
Adaptive Bitrate Video Streaming over HTTP

in Mobile Wireless Networks

Haakon Riiser

June 16, 2013



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Haakon Riiser, 2013 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1372 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
Cover: Inger Sandved Anfinsen. 
Printed in Norway: AIT Oslo AS.   
 
Produced in co-operation with Akademika Publishing.  
The thesis is produced by Akademika publishing merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



Abstract

The topic of this dissertation is bitrate adaptive media streaming to receivers in

mobile wireless networks. This work was motivated by the recent explosion in pop-

ularity of media streaming to mobile devices. Wireless networks will always be

bandwidth limited compared to fixed networks due to background noise, limited

frequency spectrum, and varying degrees of network coverage and signal strength.

Consequently, applications that need to move large amounts of data in a timely

manner cannot simply assume that future networks will have sufficient bandwidth

at all times. It is therefore important to make the applications themselves able to

cope with varying degrees of connectivity.

In order to understand the requirements of streaming in 3G mobile networks, we

perform a large number of measurements in Telenor’s 3G network in and around

Oslo. Using bandwidth traces from these field experiments, we compare commercial

adaptive media streaming clients by Adobe, Apple, and Microsoft in challenging

vehicular (bus, ferry, tram and metro) streaming scenarios.

In this comparison, we reveal problems with buffer underruns and unstable

video playouts. We therefore develop our own adaptive bitrate media client, and

design a new quality adaptation scheme that targets the requirements of mobile

wireless networks, reducing the number of buffer underruns and improving stabil-

ity. We also observe that network conditions are highly predictable as a function

of geographical location. Simulations on bandwidth traces from field experiments

indicate that the video playout can be made even more stable: A media player that

knows its future (bandwidth availability and the duration of the streaming session)

can use its buffer more intelligently. Fluctuations in bandwidth can be smoothed

out through sophisticated buffering algorithms, resulting in a higher quality video

playout with fewer interruptions due to buffer underrun.

Again using our collection of bandwidth traces, we develop a bandwidth lookup

service and a new algorithm for quality scheduling that uses historic bandwidth

traces to plan ahead, thus avoiding most underruns and offering a far more stable

playout with fewer visually disturbing fluctuations in quality. We show that this

prediction-based approach greatly improves the performance compared to our best

results with non-predictive quality schedulers. Finally, we show how multi-link

streaming can be employed to increase the network capacity available to the video

receiver, thus improving perceived video quality even further.

All algorithms are developed and tested using custom made simulation tools,

and are later verified in real world environments using a fully functional prototype

implementation. We demonstrate that our proposed algorithms greatly improve

performance in vehicular mobile streaming scenarios.
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Chapter 1

Introduction

Hand-held devices capable of displaying high definition video have become com-

monplace, and high-speed mobile wireless networks are available in most popu-

lated areas in developed countries. An important application of these technologies

is video streaming to mobile devices, and consequently, the number of video stream-

ing providers targeting the mobile device market has exploded.

The subject of this dissertation is to improve the utilization of available band-

width in mobile streaming through the use of advanced buffering strategies, im-

proved video bitrate adaptation algorithms and multi-link streaming. Better band-

width utilization in video streaming is important because it translates to an im-

proved quality of experience (QoE) for the viewer.

1.1 Background and Motivation

Video streaming is a highly bandwidth intensive application, but improvments in

video coding efficiency and mobile wireless network bandwidth have made it possi-

ble to perform real-time video streaming to mobile receivers using currently avail-

able technology. Examples of current video services are YouTube [46], Netflix [27],

Hulu [22], TV 2 Sumo [41], BBC iPlayer [12], ESPN Player [17], Comoyo [15] and

live streaming of major sports events such as the Olympics [25], Super Bowl [38],

and the FIFA World Cup [19] to millions of concurrent users.

Traditional fixed-quality media streaming technologies are failing to deliver ac-

ceptable QoE for streaming at such a scale, so all significant video streaming stan-

dards developed since 2008 have been based on adaptive bitrate streaming. These

systems are characterized by their ability to adapt the streaming bitrate to the

currently available bandwidth, and to restrict the quality according to the capa-

bilities of the device used to view the video. The most important benefit of adap-

tive bitrate streaming is that it reduces the number of playout interruptions due to

buffer underruns, which is an important factor in determining the QoE. Adaptive
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bitrate streaming also makes it easier for a single streaming system to support ev-

erything from low-end mobile devices using a slow wireless connection, to high-end

HD-capable media centers with a fast fiber optic link.

Examples of adaptive streaming formats are Microsoft’s Smooth Streaming [167],

Apple’s HTTP Live Streaming (HLS) [127], MPEG’s Dynamic Adaptive Streaming

over HTTP (DASH) [98], and Adobe’s HTTP Dynamic Streaming (HDS) [51]. The

most successful formats commercially are currently Smooth Streaming and HLS,

but these may eventually be supplanted by the MPEG DASH format, which has been

adopted as a true standard by the International Organization for Standardization

(ISO). It is inspired by Smooth, HLS, and HDS, but is wider in scope and offers pro-

files that eases transition from the other formats to DASH. Smooth Streaming is

supported through Microsoft’s Silverlight application framework on computers and

devices running the Microsoft Windows operating system, and HDS is supported on

any platform with the Adobe Flash Player. HLS is supported by devices based on

Apple’s iOS and Google’s Android operating systems, many set-top boxes and con-

nected TVs, and Apple’s Quicktime media player. Implementations of the MPEG

DASH standard are, as of 2012, still immature, but many video services that build

on the new Media Source Extensions [24] framework for adaptive video stream-

ing using HTML5/JavaScript will most likely use MPEG DASH as the underlying

streaming format.

Even though all aforementioned formats except DASH were created by corpora-

tions, their specifications are freely available, so many third party implementations

for other devices and operating systems are also available. Examples of third party

client-side implementations include the Netview1 Media Client [7], the VideoLAN

VLC Media Player [45], and GPAC [40]. Third party server-side implementations

include CodeShop Unified Streaming Platform [14], Envivio 4Caster C4 [5], Anevia

ViaMotion [9] and RealNetworks Helix Universal Server [33].

To mention just a few examples of services, Smooth Streaming has been used

by Netflix [27] to stream various commercial content, and by NBC [26] to stream

major sports events like Super Bowl [38] and the Olympics [25]. HLS is used in

Apple’s iTunes [11] store for long form content and is very popular in the television

industry because it builds on the widely supported MPEG-2 Transport Stream video

container format [95]. While adaptive bitrate streaming only consitutes about 17 %

of total Internet video traffic in 2012, it is expected to exceed 50 % by 2015 [125].

Adaptive video streaming technologies make it possible to adapt the video bi-

trate according to the capacity of the network, but none of the existing standards

for adaptive video streaming specify how to do this, and at the start of this project,

there was little research available on the subject. How to best stream and adapt

video to mobile receivers in the general case was an unsolved problem. A mobile

1Netview Technology was co-founded by the author of this dissertation, but acquired by Opera
Software in 2012.
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receiver will always experience varying degrees of connectivity, and in some cases

the variations can be extreme and long lasting (consider the case where the re-

ceiver travels through a tunnel without network coverage, or in an area with low

base station density). Consequently, new media streaming technologies optimized

for streaming to mobile devices have recently received a lot of attention from the

telecommunications industry. YouTube reports [47] that “traffic from mobile de-

vices tripled in 2011, ... more than 20 % of global YouTube views come from mobile

devices, and ... YouTube is available on 350 million devices”. Similarly, Sandvine

reports that “real-time entertainment is huge, global, and growing” [36, 21] for mo-

bile devices, where in North America, Latin America, Europe and Asia-Pacific the

audio/video downstream mobile traffic consitutes respectively 27 %, 24 %, 17 %, and

14 % of the total bandwidth consumption. Sandvine also predicts that audio and

video streaming will exceed 60 % of North America’s mobile data by late 2014. For

mobile devices, Cisco’s Visual Networking Index predicts an 18-fold increase from

2011 to 2016 [13].

This work was motivated by the aforementioned growth in mobile video stream-

ing, and the untapped potential in adaptive video streaming technologies that can

be unlocked by exploiting more of the information that is available to a mobile

receiver, most importantly, geographical location, historical bandwidth measure-

ments, and network availability.

1.2 Problem Definition

Despite ongoing advancements in wireless transmission technologies, there is a

theoretical upper limit on how many bits per second can be transferred over a

communications channel with limited signal bandwidth and non-zero background

noise [148]. Since all wireless networks communicate over the same air medium

and the available frequency spectrum is finite, it follows that the throughput2 limit

cannot keep increasing forever. Furthermore, there will always be variations in

network coverage due to differences in geography and population density. Thus,

one cannot simply assume that the problem with video streaming in mobile net-

works will be solved by waiting a few years and hoping that sufficient bandwidth

will soon be universally available. Applications will always have to deal with fluc-

tuating network bandwidth, regardless of future developments in mobile wireless

networks.

For a video streaming application, there are only three ways to handle fluctu-

ating network bandwidth: (1) Accept loss of data, (2) try to outlast the bandwidth

starved periods through advanced buffering, and (3) reduce the bitrate of the video

2In the remainder of this dissertation, the term bandwidth will refer to the potential number of
bits/second that can be transferred, not the signal bandwidth in Hz. It will be used interchangeably
with the term throughput.
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stream according to the bandwidth that is available. Data loss is usually han-

dled with forward error correction (often in combination with data prioritization

schemes), buffering has always been an important part in any non-interactive video

streaming application, and mechanisms for switching bitrates in the middle of a

streaming session have existed for years, and are already used in several commer-

cial products. However, there are still many open questions regarding policies for

using these mechanisms in ways more suited to mobile wireless networks.

In this dissertation, we focus our efforts on buffering and bitrate adaptation, as

these techniques are most applicable to present state of the art streaming technol-

ogy (almost all use reliable network protocols to transfer data, meaning that data

loss does not occur and is not relevant to our work). Our goal was to improve the

QoE and bandwidth utilization when streaming video in mobile wireless networks,

and in order to reach it, we have explored the following key areas:

1. Understanding the network conditions in mobile networks is crucial when de-

signing streaming policies. It is not possible to develop adaptive video stream-

ing policies without a solid understanding of the underlying network charac-

teristics, so the first step to be taken is to experimentally gather knowledge

about the network conditions experienced by mobile receivers.

2. Adaptive video streaming policies should be designed specifically for mobile re-

ceivers. One of the benefits of adaptive video streaming is that the same stream

source can work equally well for high capacity receivers on fixed networks as

for low-end mobile devices. However, it follows from the previous point that

the client driven video streaming policies should probably be very different

when the underlying networks are different, as compromises need to be made

to make a solution robust enough for challenging mobile streaming scenarios.

In particular, it will be a challenge to strike the right balance between under-

run protection, how rapidly the quality can adapt to the currently available

bandwidth, while at the same time considering how this affects the perceived

quality (rapid switching between high and low quality can actually be per-

ceived as lower quality than playing a fixed low quality stream [169, 124]).

3. Varying network conditions can still be predictable. Network conditions for

a mobile receiver are highly fluctuating, but they might still be predictable

based on the geographical location and time (day of week and time of day).

Determining if this is the case will require a large data set of bandwidth mea-

surements from the field, at various locations and times. Gathering this data

requires custom-made tools that measure bandwidth in an adaptive HTTP

streaming scenario, and even performing the experiments is a significant ef-

fort in itself.
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4. Streaming in varying network conditions can be greatly improved when net-

work conditions are successfully predicted. Variations in connectivity can be

smoothed out over time if those variations can be successfully predicted. There

are a number of problems that will have to be solved to develop good bandwidth

prediction algorithms, such as how to cope with inevitable mispredictions, how

to make the prediction algorithm scalable (some algorithms can be extremely

expensive computationally), and how to optimize for perceived quality while

at the same time avoiding buffer underruns and not wasting bandwidth (e.g.,

ending a streaming session with too much unused video in the buffers).

5. Performance can be improved by utilizing multiple wireless networks at the

same time. Many mobile devices today are capable of connecting to multiple

types of wireless networks. Taking advantage of multiple networks within

a single streaming session should improve performance compared to simply

staying on one network. The challenge is how to achieve this in an application

transparent way, and how to predict different network availability.

1.3 Limitations

The subject of study for this dissertation is one-way video streaming in mobile

networks using adaptive bitrate video streaming technologies. Because advanced

buffering strategies is a fundamental part of this, the main use case considered in

this dissertation is Video on Demand (VOD) content, not Live streaming content.

The difference between VOD and Live is that VOD is based on a library of

recorded movies and programs where the viewer can access any part of the con-

tent at any time, while Live streaming is more similar to a broadcasted television

program. Adaptive Live streams typically offer a sliding time window of content

(typically between one minute and two hours in duration), where the end of the

window can be very close to a television broadcast in terms of delay. Since Live

streams are often used for sports and news where it is desirable to have as little

delay as possible, the viewer of a Live stream often prefers the playout position to

be near the end of the time window, thereby minimizing delay. Thus, even if the

available time window is long, the media client has very little room for buffering,

losing maybe the most important tool for increasing robustness in a mobile stream-

ing scenario.

Another limitation in the scope our work is that for some our more advanced

approaches, the goal was to develop a proof-of-concept implementation, not neces-

sarily a finished product (although some of the results from this dissertation have

already been implemented and deployed in a commercial product). E.g., to reduce

development time, some of our implementations require the user to provide infor-

mation that could – or, in a real product, should – be done automatically.
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1.4 Research Method

The Association for Computing Machinery (ACM) Task Force on the Core of Com-

puter Science describes in [68] three major paradigms by which computer scientists

approach their work:

1. The theory paradigm, which is rooted in mathematics, where hypotheses are

proven logically.

2. The abstraction paradigm, which is rooted in the experimental scientific me-

thod, where theories are formed from hypotheses after they have been con-

firmed experimentally by testing predictions following from the hypotheses.

3. The design paradigm, which is rooted in engineering, where problems are

solved through the construction of a system or device.

This dissertation is highly focused on practical results and commercially viable so-

lutions, and our approach follows both the abstraction and the design paradigms:

All data used to test ideas and algorithms were gathered in empirical studies, and

the results were implemented and verified in fully functional prototypes used in

real-world field trials.

Before any work was done on developing new streaming technologies, we per-

formed a large number of measurements and experiments in the field. These tests

were performed in the mobile wireless networks that were available at the time,

mostly Telenor’s 3G/High-Speed Downlink Packet Access (HSDPA) network in and

around Oslo. We performed measurements using both the Transmission Control

Protocol (TCP) and the User Datagram Protocol (UDP), to observe both the high-

level behavior that the application experiences and the low-level packet transmis-

sion characteristics that explain it. We developed our own software for UDP testing,

so that we could track everything (packet loss patterns, latency, jitter, transmission

errors and congestion handling). TCP performance was tested using Linux’ TCP

implementation, standard HTTP file transfers and tcpdump.

The result of these experiments was a large data set that made it possible to run

simulations that reproduce the behavior of a real mobile network, separating this

project from most related work on the subject which use synthetic bandwidth data.

The data set was used to evaluate different commercial adaptive video streaming

products under challenging (but realistic) network conditions. This was achieved

by developing a bandwidth throttling module for the Apache web server, making

it possible to reproduce the same real-world streaming session multiple times on

different media players.

When developing and evalutating new algorithms, we performed experiments

with a custom made network simulator. A custom made simulator was written be-

cause knowing the application, it could be made vastly more efficient than a general
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network simulator such as ns-3 [28]. The correctness of the simulator was verified

by comparing its results to a prototype implementation used in a real network. All

developed technology was implemented in a fully functional prototype, and verified

in real-world field trials.

1.5 Main Contributions

The work presented in this dissertation addresses several issues in the field of

mobile video streaming. Mobile receivers are troubled by fluctuating bandwidth,

making it difficult to achieve satisfactory QoE in video streaming applications. We

present in this dissertation several innvative solutions to the problem, where we

extend existing adaptive bitrate streaming technologies with new algorithms for

quality adaptation, bandwidth prediction and multiple network utilization. A fully

functional prototype implementation was developed, proving the efficiency of our

suggested solutions. The following list summarizes briefly our contributions to the

problems stated in section 1.2:

1. Gathering of network data from a real 3G network. We spent a considerable

amount of time collecting data on network characteristics in a real-world 3G

network. As part of these experiements, we also showed that network con-

ditions, despite being highly variable, are actually quite deterministic as a

function of geographical location.

The collected data on network characteristics was successfully used to de-

velop improved technologies for streaming under such conditions, and has

been made available to other researchers performing similar work.

2. An in-depth comparison of existing commercial products. To evaluate the per-

formance of existing commercial products in adaptive video streaming under

challenging network conditions, we performed a comprehensive set of tests us-

ing the data set mentioned above. This helped expose several weaknesses in

current technologies.

3. A better quality adaptation scheme for mobile receivers. Knowing the weak-

nesses of existing adaptive video streaming products made it possible to de-

velop a quality adaptation scheme that, while directly comparable in system

complexity, offers a significantly improved performance in mobile streaming

scenarios, resulting in fewer buffer underruns and more stable quality.

4. Showing that deterministic bandwidth can be used to improve performance in

video streaming. Equipped with a custom-made bandwidth prediction service

based on the data set collected in the 3G network measurement phase of the

project, we were able to extend our quality adaptation algorithm mentioned
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above with information about future network conditions. This information

made it possible to compensate for variations in the network, averaging out

the quality over time and thus greatly improving QoE for the viewer.

5. Showing that multi-link streaming is a feasible way to improve performance in

an adaptive video streaming client. We showed that using multiple different

wireless networks at the same time could further improve QoE in an adaptive

bitrate media client by increasing the average network capacity available for

video streaming.

1.6 Outline

In chapter 2, we give an overview of developments in video streaming, in particular

how and why the technology has evolved to the adaptive bitrate streaming protocols

that are dominant today. Chapter 3 presents a series of experiments that expose the

characteristics of 3G mobile wireless networks, which is necessary to understand

and solve the problems experienced with streaming video in such networks. Chap-

ter 4 starts with an experimental comparison of existing adaptive video streaming

solutions in challenging mobile streaming scenarios, and then introduces a new

quality scheduling algorithm that improves performance under such conditions. At

this point, we have observed that the network conditions are highly predictable,

especially with regard to geographical location. Chapter 5 presents a novel way

to utilize bandwidth prediction, greatly improving the performance of the purely

reactive quality scheduler introduced in chapter 4. Observing also that multiple

wireless networks often are available, chapter 6 shows how multi-link streaming

can be combined with the technology developed in the preceding chapters to fur-

ther improve the QoE when streaming video in a mobile wireless network. Finally,

we conclude our work in chapter 7.
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Chapter 2

Adaptive Bitrate Streaming over

HTTP

Protocols for streaming video over the Internet have existed for decades, and a large

number of different protocols have been used in various degrees. This chapter will

briefly go through the evolution of video streaming protocols that resulted in the

adaptive bitrate streaming technologies that are most popular today, and then dis-

cuss adaptive bitrate streaming over HTTP in more detail.

2.1 A Brief History of Video Streaming

Figure 2.1: The evolution from datagram streaming to adaptive HTTP streaming.

It used to be common knowledge that real-time video over a best-effort network

like the Internet would have to be streamed using a datagram protocol, giving the

streaming application packet-level control. When video was streamed over the In-

ternet, this meant in practice that it should be carried by UDP [130], not TCP [131].

Proprietary (non-open) protocols that are typically built on top of UDP include

the Microsoft Media Server (MMS) protocol [120], Real Player’s Progressive Net-

works (PNM/PNA) protocol, and Adobe’s Real Time Messaging Protocol (RTMP) [50].

Non-open protocols are no longer frequently used, having largely been replaced by

open standards such as the Real-time Transport Protocol (RTP) [144]. The RTP

protocol is another media delivery protocol that typically uses UDP as the carrier,
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but other transport protocols such as the Datagram Congestion Control Protocol

(DCCP) [108, 129] and the Stream Control Transmission Protocol (SCTP) [149] are

also supported, as RTP is designed to be independent of the transport protocol. RTP

streaming systems can have full control over packet retransmission, enabling them

to optimize for streaming applications where packet loss can be preferable to delay

(e.g., audio and video conferencing). A problem with RTP is that new media codecs

cannot easily be supported because its payload format is not codec agnostic. To

support a new codec in RTP, a new payload format standard must be agreed upon.

