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Abstract

Energy and radio are the two most important and expensive resources in the world,
for which the demands have been constantly increasing. We address the economic re-
search problems for these resources in the communications-centric or communications-
enabled next generation networks such as cognitive radio networks and smart grids.
The next generation networks are complex systems formed by multiple entities where
the benefits of every single entity is coupled with that of others. Thereby, we em-
ploy economic approaches such as game theory, to solve the resource management and
optimization problems in the next generation networks.

A cognitive radio network is a next generation technology with high potentials
to accommodate the communication needs of emerging wireless communication net-
works. The central resource in a cognitive radio network is the electromagnetic spec-
trum, which, is limited. Spectrum sensing, a key mechanism to provide radio awareness
necessary for opportunistic spectrum access in cognitive radio networks, demands re-
sources such as time and power. We formulate resource allocation problems for cooper-
ative spectrum sensing and propose efficient solutions to improve the quality of service
and the payoffs for the cognitive radio users. In a next generation energy-information
network like a smart grid, the resources are not limited to radio. The resource manage-
ment in the smart grid involves new dimensions such as power, energy, time, schedul-
ing, etc. Moreover, the interacting players for the economic problems in smart grids
are not limited to data transmitting units, e.g., electricity providers or utility companies,
distributors, consumers, etc. The smart grid, being a complex heterogeneous system
combining the traditional electric power grid with the information and communication
network, brings into surface numerous unique challenges and new research problems.
We study demand response problems for efficient generation, trade and consumption
of electric power, and address communication problems such as improving the quality
of communication, and dependability, in the smart grid.

There are three major connections between our work on cognitive radio networks
and smart grids: (i)- Energy and radio are the two most limited and expensive resources
in the world, for which the demands have been constantly increasing. We study the re-
source management and optimization problems for these two most important resources
(ii)- Communication is the central or the enabling technology in both cognitive radio
networks and smart grids. (iii)- We employ economic approaches such as game theory,
to solve the economic problems in both cognitive radio networks and smart grids.

Our three main contributions in this thesis can be summarized as follows.
The first contribution is the development of cooperative spectrum sensing mech-

anisms among the secondary users of a cognitive radio network utilizing the hetero-



geneity in traffic dynamics of the secondary users. We employ queuing theory for
packet delay analysis, and apply game theory to enforce cooperation among the self-
ish secondary users. The proposed scheme on cooperative spectrum sensing improves
the quality of service for the real-time services significantly by reasonably exploiting
the non-real time traffic. Our cooperative spectrum sensing mechanism can dynami-
cally enforce cooperation among the secondary users for spectrum sensing, utilizing
the diversity in the traffic density of the secondary users, in either fairness aspect or
efficiency aspect, as required.

The second contribution is the design of efficient and more practical demand re-
sponse management schemes in the smart grid, integrating entities at different levels
of the power generation, distribution and consumption processes. Our analyses in-
volve multiple players, including renewable energy sources, and we have extended
our demand response management framework to consider both spatial and temporal
dimensions. We have mainly used game theory in our studies on demand response
management, and have derived explicit closed-form and analytical solutions charac-
terizing the equilibria of the games for both the supply and the demand sides. The
proposed demand response management schemes either reduce the costs for the users,
or they maximize the payoffs of both the supply and the demand sides given others’
parameters. We also provide some insights on the equilibrium behavior of the involved
players in a large population regime.

The third contribution lies in establishing a connection between the control unit,
smart grid communications and demand response management, in the smart grid. We
mainly use optimization based and game theoretical tools for this analysis. We study
the dependability of the coupling between demand response management and smart
grid communications in the presence of an attacker who can manipulate the price in-
formation, and propose common reserve power based mechanism to maintain the de-
pendability of the grid. Our cognitive radio enabled smart grid framework based on
opportunistic spectrum access for smart grid communications, sheds light on the exist-
ing tradeoff between the control performance i.e., the demand response management,
and the communication performance i.e., the spectrum sensing time.
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1 Introduction
Communication technologies have been an integral part of our daily lives, directly or
indirectly, for many important activities. For instance, multimedia transmissions, video
streaming, telepresence systems etc occupy the biggest proportion of the data being
communicated over the internet. The development of smart phones and tablets have
further added the penetration of the services such as location based identification and
tracking, mobile social networks, etc. The advancement in communication technolo-
gies are anticipated to grow further, facilitating the deployment of ubiquitous systems
such as cyber physical systems (CPSs) and Internet of Things (IoTs).

Most of the systems, today, are dependent on communication technologies. Conse-
quently, the advancement in communication technologies is a means to enhance many
existing and upcoming systems such as logistics, transportation, automation and in-
dustrial manufacturing, etc. Accompanied with the growth and development of such
systems, however, are the concerns towards an increased need of the resources. Among
others, energy and radio are the two most important and expensive or limited resources
in the world. The demands and reliability requirements for both energy and radio, have
been constantly increasing, due to the extensive development in communication and
networking technologies, followed by the emergence of advanced new systems, and an
increased number of appliances, equipments, and industries. While radio is limited,
energy is very expensive. Consequently, the economics of these resources is a compo-
nent of utmost importance. Next generation networks (NGNs) such as cognitive radio
networks (CRNs) and smart grids (SGs), respectively, have been envisioned as the en-
ablers of the reliable and efficient management of radio, and energy. The resource
management and optimization aspects in the NGNs bring into existence numerous in-
teresting issues such as the trade of the resources among sellers and buyers, allocation
of the available resources within a system through appropriate scheduling, etc. The
problems addressed in this thesis can be classified into two main categories as shown
in Figure 1: trade based and allocation based resource optimization and management.
In the trade based scenarios, resources may be limited or can be produced according
to the consumers’ demands, and are sold and purchased with some form of payment
(usually price). In the resource allocation based approaches. the available resource is
limited or given, and the given amount of resources are allocated among the units in a
system or a network. Resource allocation here, may refer to communication resources
or other resources such as electric power.

In an NGN like a cognitive radio network (CRN), the major resources are the wire-
less channels (spectrum), the bandwidth, the transmission power etc. The medium of
data transmission for wireless communications, i.e., the electromagnetic radio spec-
trum, is limited. On the contrary, the development of various new communication sys-
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Figure 1: Classification of research problems addressed in this thesis.

tems and networks, indicates the need of more spectrum. Since the spectrum licenses
are assigned to specific existing wireless communication networks, the competition for
the spectrum increases in the unlicensed bands, thus creating and increasing interfer-
ence to each other. Cognitive radio (CR) [1], [2], [3], [4] is a technology proposed for
spectrum sharing between the licensed and the unlicensed users. The licensed users
are called the primary users (PUs) and the unlicensed users are known as the secondary
users (SUs). Spectrum sensing [5] is necessary for spectrum sharing to detect the PUs,
and thus to protect them sufficiently from possible interference due to the transmission
of the SUs. The economic research challenges in CRNs that we address in this the-
sis include, the development of cooperation among the SUs for spectrum sensing, and
optimal allocaton of the PU spectrum among the SUs.

In an NGN like the smart grid (SG), the resources are not limited to radio. While ra-
dio resource management is of significant importance for smart grid communications,
electric power is the central resource for trade in the SG. Electric power is necessary
for all electric appliances to operate. The world’s consumption of all forms of energy,
including electric power, continues to increase [6]. Accompanied with the growth of
power consumptions and the ever-increasing demands of electricity, are concerns about
the environmental impacts and the reliability of power supplies. Traditional power
grids, however, are not able to meet these demand and reliability requirements because
of their inflexible designs and the lack of prompt and efficient communications be-
tween the supply and the demand sides. The SG [7] is the next generation grid system
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that integrates advanced information and communication technologies (ICT) with the
grid for bidirectional communications (smart grid communications) between the sup-
ply side and the demand side through the market. Smart grid communications facilitate
the transformation of the current electric grid into the SG, which will (i)-enable active
participation of the electricity consumers in efficient and effective supply-demand man-
agement, (ii)- enhance the control capability of the whole system and (iii)- improve the
reliability and transparency of the grid.

Demand response management (DRM), a key component of the SG, is the response
system of the end-users to adjust their power demands according to the supply condi-
tions. The smart grid communications are central to enhancing the DR capabilities
of the whole system in the SG. E.g., consumers will be able to control and manage
their electricity usage, and the providers can plan and manage the generation and sup-
ply of power in a more structured and efficient manner. Thus, power generation, dis-
tribution and consumption are envisaged to be more efficient, more economical and
more reliable in the SG, with the help of the smart grid communications. While smart
grid communications can enhance the DRM capability, and can improve the reliability
and transparency of the grid, many uniques research challenges need to be addressed
for integrating the communications network with the electricity grid network before
the benefits can be fully realized. The economic research challenges in the SG, that
we cover in this thesis, include the efficient (and reliable) generation, distribution and
consumption of electric power, and optimal allocation of the radio resources such as
spectrum, for smart grid communications.

1.1 Motivation
Although spectrum sensing facilitates the sharing of the spectrum between the primary
and the secondary users, the process of spectrum sensing is resource demanding. The
SUs who perform spectrum sensing, need to invest resources such as power and time
to detect the PU(s). These investments in spectrum sensing may incur extra cost (e.g.,
power) or may degrade the quality of service (QoS) of SU transmission. For instance,
for SUs, contributing in sensing is, in many cases, synonymous to sacrificing the trans-
mission time, thus resulting an increase in the incurred packet delay or packet drop
rate, and thus, decreasing the obtained throughput of the SUs. Consequently, despite
the improved detection performance that can be obtained by cooperative spectrum sens-
ing (CSS), the altruistic and cooperative behavior from the SUs may not be practically
reasonable. Thus, proper incentives or punishments (for the lack of cooperation) are
necessary for the SUs to cooperate in spectrum sensing. Despite the availability of a
broad range of literature on different spectrum sensing techniques in CRNs, there are
very few studies which consider the selfish behavior of the SUs towards contributing
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for CSS. Moreover, heterogeneity among the SUs, which can offer either incentives
or punishment mechanisms for cooperation among the SUs, has not been explored
enough. For instance, the SUs can be heterogeneous with respect to their traffic dy-
namics, resource availability, etc. In this thesis we exploit the heterogeneity among
the SUs to develop priority based and enforced CSS techniques. We propose efficient
schemes and algorithms to minimize the use of resources for spectrum sensing, and
to utilize the benefits of spectrum sharing effectively, by improving the QoS of SU
transmission.

In the case of the SG, the research area is relatively new, the existing literature
mainly focusses on different DRM programs, the integration of the electric vehicles
(EVs) and renewable energy resources into the DRM framework, scalable communica-
tion architectures, and the upcoming security issues associated with the possible use of
wireless communications in the SG. Nonetheless, many of them are based on simula-
tions or on the electricity usage data of a certain city or a town. Hence, the studies lack
analytical elements. In addition, the existing DRM studies are mostly focused either on
the supply side or on the demand side of the interactions. Moreover, there are very few
studies where suitable technologies discussed for smart grid communications are prop-
erly assessed and the connection between the communication and the control aspects
are explored. In this thesis, we develop extensive analytical and closed form results for
efficient DRM in the SG considering the entities at different levels from customers to
suppliers, to market players. We provide novel insights into the reliability and depend-
ability analysis of smart grid communications, and introduce benchmark studies such
as large population approximations for DRM.

1.2 Approaches
Resource management and optimization (trade based and allocation based) in NGNs
involves the interaction among multiple players such as PUs, SUs, spectrum brokers,
electricity providers, electricity consumers, etc. The key to addressing the economic
research problems in the NGNs lies in modeling the behavior of and interaction among
these players, for example, as competition, and/or cooperation. When all players in a
network have a common goal, e.g., to maximize the system payoff or social welfare,
the whole system can be treated as one player. Thereby, optimization techniques can be
implemented to solve the economic problems. On the other hand, when the players’ be-
haviors are interdependent and their strategies are coupled, game theory is an appealing
tool to understand and to model the economic problems in the NGNs. Consequently,
we employ game theory for modeling and analysis in most of our work included in
this thesis. Depending on the scenario of interest, however, we also deploy tools such
as queuing theory and optimization techniques in some of our studies, to capture the

6



behavior of various entities in the NGNs. E.g., in our work on collaborative spectrum
sensing where all SUs contribute to improve the QoS of the real time traffic in a CRN,
as all SUs are controlled by the the secondary base station (BS), we employ queuing
theory to derive an analytical form for the average packet delay of the transmission
from SUs. On the other hand, when each SU is treated as an individual entity who is
concerned about maximizing its own payoff, we use a game-theoretical framework to
enforce cooperation among them for spectrum sensing, and improve the average payoff
of each user by introducing randomization in their strategies. In most of our studies
on DRM in the SG, we formulate the economic problems as specific game models, in
particular, non-cooperative games and Stackelberg games. In our CR enabled smart
grid communications model, the goal is to maximize the social welfare, thus we use an
optimization based framework for that study.

In summary, in this thesis, we address various economic research problems in two
NGNs: CRNs and SGs. There are three major connections between our work in these
two areas: (i)- Energy and radio are the two most limited and expensive resources, with
constantly increasing demands, all over the world. We formulate the resource manage-
ment and optimization problems for these two most important resources, and provide
optimal solutions for efficient allocation or payoff maximization of the associated en-
tities. (ii)- Communication is the central or the enabling component in both CRNs and
SGs, and we develop schemes and algorithms for optimal radio resource management
in both the NGNs. (iii)- We employ game theoretical frameworks and approaches to
solve the economic problems in both the networks.

The rest of this thesis is organized as follows. This thesis consists of two parts:
Part I: Summary: The rest of the summary consists of the following sections: Sec-
tions 2, 3 and 4 provide the background information required to understand the sum-
mary of the thesis. In Section 2, we describe about the spectrum scarcity problem,
cognitive radio networks, and spectrum sensing. In Section 3, we present an overview
of the SG concept, discuss the potential of, and challenges associated with DRM prob-
lems, and describe the role of smart grid communications in enabling the timely and
accurate demand response (DR) programs. Section 4 presents a brief introduction of
game theory, discusses the basic concepts of game theory that we have used in our pa-
pers, and points out the applications of game theory in modeling the behavior dynamics
of the players in the NGNs such as CRNs and SGs. Section 5 presents an overview of
the research methodology that was followed for the work during my PhD. Section 6
provides a brief summary of the contributions and the results of the papers included in
this thesis. Section 7 concludes my contributions in this thesis, and Section 8 outlines
possible extensions and future research directions based on my work presented in this
thesis. The list of my publications during Ph.D. studies is presented in Section 9.
Part II: Papers: The second part of the thesis presents the published or submitted
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research papers. which are included in this thesis.

2 Cognitive Radio Networks and Spectrum Sensing
The radio spectrum ranging from 3 KHz to 300 GHz is the basic resource for data trans-
mission, propagation and reception in wireless networks. In each country, spectrum is
regulated by its radio regulatory agency, such as Federal Communications Commis-
sion (FCC) in USA [8], Electronic Communications Committee (ECC) in Europe [9],
The Norwegian Post and Telecommunications Authority (NPT) in Norway [10], and
Ofcom in UK [11]. Traditionally, spectrum has been assigned via a fixed frequency
allocation policy, where each band of spectrum is exclusively allocated to a specific
wireless communication system or network. Moreover, these fixed licenses over spec-
trum bands are extremely expensive. E.g., for getting the fixed licenses to deploy 4G
cellular networks, TeliaSonera pays 563 million SEK for the 15-year’s license in Swe-
den on four frequency blocks totaling 2× 20 MHz in the 2.6 GHz band [12], 336.3
million DKK for the 20-year’s license in Denmark on 2×20 MHz paired spectrum and
10 MHz unpaired spectrum in the 2.5 GHz frequency band [13], 819000 EUR for the
20-year’s license in Finland on five 2× 5 MHz frequency band pairs in the 2.6 GHz
band [14].

