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•  Content stored in several 
bitrates 

•  On-demand delivery 

 

Adaptive HTTP Streaming 

Bottleneck link 

Web server 

Clients 

In Adaptive HTTP Streaming, bottlenecks don’t 
need to be thin to degrade quality! 
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Limiting factors: 
-  Server speed 
-  Client speed 
-  Client buffer size 

•  not in real systems 
•  buffer size is limited 
•  behaviour like live 

when buffer is full 

HTTP pipelining should share server-side bottlenecks 
fairly 
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VoD traffic pattern 
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Figure 2.5: MPEG-2 packaging efficiency based on last TS packet padding size

indicates that the player requested multiple segments at about the same time. This is the
time the client pre-buffered video segments in the beginning of the session. After this initial
pre-buffering, a segment was requested approximately every segment duration.
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Figure 2.6: A trace of VoD streaming from www.comoyo.no (movie: "J. Edgar")

Moreover, segments from different video streams can be combined (if properly encoded)
into customized videos. Both types of playlists, segments from the same video and segments
from different videos, are illustrated in Figure 2.7. In the scope of this thesis, we implemented
two systems that utilize the HTTP segment streaming playlist feature to enhance the user
experience [54, 55, 56]. The creation of both of these systems was motivated by the fact that
locating content in existing video archives like YouTube [10] is both a time and bandwidth

19

from T. Kupka (2013): 
one movie streamed from ComoYo 

Filling the buffer 

“On the HTTP segment streaming potentials 
and performance improvements”, 
Tomas Kupka, 
PhD Thesis, University of Oslo, June 2013 
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Live traffic pattern 

2s 2s 

Limiting factors: 
-  Server speed 
-  Client speed 
-  Client buffer size 
-  Segment availability 

Connection is idle 
Download synchronization 

Segmented live stream 
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Live traffic pattern 

from T. Kupka (2013:E): 
Number of sessions that were started per minute (live event starting at 17:00) 
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minute (all games started at 17:00 UTC)
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Figure 3.12: Session statistics based on the client log

This ensures that the player was really playing during a period of time defined like this (ses-
sion examples with bitrate switching are shown in Figure 3.13). A bitrate (the video content
was available in 0.5, 1, 2 and 4 Mbit/s, and the audio in 96 KBit/s) was additionally assigned
to each period based on the client bitrate event reports. The period duration multiplied by the
corresponding bitrate gave us a good estimate of the bytes downloaded by the client in that
period since Constant BitRate (CBR) encoding is used for the live streaming. The sum of
bytes received in each period of a session gave us the total number of bytes downloaded in a
session.

It is interesting that the final sum of bytes received by all sessions is many times higher
than the number of bytes served by the server. The server log reports 551 GB in total whereas

42

Confirms a major problem identified by 
L. Kontothanassis (2012): 
“This video will start soon syndrome”, 
i.e. users arrive before start and wait, 
resulting in a synchronized start burst 

“Content Delivery Considerations for 
Different Types of Internet Video”, 
Leonidas Kontothanassis, 
Keynote, ACM MMSys 2012 

“Analysis of a Real-World HTTP Segment Streaming 
Case”, 
T.Kupka, C.Griwodz, P.Halvorsen, D.Johansen, T.Hovden 
EuroITV 2013 
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Traffic patterns 
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A new kind of on-off pattern Why should we care? 
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Figure 2.5: MPEG-2 packaging efficiency based on last TS packet padding size

indicates that the player requested multiple segments at about the same time. This is the
time the client pre-buffered video segments in the beginning of the session. After this initial
pre-buffering, a segment was requested approximately every segment duration.
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Figure 2.6: A trace of VoD streaming from www.comoyo.no (movie: "J. Edgar")

Moreover, segments from different video streams can be combined (if properly encoded)
into customized videos. Both types of playlists, segments from the same video and segments
from different videos, are illustrated in Figure 2.7. In the scope of this thesis, we implemented
two systems that utilize the HTTP segment streaming playlist feature to enhance the user
experience [54, 55, 56]. The creation of both of these systems was motivated by the fact that
locating content in existing video archives like YouTube [10] is both a time and bandwidth
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Highly unstable quality 
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TCP Congestion Control
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slow-phase and in congestion 
avoidance phase

Additive Increase
One more segments sent after 1 

RTT without loss in 
congestion avoidance phase

Slow Start
TCP will always return to a slow start when a packet loss 

is detected by timeout (instead of duplicate ACKs). 
That means that it starts from scratch with only 
one segment per RTT, then 2, then 4, etc.

TCP congestion window development: 2 sec segments 

connection hardly ever leave slow start 

Bottleneck behaviour 
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Bottleneck behaviour 

The server application dispatches an entire segment at once 
(except Akamai server with matching client) 

Order of burst arrival at the bottleneck queue changes due to 
self-clocking effects, jitter and RTT differences 

A connection that manages to leave slow start is penalized: 
no return to slow start growth even when falling under 
previous threshold 

Loosing in one RTT may force a client to introduce several 
seconds pre-buffering 

What do we know? 
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Effects of Live Adaptive TCP Streaming 

If the BW loss is sudden, and prefetch time must be increased, 
we experience buffer underruns (“hickups”) 
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Figure 3.8: User to IP address mapping
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Figure 3.9: The percentage of sessions with at least one buffer underrun by ISP
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Figure 3.10: ISP to user statistics

Type Server log Match in client log
live Smooth Streaming 748 IPs 723 IPs (or 97%) hosted by 58 ISPs
on-demand Smooth Streaming 74 IPs 5 IPs (or 7%) hosted by 3 ISPs
progressive streaming 581 IPs 390 IPs (or 67%) hosted by 32 ISPs

Table 3.5: IP to ISP statistics

means that, as expected, one of the large benefits of HTTP segment streaming is the reuse of
existing HTTP infrastructure.

