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Abstract—Testing data-intensive systems is paramount to
increase our reliance on information in e-governance, scien-
tific/medical research, and social networks. Common practice to
test these systems is by using a live production database. This
testing approach is space and time inefficient and lacks clarity
about what test cases or scenarios are covered. In this paper, we
leverage classification tree modelling to specify desired test cases
as data interactions between a set of fields across multiple tables
of an existing database. Our methodology and tool, DEPICT,
uses test case specifications in classification tree models to (a)
automatically derive a spanning tree representing a relationship
between any set of fields for any given database schema (b)
generates queries to create an efficient inner join between related
tables in the spanning tree (c) extract records from various tables
that satisfy data interactions in the classification tree model (d)
discovers holes or unsatisfied test cases in the test databases.
We perform experiments to show that our approach is fast and
scalable to extract test databases. QOur experiments are based on
selecting test databases from 8000 declarations for 60,000 items
from the Norwegian Customs and Excise information system
TVINN.

I. INTRODUCTION

Data-intensive software systems are increasingly prominent
in driving global processes such as scientific and medical
research, e-governance, and social networking. Large amounts
of data is collected, processed, and stored by these systems in
databases. For example, the Norwegian Customs and Excise
department (NCE) uses the TVINN system to processes about
30,000 declarations a day as shown in Figure 1 (a). TVINN
stores validated transactional information such as declarations
in a central production database. It processes incoming decla-
rations to verify their conformance to well-formedness rules,
customs laws and regulations before accepting a declaration in
the database. This scenario is prevalent in many data-intensive
software systems dealing with transaction data which com-
prises semi-structured/structured data in medium/high volume.
Testing these data-intensive information systems is the subject
of this paper.

The common practice in testing a data-intensive system
entails the usage of a fest database obtained by selectively
querying a production database of live and recent transactions.
The records in the test database are processed by a database
application to reveal faults in business rules. They are also
used for regression testing between different versions of the
database application. In this paper, we address several chal-

lenges not addressed by common testing practice (1) There
exists no high-level view or model of what testing-specific
data a test database contains (2) The test database does not
guarantee any form of test adequacy [4] such as an input
domain coverage criteria (3) Is the size of the test database
minimal for increased testing efficiency?

In this paper, we present a methodology and a tool suite
DEPICT to address the above challenges. We first propose the
use of classification tree models[6] to represent test cases at a
graphical and high-level of abstraction. We use classification
trees to specify interactions between database field values to
address challenge 1. DEPICT surgically mines the database for
coverage of test cases in the classification tree model. DEPICT
first creates a spanning tree to find a path of interaction
between different tables specified in the classification tree
model. DEPICT transforms test cases to queries that extract a
view (from a inner join of the tables in the spanning tree) and
counts occurrences of interactions. The results are presented
using graph representations that help a tester evaluate his test
database for minimality and interaction coverage. The tester
can then complete the database or reduce its size by removing
redundant test cases hence addressing challenges 2 and 3.

We evaluate our approach through experiments on test
databases from the Norwegian Customs and Excise depart-
ment. We first present an experiment on a test database
containing 8400 real or live customs declarations to check
for interaction coverage. The experiment clearly illustrates the
non-satisfaction of combinatorial interaction coverage in a
test database with live declarations. In another experiment, we
use a synthetic test database to demonstrate (a) combinatorial
interaction coverage (b) that the approach is scalable and of
constant time complexity taking only 1 ms on an average to
synthesize a single interaction coverage query, execution of
query, and visualization of results.

We summarize our contributions as follows:

Contribution 1: We present a methodology and a tool
DEPICT to model, extract and visualise interaction coverage
of test cases in a data-intensive systems

Contribution 2: We demonstrate through experiments on an
industrial case study (NCE) that our methodology can help
ensure combinatorial interaction coverage in a scalable manner



The paper is organized as follows. In Section II, we present
an industrial case study from NCE as a running example in
the paper. In Section III, we present our methodology and tool
DEPICT. We present results from experiments in Section IV.
Section V discusses the related work, while we conclude with
a summary of our experience in Section VI.