This spectrum assignment policy is static, and it does not allow reuse or dynamic
use of the spectrum allocated to the licensed users by unlicensed users. On the other
hand, rapid development of new wireless systems and applications and growth of the
existing wireless systems in the recent years demands more spectrum. The Industrial,
Scientific and Medical (ISM) spectrum band, reserved internationally for the use of
radio frequency energy for industrial, scientific and medical purposes, is the only spec-
trum that can be shared by the unlicensed users from different networks. This band too,
is, already crowded by many systems such as wireless local area networks (WLANs),
wireless personal area networks (WPANs), cordless phones, microwave ovens, etc.,
which are suffering interference from each other. Hence, in order to accommodate the
new wireless systems and applications, a more flexible spectrum assignment policy is
required such that the available spectrum can be effectively exploited and dynamically
accessed and (re)used.

Interestingly, the licensed spectrum utilization is highly dependent on the geo-
graphic location and time of its use. For instance, during some time periods in certain
geographic areas, the allocated spectrum bands may be rarely used by the assigned
system, as illustrated in Figure 2. A report published by FCC in November 2002,
indicates that for 90% of the time considerable number of licensed frequency bands
remain underutilized or unused [15]. Similarly, Shared Spectrum Company (SCC) has
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Figure 2: Spectrum utilization measurements (0−6 GHz) in Downtown Berkeley [20].

published a bunch of spectrum measurement results of US and some European Coun-
tries since 2004 [16], and the reports point to similar facts. Their spectrum reports
in [17], [18], [19], indicate that the utilization of many licensed frequency bands in
many cities is under 25%. This implies that the actual problem is not the spectrum
scarcity but the static and inefficient spectrum allocation and usage.

Consequently, since 2004, FCC has recommended to consider authorizing new de-
vices in the TV broadcast spectrum at locations where TV channels are not being used
for authorized services [21], [22]. The IEEE 802.22 Working Group on Wireless Re-
gional Area Networks (WRANs) [23],[24], the first worldwide wireless standard based
on CRs, was formed in October 2004. Motivated by the idea of exploiting the unused
or not fully utilized parts of the licensed TV broadcast spectrum, it has been working
on the standardization for the rural broadband wireless access using CR technologies
for opportunistic access of the TV broadcast spectrum [25].

2.1 Cognitive Radio Networks
The original concept of CR was proposed by Joseph Mitola III at Royal Institute of
Technology (KTH), Sweden, in 1999 [1], [2]. Cognitive radio is an enabling technol-
ogy to allow unlicensed users to exploit the spectrum originally assigned to licensed
users. A typical implementation scenario of the coexistence of PUs and SUs is shown
in Figure 3. The primary system has an exclusively allocated spectrum, which is vacant
at times, as indicated by the white time slots. The CRN opportunistically accesses the
spectrum when the spectrum is vacant.

The research issues in wireless communications in general, are inherent in CRNs.
In addition, some distinct characteristics of CR introduce new issues to implementing
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Figure 3: Coexistence of primary and secondary users based on opportunistic spectrum access

CRNs. The changing spectrum environment and the need of protecting the transmis-
sion of the PUs from the possible interference from the SUs, mainly differentiate CRNs
from traditional wireless networks. CR technology possesses a huge potential for effi-
cient use of spectrum through opportunistic access of the licensed spectrum by the SUs.
However, in order to gain opportunistic access to the PU spectrum, the SUs should en-
sure that the PUs are sufficiently protected from the possible interference caused by
their transmission. Therefore, the SUs must be aware of the activity of the PU in the
target band. They should spot the spectrum holes, i.e., the vacant spectra, and the idle
state of the PUs in order to exploit the free bands, and also promptly vacate the band
as soon as the PU becomes active. CR encompasses this awareness by dynamically
interacting with the environment through spectrum sensing and adaptively choosing its
transmission parameters according to sensing outcomes.

2.2 Spectrum Sensing
Spectrum sensing refers to the phase during which the SUs must sense the radio fre-
quencies in order to make a decision on whether to transmit or not, depending on the
state of the PU. SUs need to regularly sense the allocated channels and reliably detect
the presence of the PU signal with a small delay. In the IEEE 802.22 standard, for ex-
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ample, the SUs need to detect the TV and wireless microphone signals and upon their
detection, they are required to vacate the channel within two seconds [26]. For TV pri-
mary signals, a probability of detection of 90% and a probability of false alarm of 10%
should be maintained [26]. By using local measurements and local observations from
spectrum sensing, a secondary user can detect the transmitted signal from a PU. Based
on how much information about the primary signal is available to the SUs, spectrum
sensing techniques can classified as follows:

• Matched filtering

• Cyclostationary feature detection

• Energy detection

2.2.1 Matched Filtering

Matched filter detection is generally used to detect a signal by comparing a known
signal (i.e., template) and the input signal. It is well known that the optimal method
for signal detection is through a matched filter as they maximize the received signal-to-
noise ratio (SNR) [5],[27]. In addition, by using a matched filter detector, the PU signal
can be detected in a short time [20], which is one of the main advantages of matched
filter detection. However, utilizing a matched filter in spectrum sensing requires de-
modulation of a PU signal, which implies that the CR must have a priori knowledge of
different PHY and MAC characteristics of the PU signal such as pulse shaping, packet
format, and so on [5], [27], [28], [29]. In CRs, however, such knowledge is not readily
available to SUs, and the implementation cost and complexity of this detector is high,
especially as the number of primary bands increases. Therefore, this method may not
be practical for CR technology.

2.2.2 Cyclostationary feature detection

Cyclostationary feature detectors can distinguish between modulated signals and noise
[5], [27], [28], [29], [30]. This detector exploits the fact that the transmitted signal
from a PU generally possesses some periodic pattern, i.e., the signal from the licensed
PU is cyclostationary with spectral correlation due to the built-in redundancy of sig-
nal periodicity. On the other hand, the noise is a wide-sense stationary signal with no
correlation [30], [31]. Thus, using the cyclostationarity, the transmitted signal from a
licensed PU can be distinguished from noise. In general, cyclostationary feature detec-
tors can provide a more accurate sensing result and they are robust to the uncertainty
introduced by the variation in the noise power. However, these advantages are obtained
at the cost of a higher complexity for implementation and longer observation times.
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2.2.3 Energy Detection

When the information on the PU signal is unavailable to the SUs, energy detection can
be applied to detect the existence of the PU signal. This simple scheme accumulates
the energy of the received signal during the sensing interval and declares the band to be
occupied if the energy surpasses a certain threshold, which is set based on the desired
probability of false alarm [32][33]. The received signal x(t) will have either of the
following two forms:

{
H0 : x(t) = w(t), when PU is absent,
H1 : x(t) = gs(t)+w(t), when PU is present, (1)

where g is the gain of the channel between PU transmitter and the SU receiver, s(t)
is the signal from the PU, which is assumed to be an independent and identically dis-
tributed (i.i.d.) random process, w(t) is an additive white Gaussian noise, t = 1,2, ....,T
is the discrete time index, and T is the total number of samples collected during sensing
period. H0 and H1 represent, respectively, the hypotheses of the signal from a licensed
PU being absent or present in the target frequency band. Consequently, the spectrum
sensing phase boils down to a decision between two hypotheses H0 or H1, depending
on the received signal at the SU.

For measuring the performance of spectrum sensing, three key metrics are usually
explored: the probability of detection, the probability of miss detection and the proba-
bility of false alarm. The probability of detection is defined as PD = Prob(decision =
H1|H1), which is the probability of correctly detecting the transmission of the PU when
it is active. The probability of miss detection is defined as PMD = Prob(decision =
H0|H1), which is the probability of not detecting the PU transmission while the PU
is active, i.e., PMD = 1− PD. The probability of false alarm is defined as PFA =
Prob(decision =H1|H0) which is the probability of deciding that the PU is transmitting
while the PU is, in fact, idle.

Energy detection, unlike the other schemes, does not require any information about
the PU signal and channel gains, and is robust to unknown fading channel. Compared
to matched filter detection and cyclostationary feature detection, it has simpler imple-
mentation, and hence, is less expensive. Therefore, energy detection has been widely
adopted in many spectrum sensing scenarios [5], [27], [28], [29], [34], [35], [36]. De-
spite its practicality and appeal, energy detection suffers from the following drawbacks:
(i)- It is susceptible to the uncertainty of noise, (ii)- It can only detect the presence of
the signal, but cannot differentiate the type of the signal. As a result, energy detection
can confuse signals resulting, for example, from other SUs with the PU signal, (iii)-
Energy detectors do not work for spread spectrum signals.

In addition to these methods, recent work has also investigated the use of advanced
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detection techniques, such as wavelet detectors [37], for performing spectrum sensing.
Moreover, one can also integrate, in a single secondary system, different detection
methods. For instance, energy detection can be used to perform a fast scan of a wide
range of spectrum bands. Subsequently, the results from energy detection can be used
to eliminate the spectrum bands with high energy densities (e.g., due to the transmission
of PUs). Then, feature detection can be applied to a few candidate bands with low
energy densities to search for a unique feature of signals pertaining to PUs.

2.3 Cooperative Spectrum Sensing
The performance of spectrum sensing is significantly affected by the degradation of
the PU signal due to path loss or shadowing, which lowers the received SNR. Added
to the issue of low SNR is the hidden terminal problem that arises because of shadow-
ing. SUs may be shadowed away from the PU transmitter but there may be primary
receivers close to the SUs that are not shadowed from the PU transmitter. Thus, if the
SU transmits, it may interfere with the primary receiver’s reception. This problem is
called the hidden terminal problem. Consequently, advanced methods for improving
spectrum sensing are being sought. In particular, as different users in distant loca-
tions undergo independent channel fading, it has been shown that, through cooperation
among the SUs, i.e., CSS, the effects of the hidden terminal problem can be mitigated
by utilizing the inherent diversity associated with the SUs. Consequently, the reliability
of detecting the PU will be improved [34], [35], [36]. In this manner, the individual
SUs require less detection resources while increasing the overall detection reliability.
A typical CSS scenario in the presence of hidden terminal problem, is illustrated in
Figure 4. In the figure, SU1 is a shadowed SU. So, it cannot detect the PU signal. But
SU2 and SU3 can detect the PU signal and report their sensing results to the secondary
BS, thus preventing SU1 from transmitting when the PU is active, although its local
decision implies that the PU is not active. These advantages, however, come at the
price of added communication overhead due to cooperation.

FCC has also acknowledged the need for CSS for TV bands [23], [25], [26]. CSS
is mainly composed of two steps. In the first step, each SU performs its individual
spectrum sensing. In the second stage, the SUs provide locally sensed information on
the PUs activity status to a decision-making fusion center (FC) which can be an access
point or a BS or another SU. The FC analyzes the information using specific decision
fusion rules and determines the activity status of the PU.

In our studies, we mostly deploy energy detector, and use OR fusion rule at the
BS. In our CSS scheme in IEEE 802.22 WRAN, we employ feature detection for fine
sensing, as specified by the standard.
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Figure 4: Cooperative spectrum sensing

3 Smart Grid Communications and Demand Response
Management

Over the last century the human race has been consuming energy on a scale that contin-
ues to break records decade after decade. By 2050 the world’s population is estimated
to grow from 6.7 billion to 9.2 billion as reported by The United Nations [38]. Natu-
rally, the demand for electricity has been growing, and is anticipated to grow further
due to the increased use of machines and new types of appliances such as EVs, Plug-in
hybrid electric vehicles (PHEVs), etc. A typical deployment of a conventional elec-
tric power grid, is illustrated in Figure 5 [39]. The power is generated by the energy
sources, transmitted through the transmission lines and then distributed to the end-users
through the distribution lines. A detailed description about the various entities acting at
different levels of the current power grid, such as generation companies, transmission
companies, market structure, distribution companies, etc., can be found in [40].

While the electric power demands and the reliability requirements are increasing,
the current electric power grid is aging. A series of severe blackouts in the United
States [41]: Northeast blackout on November 9, 1965, New York city blackout on July
13, 1977, West coast blackout on December 22, 1982, West Coast blackout on July
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2−3,1996, West coast blackout on August 10,1996, Upper midwest blackout on June
25,1998, Northeast blackout on August 14,2003, etc., affecting several millions of
people, have indicated the inability of the current electric grid to meet the demands and
to maintain the reliability of power supply. The recent power cuts in India in July 2012
left 700 million people without power, as energy suppliers failed to meet the grow-
ing demands [42], which further verifies the vulnerabilities associated with the current
power grid. In addition to its inability to meet the scale and reliability requirements of
the growing demands, the conventional power grid plays a significant role in environ-
mental degradation, as electricity generation plants are one of the major contributors
to greenhouse gas emission. Integrating renewable energy resources into the electricity
grid, is one of the approaches to reduce greenhouse gas emission. However, incor-
porating renewable energy sources implies inherent intermittency and uncertainties in
the supply side. To mitigate or to reduce the impact of such uncertainties, to maintain
the reliability of power supply, and to enable DRM to be effectively explored and ex-
ploited, it is essential to transform the traditional power grid into a more responsive,
efficient and reliable system.

3.1 Smart Grid
The smart grid [7] is an energy information network that incorporates a smart metering
infrastructure capable of sensing, measuring and shifting the power consumption of
consumers using advanced ICT, i.e. smart grid communications. Bi-directional smart
grid communications between the supply and the demand sides will enable consumers
to control and manage their electricity usage, and it will help the providers or the utility
companies to plan and manage the generation and supply of power in a more structured
and efficient manner. Thus the power generation, distribution and consumption is ex-
pected to be more efficient, more economical and more reliable in the SG. A typical
SG scenario is depicted in Figure 6, where the the upper part of the figure represents
the power flow and the lower part represents the smart grid communications network.
The power flow is unidirectional, i.e., from the energy sources to the end-users, but the
information flow is bi-directional.

Smart grid communications play a central role for effective implementation of the
DR programs or for maintaining and enhancing the reliability of the power supply. In
the SG, each end-user (a household, a commercial user or an industrial user, with a
number of electrical appliances) will have a smart meter. The smart meters are pro-
grammed to determine their strategies that minimize the cost for the users or the cost
of power generation, as needed. Groups of end-users form a neighborhood area net-
work (NAN). The data from each NAN is supplied to the control unit (CU) through an
aggregator. Several NANs form a wide area network (WAN). The data from a WAN is
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Figure 5: The processes of electric power generation, transmission and distribution in conven-
tional electric power grid [39] (included with the permission of the auhors)
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Figure 6: The smart grid: an intelligent grid system incorporating ICT into the electricity grid
for communication and control.

communicated to the meter data management systems BS, which further submits this
data to the control center. The control center, based on the electricity usage patterns or
demands or preferences of the users, will in turn, adjust the supply parameters such as
the amount of power to generate, the unit price etc.

The U.S. Government has announced the largest power grid modernization invest-
ment in the U.S. history, i.e., 3.4 billion USD in grant awards, funding a broad range
of smart grid technologies [43]. Local Distribution Companies (LDCs) are integrat-
ing advanced metering and two-way communication, automation technologies to their
distribution systems [44].

