
0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E MARCH/APRIL 2014 | IEEE SOFTWARE 13

VOICE OF EVIDENCE

What We Do and Don’t
Know about Software
Development Effort
Estimation
Magne Jørgensen

OVERWHELMING EVIDENCE DOCU-
MENTS a tendency toward cost and ef-
fort overruns in software projects. On
average, this overrun seems to be around
30 percent.1 Furthermore, comparing the
estimation accuracy of the 1980s with
that reported in more recent surveys sug-
gests that the estimation accuracy hasn’t
changed much since then. (The only
analyses that suggest a strong improve-
ment in estimation accuracy are those
by the Standish Group. The extreme im-
provement in estimation accuracy over
the years suggested by its Chaos Reports
is, however, probably just a result of an
improvement in its own analysis meth-
ods from a selection overrepresented by
problem projects to a more represen-
tative selection.2) Estimation methods
haven’t changed much either. In spite of
an extensive research on formal estima-
tion models, the dominating estimation
method is still expert estimation.3

An apparent lack of improvement in
estimation accuracy doesn’t mean that
we don’t know more about effort estima-
tion than before. In this article, I try to
summarize some of the knowledge I be-
lieve we’ve gained. Some of this knowl-
edge has the potential of improving the
estimation accuracy, some is about what
most likely will not lead to improve-

ments, and some is about what we know
we don’t know about effort estimation.
The full set of empirical evidence I use to
document the claims I make in this sum-
mary appear elsewhere.1

What We Know
From reviewing the research on effort es-
timation, I selected seven well- supported
results.

There Is No “Best” Effort
Estimation Model or Method
Numerous studies compare the accu-
racy of estimation models and methods,
with a large variety in who wins the
estimation accuracy contest.4 A major
reason for this lack of result stability
seems to be that several core relation-
ships, such as the one between devel-
opment effort and project size, differs
from context to context.5 In addition,
the variables with the largest impact
on the development effort seem to vary,
indicating that estimation models and
methods should be tailored to the con-
texts in which they’re used.

The lack of stability in core rela-
tionships might also explain why sta-
tistically advanced estimation models
typically don’t improve the estimation
accuracy much, if at all, in comparison

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

VOICE OF EVIDENCE

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

with simpler models. Statistically ad-
vanced models are more likely to be
an overfit to the historical data and
will consequently be less accurate
than simpler models when the con-
text changes. The findings imply that
software companies should try to
build their own estimation models,
rather than expect that general esti-
mation models and tools will be ac-
curate in their specific context.

Clients’ Focus on Low Price
Is a Major Reason for Effort Overruns
A tendency toward underestimation
of effort is particularly present in
price-competitive situations, such as
bidding rounds. In less price-com-
petitive contexts, such as in-house
software development, there are no
such tendencies—in fact, you might
even see the opposite. This suggests
that a main reason for effort over-
runs is that clients tend to focus on

low price when selecting software
providers—that is, the project pro-
posals that underestimate effort are
more likely to be started. An im-
plication of these observations is
that clients can avoid effort over-
run by being less price and more
competence-focused when selecting
providers.

Minimum and Maximum Effort
Intervals Are Too Narrow
Minimum–maximum effort inter-
vals, such as 90 percent confidence
intervals, are systematically too nar-
row to reflect the actual uncertainty
in effort usage. In spite of the strong
evidence documenting our inability
to set accurate minimum and maxi-
mum effort values, current estima-
tion methods continue to assume
that it can be done. This is particu-
larly apparent in PERT-based (three-
point estimation) methods, in which

the planned (median or p50-esti-
mate) effort is derived from the most
likely, the minimum, and the maxi-
mum effort.

Instead of using expert judgment
to set the minimum and maximum ef-
fort, software professionals should use
historical data about previous estima-
tion error to set realistic minimum–
maximum effort intervals.6

It’s Easy to Mislead
Estimation Work and Hard
to Recover from Being Misled
All software development effort es-
timation, even when using formal
estimation models, requires expert
judgment. But although expert judg-
ment can be very accurate, it’s also
easily misled. Perhaps the strongest
misleading happens when those re-
sponsible for the effort estimates, be-
fore or during the estimation work,
are made aware of the budget, cli-
ent expectations, the time available,
or other values that can act as so-
called estimation anchors. Without
noticing it, those people will tend to
produce effort estimates that are too
close to the anchors. Knowing that
the client expects a low price or a low
number of work-hours, for example,
is likely to contribute to an underes-
timation of effort. Expert judgment
can also be misled when an estima-
tion request includes loaded words,
such as, “How much will this small
and simple project cost?”

