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The PDE constrained optimization problem

Consider the following optimization problem:

min
v ,u∈V ,U

‖u − d‖2
K +α‖v − vprior‖2

L

subject to
Au = Bv .

Here, A is a PDE that is not self-adjoint!

And,
‖ · ‖2

K = K(·, ·) and ‖ · ‖2
L = L(·, ·),

where K : U × U → R is a symmetric and positive semi-definite bilinear form, while
L : V × V → R is a symmetric and positive definite bilinear form.

The regularization parameter α is usually small causes an ill-conditioned/ill-posed problem

RX is the Riesz mapping between X and X ′.



Preconditioning Approach for non-self-adjoint
operators

Using the method of Larange multipliers we arrive at the following problem:

Aα

 v
u
w

 =

 αL 0 B ′

0 K A′

B A 0

 v
u
w

 =

 vprior

Kd
0


Here, u ∈ U, v ∈ V , and w ∈ W .

We propose the following preconditioners:

B1 =

 αL 0 0
0 K +αA′RW A 0
0 0 1

α
BL−1B ′

 ,

B2 =

 αL 0 0
0 K 0
0 0 1

α
BL−1B ′ + AK−1A′

 ,

B3 =

 RV ′ 0 0
0 RU ′ 0
0 0 RW ′

 .

I B1 : is based on Nielsen and Mardal, SIAM J. Control Optim., 2010
and related to Schöberl and Zulehner, Numer. Math 2007

I B2 : is a preconditioner based on the Schur complement

I B3 : is based on Nielsen and Mardal, SISC, 2013



Assumptions B1

We always assume that:

(A1) A : U → W ′ is an isomorphism,

(A2) L : V → V ′ is an isomorphism,

(A3) K : U → U ′ is bounded,

(A4) B : V → W ′ is bounded.

For B1 we will need the additional assumption:

(A5) c0(Lv , v) 6 (Rw Bv ,Bv) 6 c1(Lv , v), ∀v ∈ V .

(A6) (L−1B ′w ,B ′w) > 0, ∀w .



B1: Coersivity condition

Coersivity follows since, for v and u such that Bv + Au = 0 ∈ W ′ we have that

(RW Au,Au) = (RW Bv ,Bv).

Therefore,

(αLv , v) + (Ku, u) =
1
2
(αLv , v) +

1
2
(αLv , v) + (Ku, u)

>
1

2c1
(αRW Bv ,Bv) +

1
2
(αLv , v) + (Ku, u)

>
1

2c1
(αRW Au,Au) +

1
2
(αLv , v) + (Ku, u)

Since we assumed that:

c0(Lv , v) 6 (Rw Bv ,Bv) 6 c1(Lv , v) ∀v ∈ V



B1: The inf-sup condition

The inf-sup condition also follows.
Given w , let û = 0 and v̂ = L−1B ′w :

sup
v ,u

(Bv + Au,w)

((αLv , v) + ((K +αA′RW A)u, u))1/2

>
(Bv̂ + Aû,w)

((αLv̂ , v̂) + ((K +αA′RW A)û, û))1/2

(L−1B ′w ,B ′w)

(αLL−1B ′w , L−1B ′w)1/2

= (α−1L−1B ′w ,B ′w)1/2

Hence, the inf-sup condition is valid.



Assumptions B2

We will always assume that:

(A1) A : U → W ′ is an isomorphism,

(A2) L : V → V ′ is an isomorphism,

(A3) K : U → U ′ is bounded,

(A4) B : V → W ′ is bounded.

And for B2 we need that U, V , W are contained in a larger space X such that

I V ⊂ X ⊂ X ′ ⊂ V ′

I U ⊂ X ⊂ X ′ ⊂ U ′

I W ⊂ X ⊂ X ′ ⊂ W ′

And that:

(A7) K : X → X ′ is an isomorphism,

(A8) A : X → W ′ is an bounded,

(A9) 1
α

BL−1B ′ + AK−1A′ > 0 .