3.2 Demand Response Management
In [45], DR is defined as Changes in electric usage by end-use customers from their
normal consumption patterns in response to changes in the price of electricity over
time, or to incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized.

DR from electricity consumers facilitated at higher time resolution is important for
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deregulated competitive electricity markets to function properly. An active demand
side that responds when wholesale prices vary, may contribute to efficiency and relia-
bility, reduced price volatility, mitigation of exercise of market power, as well as several
other advantages in the electricity market. Despite this importance, the traditional elec-
tricity markets are characterized by either no response or a rather low response from the
demand side. One reason for the low response in the traditional power grid is that most
consumers do not obtain the information about the time-differentiated prices that reflect
the wholesale price variation. Instead, they have prices that are fixed for longer periods
of time (weeks, months, years). Currently, many of these consumers choose the fixed
contracts voluntarily, in order to ensure more stable and predictable prices. Consumers
can not afford the possibility of making different choices since most households are
equipped with an electric metering system which can only measure their accumulated
electricity consumption. This implies a disconnection between the wholesale market
and the retail market in which households purchase their power. The rapidly changing
costs of electricity are not communicated to the consumers, and consumers’ willing-
ness to pay for electricity is not reflected in the market. As a result, the consumers lack
incentives to respond to immediate market price fluctuations.

Lack of demand response may have adverse implications. Electric generators with
high costs may be used to cover demand during short-term peak price periods, even
though many consumers would have preferred to use less electricity if they had ob-
tained the actual cost of their consumption. Similarly, because consumers increase
consumption during short-term off-peak price periods, some generators are not utilized
even though they may offer electricity at costs below what many consumers would be
willing to pay if they had the opportunity to do so. This inefficiency in the alloca-
tion of resources may also have long-term impacts through inefficient investments in
generation capacity. Moreover, low demand response, accompanied with the special
properties of electricity as a commodity such as non-storability, capacity constraints
and long lead times for new capacity expansions, also contributes to volatile prices.
Less participation of the consumers in demand response may make it easier and more
profitable to exercise market power, which exacerbates price volatility. Increased price
volatility increases uncertainties regarding long-run average rate of return on capacity
investments which in turn, may reduce the investment level and thus the reliability of
power supply.

There are two basic types of DR options, price-based demand response and incentive-
based demand response. Price-based demand response includes real-time pricing (RTP),
critical-peak pricing (CPP), and time-of-use (TOU) rates. In price based demand re-
sponse programs, customers can respond to the price structure with changes in en-
ergy use, reducing their electricity bills if they adjust the timing of their electricity
usage to take advantage of lower-priced periods and avoid consuming when prices are
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higher [45]. Incentive-based demand response schemes pay participants to reduce their
loads at times requested by the program sponsor, triggered either by a grid reliability
problem or high electricity prices [45]. In the current electricity grid, basic types of
DR programs have been implemented such as CPP, TOU, and incentive-based demand
response schemes. However, the available information to the consumers for these pro-
grams are not real-time. E.g., in CPP schemes, consumers are informed of a very high
unit price during peak time slots, which is the same for days, weeks or even months,
years, and the consumers try to avoid or minimize consuming energy in these slots. In
TOU, the unit prices are different at different hours in a day (e.g., peak hours vs. off
peak hours), which is informed to the consumers beforehand. The consumers schedule
their appliances at cheaper time slots. Although these schemes have fundamental sense
of DRM, they are essentially non-real time schemes and they fail to take into consider-
ation the response from the consumers if the prices should be adjusted in real-time.

In the SG, DRM is a much wider concept where the users have options in schedul-
ing their appliances in time, choosing providers, and the feedback from the demand
side to the CU is provided at a much finer granularity, e.g., every 10 minutes. When
consumers know the prices that are closer to the marginal costs of supply through real-
time-differentiated tariffs, and are metered automatically, they have incentives to adjust
their demand to the varying prices. Consequently, the generators can be operated near
their optimal operating points, and a reliable power supply can be maintained to the
customers. Thus, in the SG, the significance of DRM goes beyond reducing the power
generation costs and the costs for the users.

DR programs typically specify a method for establishing customers’ baseline en-
ergy consumption level below which demand reductions are not allowed. The energy
requests that customers send to utility/providers consist of two parts: non-flexible load
request and flexible load request. The non-flexible part is the minimum amount of
energy that the utility/providers needs to provide at a specific time. The flexible part
can be reallocated over time according to a certain load management strategy. For
any load management strategy there are two common primary goals: peak load saving,
and load profile flattening, also called peak-to-average-ratio (PAR) minimization, [46],
[47], [48].

Buildings (residential, commercial and/or industrial) are one of the greatest con-
sumers of electric power. For instance, in The United States, at a macroscale, buildings
use approximately 70% of total electricity usage and emit approximately 40% of green-
house gases annually [49]. Thereby, we solve DRM problems for residential, commer-
cial and industrial users (buildings), and propose efficient and reliable solutions in the
context of multiple providers and multiple consumers. We develop provider selection
schemes as well as schemes for load scheduling in time.
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Figure 7: Advanced sensing and control through modern communications technologies in the
smart grid [50] (included with the permission of the auhors)

3.3 Smart Grid Communications
The interactions between the providers and the consumers are enabled by the smart
grid communications infrastructure between the supply and the demand sides. An ad-
vanced metering infrastructure is a communication infrastructure that enables meters
and providers to exchange information such as power consumption, price update, or
outage awareness. Different components of the smart grid system are linked together
with communication paths as shown in Figure 7 [50]. In the SG, real-time and reliable
information becomes the key factor for reliable power generation, and distribution from
the generation units to the end-users. The impact of equipment failures, capacity con-
straints, and natural accidents and catastrophes, which cause power disturbances and
outages, can be largely avoided by online power system condition monitoring, diag-
nostics and protection [51]. To this end, the intelligent monitoring and control enabled
by modern information and communication technologies, i.e., smart grid communica-
tions, have become essential to realize the envisioned SG [50].

Currently, in addition to research and development activities, many electric utilities
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are taking incremental steps to make the smart grid technology a reality. Most of them
are signing agreements with telecom operators or smart meter vendors to carry out
smart grid projects. All these agreements define the main requirements and features
of the necessary communications infrastructure to provide real-time communications
between smart meters and the utilities’/providers’ back-haul system, i.e., the advanced
metering infrastructure [50].

With the integration of advanced technologies and applications for achieving a
smarter electricity grid infrastructure, a huge amount of data will be generated and
needs to be communicated for further analysis, control and real-time pricing mecha-
nisms. Hence, it is of critical importance for electric utilities to define the communica-
tions requirements and find the best communications infrastructure to handle the output
data and deliver a reliable, secure and cost-effective service throughout the system.

Communication technologies supported by two main communications media, i.e.,
wired and wireless, can be used for data transmission between smart meters and providers.
In some cases, wireless communications have some advantages over wired counter-
parts, such as low-cost infrastructure and ease of connection to difficult or unreachable
areas. However, energy constraints, signal attenuation and interference may degrade
the performance of communications. On the other hand, wired solutions do not have
these problems. However, they are more expensive. Different technologies have been
proposed for smart grid communications, such as GSM, GPRS, 3G, WiMAX, PLC,
ZigBee, etc., [50]. Based on the specific parameters of each technology e.g., the cov-
erage range, data rate offered, sensitivity towards noise and interference, etc., their
applications vary, e.g., advanced metering, DR, home area networks, fraud detection
etc.

While SG communications facilitate DRM and enhance the capability of DRM, the
SG needs resources for communications too. Wireless communications are cost effec-
tive, and are likely to be the technology for communications in the SG. However, due
to the spectrum scarcity issue discussed in Section 2, SG communications should be
based on the ISM band, or on opportunistic access of the spectrum licensed to the PUs.
Thus, radio resource management and optimization for smart grid communications, is
an important research problem, and is another problem we address in this thesis.

4 Game Theory
For resource management and optimization in NGNs such as CRNs and SGs, we need
to address several research challenges. Since the economic problems involve multiple
players whose decisions are coupled, we employ game-theoretical approaches in many
of our studies, to solve the economic problems in CRNs and SGs.
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Game theory is a formal analytical framework with a set of mathematical tools to
study the complex interactions among independent rational players. It aims to help us
understand the situations in which decision-makers interact. A game in the everyday
sense is a competitive activity in which players contend with each other according to
a set of rules [52]. But, the scope of game theory is much larger. Throughout the past
decades, game theory has made a revolutionary impact on a wide number of disciplines
ranging from economics, politics, philosophy, or even psychology, [52], [53]. Some
examples from our day-to-day lives, which signify the range of situations to which
game theory can be applied are, firms competing for business, political candidates
competing for votes, jury members deciding on a verdict, animals fighting over a prey,
bidders competing in an auction, and the role of threats and punishment in the long-
term relationships etc.

Game theoretic approaches can be distinguished into two main categories: Non-
cooperative [54], [55] and cooperative game theory [53], [56]. While non-cooperative
game theory mainly deals with modeling competitive behavior, cooperative game the-
ory is dedicated to the study of cooperation among a number of players.

In the emerging NGNs such as a CRN or a SG, the players (PUs and SUs for
a CRN, utilities/providers and consumers for a SG) are autonomous decision mak-
ers. Thus, the emergence of such networks and the recent interest in resource man-
agement and optimization in such networks has brought to surface many interesting
game theoretic problems that arise from the competitive and cooperative interplay of
the different players. Furthermore, the need for self-organizing, self-configuring, and
self-optimizing networks eventually led to the use of many game theoretic concepts
in wireless communication networks [57], [58]. Cooperative game theory models are
mainly useful when the entities involved are concerned about the greater good of the
system than the payoff of each individual player. For instance, when all the players
belong to one single network where all players are controlled by a single centralized
entity such as a BS or a CU, or when all the players are homogeneous meaning that
maximizing the social welfare also leads to optimal solution for each player, or when
every single player is programmed to act towards optimizing the total payoff. This is,
however, often not the case in complex and heterogeneous networks like CRNs and
SGs where distributed implementations are preferred/required. When a central entity
controls all the players, optimal centralized solutions can be obtained by using opti-
mization techniques [59]. The essence of game theoretical models lies in modeling
and designing schemes and algorithms for multi-player optimizations.

Consequently, in NGNs like CRNs and SGs, game theory proves to be a very pow-
erful and appealing tool to model and solve various economic research problems. Next
in the following subsection, we explain the basic concepts of game theory.
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4.1 Basic Concepts

Actions and Strategies. Each decision-maker in a game is associated with two com-
ponents: a set A consisting of all the actions that, under some circumstances, are avail-
able to the decision-maker, and a specification of the decision maker’s preferences [52].
In any given situation, the decision maker must choose a single element from a subset
of A. The choices available to the player are also called its strategies. The decision-
maker knows this subset of available choices, and takes it as given. The subset is not
influenced by the decision maker’s preferences. The set A could, for example, be the
set of the amount of electric power that the decision maker can possibly buy/consume,
given its budget at any time, or it can be the set of time-slots that the decision maker
can possibly schedule to consume a given amount of total power, etc.
Preferences and Payoff functions. Let us assume that the decision maker, when pre-
sented with any pair of actions, knows which of the pair it prefers, or knows that it
regards both actions as equally desirable [52]. Further, let these preferences be con-
sistent, i.e., if the decision maker prefers action a to action b, and action b to action c,
then it prefers action a to action c. In particular, how much a player likes an outcome
depends on some other player’s payoff as well. One way to describe a decision-maker’s
preferences is to specify, for each possible pair of actions, the action the decision-maker
prefers, or to note that the decision-maker is indifferent between the actions. Alterna-
tively we can represent the preferences by a payoff function, which associates a number
with each action in such a way that actions with higher numbers are preferred. More
precisely, the payoff function u represents a decision-maker’s preferences if, for any
actions a,b ∈ A, u(a)> u(b) if and only if the decision-maker prefers a to b. The pay-
off function is also called a preference indicator function. In economic theory, a payoff
function that represents a consumer’s preferences is often called a utility function.

The Theory of Rational Choice. The theory of rational choice states that, in any
given situation the decision-maker chooses the element of the available subset of A
that is best according to its preferences [52]. The response of the player should give
the highest payoff compared to choosing any other element of the subset, given the
choices of other players. The function that represents the response yielding the highest
payoff is called the best response function of the player, and the corresponding strategy
is called the best response strategy. If there are several equally good actions, the theory
of rational choice demands that, the action chosen by a decision-maker should be at
least as good, according to its preferences, as every other available action. The theory
of rational choice, the best response, etc., are the fundamental concepts used in game
theory. We use these concepts in many of our studies.
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4.2 Typical Game Models and Equilibria
In this section we describe typical game models and the equilibrium concepts used in
the papers included in this thesis.

4.2.1 Strategic game

A strategic game is a model of interacting decision-makers. The decision-makers are
the players. Each player has a set of possible actions. The model captures interactions
between the players by analyzing the effect of the actions of all other players on each
player, in addition to its own action. Specifically, each player has preferences about the
action profile, i.e., the list of all the players’ actions. More precisely, a strategic game
is defined as follows.

A strategic game consists of

• a set of players, usually denoted by N := {1,2, . . . ,N}, where N := |N |,

• for each player n ∈N , a set of actions An := {an}

• for each player n ∈ N , preferences over the set of action profiles or payoff
functions or utility functions, usually written as un.

4.2.2 Nash equilibrium

In the idealized setting in which the players in any given play of a strategic game
are drawn randomly from a collection of populations, a Nash equilibrium (NE) cor-
responds to a steady state, and is the most widely used equilibrium concept for the
non-cooperative games modeling a variety of problems from different fields. The defi-
nition of an NE follows.

For a finite N-player game in strategic form G := {N ,{An,n ∈N },{un,n ∈N }},
where un is the utility function of player n for taking different actions available in the
action set of player n, An. Let us represent the actions taken by player n and the rest
of the players as an and a−n, respectively, and let A−n denote the action set of all play-
ers other than n.. Then, for all n ∈N , given the strategies of all other players a∗−n,
the strategy a∗n ∈ An is an NE for player n if for every alternative strategy an ∈ An,
(a∗n 6= an), the following relation holds:

un(a∗n,a
∗
−n)≥ un(an,a∗−n). (2)

Equation (2) indicates that at the NE, a player cannot improve its payoff by deviating
alone from the equilibrium, given the strategies of all other players.
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4.2.3 Correlated equilibrium

When a game has multiple Nash equilibria, the choice of the equilibrium that yields
maximum payoff for each player is an issue. A correlated equilibrium (CE) is a solu-
tion concept widely used to improve the efficiency of NE. It is more general than NE
and is based on the assumption of the presence of a trusted authority, which instructs
the players which strategy to choose based on an unbiased probabilistic rule. If no
individual player has an incentive to deviate from the recommended strategy assuming
that the others do not deviate either, such a distribution is called correlated equilibrium.

A probability distribution Pd over the strategy space A1× .....×AN is a CE if for
every strategy an ∈ An such that p(an)> 0, and for every alternative strategy an

′ ∈ An,

∑
a−n∈A−n

p(an,a−n)u(an,a−n)≥ ∑
a−n∈A−n

p(an,a−n)u(an
′
,a−n), (3)

where a−n denotes the strategy chosen by player m : m ∈N ,m 6= n, and p() represents
the probability of the event inside the parenthesis occurring. CE is a very general
concept, and it can be applied quite flexibly to optimize the playoff of the system or a
particular player(s), as required, through the objective function employed by the trusted
authority. For instance, the solution of (3) with an objective function based on social
welfare, provides the solution that maximizes the total payoff of the system. If instead,
the objective function is based on max-min fairness, the solution will maximize the
payoff for the user with lowest payoff.

