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Abstract. We derive an efficient solution method for ill-posed PDE-constrained optimization
problems with total variation regularization. This regularization technique allows discontinuous
solutions, which is desirable in many applications. Our approach is to adapt the split Bregman
technique to handle such PDE-constrained optimization problems. This leads to an iterative scheme
where we must solve a linear saddle point problem in each iteration. We prove that the spectra
of the corresponding saddle point operators are almost contained in three bounded intervals, not
containing zero, with a very limited number of isolated eigenvalues. Krylov subspace methods handle
such operators very well and thus provide an efficient algorithm. In fact, we can guarantee that the
number of iterations needed cannot grow faster than O([ln(α−1)]2) as α → 0, where α is a small
regularization parameters. Morover, in our numerical experiments we demonstrate that one can
expect iteration numbers of order O(ln(α−1)).
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1. Introduction. In the field of PDE-constrained optimization, sophisticated al-
gorithms and increased computing power have made it possible to compute numerical
solutions of many advanced optimization problems. The use of Karush-Kuhn-Tucker
(KKT) systems to solve such problems has become increasingly popular. These op-
timality systems are usually ill-posed, which leads to bad condition numbers for the
discretized systems. Therefore, some kind of regularization technique must be in-
voked. The most popular method is the Tikhonov regularization technique, since this
leads to linear optimality systems, provided that the state equation is also linear. In
[1] the authors prove that a large class of such saddle point systems can be solved
efficiently by applying the Minimal Residual (MINRES) algorithm. More specifically,
they prove that the eigenvalues of the KKT system are almost contained in three
bounded intervals. The number of isolated eigenvalues is only of order O(ln(α−1)),
where α is the regularization parameter. Krylov subspace methods are well suited to
handle systems with such spectra.

It is known, however, that the use of a Tikhonov regularization term produces
a smooth solution. In many inverse problems, the control parameter is often some
physical property, like a heat source, density of a medium or an electrical potential.
When we try to identify such quantities, it might be desirable to make a sharp separa-
tion between regions with different qualities of the physical property. In other words,
we want “jumps” in the solution. Thus, one might argue that the smooth solutions
produced with Tikhonov regularization are of limited value in such cases.

In the field of image analysis, researchers have for decades been interested in
optimization problems with such discontinuous solutions. In [2] the authors proposed
the famous Rudin-Osher-Fatemi (ROF) model

(1.1) min
v∈BV (Ω)

{
1

2
ρ‖v − d‖2L2(Ω) +

∫
Ω

|Dv| dx
}
,
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where the Banach space of functions with bounded variation is defined by

(1.2) BV (Ω) = {v ∈ L1(Ω) :

∫
Ω

|Dv| dx <∞},

and the regularization term in (1.1) is defined by the distribution

(1.3)

∫
Ω

|Dv| dx = sup

{∫
Ω

v div p : p ∈ C1
0 (Ω;Rn); |p|∞ ≤ 1

}
.

For elements in W 1,1(Ω), the distribution (1.3) is equal to the normal weak derivative,
see [3].

The regularization term (1.3) is known as Total Variation (TV) regularization,
and it allows for discontinuous solutions. This ability to include “jumps” in the
solution has made it very popular for denoising pictures. Unfortunately, (1.1) is a very
challenging problem to solve, since the TV term is highly non-linear and also non-
differentiable. Nevertheless, due to the desirable denoising property, it has received
much attention, and a large number of solution algorithms have been suggested. In
Section 3, we will present some of the most well known methods.

The denoising case has been extended to include more sophisticated problems. In
particular, the deblurring problem has been thoroughly analyzed. This problem can
be written as

(1.4) min
v∈BV (Ω)

{
1

2
ρ‖Kv − d‖2L2(Ω) +

∫
Ω

|Dv| dx
}
,

where K : BV (Ω) → L2(Ω) typically is a convolution operator, see e.g. [4]. This
deblurring problem is the starting point for our PDE-constrained optimization formu-
lation. Mathematically, an abstract form of a PDE-constrained optimization problem
with TV regularization reads

min
(v,u)∈V×U

{
1

2
ρ‖Tu− d‖2Z +

∫
Ω

|Dv| dx
}
,

subject to

(1.5) Au+Bv = 0,

where
• V is the control space, 1 ≤ dim(V ) ≤ ∞,
• U is the state space, 1 ≤ dim(U) ≤ ∞, and
• Z is the observation space, 1 ≤ dim(Z) ≤ ∞.

Here, U and Z are Hilbert spaces, and (1.5) is a PDE. The control space V will be
discussed thoroughly in the next section. Furthermore, d is the given observation
data, the domain Ω ⊂ Rn is bounded, and ρ > 1 is the regularization parameter1.
The operators A, B and T will be discussed properly in Section 4.

For a specific kind of elliptic equation, the use of total variation regularization has
been used to identify discontinuous coefficients. Basically, such problems have been
solved with an augmented Lagrangian method, see e.g. [5, 6], or a level set method,
see e.g. [7, 8].

1Often the regularization parameter is placed in front of the regularization term and not in front
of the data fidelity term. In the former approach, the values will then typically be 1/ρ.
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Unfortunately, for many PDE-constrained optimization problems, the total vari-
ation term does not provide sufficient regularization. More specifically, the so-called
forward operator must be injective to guarantee a unique solution. Therefore, we
might consider the more general formulation

(1.6) min
(v,u)∈V×U

{
1

2
ρ‖Tu− d‖2Z +

1

2
κ‖v‖2L2(Ω) +

∫
Ω

|Dv| dx
}
,

subject to

(1.7) Au+Bv = 0,

where 0 ≤ κ << 1. As we will see in the next section, this problem has a unique
solution if κ > 0, or if A, B and T are all injective.

The objective of this paper is to propose and analyze an efficient algorithm for
solving the general problem (1.6)-(1.7). To succeed with this objective, we must not
only guarantee an efficient iterative solution of the non-linear total variation term, but
also for the inner systems that we will obtain in each iteration of the outer algorithm.
This will be achieved by combining the analysis in [1] with a successful method for
solving (1.4), namely the split Bregman method [9]. In more detail, we outline the
paper as follows:

• Section 2 contains a short introduction to the existence and uniqueness prop-
erties of TV regularization problems of the form (1.4), while some of the
most popular solution techniques are presented in Section 3. These are well-
known topics in the imaging community, but they are seldomly discussed for
PDE-constrained optimization problems. Hence, we choose to include these
topics.

• In Section 4 we show how the PDE-constrained optimization problem (1.6)-
(1.7) can be modified in such a way that we can apply the split Bregman
algorithm.

• In Section 5 we prove that the KKT systems that arise in each iteration of the
split Bregman algorithm has a spectrum almost contained in three bounded
intervals, with a very limited number of isolated eigenvalues. Hence, Krylov
subspace algorithms will handle these systems very well. We will come back
to the exact form of this spectrum in Section 5.