40

from T. Kupka (2013:E): 
The percentage of sessions with at least one buffer underrun by ISP 
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Relation to the TCP streaming rule of thumb 

the fraction of late packets 
when the available bandwidth 
(determined by RTT) 
is T/mu times the streaming rate 

16:16 • B. Wang et al.
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Fig. 9. Diminishing gain from increasing T/µ on performance in live streaming, p = 0.02, TO = 4. (a) Vary T/µ by fixing play
back rate to 25 packets per second and varying RTT. (b) Vary T/µ by fixing RTT to 100 ms and varying play back rate.

drops when the packet loss rate exceeds 10−4 [Verscheure et al. 1998]. Consequently, we assume that
the performance of TCP streaming is satisfactory when the fraction of late packets is below 10−4 for a
startup delay of around 10 seconds.2

Recall that we denote the achievable TCP throughput as T packets per second. When T/µ ≥ 1, T/µ

represents how much greater the achievable TCP throughput is than the video playback rate. The
performance of TCP streaming improves as T/µ increases [Wang et al. 2004]. This is intuitive since
packets accumulate in the client’s local buffer faster relative to the playback rate of the video as T/µ

increases. We next vary the value of T/µ in order to identify the minimum value of T/µ that leads to
satisfactory performance. For convenience, we define TR to be the achievable TCP throughput in one
RTT. Then T = TR/R. Since T/µ = TR/(µR) and TR is determined by p and TO , we vary the value of
T/µ by fixing p and TO and varying either the playback rate µ or the RTT R. In particular, we fix p to
be 0.004, 0.02 or 0.04, corresponding to low, medium and high loss rates respectively, and fix TO to be
1, 2, 3 or 4.

6.2.1 Live Streaming. For fixed values of p and TO , we increase T/µ from 1.2 to 2.4 by either fixing
RTT and decreasing the video playback rate or fixing the playback rate and decreasing RTT. We observe
a diminishing gain from increasing T/µ on performance: performance improves dramatically as T/µ

increases from 1.2 to 1.6 and less dramatically afterwards. Two examples are shown in Figures 9(a) and
(b) respectively. In both figures, p = 0.02 and TO = 4. In Figure 9(a), the playback rate of the media is
fixed to 25 packets per second and RTT is varied such that T/µ ranges from 1.2 to 2.4. In Figure 9(b),
the RTT is fixed to 100 ms and the playback rate is varied. This diminishing gain indicates that, to
achieve a low fraction of late packets, the required startup delay is large when T/µ is only slightly
higher than 1 and reduces quickly as T/µ increases. However, the reduction becomes less dramatic for
large values of T/µ.

We now explore the required startup delay such that the fraction of late packets, f , lies below 10−4.
In Figure 10(a), the playback rate is fixed to 25 packets per second and the RTT is varied such that T/µ

ranges from 1.2 to 2.4 for various loss rates and TO = 4 (the required startup delay for lower values

2Some people may be willing to tolerate a longer startup delay in stored-media streaming than that in live streaming. However,
our focus is on on-demand streaming for both forms of streaming where the startup delay is a few seconds.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 2, Article 16, Publication date: May 2008.
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Fig. 9. Diminishing gain from increasing T/µ on performance in live streaming, p = 0.02, TO = 4. (a) Vary T/µ by fixing play
back rate to 25 packets per second and varying RTT. (b) Vary T/µ by fixing RTT to 100 ms and varying play back rate.

drops when the packet loss rate exceeds 10−4 [Verscheure et al. 1998]. Consequently, we assume that
the performance of TCP streaming is satisfactory when the fraction of late packets is below 10−4 for a
startup delay of around 10 seconds.2

Recall that we denote the achievable TCP throughput as T packets per second. When T/µ ≥ 1, T/µ

represents how much greater the achievable TCP throughput is than the video playback rate. The
performance of TCP streaming improves as T/µ increases [Wang et al. 2004]. This is intuitive since
packets accumulate in the client’s local buffer faster relative to the playback rate of the video as T/µ

increases. We next vary the value of T/µ in order to identify the minimum value of T/µ that leads to
satisfactory performance. For convenience, we define TR to be the achievable TCP throughput in one
RTT. Then T = TR/R. Since T/µ = TR/(µR) and TR is determined by p and TO , we vary the value of
T/µ by fixing p and TO and varying either the playback rate µ or the RTT R. In particular, we fix p to
be 0.004, 0.02 or 0.04, corresponding to low, medium and high loss rates respectively, and fix TO to be
1, 2, 3 or 4.

6.2.1 Live Streaming. For fixed values of p and TO , we increase T/µ from 1.2 to 2.4 by either fixing
RTT and decreasing the video playback rate or fixing the playback rate and decreasing RTT. We observe
a diminishing gain from increasing T/µ on performance: performance improves dramatically as T/µ

increases from 1.2 to 1.6 and less dramatically afterwards. Two examples are shown in Figures 9(a) and
(b) respectively. In both figures, p = 0.02 and TO = 4. In Figure 9(a), the playback rate of the media is
fixed to 25 packets per second and RTT is varied such that T/µ ranges from 1.2 to 2.4. In Figure 9(b),
the RTT is fixed to 100 ms and the playback rate is varied. This diminishing gain indicates that, to
achieve a low fraction of late packets, the required startup delay is large when T/µ is only slightly
higher than 1 and reduces quickly as T/µ increases. However, the reduction becomes less dramatic for
large values of T/µ.