4.2.4 Stackelberg game and Stackelberg equilibrium

The Stackelberg game, also called Stackelberg leadership model [54], is a strategic
game in which there is at least one player defined as the leader who can make the
decision and commit the strategy before other players who are called followers. The
players usually engage in Stackelberg competition if one has some kind of incentive to
move first. The strategy chosen by the leader can be observed by the followers, and
the followers can adapt their decisions (also called optimal reaction or best response),
accordingly. For instance, let us consider a two player game, where both of them aim
to maximize their profits. In this scenario, the leader can choose a strategy such that
its profit is maximized, given that the followers will choose their best responses. This
solution is called the Stackelberg equilibrium (SE), and can be obtained by backward
induction technique. With backward induction, the best response of the follower is
obtained first given the price set by the leader, i.e., y∗f = B f (y∗l ), where y∗f ,y

∗
l are

respectively, the price set by the follower based on its best response, and the price
set by the leader to maximize its profit, and B f () is the best response function of the
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follower. Then, this best response is used to compute the profit of the leader, and the
leader chooses a strategy for which the profit is maximized i.e.

y∗l = max
yl

u(yl ,B f (yl)). (4)

4.3 Applications for Solving Economic Problems in NGNs
Game theory presents a rich framework that can be used to model various aspects of
resource management in NGNs. One can utilize various solution concepts of game
theory for studying the competition and cooperation among the entities in NGNs.

The application of game-theoretic approaches for solving resource management
problems in CRNs has been well explored. Thus a good volume of literature is available
on resource management and optimization in CRNs using game-theoretical framework.
We provide a comprehensive survey on economic approaches for resource management
and optimization in CRNs in [60]. However, in the spectrum sensing aspect, which is
crucial for awareness of the constantly changing radio environment, the application of
games, have not been explored sufficiently. In the case of the SG, DRM problems have
been well investigated using centralized optimization techniques. Nonetheless, game-
theoretical models can be applied to improve the payoffs and the reliability of both the
demand and the supply sides. Moreover, the existing analyses focus mainly on either
only the supply side, or only the demand side. In this regard, they lack realistic ele-
ments, since in a real scenario there are many end-users and also there will be multiple
providers in the context of the SG. Furthermore, in most of the existing studies, the
results and claims are based on the simulations. They lack analytical evaluation, which
saves time for evaluating the proposed schemes, architectures or algorithms, and which
strengthens the claims of a study.

Motivated by this state of the art, it is of interest to us to: (i) - propose advanced
applications of game theory in NGNs, and (ii) - derive analytical solutions with jus-
tifiable assumptions for analytical tractability, discover new solutions to improve the
performances for the well studied problems, and (iii) - provide more general solutions
to the existing problems by integrating various elements into a single framework.

Various game models and solution concepts can be employed to capture interac-
tions among players for a wide variety of problems related to cooperation enforcement
in the NGNs, E.g., non-cooperative games, NE, CE, etc. Furthermore the resource opti-
mization problems for entities at different levels of NGNs (e.g., PUs and SUs, electric-
ity providers and consumers, etc.,) can be characterized under a single framework us-
ing models such as a Stackelberg game. Hence, using economic and game-theoretical
approaches, one can study different problems in the NGNs such as (but not limited
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to): (i)- QoS improvement and payoff enhancement for SUs through collaboration for
spectrum sensing in CRNs, (ii)-User centric cost minimization oriented DRM in the
SG, (iii)- Joint utility maximization for electricity consumers and profit maximization
for the providers in the SG, and (iv)- Opportunistic spectrum access based smart grid
communications.

Naturally, users in any network are selfish and rational and they are concerned
more about maximizing their own payoffs rather than the system payoff. Interestingly,
however, when there exists a cost-benefit tradeoff for cooperation, cooperation can be
enforced among the players even if they are selfish. For instance, in [61], cooperation
is enforced among the SUs for spectrum sensing due to the associated cost for not
sensing. Similarly, in [62] we use a non-cooperative game framework to characterize
the behavior of the electricity consumers but the scheduling is cooperative because of
the pricing scheme close to the cost of power generation.

5 Research Methodology
The research methods widely adopted for modeling various systems and networks in
computer science and communication engineering can be broadly classified into three
categories [63], [64]:

• Theoretical/analytical methods based modeling

• Computer simulation based modeling

• Experimental evaluation based modeling

Theoretical/analytical methods based modeling.
Theoretical/analytical methods based modeling follows the classical approach of

building mathematical theories supported by logical reasoning with stringent defini-
tions of objects and operations for deriving and proving mathematical expressions for
functions, values or bounds. The results obtained from theoretical methods based mod-
eling in computer science are judged by the insights they reveal about the mathematical
nature of various models of computing and/or by their utility to the practice of com-
puting and their ease of application, e.g., the mathematical upper and lower resource
bounds for the solutions of various problems.
Computer simulation based modeling. Computer simulation based modeling can
efficiently handle large data sets, can access a variety of distributed resources and col-
laborate with other expert systems or resources over the internet. This method is very
efficient to tackle problems of great complexities where exact mathematical forms for
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prerequisite functions are not available, and where the analytical solutions can not be
derived without making a great deal of simplifications in the mathematical model(s).
Experimental evaluation based modeling. Experiments can be conducted, and the
evaluation can be used for both theory testing and exploration. In this approach, the
researchers observe phenomena, formulate explanations and theories, and test them in
real devices operating in real networks, to verify their theoretical solutions. Besides,
experiments can also be used in areas where theory and deductive analyses are difficult
to apply, and can help researchers derive theories from observation.

Theoretical/analytical methods are typically less resource demanding than their
simulation and experiment based counterparts and thus it is possible to obtain results
faster. However, given the approximations that are usually undertaken in these meth-
ods, the applicability of the obtained results under generic scenarios in real systems
may be limited.

Computer simulation can be used as a tool to strengthen or support the validity
of the findings from an analytical model (and vise versa), where such a model exists.
The simulator can also be used to provide a set of results, making it possible to make
both qualitative and quantitative claims on the performance of the proposed schemes
or models or algorithms.

The third option, of implementing the protocol in a real device, is often done as the
very last step, to verify the performance of the protocol in a real network. In the case
of experimental evaluations, the associated equipment costs, manpower cost and costs
due to time required are usually big. Consequently, it is common to use the analyt-
ical and simulation based research methods in computer science and communication
engineering.

In this thesis also, we employ analytical and computer simulation based research
methods for modeling the behavior of different entities, and for deriving the equilib-
rium of various game models, and the optimal solutions of different schemes. For in-
stance, in [65], we use queuing theory to derive the average packet delays for the SUs
and validate them with computer simulations using a discrete event simulation tech-
nique. All computer simulations included in this thesis were performed using Matlab
[66]. In [61], [62], [67], [68], we use different kinds of games, introduce the equilib-
rium concepts such as the NE, CE, SE etc., for specific game models, and derive closed
form or analytical solutions. In [69], we employ an optimization based framework and
verify the results with computer simulations.
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6 Contributions of the Included Papers
We proposed advanced applications of game theory for NGNs such as CRNs and SGs.
In the specific research problems where a system or a network benefit is more impor-
tant and realistic, and multi-player optimization is not the central theme, we deployed
optimization techniques to achieve the greater good of the system. The problems we
solved can be mainly categorized into three parts. In the first part, our work deals with
the tradeoff between spectrum sensing and spectrum access in CRNs. We design a
mechanism based on the mutual cooperation among SUs of a CRN to reduce the delay
caused by spectrum sensing, and thus to increase the spectrum access and utilization
time relative to spectrum sensing time. Next, we deploy a game-theoretical frame-
work in order to enforce cooperation among the SUs for spectrum sensing in CRNs
and use the concept of CE to improve the payoff of the SUs. In the second part, we
shed light on DR programs enabled by smart grid communications, in the SG. Specif-
ically, we build an analytical framework using different game models, as required by
the scenario of interest, for the context of multiple electricity providers and multiple
electricity consumers, considering payoff maximization for both the supply and the de-
mand sides. Moreover, we provide large population approximations for DRM under
the Stackelberg game framework. In the third part of our study, we propose a cognitive
radio enabled smart grid and present a thorough analysis of the impact of opportunistic
spectrum sensing and access in the control performance of the SG. We also study the
dependability issues associated with DRM, caused by the vulnerability of smart grid
communications towards external attacks.

This thesis consists of seven papers: Paper I to Paper VII. In the rest of this section,
we elaborate on our contributions by presenting a brief summary of these papers.

6.1 Paper I
Title: Economic Approaches for Cognitive Radio Networks: A Survey
Authors: S. Maharjan, Y. Zhang and S. Gjessing
Published In: Wireless Personal Communications, Springer, Special Issue on Cogni-
tive Radio Networks and Communications, Vol. 57, No. 1, pp. 33-51, 2011.
(Submitted on 3rd October 2009, Accepted on 9th February, 2010 published online:
May 2010).

This paper presents a survey of the applications of economic theories such as game
theory, price theory and market theory, for solving the resource management and op-
timization problems in CRNs. (An extension of the paper can be found in [70]). In

29



this paper, we focus on providing an application-oriented state of the art analysis of
economic approaches for solving a wide variety of problems in CRNs from spectrum
sensing, to spectrum access, to spectrum sharing.

In this paper, we use the term spectrum sharing and the term CR technology inter-
changeably. Based on the existing literature, spectrum sharing can be facilitated by two
different techniques: (i)- spectrum sensing, and (ii)- provision of explicit information
from PUs or primary service providers to the SUs about the spectrum usage. For spec-
trum sharing enabled by either of these techniques, we provide a novel classification of
spectrum sharing based on the issues addressed in the literature. First, we point out two
distinct streams of research problems addressed in the context of spectrum sharing: (i)-
resource allocation, and (ii)- spectrum trading.

Resource allocation here, refers to the case of opportunistic spectrum access by the
SUs. In this scenario, there is no motivation for the PUs to participate in the spectrum
sharing process because they do not get any benefit by letting the SUs use their spec-
trum. In this approach, the primary users are inflexible and the overall responsibility
of maintaining peaceful coexistence with PUs is on the SUs, thus making the imple-
mentation aspect more complex and guaranteeing the performance harder. Resource
allocation can be in terms of frequency bands, access time for the same channel(s),
transmission power etc. We further divide the research issues addressed under resource
allocation scenario as: (i)- resource allocation between PUs and SUs, and (ii)- resource
allocation among SUs. Both of these problems have been well investigated using both
cooperative and non-cooperative games.

Spectrum trading is the economic aspect of spectrum sharing in an incentive driven
framework of the coexistence of primary and secondary users. In the spectrum trading
based approaches, the PUs can lease the spectrum to the SUs whenever and wherever
they are not using the particular bands, which in turn gives the PUs monetary or other
benefits from the SUs. In a spectrum trading scenario, while PUs compete to sell the
spectrum in order to maximize their revenues, SUs compete to get the spectrum accord-
ing to their needs at better prices to maximize their satisfaction. Spectrum trading can
be between PUs and SUs i.e., where the PUs sell the spectrum to the SUs, or it can be
among SUs only i.e., a central authority such as a BS or a spectrum broker, purchases
a certain amount of spectrum from a primary system and the SUs compete to get the
spectrum from this intermediary agent. Thus, we further classify the spectrum trad-
ing models as (i)- competition among PUs to sell the spectrum, and (ii)- competition
among SUs to buy the spectrum.

We develop another classification for spectrum sharing based on approaches used
for solving the above mentioned research problems. We classify the approaches and
solutions into three categories: (i)- the research problems solved using game theory,
(ii)- the research problems solved using market theory and price theory, and (iii) the
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research problems solved using joint strategy. i.e., a combination of game theory with
market structure and/or pricing schemes. While game theory provides us modeling
tools for understanding the behavior of rational players when their payoffs are interde-
pendent with the actions, strategies and payoffs of other players, price theory explains
how relative prices are determined and how prices function to coordinate the economic
activities, and market theory describes how market structure affects the setting up of
the price of commodities and/or how pricing schemes affect the stability of the market.
The classification joint strategy in this paper refers to games with pricing in order to en-
force cooperation among non-cooperative users, or to avoid unnecessary competition,
or to incentivize the players to act according to the benefit of the system, etc.

After developing this classification based on the research issues and solution ap-
proaches, we provide a comprehensive taxonomy of the existing literature in terms of
the main research issue addressed, the main approaches or specific game/pricing/mar-
ket models used, the structure such as the centralized or distributed design, the solution
concepts derived such as the equilibrium or the optimal solutions, fairness indices, etc.
Finally we provided some open research directions.

Author Contribution. For this paper, I was the main contributor. I was responsible for
the literature survey and the taxonomy. I got help from Yan Zhang and Stein Gjessing
in making the paper contents clear and precise.

6.2 Paper II

Title: Delay Reduction for Real Time Services in IEEE 802.22 Wireless Regional Area
Network
Authors: S. Maharjan, J. Xiang, Y. Zhang and S. Gjessing
Published In: Proc. IEEE 21st International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC 2010), pp. 1836-1841, 2010.

In this paper, we address the problem of improving the strict QoS requirement of a
certain type of data such as voice and video, arising from the SUs of a CRN. We focus
on an IEEE 802.22 WRAN based secondary system, i.e., where the CRN accesses the
TV spectrum opportunistically. As specified in IEEE 802.22 WRAN standard, the SUs
should sense the spectrum in two stages. In the first stage, the fast sensing, based on
energy detection, is performed. If an alarm is generated by fast sensing, then, the SUs
perform fine sensing, i.e., using the feature detection. Fast sensing durations are short,
but the fine sensing durations are usually long, and they can affect the transmission of
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the SUs severely, especially if the SUs have traffic with strict QoS requirements such
as voice and video. The durations of spectrum sensing (both fast and fine sensing) are
called quiet periods (QPs) in IEEE 802.22 WRAN, since the SUs listen to the trans-
mission of PUs, without transmitting their own data, during these periods. We classify
the SUs carrying traffic with strict delay requirements as real time traffic users, and
those with more relaxed delay requirements as non-real time traffic users. We propose
collaboration among the SUs of a CRN in order to facilitate the latency requirements of
real time traffic, without compromising the detection performance of spectrum sensing.
The meaning of collaboration in this paper is slightly different than the conventional
meaning of CSS. We exploit the non-real-time traffic users to perform fine sensing (if
an alarm is issued by fast sensing) while the real-time traffic users continue their data
transmission. Moreover, when there are different types of traffic with different require-
ments on tolerable latency, priority based packet scheduling schemes are normally used
in order to reduce the queuing delay for real time services. Thus, we combine our col-
laborative fine sensing scheme with the priority queuing scheme, where a certain data
rate is reserved for the real-time traffic users in order to facilitate their QoS require-
ments, thus, significantly reducing the overall packet delay, including the delay due to
sensing for real time services in CRNs. We deploy an M/D/1 queue, and derive an-
alytical solutions for average packet delay for the proposed scheme, and verify them
with the simulation results. We assess the impact of the real time packet arrival rate on
the average packet delay faced by the traffic in the IEEE 802.22 WRAN. We compare
our proposed scheme (PROP-Conv) with two other schemes: FCFS-Conv, the con-
ventional sensing approach defined in IEEE 802.22 WRAN with first-come-first-serve
(FCFS) based queuing system, and PRIO-Conv, the conventional sensing approach de-
fined in IEEE 802.22 WRAN with priority queuing. The numerical results show that
the priority based scheduling scheme combined with our sensing scheme (PROP-Conv)
substantially reduces the average packet delay for real time services. The results indi-
cate that, for a given total data rate, the average packet delay for non-real time services
increases considerably when the real-time packet arrival rate rises, in all three schemes.
However, the delay for real-time traffic is almost not affected by the increase in the
real-time packet arrival rate in PROP-Conv, while the delay increases proportionally in
FCFS-Conv and PRIO-Conv schemes.