Furthermore, RTP requires out-of-band signaling, and different protocols exist for

this, such as the Real Time Streaming Protocol (RTSP) [145] and the Session Initia-

tion Protocol (SIP) [141]. In addition to this, protocols based on datagram streaming

are in general afflicted with several major problems:

• Packet-level control means that the implementation becomes very complicated,

having to deal with flow and congestion control, packet loss, out-of-order de-

livery, etc.

• Firewalls and network address translation (NAT) routers frequently cause

problems with datagram transport protocols. This even applies to UDP, the

most common datagram-based transport protocol. In access logs from the

streaming service of VG Nett [43] (the largest online news service in Norway),

the failure rate of UDP streaming attempts was observed [59] to be 66 %.

• The cost of the infrastructure becomes significantly higher because content

delivery networks (CDNs) require specialized solutions for caching and load

balancing (almost all deployed infrastructure optimizations target HTTP be-

cause of its massive popularity [117]).

Because of these problems, most of the industry adopted progressive download

streaming using HTTP, the second evolutionary step in figure 2.1. While this is ac-

tually a step back compared to datagram streaming in terms of potential features,

its simplicity has made it the streaming protocol most commonly used today (e.g.,

by YouTube). With this approach, the client simply downloads a media stream as a

file in a normal media container format such as MP4 [97], and plays back the video

while it is downloading. There are several benefits to this simple approach: The

implementation is straightforward, it can pass through almost any firewall thanks

to HTTP’s universal support, all CDNs support it, and it can automatically take

advantage of transparent web caching to improve performance. The downsides to

progressive streaming compared to datagram protocols are that playout interrup-

tions are more likely to occur, a significantly larger buffer is required (limiting pro-

gressive streaming’s suitability for real-time communication) and multicast is not

an option. However the inability to use multicasting is no longer considered a big

loss, since there is no widely available multicast infrastructure. Consequently, one
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of the biggest arguments for datagram protocols for non-interactive streaming is

now mostly irrelevant.

A lot of research has been done on reducing latency when using reliable pro-

tocols such as TCP, and several papers [59, 85, 86] show that high latency is not

inherent in TCP, but results from throughput-optimized TCP implementations. Re-

gardless, latency performance is not particularly interesting within the scope of this

dissertation, as we focus on one-way streaming for VOD and Live content services,

where throughput is by far the most important property. Wang, Kurose, Shenoy,

and Towsley show [156] that TCP performs well in this regard, offering good stream-

ing performance when the achievable throughput is twice the media bitrate. TCP

throughput will suffer in environments where packet loss is caused by high bit error

rates [57], but because of the importance of good TCP performance, modern wire-

less networks such as 3G have techniques for working around this limitation, such

as adaptive signal modulation schemes to reduce bit error rates [164], and active

queue management to reduce latency [54].

A limitation with most implementations of traditional streaming protocols is

that they rarely supported dynamic bitrate adaptation, preventing them from ef-

fectively compensating for significant variations in bandwidth, which is a major

problem in mobile wireless networks, as will be shown in chapter 3. This problem

lead to the development of adaptive bitrate streaming, which made bitrate adap-

tation a central part of the streaming protocol specification. The following section

describes various approaches to bitrate adaptive streaming.

2.2 Adaptive Bitrate Streaming

The general idea with adaptive bitrate streaming is that the bitrate (and conse-

quently the quality) should be allowed to change according to currently available

resources (on a reasonable timescale). What is meant by “available resources” in

this context is usually network bandwidth, but other variables could also be taken

into account. Examples of such variables include CPU load [111], battery capac-

ity [48], and screen size [161].

Bitrate selection is usually controlled by the client, but there are also server-

driven systems offered by companies such as QuavLive [32], StreamOcean [37], and

Akamai [71]. Server-side adaptation is mostly used by advanced servers to provide

adaptive streaming to older media players, while client-side adaptation is by far the

most popular in recent systems. The reason why it is better to let the client control

the bitrate adaptation is that all the information that is relevant when choosing

which quality to use, e.g., network conditions, screen size, remaining battery, and

CPU load, is available to the client, not the server. Server-side adaptation logic

can of course get this information from the client, but periodically sending mes-

sages about current network conditions introduces delay in the adaptation scheme,
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which can lead to buffer underruns. On the other hand, an argument for server-side

adaptation logic is congestion control (a busy server might want to restrict quality

levels to reduce its load), but this can easily be done in combination with client-side

quality adaptation.

One way to facilitate quality adaptation is using scalable media coding formats.

Examples of such formats include Multiple Description Coding (MDC) [87], Scalable

Video Coding (SVC) [146], the SP/SI-frame extension [104] to the H.264/AVC video

coding format [96, 160], and scalable MPEG (SPEG) [110].

MDC uses a coding technique where a single media stream is fragmented into

substreams referred to as “descriptions”. An arbitrary subset of descriptions can be

used to decode the stream, but the quality depends on the number of descriptions

used. MDC has high fault tolerance, but also significant overhead, especially at the

network layer [82].

SVC is comparable to MDC, but uses layered coding where each layer N can

only be decoded if its subordinate layer N − 1 was also decoded. Thus, nothing can

be decoded without the lowest layer (the base layer), and the more layers that are

available, the higher the quality will be. [67] presents a performance comparison

of layered and multiple description coding, and concludes that MDC is superior to

SVC both in terms of compression ratio and robustness.

The SP/SI-frame extension to H.264 introduces two new picture types, SP and

SI, which are the “switching” variants of the standard P- (temporal prediction cod-

ing, i.e., describing an image by how it is different from previous images) and I-

frames (intra coding, i.e., a stand-alone decodable image) used in H.264 [160]. Any

standard H.264 stream already has valid switching positions, as decoders can al-

ways start with a clean slate at instantaneous decoder refresh (IDR) frames [160],

which are simply I-frames that serve as barriers across which no temporal predic-

tion references are allowed. IDR-frames are usually used as random access posi-

tions for seeking, but because these frames cannot exploit temporal redundancy,

their coding efficiency is poor, and thus, they are used sparingly (typical IDR-frame

intervals are 2–10 seconds [126]).

The purpose of SP/SI-frames is to reduce the bandwidth cost of stream switching

points, so that there can be more places in the stream where stream switching is

allowed. With SP/SI-enabled H.264 streams, IDR-frames are no longer the only

valid switching points; now there is a new frame type, SP, that also fills this role.

SP-frames utilize temporal prediction, and can be inserted in place of P-frames to

get more places where streaming switching can be done. Due to SP-frames’ support

for temporal prediction, their coding efficiency is far higher than that of IDR-frames,

and can even approach the coding efficiency of regular P-frames [104].

When switching between two SP-frames in different streams, the media player

requests a secondary switch frame that serves as a “bridge” between the two SP-

frames. If temporal predictions across the two streams make sense (e.g., if the two
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streams represent the same content in different qualities), the secondary switch

frame is also of the SP type (i.e., uses temporal prediction to increase coding effi-

ciency). If the switch is between completely different streams, where cross-stream

prediction makes no sense, the secondary switch frame is of the SI type (i.e., no

redundancy to exploit across the two different streams). Because these secondary

switching frames need to perfectly reproduce the reference frame that is expected

in the target stream, they are quite large compared to normal P- and I-frames (usu-

ally twice as many bits as their non-switching counterparts [147]), but their cost

is only incurred when a switch actually does occur, not for every potential switch

point, so coding efficiency is improved in normal use-cases when using SP- instead

of only IDR-frames for streaming switching points (Setton and Girod observe [147]

an improvement of 40 % with their encoding parameters).

SPEG describes a way to extend currently available compression formats with

priority dropping. This means that when the streaming server is notified of an

impending buffer underrun, it can reduce the media stream’s bitrate by dropping

the least important data first. This provides a far more graceful degradation in

quality than random dropping of data.

A problem with most codec-based approaches to adaptive streaming is that they

have virtually no support in the device market, where hardware accelerated decod-

ing is necessary to limit power consumption, and to reduce unit cost by doing the

computationally expensive decoding operation with a cheap dedicated decoder chip

instead of a powerful and expensive general CPU. Therefore, another bitrate adap-

tation mechanism based on traditional codecs such as H.264 and the ubiquitous

HTTP protocol has achieved far greater popularity. This technology is the final evo-

lutionary step in figure 2.1, and will from here on be referred to as adaptive HTTP

streaming. Adaptive HTTP streaming solutions are offered by companies such as

Move Networks [121], Microsoft [167], Apple [127], Adobe [51], and Netview [7], and

is described in more detail in the following section.

2.3 Adaptive HTTP Streaming

Adaptive HTTP streaming and progressive download streaming are similar in many

respects, but in the former, a stream is split into a sequence of file segments which

are downloaded individually, instead of performing one large file download per

stream. Possibly the earliest mention of this type of streaming is a patent that

was filed in 1999 [64].

Each segment is typically 2–10 seconds of the stream [49]. The segment data can

be either a multiplexing container format that mixes data from several tracks (au-

dio, video, subtitles, etc.), or it can contain data from just a single track, requiring

the receiver to download and process segments from several tracks in parallel.
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The video track is usually available in multiple different bitrates, each repre-

senting a different quality level. The quality can only change on segment bound-

aries, so the adaptation granularity is the same as the segmentation granularity,

usually 2–10 seconds. Although high granularity switching is desirable, 2–10 sec-

onds is acceptable, because the media player will – most of the time – have more

than one segment in its input buffer. Hence, despite the delayed switch to a lower

bitrate stream, it can usually be done in time to avoid a buffer underrun. Note that

Live streams tend to use shorter segments than VOD streams, because they have

less buffered data, and thus need finer granularity switching.

To allow seamless quality switching, every frame in a segment must be encoded

without any references to neighboring segments. Note that, because each segment

can be considered a stand-alone video clip, playback can start at any segment in the

stream. Thus, the segment granularity is also the seek granularity.

Downloading a segment is exactly the same as downloading any other file using

HTTP. Standard HTTP GET requests are sent for every segment, and the URLs for

these requests contain information such as the timestamp of the first video frame

in the segment (or a sequence number), track descriptors, language codes, bitrate

values, and anything else that is needed to uniquely identify the segment to be

downloaded.

An adaptive HTTP stream normally consists of hundreds or thousands of differ-

ent segments (typically a segment for every 2–10 seconds, for every available quality

level of every track). Each segment is separately downloadable using its own URL

but the playout of a concatenated sequence of segments should be seamless. To re-

duce the entire stream to a single URL, most adaptive formats use a manifest file

to describe the stream’s structure. The manifest file includes information such as:

• General stream meta information (e.g., total stream duration, encryption in-

formation, if it is VOD or Live, etc.)

• Which types of streams are available (e.g., audio, video, subtitles, etc.)

• A segment index for each stream, listing URLs for each media segment, and

information about the segments’ durations and start times.

• Which quality levels are available for each stream. Here one will find infor-

mation about codec types and encoding parameters such as resolution, frame

rate, sample rate, number of audio channels, etc.

• Information about alternate renderings (e.g., different languages for audio

and subtitle tracks, different camera angles for video tracks, etc.)

Thus, a media player needs only the URL to the manifest file to start playing video,

because all the segment URLs will be known after it has downloaded and parsed

the manifest. This workflow is illustrated in figure 2.2.
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Figure 2.2: The workflow in most adaptive HTTP streaming systems.

Figure 2.3: A typical layout of a manifest file in adaptive HTTP streaming. This illustration
shows a stream with three quality levels (low, medium, high), where each quality level has
four media segments. Each segment index describes that quality level’s segments, and how
to download them (filenames and URLs).

The most interesting parts of the manifest, from an adaptive streaming per-

spective, are the quality level and segment indexes, as this is what enables quality

adaptation and the actual downloading of the media segments. A high-level view

of the quality level and segment indexes in a typical manifest file is shown in fig-

ure 2.3, and a graphical representation of the quality as a function of time is il-

lustrated in figure 2.4. Both figures use as an example a short stream with three

quality levels and four segments. In figure 2.4 the first two segments are played in

the lowest quality level, the third segment is played in the medium level, while the

fourth segment is played in the highest level. Because adaptive HTTP streaming

is a pull-based approach, the receiver is in charge of quality adaptation, which is

beneficial to the responsiveness of the bitrate adaptation, as almost all information

relevant to the process is immediately available to the receiver, not the server.

The reason HTTP has become the most common transport protocol for adaptive

streaming is that it inherits all the benefits of progressive downloading streaming

mentioned in section 2.1, while at the same time offering a solution for the most
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Figure 2.4: The structure of an adaptive HTTP stream. A row of boxes make up a single
quality level of the entire stream, and a single box represents a segment of the stream (usu-
ally somewhere between 2–10 seconds). Segments in the same column represent exactly the
same content, but in different encoding bitrates (qualities). The red arrow represents the
video playout, indicating which quality was used for each segment in the streaming session.

significant problem with streaming over HTTP: fluctuating bandwidth. Being able

to switch seamlessly to a stream with a lower bitrate whenever the buffer fullness is

too low makes HTTP much more usable for real-time streaming, especially on mo-

bile devices. Because packet loss is frequent when streaming to mobile devices, and

because packet retransmission is expensive, traditional protocols for mobile video

streaming were based on UDP and allowed packet loss to happen. Redundancy and

robustness in the video encoding, often in combination with forward error correc-

tion, was used to minimize the negative effect of packet loss. After adaptive bitrate

video streaming became commonplace, the complexity of UDP-based protocols with

lots of redundancy for packet loss became less attractive. TCP could now be used,

since the bitrate could be lowered according to the network capacity. Because of

the simplicity and ubiquity of adaptive HTTP streaming in fixed networks, it seems

likely that this is also the future of mobile video streaming.

Several adaptive HTTP streaming formats are currently available, most notably

Apple’s HTTP Live Streaming (HLS) [127], Microsoft’s Smooth Streaming [167],

Adobe’s HTTP Dynamic Streaming (HDS) [51], and the ISO/MPEG standard Dy-

namic Adaptive Streaming over HTTP (DASH) [98]. Even though HLS, Smooth and

HDS were created by private companies, their specifications are open, and several

other companies develop server and client implementations of the different stan-

dards.

The standards share the properties described in this section, but differ in mani-

fest syntax, segment URL conventions and media container formats. However, the

biggest difference in performance between different systems comes from the clients’

quality adaptation strategies, not from which streaming standard is used. Chap-
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ter 4 compares the quality selection algorithms (which are agnostic to the adaptive

streaming formats) of different media players under challenging streaming scenar-

ios in mobile wireless networks.

2.4 Applications of Adaptive Bitrate HTTP

Streaming

The previous section showed that many commercial implementations of adaptive

HTTP streaming are available. The following subsections list some of the currently

available services that use these products, and goes on to describe future services

and features that the technology enables.

2.4.1 Current Services

Adaptive HTTP streaming was designed to be an improvement over progressive

download streaming over HTTP. The goal was to use bitrate adaptation to make it

more robust against fluctuations in throughput. Thus, it is not surprising that most

services using adaptive HTTP streaming today offer just the basic video streaming

functionality. They support VOD and Live streaming, often with alternative lan-

guage tracks, but this is just the functionality viewers have come to expect from any

digital video service. Almost all new online video streaming services are based on

adaptive HTTP streaming, and the following list is just a very small subset of what

is available as of 2012:

• Netflix [27], an American provider of on-demand Internet streaming media

that offers an extensive library of content to over 20 million streaming sub-

scribers (as of 2012) [123].

• TV 2 [41], the largest commercial television station in Norway, uses adap-

tive HTTP streaming for its online video platform, which includes Premier

League football. TV 2 does not publish its subscription numbers, but it is es-

timated [116] that they had around 60 000 subscribers at the end of 2010 (a

30 % increase since 2009).

• BBC, the largest broadcaster in the world, uses adaptive HTTP streaming in

its iPlayer service [12]. BBC reports [34] 1.94 billion TV and radio program

requests across all platforms in 2011.

• ESPN, an American television network focusing on sports-related program-

ming, uses adaptive streaming in its ESPN Player [17]. ESPN does not provide

much data on its viewer numbers, but [109] reports 330 000 unique viewers

for ESPN’s live streamed NBA Finals in 2012.
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• Comoyo [15], a consumer content portal for the Nordic region launched by

Telenor, offering movies, sports events, and other TV content. The service

is still new, so no data on subscribers or viewers is available at the time of

writing.

• Major sports events such as the Olympics [25] (106 million video requests re-

ported [29] by BBC alone for the 2012 Olympics), Super Bowl [38] (more than

2.1 million viewers [75]), and the FIFA World Cup [19] (30 million unique view-

ers reported [2] by Conviva alone) are all available through adaptive HTTP

streaming services.

This list shows that adaptive HTTP streaming is used by big businesses to stream

premium content that draws huge numbers of viewers, indicating that the technol-

ogy is both scalable and robust. Although the services listed use adaptive bitrate

HTTP streaming to provide traditional streaming services, the technology also fa-

cilitates more advanced features, which will be briefly discussed in the next subsec-

tion.

2.4.2 Future Services

As mentioned in section 2.3, a property that is common to all adaptive HTTP stream-

ing systems is that each segment is stand-alone decodable. Without this property,

it would not be possible to switch between different quality levels in the middle of

a stream, because dependencies between segments would mean that the segment

in the new quality level would depend on preceeding segments in that quality level.

The quality level that the media player is switching from is a completely different

encoding from the one it is switching to, so switching quality levels in the mid-

dle of a stream would break decoding dependencies. Similarly, seeking to random

positions in the stream would not be possible without stand-alone decodable seg-

ments. Workarounds with byte offsets to true random access points that do not

align with segment boundaries could be added to the stream manifest, but this

would increase manifest overhead and complexity of the implementation. Thus,

all adaptive streaming formats make it simple by requiring the first frame in each

segment to be a true random access point (an IDR-frame in H.264 terminology).

An interesting benefit of stand-alone decodable segments is that, not only can

they be played in any order, but segments from completely different streams can

also be concatenated and played seamlessly (provided that all the segments use the

same codec, of course – e.g., a decoder could not successfully decode a concatenated

sequence of H.264 and VC-1 [115] segments). It follows from this that video editing

is possible through recombinations of video segments from various sources, with-

out computationally expensive re-encoding of video. In other words, creating a cus-

tom video cut is nothing more than a custom playlist with segments from different
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Figure 2.5: Stand-alone decodable segments can be recombined from different stream
sources (A and B in this example), in any order, in effect enabling lightweight video-editing.

streams, in any order (see figure 2.5). However, note that the video editing gran-

ularity is equal to the segment durations (2–10 seconds) in our implementation.

Frame accurate editing is possible in theory [84], but not practical in the general

case. E.g., consider a stream with 10 second segments and video with 30 frames per

second, i.e. 300 frames per segment. In adaptive HTTP content, each segment has

typically only one IDR-frame (a frame encoded for random access). Thus, to be able

to access the last frame in a 300-frame segment, all 299 frames before it must be

downloaded and decoded. These 299 frames would only be used to put the decoder

in the proper state for the last frame, they are not displayed. Hence, the cost of di-

rect access to the last frame, in terms of download bandwidth and processing power

required to decode it, becomes roughly 300 times higher than it would have been

if it were used normally. Using only the last frame in a segment is the worst case

scenario, but the same problem applies in the general case: There is always a high

price to pay for random access to frames that are not encoded for random access.

This cost would incur, not once when the playlist is generated, but every time the

playlist is used. As such, we believe the cost outweighs the benefits of frame accu-

rate editing. Nevertheless, segment-level video editing unlocks powerful features

not traditionally seen in video services targeted to end-users.

Take, for example, a video search engine. Traditional video search engines such

as YouTube [46] return results that match the stream as a whole, which is far from

ideal if the user searched for a specific event that occurs somewhere within a long

video clip. Empowered with on-the-fly lightweight video editing through advanced

segment playlists, the search engine can do indexing, annotation, and tagging on in-

dividual segments, and on a search query, return exactly the segments that match

the query. This makes the video search engine far more precise and enables ap-

plications that otherwise be much less useful, such as a sports event video search

engine.

19



Figure 2.6: The DAVVI architecture and main components.

We created the DAVVI system [101, 100], a prototype for a next generation multi-

media platform, precisely to demonstrate this point. The architecture of the DAVVI

system is illustrated in figure 2.6. It provides a search interface to voluminous

soccer video archives where annotation and tags are applied to the segments to

which they refer, instead of the entire stream (which may be several hours long).