We now explore the required startup delay such that the fraction of late packets, f , lies below 10−4.
In Figure 10(a), the playback rate is fixed to 25 packets per second and the RTT is varied such that T/µ

ranges from 1.2 to 2.4 for various loss rates and TO = 4 (the required startup delay for lower values

2Some people may be willing to tolerate a longer startup delay in stored-media streaming than that in live streaming. However,
our focus is on on-demand streaming for both forms of streaming where the startup delay is a few seconds.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 2, Article 16, Publication date: May 2008.

“Multimedia Streaming via TCP: An Analytic Performance Study”, 
B. Wang, J. Kurose, P. Shenoy, D. Towsley, ACM TOMCCAP 4:2, 2008 
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Relation to the TCP streaming rule of thumb 

the fraction of late packets 
when the available bandwidth 
(determined by RTT) 
is T/mu times the streaming rate 
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drops when the packet loss rate exceeds 10−4 [Verscheure et al. 1998]. Consequently, we assume that
the performance of TCP streaming is satisfactory when the fraction of late packets is below 10−4 for a
startup delay of around 10 seconds.2

Recall that we denote the achievable TCP throughput as T packets per second. When T/µ ≥ 1, T/µ

represents how much greater the achievable TCP throughput is than the video playback rate. The
performance of TCP streaming improves as T/µ increases [Wang et al. 2004]. This is intuitive since
packets accumulate in the client’s local buffer faster relative to the playback rate of the video as T/µ

increases. We next vary the value of T/µ in order to identify the minimum value of T/µ that leads to
satisfactory performance. For convenience, we define TR to be the achievable TCP throughput in one
RTT. Then T = TR/R. Since T/µ = TR/(µR) and TR is determined by p and TO , we vary the value of
T/µ by fixing p and TO and varying either the playback rate µ or the RTT R. In particular, we fix p to
be 0.004, 0.02 or 0.04, corresponding to low, medium and high loss rates respectively, and fix TO to be
1, 2, 3 or 4.

6.2.1 Live Streaming. For fixed values of p and TO , we increase T/µ from 1.2 to 2.4 by either fixing
RTT and decreasing the video playback rate or fixing the playback rate and decreasing RTT. We observe
a diminishing gain from increasing T/µ on performance: performance improves dramatically as T/µ

increases from 1.2 to 1.6 and less dramatically afterwards. Two examples are shown in Figures 9(a) and
(b) respectively. In both figures, p = 0.02 and TO = 4. In Figure 9(a), the playback rate of the media is
fixed to 25 packets per second and RTT is varied such that T/µ ranges from 1.2 to 2.4. In Figure 9(b),
the RTT is fixed to 100 ms and the playback rate is varied. This diminishing gain indicates that, to
achieve a low fraction of late packets, the required startup delay is large when T/µ is only slightly
higher than 1 and reduces quickly as T/µ increases. However, the reduction becomes less dramatic for
large values of T/µ.

We now explore the required startup delay such that the fraction of late packets, f , lies below 10−4.
In Figure 10(a), the playback rate is fixed to 25 packets per second and the RTT is varied such that T/µ

ranges from 1.2 to 2.4 for various loss rates and TO = 4 (the required startup delay for lower values

2Some people may be willing to tolerate a longer startup delay in stored-media streaming than that in live streaming. However,
our focus is on on-demand streaming for both forms of streaming where the startup delay is a few seconds.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 2, Article 16, Publication date: May 2008.

less effective 
bandwidth use 

fewer hickups 
in video 
playback 

“Multimedia Streaming via TCP: An Analytic Performance Study”, 
B. Wang, J. Kurose, P. Shenoy, D. Towsley, ACM TOMCCAP 4:2, 2008 
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Fig. 7. Model validation using experiments over the Internet.

5.2 Validation for Stored-Media Streaming

We next compare model predictions against measurements taken over the Internet for stored-media
streaming. In each experiment, we run 8 parallel TCP connections to obtain a group of runs with
similar TCP parameters (loss rate, RTT and TO ). Since the bandwidth for a cable modem or ADSL
connection is too low to benefit from parallel TCP connections, we chose a high-bandwidth university
path. Paths connecting universities in the US are over Internet2 (http://www.internet2.edu/) and are
very lightly used. We therefore chose a path between a university at the US and a university in Europe.
In particular, the server is at UMass and the client is at Universita’ dell’Aquila, Italy. Each experiment
lasts for 1 hour. We then divide the trace for each TCP flow into multiple segments, each of 100 seconds.
Each 100-second segment is treated as a 100-second video. We use p = 0.031 in the model and select
266 segments having loss rate between 0.027 and 0.035 (in the range of (1 ± ϵ)p, where ϵ < 0.15, for
the same reasons as those in Section 4). For the selected segments, the RTT is 300 ms and TO = 1.
The average throughput is 15.2 packets per second. We set the playback rate of the video to be 14
packets per second. Correspondingly, the available TCP throughput is 9% higher than the playback
rate of the video. Figure 7(b) plots the fraction of late packets for various startup delays. The fraction
of late packets predicted by the model is slightly higher than that from the measurements. This might
be because, at the beginning of the video streaming, the window size is always one in the model while
it may be larger than one in the measurement data segment.

6. EXPLORING THE PARAMETER SPACE

In this section, we vary the model parameters in live and stored-media streaming to study the impact of
these parameters on performance. In doing so, we provide guidelines as to when TCP streaming leads
to satisfactory performance.