• Section 6 presents an alternative version of the split Bregman algorithm.
• Finally, in Section 7 we illuminate the theoretical results with some numerical

experiments.

2. Existence and uniqueness. The existence and uniqueness issues for total
variation regularization problems on the form

(2.1) min
v∈V


1

2
ρ‖Kv − d‖2Z +

1

2
κ‖v‖2L2(Ω)︸ ︷︷ ︸

J(v)

+

∫
Ω

|Dv| dx


are discussed thoroughly in [10]:

Theorem 2.1. Let V be a closed, convex subspace of L2(Ω) and let Z be a general
Hilbert space. Assume that V ∩BV (Ω) is nonempty and that one of the following two
conditions are satisfied:
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(i) V is bounded in L2(Ω).
(ii) J is coercive in the following sense:

If {vj}∞j=1 ⊂ V,

{∫
Ω

|∇vj |
}∞
j=1

is bounded and

‖vj‖L2(Ω)→∞⇒ J(vj)→∞.

Then (2.1) has at least one solution v∗ ∈ V ∩BV (Ω).
Note that if κ > 0, then the second condition holds.

Theorem 2.2. If either K : L2(Ω) → Z is injective or κ > 0, then the solution
v∗ of (2.1) is unique.

These theorems are well known, but they are presented here for convenience. In
Section 5, we will see that, in order to guarantee efficient solution of the inner sys-
tems we obtain in each iteration of the split Bregman algorithm, we do not need the
(rather) strong assumptions in Theorem 2.2.

3. Brief overview of solution algorithms. The TV denoising problem has
triggered the development of several different solution algorithms for (1.4) and (2.1).
Two of these, the fixed-point algorithm introduced in [11] and the primal-dual Newton
method proposed in [12], can be deduced from the Euler-Lagrange equation associated
with (2.1). This equation is obtained by setting the Fréchet derivative of (2.1) equal
to zero. Hence, we get2

(3.1) ρK∗Kv − div
Dv

|Dv|
= ρK∗d.

Clearly, this is not well-defined for Dv = 0. However, we can introduce the perturba-
tion

|Dv|β =
√
|Dv|2 + β2, 0 < β << 1,

in the denominator to make the equation well-defined, see [3] for a thorough analysis
of this perturbation. We omit a further discussion of this topic, since the split Breg-
man algorithm does not require the use of such a perturbation. Instead, we present
the first solution method; the fixed-point algorithm introduced in [11].

The Euler-Lagrange fixed-point method. The equation we must solve in this
algorithm can be though of as a lagged-diffusion equation, where one updates the
solution according to

ρK∗Kvk+1 − div
Dvk+1

|Dvk|β
= ρK∗d,

cf. (3.1). Although this method is very robust, it is also rather slow and it might
cause numerical instabilities with regard to the perturbation parameter β. In addi-
tion, since we fix the denominator, we “lose control” of the coercivity as |Dvk| → ∞.

2The Euler-Lagrange equation is usually discussed for the case κ = 0, i.e. for (1.4). We present
it here in the same manner.
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The primal-dual Newton method. Initial attempts to apply Newton’s method
to (3.1) were unsuccessful, as the convergence basin is extremely small. In [12] the
authors suggested a remedy with the introduction of the flux parameter

(3.2) p =
Dv

|Dv|β
.

They then obtained the optimality system

ρK∗Kv − div p = ρK∗d,

|Dv|βp−Dv = 0,

where the second equation is deduced from the definition of the flux parameter (3.2).
The authors showed numerically that this approach produced convergence results
superior to the previous fixed-point algorithm. Unfortunately, this system also has
problems with numerical instabilities as the perturbation parameter β → 0.

Note that both the fixed-point algorithm and the primal-dual Newton method
attempt to solve the Euler-Lagrange equation. This equation, however, is not well-
defined without the perturbation |Dv|β of |Dv|. With the introduction of the pertur-
bation, the non-differentiable term is approximated by an infinitely smooth quantity.
In the next method, the minimization problem is solved with a technique which in-
volves subgradients instead of the derivative; there is no longer a need for the pertur-
bation. This turns out to be advantageous.

The split Bregman method. This method has its roots in the Bregman iter-
ation, which is an algorithm for computing extrema of convex functionals [13]. Later,
it was used in [14] as a new regularization procedure for inverse problems. In [9] the
authors used this approach to find an effective solution method for L1-regularization
problems. In particular, they demonstrated why this method works well for total
variation problems. The method is, however, designed for finite dimensional prob-
lems. Hence, the remainder of this article will be concerned with finite dimensional
approximations. More specifically, there are two reasons for why we choose to analyze
the discretized and not the continuous system:

(i) Whenever a specific minimization problem is to be solved, we must ap-
proximate the problem using some kind of discretization technique. Hence, we will
ultimately work with finite dimensional problems.

(ii) The infinite dimensional analysis involves the use of the dual space ofBV (Ω),
which is extremely challenging to represent. In fact, since the space BV (Ω) is not
separable, the dual space is not even a function space [15]. In a finite dimensional
setting, however, all norms are equivalent, and we might “choose” a dual space that is
easier to analyze. We will later observe that, in the finite dimensional split Bregman
algorithm, we obtain the Laplace operator −∆ : H1

h(Ω) → H1
h(Ω)′, instead of the

more challenging operator D′D : BV (Ω) → BV (Ω)′. We return to this matter in
Section 4.
We now briefly discuss the split Bregman algorithm presented in [9]. Let P 1

h be the
space of piecewise linear functions, and let

Vh = V ∩ P 1
h and Zh = Z ∩ P 1

h

be finite dimensional subspaces of V and Z, respectively, cf. (2.1). The authors of
[9] started by formulating a discretized approximation of the problem (2.1), and then



6 OLE LØSETH ELVETUN AND BJØRN FREDRIK NIELSEN

wrote it on the equivalent form

(3.3) min
vh,ph∈Vh×P0

h

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +

∫
Ω

|ph|
}
,

subject to

(3.4) ∇vh = ph,

where P0
h is a vector space of piecewise constant functions.

We will not go into details on how the split Bregman algorithm is derived, instead
we refer to [9] and [16]. We would, however, like to highlight an interesting remark
from [16]: Note that the problem (3.3)-(3.4) can be solved by sequentially solving the
penalty formulation

min
vh,ph∈Vh×P0

h

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +

∫
Ω

|ph|+
1

2
λk‖∇vh − ph‖2L2

h(Ω),

}
where λk → ∞. Unfortunately, such penalty methods are ineffective, and leads to
numerical difficulties as λk grows large.

In the split Bregman algorithm, see Algorithm 1, we note that the parameter λ
is fixed. Instead, it is the “data” that varies with the introduction of bk. Hence, we
obtain much better numerical stability. It was shown in [17] and [18] that the split
Bregman method is equivalent to an augmented Lagrangian method [19, 20].