Queried events are extracted, concatenated from several different videos, into one

continuous video playout. For example, a query for all the goals made by a spe-

cific player in the last year produces a highlights reel containing just the events

matching that query. Traditional video search services such as ESPN Search [18],

VG Live [44] and TV2 Sumo [42] only allow the user to search for games and a

few main game events, such as goals. The main drawback with these systems is

that search results cannot produce a customized, on-the-fly generated personalized

video playout. The DAVVI search engine can, at a user’s request, automatically

sequence out portions of longer videos, or aggregate parts from multiple videos,

to provide a single, personalized video stream on-the-fly. Because the search re-

sults only return the segments that are relevant, DAVVI is much more precise than

traditional video search engines. Additionally, users can also – through the web

interface – do lightweight video editing on the content available to them, and, in

theory, share their customized playouts with other users (this social aspect is not

yet implemented). In summary, the DAVVI system takes advantage of lightweight

segment-based video editing to provide a personalized topic-based user experience

that blurs the distinction between content producers and consumers.

20



Note that basing such an application on adaptive HTTP streaming with stand-

alone media segments is essential. One could envision using SP/SI-frames (de-

scribed in section 2.2) instead of stand-alone decodable segments, but it would be

very inefficient in the general case, since customized playlists would frequently re-

quire SI-frames (as segments from different sources are joined together), which usu-

ally have less than half the coding efficiency of IDR-frames [147]. Even worse, there

would have to be an SI-frame for every possible combination of segments (since they

serve as bridges between two SP-frames, they are not stand-alone like IDR-frames).

Thus, the number of possible SI-frames is proportional to the square of the number

of segments in the media database, which can easily be in the billions for a large

service like YouTube. It is obviously impossible to store something in the order

of 1018 switching frames, so the only solution would be to encode these switching

frames as part of the playlist generation, which destroys the encoding-free aspect

to video editing.

Another example of a service that utilizes indexed video segments is vESP (video-

Enabled Enterprise Search Platform) [90]. Here, the content database consists of a

set of presentation slides and corresponding video clips of a person presenting them.

A user can select slides from different presentations to generate a customized slide

deck, and the video form of this presentation is automatically generated by con-

catenating clips corresponding to each slide in the customized slide deck. Similar

services are available, such as Altus vSearch [55] and FXPAL’s TalkMiner [20], but

again they lack the ability to present on-the-fly generated video for a selected set of

slides.

Sadlier and O’Connor [142] propose that the metadata that facilitates services

like those mentioned here could be generated by automatic video analysis, and out-

line an approach to automatic event detection. Although soccer is the perhaps most

widely investigated topic [76, 153, 166], similar approaches exist for other sports

like tennis [70], basketball [168], baseball [66], rugby [23], American football [113],

and Formula 1 [154]. Such systems can be used in our metadata and annotation

operations. However, their reported recall and accuracy when used alone is insuf-

ficient in the context of our target application areas where both high accuracy and

low recall are required, so having professionals perform semantic annotation is of-

ten necessary. However, another option is user-generated annotation, tagging, and

playlist sharing. It follows that future video search engines can benefit from a closer

integration of video delivery systems, search and recommendation, and social net-

working.

2.5 Summary

Adaptive HTTP streaming is relatively simple to implement, benefits from the ubiq-

uity of the HTTP protocol, and enables powerful functionality beyond traditional
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streaming through its use of stand-alone decodable media segments. Even the most

basic implementations work well on fixed networks, and the technology has been

extremely successful in commercial video streaming services, having taken over al-

most the entire market in just a few years. Also, adaptive HTTP streaming makes it

easy to create personalized video playouts, which has a wide range of applications,

such as better video search engines or online video editing.

However, it is a different matter how well adaptive HTTP streaming performs

on mobile wireless networks, where TCP-based traffic often suffers from poor per-

formance due to frequent packet loss and large variations in latency. Streaming

to mobile devices is an increasingly important scenario, as it is only recently that

handheld devices powerful enough to play high quality video became commonplace,

and affordable high-speed mobile Internet connections were also not available until

recently.

To better understand the challenges encountered when streaming in mobile net-

works, the next chapter presents a study of bandwidth, packet loss and latency in

Telenor’s 3G/HSDPA network in Oslo, Norway. Although it is TCP’s performance

we are most interested in, we also study UDP traffic under the same conditions,

because observations on the packet level will help explain the behavior of the TCP

protocol.
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Chapter 3

Performance Characteristics of

3G/HSDPA Networks

Adaptive HTTP streaming uses standard video codecs and transport protocols to

provide adaptive bitrate streaming. This allows for a more robust streaming system,

where playout interruptions due to buffer underruns can be greatly reduced. The

technology has enjoyed great commercial success, and because it makes customized

video playouts easy and inexpensive to generate, it enables features not seen in

traditional video streaming services.

It is not clear, however, how efficient the technology will be in mobile wireless

networks, where the bandwidth fluctuations will be much more frequent and drastic

than in fixed networks. The performance of adaptive HTTP streaming in mobile

wireless networks will be studied thoroughly in this chapter, but first we present a

low-level study of packet reception characteristics in Telenor’s 3G/HSDPA network

in Oslo, Norway.

3.1 Related Work

Many studies have been performed on performance in 3G networks. Holma and Re-

unanen present [91] measurement results for an early implementation of HSDPA,

both from the laboratory and field measurements during 2005. Derksen, Jansen,

Maijala, and Westerberg present [72] results from HSDPA measurements made in

a live, commercial network supplied by Ericsson, as well as future enhancements

to the technology that will further improve performance.

Jurvansuu, Prokkola, Hanski, and Perälä evaluate [103] live HSDPA opera-

tional network performance from the end-user perspective, looking at both TCP and

UDP performance, and focusing on Voice over IP and web applications. Prokkola,

Perala, Hanski, and Piri extend this work [132] with uplink and mobility measure-

ments in a live High-Speed Uplink Packet Access (HSUPA) network.
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Isotalo and Lempiäinen study [99] performance of HSDPA in an indoor environ-

ment, and provide guidelines on HSDPA coverage and capacity planning in different

antenna configurations consisting of pico cells and distributed antenna systems.

In [163], Xu, Gerber, Mao, and Pang used the predictability of human mobility

patterns to develop an algorithm for accurately determining the geographical loca-

tion of users. They use this algorithm to map IP-level flow records to fine-grained

geographic regions, envisioning this technology to be an important tool for operators

of 3G networks for the purpose of performance monitoring, network maintenance

and anomaly detection.

Deshpande, Hou and Das compare [73] a nation-wide 3G network and a metro-

scale WiFi network operated by a commercial ISP from the perspective of vehicular

network access. They find that 3G offers somewhat lower throughput than WiFi,

but a far more stable connection for mobile access. The speed of the vehicle was

found to have little effect on a 3G client, but a WiFi client experienced a large drop

in throughput above 20 km/h, as the WiFi handover mechanism is not optimized

for speed. However, when WiFi is available, it is very likely that it outperforms 3G,

so the paper concludes that a hybrid solution that aggregates 3G and WiFi would

be most successful (we develop a multi-link media player in chapter 6, and confirm

this conclusion empirically).

Botta, Pescape, Ventre, Biersack, and Rugel study [60] packet traces from real

users in an operational 3G environment. They focus on heavy users (those that

transfer large amounts of data), and try to determine the causes of varying through-

put. They conclude that the most common causes of high packet loss and low

throughput is either congestion in the cellular core network, or congestion at the

access induced by user behavior.

Weber, Guerra, Sawhney, Golovanevsky, and Kang analyze [159] video stream-

ing performance in live Universal Mobile Telecommunications System (UMTS) net-

works. They focus on the performance of MPEG-4 streaming over RTP (using UDP

as the transport protocol), and compare performance in different distances from the

radio tower, and performance with a mobile receiver (average speed was 34 km/h).

They conclude that the audio and video streaming performance was impacted most

when the network switched down the radio bearer for a more robust signal at the

expense of throughput. They used non-adaptive streaming, so when the bandwidth

dropped below the media bitrate, buffer underruns interrupted playback frequently.

However, none of these tests explore the performance as a function of geograph-

ical location while travelling, which prompted the study presented in this chapter.

This study was also conducted with one-way video streaming in mind, meaning that

we focused more on throughput than latency. The following section describes our

UDP-based measurements, which were primarily intended to expose packet-level

behavior in 3G networks under different conditions.
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3.2 Characteristics of 3G/HSDPA Networks in a

Fixed Rate UDP Streaming Scenario

When we started this project, the high-speed mobile network with the most cov-

erage in Norway was Telenor’s 3G/HSDPA network. HSDPA is a communications

protocol that improves downlink performance in mobile networks based on UMTS.

The theoretical maximum download rate in Telenor’s 3G network was 3.6 Mbit/s at

the time we performed the UDP-based experiments described in this section.

The initial 3G/HSDPA measurements were performed using a custom made

analysis tool that transferred data in a fixed (but configurable) rate using UDP pack-

ets. The purpose of this low-level approach was to measure more network charac-

teristics than we could with a TCP-based protocol. We wanted to study throughput,

packet loss patterns, transmission errors, latency, and jitter. To be able to test this,

each UDP packet contained three things:

1. A sequence number, enabling the receiver to precisely detect packet loss.

2. A timestamp showing when the package left the receiver. The sender and

the receiver had their clocks synchronized using the Network Time Protocol

(NTP) [8], enabling the receiver to measure the one-way delay and jitter.

3. A payload to make the packet size exactly 1500 bytes (equal to the network’s

maximum transmission unit (MTU)). The bit pattern was fixed, enabling the

receiver to check for transmission errors.

Because download performance is much more important than upload performance

for a one-way video streaming scenario, all tests measured the download perfor-

mance of the 3G/HSDPA connection. The sender was a dedicated server with a

100 Mbit/s Ethernet connection, and the receiver was a laptop with a 3G/HSDPA

connection. The server was only four hops away from the Norwegian Internet eX-

change (NIX), with on average less than 2 ms packet round-trip time. Almost all of

the delay between the sender and receiver was due to the mobile network.

In each test, packets were sent at a fixed rate, and the packet reception rate was

logged. When the UDP packet transmission rate exceeded the available bandwidth

in the network, the result would be a reduced reception rate. In other words, a

straight line at 100 % means a perfect transmission where no packets were lost.

Every dip in the curve represents loss of data.

3.2.1 One Receiver Utilizing Maximum Bandwidth

To study how the HSDPA network performed with one single user consuming all the

bandwidth, the sender was configured to send packets at a rate that exceeded the

expected maximum throughput by about 25 %. We performed multiple tests (using
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the same tool) using different bitrates, and determined that the expected through-

put was around 2.2–2.3 Mbit/s. Hence, the send rate was set to 2.8 Mbit/s for this

test, making sure that we consume all available bandwidth. The receiver’s packet

reception log was used to plot the reception rate as a function of time (figure 3.1

shows a typical result, after having done multiple runs in a location very close to

the base station). The overall effective reception rate when accounting for packet

loss was 2.25 Mbit/s.
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Figure 3.1: UDP packet reception rate in a 3.6 Mbit/s 3G network. A single stationary user
is streaming at 2.8 Mbit/s. A straight line at 100 % would mean that no packets were lost.
but since the effective bandwidth is only 2.25 Mbit/s, packets are dropped in the wireless
network causing a saw toothed loss pattern.

The throughput observed here is significantly lower than the numbers reported

by Ericsson [72] in a similar network, even though the location was optimal and

no other users were consuming the cell’s bandwidth. The explanation may be that

Telenor’s network had reserved some of the bandwidth for voice traffic.

The saw-toothed packet drop pattern starting about five seconds into the test

indicates that the base station has a large buffer to avoid losing data due to short-

lived peaks in the transmission rate. If the buffer does not overflow, packet loss

can be avoided at the cost of variable delay (jitter) depending on the fullness of the

buffer. If the buffer overflows, large numbers of packets are dropped.

3.2.2 Multiple Receivers Utilizing Maximum Bandwidth

When a mobile wireless network has a stated maximum bandwidth, what is meant

is the total bandwidth per cell, not the total per receiver. In other words, multiple

users streaming in the same cell will have to share the bandwidth. The fairness

of the sharing is controlled both by the transport protocol (depending on how it re-

sponds to packet loss) and the base station. With the UDP protocol used in the tests
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Figure 3.2: UDP packet reception rate in a 3.6 Mbit/s 3G network. Four stationary users
at the same location are streaming at 0.7 Mbit/s.

described in this section (a fixed data rate that ignores packet loss), the fairness of

the bandwidth sharing will be determined only by the base station.

Observing in previous tests that the maximum data rate was around 2.3 Mbit/s,

and using four simultaneous receivers in the same location, the data rate was set

to 0.7 Mbit/s per receiver. With a total of 4 × 0 .7 Mbit/s = 2 .8 Mbit/s, this was

guaranteed to overflow the base station’s buffers, forcing it to drop packets and

expose its bandwidth sharing fairness in a resource constrained scenario.

Results from this test varied from run to run, but packet loss was generally not

equally distributed among the four receivers. A typical result is shown in figure 3.2.

The packet loss patterns display the same saw-toothed appearance as the single-

receiver test previously showed in figure 3.1, but here, receiver number one (from

the top) experiences packet loss about 20 seconds into the test, while for three and

four it does not occur before 40 seconds into the test. Receiver number two has

almost no packets lost over the entire run. This shows that the base station main-

tained individual packet queues for each client, and did not give them equal treat-

ment.

The aggregated effective throughput for all four receivers was 2.53 Mbit/s, over

12 % more than was achieved with a single receiver in the same location. Thus, it is

clear that cross-traffic interference is not a problem, the total throughput available

in a cell is at least as good with multiple receivers as with a single receiver.

3.2.3 Loss Patterns Due to Noise

In the tests described in subsections 3.2.1 and 3.2.2, packet loss was predominately

caused by congestion, forcing the base station to drop packets from its queues. But

even without congestion, data can be lost due to signal noise.
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Figure 3.3: UDP packet reception rate in a 3.6 Mbit/s 3G network with observed signal
noise spikes. Four stationary users at the same location are streaming at 256 kbit/s (far
below the congestion threshold).

To observe this, several locations were tested with low data rates (256 kbit/s

per receiver, much too low to fill the base station’s buffers) to see if any of them

had significant packet loss. Some locations were indeed prone to have sporadic

noise spikes, and four simultaneous receivers were used to measure the packet loss

caused by this phenomenon. The reason for using four receivers instead of one, was

to test test if the noise spikes affect all receivers equally, as expected. The result

is shown in figure 3.3. However, note that such erratic loss patterns are rare, and

often not reproducible. We mention it here to show that it exists, but is insignificant

compared to other causes of packet loss.

3.2.4 Loss Patterns for A Receiver Moving Between Base

Stations

Subsections 3.2.1, 3.2.2 and 3.2.3 all describe results for stationary receivers, but

it is interesting to also study packet loss in mobile receivers, as this is obviously an

important scenario for video streaming to mobile devices.

In addition to possible congestion and noise, a mobile receiver will also expe-

rience varying signal strength due to varying geography and distance to the base

station, as well as potential issues caused by handover from one base station to

another.

To test the effects of varying geography and base station handover, the chosen

location was a road in the sparsely populated northern parts of Oslo, near Mari-

dalsvannet. All packet loss in this area should be due to poor base station coverage,

because base stations are not densely placed in rural environments. When travel-

ling through city streets, there will almost always be a base station sufficiently close

to provide good signal strength. In the countryside, the distance to the base station
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Figure 3.4: Driving route along Maridalsvannet in Oslo when testing packet loss during
base station handover. The one-way path length is 3.7 km.

(a) Streaming at 2 Mbit/s (the two graphs show

the same route driven in both directions).

(b) Streaming at 256 kbit/s (the two graphs show

the same route driven in both directions).

Figure 3.5: Comparing UDP packet reception rate in a 3.6 Mbit/s 3G network where a
single receiver streams at 2 Mbit/s (left) and 256 kbit/s (right) while driving at 50 km/h
from A→ B and back again (the route is illustrated in figure 3.4).

will vary a lot, causing the signal strength to fluctuate more strongly. We thought

this would be an interesting scenario for testing the base station handover mech-

anism, as a delayed handover could mean abrupt varitations in signal strength as

we are migrated from a distant base station to a close one.

A car driving at a fixed speed of 50 km/h was used as the method of transporta-

tion used for this test. The end points A and B of the travel route are shown in

figure 3.4.
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Both A and B were points where a stationary receiver could receive most pack-

ets from an incoming 2 Mbit/s stream (on average 6 % packet loss at point A and

0.1 % at point B). In other words, the network connection was good at the route’s

endpoints, and the test would measure how the connection varies as the receiver

travels between them at 50 km/h.

Figure 3.5(a) shows the packet loss when attempting to stream at 2 Mbit/s. The

two graphs in the figure show that the loss patterns look similar even though they

represent the same route in opposite directions. It is clear from the graph that the

throughput fluctuates dramatically, and that the handover mechanism can be slow

to react: About 150 seconds into the tests, the connection is almost dead, and at

220–250 seconds, it instantly bounces back up to an almost perfect signal.

Observing in figure 3.5(a) that the packet loss is much too high to be useful

for normal TCP-based network traffic, the same test was done again, but with a

256 kbit/s data rate (down from 2 Mbit/s). This should allow the base station to use

a more robust signal modulation that offers lower packet loss at the cost of lower

throughput. Figure 3.5(b) shows the result of this test. The lower data rate almost

completely eliminated the bandwidth fluctations, but there are still large gaps in

the connectivity that last for up to 30 seconds.

3.2.5 Packet Delay and Jitter

(a) Distribution of latency observed by one of four

receivers that are each streaming at 700 kbit/s in

the same cell (congested network).

(b) Distribution of latency observed by one of four

receivers that are each streaming at 256 kbit/s in

the same cell (non-congested network).

Figure 3.6: Comparing jitter in a congested mobile network (left) with an uncongested one
(right). Each bar in the graphs is a “bucket” of data points, and the y-axis shows the relative
number of points in each bucket.

Throughout all tests performed in this section, packet latency (one-way delay)

was typically in the range 70–120 ms when the base station was not congested. The

variation in latency (jitter) in such a scenario is shown in figure 3.6(b). The figure
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has also overlayed a Gaussian function that approximates the observed results. Its

standard deviation (� ) is approximately 7 ms. This is a very good result, and tells

us that under normal conditions (non-congested base station), the latency is more

than good enough for non-interactive video streaming applications.

Latency measurements with other data rates below the congestion threshold

were also performed, and demonstrated that the amount of jitter was constant, as

long as congestion does not occur.

When congestion does occur, the latency distribution looks completely different.

The base station’s buffers are large and, when full, it can be several seconds between

a packet’s arrival in the base station’s queue and its arrival at the receiver. To

illustrate this, figure 3.6(a) shows the latency distribution experienced by the first

receiver from the top in figure 3.2. Here, the base station has four users trying to

stream at 700 kbit/s, thus overflowing the base station’s buffers.

The difference between figures 3.6(a) and 3.6(b) is dramatic. The congested dis-

tribution (figure 3.6(a)) has little resemblance to a Gaussian curve, and the average

latency is over 6 seconds compared to 0.1 seconds for the non-congested case (fig-

ure 3.6(b)). The spread in latency is quite large, which was to be expected as it must

grow proportionally with the amount of data in the base station’s output queue.

3.3 TCP Throughput in 3G/HSDPA Networks

To measure the TCP throughput in Telenor’s 3G/HSDPA network in Oslo, field tri-

als were performed along several popular commute routes in and around Oslo. The

software used to perform these tests was Netview’s own adaptive HTTP streaming

client, where the buffer size was unlimited, ensuring that the player would never

idle (the results would still be usable if idling was allowed to happen, but it would

result in fewer data points per trip).

All but one of the selected routes use different types of public transportation:

metro, bus, ferry, tram, and train where the respective paths are highlighted in

figures 3.7(a), 3.8(a), 3.10(a), 3.11(a) and 3.12(a). The final route (figure 3.13(a))

was by car, but because of the length of the trip (approximately 280 kilometers),

only one measurement was performed for this route, which is why we only present

the observed bandwidth, not an average and the variance.

To perform the field experiments in this study, throughput was logged while

downloading video segments from a dedicated high-performance web server at the

maximum speed achieved by the TCP protocol. In this context, “maximum speed”

means that no throttling was done at the application level, neither by our media

client nor the web server hosting the content. Laptops with Global Positioning Sys-

tem (GPS) devices (Haicom HI-204III USB GPS) and 3G mobile Internet devices

(Huawei Model E1752 HSPA USB stick) were used to perform the measurements.
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Note that in the event of GPS signal loss, the HI-204III GPS device will (for a

short time) extrapolate positions based on previously recorded positions and move-

ment vectors. To avoid getting wrong path distance numbers when generating the

graphs showing bandwidth as a function of distance from the start of the path, the

position/sample pairs that were clearly in the wrong place were manually corrected.