II. INDUSTRIAL CASE STUDIES

We describe our industrial case study from the NCE as
illustrated in Figure 1(a). As mentioned above, the system
under study is TVINN. An overview of TVINN process flow is
presented in Figure 1(a) and an official description is available
on its website .

Customs officers and industries associated with import and
export create declarations at Norwegian ports of entry. These
declarations are encapsulated in the EDIFACT standard for
business communication. A declaration is encapsulated as an
EDIFACT CUSDEC message. These messages are sent to
TVINN’s central server where they are processed by a sophis-
ticated batch application called EMIL. EMIL parses EDIFACT
messages and verifies them against well-formedness rules. It
then verifies if the declared amount is accurately computed
based on a statistical value for an item. These rules depend on
numerous factors such as (a) 260 countries of origin divided
in 88 country groups. (b) over 160 currencies. (c) around 900
tax code groups, and (d) a list of more than 10,000 items.
A declaration can be categorized into six different categories
based on EMIL’s computation, the simplest categories being
complete and reject. The response from TVINN is sent back as
an EDIFACT CUSRES message to customs officer or industry.

Rules in TVINN evolve on a regular basis (approximately,
every six months), depending on new governmental policies,
sanctions, and change in political parties. TVINN is also
affected with time-bounded rules created by customs officers.
These rules exist for a short period of time. For instance, a
customs officer could decide to thoroughly check 20 trucks
coming from a nation X in civil war and he/she would create
a rule to check all the trucks from the nation for the following
three hours. These kinds of rules are called mask control and
will disappear after a fixed time limit. These rules can change
on an everyday basis without anticipation, making TVINN a
highly dynamic system.

Testing TVINN has been achieved by a small testing staff
executing a subset of a large number of live declarations
as test cases. However, using these test cases present four
important problems:

No Coverage Guarantee: Test cases obtained from live
declarations, cover a realistic subset of the database’s domain
(set of all possible combination of values in fields and tables
of a database). However, they often do not cover combinations
of values that are very rare or exceptional. Test cases often
need to model such holes in real data.

Very Large Set of Test Records: Accumulating information
from live transactions can easily give rise to an ever-growing

Uhttps://fortolling.toll.no/Tvinn-Internett

set of data records. Many of these records share similarities
and hence are redundant for the purpose of testing. Cost-
effective testing will require a selection of a minimal set of
test cases. A minimal set will also have modest time and
space requirements for testing efforts such as nightly tests.
Confidentiality: Governments/enterprises involving financial
transactions or military data for instance have stringent
confidentiality agreements with their clients. Therefore, it is
often not possible for them to outsource their testing efforts
to external agencies.

Constantly Changing Rules: Test cases have a lifetime
and need to be discarded. For instance, in the NCE
system changes when sanctions are imposed on countries or
significant changes happen in currency exchange rates. Legacy
test cases may not be used anymore to test the evolved system.

In this paper, we address the specific problem of test
coverage in test databases.

III. METHODOLOGY

In this section, we present a methodology for model-
driven interaction testing. The foundation for the approach are
presented in Section III-A. The overview of our methodology
is shown in Figure 3. In Section III-B, we describe modelling
interactions that is used in our methodology. We present the
different steps in our methodology in Section III-C. In Section
III-D, we present how DEPICT is adopted at NCE.

A. Foundations

1) Database Schema: Databases are typically modelled
using a data model such as a database schema. It specifies
the input domain of a database in an information system. We
briefly describe the well-known concept of database schema.
More information on them can be found in a standard database
textbooks such as [2]. A database schema typically contains
one or more fables. A table contains fields with a domain
for each field. Typical examples for field types/domains are
integer, float, double, string, and date. The value of each field
must be in its domain hence maintaining domain integrity in
a database. A table contains zero or more records, which is
a set of values for all its fields within their domain. A table
may also contain one or more fields that are referred to as
primary keys, which identify each record. In addition, each
table may refer to primary keys of other tables via foreign keys.
The value of foreign keys must match the value of a primary
key in another table. This is known as a referential integrity
constraint. We refer to the combined concepts of referential
integrity and domain integrity as data integrity. Records in a
database must satisfy data integrity as specified by its database
schema. Databases can be queried using Structured Query
Language (SQL) queries. We use queries to create views and
to select and count number of records. In this paper, we use
the database schema, shown in Figure 1(b) for the NCE case
study.
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Fig. 1. (a) Norwegian Toll Customs Industrial Case Study (b) Common Database Schema at Norwegian Toll Customs in Crow-Foot Notation