The B2 preconditioner

We remember the operator:

Aα

 v
u
w

 =

 αL 0 B ′

0 K A′

B A 0

 v
u
w

 =

 vprior

Kd
0



and the preconditioner B2:

B2 =

 αL 0 0
0 K 0
0 0 1

α
BL−1B ′ + AK−1A′

 ,

The B2 preconditioner is well-defined since ker(L) and ker(K) are zero. and the Schur
complement 1

α
BL−1B ′ + AK−1A′ is well-defined. This preconditioner is therefore effective, c.f.

Murphy, Golub, Wathen, SISC 2000.



The preconditioner B3

We remember the system matrix:  αL 0 B ′

0 K A′

B A 0


and the preconditioner

B3 =

 RV ′ 0 0
0 RU ′ 0
0 0 RW ′

 .

As described in Nielsen and Mardal, SISC, 2013, it is sufficient for an efficient MinRes algorithm
that the eigenvalues are in bounded intervals, i.e. (−C,−c), (α, 2α), (c,C) + some outliers

The proof extends nicely to the situation where A is non-self-adjoint.



ODE Example

Find u, v such that ∫
Ω

ko(u − d)2 → min

such that ut + au = v .

a = At2, ko = 1

Assume u ∈ H1
0 , v ,w ∈ L2 and solve

Aα

 v
u
w

 =

 αI 0 I ′

0 I ( ∂
∂t )

′

I ∂
∂t 0

 v
u
w

 =

 vprior

d
0





Preconditioners for the ODE example

B1 =

 αI 0 0
0 I +α(−∆− a′ + a2) 0
0 0 1

α
I


B2 =

 αI 0 0
0 I 0
0 0 1

α
I + (−∆h + a′ + a2)

 ,

B3 =

 I 0 0
0 −∆ 0
0 0 I

 .

Not that the Lagrange multiplier consists of piecewise constant elements, therefore we use the
following −∆ operator:

(−∆hwh, lh) =

N−1∑
i=0

[wh]xi [lh]xi , ∀wh, lh ∈ Wh.



Condition numbers for ODE Example

B1A B2A B3A
N\α 1.0 1.0e-3 1.0e-6 1.0 1.0e-3 1.0e-6 1.0 1.0e-3 1.0e-6

20 6.0 6.0 5.8 13.8 5.9 5.8 6.0 1650 9382
100 6.0 6.0 5.8 14.3 6.3 5.8 6.0 1983 2.1e+5
500 6.0 6.0 6.0 14.4 6.5 5.9 6.0 2000 1.5e+6

Table: Condition number using CG and DG elements.

The condition numbers seem nicely bounded for B1 and B2. For B3 the eigenvalues are nicely
bounded except for an interval of eigenvalues around α.



MinRes Iterations for ODE Example

B1A B2A B3A
N\α 1.0 1.0e-3 1.0e-6 1.0 1.0e-3 1.0e-6 1.0 1.0e-3 1.0e-6

20 27 45 8 42 27 8 27 67 96
100 33 55 14 62 33 12 33 75 324
500 41 52 38 77 32 22 41 63 504

2500 58 46 48 52 28 28 58 47 266
12500 36 42 46 59 26 26 36 42 108

Table: Number of iterations using CG and DG elements. Convergence criteria is that the preconditioned
residual is reduced by 1.0e − 10.



Second ODE example

We consider the case with only one observation, i.e.,

kδo (t) =

{
1 for t = 0.5,
0 elsewhere. (1)

Furhermore, we let
V = span{t i} i = 0,M − 1.



Second ODE example: MinRes iterations

B1A B3A
N\α 1.0 1.0e-3 1.0e-6 1.0 1.0e-3 1.0e-6

20 26 35 23 26 51 68
100 33 44 38 33 63 188
500 42 49 62 42 62 240
2500 58 62 76 58 56 117
12500 35 43 60 36 34 48

Table: Number of iterations using CG and DG elements with observations only in parts of the domain as
defined in (??) and a lower order a defined as above. Convergence criteria is that the preconditioned
residual is reduced by 1.0e − 10.