In spite of much research on how
to recover from being misled and
how to neutralize estimation biases,
no reliable methods have so far been
found. The main consequence is that
those in charge of effort estimation
should try hard not to be exposed
to misleading or irrelevant informa-
tion—for example, by removing mis-
leading and irrelevant information
from requirements documentations.

VOICE OF EVIDENCE

 MARCH/APRIL 2014 | IEEE SOFTWARE 15

Relevant Historical Data
and Checklists Improve
Estimation Accuracy
One well-documented way to im-
prove the accuracy of effort esti-
mates is to use historical data and
estimation checklists. When the
historical data are relevant and the
checklist tailored to the company
using it, activities are less likely to
be forgotten, and it’s more likely
that sufficient contingency for risk
will be added and previous experi-
ence reused. This in turn leads to
more realistic estimates. In partic-
ular, when similar projects can be
used in so-called analogy or refer-
ence class estimation,7 effort esti-
mate accuracy improves.

In spite of the usefulness of his-
torical data (such as data about the
percentage effort typically spent
on unplanned activities and project
management) and estimation check-
lists (such as reminders about easily
forgotten activities), many compa-
nies currently don’t use either tool to
improve their estimation accuracy.

Combining Independent Estimates
Improves Estimation Accuracy
The average of effort estimates
from different sources is likely to be
more accurate than most individual
effort estimates. A key assump-
tion for accuracy improvement is
that the estimates are independent,
which is true if their sources differ
in expertise, background, and esti-
mation process. A Delphi-like esti-
mation process, such as “Planning
Poker,” where software developers
show their independently derived
estimates (their “poker” cards) at
the same time, seems to be particu-
larly useful in software effort esti-
mation contexts.

A group-based, structured esti-
mation process adds value to a me-

chanical combination of estimates
because sharing the knowledge in-
creases the total amount of knowl-
edge, such as the total amount of
activities to be completed on a proj-
ect. The negative effect of group-
based judgments, such as “group-
think” and the willingness to take
higher risks in groups, isn’t docu-
mented to be present in software ef-
fort estimation.

Estimation models seem to be on
average less accurate than expert
estimates. The difference between
the processes of models and experts
make it nevertheless particularly use-
ful to combine these two methods to
improve the estimation accuracy.

Estimates Can Be Harmful
Estimates not only forecast the fu-
ture but also frequently affect it.
Too-low estimates can lead to lower
quality, possible rework in later
phases, and higher risks of proj-
ect failure; too-high estimates can
reduce productivity in accordance
with Parkinson’s law, which states
that work expands to fill the time
available for its completion.

This is why it’s important to con-
sider whether an effort estimate is re-
ally needed. If you don’t really need
estimates or just need them at a later
stage, it might be safer to go with-
out them or postpone the estimation
until more information is available.
Agile software development—which

involves planning just the next sprint
or release by using feedback from
previous sprints or releases—might
be a good way to avoid the potential
harm from estimating too early.

What We Don’t Know
There are several estimation chal-
lenges for which we simply have
no good solution, sometimes in
spite of volumes of research. Three

challenges in particular highlight
how our knowledge is far from
satisfactory.

How to Accurately Estimate
the Effort of Mega-Large,
Complicated Software Projects
Mega-projects impose extra de-
mand on effort estimation. Not
only are more values at stake, but
there will also be less relevant ex-
perience and historical data avail-
able. Many of the activities typical
for mega- projects, such as organiza-
tional issues with many stakehold-
ers involved, seem to be very hard
to estimate accurately because they
typically involve business process
changes, and complex interactions
between stakeholders and with ex-
isting software applications.