We set the values of the parameters in TCP (i.e., loss rate, R and TO ) to represent a wide range of
scenarios. The loss rate is varied in the range of 0.004 to 0.04. Previous work shows that the median
RTT between two sites on the same coast in the US is 50 ms, while the median RTT between west-coast
and east-coast sites is 100 ms [Huffaker et al. 2001]. Consequently, we vary R in the range of 40 ms
to 300 ms. We vary TO from 1 to 4, based on several measurements from Linux machines in Padhye
et al. [1998] and our measurements. In the following, we first explore how the performance of live and
stored-media streaming varies with the length of the video. We then identify the conditions under which
TCP streaming provides a satisfactory viewing experience. At the end, we summarize the key results.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 2, Article 16, Publication date: May 2008.
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Fig. 9. Diminishing gain from increasing T/µ on performance in live streaming, p = 0.02, TO = 4. (a) Vary T/µ by fixing play
back rate to 25 packets per second and varying RTT. (b) Vary T/µ by fixing RTT to 100 ms and varying play back rate.

drops when the packet loss rate exceeds 10−4 [Verscheure et al. 1998]. Consequently, we assume that
the performance of TCP streaming is satisfactory when the fraction of late packets is below 10−4 for a
startup delay of around 10 seconds.2

Recall that we denote the achievable TCP throughput as T packets per second. When T/µ ≥ 1, T/µ

represents how much greater the achievable TCP throughput is than the video playback rate. The
performance of TCP streaming improves as T/µ increases [Wang et al. 2004]. This is intuitive since
packets accumulate in the client’s local buffer faster relative to the playback rate of the video as T/µ

increases. We next vary the value of T/µ in order to identify the minimum value of T/µ that leads to
satisfactory performance. For convenience, we define TR to be the achievable TCP throughput in one
RTT. Then T = TR/R. Since T/µ = TR/(µR) and TR is determined by p and TO , we vary the value of
T/µ by fixing p and TO and varying either the playback rate µ or the RTT R. In particular, we fix p to
be 0.004, 0.02 or 0.04, corresponding to low, medium and high loss rates respectively, and fix TO to be
1, 2, 3 or 4.

6.2.1 Live Streaming. For fixed values of p and TO , we increase T/µ from 1.2 to 2.4 by either fixing
RTT and decreasing the video playback rate or fixing the playback rate and decreasing RTT. We observe
a diminishing gain from increasing T/µ on performance: performance improves dramatically as T/µ

increases from 1.2 to 1.6 and less dramatically afterwards. Two examples are shown in Figures 9(a) and
(b) respectively. In both figures, p = 0.02 and TO = 4. In Figure 9(a), the playback rate of the media is
fixed to 25 packets per second and RTT is varied such that T/µ ranges from 1.2 to 2.4. In Figure 9(b),
the RTT is fixed to 100 ms and the playback rate is varied. This diminishing gain indicates that, to
achieve a low fraction of late packets, the required startup delay is large when T/µ is only slightly
higher than 1 and reduces quickly as T/µ increases. However, the reduction becomes less dramatic for
large values of T/µ.

We now explore the required startup delay such that the fraction of late packets, f , lies below 10−4.
In Figure 10(a), the playback rate is fixed to 25 packets per second and the RTT is varied such that T/µ

ranges from 1.2 to 2.4 for various loss rates and TO = 4 (the required startup delay for lower values

2Some people may be willing to tolerate a longer startup delay in stored-media streaming than that in live streaming. However,
our focus is on on-demand streaming for both forms of streaming where the startup delay is a few seconds.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 2, Article 16, Publication date: May 2008.

Relation to the TCP streaming rule of thumb 

real-world verification 

the fraction of late packets 
when the available bandwidth 
(determined by RTT) 
is T/mu times the streaming rate 

rule of thumb: 
if 5 sec startup delay is acceptable, 
available bandwidth of twice the 
streaming rate is sufficient 
(cited in really many papers) 

“Multimedia Streaming via TCP: An Analytic Performance Study”, 
B. Wang, J. Kurose, P. Shenoy, D. Towsley, ACM TOMCCAP 4:2, 2008 
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Relation to the TCP streaming rule of thumb 

Does this rule of thumb apply to adaptive HTTP streaming? 

Not entirely 

•  Adaptive HTTP sessions may remain in slow start 
•  The server-sided bottleneck is not stable, the assumption of 

eventual fair sharing never holds 
•  An adaptive HTTP stream can revise its bandwidth decision 

every 2 seconds 
•  Hickups can be avoided by downscaling 

Furthermore 

The rule fails for 1 in 1000 segments 
5sec pre-buffering may already be too much 
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Viewers$with$beWer$connecQvity$have$less$
paQence$for$startup$delay$and$abandon$sooner.$

Abandonment due to startup latency 

“Video Stream Quality Impacts Viewer Behavior: 
Inferring Causality using Quasi-Experimental Designs”, 
S. Krishnan and R. Sitaraman, 
ACM IMC 2012 

Surprisingly high numbers of users abandon Akamai downloads 
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Abandonment due to startup latency 

Viewers with better connectivity have less patience for startup delay 
and abandon sooner 

No study considering startup-delay and quality in combination has been 
conducted yet 

This study shows when users gives up before seeing anything 

The study does not show whether users abandon after receiving low quality 
at low startup delay 

Based on a huge dataset: 
•  10 days 
•  12 content providers 
•  102 000 videos 
•  23 million views from three continents 

“Video Stream Quality Impacts Viewer Behavior: 
Inferring Causality using Quasi-Experimental Designs”, 
S. Krishnan and R. Sitaraman, 
ACM IMC 2012 
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Choices for quality and liveness 
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Evaluated modifications 

TCP exhibits an new set of problems due to a new kind of 
On-Off traffic 

time 
CW

N
D

 

CUBIC 

time 

CW
N

D
 

NewReno 

“Performance of On-Off Traffic Stemming From Live 
Adaptive Segmented HTTP Video Streaming”, 
T.Kupka, C.Griwodz, P.Halvorsen 
IEEE LCN 2012 

TCP congestion control alternatives 
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TCP congestion control alternatives 