Author Contribution. For this paper, I was the main contributor for the idea, im-
plementation and simulations. Jie Xiang, Yan Zhang and Stein Gjessing contributed
through regular discussions on improving the presentability of the paper.
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6.3 Paper III
Title: Distributed Spectrum Sensing in Cognitive Radio Networks with Fairness Con-
sideration: Efficiency of Correlated Equilibrium
Authors: S. Maharjan, Y. Zhang, C. Yuen and S. Gjessing
Published In: Proc. IEEE 8th International Conference on Mobile Ad-hoc and Sensor
Systems (MASS 2011), pp. 540 - 549, 2011.

In this paper, we study CSS in a CRN, where the cooperation is enforced among the
SUs, for improving spectrum utilization and to improve the payoffs of the SUs. Given
a bunch of selfish SUs, who want to access channels from the PUs (as long as they have
data to transmit), and who wish to be the free riders without participating in spectrum
sensing if possible, we exploit the fact that not cooperating for spectrum sensing can
incur a heavy cost to all the SUs, and design a framework to enforce cooperation among
them, taking into account the spectrum sensing costs such as time and energy.

We develop a game theoretical model among the SUs for CSS, and introduce the
concept of the CE, which improves the payoff of the SUs, compared to the case of
mixed strategy NE. Moreover, we characterize the SUs with a traffic density factor
which captures the traffic dynamics of each SU in terms of the necessity to access
the available channel. We, then develop the CE of the spectrum sensing game for the
heterogeneous SUs. We discover that the social welfare can be significantly improved
when the users have heterogeneous traffic dynamics. While maximizing system payoff
is important, fairness is also equally important in systems with dissimilar users. We
find that the SUs with relatively less traffic density may be exploited to a severe extent
for benefitting the SUs with relatively higher traffic density. In order to address fairness
issue, we propose a new fair social welfare correlated equilibrium (f-SW CE), which
maximizes the system utility and ensures that the less well-off users do not starve. We
employ a no-regret learning algorithm for distributed implementation of the CE so that
each SU can reach the CE of the game locally. Finally, we propose a neighborhood
based learning (NBL) algorithm that maximizes the total utility using the information
from one-hop neighbors.

The numerical results verify that the total system payoff increases in the CE com-
pared to the mixed NE. The payoff for relatively higher traffic density follows similar
pattern. The relatively light traffic users may have to sacrifice their payoffs though. We
compare the performance of our proposed f-SW CE scheme with the three standard
fairness based schemes: social welfare CE (SW CE), proportional fairness CE (PF CE)
and max-min fairness CE (MMF CE). The results suggest that the total utility at f-SW
CE is higher than at MMF CE but lower than at SW CE, and can be comparable with
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the payoffs at PF CE depending on the value of the traffic density parameter. By appro-
priately choosing the tradeoff between the system efficiency and fairness, our f-SW CE
scheme can yield system utilities very close to the SW schemes for fairly reasonable
spectrum sensing durations. The results on the NBL algorithm show that it achieves
better performance than the no-regret algorithm in terms of both individual payoff and
the total payoff of the SUs.

Author Contribution. For this paper, I was the main contributor for the idea, im-
plementation and simulations. Yan Zhang, Chau Yuen and Stein Gjessing contributed
through regular discussions on improving the contents and presentability of the paper.

6.4 Paper IV
Title: Dependable Demand Response Management in the Smart Grid: A Stackelberg
Game Approach
Authors: S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Başar
Published In: IEEE Transactions on Smart Grid, Volume 4, Issue 1, pp. 120-132,
March 2013.

In this paper, we study the market level activities for DRM in the SG, glueing to-
gether multiple electricity providers’ and multiple consumers’ behavior, into a single
framework. Given a number of residential, commercial and industrial electricity con-
sumers and multiple electricity providers in an oligopolistic market framework, where
each entity is concerned about maximizing its own payoff, we provide an interaction
model between the providers and the consumers, that captures the coupling among the
providers as well as the (indirect) coupling among the consumers.

We associate a budget with each consumer, and the power available with each
provider is given. When there are multiple providers in a market, users prefer to
buy power from the cheapest provider. This fact introduces competition among the
providers. As a consequence, the providers compete to set reasonable unit prices for
the power available with them. Similarly, since, the budget available with each user
is fixed, they may compete only for the cheapest provider. For fair allocation of the
resources, we assign logarithmic functions as the utility of the consumers so that each
consumer can purchase the maximum from the cheapest provider, but every user must
purchase from all providers, proportional to their budgets. This makes the coupling
among the users rather indirect, through the prices.

The problem is modeled as a Stackelberg game with two levels: the providers play
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a non-cooperative game to determine their unit prices for given power with them, to
maximize their revenues, and the users respond with their optimal reaction to the unit
prices, according to the budget they have, to maximize their utilities. In the Stackelberg
game, the providers are the leaders and the end-users act as the followers. We derive
analytical solutions for the strategies of both the supply and the demand sides under
the holistic Stackelberg game approach. In particular, we obtain analytical results for
the SE of the game and prove that a unique SE exists. We derive closed form solutions
for the unit prices offered by different providers, and also for the demands of each
consumer from each of those providers. With the help of the closed form solutions,
we derive lower bound on the budget of the consumers in order to be able to purchase
power from the market. Through numerical results we illustrate that the change in the
affordable budget of a single user affects the unit price of all providers, and hence the
demands and utility of every other user, and the revenues of all providers. We discover
that the providers with lower amount of power available, are likely to set higher unit
prices, and vice versa. We develop a distributed algorithm which converges to the
equilibrium with only local information available for both providers and end-users.

Though DRM helps facilitate the reliability of power supply, the smart grid com-
munications can be susceptible to attacks because of the communication links between
the utility companies/providers and the consumers. We investigate the impact of an
attacker who can manipulate the price information from the providers, thus altering
the demands from the consumers, and hence, creating over or under supply situation.
We also propose a scheme based on the concept of shared reserve power to cover the
power demands from the users even in the presence of an attacker, to improve the grid
reliability and ensure its dependability. The results indicate that a single attacker who
can manipulate the price information from only one provider, can also threaten the de-
pendability of the grid seriously, both in terms of economic and physical impact to the
grid. Nonetheless, the results also suggest that maintaining a common reserve power
for the providers can save a good amount of power compared to the individual reserve
scheme, yet maintaining the reliability of the grid.

Author Contribution. For this paper, I was the main contributor for the idea, theo-
retical analysis and simulations, but got help from my collaborators Quanyan Zhu and
Tamer Başar for theoretical analysis through discussions. All authors contributed to
improve the organization of the contents in the paper.
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6.5 Paper V
Title: Hierarchical Demand Response Management in the Smart Grid with Large Pop-
ulation Approximations
Authors: S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Başar
Submitted to: Journals on Selected Areas in Communications, Special Issue on Smart
Grid Communications, 2012.

In this paper we investigate the DRM problem in a network of multiple providers
and consumers, incorporating multiple processes from power generation, to market ac-
tivities, and to power consumption. This paper extends the two-level DRM framework
of Paper IV to a three-level framework. In addition, instead of comparing the residen-
tial, commercial and industrial consumers using their available budget, we introduce
different criteria for these users with a motivation of capturing the essential differences
in the power requirement and affordability of the different types of consumers. We
differentiate the consumers as those who have strict power requirement but no bud-
get constraints (e.g., commercial and industrial consumers), and with flexible power
requirement but strict budget constraints (e.g., residential consumers) to characterize
their reliability and efficiency requirements on power demands.

In order to holistically model the DRM problem, we propose a hierarchical system
model that captures the decision processes involved at three different levels in the SG:
(i)- the top level where the providers determine the optimal amount of power to be gen-
erated, (ii)- the middle level where the providers determine their unit prices, and (iii)-
the bottom level where the residential consumers decide the optimal amount of power
consumption and the amount of power to purchase from each provider. In particular,
we establish a Stackelberg game between providers and end-users, where providers
behave as leaders maximizing their profit by setting optimal unit price and by gener-
ating optimal amount of power, and the end-users act as followers maximizing their
utility, taking into consideration the user-differentiation. We derive analytical results
for the SE of the game and prove that a unique equilibrium solution exists for the game.
We also discuss the applicability of our proposed hierarchical Stackelberg game model
to a more generic case where the industrial and the commercial consumers also have
some flexible demands and the residential consumers also have some minimum power
requirement. We develop a distributed algorithm which converges to the equilibrium
with only price information available to both the providers and the consumers.

We extend our analysis to a large population regime to obtain deeper insights into
the sensitivities of the price and demands on the equilibrium solution. We portray a
simplified picture of the behavior of the supply side and the demand side when the
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influence of one type of users is strictly dominant over the other(s) for two specific
cases:

• when the influence of the residential users is high,

• when the influence of the industrial users is high.

The numerical results illustrate that, although the industrial users have fixed de-
mands, their impact on the equilibrium of the hierarchical Stackelberg game, is huge.
If the demand from the industrial users increases from one of the providers, it will
increase its unit price, consequently lowering the demands from the residential con-
sumers from it. This kind of behavior might benefit other providers, who can also,
then, increases their unit prices (correspondingly the amount of power generation).
However, there is a limit on the amount of power that the industrial users can get from
a provider for given budget of the residential consumers. Conversely, there is a min-
imum budget requirement of the residential consumers for given demands from the
industrial users. Thus, the impact is mutual. In the large population regime, we derive
some conditions on the budget of the residential users for a minimum requirement of
power, given the demands from the industrial users. The results indicate the minimum
required budget may be drastically affected by the demand of the industrial consumers.

Author Contribution. For this paper, I was the main contributor for the idea, theo-
retical analysis and simulations. Quanyan Zhu contributed through discussions for the
theoretical analysis. All authors contributed to improve the organization of the contents
in the paper through discussions.

6.6 Paper VI
Title: User-Centric Demand Response Management in the Smart Grid with Multiple
Providers
Authors: S. Maharjan, Y. Zhang and S. Gjessing
Submitted to: IEEE 33rd International Conference on Distributed Computing Sys-
tems (ICDCS 2013), 2012.

In this paper, we incorporate the renewable energy sources into the SG and study
the DRM problems in a network of multiple fossil fuel based and renewable energy
sources, using a consumer centric approach where each consumer aims to minimize its
bill.
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We model the uncertainty introduced by the renewable energy sources as a dis-
crete time Markov chain (DTMC), and deploy quadratic cost functions as the cost of
power generation for each provider. The consumers are charged according to the cost
of power generation. Given the prices from each provider, we characterize the interac-
tions among the consumers for selecting the providers, as a non-cooperative game. We
further explore the improvements in the cost for the users by exploiting the spatial and
temporal dimensions of DRM, i.e., we develop a joint scheme where the consumers
can schedule their load in time, as well as they can choose providers in each time slot,
thus, making the scheme very generic for all types of electricity consumers. We model
the joint scheme also as a non-cooperative game among the consumers, and character-
ize the NE of both the games. Furthermore, we develop distributed algorithms so that
the consumers can reach the NE solution of the game with only local information.

We compare the performance of our provider selection game and the joint game
with two other schemes: (i)- without any scheduling, and (ii) with load scheduling in
time. The numerical results demonstrate that all three schemes: the provider selection,
the load scheduling in time, and the joint scheme, offer improvements in the costs for
the users compared to the scheme without any scheduling. The results further show
that the joint scheme offers more reduction in the costs incurred to the consumers,
compared to the provider selection scheme or the load scheduling in time scheme.

Author Contribution. For this paper, I was the main contributor for the idea and
implementation. Yan Zhang and Stein Gjessing contributed to improve the organization
of the contents in the paper through discussions.

6.7 Paper VII
Title: Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid
Authors: R. Deng, J. Chen, X. Cao, Y. Zhang, S. Maharjan and S. Gjessing
Publication in: IEEE Transactions on Smart Grid, Volume 4, Issue 1, pp. 302-310,
March 2013.

Communications are critical to the accuracy and optimality of DRM, and hence at
the core of the control performance of the SG. We can not fully exploit the advantages
and improvements offered by the DRM models and solutions without the underlying
smart grid communications infrastructure and technology.

In this paper, we propose the deployment of CR technology to improve the com-
munication quality for smart grid communications. By means of spectrum sensing and
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channel switching, smart meters can decide to transmit data on either an original unli-
censed channel or an additional licensed channel, so as to reduce the communication
outage. Considering the energy cost taxed by spectrum sensing together with the con-
trol performance degradation incurred by imperfect communications, we formulate the
sensing-performance tradeoff problem between better control performance and lower
communication cost, paving the way towards green smart grid. By employing the en-
ergy detector, we prove that there exists a unique optimal sensing time which yields
the maximum revenue, under the constraint that the licensed channel is sufficiently
protected.

The impact of the communication outage on the control performance of DRM is
also addressed. The problem is modeled as an optimization problem with the objective
of maximizing the total revenue of the provider and the total gains of all consumers.
We propose a distributed algorithm to reach the optimal solution by using only local
computations at both the supply and the demand sides.

The numerical results indicate that the increase in sensing time lowers the false
alarm probability, thereby increasing the probability of channel switching and reducing
the probability of channel outage. Next, the results imply that the increase in the outage
probability reduces the profit of the power provider and the social welfare of the SG,
although it may not always decrease the profit of the power consumers. Furthermore,
the results verify that there exists a unique sensing time at which the revenues are
maximized.

Author Contribution. For this paper, the idea is from the first author, Ruilong Deng.
I contributed in developing the model for the opportunistic spectrum access by regular
discussion on formulating the problem, brainstorming about the validity of the assump-
tions especially in the channel switching part and the assumption that channel 2 has a
better quality than channel 1. All authors contributed to improve the organization of
the contents in the paper through discussions.

During PhD, I also published [71] and [72], but these papers are not included in
the thesis since the main ideas of [71] were used in [61], and [72] was extended to the
journal [69].

7 Conclusion
In this thesis we have studied novel problems for resource management and optimiza-
tion, in NGNs. We discovered some new problems and new solutions, and also pro-
posed improvements over existing solutions for well studied problems. Our contri-
butions include problem modeling, formulation and solutions for CSS in CRNs, and
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for DRM and the integration of communication and control performances in the SG.
Our work paves a path towards the future deployment of the CR technology, and the
implementation of efficient DR and communication schemes in the smart grid.

In CRNs, we have developed collaboration based schemes for spectrum sensing to
improve QoS of SUs’ transmission by utilizing the heterogeneity in traffic dynamics
or QoS requirement of the SUs. In the IEEE 802.22 WRAN framework that we con-
sidered in our analysis, if fast sensing generates an alarm, while the SUs with non-real
time traffic perform fine sensing, the SUs with real-time traffic continue their trans-
mission. Our results show that the average packet delay is reduced significantly for
real time services with our proposed scheme, at the cost of increased packet delay for
non-real time services. Since, the delay requirement for the non-real time traffic is not
severe, the cost is not significant. In the generic CR framework, we have proposed fair
and efficient schemes for CSS, by holistically exploiting the traffic dynamics of the
SUs, based on the required criteria such as efficiency and fairness. The results indi-
cate that our fair-social welfare scheme yields great improvement in the payoff of the
SUs, also setting a benchmark as a generic scheme that can be deployed for a range of
systems demanding reasonable efficiency and fairness.