2) Classification Tree Model: We use the classification
tree models to graphically represent test cases as interactions
between database field values. A specific set of test cases is
said to satisfy the combinatorial interaction coverage criteria
[1] when it covers all T-wise interactions between a set
of database fields. The most effective interaction coverage
criteria is 2-wise or pairwise. The models are created using
the tool CTE-XL tool[6]. CTE-XL is an editor based on the
classification-tree method, as an approach to category-partition
validation that uses a descriptive tree notation. This tool can
scale up to the complexity of input domains such as the one of
the Norwegian Tax Department [8]. CTE-XL has the notion of
compositions, classifications and classes to model variability
in a database field values. The variability is typically modelled
as a tree. CTE-XL also allows the specification of dependency
rules as boolean constraints to constrain selection of classes
across the tree. It provides all features necessary to model
a constrained domain. In Figure 2, the top-level composition
is the name of the database, the second-level compositions
are table names, the third-level classifications are field names
and finally in the fourth-level we have classes representing
values that go into fields. Data interaction requirements can
be specified manually in CTE-XL by clicking on a button for
each field value in a requirement. We specify data interaction
requirements in CTE-XL as test cases. CTE-XL can also be
used to automatically generate interaction requirements that
cover all pair-wise or three-wise interactions between classes
of choice. For instance, in Figure 2, we present all pair-wise
interactions between five declaration categories and five tax
fee codes such as VAT.

B. Modelling Interactions

We assume that a modeller is knowledgeable about the
database schema of the information system for which data
interaction requirements are specified. The modeller specifies
data interaction requirements as a classification tree model.
An example is illustrated in Figure 2. The different elements
of the classification tree model for data interactions are as
follows:

Root Composition for Database: It is an identifier for a
database on a server. Software that analyzes the classification
tree model can identify a concrete database using this
identifier. In Figure 2, this is represented by the composition
TollCustomsDemo.

Compositions for Tables: The root composition can contain
several compositions representing identifiers for tables. In
Figure 2, this is represented by the compositions Declarations
and Items from the schema shown in Figure 1(b). All or only
a subset of tables maybe be specified depending on the use
of the model.

Classifications for Fields: Fields in tables are classifications
in the third level of the classification tree. For instance, in
Figure 2, we use the fields Category and ItemCode. All or
only a subset of fields for a table maybe be specified in the
model.

Classes for Field Values: The different values for fields are
classes in the model. For instance, in Figure 2, the fields
values MA and FO are associated with the classification for
the field Category. Field values are unique and an interaction
can have exactly one possible field value.

Interactions as Test Cases in Groups: Interactions between
field values across different tables are represented as test
cases in a classification tree model. For instance, in Figure 2,
pairwise.TestCasel represents the interaction {MAMV_2}.
This is the interaction between a tax fee code group for value
added tax (VAT) and manual processing of a declaration.
One may envisage the use of such an interaction to generate
customs rules. Interactions in CTE-XL can either be generated
automatically such that all pairs or three-wise interactions
between two or three classes are covered. In Figure 2, we
present all pairwise interactions between a set of database
field values. Testers can also manually specify them. Test
cases or interactions can be divided into groups to represent
test cases for different aspects of the information system.

The tool CTE-XL also allows specification of additional
boolean constraints between classes, compositions, and clas-
sifications to limit the number of interactions or test cases.
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Fig. 2. Classification Tree Diagram Model of Test Cases

