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VOICE OF EVIDENCE

What We Do and Don’t 
Know about Software 
Development Effort 
Estimation
Magne Jørgensen

OVERWHELMING EVIDENCE DOCU-
MENTS a tendency toward cost and ef-
fort overruns in software projects. On 
average, this overrun seems to be around 
30 percent.1 Furthermore, comparing the 
estimation accuracy of the 1980s with 
that reported in more recent surveys sug-
gests that the estimation accuracy hasn’t 
changed much since then. (The only 
analyses that suggest a strong improve-
ment in estimation accuracy are those 
by the Standish Group. The extreme im-
provement in estimation accuracy over 
the years suggested by its Chaos Reports 
is, however, probably just a result of an 
improvement in its own analysis meth-
ods from a selection overrepresented by 
problem projects to a more represen-
tative selection.2) Estimation methods 
haven’t changed much either. In spite of 
an extensive research on formal estima-
tion models, the dominating estimation 
method is still expert estimation.3

An apparent lack of improvement in 
estimation accuracy doesn’t mean that 
we don’t know more about effort estima-
tion than before. In this article, I try to 
summarize some of the knowledge I be-
lieve we’ve gained. Some of this knowl-
edge has the potential of improving the 
estimation accuracy, some is about what 
most likely will not lead to improve-

ments, and some is about what we know 
we don’t know about effort estimation. 
The full set of empirical evidence I use to 
document the claims I make in this sum-
mary appear elsewhere.1 

What We Know
From reviewing the research on effort es-
timation, I selected seven well- supported 
results.

There Is No “Best” Effort 
Estimation Model or Method
Numerous studies compare the accu-
racy of estimation models and methods, 
with a large variety in who wins the 
estimation accuracy contest.4 A major 
reason for this lack of result stability 
seems to be that several core relation-
ships, such as the one between devel-
opment effort and project size, differs 
from context to context.5 In addition, 
the variables with the largest impact 
on the development effort seem to vary, 
indicating that estimation models and 
methods should be tailored to the con-
texts in which they’re used. 

The lack of stability in core rela-
tionships might also explain why sta-
tistically advanced estimation models 
typically don’t improve the estimation 
accuracy much, if at all, in comparison 
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with simpler models. Statistically ad-
vanced models are more likely to be 
an overfit to the historical data and 
will consequently be less accurate 
than simpler models when the con-
text changes. The findings imply that 
software companies should try to 
build their own estimation models, 
rather than expect that general esti-
mation models and tools will be ac-
curate in their specific context.

Clients’ Focus on Low Price  
Is a Major Reason for Effort Overruns
A tendency toward underestimation 
of effort is particularly present in 
price-competitive situations, such as 
bidding rounds. In less price-com-
petitive contexts, such as in-house 
software development, there are no 
such tendencies—in fact, you might 
even see the opposite. This suggests 
that a main reason for effort over-
runs is that clients tend to focus on 

low price when selecting software 
providers—that is, the project pro-
posals that underestimate effort are 
more likely to be started. An im-
plication of these observations is 
that clients can avoid effort over-
run by being less price and more 
competence-focused when selecting 
providers.

Minimum and Maximum Effort 
Intervals Are Too Narrow
Minimum–maximum effort inter-
vals, such as 90 percent confidence 
intervals, are systematically too nar-
row to reflect the actual uncertainty 
in effort usage. In spite of the strong 
evidence documenting our inability 
to set accurate minimum and maxi-
mum effort values, current estima-
tion methods continue to assume 
that it can be done. This is particu-
larly apparent in PERT-based (three-
point estimation) methods, in which 

the planned (median or p50-esti-
mate) effort is derived from the most 
likely, the minimum, and the maxi-
mum effort. 

Instead of using expert judgment 
to set the minimum and maximum ef-
fort, software professionals should use 
historical data about previous estima-
tion error to set realistic minimum– 
maximum effort intervals.6 

It’s Easy to Mislead  
Estimation Work and Hard  
to Recover from Being Misled
All software development effort es-
timation, even when using formal 
estimation models, requires expert 
judgment. But although expert judg-
ment can be very accurate, it’s also 
easily misled. Perhaps the strongest 
misleading happens when those re-
sponsible for the effort estimates, be-
fore or during the estimation work, 
are made aware of the budget, cli-
ent expectations, the time available, 
or other values that can act as so-
called estimation anchors. Without 
noticing it, those people will tend to 
produce effort estimates that are too 
close to the anchors. Knowing that 
the client expects a low price or a low 
number of work-hours, for example, 
is likely to contribute to an underes-
timation of effort. Expert judgment 
can also be misled when an estima-
tion request includes loaded words, 
such as, “How much will this small 
and simple project cost?” 

In spite of much research on how 
to recover from being misled and 
how to neutralize estimation biases, 
no reliable methods have so far been 
found. The main consequence is that 
those in charge of effort estimation 
should try hard not to be exposed 
to misleading or irrelevant informa-
tion—for example, by removing mis-
leading and irrelevant information 
from requirements documentations. 



VOICE OF EVIDENCE

 MARCH/APRIL 2014  |  IEEE SOFTWARE  15

Relevant Historical Data  
and Checklists Improve  
Estimation Accuracy
One well-documented way to im-
prove the accuracy of effort esti-
mates is to use historical data and 
estimation checklists. When the 
historical data are relevant and the 
checklist tailored to the company 
using it, activities are less likely to 
be forgotten, and it’s more likely 
that sufficient contingency for risk 
will be added and previous experi-
ence reused. This in turn leads to 
more realistic estimates. In partic-
ular, when similar projects can be 
used in so-called analogy or refer-
ence class estimation,7 effort esti-
mate accuracy improves. 