A more sophisticated implementation should be able to do this automatically by

querying the GPS about signal strength to identify which samples can be trusted

and which can not.

For approximately every second in the test session, a data point was recorded,

each containing:

1. Current time, expressed as a Unix timestamp (number of seconds since 1970-

01-01 00:00 UTC).

2. Geographical position (latitude and longitude).

3. The number of milliseconds that elapsed since the last data point.

4. The number of bytes received since the last data point.

Bandwidth measurements were performed several times for every route (more than

ten times for all of the interesting routes: metro, bus, ferry and tram), where the

plots show the average bandwidths as a function of the path position (as traveled

distance from the start) with highlighted standard deviation. All data sets pre-

sented here (and more) are available for download [140].

3.3.1 Metro railway

(a) Map (the dotted parts indicate that the train

is underground).

(b) Bandwidth.

Figure 3.7: Metro commute route between Kalbakken and Jernbanetorget.
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A popular means of commuting in Oslo is the metro. This is an electric passen-

ger railway, all of whose lines pass through underground tunnels in central Oslo,

and above ground outside the center. The underground part of the tested metro

commute route is shown with the dotted line in figure 3.7(a). When the train was

underground, the signal was very poor, as expected.

Figure 3.7(b) shows the measured bandwidth along the metro path. All the mea-

surements show the same trend, and the signal and bandwidth availability are pre-

dictable with only minor variations. The experienced bandwidth is typically around

1 Mbit/s when the train is not underground. When entering the tunnels after ap-

proximately 5.5 kilometers, both the Internet connection and the GPS signal are

essentially lost (in periods without a GPS signal, the position is estimated based on

the metro time table).

3.3.2 Bus

(a) Map. (b) Bandwidth.

Figure 3.8: Bus commute route along Mosseveien, between Ljan and Oslo Central Station.

Figures 3.8(a) and 3.8(b) show a bus path going into Oslo and the corresponding

bandwidth measurements. The average values in figure 3.8(b) vary greatly, but the

measurements show that a streaming session of about 1.5 Mbit/s should normally

be possible. However, the example also shows one of the challenges of establishing

a bandwidth lookup service: The bus route has a steep hill on the east side, which

prevents the reception of signals from eastern GPS satellites. The Oslofjord is in the

west, leaving few possible sites for UMTS base stations on that side. Consequently,

both the GPS and the UMTS signals vary a lot, which again creates uncertainty

in estimating where an achieved bandwidth is measured. This may explain the

wide standard deviation “belt” in figure 3.8(b). One reason for this is that the GPS

device used for this test was unable to get a good signal in some experiments, but

connection losses only rarely occured (only one single serious outage, typically last-

33



(a) Three different measurements along parts of

the route.

(b) Difference between trip 2 and 3 (in

figure 3.9(a)) at 59.8708 North on the

map.

Figure 3.9: Observed GPS differences on the bus route.

ing 20–30 seconds, occurring at a predictable location every time). To illustrate

this, figure 3.9(a) shows the paths reported by the GPS devices on three trips along

the same road. The deviation is probably caused by weak GPS signals and a GPS

device which responds by returning extrapolated coordinates; for example, at lati-

tude 59.8708 North (signed decimal degrees), trip 2 and 3 have longitude values of

10.7793 East and 10.7809 East, respectively. This difference translates to about 90

meters, making the bus appear to be driving in the sea (see figure 3.9(b)).

3.3.3 Ferry

(a) Map. (b) Bandwidth.

Figure 3.10: Ferry commute route between Nesodden and Aker Brygge.
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The third test scenario is travelling by boat (figure 3.10(a)). Most commuters

from the Nesodden peninsula travel by ferry to Oslo, as traveling by car requires a

large detour. With lots of space on board and tables for PCs and devices with large

screens, this means of transportation is the one that is best suited for mobile video

viewing of high resolution content, but signal conditions far from land can some-

times be problematic. Figure 3.10(b) shows that the available bandwidth varies

quite a lot, but the signal is never completely gone while crossing the Oslofjord. As

expected, the signal is strongest when the ferry is close to land (Nesodden at the

start of the path, and Aker Brygge in downtown Oslo).

3.3.4 Tram

The fourth way of commuting in Oslo using public transportation is by tram. Fig-

ure 3.11(a) shows the tested tram path, whose tracks are parallel to but high above

the bus route. Figure 3.11(b) presents the measured bandwidth. Along the whole

path, acceptable but fluctuating bandwidth was observed. In the first part of the

route, a very predictable bandwidth was observed across the different measure-

ments. At the long downslope towards the end of the trip, the measurements vary

more.

(a) Map. (b) Bandwidth.

Figure 3.11: Tram commute route between Ljabru and Oslo Central Station.

3.3.5 Train

The trains to and from Oslo are frequently used by people traveling longer distances,

and in figure 3.12, we show the map and bandwidth plot for the Oslo–Vestby route.

In our measurements, the bandwidth varies a lot, sometimes jumping between 3

Mbit/s and almost no connectivity at all. Another problem was that the signal ap-

peared to be strongly affected by where in the train the receiver was located. Most
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likely this is because the aluminum alloy used in the train’s body creates an envi-

ronment similar to a Faraday cage [83], blocking both the GPS and the mobile data

network signals. Hence, all tests shown in figure 3.12 were done while sitting in a

window seat, where the connection was sufficently stable for video streaming.

(a) Map. (b) Bandwidth.

Figure 3.12: Train commute route between Oslo and Vestby.

3.3.6 Car

The route Oslo–Grimstad, shown in figure 3.13(a), is used by everyone driving from

Oslo going south on the E18 highway. It is an approximately 280 kilometer drive.

Figure 3.13(b) shows the achieved bandwidth, where we observed high peaks over

3 Mbit/s with an average of about 1 Mbit/s. However, as is also seen in the plot,

there are several areas (65–118 km, 165–211 km and 216–258 km) where there

is almost no connectivity (less than 100 kbit/s on average), certainly far too low

to sustain even the lowest quality video streams. The distance between 216 and

258 km was especially bad, as here the network went completely dead. In total, the

average bandwidth was insufficient for video streaming for almost 50 % of the trip.

Through extreme amounts of buffering, and using a very low quality level, an adap-

tive streaming client could in theory maintain uninterrupted playback throughout

the trip, but the viewer would have no freedom to seek or switch streams, as ev-

erything depends on filling a huge buffer in the beginning of the trip (while the

network bandwidth is still high enough to both play video, and fill the buffer at the

same time). In effect, the user experience would no longer be considered “stream-

ing”, being more similar to a “download movie, then play” type of client.

3.4 Performance as a Function of Time of Day

Because 3G networks are highly bandwidth limited at the access compared to fixed

networks, it sounds plausible that multiple users competing for the same resources
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(a) Map. (b) Bandwidth.

Figure 3.13: Car commute route between Oslo and Grimstad.

would cause congestion in peak hours of the day (e.g., in the rush hours when most

people commute to work). Thus, we expected this to be a contributing factor to fluc-

tuations in available bandwidth. To test this hypothesis, we compared bandwidth

logs along certain commute routes at different times of the day.

Figure 3.14: Bandwidth along the tram commute route on different times of the day. No
significant differences were observed.

Surprisingly, the time of day on which the measurement was done was not found

to significantly influence the results. This is shown graphically in figure 3.14, where

we compare the tram route bandwidth curves measured on different times of day.

This also applies to the other commute routes, but we picked the tram route to il-

lustrate the point, because the bandwidth on the tram route had less randomness

than the other routes (this randomness could not be explained by time of day differ-
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ences, as we found the variance in results equally large between different runs at

the same time of day as between different runs at different times of the day). Using

a route with predictable bandwidth makes it easier to visually compare measure-

ments done on different times of the day, and confirm that the results are more or

less the same.

In summary, time of day differences were not an issue in 2011 (when these mea-

surements were done), but we expect this to change in the future when more people

use the streaming services available to mobile devices. However, for this initial

study, when it was not yet a factor, we did not differentiate the returned results

according to time or date. Nevertheless, if future measurements indicate time dif-

ferences, we can easily take into account the time of day, and day of week.

3.5 Summary

This chapter presented performance measurements of a real 3G/HSDPA network,

using both UDP- and TCP-based data transfers. We observed that the performance

of 3G/HSDPA networks is good, as long as the capacity of the network is not con-

gested. In a congested 3G cell, one will experience large fluctuations in bandwidth

and jitter, and unfair distribution of bandwidth between multiple users sharing the

same cell. When moving between cells, we found large variations depending mostly

on geographical location. The TCP-based tests also showed that the variance in

bandwidth between multiple runs along the same path is relatively small, meaning

that the bandwidth for a specific location can often be predicted with high accuracy.

To get good performance in a mobile 3G/HSDPA network, it is important to avoid

congestion and to reduce the data rate when the connection quality is poor. This

reduces both latency in packet transmission and loss of data. It follows that a media

streaming system for mobile networks needs to support bitrate adaptation. How-

ever, in areas with poor network coverage there are some outages that cannot be

avoided, so the only way to avoid playout interruptions is to let the receiver pre-

buffer more content than is normal in a fixed network streaming scenario. The

amount of buffering that is required for this varies a lot between different locations,

so maintaining a fixed amount of data in the buffer is not optimal.

The next chapter starts by comparing the quality adaptation performance1 of ex-

isting adaptive HTTP streaming products under the conditions observed in a real

3G/HSDPA network. Next, it presents our own adaptive HTTP streaming imple-

mentation that was designed to improve performance in these types of networks.

Finally, a performance comparison is made between existing products and our own

implementation.

1High performance in this context means high quality video streaming from a user’s perspective.
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Chapter 4

A Study of Bitrate Adaptation

Algorithms for Adaptive HTTP

Streaming Clients in 3G Networks

The previous chapter presented measurements showing that 3G/HSDPA can sup-

port video streaming, but that bitrate (and consequently quality) adaptation is nec-

essary for mobile video receivers. Here, we will compare the bitrate adaptation

algorithms in existing adaptive HTTP streaming solutions in challenging mobile

streaming scenarios to see how well they solve the problems encountered. In this

context, the performance criteria of a bitrate adaptation algorithm is the QoE from

the user’s perspective, i.e., how well it delivers an uninterrupted playout with sta-

ble quality and good bandwidth utilization. With these criteria in mind, we develop

a new quality adaptation algorithm optimized for mobile networks and compare it

with currently available products.

4.1 Streaming in 3G Networks using Adaptive

HTTP Technology

Adaptive streaming over HTTP [150, 138] is rapidly becoming popular among com-

mercial vendors of streaming technology. It can be implemented as a combination of

simple servers and intelligent clients that make adaptation decisions based on local

observations. The versatility and relative simplicity of the technology has made it

successful on everything from high-speed fixed networks with HD-capable receivers

to small handheld devices on mobile wireless networks. As a strictly pull-based

approach, adaptive HTTP streaming is quite different from early video streaming

techniques that relied on server-side decisions and multicast. Pull-based stream-

ing has become viable because the development of the Internet infrastructure has

made it possible to take cheap server capacity and backbone network capacity for
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granted. Under these conditions, providing good QoE on a fixed high-speed network

is not difficult any more, but it is considerably more challenging when the client’s

access network is a mobile wireless network with severe and frequent bandwidth

fluctuations and outages. Such network conditions result in recurring buffer under-

runs and frequent quality switches, both harmful to the viewer’s QoE [124, 169].

Under such circumstances, proper configuration of a media player’s quality sched-

uler is both challenging and important. The overall aim is to provide the best pos-

sible viewing experience. Important steps towards this goal include:

1. Avoiding buffer underruns, as they cause interruptions in video playback.

2. Avoiding rapid oscillations in quality, as this negatively affects perceived qual-

ity [124, 169].

3. Utilizing as much of the potential bandwidth as possible to give the viewer a

higher average video quality.

While actively using several commercial video systems in our other projects, we

have experienced large differences in performance with regard to the above points.

Adaptive video formats and streaming systems only offer the means to change the

quality, and it is up to the client to determine how to use the adaptation mecha-

nisms. Choosing when and how much data to retrieve, and which bitrates to use,

are all non-trivial tasks. As mentioned above, perceived quality will be higher if

changes in quality are gradual and do not occur too often.

This prompted us to conduct a more rigorous performance comparison, where

we investigate how the players perform and adapt in challenging mobile streaming

scenarios using typical bus, ferry, metro and tram commute routes in Oslo, Norway.

In particular, we wanted to know how the different systems perform in terms of

robustness against underruns, stability in quality, and bandwidth utilization.

From our experimental results using Telenor’s 3G mobile network, we observe

large differences in the rate adaptation policies. Apple and Adobe’s players repre-

sent two opposites in that Apple focuses more on stable quality at the expense of

high average quality, whereas Adobe does the opposite. Microsoft’s Smooth Stream-

ing [167] tries to achieve good stability as well as high bandwidth utilization. At the

end of the chapter, we present our own implementation of a reactive rate adaption

policy that improves on existing products in the use case of mobile video streaming

with non-live content.

4.2 Related Work

Several studies have been performed on video streaming in vehicular mobile en-

vironments using ad-hoc networks. Asefi presents [56] new cross-layer protocols

for vehicle-to-vehicle video streaming. Xie, Hua, Wenjing, and Ho propose [162]
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two data forwarding schemes for highway environments. In [62], Bucciol, Masala,

Kawaguchi, Takeda, and De Martin also focus on highway and urban environments,

and performed transmission experiments while driving two cars equipped with

802.11b standard devices. However, video streaming over ad-hoc networks is a very

specialized field, so despite sharing the vehicular mobility aspect, their results are

not particularily relevant for streaming from a normal server to 3G clients using

adaptive HTTP systems.

Yao, Kanhere, Hossain, and Hassan study [165] the effectiveness of adaptive

HTTP streaming in vehicular mobile streaming. They used the same approach as

we did, wherein a database of bandwidth traces was collected using custom-made

tools in field tests with a moving vehicle, and experiments were conducted in a

controlled lab environment on this data set using a bandwidth shaping tool that

reproduced the conditions observed in the field. In contrast to our experiments,

they used a Wireless Wide Area Network (WWAN), only had one route in their data

set, only one type of vehicle (a car equipped with an external antenna to improve

signal reception), and they did not include commercial adaptive HTTP streaming

clients in their comparison. Instead, they used their own adaptive HTTP stream-

ing prototype, and compared it to traditional progressive download streaming while

experimenting with different parameters such as buffer thresholds and segment du-

rations. Their results showed that adaptive HTTP streaming is effective in dealing

with the bandwidth fluctuations that are inherent in vehicular mobility streaming.

Akhshabi, Begen and Dovrolis [53] compare Adobe, Microsoft and Netflix using

a testbed that is similar to ours, but they use synthetic square waves as bandwidth

curves, which look nothing like the strongly fluctuations bandwidth curves we have

observed in real mobile wirless networks [136, 139, 137]. Netflix’ streaming tech-

nology was not included in our comparison because there was no publicly available

server implementation that we could integrate in our testbed. However, based on

the results in [53], we believe Netflix’ more aggressive behavior would put it some-

where between Adobe and Microsoft in terms of stability and bandwidth utilization.

Cicco and Mascolo [71] investigate Akamai’s adaptive video streaming solution,

again with a similar testbed using square wave bandwidth curves. Akamai’s quality

scheduler is server driven with no publicly available implementation. Thus, it was

not included in our comparison.

The work that is most similar to ours was done by Müller, Lederer, and Tim-

merer [122], and was performed in parallel and published at the same conference

as our published [135] version of this chapter. Apple, Microsoft and Adobe’s adap-

tive streaming clients are compared with Müller et al.’s MPEG DASH implementa-

tion in a mobile streaming scenario, using real world bandwidth traces. Their test

methodology is very similar to ours, using traffic shaping tools to reproduce band-

width traces from real world experiements. Their results agree with our results.
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Because several of the compared systems are closed source, we cannot know the

exact algorithms, but we can still report their behavior. In earlier related work [53],

this has been done by looking at the consumed bandwidth and buffer sizes, which

is not necessarily closely related to video quality and user perception. In our exper-

imental testbed, we have support for Adobe, Apple, and Microsoft’s media players

from a single video representation. This means that we encode the content once for

each quality level, and use the same streams on all media players to be compared.

Consequently, we can give a fair comparison of the resulting video playback quality.

4.3 Experiments

In this section, we present the performance comparisons that we performed on sev-

eral adaptive HTTP streaming clients that were available at the time. We start by

describing our testbed, which clients were included in the comparison, and how the

comparisons were done. We conclude with the results of the comparison.

4.3.1 Tested Systems and Video Formats

Several competing HTTP streaming systems exist, and it is out of the scope of this

dissertation to compare all of them. The Motion Pictures Experts Group (MPEG)

has standardized an adaptive HTTP streaming protocol under the label DASH [150],

but the standard does not specify how clients should adapt the quality. Because

quality adaptation is determined by the implementation of the client, what we

are comparing are actually different media players, not different adaptive HTTP

streaming protocols. We have therefore selected three different, representative me-

dia players to investigate how they make adaptation decisions:

• Adobe’s Strobe Media Playback (v1.6.328 on Flash 10.1 on a Windows 7 PC)

using its native HTTP Dynamic Streaming format [51]. Note that this player is

also known as OSMF, short for the Open Source Media Framework on which

it is built. The license of the OSMF player has few restrictions, so content

providers can use it without giving credit, hence we have little data on its

popularity. One known commercial user is VideoPress [106].

• Apple’s iPad player (iOS v4.3.3 (8J2)) using its native HTTP Live Streaming

(HLS) format [127]. This is an embeddable player used in all iOS devices for

all adaptive streaming, as it is required by Apple developer guidelines for all

content exceeding 10 minutes in duration or 5 MB in a five minute period [6].

• Microsoft’s Silverlight (v4.0.60531.0 on a Windows 7 PC), using its native

Smooth Streaming format [167]. This player is used by broadcasters such as

NBC for streaming major sports events like the Olympics and Super Bowl [3],

by TV 2 for its online TV platform [1], and by CTV for the Winter Olympics [4].
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On the server side, we used CodeShop’s Unified Streaming Platform v1.4.25 [14]

(integrated into the Apache v2.2.14 web server [10]) to support all streaming for-

mats without requiring different video encodings; i.e., the only differences between

the tests of the different systems were the protocol and media container formats.

Differences in bitrates between formats (due to different container overhead) was

always less than 12 %, meaning that the results were not significantly affected by

the chosen streaming format1. The web server ran on a dedicated Linux box with

2 GB RAM and an AMD Athlon 64 3200+ CPU. Both the receiver and the web server

were on the same 100 Mbit/s Local Area Network (LAN), using our custom-made

throttling module to reproduce the behavior of a real 3G network (see section 4.3.3).

4.3.2 Video Stream Configuration

Figure 4.1: Relation of video quality levels and their average bandwidth consumption.

Ensuring fairness in the video stream means that the video segmentation has

to be as equal as possible (duration and bits per segment) for all the different media

formats used. We encoded video (a European football match) with a fixed segment

duration of two seconds and six quality levels. The bitrates used for the six quality

levels are shown in figure 4.1. Bitrates at the lower end were chosen based on

Akamai’s recommendations [52] for small handheld devices on mobile networks.

Bitrates for the higher qualities were chosen based on subjective testing (encoding

at different bitrates and comparing the encodings visually). Using this approach,

we tried to achieve a linear scale in perceived quality. The reason for the larger

1We could have encoded an extra representation for HLS to compensate for this overhead, but
sacrificing quality to achieve the same overall bitrate means that the quality levels would not be
identical in all tests. Because the relative bitrate difference was less than 12 % even for the lowest
quality level (where the relative overhead is highest), we deemed it negligible and decided instead
to use the same representation for all tests.
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leaps in bitrate between the highest three levels is diminishing returns in quality

– it was necessary to double the bitrate to make level 6 visibly better than level 5.

4.3.3 Realistic and Equal Network Conditions

To perform a fair and realistic comparison of the different streaming systems, we

need equal network conditions for each test which match the observed bandwidths

in real mobile 3G networks. We have previously [136, 139, 137] performed a large

number of real-world experiments, and while we found the bandwidth (as a func-

tion of geographical location) to be fairly deterministic, this study requires identical

results on each run to achieve a fair comparison.