Algorithm 1 The split Bregman algorithm for total variation regularization

1: Choose v0
h = 0, p0

h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: vk+1

h = arg minvh∈Vh
1
2ρ‖Kvh−dh‖

2
Zh

+ 1
2κ‖vh‖

2
L2
h(Ω)

+ 1
2λ‖∇vh−p

k
h+bkh‖2L2

h(Ω)
,

4: pk+1
h = arg minph∈P0

h

∫
Ω
|ph|+ λ

2 ‖∇v
k+1
h − ph + bkh‖2L2

h(Ω)
,

5: bk+1
h = bkh +∇vk+1

h − pk+1
h .

6: end for

Before we end this section, we would like to present one important theorem from
[16]:

Theorem 3.1. Assume that there exists at least one solution v∗h of (2.1). Then
the split Bregman algorithm satisfy

lim
k→∞

1

2
ρ‖Kvkh − dh‖2Zh +

1

2
κ‖vkh‖2L2

h(Ω)+

∫
Ω

|∇vkh| dx

=
1

2
ρ‖Kv∗h − dh‖2Zh +

1

2
κ‖v∗h‖2L2

h(Ω) +

∫
Ω

|∇v∗h| dx.

If the solution v∗h is unique, we also have

lim
k→∞

‖vkh − v∗h‖L2
h(Ω) = 0.
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4. Split Bregman algorithm for PDE-constrained optimization prob-
lems. Recall that our main objective is to derive an efficient solution method for
(1.6)-(1.7), i.e. for rather general PDE-constrained optimization problems subject to
TV regularization. We will restrict our analysis to problems that satisfy the assump-
tions

A1 : A : U → U ′ is bounded and linear.
A2 : A−1 exists and is bounded.
A3 : B : V → U ′ is bounded and linear.
A4 : T : U → Z is bounded and linear.

Due to assumption A2, we can, in the finite dimensional setting, write (1.7) on the
form

(4.1) uh = −A−1Bvh.

Consequently, we might formulate the minimization problem (1.6)-(1.7) as

(4.2) min
v∈Vh

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +

∫
Ω

|∇vh| dx
}

where K : Vh → Zh is defined by

(4.3) K = −TA−1B.

We observe that the minimization problem (4.2) is on the same form as (2.1). This
motivates the use of the split Bregman algorithm. Unfortunately, however, the ex-
plicit computation of the operator K is not possible in practical applications; if (1.7)
is a PDE, then the inverse of A is typically too expensive to compute explicitly. This
issue has been handled, in the case of Tikhonov regularization, by solving the asso-
ciated KKT system. The purpose of this paper is to adapt the KKT approach to
the framework of the split Bregman algorithm. As we will see below, this yields an
efficient and practical solution method for PDE-constrained optimization problems
subject to TV regularization.

We do this by applying Algorithm 1 to the minimization problem (4.2). Step 5
in Algorithm 1 is straightforward, and Step 4 is very cheap to solve by the shrinkage
operator

(4.4) pk+1
h,xi

(x) = shrink

(
∇xivk+1

h (x) + bkh,xi(x),
1

λ

)
,

where

shrink(a, b) =
a

|a|
∗max(a− b, 0),

see [9]. Hence, the challenge is to find the minimizer of Step 3. That is, we must solve
the minimization problem

min
vh∈Vh

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +
1

2
λ‖∇vh − pkh + bkh‖2L2

h(Ω)

}
,

where dh, p
k
h and bkh are given quantities. By combining this minimization problem

with equations (4.1) and (4.3), we get the equivalent constrained minimization prob-
lem:

(4.5) min
vh,uh∈Vh×Uh

{
1

2
ρ‖Tuh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +
1

2
λ‖∇vh − pkh + bkh‖2L2

h(Ω)

}
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subject to

(4.6) Auh +Bvh = 0.

For the sake of simplicity, we want our optimality system to be as similar as possible
to the optimality system analyzed in [1]. Thus, we need to scale the cost-functional
in (4.5) such that we get

(4.7) min
vh,uh∈Vh×Uh

{
1

2
‖Tuh − dh‖2Zh +

1

2
γ‖vh‖2L2

h(Ω) +
1

2
α‖∇vh − pkh + bkh‖2L2

h(Ω)

}
subject to (4.6), where

(4.8) α =
λ

ρ
and γ =

κ

ρ
.

Next, we can introduce the Lagrangian associated with (4.6)-(4.7):

L(vh, uh, wh) =
1

2
‖Tuh−dh‖2Zh+

1

2
γ‖vh‖2L2

h(Ω)+
1

2
α‖∇vh−pkh+bkh‖2L2

h(Ω)+〈Auh+Bvh, wh〉.

The first-order optimality conditions can be found by computing the derivatives of
the Lagrangian with respect to vh, uh and wh. These conditions can be expressed by
the KKT system

(4.9)

−α∆ + γE 0 B′

0 T ′T A′

B A 0


︸ ︷︷ ︸

Âα

vhuh
wh

 =

−α∇ · pkh + α∇ · bkh
T ′dh

0

 ,

where ” ′ ” is used to denote dual operators, and E : Vh → V ′h is defined by

〈Ev, φ〉 = (v, φ)L2
h(Ω), φ ∈ Vh.

We have thus derived a new system of equations to be solved in Step 3 in Algo-
rithm 1, which does not require the explicit inverse of A. Also note the form of the
operator −∆ : Vh → V ′h in the top left corner of the KKT system (4.9). In an infinite
dimensional setting, this operator must be replaced with the more involved operator
D′D : BV (Ω) → BV (Ω)′, see [10] for a thorough discussion of this operator. The
operator D′D is much more challenging to analyze, but it coincides with the operator
−∆ in a finite dimensional setting. This follows from the fact that Dv = ∇v for
all elements in W 1,1(Ω), see [3]. Hence, we found it more convenient to discuss the
matter in the finite dimensional setting. This concludes the discussion of Step 3 in
Algorithm 1.

We might now formulate the full algorithm for solving the PDE-constrained op-
timization problem (1.6)-(1.7), see Algorithm 2.

The efficiency of the split Bregman algorithm has been demonstrated earlier, see
e.g. [9, 16]. Of the three inner steps of the for-loop in Algorithm 2, the update of
bkh is obviously cheap, and the update of pkh is accomplished by the simple shrinkage
operator (4.4). What remains, however, is to analyze the spectrum of the KKT system
in (4.9), see Step 3 in Algorithm 2: The efficiency of the algorithm is highly dependent
on how fast we can solve these KKT systems with, e.g., Krylov subspace solvers.
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Algorithm 2 The split Bregman algorithm for PDE-constrained optimization prob-
lems with TV regularization

1: Choose v0
h = 0, p0

h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: Let (vk+1

h , uk+1
h , wk+1

h ) be the solution of (4.9).

4: pk+1
h = arg minph∈Ph0

∫
Ωh
|ph|+ λ

2 ‖∇v
k+1
h − ph + bkh‖2L2

h(Ω)
,

5: bk+1
h = bkh +∇vk+1

h − pk+1
h .