Perverted Poisson

Find u, v such that ∫
Ω

(u − d)2 → min

such that

−∆u = v .

Assume u ∈ H2
0 and v ,w ∈ L2 and solve

Aα

 v
u
w

 =

 αI 0 I ′

0 I −∆′

I ∆ 0

 v
u
w

 =

 vprior

d
0


A suitable preconditioner is:

B =

 αI 0 0
0 I −α∆2 0
0 0 1

α
I


u discretized by Hermite elements and v ,w by first order DG elements



Condition number for the ’Perverted Poisson
porblem’

B1A
N\α 1.0 1.0e-2 1.0e-4

8 4.0 4.0 3.9
16 4.0 4.0 4.0
32 4.0 4.0 4.0
64 4.0 4.0 4.0
128 4.0 4.0 4.0

Table: Condition number for the Poisson (in L(H2, L2)) problem using Hermite elements combined with
discontinuous Lagrange for the Lagrange multipiler.

[Thanks to Adrian Hope for conducting these experiments]



Transport state equation

Let us first consider the following problem:
Find u ∈ V and v ∈ L2 such that∫T

0
(u − ud)

2 +α(v − vprior)
2 dt → min

and
ut − ux = v , t ∈ [0,T ].

Note that for Au = ut − ux we have that

A′A = −
∂2

∂t2 +
∂2

∂t∂x
+

∂2

∂x∂t
−
∂2

∂x2

Hence, A′A is not spectrally equivalent with − ∂2

∂t2 − ∂2

∂x2 and A′A has a large kernel consisting of
functions u such that ut = ux . Let us therefore introduce the space V with an inner product
defined by

(u, v)V = (u, v) + (ut , vt) − (ux , vt) − (ut , vx) + (ux , uv).

We assume Dirichlet boundary conditions on the whole boundary.



Preconditioner

Assume u ∈ V0 and v ,w ∈ L2 and solve

Aα

 v
u
w

 =

 αI 0 I ′

0 I A′

I A 0

 v
u
w

 =

 vprior

d
0


A suitable preconditioner is:

B =

 αI 0 0
0 I −αAA′ 0
0 0 1

α
I





Using Exact Preconditioning

B1A B3A
N\α 1.0 1.0e-2 1.0e-4 1.0 1.0e-2 1.0e-4

4 4.0 3.6 2.6 4.0 242 1650
8 4.0 4.0 2.6 4.0 273 8010
16 4.0 4.0 2.7 4.0 281 30650

Table: Condition number for transport state equation.



Preconditioner using ILU

B1A B3A
N\α 1.0 1.0e-2 1.0e-4 1.0 1.0e-2 1.0e-4

32 38 49 23 124 65 74
64 50 61 32 220 103 65
128 68 84 40 390 183 48
256 92 121 43 784 322 32

Table: Number of iterations for the transport equation using CG and DG elements with observations in the
whole the domain. Approximate preconditioner constructed using ILU. Convergence criteria is that the
preconditioned residual is reduced by 1.0e − 10.



Preconditioner using ILU

B1A B3A
N\α 1.0 1.0e-2 1.0e-4 1.0 1.0e-2 1.0e-4

32 60 44 23 97 65 97
64 78 57 32 127 89 133
128 104 75 39 167 115 163
256 128 99 41 199 145 191

Table: Number of iterations for the transport equation using CG and DG elements with observations in the
whole the domain. Approximate preconditioner constructed using ML. Convergence criteria is that the
preconditioned residual is reduced by 1.0e − 10.



Conclusion

I We have successfully developed efficient preconditioners for a series of PDE constrained
optimization problems with non-self-adjoint state operators

I Our technique often requires additional boundary conditions on the state (which may be an
advantage) and extra regularity

I Non-standard Hilbert spaces are imporant

I This technique gives well-posed problems (in non-standard spaces) even without
observations everywhere

I The work is still work in progress and has not been published yet


