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Abstract framework for preconditioning
A few examples (elliptic and Stokes problems)

The problem with inverse problems in an abstract
setting

The solution for inverse problems in an abstract setting

Some examples (fruitfly and heart infarction)

(This framework is closely related to W. Zulehner’s talk
yesterday)
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Abstract framework for preconditioning

Let us consider the problem:
Find v € V such that for f € V*

where A is a linear operator.

This problem is well-posed if A is an isomorphism mapping

V to V*, ie.,
lAlzvve < C1oand AT zovevy) < Co
Note that A has an unbounded spectrum and this causes

problems for iterative solvers (both in the continuous and
discrete cases).



Abstract framework for preconditioning

From a mathematical point of view the Riesz mapping
B :V* — V is the perfect preconditioner, since

IBllzv-vy =1 and B~z =1

Consequently,
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IBA 2y < Crand [[(BA) 2y < Co
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opectral Equivalence

It 1s well-known how to produce spectrally equivalent and
efficient representations of Riesz mappings using multigrid
and /or domain decomposition methods in a number of

spaces like H', H(div), H(curl), and H?.

In fact, you can view multigrid and domain decomposition
methods as Riesz mappings in equivalent Sobolev spaces.



Example: An elliptic problem

Consider an elliptic problem:
Find u € H& such that for f € H~1

Au= -V - (KVu) = f

Here, K positive definite and bounded.

The Riesz mapping is B = A~! and the spectrum of BA is
bounded by the extreme values of K.

Multigrid and domain decomposition give efficient operators
that are equivalent with A~1.
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Example: Stokes problem

Another example is Stokes problem: Find u,p € H& X L%

such that for f € H~1

A

The Riesz mapping B taking H ! x L(Q) — H& X L(Q) 1S
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The spectrum of B.A is bounded!

It is easy to construct spectrally equivalent and eflicient

versions of B with multigrid and domain decomposition
+nn]n1n; 11111
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The problem with inverse problems

Let us consider an abstract inverse problem: Find v € V'
such that for f € V*
Au=f

The problem is not well-posed
lAll vy < C1 obut A g1y = 00

A has a accumulation point at zero!

Clustering of eigenvalues is not necessarily a bad thing for
Krylov solvers (c.f. O. Axelsson and G. Lindskog, Numer.
Math. 1986))!

We will utilize clustering, but we will also construct V'
carefully (like Zulehner did yesterday).



Weighted Sobolev spaces

Consider the problem: Find v € Hi, for f € H~!
Agu = u — a*Au = |
Here, a > 0
||A;1||£(H_17H3) — 00 as a — 0
If we consider A, in V = Lo N aH& with inner product
(U, V) oy = (4,0) 1, +a*(Vu, Vo)
Then

lAall vy <C1oand JAZ g vy < Co
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(Bergh and Lofstrom, Interpolation Spaces, 1976)



Parameter identification problem
® minyep, {% [Tu — d”%Ig + %CV v — vpriorH?{l}

subject to
Au=—Bv + g,

® DBounded linear operators:

A : Hy — H5, continuously invertible
B: Hy — Hj,
T : Hy — Hs observation operator

L : Hy — H{ regularization operator
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Optimality system

ol 0 B v o Lvpyior
o 0 K A u | = Qd
B A 0 | [w i g |

® K:Ho— H5, u— (Tu,Tqb)H3 = (T"Tu, ¢)H,
® Typically ill-posed for a = 0

® Propose a preconditioner
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Optimality system, cont.

ol 0 B
® A,.=| 0 K A
B A 0

® X =H{ x H>

s |zl% = allzillf, + allealf, + (T"T2s, 29)m,

® Y =H
1

s lylly = 3llvliz,

X xY = (X xY)*
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Preconditioning

® Preconditioner, isomorphism
By : (X xY) - XxY

® For example

oL 0 0 |
B.l=1| 0 aA+K 0
0 0 4

(in practice we use multigrid preconditioners)
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Example 1

1
n 3 T — d|f2eo +
i 21T = )+ 5o ol |

subject to

—Au = v+g¢g 1in €,
u = 0 on 0f.