We found no available solution for precise traffic shaping based on a log of band-

width samples, so we created from scratch a throttling module for the Apache web

server. This module takes as input a bandwidth log (from a real-world test) that

contains a single kbit/s number for every second of the session (the reason for using

a granularity of one second and not smaller is that we only care about the aver-

age speed over an entire segment, which typically takes more than one second to

download since the segments are two seconds in realtime). After loading the band-

width log, the session is started by the next HTTP request. At time t after the

session starts, the web server’s maximum throughput for the next second will be

B(t), where B(t) is the bandwidth at time t stated in the log that was used as input

to the throttling module. In addition to bandwidth throttling, our Apache module

also adds a delay of 80 ms to HTTP requests to simulate the average latency as ex-

perienced and measured in our most recent tests in real wireless 3G networks (we

used the average as a constant, since the actual delay as a function of time was not

part of the bandwidth logs we had previously recorded).

This approach means that each media player can be compared under exactly the

same conditions, ensuring both fairness and reproducibility in our experiments,

while at the same time being nearly as realistic as a field trial.

We selected four representative bandwidth logs from our database of measure-

ments. Each log represents a typical2 run in its respective environment. The four

streaming environments are popular commute routes in Oslo (Norway) using ferry,

metro, bus and tram. The maps for each route are shown in figure 4.2 and the cor-

responding bandwidth curves are shown in figure 4.3 (the first plot from the top for

each of the routes). We can see that they represent different challenges with respect

to both achieved rates and outages.

2Established by comparing it to the average of multiple results.
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(a) Ferry (b) Metro (dotted line in tunnel)

(c) Bus (d) Tram

Figure 4.2: Commute routes used when comparing adaptive media players.

4.3.4 Logging the Video Quality of Downloaded Segments

While streaming, we used tcpdump [39] on the server to log every packet transmit-

ted to the receiver, so that we could measure the actual achieved throughput (which

might be less than the bandwidth cap set by the throttling module, for example if

the receiver’s buffers are full and it starts to idle). The packet dump contains every

HTTP GET request for every downloaded segment, and because the quality infor-

mation is encoded in the URLs, the packet dump also contains the information we

need to plot the quality level as a function of playout time. However, because we are

testing proprietary media players where we do not know the state of their internal

buffers, buffer underruns were logged manually by actually watching the video in

every test, and registering the times when the video stopped and resumed.
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4.4 Results and Analysis

For each route, we compare the media players using (1) the video quality level as

a function of playout time, (2) the amount of video data presented in each quality

level including buffer underruns, and (3) the length of each playout interval at a

given quality to give an indication of how stable the playout is in terms of video

quality. These properties are plotted in figures 4.3, 4.4 and 4.5, respectively, for all

four routes.

(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.3: Comparison of quality scheduling for the four commute routes. The first graph
from the top in each subfigure shows the bandwidth log that was chosen for the respective
routes, and the graphs under it show the quality that was achieved. Quality is plotted at
playout time. This implies that effects of network outages are reflected with a delay when
buffers run dry.

46



(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.4: Cumulative distribution function of quality. The relative height of each step
represents the total amount of time that a video is played out at a given quality level (and
the last step shows the cumulative duration of playout interruptions). Higher towards top-
left corner is generally better, but the frequency of quality changes (shown in figure 4.3) can
also affect perceived quality, and this information is not represented in these plots.

4.4.1 Adobe

Comparing Adobe’s quality level plots in figure 4.3 with the bandwidth plots, one

can clearly see that their shapes are almost identical. From this, we conclude that

the quality scheduler in Adobe’s Strobe player bases its decisions almost exclusively

on the most recent bandwidth numbers. The next segment to be downloaded is

the one whose bitrate is closest to the current bandwidth, with no considerations

to stability or safety margins. As a result, the users’ QoE suffers due to buffer

underruns and too frequent oscillations in quality (figure 4.5). Despite minimal use

of buffering, the scheduler achieves decent bandwidth utilization, mainly because

high bitrate segments were downloaded quite often (even when unsafe to do so),

meaning more bytes per download request, and thus, less wasted bandwidth.
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(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.5: Cumulative distribution function of quality stability on the four commute
routes. A point in the plot represents how much of the playout time (y-axis) has been played
out with stable quality intervals larger than a given length (x-axis). Buffer underruns are
not counted. Note: This plot considers only stability but ignores the quality of the playout
interval (the long intervals of the Apple player in figures 4.5(b) and 4.5(d) are playouts at
quality level 1 as seen in figures 4.3(b) and 4.3(d)).

4.4.2 Apple

The quality scheduler in Apple’s iPad player stands out from the others by being

more careful about increasing quality. Its frequent use of low quality segments

produces stable quality (figure 4.5) with long intervals in the same quality. The

tendency to pick low quality levels is clearly seen in figure 4.4. Despite having lower

quality on average than the other players, Apple’s bandwidth utilization is higher

than one would expect. The reason for this is that the bandwidth utilization number

does not take into account whether the downloaded video data was actually used.

Unlike the other players, the iPad player often re-downloads segments – sometimes

the same segment is downloaded two or more times, usually in different qualities,

but not always. This means that some of the downloaded video data is never used,

and bandwidth is wasted.
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4.4.3 Microsoft

Microsoft’s Silverlight player achieves a nice balance between bandwidth utilization

and stability. Compared to Apple’s player, it uses more of the available qualities (fig-

ure 4.4), while still achieving a fairly stable viewing experience (figure 4.5), setting

it apart from Adobe’s player. We observe that Microsoft fills its buffers when the

bandwidth is high, progressively increasing quality, instead of instantly jumping

to the quality level whose bitrate is closest to the current bandwidth. However,

we observe that the quality increases just as quickly when the bandwidth is poor,

indicating that filling its buffers is not a priority.

Microsoft’s biggest problem is that the buffer tends to be very small (as seen

in figure 4.9 when comparing occurrences of buffer underruns with the Netview

results), especially considering that it is designed for PCs with plenty of memory.

This limitation makes it unnecessarily vulnerable to buffer underruns. Average

quality is better than Apple’s, but not quite as high as Adobe’s numbers. Microsoft’s

player would have achieved better results with a better buffering strategy, as it often

wastes bandwidth by idling, even when its buffers are almost empty. On the other

hand, the bandwidth utilization is quite stable at about 65 % and the Silverlight

media player is intended to run as a browser plugin, so it might be a design goal to

leave some bandwidth available for other services.

4.4.4 Summary of Results

We found large performance differences between the various systems, even though

none of them have advantages over each other in terms of what information is avail-

able to make quality adaptation decisions. Apple and Adobe’s players represent two

opposites in that Apple sacrifices high average quality for stable quality, whereas

Adobe does the opposite. Microsoft’s Silverlight player falls in between, but without

compromising too much on either parameter.

From our experiments, we conclude that the quality scheduler (which decides

which quality to use for every media segment downloaded) has a large impact on

the QoE in adaptive HTTP solutions and that several products on the market have

a definitive potential for improvement when streaming in mobile networks. The

remainder of this dissertation will focus on development of new quality schedulers

and other technologies for improving performance in mobile streaming scenarios.

4.5 An Improved Quality Scheduler for Mobile

Video Streaming

The quality schedulers in current commercial products from Apple, Adobe and Mi-

crosoft show that there is a potential for improvement when streaming over wireless
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links to mobile receivers. In this section, we present a new quality scheduler that

performs better than all of them under the following conditions:

• Non-live content (pre-fetching content is necessary for full effect of our algo-

rithm).

• Wireless networks.

• Mobile receivers.

Our new quality scheduler also works well for live streams, but as we are limited in

the amount of buffering we can do with live streams, the improvment with respect to

buffer underrun protection is reduced. However, even with live streams, we are still

able to reduce unnecessary quality fluctuations, making the playout more smooth

than current commercial products.

4.5.1 Quality Scheduling Parameters

A quality scheduler’s performance is determined by its buffer size and how it decides

which quality level to use. We will in the following present an exhaustive list of the

parameters that constitute our proposed quality scheduling algorithm. For each

graphical illustration of a given parameter’s effect, we have chosen a bandwidth

curve based on how well it illustrates the effect of the parameter. In other words,

the bandwidth curves are those that, for each parameter, have problems for which

the parameter provides solutions.

Buffer size

Because outages can last for minutes in mobile streaming, a large buffer is more

important than in fixed network streaming. How large the buffer must actually be

depends on which bitrates are used and the durations of the network outages. One

must simply choose a buffer size which is long enough to cover most outages, but

not too large for most devices capable of mobile video streaming. A smaller buffer

simply means that the media player potentially runs out of data sooner should the

connection go down. Thus, the optimal solution for a media player would be to

avoid setting an artifical limit, and let the player buffer as much as it wants for as

long as memory is available. However, most media players have to share resources

with other programs running on the same device, and most programs do not han-

dle out-of-memory situations gracefully. Because our tests were conducted on lap-

tops with several gigabytes of memory, we set an artifical limit of 200 MB, because

most modern hand-held devices can spare this much memory, and it is sufficient for

most outages: Even in the highest bitrates (rarely higher than 5 Mbit/s for adap-

tive HTTP streams), 200 MB is over five minutes of video. As shown in figure 4.3,

this is longer than most outages in our experiments with urban environments (the
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only exception in downtown Oslo is the underground subway system, where there

is almost no connection). Finally, we add that our algorithm was never able to ac-

cumulate more than 40 MB in its buffers, because it also wants to play video in

high quality, not just pick a low quality all the time to maintain a high buffer fill

level. Thus, we could have reduced our buffer limit from 200 MB to 40 MB without

affecting our results.

Scaled buffer thresholds for quality levels

The reactive algorithm upgrades the quality once the buffer duration reaches cer-

tain chosen thresholds. However, a problem is that, to make a difference in quality

in the higher quality levels, the bitrate must often increase dramatically. As shown

in figure 4.1, the difference between quality levels 5 and 6 is 1500 kbit/s, while the

difference between levels 1 and 2 is 250 kbit/s. To avoid wasting resources prema-

turely on very high quality levels, the buffer fill level thresholds for jumping between

quality levels should take the bandwidth difference between the levels into account.

To achieve this, we suggest setting the buffer fill level thresholds using the following

simple rules: When the buffer is empty, the lowest quality (level 1) is selected; in the

general case for quality levels higher than 1, the following bitrate scaling equation

applies:

TN = B · RN − R1

R2 − R1
,

where TN is the buffer requirement in seconds for quality level N, and RN is the

bitrate of quality level N. Thus, when the buffer has B seconds of video, level 2 is

used; requirements for higher levels depend on their relative increase in bitrate.

Figure 4.6: Altering the buffer thresholds.
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Figure 4.6 compares four different settings. The first two use a fixed step size

B of 2 and 10 seconds between all quality levels, i.e., no bitrate scaling. The figure

shows that a low step size leads to rapid buffer drainage caused by frequent jumps

into quality level 6, leading to several buffer underruns. Increasing the step size

to 10 seconds helps, but quality level 6 is still chosen too frequently because the

algorithm is not aware of the cost of this level compared to the lower qualities.

The last two settings in the figure set the buffer thresholds to TN , defined by the

bitrate-scaling formula described above, with two different base step values (B = 2

and B = 10). This eliminates the frequent attempts at quality level 6, which not

only causes flickering quality but also prevents the buffer from growing.

Figure 4.6 shows a large improvement when enabling bitrate scaling and the

larger base step size. Using these settings, we get a much better viewing experience,

almost removing the buffer underruns and having a more stable video quality.

Different thresholds when going up and down in quality

Figure 4.7: Removing rapid oscillations

Another goal when improving the viewing experience is to avoid rapid oscilla-

tions in quality, as they cause a flickering effect that greatly reduces perceived qual-

ity [169, 124]. One way such oscillations can occur is if the buffer fill level is floating

near a quality level threshold. An easy way to limit this is by having slightly dif-

ferent buffer fill level thresholds when going up in quality than when going down.

Figure 4.7 shows how requiring 20 % more in the buffer when going up than down

can avoid having the quality level oscillate between two quality levels (we have also

tried percentages both smaller and larger than 20, but the differences are small,

and the current value of 20 % seems to be a good tradeoff). Since we only require
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20 % more video in the buffer, it has a negligible effect on how fast the quality in-

creases. Still, it is sufficent to achieve our desired effect. The important thing is

simply that we make the edges between quality levels wider, so that it is unlikely

for the client to shift back and forth between two levels when the buffer fill level

happens to be near a quality level threshold.

Delayed quality upgrades after a quality drop

Even when having different quality thresholds for going up and down in quality,

some oscillations occur when the bandwidth is changing very rapidly. As an addi-

tional countermeasure, one extra rule is added: Do not increase quality before at

least T seconds has passed since the last drop in quality. This further reduces oscil-

lations in quality. This parameter was set to 20 seconds, based on subjective testing

of acceptable quality oscillation frequencies. The effect of this parameter is shown

in figure 4.7 (the plot at the bottom).

Quality level selection should be limited by estimated download rate

Figure 4.8: Cap quality selection effects

By never allowing the media player to select a quality level whose bitrate exceeds

the current download rate, the buffer will rarely drain, and many buffer underruns

can be avoided. However, this also leads to rapid fluctuations in quality, because

the quality will suddenly drop when a transient dip in download rate occurs. This is

especially harmful when the quality drops multiple levels at once, e.g., from level 6

to level 1. One way to reduce this flickering effect is to smoothen out the band-

width curve using an exponentially-weightened moving average. This means that
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we have to choose the smoothing factor α, which represents the weight given to the

most recent bandwidth sample. Mathematically, BN = α ·bN+(1−α)·BN−1, where

BN is the moving average bandwidth sample N, and bN is the raw, unweighted,

bandwidth sample N. Here, 0 < α ≤ 1, and the closer α is to 1, the more weight

is given to the most recent bandwidth observation, and the more the quality will

fluctuate. If α is made too small, the current download rate estimates will be mis-

leading, and can lead to either buffer underruns (if the estimated download rate

was too high) or too low average video quality (if it was too low). After experiment-

ing with different α values in several field trials, we decided to use α = 0 .25, as

it was found to be a good trafe-off between stability and underrun protection (see

figure 4.8). However, we completely disable the bandwidth cap on quality selection

when the current quality Q > 3. This prevents sudden deep drops in quality, which

would negatively impact the QoE. With the buffer threshold rules described above

and the quality level configuration shown in figure 4.1, the media player will have at

least 30 seconds in its buffers when Q > 3 (due to the buffer fill level requirements

discussed previously in this section), so we can afford to drain the buffers to achieve

more stable quality.

4.5.2 Evaluation of the New Reactive Quality Scheduler

In the previous subsection, we described the parameters that constitute our quality

scheduling algorithm, and the rationale behind them and the values we have used.

To summarize:

• Our buffer limit is set very high so that data can potentially be available for

longer outages, and so that we can utilize more of the bandwidth (extra band-

width in addition to the playout rate can be used to grow the buffer).

• The buffer fill level thresholds for switching between quality levels are scaled

according to the relative bitrate between the levels. This is done so that the

quality scheduler can take into account that some quality levels may be very

expensive to use.

• The buffer thresholds mentioned in the above point are set slightly different

depending on whether the quality switch is towards lower or higher quality.

The reason is that this reduces the number of rapid fluctuations in quality

that can occur if the buffer fill level is floating right around a threshold limit.

• After a drop in quality, the quality scheduler prohibits a switch to higher qual-

ity until some period of time has elapsed. This further reduces the number of

wasteful and annoying fluctuations in quality.

• Before the buffer is sufficiently full, the quality scheduler limits itself based

on the estimated available bandwidth. In effect, when the buffer fill level is
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(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.9: Comparison of quality scheduling for the four commute routes. The first graph
from the top in each subfigure shows the bandwidth log that was chosen for the respective
routes, and the graphs under it show the quality that was achieved. Quality is plotted at
playout time. This implies that effects of network outages are reflected with a delay when
buffers run dry.

low, the quality scheduler tries to avoid draining it by only using quality levels

whose bitrate are lower than the potential download rate.

The results are shown in figures 4.9, 4.10, and 4.11. We see that compared to

the other commercial systems, this algorithm offers better protection against buffer

underruns (note for example figure 4.9(c) where the Netview scheduler is the only

one that avoids the underrun), is more stable in most scenarios, and makes bet-

ter use of the available bandwidth (resulting in higher average quality). However,
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(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.10: Cumulative distribution function of quality. The relative height of each step
represents the total amount of time that a video is played out at a given quality level (and
the last step shows the cumulative duration of playout interruptions). Higher towards top-
left corner is generally better, but the frequency of quality changes (shown in figure 4.9) can
also affect perceived quality, and this information is not apparent here.

while building our set of bandwidth logs for all four routes, we observed that the

bandwidth numbers for a given position are fairly deterministic. Thus, assuming

that one can predict the travel path and speed, one can also predict the bandwidth.

Utilizing such a prediction, it should be possible to improve the QoE further. This

is discussed further in the next subsection.

4.5.3 A Comparison with the Theoretical Optimum Result

To estimate how much can be gained by utilizing bandwidth prediction, we com-

pare our reactive quality scheduler with the optimal result, i.e., the result of an

omniscient quality scheduler that pre-fetches video based on a perfect prediction of

future bandwidth and trip duration. This is, of course, impossible in a real-world

implementation, but it can be done in a lab environment where we run simulations
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(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.11: Cumulative distribution function of quality stability on the four commute
routes. A point in the plot represents how much of the playout time (y-axis) has been played
out with stable quality intervals larger than a given length (x-axis). Buffer underruns are
not counted. Note: This plot considers only stability but ignores the quality of the playout
interval (the long intervals of the Apple player in figures 4.11(b) and 4.11(d) are playouts at
quality level 1 as seen in figures 4.9(b) and 4.9(d)).

on previously collected bandwidth traces. Thus, the only purpose of the omniscient

scheduler is to serve as a benchmark for our real quality scheduler, to see how it

compares to the optimal result.

The omniscient scheduling algorithm is simple to describe: As any other quality

scheduler, it makes a quality decision for every segment in the stream. In contrast to

a real quality scheduler, it knows the remaining duration of the streaming session,

the available bandwidth for every remaining second, and the exact number of bytes

in every segment in the stream. Thus, it can flawlessly simulate a streaming session

from the current time and to the end of the streaming session. It simulates one such

streaming session for every quality level in the stream, and the highest quality level

that completes with the fewest buffer underruns is the chosen quality.

It follows logically from this algorithm that the quality can only increase through-

out the streaming session: If a drop in quality would have been required to avoid

57



(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4.12: Comparison of our reactive quality scheduler against the optimal result with
an omniscient quality scheduler that pre-fetches video based on perfect predictions.

a buffer underrun, the scheduler would not have picked that quality level to begin

with (since every quality level picked has been confirmed to be free of underruns

for the remainder of the streaming session). The reason the quality can increase

throughout the session is that when a quality level choice is made at time tnow, there

will be times tlow between tnow and tend where the buffer is almost empty. Had a

higher quality level been chosen at tnow, an underrun would have occured at tlow.

However, once we are past these low-buffer points, the next simulated streaming

session may find that a higher quality level can now safely be used, and the qual-

ity increases. Because the omniscient scheduler has perfect knowledge, it always

consumes its buffers completely.

The results of the omniscient scheduler for all four routes are shown next to

our best reactive algorithm in figure 4.12. The results clearly show that our best

reactive implementation, although superior in most respects to quality schedulers

used in other commercial systems, is greatly outperformed by the omniscient sched-

uler. In particular, the omniscient scheduler’s playout is completely free of buffer

underruns, and much more stable (since drops in quality will never occur). We con-

clude from this that a quality scheduler with an accurate bandwidth prediction can

greatly improve the perceived video quality compared to a purely reactive scheduler.
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4.6 Summary

According to our metrics, Microsoft’s Smooth Streaming client has the best per-

formance in mobile streaming among previously available commercial streaming

clients (that we tested). Adobe’s implementation seems to make no effort to pro-

tect against buffer underruns and quality fluctuations, while Apple’s algorithm is

too cautious, resulting in low average quality. We then presented a new quality

scheduling algorithm with results that are similar to Microsoft’s client, but with

better protection against buffer underruns and better bandwidth utilization. How-

ever, when compared to the theoretical optimum result with an omniscient quality

scheduler that knows everything that is going to happen, we see that we are still far

from the optimal result. Our TCP throughput traces in section 3.3 show that the

variance in throughput between different runs (along the same path) is often small,

indicating that bandwidth predictions can be possible. The next chapter describes

a new approach to quality scheduling that utilizes the geographically deterministic

bandwidth figures to make predictions, in an effort to close the gap between the

optimal result and a real-world implementation of a quality scheduler.
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Chapter 5

Video Streaming Using a

Location-Based

Bandwidth-Lookup Service for

Bitrate Planning

The previous chapters briefly described the evolution of video streaming from early

UDP-based protocols to the adaptive HTTP streaming systems that are most pop-

ular today, and presented a comparison of commercially available adaptive HTTP

streaming players. The focus of this comparison was the quality adaptation behav-

ior which, of all the differences between the various players, is the one that has

the greatest impact on perceived video quality. Next, a new algorithm for quality

scheduling was presented, that offered more stable quality, fewer buffer underruns

and better bandwidth utilization than the currently available commercial systems.

