrained.  

Programming experience was measured by two indicators, both of which are log 

transformed. The first indicator, eLNLOC, is the subject’s estimate of how many lines of code 

(LOC) that person has written in the Java programming language in total (during education and 

professional career). This indicator is, in part, a productivity indicator, as people perceived as 

more productive individuals would be expected to have written more code during their career. 
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The other indicator, eLNTotJProg, is the total number of months the individual has programmed 

in Java, both during education (if applicable) and professionally.  

The models shown in Figure 1 were estimated with Amos 16.0, using maximum 

likelihood estimation for missing data which is implemented in this program. 

Results  

Descriptive statistics and reliability estimates 

Descriptive results are shown in Table 1. The Java skill instrument was sufficiently 

reliable to assess individual differences (α = .85 and PSI = .86). As has already been mentioned, 

results on the WMC test were only available for approximately half the subjects, while for the 

other variables there is little missing data. The programming skills instrument is unidimensional 

according to the independent paired t-test for unidimensionality (Smith, 2002), a procedure that 

is also implemented in the software used to carry out the Rasch analysis, RUMM2020 (Andrich, 

Sheridan, & Luo, 2006). The programming knowledge test had acceptable reliability as well (α = 

0.81), but was not unidimensional. We did not calculate reliability of the working memory tests, 

but these have previously been reported to have acceptable levels of reliability (Unsworth et al., 

2005). Also, although ceiling effects are present for all the working memory tests, the mean and 

SD of our population is highly comparable to results reported elsewhere (Unsworth, Redick, 

Heitz, Broadway, & Engle, 2009). All variables used in the analysis, except programming 

knowledge, can be regarded as normally distributed by the one-sample Kolmogorov-Smirnov 

Test (1KS).  

 

--- Insert Table 1 about here --- 
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Model 1—The investment theory model 

Model 1, as shown in Figure 2, had a close model fit (χ2[19] = 14.7, n.s., RMSEA = 

0.000, LO90 = 0.000, HI90 = 0.081). As shown by the wide confidence interval for RMSEA, the 

power to reject a poor-fitting model is relatively low, but the confidence interval is almost 

entirely within the range that indicates a well-fitting model (RMSEA < 0.08). We also tested 

adding direct paths from working memory and experience to skill; the loadings were -.03, n.s. 

and -.08, n.s., respectively, with a slightly reduced model fit (χ2[17] = 14.4, n.s., RMSEA = 

0.000, LO90 = 0.000, HI90 = 0.096). We therefore chose to keep Model 1 as presented.  

 

--- Insert Figure 2 about here --- 

 

Model 2—The competing model  

In Model 2, as shown in Figure 2, the relations from working memory and experience to 

knowledge only changed in a minor way. However, model fit decreased (χ2[19] = 19.1, n.s., 

RMSEA = 0.007, LO90 = 0.000, HI90 = 0.110); χ2 increased by 4.4 units for the same degrees of 

freedom and the upper limit of the confidence interval of RMSEA fell above an acceptable value.  

Discussion 

The good fit of Model 1 and the worse fit of Model 2 compared to Model 1 support 

Cattell’s investment theory: the effect of working memory capacity and experience on 

programming skill is mediated through programming knowledge, which in turn accounts for a 

large degree of variance in programming skill. Furthermore, as is elaborated in theories of skill 

acquisition (Ackerman, 2000; Anderson, 1982; Fitts & Posner, 1967), there are good reasons 

why skill is mediated by knowledge rather than the other way around.  
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We now turn to how the findings can be interpreted in more specific terms. Our research 

reveals at least three important similarities between the meta-analysis by Schmidt et al. (1986) 

and this investigation, bearing in mind that Schmidt et al. reported on different types of jobs as 

well as different job-related constructs. First, knowledge was found in both studies to be the most 

important antecedent of skill/job sample performance, although we found the strength of this 

relationship to be larger in our study (.86 compared to .74).  The greater significance of 

knowledge to skill performance in our study can probably be attributed to the content of the 

knowledge test being specifically chosen to mirror the required knowledge for successful 

completion of the programming tasks in the programming skill instrument. Another similarity is 

that the direct effect on skill/job sample performance from working memory/G and experience, 

which was small in Schmidt et al. and insignificant and close to zero in our study. Finally, 

Schmidt et al. reported a path between G and job knowledge of .65 for civilian data when 

excluding experience, while the path from working memory to knowledge in our study is .77 

when experience is excluded.  

The most obvious difference between our results and those of Schmidt et al., is the high 

correlation we observed between working memory and experience; G and experience were not 

correlated in their study. We cannot rule out that this result is an artefact due to the low N of the 

tests on working memory. However, when we inspected other experience variables such as 

number of lines of code written in other programming languages (besides Java), a similar and 

significant positive correlation with working memory was found as well. One plausible reason 

for this may be that programmers with a low working memory capacity might not continue to 

program over many years due to the continuous learning required to stay updated on the 

programming language they use for development. Another reason could be that LOC is partially 
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a productivity indicator; from the result in this study, we would expect developers with high 

levels of working memory to be more productive.  