(This is the fruitfly example that has been studied by many.

Our approach is close Schoberl and Zulehner, SIAM J.
Matrix Anal., 2007)
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FExample 1, cont.

Table 1: Number of iterations

h\a| 1107110721073 | 104

o~ 14| 4 4 4

272 | 5| 8 11 12

273 7| 8 12 17 | 14

274 | 7| 8 12 | 18 | 20

27° 19| 10 | 12 17 | 21
g 276 19| 10 | 13 | 17 | 18
5 27T |8 10 | 13 | 15 | 16
5 28 g 10 | 11| 13 | 13
- 27 8| 8 | 9 | 11 | 12
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FExample 1, cont.

h\a| 1 1071|1072 |1073 | 104
o—L 11 1.28 | 1.45 | 4.15 | 17.6 | 31.0
272 |1 1.34 | 1.61 | 5.07 | 16.9 | 52.3
273 |1 1.36 | 1.67 | 5.38 | 16.3 | 53.2
24 | 1.37 | 1.68 | 5.46 | 16.2 | 53.5
272 || 1.37 ]| 1.69 | 5.48 | 16.3 | 53.5

Table 2: Condition number x(B,.A,)
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Fxample 1, cont.
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Figure 1: Absolute value of the eigenvalues of B,.A4,
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Example 2

. 1 2 1 2
i {5 ITw = dl[z20p) + e llv = ”Pﬂ“”H“m}
subject to

/(MVu)-ng dr = —/ (M;Vv)-Vo¢ for all ¢ € HY(P)da
P H

0B
oH
@ G

Figure 2: Body P = H U G, heart H, torso G
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FExample 2, cont.

all 1 1107111072102 |10°4

32| 40 59 42 25
28 | 36 49 52 24
26 | 30 41 o1 20
28 | 28 36 47 32
29 | 28 32 41 41

T SUI N S SO N

Table 3: Number of iterations
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FExample 2, cont.

[\Na|| 1 ]10°1 1072|1073 | 1074
1 || 16 | 108 | 672 | 5000 | 29729
2 || 16| 109 | 680 | 5076 | 40157

Table 4. Condition number x(B,A,) of B, A,
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FExample 2, cont.
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Figure 3: Absolute value of the eigenvalues of B,.A4,
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Theoretical considerations
We have:

oL 0 B
A, = 0 K A
B A 0

and show that

lAallcvve < Cr1oand AL |21y < O/
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Theoretical considerations, cont.

We use an auxiliary operator:

al 0 B’
Aa=| 0 K A4+1ilg
B A+ 1K 0 |

and show that

||AozH£(V,V*) < Ci/a and ||A§1H£(V*,V) < (y
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Theoretical considerations, cont.

By using and eigenvalue result of composed hermitian
operator in terms of its components from H. Weyl.
Mathematische Annalen, 1912 we show that only very few
eigenvalues are close to zero

24
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Theoretical considerations
® k(ByAy) is bounded independently of h

® k(ByA,) increases as a — 0:
» Almost all eigenvalues are of order O(1)

» Limited number of eigenvalues close to zero

(O(In(a)?)
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Further reading:

Mardal and Winther, Numer. Linear Algebra Appl., 2010
Nielsen and Mardal, STAM J. Control Optim., 2010
Mardal, Automated Scientific Computing, Springer, 2011

(papers can also be found at
http://simula.no/people /kent-and /)
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Further reading:

Mardal and Winther, Numer. Linear Algebra Appl., 2010
Nielsen and Mardal, STAM J. Control Optim., 2010
Mardal, Automated Scientific Computing, Springer, 2011
(papers can also be found at

http://simula.no/people/kent-and /)

Questions?
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