CUBIC Vegas 

lo
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TCP Vegas shares the network much better than TCP CUBIC 

Unfortunately, TCP Vegas looses in sharing 

packet losses 
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TCP congestion control alternatives 

left: Cubic, right: Vegas"

Cubic delivers higher quality Vegas delivers better liveness 
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Figure 5.19: Quality coding in figures from low (0) to high (5)
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Figure 5.20: Alternative congestion control: Cubic vs. Vegas

5.10.2 Increased Segment Duration

In Section 5.7, we compared short segments with long segments from the system perspec-
tive where longer segments give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better performance than 10-second
segments. The question answered in this section is how this impacts the video quality. In
this respect, Figure 5.21(a) shows that the relative number of high quality segments is lower
than in the 2-second case. The liveness seems also worse, but it is actually quite good for
10-second segments. The clients are just one 10-second segment behind the live stream. This
means that the clients need to buffer only one segment, that is 10 seconds long, for a smooth
playout. Nevertheless, it seems to be more efficient to use 2-second segments – both from
the system and the user perspective. This raises the question if even shorter segments should
be used, but this is discouraged by current research [107] that states that a very frequent
changing of quality leads to unpleasant visual artifacts in the playout.

5.10.3 Requests Distributed over Time

Section 5.8 showed a better system performance when distributing the requests for a segment
over an entire segment duration. Figure 5.22(a) shows the respective quality improvement
when the requests are distributed as in the previous section. The quality improvement is
obvious, especially, when the number of clients is high. However, we need to point out that
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5.10.2 Increased Segment Duration

In Section 5.7, we compared short segments with long segments from the system perspec-
tive where longer segments give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better performance than 10-second
segments. The question answered in this section is how this impacts the video quality. In
this respect, Figure 5.21(a) shows that the relative number of high quality segments is lower
than in the 2-second case. The liveness seems also worse, but it is actually quite good for
10-second segments. The clients are just one 10-second segment behind the live stream. This
means that the clients need to buffer only one segment, that is 10 seconds long, for a smooth
playout. Nevertheless, it seems to be more efficient to use 2-second segments – both from
the system and the user perspective. This raises the question if even shorter segments should
be used, but this is discouraged by current research [107] that states that a very frequent
changing of quality leads to unpleasant visual artifacts in the playout.

5.10.3 Requests Distributed over Time

Section 5.8 showed a better system performance when distributing the requests for a segment
over an entire segment duration. Figure 5.22(a) shows the respective quality improvement
when the requests are distributed as in the previous section. The quality improvement is
obvious, especially, when the number of clients is high. However, we need to point out that
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5.10.2 Increased Segment Duration

In Section 5.7, we compared short segments with long segments from the system perspec-
tive where longer segments give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better performance than 10-second
segments. The question answered in this section is how this impacts the video quality. In
this respect, Figure 5.21(a) shows that the relative number of high quality segments is lower
than in the 2-second case. The liveness seems also worse, but it is actually quite good for
10-second segments. The clients are just one 10-second segment behind the live stream. This
means that the clients need to buffer only one segment, that is 10 seconds long, for a smooth
playout. Nevertheless, it seems to be more efficient to use 2-second segments – both from
the system and the user perspective. This raises the question if even shorter segments should
be used, but this is discouraged by current research [107] that states that a very frequent
changing of quality leads to unpleasant visual artifacts in the playout.

5.10.3 Requests Distributed over Time

Section 5.8 showed a better system performance when distributing the requests for a segment
over an entire segment duration. Figure 5.22(a) shows the respective quality improvement
when the requests are distributed as in the previous section. The quality improvement is
obvious, especially, when the number of clients is high. However, we need to point out that
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Evaluated modifications 

vs. 

2 second segments 10 second segments 

Increasing segment length: give TCP more time 

HTTP live streaming  HTTP streaming  
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2 second vs. 10 second segments 

Quality not better for longer segments 
TCP gets out of slowstart 

TCP CWND for 2 sec. segments 
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Figure 5.21: Segment lengths: 2 vs. 10 seconds
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Figure 5.22: Request distribution (1 segment buffer)

the liveness suffers. Figure 5.22(b) shows that because of lower quality, the strategy without
any modifications is able to provide the clients with a more ’live’ stream.

In practice, however, this would be handled by allowing buffering, which does affect
liveness, but fixes interruptions in playout. Thus, a observed liveness of -16 seconds means
the client would require at least a 14 seconds buffer in order to play the stream smoothly
without any pauses. For live streaming, this means that a client cannot request the most
recent segment from the server when it joins the stream, but has to request an older segment
to have a chance to fill its buffer before catching up with the live stream and so entering the
download-and-wait cycle.

Figure 5.23 shows the quality improvement and liveness when clients use 5 segment
(10 second) buffers. We observe that the quality gain of request distribution is preserved
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5.10.2 Increased Segment Duration

In Section 5.7, we compared short segments with long segments from the system perspec-
tive where longer segments give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better performance than 10-second
segments. The question answered in this section is how this impacts the video quality. In
this respect, Figure 5.21(a) shows that the relative number of high quality segments is lower
than in the 2-second case. The liveness seems also worse, but it is actually quite good for
10-second segments. The clients are just one 10-second segment behind the live stream. This
means that the clients need to buffer only one segment, that is 10 seconds long, for a smooth
playout. Nevertheless, it seems to be more efficient to use 2-second segments – both from
the system and the user perspective. This raises the question if even shorter segments should
be used, but this is discouraged by current research [107] that states that a very frequent
changing of quality leads to unpleasant visual artifacts in the playout.