In the SG, one of our major contributions lies in designing efficient and more prac-
tical DRM paradigms. We have integrated entities at different levels of the power
generation, distribution, and consumption processes, considering multiple players (in-
cluding renewable energy sources), and have developed DRM schemes motivated by
the payoff maximization objective for all the players. We have employed various game
models and solution concepts in our studies on DRM, and have derived explicit closed-
form and analytical solutions characterizing the equilibria, for both the supply and
the demand sides. We have extended our DRM analysis to including both spatial and
temporal dimensions, and for all proposed schemes, we have provided distributed al-
gorithms so that they can be practically implemented. With extensive theoretical and
numerical results, we have illustrated the performance of our schemes and algorithms,
compared them with existing solutions and approaches to display the improvements,
and verified the convergence of our distributed algorithms.

Moreover, we have also established some benchmarks by opening the doors to some
new research problems such as the study of DRM in a large population regime, the de-
pendability analysis of DRM in the presence of an attacker, etc. Although, the scenarios
investigated for these contributions are simple, these problems are interesting, and we
hope that they will serve the research community to investigate the related issues for
these new problems into further detail, and to develop new and useful solutions.

Finally, we have proposed CR enabled smart grid communications based on oppor-
tunistic spectrum access. This aspect serves not only as an integrating element to the
communication and control units in the smart grid, but also as a bridge between my
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work on CR and the smart grid during my Ph.D. studies.

8 Suggestions for Future Research and Extensions
In this section, we discuss potential future directions for the different approaches pro-
posed in this dissertation.

For the delay reduction problem [65], while this dissertation focused mainly on
static real-time and non-real time SUs for a single superframe, one possible extension
to this work is to study the dynamic case when the traffic of the SUs changes with
time. Thus, the distinction between real-time and non-real time SUs as introduced
in [65] will become rather blurred, and the concept will be valid in the average sense
(over multiple superframes). While the queuing analysis may be more complicated for
this case, this scenario brings into existence some flavor of fairness as it is not the same
SUs who are always exploited for fine sensing. Nonetheless, each SU may have to
estimate the future traffic that will be generated locally. The scenario can be modeled
by using a repeated non-cooperative game where SUs will contribute in sensing only
if they do not have data with severe QoS requirement for the current superframe, and
also, if their weighted average payoff will be higher than a certain threshold.

For CRNs, in this dissertation, the SUs were characterized as selfish but trusted, i.e.,
non of them are malicious. Had any of the SUs been malicious or had any of them been
even an eavesdropper, the sensing strategies/behavior would be strongly influenced.
One possible direction of extending our work on spectrum sensing is to incorporate
malicious nodes into our analysis. Eg. for the delay reduction problem [65], if a SU
fakes their data as real time data, i.e., the data with stringent delay requirement, it will
be exempted from fine sensing. This might motivate the origin of malicious behavior
from the SUs. Similarly, in the enforcement based CSS study [61], the fact that the SUs
with relatively smaller traffic density end up contributing more in sensing and those
with heavy traffic enjoy free rides more often, may encourage the SUs to broadcast
a false status as heavy traffic users and not cooperate for sensing. In either of these
cases, learning algorithms would be necessary in order to maintain a data base of the
trust value of each SU (verified by the nearest neighbors), so that the malicious nodes
can be identified. Hence, it would be of interest to study the problems incorporating
the learning algorithms in our spectrum sensing analysis.

As there are malicious nodes who intend to eavesdrop, jam, or manipulate the data,
there are also mechanisms to detect them as long as certain conditions are fulfilled.
Consequently, one important challenge for a malicious node is to be able to harm a
system without being visible or detected. Thus, another possible future direction of
research on spectrum sensing in CRNs, is to investigate the behavior of a more powerful
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or flexible malicious node who can change its role from manipulating the spectrum
sensing results sent to the FC, to being an eavesdropper, to being a trusted SU, and
to even acting as a PU at times. The problem can be tackled from two perspectives:
(i)- from the malicious node’s side - choosing optimal strategies of switching different
possible roles in order to create maximum harm to the system. E.g., act as the malicious
node to manipulate the data, or to broadcast signals as a PU whenever the earned trust
value is fairly high, and switch to being an eavesdropper or a trusted SU when the trust
value starts getting fairly less. (ii)- from the honest nodes’ perspective - establishing
cooperation to detect or avoid such malicious nodes by deploying jammers to confuse
them etc. The problem can be modeled as a non-cooperative game between the trusted
and the malicious/compromised nodes where each of them aim to maximize its own
payoff.

For the DRM scheme in [67], a logarithmic utility function was assigned to the
electricity consumers, and the budget of each user was given. The electric power con-
sumption is valued differently by different types of consumers. Although the loga-
rithmic function has nice mathematical properties, empowering analytical tractability,
more complicated functions might better capture the actual utility for consuming elec-
tricity, especially for commercial and industrial consumers. In [68], we improved this
aspect by using the logarithmic utility function only for the residential consumers and
considering fixed demands from the industrial (and commercial consumers). We can
use more complicated but more practical and very generic utility functions such as
1− 1

1+eαndn−βn , where n is the consumer index, dn is the demand of user n, and αn,βn

are the consumer-specific parameters. If αndn� βn, the utility is very small since the
power is much less than the minimum required power, if αndn = βn, the utility is 0.5,
and when αndn� βn, the utility is close to 1. With consumer specific values for αn,βn,
this function can capture the electricity needs and the associated utilities of a diverse
type of electricity consumers, and thus, some insights about the DR models using this
kind of utility function, would be a contribution of significant practical value.

Moreover, the incorporation of EVs into the DRM framework is an interesting di-
rection to extend our work on DRM, since the EVs serve as both a challenge and an
opportunity to the DRM in the SG. The EVs bring opportunities because they can act
as the storing units (at times when electricity from the grid is cheap). However, incor-
porating EVs to the grid, adds unique challenges and thus, brings into existence many
interesting research problems, mainly because the EVs are different from the usual
home appliances that we consider in the DRM analysis. Notably, with the implemen-
tation of EVs and PHEVs, which are capable of selling the power back to the grid, the
power flow can also be bi-directional, thus bringing into surface, numerous interesting
research challenges. Moreover, the EVs are mobile, and the mobility aspect has not
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been investigated much. An interesting research problem in this direction is to design
the schemes and algorithms for optimal charging/discharging of the EVs from the near-
est charging stations. When the EVs are moving, finding an optimal charging station
in the presence of multiple other EVs and multiple charging stations, is essentially a
non-cooperative game where each EV aims to minimize the total cost of charging.

Although, the SG is a complex system where the communication and control units
are closely coupled, the work on DRM, smart grid communications, security etc. have
been mostly done independently, and the connection among the communication and
control units has not been well investigated. In [69], we proposed the deployment of CR
technology for improving smart grid communications and also illustrated the coupling
of the sensing performance with DR. We, however, assumed that the channel from
the licensed system has a better communication quality than the unlicensed channel.
A possible extension for this problem, is to study the integration of communication
and control aspects relaxing this assumption, when both the licensed and unlicensed
channels can be used to transmit the data.

Moreover, while this dissertation mainly focused on theoretical and algorithmic
approaches for various problems in NGNs, corroborated by analytical and numerical
simulation results, an important and interesting future extension is to consider practical
aspects of deploying these algorithms in real-life networks. For doing so, the use of
test beds or advanced simulators would be needed. Finally, beyond the economic ap-
proaches presented in this dissertation, the economic frameworks can also be explored
in numerous potential future systems such as specific CPSs, IoTs, machine-to-machine
(M2M) communications, device-to-device (D2D) communications etc., for scheduling,
optimal resource allocation and resource sharing.
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9 Book Chapter, Journal and Paper Contributions dur-
ing Ph.D. Studies

During my Ph.D. studies, I contributed to the following journals and conference publi-
cations:

List of Book Chapter Publications:

1. S. Maharjan, Y. Zhang, and S. Gjessing. Economic Approaches in Cognitive
Radio Networks, Cognitive Radio Mobile Ad Hoc Networks, ed. by F. Richard
Yu, Springer, Chap. 16, pp. 403-432. (ISBN: 978-1-4419-6171-6), 2011.

List of Journal Publications:

1. S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Başar, ”Dependable Demand
Response Management in the Smart Grid: A Stackelberg Game Approach”,
IEEE Transactions on Smart Grid, Vol. 4, Issue 1, pp. 120-132, March 2013.

2. R. Deng, J. Chen, X. Cao, Y. Zhang, S. Maharjan and S. Gjessing, ”Sensing-
Performance Tradeoff in Cognitive Radio enabled Smart Grid”, IEEE Transac-
tions on Smart Grid, Vol. 4, Issue 1, pp. 302-310, March 2013.

3. S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Başar, ”Hierarchical De-
mand Response Management in the Smart Grid with large Population Approxi-
mations”, Submitted to Journals on Selected Areas in Communications, Special
Issue on Smart Grid Communications, 2012.

4. S. Maharjan, Y. Zhang and S. Gjessing, ”Economic Approaches for Cognitive
Radio Networks: A Survey”, Wireless Personal Communications, Springer, Spe-
cial Issue on Cognitive Radio Networks and Communications, Vol. 57, No. 1,
pp. 33-51, 2011, (Submitted on 3rd October 2009, Accepted on 9th February,
2010 published online: May 2010).

List of Conference Publications:
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1. S. Maharjan, Y. Zhang and S. Gjessing, ”User-Centric Demand Response Man-
agement in the Smart Grid with Multiple Providers”, Submitted to IEEE 33rd In-
ternational Conference on Distributed Computing Systems (ICDCS 2013), 2012.

2. S. Maharjan, Y. Zhang, C. Yuen and S. Gjessing, ”Distributed Spectrum Sensing
in Cognitive Radio Networks with Fairness Consideration: Efficiency of Corre-
lated Equilibrium”, IEEE 8th International Conference on Mobile Ad-hoc and
Sensor Systems (MASS 2011), pp. 540 - 549, 2011.

3. R. Deng, S. Maharjan, X. Cao, J. Chen, Y. Zhang and S. Gjessing, ”Sensing-
delay Tradeoff for Communication in Cognitive Radio Enabled Smart Grid”,
IEEE 2nd International Conference on Smart Grid Communications (Smart-
GridComm 2011), 2011.

4. S. Maharjan, Y. Zhang and S. Gjessing, ”Distributed Spectrum Sensing for Cog-
nitive Radio Networks with Heterogeneous Traffic”, (Invited Paper), 3rd Interna-
tional Symposium on Applied Sciences in Biomedical and Communication Tech-
nologies, Workshop on Cognitive Radio and Advanced Spectrum Management
(CogART 2010) , 2010.

5. S. Maharjan, J. Xiang, Y. Zhang and S. Gjessing, ”Delay Reduction for Real
Time Services in IEEE 802.22 Wireless Regional Area Network”, IEEE 21st In-
ternational Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC 2010), pp. 1836-1841, 2010.

45



References
[1] J. Mitola III. Cognitive radio for flexible mobile multimedia communications. In

Mobile Multimedia Communications, 1999. (MoMuC ’99) 1999 IEEE Interna-
tional Workshop on, pages 3 –10, 1999.

[2] J Mitola III and G.Q. Jr. Maguire. Cognitive radio: making software radios more
personal. Personal Communications, IEEE, 6(4):13 –18, Aug 1999.

[3] S. Haykin. Cognitive radio: brain-empowered wireless communications. Selected
Areas in Communications, IEEE Journal on, 23(2):201 – 220, Feb. 2005.

[4] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next generation/dy-
namic spectrum access/cognitive radio wireless networks: A survey. Computer
Networks, 50(13):2127 – 2159, 2006.

[5] T. Yucek and H. Arslan. A survey of spectrum sensing algorithms for cognitive
radio applications. Communications Surveys Tutorials, IEEE, 11(1):116 –130,
quarter 2009.

[6] World Energy Outlook. World energy outlook. http://www.

worldenergyoutlook.org/, November 2008.

[7] H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE,
8(1):18 –28, January-February 2010.

[8] Federal Communications Commission. http://www.fcc.gov/.

[9] ECC. http://www.ero.dk/ECC1/.

[10] The Norwegian Post and Telecommunications Authority (NPT). http://http:
//www.npt.no/.

[11] Ofcom. http://www.ofcom.org.uk/.

[12] Teliasonera to build 4g - next generation mobile network. http:

//www.teliasonera.com/News-and-Archive/Pressreleases/2008/

TeliaSonera-to-build-4G-next-generation-mobilenetwork/.

[13] Teliasonera has won a 4g license in denmark. http://www.

teliasonera.com/News-and-Archive/Pressreleases/2010/

TeliaSonera-has-won-a-4G-license-in-Denmark/.

46



[14] Sonera wins 4g frequencies in the finnish auction. http://www.

teliasonera.com/News-and-Archive/Pressreleases/2009/

Sonera-wins-4G-frequencies-in-the-Finnish-auction/.

[15] Federal Communications Commission Spectrum Policy Task Force. FCC re-
port of the spectrum efficiency working group. http://www.fcc.gov/sptf/

files/SEWGFinalReport1.pdf, November 2002.

[16] Shared Spectrum Company, spectrum reports. http://www.sharedspectrum.
com/papers/spectrum-reports, January 2011.

[17] M. A. McHenry and D. McCloskey. Spectrum occupancy measurements:
Chicago, Illinois, November 16-18, 2005. Shared Spectrum Company, Tech.
Rep., 2005, November 2005.

[18] T. Erpek, M. Lofquist, and K. Patton. Spectrum occupancy measurements: Loring
commerce centre, limestone, maine, September 18-20, 2007. Shared Spectrum
Company, Tech. Rep., 2007, September 2007.

[19] Spectrum occupancy measurements: Chicago, illinois, september 1-5, 2009.
Shared Spectrum Company Tech. Rep., 2009, September 2009.

[20] D. Cabric, S.M. Mishra, and R.W. Brodersen. Implementation issues in spectrum
sensing for cognitive radios. In Signals, Systems and Computers, 2004. Confer-
ence Record of the Thirty-Eighth Asilomar Conference on, volume 1, pages 772
– 776 Vol.1, Nov. 2004.

[21] Cognitive radio technologies proceeding (CRTP) et docket no. 03-108. http:

//www.fcc.gov/oet/cognitiveradio/, January 2003.

[22] Et docket no. 04-186. http://www.fcc.gov/oet/projects/

tvbanddevice/, November 2004.

[23] C. Cordeiro, K. Challapali, D. Birru, and N. S. Shankar. IEEE 802.22: the first
worldwide wireless standard based on cognitive radios. In New Frontiers in Dy-
namic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE Inter-
national Symposium on, pages 328 –337, Nov. 2005.

[24] IEEE 802.22 Working Group on Wireless Regional Area Network. http://www.
ieee802.org/22/.

47



[25] IEEE 802.22. IEEE 802.22/D1.0 draft standard for wireless regional area net-
works part 22: Cognitive wireless ran medium access control (MAC) and phys-
ical layer (PHY) specifications: Policies and procedures for operation in the tv
bands. IEEE Std 802.22-2008, April 2008.