How to Measure Software Size and
Complexity for Accurate Estimation
In spite of the years of research into
measuring software size and complex-
ity, none of the proposed measures are

Pull Quote Here

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

VOICE OF EVIDENCE

very good when it comes to estimating
software development effort. Some
size and complexity contexts might
enable accurate effort estimates, but
such contexts seem to be rare.

How to Measure
and Predict Productivity
Even if you have good measures of
software size and complexity, you
need to reliably predict the produc-

tivity of the individuals or teams
completing the work. This predic-
tion is complicated by a frequently
surprisingly large difference in pro-
ductivity among software develop-
ers and teams. No good method,
except perhaps realistic program-
ming tests (trialsourcing), for this
type of prediction exists.

Currently, we don’t even know
whether there’s an economy of
scale (productivity increases with
increasing project size) or a disec-
onomy of scale (productivity de-
creases with increasing project size)
in software projects. Most empiri-
cal studies suggest that software
projects on average have an econ-
omy of scale, whereas software
practitioners typically believe in
a diseconomy of scale. Unfortu-
nately, the research results on scale
economies seem to be a conse-
quence of how the analysis is con-
ducted and don’t tell much about
the underlying relationship be-
tween size and productivity.

W hat we currently know
about software effort
and cost estimation

doesn’t really enable us to solve the
estimation challenges in the software
industry. It does, however, point out
several actions likely to improve es-
timation accuracy. In particular,
software companies are likely to im-
prove their estimation accuracy if
they do the following:

• Develop and use simple estima-
tion models tailored to local con-
texts in combination with expert
estimation.

• Use historical estimation error to
set minimum–maximum effort
intervals.

• Avoid exposure to mislead-
ing and irrelevant estimation
information.

• Use checklists tailored to own
organization.

• Use structured, group-based
estimation processes where
independence of estimates are
assured.

• Avoid early estimates based on
highly incomplete information.

Highly competitive bidding rounds
where the client has a strong focus
on low price are likely to lead to the
selection of an overoptimistic bidder
and consequently cost overruns and
lower software quality. This is termed
“the winner’s curse” in other do-
mains. In the long run, most software

clients might start to understand how
their emphasis on fixed, low price for
software projects has negative con-
sequences on project success. Until
then, software companies should in-
crease their awareness of when they’re
in a situation where they’re selected
only when they’re being overoptimis-
tic about the cost—and have strat-
egies in hand for how to manage or
avoid the winner’s curse.

References
 1. T. Halkjelsvik and M. Jørgensen, “From

Origami to Software Development: A
Review of Studies on Judgment-Based
Predictions of Performance Time,” Psycho-
logical Bulletin, vol. 138, no. 2, 2012, pp.
238–271.

 2. M. Jørgensen and K. Moløkken-Østvold,
“How Large Are Software Cost Overruns?
A Review of the 1994 CHAOS Report,”
Information and Software Technology,
vol. 48, no. 4, 2006, pp. 297–301.

 3. M. Jørgensen, “A Review of Studies on
Expert Estimation of Software Develop-
ment Effort,” J. Systems and Software, vol.
70, no. 1, 2004, pp. 37–60.

 4. T. Menzies and M. Shepperd, “Special
Issue on Repeatable Results in Software
Engineering Prediction,” Empirical Soft-
ware Eng., vol. 17, no. 1, 2012, pp. 1–17.

 5. J.J. Dolado, “On the Problem of the
Software Cost Function,” Information and
Software Technology, vol. 43, no. 1, 2001,
pp. 61–72.

 6. M. Jørgensen and D.I.K. Sjøberg, “An
Effort Prediction Interval Approach Based
on the Empirical Distribution of Previous
Estimation Accuracy,” Information and
Software Technology, vol. 45, no. 3, 2003,
pp. 123–136.

 7. B. Flyvbjerg, “Curbing Optimism Bias and
Strategic Misrepresentation in Planning:
Reference Class Forecasting in Practice,”
European Planning Studies, vol. 16, no. 1,
2008, pp. 3–21.

MAGNE JØRGENSEN works as a researcher
at Simula Research Laboratory and a profes-
sor at the University of Oslo. His current main
research interests include effort estimation,
bidding processes, outsourcing, and software
development skill assessments. Contact him at
magnej@simula.no.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Pull Quote