5.10.3 Requests Distributed over Time

Section 5.8 showed a better system performance when distributing the requests for a segment
over an entire segment duration. Figure 5.22(a) shows the respective quality improvement
when the requests are distributed as in the previous section. The quality improvement is
obvious, especially, when the number of clients is high. However, we need to point out that

75

left: 2sec, right: 10sec"



Control Techniques for Efficient Multimedia Delivery 2013 University of Oslo 

Evaluated modifications 

time 

S1 S2 S3 

time 

S1 S2 S3 Client A: 

Client B: 

Client request distribution 
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Client request distribution 

Synchronous requests Distributed requests 

Self-inflicted congestion: Only the slow start effects lead to 
queue overflow. Loss of goodput. 

Uniform distribution maximizes goodput 

This helps not at all if congestion is due to high total load. 
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Client request distribution 

Distribution of the number of segments of different quality 

left: synchronized, right: distributed"
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Figure 5.21: Segment lengths: 2 vs. 10 seconds
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Figure 5.22: Request distribution (1 segment buffer)

the liveness suffers. Figure 5.22(b) shows that because of lower quality, the strategy without
any modifications is able to provide the clients with a more ’live’ stream.

In practice, however, this would be handled by allowing buffering, which does affect
liveness, but fixes interruptions in playout. Thus, a observed liveness of -16 seconds means
the client would require at least a 14 seconds buffer in order to play the stream smoothly
without any pauses. For live streaming, this means that a client cannot request the most
recent segment from the server when it joins the stream, but has to request an older segment
to have a chance to fill its buffer before catching up with the live stream and so entering the
download-and-wait cycle.

Figure 5.23 shows the quality improvement and liveness when clients use 5 segment
(10 second) buffers. We observe that the quality gain of request distribution is preserved
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Figure 5.20: Alternative congestion control: Cubic vs. Vegas

5.10.2 Increased Segment Duration

In Section 5.7, we compared short segments with long segments from the system perspec-
tive where longer segments give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better performance than 10-second
segments. The question answered in this section is how this impacts the video quality. In
this respect, Figure 5.21(a) shows that the relative number of high quality segments is lower
than in the 2-second case. The liveness seems also worse, but it is actually quite good for
10-second segments. The clients are just one 10-second segment behind the live stream. This
means that the clients need to buffer only one segment, that is 10 seconds long, for a smooth
playout. Nevertheless, it seems to be more efficient to use 2-second segments – both from
the system and the user perspective. This raises the question if even shorter segments should
be used, but this is discouraged by current research [107] that states that a very frequent
changing of quality leads to unpleasant visual artifacts in the playout.

5.10.3 Requests Distributed over Time

Section 5.8 showed a better system performance when distributing the requests for a segment
over an entire segment duration. Figure 5.22(a) shows the respective quality improvement
when the requests are distributed as in the previous section. The quality improvement is
obvious, especially, when the number of clients is high. However, we need to point out that
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Figure 5.21: Segment lengths: 2 vs. 10 seconds
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Figure 5.22: Request distribution (1 segment buffer)

the liveness suffers. Figure 5.22(b) shows that because of lower quality, the strategy without
any modifications is able to provide the clients with a more ’live’ stream.

In practice, however, this would be handled by allowing buffering, which does affect
liveness, but fixes interruptions in playout. Thus, a observed liveness of -16 seconds means
the client would require at least a 14 seconds buffer in order to play the stream smoothly
without any pauses. For live streaming, this means that a client cannot request the most
recent segment from the server when it joins the stream, but has to request an older segment
to have a chance to fill its buffer before catching up with the live stream and so entering the
download-and-wait cycle.

Figure 5.23 shows the quality improvement and liveness when clients use 5 segment
(10 second) buffers. We observe that the quality gain of request distribution is preserved
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Recap 

TCP CC alternatives: TCP Vegas is good, but not practical 

Segment duration: 
No evidence of longer segments being better (network view) 

Client request distribution leads to good quality and liveness 
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Smoothing techniques 
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“Analysis of a Real-World HTTP Segment Streaming Case”, 
T.Kupka, C.Griwodz, P.Halvorsen, D.Johansen, T.Hovden 
EuroITV 2013 

Effects of Live Adaptive TCP Streaming 
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Figure 3.12: Session statistics based on the client log

This ensures that the player was really playing during a period of time defined like this (ses-
sion examples with bitrate switching are shown in Figure 3.13). A bitrate (the video content
was available in 0.5, 1, 2 and 4 Mbit/s, and the audio in 96 KBit/s) was additionally assigned
to each period based on the client bitrate event reports. The period duration multiplied by the
corresponding bitrate gave us a good estimate of the bytes downloaded by the client in that
period since Constant BitRate (CBR) encoding is used for the live streaming. The sum of
bytes received in each period of a session gave us the total number of bytes downloaded in a
session.

It is interesting that the final sum of bytes received by all sessions is many times higher
than the number of bytes served by the server. The server log reports 551 GB in total whereas
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(b) Zoomed in to minutes 168 to 170.

Figure 3.13: Example of bitrate adaptation throughout a session based on client reports

the estimate based on the client log is about 4.5 times higher. Even if only the smallest
available bitrate is assigned to every period, the total amount of data received by the clients is
2.5 times higher than the value from the server log. This is another evidence for the presence
of HTTP caches that respond to a significant number of requests.

3.4 Conclusions
In this chapter, we analysed the logs of adaptive HTTP segment streaming provided by Co-
moyo [16], a Norwegian streaming provider. We analysed two types of logs; one from the
origin server and one from the analytics server to which the clients report. The analysed
data included all streaming sessions ranging from very static to very dynamic sessions, see
example in Figure 3.13.