[26] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and W. Caldwell.
IEEE 802.22: The first cognitive radio wireless regional area network standard.
Communications Magazine, IEEE, 47(1):130 –138, January 2009.

[27] Y. Zeng, Y. C. Liang, A. T. Hoang, and R. Zhang. A review on spectrum sensing
for cognitive radio: challenges and solutions. EURASIP J. Adv. Signal Process,
2010:2:2–2:2, January 2010.

[28] A. Sahai and D. Cabric. Spectrum sensing: fundamental limits and practical chal-
lenges. In New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN
2005. 2005 First IEEE International Symposium on, Nov. 2005.

[29] D. Cabric, A. Tkachenko, and R.W. Brodersen. Spectrum sensing measurements
of pilot, energy, and collaborative detection. In Military Communications Con-
ference, 2006. MILCOM 2006. IEEE, pages 1 –7, oct. 2006.

[30] S. Enserink and D. Cochran. A cyclostationary feature detector. In Signals,
Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth
Asilomar Conference on, volume 2, pages 806 –810 vol.2, Oct - Nov 1994.

[31] W.A. Gardner. Exploitation of spectral redundancy in cyclostationary signals.
Signal Processing Magazine, IEEE, 8(2):14 –36, April 1991.

[32] S. M. Kay. Optimal stopping rules. Prentice Hall, 1998.

[33] H. Urkowitz. Energy detection of unknown deterministic signals. Proceedings of
the IEEE, 55(4):523 – 531, April 1967.

[34] E. Visotsky, S. Kuffner, and R. Peterson. On collaborative detection of tv trans-
missions in support of dynamic spectrum sharing. In New Frontiers in Dynamic
Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International
Symposium on, pages 338 –345, Nov. 2005.

[35] A. Ghasemi and E.S. Sousa. Collaborative spectrum sensing for opportunistic
access in fading environments. In New Frontiers in Dynamic Spectrum Access
Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on,
pages 131 –136, Nov. 2005.

48



[36] H. Uchiyama, K. Umebayashi, Y. Kamiya, Y. Suzuki, T. Fujii, F. Ono, and K. Sak-
aguchi. Study on cooperative sensing in cognitive radio based ad-hoc network. In
Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE
18th International Symposium on, pages 1 –5, Sept. 2007.

[37] E. Niyato, D. Hossain and Z. Han. Dynamic Spectrum Access in Cognitive Radio
Networks. Cambridge University Press, 2009.

[38] World population to increase by 2.5 billion by 2050. http://www.un.org/

News/Press/docs//2007/pop952.doc.htm, 2007.
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Abstract Efficient resource allocation is one of the key concerns of implementing cognitive
radio networks. Game theory has been extensively used to study the strategic interactions
between primary and secondary users for effective resource allocation. The concept of spec-
trum trading has introduced a new direction for the coexistence of primary and secondary
users through economic benefits to primary users. The use of price theory and market theory
from economics has played a vital role to facilitate economic models for spectrum trading.
So, it is important to understand the feasibility of using economic approaches as well as to
realize the technical challenges associated with them for implementation of cognitive radio
networks. With this motivation, we present an extensive summary of the related work that
use economic approaches such as game theory and/or price theory/market theory to model
the behavior of primary and secondary users for spectrum sharing and discuss the associated
issues. We also propose some open directions for future research on economic aspects of
spectrum sharing in cognitive radio networks.

Keywords Cognitive radio · Resource allocation · Spectrum trading ·
Spectrum sharing · Game theory · Price theory · Market theory

1 Introduction

Cognitive radio networks [1,9,20] have been proposed to overcome the ineffectiveness of the
traditional static spectrum assignment policy [12] and to facilitate effective use of electromag-
netic spectrum by coexisting with licensed users through spectrum sharing. The licensed users
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are called primary users and the users of the cognitive radio network are called secondary
users. To peacefully coexist with primary users, secondary users should have timely and
accurate information about the usage of primary user spectrum. There are two different
approaches for secondary users to get this information:

– Through Spectrum Sensing
In this case, secondary users perform sensing of primary user spectrum in order to detect
the vacant spectra called spectrum holes. Spectrum sensing is a crucial function for such
opportunistic spectrum access.

– Exclusive Information from Primary Users
In this case, the primary users explicitly provide information about the available spectrum
to secondary users. In this model, the primary users get monetary or some other kinds of
benefit by allowing the secondary users to use the spectrum.

In an opportunistic spectrum access scenario, there is no motivation for primary users to
participate in the spectrum sharing process because they do not get any benefit by letting
secondary users use their spectrum. In this approach, the primary users are inflexible and
the overall responsibility of maintaining peaceful coexistence with primary users is on the
secondary users, thus making the implementation aspect more complex and guaranteeing the
performance harder. On the other hand, a resource trading based approach of spectrum shar-
ing is that primary users can lease the spectrum to secondary users whenever and wherever
they are not using the particular bands which in turn gives the primary users monetary or
other benefits from secondary users.

Figure 1 shows spectrum trading and resource allocation as two different issues in cog-
nitive radio networks. Effective resource allocation is the key to efficient spectrum sharing.
Resource allocation can be in terms of frequency band, channel access time, transmission
power etc. and can be between primary users and secondary users and among secondary
users. Spectrum trading is the economic aspect of spectrum sharing in an incentive driven
framework of coexistence of primary and secondary users. In a spectrum trading scenario,
while primary users compete to sell the spectrum in order to maximize their revenue, second-
ary users compete to get the spectrum according to their needs at better price to maximize
their satisfaction. Spectrum trading can be between primary and secondary users or can be
among secondary users only.

There is a crucial need to study the competitive and cooperative strategies of users for
multiplayer optimization of the resource allocation problem. Meanwhile, understanding the
pricing issues and market structures for spectrum trading is not less important either for
practical implementation of cognitive radio networks. Thus, our motivation for this work
stems from the need to establish a framework to understand the possibilities and challenges
of using economic approaches for deploying cognitive radio networks.

Fig. 1 Spectrum sharing issues in cognitive radio networks
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Fig. 2 Solutions for spectrum
sharing in cognitive radio
networks

Different approaches that have been used to model the strategic interactions for spectrum
sharing are shown in Fig. 2. Game theory serves as a powerful tool in order to model the
strategic behavior of primary and secondary users for their coexistence. The economic mod-
els include principles such as setting the price of the spectrum available aimed to maximize
revenue of the primary users, choosing the best seller for the spectrum in order to maximize
the satisfaction from the usage of the spectrum for secondary users, modeling market compe-
tition etc. Therefore, many of the existing literature on modeling the economic interactions
in wireless networks use a combination of game theory, price theory and market structure.

The rest of the paper is organized as following. Different kinds of games that can be
applicable to model economic interactions and decision making in cognitive radio networks
and an overview of the related work are described in Sect. 2 along with the associated chal-
lenges. Price theory and market principles to model the trading activities in cognitive radio
networks, related work and the corresponding research challenges are discussed in Sect. 3.
An overview of the work using a combination of game theory, price theory and market theory
is presented in Sect. 4. Section 5 shows the classification of the related work based on the
issues and solutions. Open problems for future research are introduced in Sect. 6. Section 7
concludes the paper.

2 Game Theory

Game theory is the study of conflict and cooperation among individuals, groups or firms. It
provides an analytical framework with a set of mathematical tools for the analysis of inter-
active decision-making processes. It is a multi-player optimization approach and the concept
applies whenever the actions of several players are interdependent.

A game is formed by three fundamental components: a set of players, a set of strategies
and a set of payoffs for given set of actions. A player is the one that makes decisions in the
game. A strategy is a complete contingent plan, or a decision rule that defines an action that
a player will select in every distinguishable state of the game. Payoff is the revenue or satis-
faction of the player for a given strategy. Payoff is often expressed through utility functions.
Game theory combined with market principles and price theory serves as a strong ground for
modeling the economic activities of cognitive radio networks for spectrum sharing.

2.1 Cooperative and Non-cooperative Games

Games can be classified into different categories based on different criteria. A common
approach is to classify games as cooperative and non-cooperative games.
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2.1.1 Cooperative Game

In a cooperative game, there is no competition between players in a group and they act as
a single entity to maximize the total group utility. An example is a bargaining game, which
is often used to formulate the interaction among cooperative players provided that a player
can influence the action of other players. In a bargaining game, the players can negotiate and
bargain with each other. A general solution of the bargaining game is the Nash bargaining
solution, which can ensure efficiency as well as fairness among the players.

2.1.2 Non-Cooperative Game

A non-cooperative game is the one in which players are selfish and each individual player
makes decisions independently. In a non-cooperative environment, players have different
(often conflicting) interests. Non-cooperative game theoretical framework is used to obtain
an equilibrium solution that optimizes the payoff of all players. One of the most widely used
solutions for non-cooperative games is the Nash equilibrium. Nash equilibrium is the solution
at which any player in the game cannot achieve a better solution by deviating unilaterally,
given the actions of the other players.

2.2 Different Game Models

Some game models that have been used extensively for analyzing the strategic interactions
among users for spectrum sharing are as following.

2.2.1 Stackelberg Game

The Stackelberg leadership model [5] is a strategic game in which there is at least one player
defined as the leader who can make the decision and commit the strategy on the price before
other players who are defined as followers. The players engage in Stackelberg competition
if one has some kind of incentive to move first. The strategy chosen by the leader can be
observed by the followers, and the followers can adapt their decisions accordingly. The leader
can choose a strategy such that its profit is maximized, given that the followers will choose
their best responses. This solution is called the Stackelberg equilibrium.

2.2.2 Bertrand Game

In a Bertrand game [5], there are a finite number of firms that decide on the service prices
simultaneously. Given the price offered by a service provider, based on a demand function,
the amount of commodity requested from the users can be determined. Then, the profit is
computed and used in a profit maximization problem for a service provider to obtain the best
response in terms of setting the service price. For a spectrum trading scenario, the service
providers are the primary users, the consumers are the secondary users and the size of the
spectrum will change according to the price set by the primary users. When the service pro-
viders offer their prices simultaneously (i.e. imperfect information), Nash equilibrium is the
solution. The interaction in Stackelberg game is more dynamic due to the timing in strat-
egy adaptation compared to the Bertrand model. If the assumption of perfect information is
released and all firms decide their service prices simultaneously, Stackelberg model reduces
to Bertrand model.
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2.2.3 Cournot Game

In Cournot game [5], the competition is in terms of the quantity of the commodity. The
decision of each user is affected by the strategies of other users and the decisions are made
simultaneously.

2.2.4 Coalition Game

Cooperative game theory provides analytical tools to study the behavior of rational players
when they collaborate. The group of cooperating players that can strengthen the players’
position in the game, is called a coalition, and all players forming a coalition act as a single
entity. Based on application oriented approach, coalitional games can be classified into three
categories [31]: canonical (coalitional) games, coalition formation games and coalitional
graph games. In canonical games, no group of players can do worse by joining a coalition
than by acting non-cooperatively. In coalition formation games, forming a coalition brings
advantage to its members but the gains are limited by a cost for forming the coalition. In coa-
litional graph games, the coalitional game is in graph form and the interconnection between
the players strongly affects the characteristics as well as the outcome of the game.

2.2.5 Game with Learning

In a competitive resource market, the information available may be incomplete and/or imper-
fect. In such cases, the players have to evolve and learn the behavior of other players from
history. Such evolutionary games are often called games with learning and are closely related
to the concept of “repetition” in games (described next). If the games are “repeated”, players
can learn and adapt their behaviors and strategies in subsequent rounds of the game.

2.2.6 Repeated Games

A repeated game [5] is an important tool in order to understand the concepts of reputation
and punishment in game theory. A repeated game allows a strategy to be contingent on the
past moves, thus allowing threats and promises about future behavior to influence current
behavior, which create possibilities for cooperation among greedy users. If a greedy user
behaves selfishly and chooses the strategy to optimize his/her individual payoff, it can enjoy
the benefit in one round. However, if this user has to depend on others as well for future
rounds of the game, it will be punished by them. Players must therefore consider the effects
that their chosen strategy in any round of the game will have on opponents’ strategies in
subsequent rounds.

2.3 Applications of Game Theory in Spectrum Sharing

Game formulations can be used for multiplayer optimization to achieve individual optimal
solution for resource allocation. The use of game theoretic models for resource allocation has
mainly focused on issues such as admission control, throughput optimization, power control,
channel allocation etc. Table 1 summarizes the related work on the use of game theory for
resource allocation, in terms of the specific issue addressed, approach/model(s) used and the
solution proposed. These works are explained next.

123



S. Maharjan et al.

Table 1 Summary of related work on resource allocation using game theory

Paper Issue(s) addressed Approach/specific model(s) used Solution

[6] Power control, throughput
control

Non-cooperative, distributed
game

Nash equilibrium (Optimal
for power, optimal or
suboptimal for network
throughput)

[7] Power control, rate
adaptation, subchannel
assignment

Non-cooperative, distributed
game

Nash equilibrium
(Transmitted power)

[10] Channel/power allocation Non-cooperative/cooperative,
distributed game

Nash equilibrium (Radio
range)/ nash bargaining
solution

[33] Spectrum allocation (Channel
switching)

Non-cooperative, distributed
game (Modified minority
game)

Nash equilibrium (Channel
switching probability)

[36] Channel access time Cooperative Stackelberg
game (between primary and
secondary users),
non-cooperative payment
selection game (among
secondary users),
distributed game

Nash equilibrium (Payment
vector)

[3] Spectrum assignment Cooperative, distributed,
bargaining game

Bargaining based solution
(Spectrum usage)

[19] Channel allocation Cooperative, distributed game Correlated equilibrium
(Spectrum access)

[8] Packet forwarding Cooperative, distributed game
(Repeated coalitional game)

Min-max fairness, average
fairness and market fairness
investigated

[32] Spectrum sensing Cooperative, distributed game
(Non-transferable utility
coalitional game)

Performance compared with
non-cooperative and
centralized scheme

In [6], a game theoretical approach is proposed for distributed resource allocation in wire-
less networks. Power control at the user level and throughput control at the system level are
linked through non-cooperative games.

In [7], a distributed non-cooperative game is proposed for joint subchannel assignment,
adaptive modulation and power control for multi-cell multi-user OFDMA networks. In order
to improve the performance of Nash equilibrium points, a virtual referee is introduced in
the system that can modify the rule of the resource competition game for efficient resource
sharing.

In [10], the authors modeled the channel/power allocation for cognitive radios considering
IEEE 802.22 [13] framework. The strategic behavior of the system was studied considering
the limit on the total interference from all opportunistic transmissions for each primary user
as well as the minimum SINR requirement of the cognitive radios and a cooperative scheme
based on Nash bargaining solution was proposed for optimal channel/power allocations.

In [33], the self-coexistence of multiple overlapping IEEE 802.22 networks operated by
multiple wireless service providers that compete for resources and try to seek a spectrum
band without any interference from other coexisting IEEE 802.22 networks, was investigated
from a game theoretic perspective. The dynamic channel switching was modeled as a dis-
tributed modified minority game (MMG), in which each user has to decide whether to leave
a particular band or to continue using it when another user also appears in the same band.
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In [36], a cooperative cognitive radio framework is formulated as a Stackelberg game
where primary user acting as the leader, selects some of the secondary users to be the cooper-
ative relay, and in return, leases portion of the channel access time to them for their own data
transmission. Selected secondary transmitters, acting as the followers, can use the wireless
channel only if they cooperate with the primary link and meanwhile make a certain amount
of payment to the primary system.