6: end for

5. Spectrum of the KKT system. In its current form, the operator Âα in
(4.9) is a mapping from the product space Vh×Uh×Uh onto the dual space V ′h×U ′h×U ′h.

Since this operator maps to the dual space, and not to the space itself, it is not
possible to use the MINRES method directly. A remedy exists, however, in the form
of Riesz maps. In this case, we must introduce the two Riesz maps

RVh : Vh → V ′h,

RUh : Uh → U ′h.

This enables us to use the MINRES algorithm, since the KKT system (4.9) can be
written asR−1

Vh
0 0

0 R−1
Uh

0

0 0 R−1
Uh


︸ ︷︷ ︸

R−1

−α∆ + γE 0 B′

0 T ′T A′

B A 0


︸ ︷︷ ︸

Âα

vhuh
wh



=

R−1
Vh

0 0

0 R−1
Uh

0

0 0 R−1
Uh

−α∇ · pkh + α∇ · bkh
T ′dh

0

 ,(5.1)

where

R−1Âα : Vh × Uh × Uh → Vh × Uh × Uh.

The operator R−1 can be considered to be a preconditioner. See [21, 1] for a more
thorough analysis.

We performed an experimental investigation that suggested the use of small values
of α to obtain good convergence results for the outer split Bregman algorithm. That
is, λ/ρ should be small, see (4.8). According to standard theory for Krylov subspace
methods, the number of iterations needed by the MINRES algorithm is of the same
order as the spectral condition number of the involved operator. In our case, that
corresponds to iterations numbers of order O(α−1), when γ = 0. We will now prove
that this estimate is very pessimistic.

Since the case γ = 0 is the most challenging, and also the most interesting, we
will for the rest of the analysis assume that this is the case, i.e. γ = 0. Let us first
simplify the notation in (5.1), and write the operator R−1Âα in the form

(5.2) R−1Âα = Aα =

αQ 0 B̃∗

0 T ∗T Ã∗

B̃ Ã 0

 ,
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where we have the following definitions:
• Q = −R−1

Vh
∆ : Vh → Vh,

• B̃ = R−1
Uh
B : Vh → Uh,

• Ã = R−1
Uh
A : Uh → Uh,

• T ∗T = R−1
Uh
T ′T : Uh → Uh.

In this new form, the operator Aα in (5.2) is very similar to the operator analysed
in [1]. In fact, they analyzed the operator Bα : V × U × U → V × U × U , defined as

(5.3) Bα =

αI 0 B̃∗

0 T ∗T Ã∗

B̃ Ã 0

 .
The main result in [1] is that the spectrum of Bα is of the form

sp(Bα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b],

where

N(α) = O(ln(α−1)

and the constants a, b and c > 0 are independent of the parameter α. The analysis is
in [1] roughly performed as follows:

• The negative eigenvalues are shown to be bounded away from zero, regardless
of the size of regularization parameter α ≥ 0. That is, it even holds for α = 0.
Hence, the negative eigenvalues of Aα, defined in (5.2), are bounded away
from zero: The argument in [1] can be adapted to the present situation in a
straightforward manner.

• For the positive eigenvalues, the Courant-Fischer-Weyl min-max principle is
used to show that the difference between the eigenvalues of B0 and Bα is
“small”, where B0 denotes the operator Bα with zero regularization α = 0.
More specifically, they prove that the difference between the eigenvalues of B0

and Bα, properly sorted, is less than the size of the regularization parameter
0 < α � 1. It is easy to verify that a similar property will hold for A0 and
Aα. More specifically, the difference between the eigenvalues of A0 and Aα
is less than c̃α, where c̃ = ‖Q‖.

• Finally, the analysis in [1] requires that

α(v, v)Vh + (T ∗Tu, u)Uh

must be coercive whenever

Ãu+ B̃v = 0.

It is proven in [1] that this property holds for the operator Bα. For the oper-
ator Aα, defined in (5.2), this analysis is more involved, and it will therefore
be explored in detail here. More specifically, we must show, provided that
suitable assumptions hold, that

α(Qv, v)Vh + (T ∗Tu, u)Uh

is coercive for all (v, u) satisfying

Ãu+ B̃v = 0.
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To further investigate the coercivity problem associated with (5.2), we introduce
the notation

Xh = Vh × Uh, ‖x‖Xh = ‖(vh, uh)‖Xh =
√
‖vh‖2Vh + ‖uh‖2Uh ,

Mα =

[
αQ 0
0 T ∗T

]
: Xh → Xh,(5.4)

N =
[
B̃ Ã

]
: Xh → Uh.(5.5)

Since we work with finite dimensional spaces, we employ the space Vh with the
norm

(5.6) ‖ · ‖2Vh = ‖ · ‖2L2
h(Ω) + | · |2H1

h(Ω),

i.e. in the finite dimensional setting we can guarantee that a subspace of L2(Ω) is also
a subspace of H1(Ω), provided that proper elements are used. In fact, it is shown in
[22] that the approximation of functions with piecewise linear elements converge (in
W 1,1-norm) to the exact function of bounded variation as the mesh size goes to zero.
Thus, with these elements we get the well defined mapping −∆ : H1

h(Ω) → H1
h(Ω)′.

Note that, for the analysis presented below, we must assume that the operator B
satisfies assumption A3 with the norm (5.6), i.e. that

B : Vh → U ′h

is bounded, which along with assumptions A2 and A4 imply that

K = −TA−1B = −TÃ−1B̃

is bounded.
We are now ready to formulate the result concerning the coercivity issue for the

operator Aα defined in (5.2).

Lemma 5.1. Let Mα and N be defined as in (5.4) and (5.5), respectively. Assume
that Vh is a closed, convex, finite dimensional subspace of L2(Ω), and let Uh and
Zh be finite dimensional subspaces of the two Hilbert spaces U and Z, respectively.
Furthermore, assume that A1−A4 hold and that

K = −TÃ−1B̃ : Vh → Zh

does not annihilate constants, i.e. the constant function k /∈ N (K). Then the operator
Mα is coercive on the kernel of N , i.e. for α ∈ (0, 1):

(5.7) (Mαx, x)Xh ≥ cα‖x‖2Xh

for all x = (vh, uh) ∈ Xh satisfying

(5.8) Ãuh + B̃vh = 0.
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Proof. We will first show that, if K does not annihilate constants, then there
exists a constant c ∈ (0, 1) such that

(5.9) (Kvh,Kvh)Zh ≥ (c− 1)(∇vh,∇vh)L2
h(Ω) + c(vh, vh)L2

h(Ω), ∀vh ∈ Vh.

Thereafter, we will use this result to prove the coercivity.
Assume that there does not exist any constant c ∈ (0, 1) such that (5.9) holds. We

will show that this implies that the constant function k must belong to the null-space
of K = −TÃ−1B̃. If inequality (5.9) is not satisfied for any constant c ∈ (0, 1), it
follows that there exists a sequence

{vih}, ‖vih‖2L2
h(Ω) = (vih, v

i
h)L2

h(Ω) = 1,

such that

0 ≤ (Kvih,Kv
i
h)Zh <

(
1

i
− 1

)
|vih|2H1

h(Ω) +
1

i
(vih, v

i
h)L2

h(Ω)

=

(
1

i
− 1

)
|vih|2H1

h(Ω) +
1

i
.