In spite of the usefulness of his-
torical data (such as data about the 
percentage effort typically spent 
on unplanned activities and project 
management) and estimation check-
lists (such as reminders about easily 
forgotten activities), many compa-
nies currently don’t use either tool to 
improve their estimation accuracy.

Combining Independent Estimates 
Improves Estimation Accuracy
The average of effort estimates 
from different sources is likely to be 
more accurate than most individual 
effort estimates. A key assump-
tion for accuracy improvement is 
that the estimates are independent, 
which is true if their sources differ 
in expertise, background, and esti-
mation process. A Delphi-like esti-
mation process, such as “Planning 
Poker,” where software developers 
show their independently derived 
estimates (their “poker” cards) at 
the same time, seems to be particu-
larly useful in software effort esti-
mation contexts. 

A group-based, structured esti-
mation process adds value to a me-

chanical combination of estimates 
because sharing the knowledge in-
creases the total amount of knowl-
edge, such as the total amount of 
activities to be completed on a proj-
ect. The negative effect of group-
based judgments, such as “group-
think” and the willingness to take 
higher risks in groups, isn’t docu-
mented to be present in software ef-
fort estimation.

Estimation models seem to be on 
average less accurate than expert 
estimates. The difference between 
the processes of models and experts 
make it nevertheless particularly use-
ful to combine these two methods to 
improve the estimation accuracy.

Estimates Can Be Harmful
Estimates not only forecast the fu-
ture but also frequently affect it. 
Too-low estimates can lead to lower 
quality, possible rework in later 
phases, and higher risks of proj-
ect failure; too-high estimates can 
reduce productivity in accordance 
with Parkinson’s law, which states 
that work expands to fill the time 
available for its completion. 

This is why it’s important to con-
sider whether an effort estimate is re-
ally needed. If you don’t really need 
estimates or just need them at a later 
stage, it might be safer to go with-
out them or postpone the estimation 
until more information is available. 
Agile software development—which 

involves planning just the next sprint 
or release by using feedback from 
previous sprints or releases—might 
be a good way to avoid the potential 
harm from estimating too early.

What We Don’t Know
There are several estimation chal-
lenges for which we simply have 
no good solution, sometimes in 
spite of volumes of research. Three 

challenges in particular highlight 
how our knowledge is far from 
satisfactory.

How to Accurately Estimate  
the Effort of Mega-Large,  
Complicated Software Projects 
Mega-projects impose extra de-
mand on effort estimation. Not 
only are more values at stake, but 
there will also be less relevant ex-
perience and historical data avail-
able. Many of the activities typical 
for mega- projects, such as organiza-
tional issues with many stakehold-
ers involved, seem to be very hard 
to estimate accurately because they 
typically involve business process 
changes, and complex interactions 
between stakeholders and with ex-
isting software applications.

How to Measure Software Size and 
Complexity for Accurate Estimation
In spite of the years of research into 
measuring software size and complex-
ity, none of the proposed measures are 
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very good when it comes to estimating 
software development effort. Some 
size and complexity contexts might 
enable accurate effort estimates, but 
such contexts seem to be rare.

How to Measure  
and Predict Productivity
Even if you have good measures of 
software size and complexity, you 
need to reliably predict the produc-

tivity of the individuals or teams 
completing the work. This predic-
tion is complicated by a frequently 
surprisingly large difference in pro-
ductivity among software develop-
ers and teams. No good method, 
except perhaps realistic program-
ming tests (trialsourcing), for this 
type of prediction exists.

Currently, we don’t even know 
whether there’s an economy of 
scale (productivity increases with 
increasing project size) or a disec-
onomy of scale (productivity de-
creases with increasing project size) 
in software projects. Most empiri-
cal studies suggest that software 
projects on average have an econ-
omy of scale, whereas software 
practitioners typically believe in 
a diseconomy of scale. Unfortu-
nately, the research results on scale 
economies seem to be a conse-
quence of how the analysis is con-
ducted and don’t tell much about 
the underlying relationship be-
tween size and productivity.

W hat we currently know 
about software effort 
and cost estimation 

doesn’t really enable us to solve the 
estimation challenges in the software 
industry. It does, however, point out 
several actions likely to improve es-
timation accuracy. In particular, 
software companies are likely to im-
prove their estimation accuracy if 
they do the following:

• Develop and use simple estima-
tion models tailored to local con-
texts in combination with expert 
estimation.

• Use historical estimation error to 
set minimum–maximum effort 
intervals.

• Avoid exposure to mislead-
ing and irrelevant estimation 
information.

• Use checklists tailored to own 
organization.

• Use structured, group-based 
estimation processes where 
independence of estimates are 
assured.

• Avoid early estimates based on 
highly incomplete information.

Highly competitive bidding rounds 
where the client has a strong focus 
on low price are likely to lead to the 
selection of an overoptimistic bidder 
and consequently cost overruns and 
lower software quality. This is termed 
“the winner’s curse” in other do-
mains. In the long run, most software 

clients might start to understand how 
their emphasis on fixed, low price for 
software projects has negative con-
sequences on project success. Until 
then, software companies should in-
crease their awareness of when they’re 
in a situation where they’re selected 
only when they’re being overoptimis-
tic about the cost—and have strat-
egies in hand for how to manage or 
avoid the winner’s curse.
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