Further, in the Schmidt et al. (1986) meta-analysis, the impact on knowledge from 

experience was .57, which is somewhat larger than for G (.46). In our study, working memory 

explained most of the variance, although a lot of this variance was shared with experience. 

However, when we omitted working memory from Model 1, the path from experience to 

knowledge increased to .58, indicating a similar result.  

One obvious reason for these differences is that Schmidt et al. used number of months on 

the present job for the experience variable, while we used both the number of months 

programming in Java (irrespective of job changes) and number of lines of code written in Java. 

As programming should be seen as a high complexity job, it would be expected that the effect of 

experience on knowledge would be less than for low complexity jobs (McDaniel et al., 1988). 

The reason for this is that initial experience with programming is often obtained through the 

educational system rather than on the job (in our subject sample, 96.9% had a bachelor’s degree 

or higher).  

Unidimensionality was a requirement for the programming skill instrument. However, to 

what degree an instrument is considered unidimensional or not is a relative matter; the 

instrument might not have the precision to distinguish between highly correlated dimensions that 

constitute separate constructs. We also had an extended version of the skill instrument that 

contained several programming tasks on Java debugging (finding errors in program code). These 

tasks were shorter and more akin to sudden insight problems (Smith & Kounios, 1996). Overall, 

the results for the two versions of the instrument were almost identical (r > .99), which is 

unsurprising given that they have 12 programming tasks in common. However, the least 
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unidimensional version of the instrument displayed worse model fit as well as slightly, but not 

significantly, higher correlation with both working memory and knowledge. It may well be that 

the more unidimensional version of the instrument is better at capturing the idiosyncrasies of 

programming skill as a construct, when inspecting the correlations with programming 

knowledge, experience and working memory.  

Other questions remain. We do not know to what degree the strictly unidimensional 

version of the instrument does a better job of predicting programming performance “on the job.” 

Also, we still do not know if the skill inferred from programming performance and attested by a 

unidimensional instrument can partially resolve the poorly understood construct validity of work 

samples (see Campbell, 1990). However, this study does meet Campbell, Gasser, and Oswald’s 

criticism (1996) that using the dependent variable in SEM models as a rating of overall job 

performance is inadequate; we used instead a unidimensional measure of programming skill. 

The main limitation of this study is low power, and in particular the number of 

observations for working memory. Due to the low power, the confidence intervals for RMSEA 

were wide. Another possible concern was the parcelling procedure used for the knowledge test. 

As a post hoc analysis, we investigated several alternative parcelling procedures for knowledge, 

but found only insubstantial differences for regression weights. However, RMSEA estimates 

were somewhat more affected, both for better and for worse, by different combinations of items 

in each parcel, but well within the reported 90% confidence limits.  

Clearly, there are several loose ends requiring further work. In addition to including more 

subjects, we want to include a purer g measure, such as Ravens. Also,  it could have been 

interesting to devise new tests of working memory capacity for programmers that use 

programming concepts as memorization or distracting elements. These tests would allow 
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experienced software developers to better use their expected superior chunking capacity (see 

Miller, 1956) for programming concepts. Such data could provide additional information on the 

structure of the abilities, knowledge and skill required by programmers to achieve superior job 

performance.  

Our overall results support Cattell’s investment theory. The results are also similar to 

those reported by Schmidt et al. (1986), albeit with some differences in operationalizations. 

Although the power of this study is low, the results show close fit to an investment theory model 

framed within a high-realism setting of software developers from multiple countries. 
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Table 1 

Descriptives of all variables used 

Variable Score N Min Max Mean SD 1KS 

Java programming skill (ProgSkill) LGT 65 -4.12 1.58 -0.83 1.30 .489 

Java programming knowledge (Know) NC 60 7 29 21.72 4.80 .013 

Working Memory (WMC)        

   Symmetry Span NR 28 10 42 25.11 8.36 .979 

   Operation Span NR 29 21 75 52.14 15.33 .945 

   Reading Span NR 28 25 75 54.25 14.48 .750 

Experience        

   Total lines of code written in Java Ln(LOC) 64 6.21 13.82 10.46 1.76 .806 

   Total Java programming experience Ln(months) 65 .69 4.87 3.45 0.79 .161 

Notes: LGT = logits (0 is defined in the Rasch model as the average difficulty of items), C = number correct, NR = number of perfectly recalled 

sets 
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Figure Captions 

Figure 1. Hypothesized structure of regression weights for Model 1 (left) and Model 2 (right) 

Figure 2. Results for Model 1 (left) and Model 2 (right) 
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Figure 1: 
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Figure 2: 
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