We observed that about 90% of the requests for the same segment in live streaming is sent
within a period of 3 to 10 seconds depending on the content (analysed football game). This
gives a great potential for caching. This also means that an HTTP proxy cache needs to cache
a segment only a very short time and that most of the segment requests come during a very
short time period.

We also deduced from the segments downloaded multiple times that at least 3% of the
bytes downloaded could have been saved if more HTTP caches or a different bitrate adapta-
tion strategy had been used. Moreover, based on the number of bytes downloaded and the IP
address distribution in the server and the client log, we found evidence that segments must
be delivered from other sources than from the examined servers. This suggests the presence
of HTTP caching proxies in the Internet that had served the requests before they got to the
load balancer. This means that the origin server is offloaded and that the idea of reusing the
(unmodified) HTTP infrastructure really works in real scenarios.

Furthermore, since a significant portion of the data is distributed by HTTP caches that
are most likely not aware of what they are serving, we conclude that it is important to look
at how HTTP streaming unaware server performance can be increased by client-side or very
light server-side modifications. In other words, it is important to look at the performance of
HTTP servers that actually deal with HTTP segment streaming traffic.

The increase of the performance of such a server is, of course, only interesting if there is
some kind of bottleneck. We can eliminate the disk as being the bottleneck for live streaming
as the segments are small and clients are interested only in the most recent segments of the
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random session example 
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Client-only techniques for long-term smoothness 

Ni (2011) showed: Quality oscillations more frequent than 
1Hz are perceived as flickering 

Still, we have advocated long-term stable quality: not at all 
costs, but on longer time scales 

Desirability apparently verified in perceptual studies 
(sorry, no reference) 

Other researchers do the same 
“Flicker Effects in Adaptive Video Streaming 
to Handheld Devices”, 
Pengpeng Ni, Ragnhild Eg, Alexander 
Eichhorn, Carsten Griwodz, Pål Halvorsen 
ACM Multimedia 2011 

Adaptive HTTP streaming is safe from this 
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“Bitrate and video quality planning for mobile streaming 
scenarios using a GPS-based bandwidth lookup service”, 
H. Riiser, T. Endestad, C. Griwodz, P. Halvorsen 
IEEE ICME 2011 

Client-only techniques for long-term smoothness 

Buffer size

Because outages can last for minutes in mobile streaming, a large buffer is more important
than in fixed network streaming. How large the buffer must actually be depends on which
bitrates are used and the duration of the network outages. One must simply choose a buffer
size which is long enough to cover most outages, but not too large for most devices capable of
mobile video streaming. The buffer size was set to 200 MB, which even in the highest bitrates
(typically around 4 Mbit/s) is almost seven minutes of video, longer than most outages in urban
environments. Most mobile devices today have much more memory than this, so it seemed like
an acceptable number to use.

Scaled buffer thresholds for quality levels

The reactive algorithm upgrades the quality once the buffer duration reaches certain chosen
thresholds. However, a problem is that, to make a difference in quality in the higher quality
levels, the bitrate must often increase dramatically. As shown in figure 4.1, the difference
between quality levels 5 and 6 is 1500 kbit/s, while the difference between levels 1 and 2 is
250 kbit/s. The thresholds for jumping between layers should therefore take the bandwidth
difference between the layers into account.

We suggest setting the buffer threshold levels using the following simple rules: When the
buffer is empty, the lowest quality (level 1) is selected. When B seconds of video are buffered,
level 2 is chosen. The buffer requirement for level N is B · (RN �R1)/(R2�R1), where RN is
the bitrate of quality level N.

Figure 4.9: Altering the buffer thresholds.

Figure 4.9 compares four different settings. The first two use a fixed step size B of 2 and
10 seconds between all quality levels, i.e., no bitrate scaling. The figure shows that a low step
size leads to rapid buffer drainage caused by frequent jumps into quality level 6, leading to
several buffer underruns. Increasing the step size to 10 seconds helps, but quality level 6 is
still chosen too frequently. The last two settings in the figure use the bitrate-scaling formula
described above, with two different base step values (B = 2 and B = 10).
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Netview adaptive strategy 

•  no upscaling for 20sec 
after a drop!

•  never select a layer 
that exceeds the current 
download rate (sample 
size 1 segment)!

•  never select a layer 
that exceeds:  
TN=α*tN+(1-α)*TN-1  
α=.25  
tN=throughput observed 
for segment N!

•  for upscaling consider 
buffered seconds!

buffer must hold 2sec/10sec of 
current quality 

buffer must hold B*(RN-R1)/(R2-R1) 
seconds, where RI is bandwidth req’mt 
of level I, for B=2sec/10sec 
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Client-only techniques for long-term smoothness 
FESTIVE 
Fair, Efficient, and Stable adapTIVE 
•  remove unfairness 
•  increase stability  

“Improving Fairness, Efficiency, and Stability in HTTP-
based Adaptive Video Streaming with FESTIVE”, 
J. Jiang, V. Sekar, H. Zhang 
CoNext 2012 

ELASTIC 
fEedback Linearization Adaptive STreamIng Controller 
•  remove On-Off periods for all but highest quality 
•  allow oscillation around average quality  

“ELASTIC: a Client-side Controller for Dynamic 
Adaptive Streaming over HTTP (DASH)”, 
L. De Cicco, V. Caldaralo, V. Palmisano, S. Mascolo 
IEEE PV 2013 

PANDA 
Probe AND Adapt 
•  increase stability 
•  asymmetric rate shifting “Probe and Adapt: Rate Adaptation for HTTP Video 

Streaming At Scale”, 
Z.Li, X.Zhu, J.Gahm, R.Pan, A.Begen, D.Oran 
ArXiv 2013 
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Some new transport development 
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New TCP developments: CDG 

CDG - CAIA Delay Gradient TCP 

Idea: infer the queue state (growing, shrinking, stable) and stay at a stable 
queue size 