C. Methodology Description

The methodology implemented in DEPICT is illustrated in
Figure 3.
Step 1, DEPICT verifies that the input CTE-XL model contains
valid names for a database, tables, and field names. This is
done by querying and comparing meta-information from the
database schema on a database server such as MySQL.
Step 2, DEPICT transforms a CTE-XL model to graph of
internal database schema and SQL queries to extract data from
it. DEPICT first creates an internal spanning tree between
tables specified in the CTE-XL model. In the second step
DEPICT creates an SQL view for interactions in the spanning
tree. For instance, given two fields we present the view created
in Listing 1. The principal challenge for the generation of
this query is to ensure that the database fields indeed interact.
The transformation leads to a query ensures that keys between
tables Tablel, Table2, .. TableN match so that the collected
records in the view are interacting. Field values in a database
do not interact if they are not associated by matching key
values across the database. For instance, a valid interaction
occurs between a declaration category field and a customer id
field only when the value of customer id as primary key has
a value identical to a matching foreign key in the declaration
table. A declaration record must belong to a customer record.
Step 3, DEPICT generates SQL count queries as shown in
Listing 2 to count all T-wise interactions/combinations for
each test case. For instance, DEPICT counts all pairwise
combinations (0, 0), (0,1), (1,0), (1,1) of two field values.
Step 4, DEPICT runs the created view and count queries
to obtain the frequency of interactions in the database. A
frequency of zero implies that the test case was not covered
by the test database. While a very high frequency indicates
redundancy of test cases hence requiring test set minimization.
We also generate graphs in the statistical language R and
Google Charts to compactly represent interaction coverage and
time consumption. We use the bar-chart and the spider diagram
to provide two different views of combinatorial interaction

CREATE VIEW PAIR_INTERACTION AS SELECT FIELDI, FIELD2 FROM
TABLE1 LEFT JOIN TABLE2
ON (TABLEI.Keyl=TABLE2.Keyl) AND (TABLEI.Key2=TABLE2.Key2);

Listing 1. Create View Query to Accumulate Interactions

SELECT COUNT(x*) FROM PAIR_INTERACTION WHERE FIELD1<>"VALUEI”
and KEYCODE>"VALUE2” ;

SELECT COUNT(x*) FROM PAIR_INTERACTION WHERE FIELD1<>"VALUEI”
and KEYCODE="VALUE2";

SELECT COUNT(*) FROM PAIR_INTERACTION WHERE FIELDI1="VALUE1"
and KEYCODE<>"VALUE2” ;

SELECT COUNT(x) FROM PAIR_INTERACTION WHERE FIELD1="VALUEI"
and KEYCODE="VALUE2” ;

Listing 2. Select Count Query to Count Interactions

D. Implementation and Industrial Adoption

DEPICT is implemented in pure Java and is available for
download and use on a website 2. We report on how our
methodology is being adopted at the NCE. The TVINN system
at NCE contains about 138 tables which include 121 tables
(with 1250 fields) in TVINN itself and 17 tables (with 182
fields) in the POST database (after processing of a declara-
tion). The databases TVINN and POST are highly dynamic
and a snapshot of these tables can contain up to 25 million
records. We present a simplified subset of TVINN’s schema in
Figure 1(b). For the moment test managers at TVINN export
existing records to a test database conforming to 1(b). They
then use CTE-XL to specify test cases that are verified by
DEPICT on the test database. In case a test cases is not covered,
test managers prefer to manually create a new entry on the
TVINN system to cover the test case. Test managers report that
the high-level model helped them understand the intention of
each test case and maintain traceability with the database, as
DEPICT provides the exact location of the desired interaction.
The lightweight standalone tool DEPICT is designed to be
scalable to the entire TVINN database.

IV. EXPERIMENTAL EVALUATION

We present two experiments for the Norwegian Customs
and Excise case study to illustrate (a) the problem in common
testing practice (b) the advantage of a test database that covers
all pairwise interactions between certain field values.

Zhttps://sites.google.com/a/simula.no/depict/
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Fig. 4. (a) Test Cases for Alcohol Declarations covering Pairwise Coverage (b) Spider Diagram of Coverage in 8400 real declarations

A. Illustrative Experiment

The common practice of testing involves the usage of a large
number of live customs declarations in a test database to test
the database application at NCE. Consider the CTE-XL model
of Figure 4 (a). The model encodes test cases that cover all
pairwise interactions between (a) four types of alcohol Whisky,
Vodka, Rum, and Beer with their respective ItemCodes and (b)
manual inspection (MA) or processed declarations (FU). We
use a real test database of 8400 declarations from a given day.
Using DEPICT, we summarize the results in the spider diagram
of Figure 4 (b). In the figure most of test cases did not exist in
the test database except four instances of (FU,Whisky) and one
instance of (FU, Beer). This simple experiment illustrate that
the common practice of simply using a large test database does
not guarantee a combinatorial interaction coverage criteria
such as pairwise.