We may choose a sequence with the property ‖vih‖2L2
h(Ω)

= 1 because the operator K

is linear. Since (1/i− 1)→ −1 as i→∞, we can conclude that

|vih|H1
h(Ω) → 0 as i→∞,(5.10)

‖Kvih‖Zh → 0 as i→∞.(5.11)

We will now show that {vih} has a limit in H1
h(Ω). Let

Sh =

{
sh ∈ H1

h(Ω) :

∫
Ω

sh = 0

}
.

It is well known that H1
h(Ω) = Sh⊕R, i.e. every function in H1

h(Ω) can be (uniquely)
expressed as a sum of a function in Sh and a constant. Hence,

vih = sih + ri, where

sih ∈ Sh,
ri ∈ R is a constant.

From this splitting, we obtain

(5.12) 0 ≤ |sih|H1
h(Ω) = |sih + ri|H1

h(Ω) = |vih|H1
h(Ω) → 0 as i→∞,

see (5.10).
This enables us to use the Poincaré inequality to conclude that

0 ≤ ‖sih‖L2
h(Ω) ≤ C|sih|H1

h(Ω) → 0 as i→∞,

i.e.

(5.13) ‖sih‖L2
h(Ω) → 0 as i→∞.
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Furthermore, recall that ‖vih‖2L2
h(Ω)

= 1 and that
∫

Ω
sih = 0. Thus, it follows that

1 = ‖vih‖2L2
h(Ω)

= ‖sih + ri‖2L2
h(Ω)

= ‖sih‖2L2
h(Ω) + 2(sih, r

i)L2
h(Ω) + ‖ri‖2L2

h(Ω)

= ‖sih‖2L2
h(Ω) + 2ri

∫
Ω

sih dx+ ‖ri‖2L2
h(Ω)

= ‖sih‖2L2
h(Ω) + |Ω|2(ri)2,

which yields

(ri)2 =
1

|Ω|2
(

1− ‖sih‖2L2
h(Ω)

)
.

By using (5.13) we get

ri =
1

|Ω|

√
1− ‖sih‖2L2

h(Ω)
→ r∗ =

1

|Ω|
as i→∞.

We claim that also the sequence {vih} converges toward r∗ in H1
h(Ω):

vih → r∗ =
1

|Ω|
in H1

h(Ω).

This follows from the fact that sih = vih − ri and (5.12)-(5.13):

‖vih − r∗‖H1
h(Ω) = ‖vih − ri + ri − r∗‖H1

h(Ω)

≤ ‖vih − ri‖H1
h(Ω) + ‖ri − r∗‖H1

h(Ω)

= ‖sih‖H1
h(Ω) + ‖ri − r∗‖H1

h(Ω)

= ‖sih‖H1
h(Ω) + ‖ri − r∗‖L2

h(Ω)
i→∞−−−→ 0.

Here, we have used that {ri} is a sequence of constants and that r∗ is a constant,
which implies that ‖ri − r∗‖H1

h(Ω) = ‖ri − r∗‖L2
h(Ω) and that

ri → r∗ in R⇒ ‖ri − r∗‖L2
h(Ω) → 0,

provided that Ω has finite measure.
Recall that we assumed that K : Vh ⊂ H1(Ω)→ Z is bounded. Thus,

lim
i→∞

‖Kvih‖2Zh = ‖K lim
i→∞

vih‖2Zh(5.14)

= ‖Kr∗‖2Zh(5.15)

= (Kr∗,Kr∗)Zh .

By combining these observations with (5.11), we conclude that

r∗ ∈ N (K).

To summarize, if (5.9) does not hold, then K annihilates constants. Conversely, if K
does not annihilate constants, inequality (5.9) must hold.
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We are now ready to show that (5.7)-(5.8) does indeed hold. Note that (5.9) can
be written on the form: There exists c ∈ (0, 1) such that

(∇vh,∇vh)L2
h(Ω) + (Kvh,Kvh)Zh

≥ c[(∇vh,∇vh)L2
h(Ω) + (vh, vh)L2

h(Ω)], ∀vh ∈ Vh.(5.16)

Assume that x = (vh, uh) ∈ Xh satisfies the state equation, i.e.

Ãuh + B̃vh = 0.

Then,

(5.17) uh = −Ã−1B̃vh,

and since Ã−1B̃ is bounded

(5.18) ‖uh‖Uh ≤ c̄‖vh‖Vh .

In addition,

(5.19) Tuh = −TÃ−1B̃vh = Kvh.

Therefore, see (5.4), for α ∈ (0, 1),

(Mαx, x)Xh = α(∇vh,∇vh)L2
h(Ω) + (T ∗Tuh, uh)Uh

≥ α[(∇vh,∇vh)L2
h(Ω) + (Tuh, Tuh)Zh ]

= α[(∇vh,∇vh)L2
h(Ω) + (Kvh,Kvh)Zh ],

where we have used (5.19). Next, by invoking (5.16) and (5.18) we can conclude that

(Mαx, x)Xh ≥ α[(∇vh,∇vh)L2
h(Ω) + (Kvh,Kvh)Zh ],

≥ αc[(∇vh,∇vh)L2
h(Ω) + (vh, vh)L2

h(Ω)],

≥ αc[0.5(∇vh,∇vh)L2
h(Ω) + 0.5(vh, vh)L2

h(Ω) + 0.5c̄−2‖uh‖2Uh ],

≥ αcmin{0.5, 0.5c̄−2}‖(vh, uh)‖2Xh .(5.20)

That is, Mα is coercive on the kernel of N , cf. (5.5).
We will now use this lemma to establish the main result of this section. First,

however, we need two more assumptions:
A5 : The inf-sup condition holds, i.e.

(5.21) inf
w∈Uh

sup
(v,u)∈Vh×Uh

(B̃v, w)Uh + (Ãu, w)Uh√
‖v‖2Vh + ‖u‖2Uh‖w‖Uh

≥ c > 0.

A6 : The spectrum of the KKT systemAα = R−1Âα in (5.1) is discrete/countable
for every α ≥ 0. In addition, we assume that (5.1) is severely ill posed for
α = 0 and γ = 0, i.e. without regularization,

|τi(A0)| ≤ ce−Ci,

where τi(A0) denotes the ith eigenvalue of A0 sorted in decreasing order
according to their absolute value, and c, C > 0 are positive constants.
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Let us state the theorem:

Theorem 5.2. Assume that all assumptions of Lemma 5.1 hold. In addition,
assume that A5−A6 hold. Then there exist constants a, b, c > 0 such that, for every
α > 0, the spectrum of Aα, defined in (5.2), satisfies

(5.22) sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b],

where N(α) = O(ln(α−1)). The constants a, b, c are independent of α.