Finally, we showed that there is still much room for improvement, if a quality sched-

uler could be designed to make bandwidth predictions and plan ahead based on his-

toric bandwidth traces. In this chapter we develop a predictive quality scheduler

that goes a long way to close the gap between the reactive scheduler (presented in

section 4.5) and the optimal result achieved with omniscient prediction (described

in subsection 4.5.3).

When using mobile Internet devices, it is a common occurrence to have the con-

nection go down for significant periods of time. For example, one could enter a

tunnel, or when travelling by sea, the distance to the nearest base station could be

large. Such losses of connectivity will at best result in low quality video presen-

tations with frequent jumps between quality levels, but having the video playout

stop completely due to buffer underruns is also common. Either way, the effect is

harmful to the users’ perceived quality. These scenarios would greatly benefit from

capacity planning which could be used to pre-buffer and smoothen the video quality
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over a longer period. However, if nothing is known about the likelihood of bandwidth

fluctuations, the only safe option is to use a low video bitrate and download as fast

as possible until the buffer is large enough to last through most normal outages.

For this conservative approach to work, the chosen quality usually has to be much

lower than the average quality achieved by the omniscient scheduler described in

subsection 4.5.3.

Ideally, the receiver would know in advance precisely how the network behaves

over the course of the streaming session, regardless of how the user moves around

with the streaming device. We will show how video receivers equipped with GPS

devices can be used to automatically build a database that enables bandwidth pre-

diction through geographical location and historic bandwidth measurements, and

that the prediction can be sufficient even with just a few samples per position. Using

such a location-based bandwidth-lookup service, the application can predict future

fluctuations in bandwidth for a trip along a predicted route, and present a smoother,

higher quality video stream to the users1.

By the end of this chapter, we present an adaptive bandwidth prediction algo-

rithm that combines the reactive buffer-based algorithm described in section 4.5

with a prediction model. Using the bandwidth data presented in section 3.3, we

first simulated video streaming using several algorithms, and compared the results

with both the ideal case (the omniscient algorithm with complete a priori knowl-

edge) and the classical case (no knowledge of the receiver’s geographical location,

using only currently buffered data and observed bandwidth when scheduling qual-

ity). We implemented the best performing algorithm in Netview’s adaptive media

player [7], and did real video streaming sessions along all four commute routes to

confirm that our method works just as well in the real world.

The real-world tests show that our bandwidth prediction system gives significant

improvements in perceived video quality. Compared to the reactive algorithm, the

predictive algorithm has less unused video in the buffer at the end of the trip, it

experiences fewer playout interruptions and fewer changes in video quality.

5.1 Related Work

Video streaming has been a hot research topic for a couple of decades, and many

video services are available today. A remaining challenge is to adapt video stream-

ing to the unpredictable behavior of wireless networks like General Packet Radio

Service (GPRS) and High-Speed Packet Access (HSPA). With mobile receivers in

such networks, fluctuating network bandwidths strongly influence the video stream-

ing service performance [137, 74], raising a need for bitrate adaptation to cope with

1Non-GPS clients can also use this information for planning trips using public transportation,
although they cannot adapt to unexpected situations. This kind of use is beyond the scope of this
dissertation.
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temporary connection loss, high packet error rate and insufficient channel capac-

ity, etc. In order to reduce the effects of fluctuations in download rate and tempo-

rary link interruptions caused by, for example, changes in the channel conditions

or the wireless interface, one important strategy has been to adapt video quality,

and thus resource consumption, to resource availability. Currently, several com-

mercial systems like Apple’s HLS [127] and Microsoft’s Smooth Streaming [167]

monitor the download speed of video segments and dynamically adapt to resource

availability changes by switching between video segments coded in different qual-

ities and bitrates. This is a highly popular approach, but it can be a challenge to

avoid too frequent jumps in quality, which may annoy the users [169, 124]. As such,

these systems use a traditional preloading approach, smoothening out the quality

changes over a larger window.

To adapt to varying network conditions, several similar preload approaches use

(hierarchical, layered) scalable video codecs such as scalable MPEG (SPEG) [94,

110], Multiple Description Coding (MDC) [87], and the Scalable Video Coding (SVC)

extension to H.264 [146]. For example, priority progress streaming [94] makes a

prefetch window which is first filled with the scalable codec’s base layer. If there is

more time (and bandwidth) before the window should be played out and the next

window started to be filled, quality enhancing layers are downloaded. Schierl et al.

propose [143] a priority-based media delivery for wireless 3GPP using SVC. A trans-

mission scheduling algorithm prioritizes media data according to its importance in

both RTP and HTTP-based streaming scenarios. This system prebuffers low-quality

(but high priority) data of a given window length and increases the quality if the

buffer is filled. Another codec based solution is the SP/SI-frame extension [104]

to the H.264 video coding format. (This extension, MDC, SVC, and SPEG are all

described briefly in section 2.2.)

A cross-layer design to improve the H.264 video stream over IEEE wireless net-

works is proposed by Mai, Huang and Wei [119]. This system discovers the impor-

tance of packets containing Network Abstraction Layer (NAL)-units according to

their influence on picture quality in terms of PSNR and maps the video packets to

appropriate access categories with shortest expected waiting time. The most im-

portant packets are sent first and late (low priority) packets can be dropped on the

sender side.

The video playback may also be adapted to local resources like remaining bat-

tery power on mobile devices. A QoS adaptation model [152] for mobile devices can

be used to automatically adjust the video quality (and processing requirements)

from the remaining battery power, desirable playback duration and the user’s pref-

erence. A similar approach is presented by Hsu and Hefeeda [93], where a quality-

power adaptation framework controlling the perceived video quality and the length

of viewing time for both live and on-demand broadcast scenarios on battery-powered

video receivers. The framework predicts the remaining battery life-time and adjusts

the amount of SVC-coded video data to receive and process.
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There exist several approaches for delivering video streams to moving vehicles

where the network is partitioned and there are temporal channel variations. For

example, V3 [89] streams live video from traffic incidents by constructing a mobile

ad-hoc network using a vehicle-to-vehicle approach, using the different cars to for-

ward video data in a peer-to-peer manner. The cars are assumed equipped with

GPS devices which enable the vehicles to track their location and trajectory.

There has also been performed experiments collecting network characteristics

in such mobile scenarios. In [112], Lee, Navarro, Chong, Lee, and Gerla captured

traces of signal-to-noise ratios along with GPS coordinates from vehicles to later

objectively evaluate and compare different rate adaptation schemes in order to have

the same test environment for all tests. Thus, these measurements were not used

for predicting geographical bandwidth availability.

General QoS-prediction services and QoS-information systems have been sug-

gested several times. Sun, Sauvola, and Riekki describe [151] an idea of using net-

work resource awareness on the application level, but there is no QoS-prediction

service, users only make predictions based on their own history. Wac, van Hal-

teren, and Konstantas suggest [155] a general QoS-prediction service containing

real end-to-end performance metrics that is both generated by and available to

other users, and the feasibility of using such predictions based on geographical lo-

cation, time and historical data was proved for a mobile health monitoring appli-

cation [155]. Similarly, Horsmanheimo, Jormakka, and Lähteenmäki performed a

trial that demonstrates [92] the usefulness of location-aided planning and adaptive

coverage systems for network planning and resource management of mobile net-

works. Their trial does not deal with adaptive media streaming, focusing instead

on the accuracy of various location methods and evaluating the accuracy of signal

level prediction as a function of the location. Furthermore, the data collected is

intented for the network operators, not the users. Liva et al. propose [114] a gap

filler to provide bi-directional connectivity to train-based terminals. A propagation

analysis using a wave-guide theory model derives a path loss law that can be used

in a link budget calculation, i.e., calculating how the signal behaves to predict gaps

based on parameters like propagating mode, the form of the tunnel, attenuation

due to roughness of the walls and antenna insertion loss.

The listed techniques in this section have all shown the ability to adapt to oscilla-

tions in resource availability and to some degree deal with network disconnections.

Some of the approaches, like adapting the video streaming/segment download and

playout to local device resources (e.g., remaining battery power), are completely or-

thogonal to our approach. With respect to distributed resources, the challenge is

to know how the availability fluctuates to increase the average video quality and

reduce the number of buffer underruns. Existing systems often monitor the ob-

served throughput, but foreseeing future degradations or even connectivity loss

is hard. To better enable the streaming application to predict future bandwidth
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availability and then adapt the video quality, regardless of whether adaptation is

performed using a scalable codec [94, 143], transcoding [61] or multi-quality seg-

ments [127, 167, 51, 121], we propose to use a GPS-based bandwidth lookup service

with a predictive video quality selection algorithm, i.e., similar to have been done

by Wac et al. [155], but in a completely different application scenario.

Such an idea of a geo-predictive media delivery system has recently been devel-

oped in parallel to our work [69]. The authors predict network outages and prebuffer

video. However, they provide only simulation results, do not use adaptation, and

do not consider route planning. In contrast, our results are based on a running

prototype with months of real-life experiments (complemented by simulations) that

stream video to a mobile device whose user travels along fixed commuter routes.

We adapt video quality to available bandwidth and present video bitrate planning

algorithms that make use of the bandwidth lookup service.

5.2 Predicting Network Conditions Based on

Geographical Location

Geographical location has a great influence on network conditions experienced by

mobile devices. For example, a receiver can be located on open ground near a base

station, in which case the signal should be excellent, or in a tunnel or mountainous

area far from a base station, where there is no connection to the network. In a mo-

bile streaming scenario, it would be beneficial to predict future network conditions

based on the current and future geographical locations. This seems especially fea-

sible for users that view video while commuting. When commuting, it is reasonable

to assume a predictable sequence of locations, and reliable public transport enables

fairly good predictions of the times when those locations are visited.

The basic idea with the location-based bandwidth lookup service is to monitor

a streaming session’s download rate and geographical location, and to upload this

data to a central service. This service enables all users to query for predicted avail-

able bandwidth for given locations based on previous observations, even without

requiring that uploaders’ identities are stored alongside the position information

they provided. Today, many new mobile phones and other mobile devices are capa-

ble of this. A receiver with a GPS can log network conditions along with GPS data

while viewing video. By uploading them periodically, every viewer helps to build a

database that also other viewers can access. While moving along a particular path

such as a popular commute route, the streaming application queries the bandwidth

database for average bandwidths for every position along this path. These numbers

are then used to predict and prepare for connectivity gaps, and to smoothen out the

video quality along a route with highly fluctuating bandwidth. In a public transport

scenario, a full prediction and a corresponding schedule can be calculated a priori
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using the GPS-based lookup service to verify the timely progress and validate the

prediction.

Making efficient use of such a data set is possible because reception quality in

mobile networks is often explained by geographical location. Combining this with

the fact that many travel routes are highly predictable (especially when considering

commuters using public transportation), the value of such a database becomes clear.

It greatly empowers algorithms for pre-buffering and early quality adaptation. The

main motivation for using these algorithms is to provide a more stable video viewing

experience: planned quality adaptation can lead to more gentle quality switching,

and bandwidth drops can be canceled out by pre-buffering during high-bandwidth

parts of the trip.

5.3 Video Streaming with a GPS-based

Bandwidth-Lookup Service

Figure 5.1: System architecture.

The architecture of our GPS-based bandwidth-lookup service is illustrated in

figure 5.1, and during a streaming session, the following three steps are performed:

1. The receiver chooses a destination and an appropriate route. It sends the

route to the bandwidth database, providing the latitude and longitude value

for every 100 meters along the path. Using 32 bits for each value (more preci-

sion than required by the GPS’ accuracy), the path description requires only

eight bytes per 100 meters, so it is straight-forward to send the entire path.

In an actual product, each receiver would record its own set of travel routes,

and path predictions would be based on this personal data set. In other words,

privacy sensitive travel logs need not be shared with other people.

2. Once the bandwidth database receives the path description, it returns a se-

quence of bandwidth samples for each point listed in the path description.
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Each bandwidth sample represents the average bandwidth measured at that

point. It is sufficient to use 16-bit integers, so the historic bandwidth data

requires only two bytes per 100 meters.

3. During operation, the receiver uses previously recorded position logs and band-

width measurements to calculate the estimated number of bytes that it can

download over the remaining time of the (predicted) trip. Equipped with band-

width prediction, path and speed prediction, and knowing the average bitrate

of each quality level, the receiver can plan which quality levels to use, and

start downloading. For every downloaded segment, the receiver repeats this

calculation, taking the number of bytes already in the buffer into account. The

goal is to have an empty buffer at the end of the trip, while only going up2 in

quality, while at the same time minimizing rapid fluctuations in quality and

avoiding buffer underrun. When the receiver detects that it deviates from the

predicted route or timeline, it makes a new path prediction, and fetches a new

set of bandwidth predictions.

Using this approach, it is possible to predict the amount of data that can be down-

loaded in the future, and thus, an outage in the network signal does not need to

cause an interruption: The effects of short losses of network connection as well as

accurately predicted long connection losses can be “smoothed” out over time.

5.3.1 Test System

Testing of the proposed solution in an adaptive segmented HTTP streaming sce-

nario was done using an enhanced version of Netview’s proprietary media player

and media downloader. This system operates in a similar way to the other modern

HTTP streaming systems from Adobe, Apple and Microsoft, and it supports several

adaptive streaming formats. For this test, we chose to use a modified version of Ap-

ple’s HLS format. We used the same playlist format, but to save space for the lower

bitrate quality levels, we used Netview’s own multipexing container [138] instead

of the significantly less efficient MPEG-2 Transport Stream format typically used

with Apple HLS.

For content, we used European football (soccer) matches encoded in six qual-

ity levels (see figure 5.2(a)), all using a fixed segment length of two seconds and

25 frames per second. Quality levels range from low-resolution/low-bitrate video

suitable for old mobile phones to HD quality for laptops with big displays. We

plan long-term and do not need to adapt quickly. Thus, we do not have need for

H.264/SVC [146], which is not available on most mobile devices today anyway. Aka-

mai recommends [52] that video for 3G networks should be encoded at 250 kbit/s for

2We aim for an increasing quality, because 1) users strongly prefer this to starting high and
lowering the quality towards the end [169], 2) starting low reduces the startup time [101] and 3)
being careful in the beginning helps build a buffer faster, making the session less prone to buffer
underruns.
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low quality and 450 kbit/s for high quality, i.e., very close to our chosen quality lev-

els (the reason for also having bitrates far above 450 kbit/s is that our configuration

does not target just small portable devices, but also laptops and tablet computers

that benefit from HD resolutions).

Figure 5.2(b) shows the variations in the segment sizes for all the six quality

levels. It is clear that the bitrate for each quality level is not constant across the

entire stream, but the deviation from the average is small, so using the average

bitrate for predictions is not a problem.

(a) Quality levels and corresponding bitrates. (b) Deviation from the average bitrate.

Figure 5.2: Quality levels used in the test streams.

Note that when proving the concept of our lookup service in our initial tests, and

when demonstrating the effect of bandwidth prediction, we did not implement path

prediction. We performed this operation by hand, manually identifying which of our

chosen commute paths to use before starting the streaming session. The remaining

duration of the trip was estimated based on the current position (our algorithm

assumes that the travel speed at every point of the remaining part will equal the

average of previously recorded trips). Developing on-the-fly path prediction and

management of general, more random movement (e.g., a car with passengers that

stream video) are outside the scope of this dissertation.

5.3.2 Algorithms

The described location-based bandwidth lookup service calculates and predicts the

available bandwidth along a path. Obviously, reported entries in the database do

not have identical position and bandwidth measurements, and recording time as

well as traffic patterns vary as well. Considering this, it is up to the application

to determine how the predicted bandwidth should be used. In our study, we have

tested and compared different algorithms for quality adaptation. Later we also in-

clude in the comparison an omniscient algorithm that shows the “optimal” result.
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One of our algorithms represents current systems (such as those compared in chap-

ter 4) with a reactive approach (no prediction). The predictive algorithm uses our

database with GPS-tagged historic bandwidth measurements to improve the qual-

ity scheduling.

5.3.3 A Buffer-Based Reactive Algorithm

The basic idea of the buffer-based reactive algorithm is to select the video bitrate

(and thus quality) based on the number of seconds of video that are preloaded in

the buffer. Thus, when the buffer reaches a certain size for a given level, the system

is allowed to increase the quality. Similarly, when draining the buffer, the selected

quality is reduced if the buffer shrinks below the threshold. See section 4.5 for a

full description of how our buffer-based reactive algorithm works.

Reactive quality schedulers perform fine in many cases, but the quality varies

according to the bandwidth availability, and during network outages, buffer under-

runs and playout interruptions are often unavoidable. The reactive algorithm we

use therefore trades average quality for better protection against playout interrup-

tions and large and frequent jumps in quality. We limit the quality level according

to the resource availability, i.e., avoid selecting a higher quality level than sup-

ported by the current available bandwidth. Additionally, we scale the buffer full-

ness thresholds for changing quality according to the bitrate differences between

quality layers, and to further avoid frequent oscillations in quality, the threshold

for increasing the quality level is higher than when lowering the quality level (all

of these settings and more are described in subsection 4.5.1).

5.3.4 A History-Based Prediction Algorithm

To make use of the location-based bandwidth lookup service, we use a history-based

prediction algorithm that predicts future bandwidth using previously recorded band-

width numbers. In this method, a path prediction is created where, for every 100 me-

ters along the path, the system queries for a predicted bandwidth. For example, a

very simple prediction is to simply use the average of recently logged (e.g., less than

four weeks ago) bandwidth numbers within 100 meters of this position. Each time

a new video segment is to be downloaded, the algorithm takes the path, travel time

and bandwidth predictions, current position and buffer fill level, and calculates the

highest quality level that could be used for the rest of the trip without getting a

buffer underrun anywhere. This is the same algorithm as used in the omniscient

scheduler, described in subsection 4.5.3. The only difference is that here, we do not

know the duration of the streaming session and the available bandwidth for every

part of it, we must instead try to predict it based on historical observations.

In many cases, we have observed that even our simplest predictive algorithm

(that only uses the average bandwidth as its prediction) performs well. However, our
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experiments show that there are several factors that may influence the results in a

real environment, such as accuracy of the GPS signal, competition for bandwidth,

base station failure, unpredicted outages and traveling delays. In other words, there

are situations where the prediction fails and buffer underruns still occur. Simply

picking the average bandwidth for all predictions and trusting that blindly often

leads to catastrophic failures as seen in figure 5.3. This figure shows what happens

when the actual bandwidth is lower than the predicted bandwidth, and the quality

scheduler does not act when it notices that the prediction is wrong. Since it picks

higher qualities than the bandwidth can support, buffer underruns are inevitable.

To solve this issue, we tried three different ways of making the quality scheduler

more dynamic and resistant to unforseen events, all described below.

Figure 5.3: Result of a bad prediction when using a purely predictive quality scheduler.

Variance Scheduler

The Variance scheduler is a purely predictive history-based quality scheduling al-

gorithm that is almost identical to our initial approach of only having a fixed predic-

tion where, for every second along the trip, the bandwidth prediction is the average

measured bandwidth at the location predicted at that time. The only difference is

that the variances of the bandwidth measurements are also fetched from the band-

width database, because they tells us how likely it is that the observed bandwidth

will deviate from the average. When making a prediction, our average bandwidth

values are adjusted as follows:

PredictedBandwidth(position) = ⟨Bandwidth(position)⟩ + p ·√Variance(position)
Here, the optimism parameter p can be negative to get a more pessimistic predic-

tion, and positive for an optimistic estimate. Letting the adjustment value depend
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on the variance in bandwidth has the benefit that the correction value is greater

in the bandwidth samples that are most uncertain. As we progress in our stream-

ing session, we can adjust the optimism parameter to make our predictions more

in line with the observations seen so far, hoping that they also indicate this run’s

performance for the remainder of the trip.

Monte-Carlo Scheduler

A purely predictive history-based quality scheduling algorithm which we call the

Monte-Carlo scheduler, predicts bandwidth using a Monte-Carlo method based on

recorded values. This method takes a trip prediction (includes both positions and

expected arrival times at said positions) and generates N different hypothetical

runs (N = 2000 in our simulations) along our predicted trip. For every second t of

the predicted trip, we calculate the expected position (x , y) and use our bandwidth

lookup service to fetch every bandwidth sample within a 100 meter radius of (x , y).
From this set of bandwidth samples, we randomly pick a single sample, and use it

as the bandwidth value for time t in the hypothetical run.