B. Evaluating a Complete Test Database

We perform a second experiment using DEPICT to verify
interaction coverage in a test database * for the model shown
in Figure 2. The model specifies 25 test cases covering all
pairwise interactions between a set of tax fee code groups
and declaration categories. The test database was synthetically
generated using the approach presented by the authors in
[10]. The goal of the experimental evaluation is to answer
two questions: Q1) What is the interaction coverage achieved
by the test database? and Q2) What is time efficiency for
interaction coverage in a realistic setting?

The experiments were run on a laptop with Pentium(R)
Dual-Core CPU E5300 @2.60GHz 2.60GHz and 2GB of
RAM.

1) Test Coverage: DEPICT is run for the model in Figure
2. It outputs a bar-graph, as shown in Figure 5 representing
interaction coverage in the database. Since, the test database

3https://sites.google.com/a/simula.no/dbtwise/
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was synthetically generated it contains all test cases at different
frequencies. The x-axis of the plot represents the 25 test cases.
The y-axis presents the frequency of interactions observed in
the database for each test case. In Figure 5, we observe that
the synthetic test database covers all pairwise four variations
(0,0), (0,1), (1,0), and (1,1) of 25 test cases with non-zero
interaction frequency.

The bar-graph of Figure 5 and the spider plot of Figure
4 (b) give a compact representation of covered and missing
interactions in a test database.



2) Time Efficiency: How much time does it take to detect
if test cases are covered by a database? We observe that it
took an average of 1 ms to detect an interaction in database
of about 1000 records. This includes the time to create a view
for interactions, executing a query to count frequency of the
interactions, and return of report via JDBC to the user. This
indicates a constant time complexity O(1). We also execute
DEPICT 30,000 times to obtain interaction coverage in a total
time of 8 seconds. The number 30,000 is also the number of
live declarations made per day within TVINN.

V. RELATED WORK

Input domain coverage is an important topic in testing
database applications [4]. In this paper, we apply combinatorial
interaction coverage [1] to help develop test databases for
database applications.

Test coverage in data intensive systems has been the subject
of many studies [7], [9], [12]. However, these techniques are
not applicable to measuring coverage in databases since they
do not handle the structure of a database’s complex schema.
The tool proposed by Suarez [11] measures the coverage
of SQL queries, it does not support coverage monitoring.
The work proposed by Halfond [3] measures the coverage of
defined testing requirements for database commands. Halfond
measures the coverage of application-database interactions and
does not consider the interactions between database fields.
In [5], authors present the concept of database-aware test
coverage monitoring that instruments the program and the test
suite to determine how well are database entities covered. The
proposed coverage monitor also captures database interactions
at different levels of interaction granularity: database, relation,
attribute, record, and attribute value. However, it does not
provide high-level modelling of test cases as interactions. From
the standpoint of our industrial partner, NCE, it was essential
for them to have a high-level view of a test case to understand
testing intention. Tuya proposes a criterion that assesses the
coverage of the test data in relation to the executed database
queries [13]. Still, similarly to the previous approaches, it does
not support modelling the test cases visually nor monitoring
the coverage.

VI. CONCLUSION

In this paper, we present a methodology and tool DEPICT
to detect coverage of test cases in a database. We perform
experiments for an industrial case study from the Norwegian
Customs and Excise department. The experiments reveal the
interaction coverage in the database in a very time efficient

manner (8 seconds for 30,000 test cases). Our methodology
and DEPICT is currently being adopted at the customs de-
partment. The test managers at the customs department state
that the high-level view of test cases greatly enhances their
understanding of their intention. They also appreciate the
traceability of a test case /interaction to a concrete record in
the database provide by DEPICT. We foresee, (a) improvement
of the modelling tool to be able to specify test oracles with

regard to desired properties in a database (b) to explore
visualization approaches to be able to compactly represent test

case coverage for very large number of records (c) DEPICT
can be seen as a metric module for the degree of coverage.
These metrics can be used by test set selection, minimization,
and prioritization algorithms to create minimal test databases.
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