Proof. The theorem follows from Lemma 5.1 and the analysis presented in [1].

Since the spectrum of Aα is of the form (5.22), we can conclude that the MINRES
method will handle the KKT systems (5.1) excellently. More precisely, the num-
ber of iterations needed by the MINRES scheme to solve (5.1) can not grow faster
than O([ln(α−1)]2) as α → 0, see [1]. In fact, in practice, iterations counts of order
O(ln(α−1)) will in many situations occur, which is also explained in [1].

Note that, while the optimality system (1.6)-(1.7) requires that either K =
−TA−1B : V → Z is injective or that γ > 0 to obtain a unique solution, the in-
ner MINRES algorithm only requires that the constant k does not belong to the
null-space of K.

6. Constrained split Bregman algorithm. The split Bregman algorithm we
have analysed is in [9] referred to as the unconstrained split Bregman method. For
some applications, the related constrained split Bregman algorithm, also introduced
in [9], produces better convergence rates. In order to discuss the latter method, we
observe that the problem (2.1) can be formulated on the related, constrained form

min
v∈V

{
1

2
κ‖v‖2L2(Ω) +

∫
Ω

|p| dx
}
,

subject to

Kv = d on Ωobserve,

Dv = p on Ω.

Here, Ωobserve is the domain on which the observation data d is defined. The con-
straints are “implicit” in the sense that they are not necessarily satisfied in each step
of the split Bregman algorithm, see [9]. Instead, the scheme generates approximations
which converge toward functions satisfying these constraints, and a natural stopping
criterion is thus

‖Kvk − d‖Z < TOL.

Details about the constrained split Bregman algorithm associated with this problem
can be found in [16].

It turns out that this constrained approach can also be applied to a PDE-constrained
optimization problem, and an experimental investigation gave us better convergence
results with this latter approach. We will therefore present the constrained split
Bregman algorithm for PDE-constrained optimization problems on the form

min
v∈V

{
1

2
κ‖v‖2L2(Ω) +

∫
Ω

|p| dx
}
,
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subject to

Au+Bv = 0,

Tu = d on Ωobserve,

Dv = p on Ω.

Note that the first constraint here is “explicit”, i.e. it must be satisfied in each step
of the algorithm. The latter two constraints are “implicit”.

Recall the KKT system (4.9) that we derived in connection with Algorithm 2.
For the constrained split Bregman method, we get the very similar optimality system

(6.1)

−α∆ + γE 0 B′

0 T ′T A′

B A 0


︸ ︷︷ ︸

Âα

vhuh
wh

 =

−α∇ · pkh + α∇ · bkh
T ′dh − T ′ckh

0

 ,

where ” ′ ” is used to denote dual operators, and E : Vh → V ′h is defined by

〈Ev, φ〉 = (v, φ)L2
h(Ω), φ ∈ Vh.

Compared with (4.9), only the term −T ′ckh has been added to the second row of the

right hand side of (6.1). The operator Âα on the left hand side is unchanged, and our
analysis of the MINRES method, presented above, also applies to this KKT system.
The associated algorithm is, of course, similar to Algorithm 2, see Algorithm 3.

Algorithm 3 The constrained split Bregman for PDE-constrained optimization prob-
lems with TV regularization

1: Choose v0
h = 0, p0

h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: Let vk+1

h , uk+1
h and wk+1

h be the solution of (6.1).

4: pk+1
h = arg minph∈Ph0

∫
Ωh
|ph|+ λ

2 ‖∇v
k+1
h − ph + bkh‖2L2

h(Ω)
,

5: bk+1
h = bkh +∇vk+1

h − pk+1
h ,

6: ck+1
h = ckh + Tuk+1

h − dh.
7: end for

We observe that Algorithm 3 only requires one more simple update compared to
Algorithm 2: The update for ck+1

h . This extra computer effort is diminishingly small,
and since we obtain better convergence results, we will present numerical experiments
with the use of Algorithm 3 only.

7. Numerical experiments.

7.1. Example 1. Let Ω = (0, 1) × (0, 1). We consider the standard example
in PDE-constrained optimization, but with TV regularization instead of Tikhonov
regularization. That is,

(7.1) min
(v,u)∈L2(Ω)×H1(Ω)

{
1

2
ρ‖Tu− d‖2L2(Ω) +

∫
Ω

|Dv|
}
,
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subject to

−∆u+ u = v in Ω,(7.2)

∇u · n = 0 on ∂Ω.(7.3)

Here, the operator T is the embedding T : H1(Ω) ↪→ L2(Ω). It is well known that
this operator is bounded. Hence, assumption A4 is satisfied. The control space V ,
the state space U and the observation space Z are

V = BV (Ω),(7.4)

U = H1(Ω),(7.5)

Z = L2(Ω),(7.6)

respectively. Recall that our objective is to solve this system with Algorithm 3. The
main challenge is the efficient solution of the KKT systems (6.1). To derive this
optimality system, we need the weak formulation of the boundary value problem
(7.2)-(7.3).

Computational details. The weak formulation reads: Find u ∈ U = H1(Ω)
such that

〈Au,ψ〉 = −〈Bv, ψ〉 ∀ψ ∈ U,

where

A : U → U ′, u→
∫

Ω

∇u · ∇ψ + uψ dx, ∀φ ∈ U,(7.7)

B : V → U ′, v →
∫

Ω

vψ dx, ∀φ ∈ U.(7.8)

From standard PDE theory, we find that A and A−1 are bounded. The boundedness
of

B : Vh → U ′h

in the discrete setting, where one employs the H1-topology (5.6) on Vh, follows from
the inequalities∫

Ω

vψ dx ≤ ‖v‖L2
h(Ω) · ‖ψ‖L2

h(Ω)

≤
√
‖v‖2

L2
h(Ω)

+ |v|2
H1
h(Ω)
·
√
‖ψ‖2

L2
h(Ω)

+ |ψ|2
H1
h(Ω)

= ‖v‖Vh · ‖ψ‖H1
h(Ω).

We conclude that assumptions A1, A2 and A3 are satisfied.
The KKT system to be solved in Algorithm 3 now takes the formR−1

Vh
0 0

0 R−1
Uh

0

0 0 R−1
Uh


︸ ︷︷ ︸

R−1

−α∆ 0 B′

0 T ′T A′

B A 0


︸ ︷︷ ︸

Âα

vhuh
wh



=

R−1
Vh

0 0

0 R−1
Uh

0

0 0 R−1
Uh

−α∇ · pkh + α∇ · bkh
T ′dh − T ′ckh

0

 .(7.9)
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Recall that α = λ/ρ, where ρ is the regularization parameter in (7.1) and λ is the
parameter employed in the Bregman scheme, see the discussion of (4.5)-(4.8).

The discretization of the operator R in (7.9) is rather straightforward. Recall
from Theorem 4 that the finite dimensional space Vh was equipped with the norm
‖ · ‖H1

h(Ω). Furthermore, since U = H1(Ω) in this particular example, it follows that
the discretization of both of the Riesz maps RVh and RUh yields the sum of the mass
matrix M and stiffness matrix S.