Once this is done for all N hypothetical runs, the Monte-Carlo scheduler simu-

lates a streaming session for all N runs, and sorts them by the average quality they

could support without underrun, and only one of them is picked as our prediction.

Which one is picked depends on our optimism parameter p, where 0 ≤ p ≤ 1, and

p = 0 picks the most poorly performing run for a very pessimistic prediction, p = 0 .5

picks the median, and p = 1 picks the best performing run. Because every band-

width sample that constitute a hypothetical run was picked randomly amongst a set

of real runs, the optimism parameter in the Monte-Carlo scheduler will, like in the

Variance Scheduler, also most strongly affect the locations where the bandwidth is

most unpredictable.

The main problem with the Monte-Carlo prediction is that it is computationally

expensive. Every time we ask the quality scheduler for a suggested quality level,

it has to generate N hypothetical runs starting from the current location, simulate

a streaming session for each of them to evaluate their performance, and then sort

them according to performance. Especially the simulation part takes time, making

this an extremely CPU-intensive quality scheduler.

Hybrid Reactive/Predictive Scheduler

This approach combines the simple predictive scheduler that uses the average band-

width at every 100 meters as the prediction with a reactive quality scheduler very

similar to the one described in section 4.5. When quality scheduler is asked for a

suggested quality level, it generates a suggestion using both the reactive and the

predictive algorithms. The lowest of those two is then used, effectively making the

reactive scheduler a “safety net” to protect against failed predictions.
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The reactive scheduler used here is almost the same as the one presented in

section 4.5, but with one important difference: We do not limit quality levels to the

currently observed bandwidth, because it interferes with the long term planning

required to smooth out variations in bandwidth.

Omniscient Scheduler

To compare our results to an optimal scenario, we also included the omniscient

prediction algorithm from subsection 4.5.3. Unlike the above methods, this a poste-

riori algorithm has all measurements for a particular test run available. It chooses

bandwidths in the same way as described in the predictive algorithm above: For ev-

ery segment, the maximum quality level that could be supported for the rest of the

trip is used. The difference is that the omniscient algorithm always has a perfect

prediction, so it never needs to reduce quality, and consumes its buffers completely.

Note that, while ending with empty buffers is the optimal result, we reduced

the importance of this goal for the other non-omniscient predictive schedulers to

take variable-duration trips into account. An omniscient algorithm knows exactly

how long a trip takes and exactly the amount of available bandwidth at all times,

and can safely end the streaming session with empty buffers and maximum average

quality, but this is impossible in reality. Thus, when nearing the end of the trip,

the non-omniscient schedulers should not increase the quality further simply for the

sake of achieving empty buffers at the exact end of the trip. Instead, use the extra

bandwidth to fill the buffer, thus widening the safety margins. This is important

because a real implementation that tries to end with empty buffers takes a great

Figure 5.4: Limit aggressiveness at the end of the trip.
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risk, as the margins are very small near the end, and any deviation (delay) from

the predicted trip can cause a buffer underrun. Our metro test case demonstrates

this, as shown in figure 5.4. What happens near the predicted end of the trip is

that the algorithm ramps up quality dramatically to drain its buffers, in an effort

to maximize average quality. When a delay occurs inside the tunnel (where the

available bandwidth is almost non-existent) the buffers run dry before the trip’s end,

and we are unable to recover due to the lack of bandwidth. This demonstrates an

unfortunate special case that had to be addressed. As a countermeasure, we relax

the buffer drain requirements near the end of the trip. When most of the trip is done,

there is little point in maxing out the quality just for the sake of optimization, so we

limit the quality to the maximum achieved at 85 % of the trip’s estimated duration.

The result is that our buffers contain more unused data at the trip’s end, but we

are better protected from forced bandwidth drain at bandwidth-poor locations near

the end.

5.3.5 Comparing Quality Schedulers Through Simulation

Performing real streaming experiments in a live, mobile environment to test all

possible parameters of various different algorithms would be extremely time con-

suming, so we started by creating a network and streaming simulator. This sim-

ulator would take as input a bandwidth trace acquired from a real-world stream-

ing session, and simulate streaming under those conditions with a different quality

scheduling algorithm. The simulation also took into account the bitrate of the video

stream (configured as shown in figure 5.2), even including variations over time (i.e.,

not just the average bitrate). Figure 5.5 compares the real-world quality scheduler

result with the simulated result. It demonstrates that our simulator is remarkably

accurate, its result overlapping almost exactly with the real-world result.

Not only did the simulator make it possible to accurately test in seconds what

would have taken hours in real-world tests, but it also enabled us to compare dif-

ferent quality selection algorithms on the same bandwidth trace and compare the

results directly. This would have been impossible in real-world tests because one

will never get exactly the same bandwidth curves on two different runs.

5.3.6 A Comparison of Different Predictive Schedulers

Both the Monte-Carlo and the Variance schedulers are pure predictive schedulers

that adapt to failed predictions through the use of an “optimism” parameter p. Be-

cause they are similar in this respect, it makes sense to exclude one of them early

on. Figure 5.6 shows that the results are almost identical when using comparable

optimism values. Since the Monte-Carlo scheduler is extremely expensive compu-

tationally and provides no advantages over the Variance scheduler, it will not be

discussed any further.
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(a) Reactive algorithm (b) Predictive algorithm

Figure 5.5: Testing the accuracy of the simulations by comparing real-world tests of algo-
rithms with the simulation (using the bandwidth measured in the real test to make them
comparable)

Figure 5.6: The Monte-Carlo and Variance schedulers give almost identical results when
both are set to medium optimism, but Monte-Carlo is far more expensive computationally.

The purpose of adding the optimism parameter to the history-based prediction

scheduler was to make it auto-adjust when the observed bandwidth deviates from

the prediction. In particular, we want to avoid the repeated buffer underruns that

usually occur in such cases (illustrated in figure 5.3). This turned out to be almost

impossible in the general case. To avoid buffer underruns when the prediction failed

by a large degree, the optimism parameter had to drop extremely fast. This means

that the achieved video quality was much lower than the network could actually

support. Attempting to restore the optimism value after a prediction failure was

almost without exception a mistake, as buffer-underruns would occur soon after

the optimism was restored. Thus we concluded that it was impossible to conjure

up a working bandwidth prediction after the original prediction turned out to be
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false, and thus we should not be using a predictive algorithm in such scenarios. We

found our Hybrid Reactive/Predictive scheduler to be vastly superior to the Variance

scheduler for unpredictable runs, while identical in performance when the predic-

tion is good. Thus, for the rest of the dissertation, the term predictive scheduler will

refer to the Hybrid Reactive/Predictive scheduler described in subsection 5.3.4.

5.3.7 Evaluation of the Predictive Scheduler

We present in figure 5.7 comparisons of the reactive buffer algorithm, the predictive

algorithm and the omniscient algorithm for four different bandwidth logs (one for

each of our chosen commute routes). The first observation is that the traditional re-

(a) Metro (b) Ferry

(c) Bus (d) Tram

Figure 5.7: Video quality levels for the reactive, prediction and omniscient algorithms.
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active algorithm follows the available bandwidth fairly well – the video quality rises

and falls according to the available bandwidth (but is delayed in playout because of

buffering).

Additionally, the results show that, while the reactive scheduler’s bandwidth

limiting, step size scaling and different up/down thresholds are able to deal with

small network outages, the quality is still often unstable. For longer periods without

network connection, as demonstrated in the metro scenario, the reactive algorithm

fails to provide continuous video playback. We see that the predictive algorithm is

better at handling network variations and outages. The video quality is smoothed

out as the algorithm can use the predicted bandwidth in the calculations, and even

large outages (caused, for example, by tunnels or simply being far from the closest

base station) can be foreseen and managed. For example, in the metro tunnel, the

reactive algorithm drains the buffer quickly, and the video playout stops approxi-

mately 300 seconds before arrival. The predictive algorithm calculates the average

possible quality in advance, and by sacrificing quality at the beginning for prefetch-

ing bandwidth, the video playout lasts for the whole 820 seconds of the trip (half of

which is in a tunnel). From the results, we observe that the predictive scheduler

performs close to the omniscient scheduler when the prediction is good, and always

outperforms the reactive scheduler.

Furthermore, for these tests, we present the buffer fullness as a function of time

in figure 5.8. In the plots, we can see that the omniscient algorithm always ends

with an empty buffer due to its perfect prediction, while the less precise real-world

algorithms have more in the buffer at the trip’s end. They do not stop downloading

video until the player is shut down, and the playout position may be far behind the

download position when the bandwidth prediction is below the actual bandwidth,

i.e., the under-prediction is used to download video data beyond the estimated ar-

rival time. Nevertheless, we observe again that the predictive algorithm follows the

omniscient algorithm better than the reactive algorithm.

To evaluate the accuracy of our simulations, we first ran a real streaming session

and then a simulation on the bandwidth log recorded in the real session. The results

with respect to the quality level as a function of time are shown in figure 5.5. We

can observe that the real and the simulated systems make almost exactly the same

decisions.

5.3.8 Real World Video Streaming Tests

In the previous subsection, we used simulations to show the effectiveness of the

prediction model. In this section, we show the results from real streaming sessions

in the real environment for our tested commute paths using the bus, the metro,

the ferry and the tram as shown in figures 3.7(a), 3.8(a), 3.10(a) and 3.11(a). In

figure 5.10, we present the results where the graphs on the left show the result

using a traditional reactive buffer based algorithm, while the graphs on the right
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(a) Metro (b) Ferry

(c) Bus (d) Tram

Figure 5.8: Buffer-fullness for the reactive, prediction and omniscient algorithms.

show the results using the GPS-based bandwidth lookup service with the predictive

algorithm. Additionally, in each figure, we have also plotted the results from a

simulation over the same bandwidth trace captured during the real test using the

other algorithm with which we want to compare. In other words, the results should

be directly comparable since we showed in the previous section that the real-world

results directly map to the simulated results.

The plots in figure 5.10 show that the real-world tests confirm the simulation

results. Using the bandwidth lookup service with the predictive algorithm, a user

will experience far fewer buffer underruns and more stable quality. However, we

also experienced that there are conditions that prevent error-free predictions. For

example, we experienced buffer underruns shown in figure 5.9(a), because the metro

was delayed (more than the 15 %-remaining time function could handle) in an un-

derground station near the end of the trip. Because such delays occur very rarely,

we failed to predict the duration of the trip, causing a buffer underrun without

any way to recover. Another example is shown in figure 5.9(b), where the signal

was almost completely gone for several minutes, at a location where previous mea-
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(a) Metro: Delay in area with no bandwidth (b) Ferry: Long, unpredicted network outage

Figure 5.9: Examples of failed predictions.

surements found acceptable network conditions (note the differences between the

observed and the predicted bandwidth). Nevertheless, the real-world experiments

show that the proposed system is well suited for video streaming in bandwidth fluc-

tuating vehicular mobility scenarios.

5.4 Summary

In this chapter, we have presented a GPS-based bandwidth-lookup service that is

used for bitrate planning in a video streaming scenario. During a streaming session,

the receiver’s bandwidth is monitored and reported back along with the associated

GPS positional data, i.e., the users themselves build up the database required for

the service. Then, using such a service, the streaming application can predict fu-

ture network outages and bandwidth fluctuations based on the previously measured

bandwidths.

As a proof of concept, we implemented a prototype that was tested on popular

commute routes using public transportation in Oslo, Norway. Along these routes,

we measured the bandwidth and used the measurements to build a database for

the lookup service. Then, we modified our existing adaptive HTTP streaming pro-

totype [101] to perform bitrate prediction based on the information returned by

the lookup service. Our experiments, both simulations and real-world tests, show

that the experienced video quality can be smoothened and that the severe network

outages can be handled. Using prediction, we were also able to get much closer to

the performance of the omniscient scheduler than we got using our best reactive

scheduler.

However, while performing measurements of the 3G/HSDPA network in Oslo, we

often observed that other wireless networks were available. The next chapter will

attempt to extend the work presented here with support for multi-link streaming

in an effort to maximize video quality through the use of all available resources.
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(a) Bus: Reactive (real) vs. Predictive (sim) (b) Bus: Reactive (sim) vs. Predictive (real)

(c) Metro: Reactive (real) vs. Predictive (sim) (d) Metro: Reactive (sim) vs. Predictive (real)

(e) Ferry: Reactive (real) vs. Predictive (sim) (f) Ferry: Reactive (sim) vs. Predictive (real)

(g) Tram: Reactive (real) vs. Predictive (sim) (h) Tram: Reactive (sim) vs. Predictive (real)

Figure 5.10: Real-world experiments: The Reactive vs. the Predictive scheduler.
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Chapter 6

Increasing Available Bandwidth

through Multi-Link Streaming

In chapter 5, we showed that adaptive video streaming in mobile wireless networks

can benefit greatly from bandwidth prediction, giving fewer buffer underruns and

playout interruptions, more stable quality, and high utilization of available band-

width. However, we used only one type of wireless network while observing that oth-

ers were available. This indicates that there may still be much to gain by switching

between or aggregating multiple wireless networks.

Figure 6.1: An example of multi-link streaming. In this example, we have a multihomed
video receiver with two network interfaces, 3G and WLAN (i.e., the same as we use in
our experiments in this chapter). Each interface has its own IP address, and thus have
different routing paths. The multi-link streaming depicted here is not transparent to the
video receiver, because it has separate connections for the two interfaces.

This chapter briefly describes how multi-link streaming (illustrated in figure 6.1)

can be used together with our prediction-based adaptive streaming system from

chapter 5 to further improve the quality in mobile streaming scenarios. We used

a technique for transparent network roaming and connection handover [78], with-

out requiring modifications to the operating system, or introducing new network

protocols. Transparent in this context means that standard network applications

(in our case a streaming media player) running on a multihomed device can utilize
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different types of networks simultaneously, without requiring the application or the

media streaming server to know about it.

Our HTTP-based streaming video system presented in chapter 5 was used to

evaluate the performance of the solution described in this chapter. We present ex-

perimental results from a tram commute route in Oslo (Norway), where the multi-

link framework seamlessly switched between WLAN and 3G networks. To further

improve the accuracy of our bandwidth prediction system, we used Ruter’s real-time

information service for public transport in Oslo [35] to get information about tram

arrival times and estimated travel time.

Section 6.1 lists related work, and section 6.2 describes the location-based trans-

parent handover solution. The results from our experiments are presented and

discussed in section 6.3, and we conclude in section 6.4.

6.1 Related Work

The reason video streaming to mobile devices is still an active research topic is that

unpredictable bandwidth fluctuations in mobile wireless networks remains a prob-

lem. We have shown in previous chapters that bandwidth adaptation is an essential

part of the solution to this problem, and there is no shortage of media streaming

products and standards that incorporate this technique, or published research pa-

pers that build on bitrate adaptation. Lookup services for QoS information and

prediction have also been suggested before, and several examples of related work

on this topic is listed in section 5.1. However, combining bitrate adaptation with

multi-link streaming is still in the early stages.

Most current operating systems support single-linked multihoming (that is, be-

ing connected to multiple networks, but never using more than one link at the same

time). Multi-link streaming can be enabled using add-on software, but this un-

fortunately also requires changes to the applications and servers [107], or even to

network infrastructure such as WLAN access points [88].

Multi-link streaming on the overlay level is a popular research topic. In [158],

Wang et al. develop an algorithm for selecting paths and controlling transmission

rates in the context of an overlay network where a server can send data over mul-

tiple overlay paths to its destination. An overlay network is created between two

end-points, consisting of one TCP connection for each available interface. The ca-

pacity of each connection is initally based on an educated guess, and then a more

accurate estimate is determined through probing. Their packet scheduler performs

link selection and send-rate adjustments on each iteration in order to maximize

the throughput and distribute the traffic fairly amongst the links. Wang, Wei, Guo,

and Towsley present in [157] a similar solution for live video streaming applica-

tions, wherein the client opens multiple TCP connections to the server. Hence, it

is not a transparent multi-link solution, but requires special logic in both the client
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and the server. They also show that good video streaming quality can be expected

if the aggregated throughput is roughly 1.6 times higher than the bandwidth re-

quirement of the video. Evensen et al. also describe [78] and demonstrate [80]

an overlay-level solution for video streaming, where an adaptive HTTP streaming

client is extended to stream from multiple links at the same time (the same tech-

nology that is used in this chapter). The same authors have also presented [79] a

similar approach for UDP-based streaming. In contrast to the systems presented

by Wang et al. [157, 158], these are fully transparent multi-link solutions that

work with standard client-side systems and streaming servers. Another example of

an application-specific multi-link solution is given by Qureshi, Carlisle, and Gut-

tag [133], where they introduce “Tavarua”, a multimedia streaming system that

uses network-striping to deliver high-bitrate video over mobile wireless networks.

A lot of research has been done on roaming clients, and some of this is related

to our work. The IETF-standardized Mobile IP protocol [128, 102] enables mo-

bile devices to move between different networks while maintaining a fixed IP ad-

dress. Mähönen, Petrova, Riihijärvi, and Wellens envision a Cognitive Resource

Manager [118] that can function as a connection manager that, among other things,

decides which type of network to use. Di Caro et al. present in [65] a handover

solution that is semi-transparent on the application level. However, the solution

requires knowledge of the port numbers used by the application, and it relies on

active probing to determine if links are available and requires user interaction to

switch between links. Another example is “Wiffler” [58], a system where the main

idea is to reduce monetary costs of data transfers by delaying them until a cheaper

network becomes available. As an example, 3G bandwidth costs more than WLAN

bandwidth, so it can make sense to wait for a WLAN connection before starting

large transfers on a 3G network. Applications that send data specify their delay

threshold, and a proxy process detects availability of WLAN networks and shifts as

much traffic onto those as possible.

Most existing work in these areas ignore real-world complications such as those

demonstrated by Kaspar et al. [105] and by ourselves [136, 139, 137]. We have

taken components from various research papers cited above and incorporated all

of it into a complete solution for adaptive bitrate multi-link streaming, that is able

to improve performance of standard adaptive HTTP formats such as Apple HLS,

Microsoft Smooth Streaming, and MPEG DASH, using bandwidth prediction and

multi-link streaming. The implementation details of the multi-link system are not

important within the scope of this dissertation, because we are mostly interested

in the interplay between the prediction-based streaming technology we developed

in chapter 5 and multi-link streaming in general. We want to confirm that our

system can successfully run on top of such a system, and that the performance

(defined as the QoE from the user’s perspective) is improved. However, for the sake

of completeness, the next section briefly describes the system architecture of our

multi-link system.

83



6.2 System Architecture

The multi-link system that we used can be roughly separated into three main com-

ponents: (1) the multi-link framework, which we call MULTI [81, 77], (2) the adap-

tive HTTP streaming client, and (3) the network and bandwidth lookup service.

The MULTI framework is described in subsection 6.2.1 and the adaptive streaming

client in sections 4.5 and 5.3. The network and bandwidth lookup service is de-

scribed in section 5.3, but some additions for multi-network support are described

in section 6.2.2. Figure 6.2 shows how these components interact, and also gives

a high-level overview of how transparent roaming was implemented through the

MULTI framework.

Figure 6.2: Overview of the MULTI framework for implementing transparent multi-link
networking. Each colored box can represent a different machine in the network, but it is
also possible to run the proxy, lookup and content servers on the same machine.

6.2.1 MULTI: A Transparent Framework for Multi-Link

Streaming

The MULTI component simultaneously monitors and configures the network in-

terfaces, updates routing tables, and enables multiple links. Here we only briefly

outline the MULTI system, as we are only using MULTI to test the multi-link per-
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Figure 6.3: An example of multi-link streaming with transparent roaming. This differs
from figure 6.1 in that the MULTI proxy (depicted as the yellow box in figure 6.2) shields
the video server from having to manage multiple links per receiver. This is necessary to
be able to seamlessly migrate connections in the middle of a file download without special
logic in the web server.

formance of our streaming system. The implementation of MULTI is outside the

scope of this dissertation; for the full description, see [81, 77].

The MULTI framework consists of several submodules, as shown in figure 6.2.

Application transparency on the client side is achieved through the use of a local

virtual network interface through which all video data is routed. The media player

application sees only the virtual network interface, and can thus benefit from multi-

link technology without being affected by its complexity.