§  estimate the gradient of queue occupancy development by observing the 
development of RTTmin and RTTmax over time (in sample intervals of 1 RTT) 

§  once per RTT compute a backoff probability based on queue development 

§  with this probability, reduce CWND by factor 0.7, or increase by 1 

“Revisiting TCP Congestion Control using Delay Gradients”, 
David A. Hayes and Grenville Armitage 
IFIP Networking 2011 

3. DELAY-GRADIENT TCP CONGESTION CONTROL

⌧
max

t

⌧
min

Queue full detection

RTT

Queue empty detection

(a) Idealised RTT dynamics for queue full
and empty events

ḡ

0

t

Queue full detection

ḡ
min

ḡ
max

Queue empty detection

(b) Idealised gradient dynamics for queue
full and empty events. (ḡ

min

and ḡ
max

are
vertically o↵set for clarity.)

Fig. 1: Queue full and queue empty scenarios, highlighting the detection areas

Figure 1a illustrates our assumption that when a queue fills to capacity,
⌧
max

stops increasing before ⌧
min

stops increasing, and that the reverse is true
for a queue moving from full to empty. Figure 1b shows the idealised gradi-
ents for these two conditions (with the lines for ḡ

min

and ḡ
max

o↵set slightly
for clarity). Based on this CDG estimates the state of the path queue to be
Q 2 {full, empty, rising, falling, unknown}. Only when Q = full are packet losses
treated as congestion signals.

3.4 RTT independent backo↵

We use Equation 5 as a probabilistic backo↵ mechanism to achieve fairness
between flows having di↵erent base RTT.

P [backo↵] = 1� e�(ḡn/G) (5)

were G > 0 is a scaling parameter and ḡ
n

will either be ḡ
min,n

or ḡ
max,n

. Our
implementation uses a lookup table for ex and a configurable FreeBSD kernel
variable for G.

The exponential nature of P [backo↵] means that on average a source with
a small RTT which sees smaller di↵erences in the RTT measurements will have
the same average P [backo↵] of a source with a longer RTT which will see larger
di↵erences in the RTT measurements.

3.5 Congestion window progression

In congestion avoidance mode, CDG updates the congestion window (w) once
every RTT according to Equation 6

w
n+1

=

(
w

n

� X < P [backo↵] ^ ḡ
n

> 0
w

n

+ 1 otherwise
(6)

where w is the size of the TCP congestion window in packets3, n is the nth RTT,
X = [0, 1] is a uniformly distributed random number, and � is the multiplicative
3 CDG increments a byte-based w by the maximum segment size every RTT.

c�IFIP, (2011). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not
for redistribution. The definitive version is to be published in the proceedings of NETWORKING 2011 10th International
IFIP TC 6 Networking Conference, Valencia, Spain, May 9-13, 2011,(Boston: Springer)

5

RTT development gradient development 
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New TCP developments: CDG 

Relation to adaptive HTTP streaming 

§  Server-side only change, easy to deploy 

§  In highly multiplexed queues, a new CDG stream in slow-start will increase 
early backoff probability for all CDG streams, and some will make space 

§  As soon as slowstart threshold is reached, new flow levels out as well; 
prevents overshoot in initial quality estimation 

§  Initial behavior like slow-start, therefore not applicable when most 
requests are synchronized 

§  Does not change initial CWND behaviour and does therefore not prevent 
oscillation 

“Revisiting TCP Congestion Control using Delay Gradients”, 
David A. Hayes and Grenville Armitage 
IFIP Networking 2011 

CDG - CAIA Delay Gradient TCP 



Control Techniques for Efficient Multimedia Delivery 2013 University of Oslo 

New TCP developments: iw10 

new Linux default of Initial CWND=10 

§  10 packets are generally not enough for a segment 

§  But the number of RTTs for entire segment download is 
reduced, shorter competition period; can be beneficial 
in conjunction with uniform distribution of downloads 
until congestion is experienced 

§  Initial burst is worse, a new segment download in slow-start will affect 
more active segment downloads than old-fashioned slow start 

§  M. Scharf: simulations show that iw10 increases loss probability by 0.5% 

§  J. Chu: confirms, but User Completion Time does not suffer 

“Performance and Fairness Evaluation 
of IW10 and Other Fast Startup Schemes”, 
Michael Scharf 
ICCRG meeting at IETF 80, 2011 

“A Testbed study on IW10 vs IW3”, 
Jerry Chu 
ICCRG meeting at IETF 79, 2010 
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New TCP developments: New CWV 
New congestion window validation 

§  Meant for CWND estimation for any flow with idle periods 

§  Compared to CWV, New CWV does never decay 

New-CWV assumes a validated phase, which 
is normal CWND development even after an 
idle period, and a non-validated phase 

§  If congestion is experienced in the non-
validated phase, 
and L is the first lost packet according to a 
SACK options, then 
CWND = (last CWND-L)/2 

Reaction to loss..

Radical behaviour is restart from 
one packet

Standard TCP recovery 
mechanism 
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Alternatively we can estimate 
successfully transmitted 
packets (D-R)* that provides 
an indication of path capacity

reset the cwnd after recovery 
by (D-R)/2 

* D is the flight size R the number of packets detected as lost
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§  desired/required: a combination with pacing 

§  reducing the burstiness during validation 

“Enhancing TCP Performance to support 
Variable-Rate Traffic”, 
Arjuna Sathiaseelan, Raffaello Secchi, 
Gorry Fairhurst, Israfil Biswas, 
CSW@CoNext 2012 
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Questions? Comments? 

Contact information: 
 

Carsten Griwodz 
griff@simula.no 

http://mpg.ndlab.net 
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