For the operator Âα in (7.9), the discretization is more challenging, but a general
recipe can be found in [21]. The end result can be summarized as follows:

• A, defined in (7.7), yields the matrix M + S, which is the sum of the mass
and stiffness matrices associated with the domain Ω.

• B, defined in (7.8), yields the mass matrix M .
• −∆ yields the stiffness matrix S.
• T ′T = R−1

Uh
T ∗T yields the mass matrix M .

• The functions vh, uh, wh, pkh, bkh, ckh and dh yields the corresponding vectors
v̄, ū, w̄, p̄k, b̄k, c̄k and d̄, respectively.

Hence, the discretized optimality system associated with (7.9) is(M + S)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1


︸ ︷︷ ︸

R̄−1

αS 0 M
0 M M + S
M M + S 0


︸ ︷︷ ︸

Āα

 v̄k+1

ūk+1

w̄k+1


︸ ︷︷ ︸
q̄k+1

=

(M + S)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1

−α∇ · p̄k + α∇ · b̄k
Md̄−Mc̄k

0


︸ ︷︷ ︸

ḡk

.(7.10)

The preconditioner thus reads

(7.11)

(M + S)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1

 ,
and involves the inverse of the matrix M+S. This inverse is computed approximately
by using algebraic multigrid (AMG). We discuss this in some more detail in the nu-
merical setup.

Numerical setup.
• We wrote the code using cbc.block, which is a FEniCS-based Python imple-

mented library for block operators. See [23] for details.
• The PyTrilinos package was used to compute an approximation of the precon-

ditioner (7.11). We approximated the inverse using AMG with a symmetric
Gauss-Seidel smoother with three smoothing sweeps. All tables containing
iteration counts for the MINRES method were generated with this approx-
imate inverse Riesz map. On the other hand, the eigenvalues of the KKT
systems [R̄]−1Āα, see (7.10), were computed with an exact inverse [R̄k]−1

computed in Octave.
• To discretize the domain, we divided Ω = (0, 1)× (0, 1) into N ×N squares,

and each of these squares were divided into two triangles.
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• The MINRES iteration process was stopped as soon as

(7.12)
‖rkn‖
‖rk0‖

=

[
( Āαq̄kn − ḡk, [R̄]−1[Āαq̄kn − ḡk] )

( Āαq̄k0 − ḡk, [R̄]−1[Āαq̄k0 − ḡk] )

]1/2

< ε.

Here, ε is a small positive parameter. Note that the superindex k is the
iteration index for the ”outer” split Bregman method, while the subindex n
is the iteration index for the ”inner” MINRES algorithm (at each step of the
split Bregman method).

• No noise was added to the input data d, see (7.1).
Results. We are now ready to solve the problem (7.1)-(7.3). The synthetic data d
was produced by setting

v(x) =

{
−5 if x2 < 0.5,

7 if x2 > 0.5,
(7.13)

and then we solved the boundary value problem (7.2)-(7.3) with (7.13) as input.
The data d was thereafter set equal to the solution u throughout the entire domain
Ω = (0, 1)× (0, 1).

Theorem 4 states that the KKT system (5.1)-(5.2) arising in each iteration of the
split Bregman iteration has a spectrum of the form (5.22). In Figure 7.1, we see a
spectrum of such a KKT system, and it is clearly of the form (5.22). Hence, we should
expect the MINRES algorithm to solve the problem efficiently.

Fig. 7.1. The eigenvalues of [R̄k]−1Āα in Example 1. Here, α = 0.0001 and N = 32, i.e.
h = 1/32. ([R̄k]−1 denotes the exact inverse of the preconditioner - not its AMG approximation).

Table 7.3 illuminates the theoretically established convergence behavior of the
MINRES algorithm. As previously mentioned, in [1] the authors proved that the
number of iterations can not grow faster than O([ln(α−1)]2), and showed why iteration
growth of O(ln(α−1)) often occur in practice. For ε = 10−6, see (7.12), and N = 256,
we get the following estimate for the iteration growth

40.2− 21.6 log10(α),
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where the coefficients are computed by the least squares method. The growth is very
well modeled by this formula. Similarly, for ε = 10−10 and N = 256, we can model
the growth by the formula

57.6− 43.5 log10(α).

N\α 1 .1 .01 .001 .0001

32 22 37 47 59 73
64 31 51 63 81 102
128 26 42 59 75 97
256 39 62 84 108 124

Table 7.1
Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 32 61 81 98 116
64 43 82 115 143 173
128 40 74 110 142 170
256 54 103 152 182 232

Table 7.2
Stopping criterion ε = 10−10.

Table 7.3
The average number of MINRES iterations required to solve the KKT systems arising in the

first ten steps of the split Bregman algorithm in Example 1. The two panels display the iteration
counts for two different choices of ε, see (7.12).

In Figure 7.4, two approximate solutions of the optimization problem (7.1)-(7.3)
are displayed. One after 10 Bregman iterations and the other after 100 Bregman
iterations. From this figure, we observe that the jump is “found” after the first 10
iterations, cf. (7.13). The subsequent iterations merely “tightens” the jump and levels
out the other parts of the solution. This behavior is similar to the one described for
the image denoising algorithm in [9], where the authors also gave an explanation for
why the split Bregman algorithm would quickly localize the jump(s).

Remark. As mentioned above, the problem (7.1)-(7.3), with Tikhonov regulariza-
tion instead of TV regularization, has been analyzed by many scientists. In fact,
for Tikhonov regularization a number of numerical schemes that are completely ro-
bust with respect to the size of the regularization parameter have been developed
[24, 25, 26]: Even logarithmic growth in iterations counts is avoided. As far as the
authors knows, it is not know whether these techniques can be adapted to the saddle
point problem (7.9).

7.2. Example 2. We will now explore a more challenging problem. Let the
domain Ω still be the unit square. Furthermore, define

Ω̃ = (1/4, 3/4)× (1/4, 3/4).

The problem we want to study is

(7.14) min
(v,u)∈L2(Ω̃)×H1(Ω)

{
1

2
ρ‖Tu− d‖2L2(∂Ω) +

∫
Ω̃

|Dv|
}
,

subject to

−∆u+ u =

{
−v if x ∈ Ω̃,

0 if x ∈ Ω \ Ω̃,
(7.15)

∇u · n = 0 on ∂Ω.(7.16)
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Fig. 7.2. Approximate inverse solution v10h
after 10 split Bregman iterations.

Fig. 7.3. Approximate inverse solution v100h
after 100 split Bregman iterations.

Fig. 7.4. The solution of the problem (7.1)-(7.3). Here, ε = 10−6, α = 10−6 and N = 128
(h = 1/128).