To achieve transparency on the video server side, a proxy server is needed to

hide the complexity of the video receiver’s multiple links (see figure 6.3). Thus, the

MULTI framework also includes components that should run outside the client, on

a separate proxy server. This proxy server will be a middle-man between the mobile

video receiver and the video content server. It can run on its own machine, on the

same machine that hosts the video content, or be installed on the client itself. The

proxy server transforms the receiver’s multiple links into a single link with which

the content server interacts.

6.2.2 Location-Based Network and Bandwidth Lookup for

Multi-Link Streaming

The data points representing the expected throughput at different geographical lo-

cations are, as described in section 5.3, collected by the users of the video service,

and the network information is stored in a database with standardized Geographic

Information System (GIS) extensions for handling location-based calculations. The

database used in our first prototype is PostgreSQL [31] using the PostGIS exten-

sions [30].

All the information about the network and the performance from one measure-

ment at a given time is stored as a single record in the database. This record in-

cludes network ID, time, GPS coordinates and observed performance metrics like

bandwidth, round-trip time and packet loss rate (round-trip time and packet loss
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rate is only used by MULTI, not the quality scheduling system described in 5.3).

Figure 6.4(b) shows an example bandwidth trace where we differentiate between

different networks (3G and WLAN in this example). With such a database, appli-

cations can use PostGIS queries that return historical bandwidth measurements

based on location, network type, and age of the data points, as shown in the follow-

ing PostGIS query example:

SELECT network_id, AVG(bandwidth)

FROM table_observed_performance

WHERE query_gps = gps AND time < 10-days-old

GROUPBY network_id

This returns the predicted average bandwidth for all available networks at a given

GPS location based on measurements from the last 10 days. While the above infor-

mation is sufficient if a user moves arbitrarily around, users often follows a given

path, particularly when commuting (our scenario), which we have shown (chapter 5)

can be used to perform long-term bandwidth availability prediction. Our database

therefore defines a table for known paths, such as well-known commute routes in

Oslo, returning a list of GPS coordinates and the respective time spent at given lo-

cations (for example within the vicinity of a GPS-coordinate or at a station). Using

PostGIS queries, like the one shown above, for multiple points along the expected

path, the media downloader can calculate the predicted amount of data that can

be downloaded. As in chapter 5, it uses this information to fill gaps in the stream

that are caused by expected network outages, and it can do long-term planning of

quality adaptation for a more stable video quality.

Information about the network provider of a given network ID is kept in a sepa-

rate table, and can be used to look up other relevant data such as pricing. Although

this parameter is not taken into consideration by our prototype, it could be added

to enable users to optimize for metrics like monetary bandwidth cost, rather than

performance.

6.2.3 Video Streaming and Quality Scheduling

Our video streaming and quality scheduling component is the same as that de-

scribed in chapter 5, except that the bandwidth prediction data in the lookup ser-

vice now contains an extra field that identifies the network that was used for each

bandwidth sample.

Connection handover and link selection is currently performed transparently by

the roaming client and proxy. It can happen that the client is forced to choose an-

other network than the one with the highest average bandwidth (which the quality

scheduler assumed we would use in its prediction). For example, this could happen

if the best network is WLAN, but the network password has changed, preventing
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the connection from succeeding. If something this happens, it means that the pre-

diction will be too optimistic, and the reactive quality scheduler will have to rescue

the predictive scheduler from buffer underrun (see the description of the hybrid re-

active/predictive scheduler in subsection 5.3.4), in effect making the video quality

fluctuate more rapidly than it should. This state is however corrected rapidly by

telling the quality scheduler that we are using a slower network than predicted,

and that the prediction must be recalculated with this in mind.

6.3 Experiments and Results

To test our proposed solution where the predictive quality scheduler from chap-

ter 5 is extended with multi-link support, we have again performed real-world ex-

periments on a tram commute route in Oslo (figure 6.4(a)) with different available

networks (figure 6.4(b)). The results presented here serve as a proof of concept.

6.3.1 Test Scenario

Our real-world experiments were performed on a tram commute route between

the University of Oslo (Blindern) and central Oslo, as shown in figure 6.4(a). Sev-

eral networks with varying network availability depending on location are available

along this route. In our tests, the client was able to connect to Telenor’s 3G net-

work at every position along the route, and the eduroam WLAN [16] was available

at the tram station near Blindern, and outside the Oslo University College closer to

downtown Oslo. The predicted available bandwidths as a function of the distance

from the start of the route are shown in figure 6.4(b). We observe that the WLAN

has high bandwidth (compared to 3G), but it has a very limited coverage, whereas

the 3G network has lower bandwidth but is always available. Because WLAN is

unsuitable for mobile streaming, we only got a good connection while waiting for

the tram. Thus, we started the streaming session while we were still sitting on

the terminal waiting. To predict the duration of waiting time (with a good WLAN

connection), we used Ruter’s online traffic information systems [35] to estimate the

time until the arrival of the next tram. As test content, we used the same streams

as those described in subsection 5.3.1 and figure 5.2.

6.3.2 Results

We performed three different sets of experiments: 1) 3G only, 2) switching between

WLAN and 3G and 3) aggregating the WLAN and 3G bandwidths. For all tests,

the performance of both video quality schedulers was evaluated. The first two sets

of experiments were performed on the tram. Because any two runs will experience

different conditions (for example, available bandwidths differ and the total travel
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(a) Tram commute path. The areas highlighted

in red indicate WLAN zones that we could use.

(b) Networks and bandwidths.

Figure 6.4: Map and observed resource availability.

time varies due to traffic), results using the other scheduler were simulated and

plotted based on the observed bandwidth curves. Thus, the real-world performance

of the reactive scheduler was compared with simulated performance of the predic-

tive scheduler, and vice versa. This was done to get directly comparable results.

Our bandwidth aggregation results were obtained through simulations.

3G Only

3G was used as our base case, and an average bandwidth of about 1000 kbps was

observed. The 3G network was available for the entire trip, and it provided stable

performance at all times of day. Thus, our prediction algorithm was able to improve

the video quality significantly compared to the reactive scheduler, as shown in fig-

ure 6.5. The reactive scheduler followed the available bandwidth and gave a more

unstable video quality than the predictive scheduler. With respect to the achieved

quality, the video quality rarely exceeded level 4 at 750 kbps (level 5 requires about

1500 kbps).

Switching Networks (WLAN and 3G)

This experiment uses switching between available networks, where MULTI, at any

given time, chooses the network with the highest expected bandwidth. Figure 6.6

shows the results using this approach. The eduroam WLAN always outperformed

the 3G network, and was chosen whenever available. Both schedulers benefited

from the increased capacity of the WLAN. The video quality was significantly higher

than with 3G only (figure 6.5). With the predictive scheduler, the media player was

able to stream at quality level 5 (1500 kbps) for most of the trip, compared to level 4
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(a) Real-world: Reactive. (b) Real-world: Predictive.

Figure 6.5: Streaming along the tram route while only using 3G.

(a) Real-world: Reactive. (b) Real-world: Predictive.

Figure 6.6: Streaming along the tram route while switching between WLAN and 3G.

(750 kbps) when only 3G was used. The reason is that the higher bandwidth of

the WLAN enabled the client to receive more data. Thus, it was able to work up a

bigger buffer and could request segments in a higher quality. Also, the predictive

scheduler achieved a much more stable video quality than the reactive scheduler.

As we described earlier, the handover was handled transparently, and with re-

spect to handover performance, we have plotted the throughput for the streaming

sessions from figure 6.6 in figure 6.7. From the plots, we can observe that the down-

time due to handover time (around 20 seconds) is small considering what we gain

from switching from a 3G network that averages 1 Mbit/s to a WLAN network that
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(a) Handover: Reactive. (b) Handover: Predictive.

Figure 6.7: Achieved throughput and handovers (the megabyte numbers in the plot legend
show the total number of bytes downloaded over the session for each connection).

averages 4.5 Mbit/s. However, this switch should only be done when the WLAN

availability can be expected to last significantly longer than the handover down-

time. This is only expected to happen if the vehicle has a predicted stop in a WLAN

hotspot (this is not inconceivable, as trains have to wait around five minutes when

arriving in Oslo’s central train station, a place where WLAN hotspots could be avail-

able).

Aggregating networks (WLAN + 3G)

(a) Reactive (b) Predictive

Figure 6.8: Perceived video quality: 3G only vs. WLAN/3G switching vs. WLAN+3G aggre-
gated (all results are simulated).
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To evaluate the performance of aggregating WLAN and 3G, we simulated sev-

eral streaming sessions. This was done because we wanted to directly compare

the results of 3G only, WLAN/3G switching, and WLAN + 3G aggregation. Thus,

we needed to have the exact same conditions in every case, which is only possible

in a controlled simulated environment. The simulated bandwidths of WLAN and

3G were based on traces from our real-world experiments. Because WLAN was only

available during the first minute (at the tram station near Blindern) and later when

passing the Oslo University College, the available bandwidth was most of the time

equal to that of 3G.

The results from one representative set of simulations is shown in figure 6.8.

As expected, the performance improved when more bandwidth was available. For

example, when the client could aggregate WLAN and 3G bandwidths, the predictive

scheduler was able to avoid a dip in quality towards the end. Also, the additional

bandwidth made the video quality increase more rapidly on startup.

6.4 Summary

In this chapter, we explored if our prediction-based adaptive streaming system

from chapter 5 could be further improved through the use of transparent multi-

link streaming. The results of our experiments (presented in subsection 6.3.2)

clearly show that this is possible on routes where multiple networks are avail-

able – even without aggregation, when just switching between networks, there is

a clear improvement in performance: Using multi-link streaming in combination

with prediction-based adaptive streaming, we get more stable video playouts and

on average higher quality than we could achieve using only the 3G network. The

results were obtained by performing streaming sessions with a fully working pro-

totype implementation on a popular commute route in Oslo.
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Chapter 7

Conclusion

In the following, we summarize earlier chapters, and repeat our contributions with

slightly more detail than in section 1.5 in the introductory chapter. There is also a

section on future work that discusses remaining problems and ideas that were not

explored. Finally, we end with a remark on the impact of our research.

7.1 Summary

The work presented in this dissertation was motivated by the recent explosion in

popularity of media streaming to mobile devices. We started by noting that wireless

networks will always be bandwidth limited compared to fixed networks due to back-

ground noise, limited frequency spectrum, and varying degrees of network coverage

and signal strength. Consequently, applications that need to move large amounts

of data in a timely manner cannot simply assume that future networks will have

sufficient bandwidth at all times. It is therefore important to make the applications

themselves able to cope with varying degrees of connectivity.

Next, we performed a large number of field experiments in Telenor’s 3G network

in Oslo, which at the time had just been deployed. Our experiments determined

the characteristics of the network, studying things like packet drop patterns, la-

tency, base station handover mechanisms, TCP throughput, and more. We observed

strong fluctuations in available bandwidth, and that packet loss could be reduced

by reducing the streaming bitrate (because the radio signal could use a more ro-

bust signal modulation at the expense of bandwidth). We concluded from this that

adaptive bitrate streaming, which had recently emerged as a commercially viable

technology, is the best solution for media streaming to mobile devices.

The next step was to compare and evaluate the adaptive streaming implemen-

tations of Adobe, Apple, and Microsoft in several challenging vehicular mobility

streaming scenarios, travelling by bus, tram, ferry and metro while trying to stream

video. By far the most important difference between the compared systems was the
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buffering and bitrate adaptation strategies, and in this regard, we found very dif-

ferent priorities in the compared systems.

The buffering and bitrate adaptation policies have a big impact on QoE from the

user’s perspective. How much the media players are able to buffer depend on these

policies, and determine if the playout is interrupted by buffer underrun or not, and

how much of the available bandwidth can be utilized. The bitrate adaptation policy

also determines the average quality of the playout, and if the quality is stable or

not (rapidly fluctuating quality is not good for the QoE).

We observed that all compared systems showed potential for improvement with

regard to QoE, so we developed our own media client with a bitrate adaptation

policy especially designed for the mobile streaming use case. Our reactive quality

scheduler was designed similarly to current products, using only the current down-

load rate and the buffer fullness to determine which qualities to use. Despite using

only these parameters, we were still able to develop a quality scheduler that signif-

icantly improved performance compared to existing products. This was confirmed

using bandwidth traces from real-world field trials.

While collecting data on network characteristics and bandwidth variations, we

found that although there were great fluctuations in connectivity when moving

around in a mobile network, the quality of the connection was highly dependent

on geographical location, and also quite deterministic. Thus, the next logical step

was to determine if this predictability could be used to improve performance of our

quality scheduler. We developed a database of historic bandwidth measurements for

points along various popular commute routes in Oslo, and a new quality schedul-

ing algorithm (the predictive quality scheduler) that used this bandwidth lookup

database to predict the bandwidth at every point for the rest of the streaming ses-

sion. Based on simulations, we found that the prediction-based quality scheduler

was able to provide a much more stable and high-quality viewing experience. We

then confirmed our simulated results in the real world using a prototype implemen-

tation with which we successfully streamed video along the same commute routes,

experiencing far fewer buffer underruns, higher quality and more stable playout

than our best reactive scheduler.

Finally, we extended our media client with support for multi-link streaming,

and added additional network information in our bandwidth lookup database. With

multi-link support enabled, we could use the extra information to switch between

or aggregate different wireless networks, thus increasing the average bandwidth

experienced along the trip. Again, we confirmed our results in the field using our

prototype implementation.

In summary, we developed a working implementation of an adaptive bitrate me-

dia streaming client for the mobile streaming use case. It is able to perform band-

width prediction and multi-link streaming to deliver a vastly improved viewing ex-

perience compared to present state of the art media streaming products.
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7.2 Contributions

The work presented in this dissertation addresses several issues in the field of mo-

bile video streaming. Mobile receivers are troubled by fluctuating bandwidth, mak-

ing it difficult to achieve satisfactory QoE in video streaming applications. We have

presented several innovative solutions to the problem, where we extend existing

adaptive bitrate streaming technologies with new algorithms for quality adapta-

tion, bandwidth prediction and multiple network utilization. A fully functional

prototype implementation was developed, proving the efficiency of our suggested

solutions. The following list summarizes briefly our contributions to the problems

stated in section 1.2:

1. Gathering of network data from a real 3G network. We spent a considerable

amount of time collecting data on network characteristics in a real-world 3G

network. We used custom made analysis tools, measuring both on the packet-

level using UDP, and application-level performance using TCP. We showed

that the performance of 3G networks is very sensitive to congestion and is

strongly affected by geographical location. In non-congested areas, we showed

that the available bandwidth can be predicted with fairly high accuracy based

on geographical location. The collected data on network characteristics was

successfully used to develop improved technologies for streaming under such

conditions, and has been made available [140] to other researchers performing

similar work.

2. An in-depth comparison of existing commercial products. To evaluate the per-

formance of existing commercial products in adaptive video streaming under

challenging network conditions, we performed a comprehensive set of tests us-

ing the data set collected in the above point. A bandwidth throttling module

for the Apache web server was used to reproduce the bandwidth fluctutations

that we observed in field testing. This ensured that all products were given a

fair and realistic basis for comparison, and helped expose several weaknesses

in current technologies.

3. A better quality adaptation scheme for mobile receivers. Knowing the weak-

nesses of existing adaptive video streaming products made it possible to de-

velop a better quality adaptation scheme while still only basing quality adap-

tation decisions on download rate and buffer fill level, like other systems that

are available on the market today. Even though no extra information was

available to make better quality adaptation decisions, we were able to provide

a significantly improved performance in mobile streaming scenarios, resulting

in fewer buffer underruns and more stable quality.
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4. Demonstrating that deterministic bandwidth can be used to improve perfor-

mance in video streaming. Equipped with a custom-made bandwidth predic-

tion service based on the data set collected in the 3G network measurement

phase of the project, we were able to extend our quality adaptation algorithm

mentioned above with information about future network conditions. This in-

formation made it possible to compensate for variations in the network, aver-

aging out the quality over time and thus greatly improving QoE for the viewer.

The results were compared to the optimal result (a perfectly predicted band-

width), and found to be surprisingly close in many cases.

5. Demonstrating that multi-link streaming is a feasible way to improve perfor-

mance in an adaptive video streaming client. We showed that using multiple

different wireless networks at the same time could further improve QoE in an

adaptive bitrate media client by increasing the average network capacity avail-

able for video streaming. Our experimental media client was combined with

a software module that provides application-transparent multi-link stream-

ing, and the bandwidth adaptation scheme was the same as before (our best

predictive scheduler), but we extended the bandwidth database with informa-

tion about different networks. In effect, what was achieved was increasing the

available bandwidth, thus increasing the quality in a streaming session.

In summary, our contributions include field experiments that exposed the behavior

(packet loss patterns, congestion handling, TCP throughput, predictability of band-

width based on location, etc.) of 3G/HSDPA networks, a comparison of commercial

streaming systems in this network, and a new and greatly improved buffering and

bitrate adaptation policy that takes advantage of everything we learned from doing

field experiments. The technology was implemented in a fully functional prototype

implementation that has been successfully used to stream video in real mobile net-

works.

7.3 Future Work

While we have developed a fully functional prototype that demonstrates that band-

width prediction and multi-link streaming can greatly improve performance of adap-

tive bitrate media clients in mobile streaming scenarios, there are still many parts

of the system that need further improvements and open issues that must be solved

before such a service is made available to the public.

For example, guaranteeing the consistency of the database of measurements is

difficult. As shown in section 3.3, signals may be lost, positions may be inaccurate

and the measurements may be corrupted. In our prototype, we have not filtered

measurements, but the lookup service should do this.
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Moreover, a related issue is that the current lookup prototype returns the pre-

dicted bandwidth, but the current competition for bandwidth (number of concur-

rent users) is not taken into account. Thus, the available bandwidth predicted by

the lookup service might be shared transparently. This situation will, however, be

improved by allowing the system to return different statistics according to day-of-

week and time-of-day as we describe above, where such concurrent use over time is

automatically reflected in the predicted bandwidth.

Another problem that is not yet addressed is automatic path prediction and path

predictions that fail. In this dissertation, we manually selected the path when start-

ing a streaming session, hence only the travel time was uncertain. In a real product,

each client should maintain a set of travel paths. When starting a streaming ses-

sion, it should monitor how the user moves around and compare it to previously

recorded routes. Time of day and day of week can be important factors to correctly

predict the route (e.g., commute routes are more likely on workdays than during

weekends). Partially overlapping paths that fork can be a common cause of path

prediction failures, but this is easily detected, and a new path prediction can be

generated in these events.

As the users move around both randomly and along predefined paths, at different

speeds, etc., a question that arises is how far into the future we should try to predict.

In our experiments, we have assumed public transportation where the route and the

approximate speed (timing) are known. However, the idea can be applied perfectly

well to more individual means of transportation such as cars, whose direction and

speed are unpredictable. Such scenarios are outside the scope of this dissertation,

but they raise several challenges that should be addressed.

We have chosen to demonstrate predictive quality scheduling using adaptive

HTTP streaming with multiple H.264/AVC versions of a segment as shown in fig-

ure 5.2(a). The reason is of course the current popularity of this streaming solution,

the availability of Netview’s media player, and the DAVVI system [101] to perform

real-world streaming tests. However, this also means that when a decision is made

with respect to the video quality of a segment, one must either stick with the cho-

sen quality for the duration of the segment or re-download the complete segment in

another quality, possibly wasting bandwidth. This makes quality scheduling more

vulnerable to “unpredicted” variations. Nevertheless, there are no restrictions on

the lookup service that prevents it from being applied with other adaptive stream-

ing solutions. For example, using a scalable codec like SVC and building up playout

windows enhancing the video quality layer by layer until the resources are con-

sumed (like PALS [134] or priority progress streaming [94]) would, with respect

to the quality scheduling, give a simpler and possibly a more efficient system (the

inherent overhead of scalable codecs notwithstanding).

Finally, we also note that while GPS devices were used to monitor the receiver’s

location in our prototype, the level of precision delivered by GPS devices is not re-
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quired for the bandwidth prediction to work. The disadvantage of using GPS is

increased power consumption, a big issue for mobile devices. A less power hun-

gry localization method that should be explored is multilateration of radio signals

between several radio towers [63].

7.4 Final Remark

We have, in the work done in the context of this dissertation, tried to strike the

right balance between academic research and the development of commercially vi-

able technology. We believe that we have succeeded with this goal: Our data sets

and prototypes have been frequently requested by other researchers to test their

own ideas and take our work in new directions, and our media client prototype has

already evolved into a mature, deployed, product. End-users are viewing video on

embedded devices using this product, and the advanced quality adaptation policies

are an important part of it.
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