Patient-Specific CFD Simulations of Vasospasm in 3 Different Cases

Øyvind Evju¹, Kent-Andre Mardal¹, Søren Jacob Bakke², Angelika Gabriele Sorteberg³

¹Center for Biomedical Computing, Simula Research Laboratory ² Oslo University Hospital, Dept. of Neuroradiology ³ Oslo University Hospital, Dept. of Neurosurgery Wiss Prod DO

13th June 2013

We have done simulations using data from 3 subjects suffering from vasospasm

Introducing vasospasm and our cases

Our method

Results and conclusions

Vasospasm is a serious and common complication of cerebral aneurysm rutpure

- Causes constriction in surrounding arteries
- Onset usually 3-14 days after rupture
- A common cause of poor outcome of subarachnoid hemorrhage

Temporary, dramatic change in the blood vessels!

Normal state

Vasospasm

Treatment methods are available, but may be dramatic in themselves

Blood supply to the brain is vital: Doctors try to maintain cerebral perfusion!

Treatment methods are available, but may be dramatic in themselves

Blood supply to the brain is vital: Doctors try to maintain cerebral perfusion!

This can be done by several methods:

- Calcium antagonists
- Hemodilution (blood thinners)
- Hypervolemia (increase blood volume)
- Hypertensive drugs

Vasospasm has a highly complex pathophysiology

It is to a large degree unknown why vasospasms occur.

Possible factors include:

- Elevated endothelin 1 levels
- Decreased production of nitric oxide
- ► Changes in the electrical properties of smooth mucle cells
- Elevated CSF pressure
- and so on...

Vasospasm has a highly complex pathophysiology

It is to a large degree unknown why vasospasms occur.

Possible factors include:

- Elevated endothelin 1 levels
- Decreased production of nitric oxide
- Changes in the electrical properties of smooth mucle cells
- Elevated CSF pressure
- and so on...

Therefore:

A very long way to use CFD as *the* tool for explaining vasospasm, but what about the hemodynamic effects of vasospasm?

Vasospasm as well as the treatment can cause great variations in the hemodynamics

"Idealized" situation: Straight vessel, vessel diameter constriction of 50% and no reduction in flow rate.

$$V \propto \frac{1}{r^2}$$

Peak velocity increase by a factor 4

$$au \propto rac{1}{r^3}$$

WSS increase by a factor 8

$$\frac{dp}{dx} \propto \frac{1}{r^2}$$

Pressure drop increase by a factor 16

Major hemodynamic change during vasospasm - related to aneurysm development?

Hemodynamics is believed to can

- identify ruptured from unruptured aneurysms.
- predict growing aneurysms.
- alter arteries in days.

Figure from: Hoi et al., 2008

Vasospasm can cause dramatic changes in hemodynamics!

Rupture of right ICA sidewall aneurysm.

Α

- Moderate vasospasm from day 3
- 3x velocity increase
- Significant aneurysm growth

Rupture of right ICA sidewall aneurysm.

Α

- Moderate vasospasm from day 3
- 3x velocity increase
- Significant aneurysm growth

Rupture and surgery of large right ICA aneurysm

В

- ► Severe vasospasm in *left* part of CoW
- Unruptured aneurysms at left ICA and MCA
- Growth of MCA aneurysm, not of ICA aneurysm

Rupture of right ICA sidewall aneurysm.

Δ

- Moderate vasospasm from day 3
- 3x velocity increase
- Significant aneurysm growth

Rupture and surgery of large right ICA aneurysm

В

- ► Severe vasospasm in *left* part of CoW
- Unruptured aneurysms at left ICA and MCA
- Growth of MCA aneurysm, not of ICA aneurysm

Rupture of ACA (A2) sidewall aneurysm

C

- CT images indicate growth
- ... but data disregarded because of high uncertainty

This motivates the question:

This motivates the question:

Can hemodynamics be used to help explain aneurysm development during vasospasm?

The Navier-Stokes equations are solved by a pressure correction scheme implemented in FEniCS

- Incremental pressure correction scheme
- Semi-implicit convection handling
- Crank-Nicholson timestepping

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

Scheme:

- Solve tentative velocity using pressure from previous timestep
- Solve Poisson equation to correct pressure
- 3. Use pressure correction to update velocity

We calculate common hemodynamic parameters on medium-sized meshes

- Piecewise linears
- ▶ 10000-20000 timesteps
- Approx. 2,000,000 tetrahedral cells
- ► Two boundary layers

Hemodynamic parameters

- 1. Time-averaged WSS
- 2. Pressure drop
- 3. Oscillatory shear index (OSI)

Inflow boundary conditions set to fit Doppler measurements

Pouiseille profiles at inlets to match Doppler velocities

Inflow boundary conditions set to fit Doppler measurements

Pouiseille profiles at inlets to match Doppler velocities

$$\rho = C \frac{Q}{A^{3/2}}$$

Outlet BC for similar shear at outlets

Inflow boundary conditions set to fit Doppler measurements

Pouiseille profiles at inlets to match Doppler velocities

$$\rho = C \frac{Q}{A^{3/2}}$$

Outlet BC for similar shear at outlets

$$\mathbf{u} = \mathbf{0}$$

No-slip condition at walls

Horwegian Centre of Excellence

Horwegian Centre of Excellence

Velocity

WSS

OSI

Day 3

Day 5

Day 7

Case B (MCA)

Case B (MCA) Velocity WSS OSI

Day 10

Day 1

Day 16

Case B (MCA)

Case B (ICA)

Case B (ICA)

Velocity

WSS

OSI

Day 1

Day 10

Day 16

Case B (ICA)

Limitations

Several obvious limitations to this study

- Only two patients studied
- Uncertainties related to Doppler measurements, segmentation of narrow arterial segments and flow diversion
- ► Incomplete data sets

Limitations

Several obvious limitations to this study

- Only two patients studied
- Uncertainties related to Doppler measurements, segmentation of narrow arterial segments and flow diversion
- Incomplete data sets

Positives and conclusions

Some points of interest:

- ► Hemodynamic indicators vary tremendously during vasospasm
- ▶ Difficult to correlate hemodynamics with aneurysm development
- A slight tendency of high OSI when growth is observed

CFD on vasospasm could

- improve understanding of short term effects of hemodynamic changes
- help clinicians make treatment decisions

Positives and conclusions

Some points of interest:

- ► Hemodynamic indicators vary tremendously during vasospasm
- ▶ Difficult to correlate hemodynamics with aneurysm development
- A slight tendency of high OSI when growth is observed

CFD on vasospasm could

- improve understanding of short term effects of hemodynamic changes
- help clinicians make treatment decisions

Thank you.