We observe two differences between examples 1 and 2. First, the control domain Ω̃ is
now a subdomain of the entire domain Ω, bounded strictly away from the boundary
∂Ω. Secondly, the observation domain is reduced from the entire domain Ω to the
boundary ∂Ω. In total, this results in a severely ill-posed problem for α = λ/ρ = 0,
see [1]. Information about λ, ρ and α is provided in connection with the discussion
of equations (4.5)-(4.8).

Here, the operator T : H1(Ω)→ L2(∂Ω) is the continuous trace operator. Hence,
assumptionA4 is satisfied. The control space V , the state space U and the observation
space Z are

V = BV (Ω̃),(7.17)

U = H1(Ω),(7.18)

Z = L2(∂Ω),(7.19)

respectively. Since the discretization of (7.14)-(7.16) is very similar to the discretiza-
tion of (7.1)-(7.3), we do not enter into all the details. Instead, we only focus on the
differences.

The weak formulation of the state equations (7.15)-(7.16) reads: Find u ∈ U =
H1(Ω) such that

〈Au,ψ〉 = −〈Bv, ψ〉 ∀ψ ∈ U,

where the operator A is still defined as in (7.7). The operator B, however, is no longer
as in (7.8), but is here defined by

(7.20) B : V → U ′, v →
∫

Ω̃

vψ,∀φ ∈ U,

and in the discrete setting we employ the norm

‖ · ‖2Vh = ‖ · ‖2
L2
h(Ω̃)

+ | · |2
H1
h(Ω̃)
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on the control space Vh. From standard PDE theory, we can guarantee that A and
A−1 are bounded, and the boundedness of B is verified in a manner very similar to
the argument presented in connection with Example 1:∫

Ω̃

vψ dx ≤ ‖v‖Vh · ‖ψ‖H1
h(Ω̃)

≤ ‖v‖Vh · ‖ψ‖H1
h(Ω)

because Ω̃ is a subdomain of Ω. We conclude that assumptions A1, A2 and A3 are
satisfied.

The new control domain Ω̃ and the redefined operators B and T lead to some
changes in the discretization of the optimality system (6.1), which must be solved
repeatedly in Algorithm 3. These can be summarized as follows:

• B, defined in (7.20), yields the mass matrix M̃ associated with the subdomain
Ω̃.

• −∆ yields the stiffness matrix S̃ associated with the subdomain Ω̃.
• T ′T = R−1

Uh
T ∗T yields the “boundary” mass matrix M∂ .

• The Riesz map RVh now yields the sum of the mass matrix M̃ and stiffness
matrix S̃.

All other operators are discretized in the same fashion as in Example 1. Hence, the
discretized optimality system in Algorithm 3, associated with (7.14)-(7.16), takes the
form(M̃ + S̃)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1


︸ ︷︷ ︸

R̄−1

αS̃ 0 M̃
0 M∂ M + S

M̃ M + S 0


︸ ︷︷ ︸

Āα

 v̄k+1

ūk+1

w̄k+1


︸ ︷︷ ︸
q̄k+1

=

(M̃ + S̃)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1

−α∇ · p̄k + α∇ · b̄k
M∂ d̄−M∂ c̄

k

0


︸ ︷︷ ︸

ḡk

.(7.21)

The preconditioner thus reads

(7.22)

(M̃ + S̃)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1

 .
Results. The synthetic data d was produced in the same manner as in Example 1.
We computed the synthetic data from the function v ∈ L2(Ω̃), where

v(x) =

{
5 if x1 < 0.5,

−5 if x1 > 0.5.
(7.23)

Note that the forward operator K = −TA−1B does not guarantee a unique solu-
tion of (7.14)-(7.16), since the trace operator is not injective, see Theorem 2. Never-
theless, the forward operator K does not annihilate constants, and from Theorem 4,
it then follows that the MINRES algorithm should handle the KKT systems, arising
in each Bregman iteration, very well.



SPLIT BREGMAN IN PDE-CONSTRAINED OPTIMIZATION 23

Figure 7.5 shows the spectrum of [R̄k]−1Āα for this example. This eigenvalue
distribution is clearly on the form (5.22). Hence, in accordance with Theorem 4, we
obtain such a spectrum even though K = −TA−1B is not injective (and κ = 0 in
these computations).

Fig. 7.5. The eigenvalues of [R̄k]−1Āα in Example 2. Here, α = 0.0001 and N = 32. ([R̄k]−1

denotes the exact inverse of the preconditioner - not its AMG approximation).

Table 7.6 displays the iteration counts for Example 2. We see that the growth
in the iteration numbers, as α decreases, is handled well by the MINRES algorithm.
For example, for the case of N = 256 and ε = 10−6, the growth can be modeled by
the formula

40.8− 16.2 log10(α).

Similarly, for N = 256 and ε = 10−10, the least squares method gives us the formula

58.2− 35.6 log10(α),

as the best logarithmic fit of iteration growth.

The approximate solutions, seen in Figure 7.8, are very close to the “input solution”
(7.23). We thus get very good approximations even though we can not guarantee a
unique solution (κ = 0, see Theorem 2).

8. Conclusions. We have studied PDE-constrained optimization problems sub-
ject to TV regularization. The main purpose of this text was to adapt the split
Bregman algorithm, frequently used in imaging analysis, to this kind of problems.

In each iteration of the split Bregman scheme, a large KKT system

(8.1) Aαq = g

must be solved. Here, 0 < α � 1 is a regularization parameter, and the spectral
condition number of Aα tends to ∞ as α → 0. We investigated the performance of
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N\α 1 .1 .01 .001 .0001

32 29 44 49 55 63
64 34 48 58 67 82
128 36 52 59 69 84
256 41 60 71 84 110

Table 7.4
Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 41 65 82 100 109
64 47 76 104 126 154
128 50 84 112 144 169
256 57 95 131 163 201

Table 7.5
Stopping criterion ε = 10−10.

Table 7.6
The average number of MINRES iterations required to solve the KKT systems arising in the

first ten steps of the split Bregman algorithm in Example 2. The two panels display the iteration
counts for two different choices of ε, see (7.12).

Fig. 7.6. Approximate inverse solution v10h
after 10 split Bregman iterations.

Fig. 7.7. Approximate inverse v100h solution
after 100 split Bregman iterations.

Fig. 7.8. The solution of the problem (7.14)-(7.16). Here ε = 10−6, α = 1000, λ = 0.0005 and
N = 128.

the MINRES algorithm applied to these indefinite systems. In particular, we ana-
lyzed the spectrum of Aα, and our main result shows that this spectrum is almost
contained in three bounded intervals, with a small number of isolated eigenvalues.
More specifically, we found that

(8.2) sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b],

where N(α) = O(ln(α−1)). Krylov subspace solvers therefore handle (8.1) very well:
The number of iterations required by the MINRES method can not grow faster than
O([ln(α−1)]2) as α→ 0, and in practice one will often encounter growth rates of order
O(ln(α−1)).

Our theoretical findings were illuminated by numerical experiments. In both
examples we observed approximately logarithmic growth in iteration numbers as α→
0. This is in accordance with our theoretical results.
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