In [3], the authors propose a local bargaining approach to achieve distributed conflict free
spectrum assignment adapted to network topology changes assuming that there is a collab-
oration between network nodes to improve system utility. In this paper, the authors propose
Fairness Bargaining with Feed Poverty to improve fairness in spectrum assignment and have
derived a lower bound on the spectrum assignment (poverty line) that each node can get from
bargaining.

In [19], a decentralized dynamic spectrum access scheme is proposed for cognitive radios
considering the application domain as a set of collision channels from game theoretical per-
spective. The authors proposed the use of an adaptive procedure called Regret Tracking,
which converges even when multiple users are adapting their behavior simultaneously, for
which correlated equilibrium (in terms of channel allocation) is investigated.

In [8], an approach based on coalition games is proposed for symbiotic cooperation
between boundary nodes and backbone nodes in selfish packet forwarding wireless net-
works. Different fairness criteria are investigated including market fairness. In addition, a
joint protocol is designed using both repeated games and coalition games for packet-forward-
ing and it has been shown that the network connectivity can be significantly improved using
the proposed protocol compared to using pure repeated game approach.

In [32], a distributed collaborative spectrum sensing algorithm is developed based on a
dynamic coalition formation game among secondary users to improve the overall probability
of miss detection with increase in the probability of false alarm as the cost for coalition
formation.

2.4 Research Challenges of Using Game Theory

Although, game theory is a powerful tool to model and analyze the interactions among
primary and/or secondary users for spectrum sharing, how realistic are the assumptions in
the models and how close the models are to the possible implementation of cognitive radio
networks, are yet open issues. These issues are challenging especially because of the need of
dynamic access of the spectrum and heterogeneous requirements on the quality/quantity of
the offered spectrum for different users in the network. Some of such challenges for specific
game models, are explained next.

The availability of perfect knowledge in Stackelberg model may be quite costly for distrib-
uted implementation of cognitive radio networks. How to efficiently manage the information
flow among leaders and followers in a dynamic scenario is a big challenge. Even if the infor-
mation can be made available to all players, the overhead due to this information exchange
(which increases with the number of players in the game) can not be ignored. Although, the
prices and profits of some service providers may be higher at Stackelberg equilibrium than
at Nash equilibrium [25], Bertrand/Cournot game models (thus Nash equilibrium solution)
may incur relatively less overhead for the distributed approach because of the simultaneity
of moves.

Cooperative framework is often used to model the spectrum sharing scenario in cognitive
radio networks. However, finding users with common interest to form coalitions and get them
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to act cooperatively, itself is a big issue. Even if there exist users that can be symbiotic, the
change in network topology, change in channel conditions, motivation towards cooperating
with other users etc. may cause the coalition not to be stable. Introducing incentive or mon-
etary gain based schemes can be quite expensive and inefficient due to divergence of user
interests.

The concept of repeated games provides a good direction towards counteracting the possi-
bility of collusive behavior in a network by certain selfish players and to adapt one’s strategies
accordingly. However, algorithms are necessary to effectively estimate long-term profits. In
a practical network, the overhead to maintain the database of the strategies of each player and
to update it is a huge challenge in a distributed scenario. In addition, when the game is being
played the second last time or the last time, the future profits are not meaningful. So, in such
a case, the concept of repeated games may not be effective enough. Besides, if an individual
deviates from the optimal strategy for the system for its own benefit, to find out which user it
was, is another issue. It may be possible to locate the group from which the deviating action
occurred but locating the exact player from the group may still be difficult considering the
time limitations, especially when users have the right not to disclose their strategies.

3 Price Theory and Market Theory

Price theory explains how relative prices are determined and how prices function to coor-
dinate the economic activities. For incentive/monetary gain based spectrum sharing, appro-
priate pricing schemes are necessary for setting up the price of the spectrum, formulating
economic models and maximizing the payoffs of both primary and secondary users. Pricing
is an important issue not only to maximize the revenue of the service providers but also to
prevent unnecessary competition (to reserve the resources) and to allocate the radio resource
efficiently.

3.1 Price Theory

Auction and bargaining are the popular pricing schemes for resource trading. These are
explained next.

3.1.1 Auction Theory

An auction [16] is a decentralized form of trading, widely known for providing efficient allo-
cation of scarce resources. Sellers use auctions to improve revenue by dynamically pricing
based on buyer demands. Buyers benefit since auctions assign resources to buyers who value
them the most. In a game-theoretic auction model, the action set of each player is a set of
bid functions or reservation prices. Each bid function maps the player’s value (in case of a
buyer) or cost (in case of a seller) to a bid price.

There are different kinds of auctions such as English auction, sealed first price auction,
Vickrey auction, double auction etc. English auction is the ascending price auction in which
bidders bid openly against one another, with each subsequent bid higher than the previous
bid and the highest bidder gets the commodity at his/her bid. In sealed first-price auction,
all bidders simultaneously submit sealed bids so that no bidder knows the bid of any other
participant. The highest bidder pays the price he/she submitted. Vickrey auction is the sealed
bid second-price auction, in which the bidders submit sealed bids and the highest bidder
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wins, but pays only as much as the second-highest bid. Vickrey-Clarke-Groves auction [16]
is a generalization of Vickrey auction for multiple items. When there are multiple items and
multiple buyers, double auction is often used to model the double competition.

3.1.2 Bargain Theory

Bargaining is a type of negotiation in which the buyer and the seller of a commodity or
service dispute the price that will be paid and the exact nature of the transaction that will take
place, and eventually come to an agreement. Bargaining is an alternative pricing strategy to
fixed prices. In a bargaining scenario, the buyer’s willingness to pay is dominant over the
actual price of the commodity.

3.2 Market Theory

A market is the most efficient known mechanism for the allocation of goods and services. A
market consists of sellers and buyers of a commodity or service. Appropriate pricing schemes
are necessary to maintain the stability of the market. Some of the useful concepts of market
theory used for spectrum trading are as following.

3.2.1 Monopoly, Oligopoly and Competitive Equilibrium

Monopoly is the simplest market structure when there is only one seller in the system. Since
there is a single seller in this market structure, the seller can optimize the trading to achieve
the highest profit based on the demand from buyers. In an oligopoly market structure, a small
number of firms dominate the market. The firms compete with each other independently to
achieve the highest profit by controlling the quantity or the price of the supplied commodity.
Oligopoly differs from monopoly in the sense that there are a multiple (few) firms providing
the same service, thus making it necessary for each firm to take into account the strategies
of all other firms. In a monopolistic context, the pricing is a single level of game between
users (buyers). However, when there are multiple sellers in the market for the same com-
modity, the competition between them can highly affect the results of price determination.
This competition introduces an additional level of game among the service providers. Buyers
demand less as the price of a commodity increases. On the other hand, sellers tend to produce
more as the price increases. The price at which the quantity supplied of a product/service and
the quantity of it demanded are equal, is called the market equilibrium price and when the
environment is competitive with flexible prices and many traders, the equilibrium is called
competitive equilibrium.

3.3 Applications of Price Theory and Market Theory in Spectrum Sharing

In this section, an overview of the existing work using price theory and market principles to
model economic interactions for spectrum sharing is presented (summarized in Table 2 in
terms of the specific issue addressed, structure, approach/model(s) used and the solution pro-
posed). Although price theory and market theory provide us models to address pricing issues
and market stability, to model the interdependency of the sellers and buyers in the market
and their strategic interactions, game theory is used. So, many literature use a combination
of price theory, market theory and game theory for analyzing spectrum sharing. An overview
of these works is presented in Sect. 4.
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Table 2 Summary of related work on spectrum sharing using price theory/market theory

Paper Issue(s) addressed Structure Approach/specific
model(s) used

Solution

[30] Spectrum allocation Cooperative,
centralized

Optimization
(Multi-unit
Vickrey auction)

Optimal price

[4] Spectrum access Cooperative,
centralized

Optimization Optimal price

[21] Spectrum trading Competitive
(among
secondary
users),
Distributed

Joint pricing and
marketing
theory

Pricing solution
obtained
through market
equilibrium and
disequilibrium

In [30], the problem of a CDMA operator participating in a dynamic spectrum allocation
scheme is addressed in a cooperative framework based on multi-unit Vickrey auction. A
spectrum manager implements DSA by periodically auctioning short-term spectrum licenses
and a pricing driven solution based on the willingness to pay of each user is introduced.

In [4], a framework based on an auction mechanism was presented for dynamic spec-
trum access using classical optimization approach. In the system model considered in [4],
multiple spectrum buyers submit spectrum demand function, which is based on piecewise
linear price demand (PLPD), to the spectrum owner that formulates an optimization problem
to maximize revenue under an interference constraint. The authors propose to restrict the
interference constraints and reduce them into a number that grows linearly with the number
of buyers.

In [21], a spectrum trading model based on multiple markets for different frequency bands
is proposed between the primary and secondary services. The authors have investigated two
different cases: the first one with equilibrium pricing where spectrum supply is equal to spec-
trum demand and the second one is the case where the sellers do not offer the equilibrium
price, and have proposed models for both cases using linear feedback time-invariant control
systems. Classical control system stability techniques are used to analyze the dynamics of
market behavior under both cases.

3.4 Research Challenges of Using Price Theory and Market Theory

Though price theory and market theory can be applicable to model the spectrum trading
for cognitive radio networks, the information exchange required for pricing and negotia-
tion is a big challenge. Eg. Vickrey-Clarke-Groves auction is one of the most used auctions
for resource trading. It can be used to achieve a socially optimal allocation. However, it
requires gathering global information from the users, which is a huge challenge for distrib-
uted implementation of cognitive radio networks especially when the available information
is incomplete. The communication overhead and computational complexity to gather and
manage global information in a distributed scenario may be quite costly.

To perform bargaining, users form groups and bargain with other groups. However, the
larger the groups are, the more is the complexity of bargaining due to high costs of syn-
chronization and communication overhead. So, efficient formation of bargaining groups and
effective communication between them in a distributed spectrum sharing scenario is also
another issue. In addition, the stability of the bargaining groups formed in a network with
rapidly changing topology and other underlying conditions is another issue. To dynamically
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split and merge to firm optimal coalitions in a network with only local information available,
is also a huge challenge.

The pricing theory with per unit price of the resource same for all users for any amount
of resource demanded may not produce highest revenue for the sellers. So, a discrimina-
tory pricing scheme as proposed in [4] may be better in terms of maximizing the revenue.
However, the computational complexity of this kind of scheme is yet a big issue.

4 Joint Strategy: Game Theory, Market Theory and Price Theory

While market principles and price theory are needed to model economic activities, game
theory is necessary to analyze the interdependency and strategies of the users for spectrum
sharing. So, many literature use a combination of these to investigate spectrum trading and
resource allocation in cognitive radio networks. Table 3 summarizes the related work using
joint strategy in terms of the specific issue addressed, structure, approach/model(s) used and
the solution proposed, each of which is briefly explained next.

Table 3 Summary of related work on spectrum sharing using joint strategy

Paper Issue(s) addressed Structure Specific
model(s) used

Solution

[2] Power control Non-cooperative,
distributed

Non-cooperative game,
pricing mechanism

Nash equilibrium (For
uniformly strictly
convex pricing
function)

[11] Channel access Non-cooperative,
distributed

Non-cooperative game,
SINR auction, power
auction

Nash equilibrium
(Bidding profile,
power profile)

[34] Joint power/
channel
allocation

Non-cooperative/coopera-
tive (among CR pairs),
distributed

Non-cooperative game,
pricing based
cooperation

Nash equilibrium/
Pareto optimum
boundary (power
vector)

[23] Spectrum trading Competitive (among
primary services),
centralized/distributed

Non-cooperative game,
Bertrand game, repeated
game, Oligopoly market

Nash equilibrium,
optimal spectrum
price

[22,24] Spectrum trading Competitive (among
secondary users),
centralized/distributed

Non-cooperative game,
Cournot game,
Oligopoly market

Nash equilibrium
(Spectrum size)

[25] Spectrum pricing Competitive (among
service providers),
centralized

Non-cooperative game,
Stackelberg game,
Bertrand game,
oligopoly market

Stackelberg
equilibrium, Nash
equilibrium
(Spectrum price)

[26] Spectrum trading Market equilibrium/
competitive/cooperative
(Among primary
service providers),
distributed

Non-cooperative game,
optimization, oligopoly
market

Market equilibrium,
Nash equilibrium,
optimal price

[28] Spectrum trading Competitive (among
primary users, among
secondary users),
distributed

Non-cooperative game,
(among primary users),
evolutionary game
(among secondary
users), Oligopoly
market

Nash equilibrium
(Spectrum price),
evolutionary
equilibrium
(Spectrum size)
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Table 3 Continued

Paper Issue(s) addressed Structure Specific
model(s) used

Solution

[15] Spectrum
allocation

Non-cooperative, distributed Non-cooperative game,
double auction, pricing
based allocation

Nash bargaining
solution (lower
bound on
payoff),
competitive
equilibrium
(without user
collusion)

[17] Slotted resource
allocation

Competitive (among
providers), distributed

Non-cooperative two stage
pricing game

Nash equilibrium
of the pricing
game (under
mild conditions)

[35] Spectrum
trading/access

Competitive (among primary
users),
centralized/distributed

Non-cooperative game Nash equilibrium
(spectrum price)

[14] Spectrum leasing Non-cooperative (between
primary and secondary
users)

Non-cooperative power
control game

Nash equilibrium
(Transmission
power)

[29] Joint spectrum
bidding and
pricing

Non-cooperative, centralized Non-cooperative game,
sealed-bid double auction

Nash equilibrium
(Spectrum price)

[27] Spectrum trading Non-cooperative (among TV
broadcasters), (among
WRAN users), Distributed

Non-cooperative game,
generalized fading memory
scheme, microeconomic
approach

Market
equilibrium
(Spectrum price)

In [2], the CDMA uplink power control in a multicell CDMA wireless network model
is addressed as a non-cooperative game. The game incorporates a pricing mechanism that
limits the overall interference and preserves battery energy of mobiles. The concept of outage
probability was introduced as a performance metric for the quality of the channel. Distributed
iterative power algorithms are analyzed using an outage probability based utility function for
a generalized fading channel model.

In [11], a non-cooperative game was formulated to address the problem of spectrum shar-
ing among users using spread spectrum signaling, in a distributed scenario to access the
channel subject to a constraint on the interference temperature at a measurement point and
two auction mechanisms: : SINR auction and power auction, are proposed for allocating
received power.

In [34], a joint power/channel allocation scheme is proposed using a distributed pricing
approach for cognitive radio networks and a frequency dependent power mask constraint is
introduced for secondary users in addition to maximum transmission power constraint and
minimum SINR constraint.

In [23], the issue of spectrum pricing in cognitive radio network is addressed for multiple
primary services and 1 secondary service. The trading of spectrum between primary and sec-
ondary services was modeled as an oligopoly market. A Bertrand game model was applied
for price competition among primary services to obtain the Nash equilibrium pricing. Distrib-
uted algorithms were presented to obtain the solution of the dynamic game, when primary
services have to make decisions based only on the spectrum demand from the secondary
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service. A repeated game was formulated to analyze the behavior of selfish primary opera-
tors that try to deviate from the equilibrium point to increase their profit at the cost of lower
profit to other primary operators.

In [22,24] the competition among multiple secondary users for spectrum offered by 1
primary user was modeled using Cournot game. In [24], the problem is formulated as an
oligopoly market competition and the spectrum allocation for secondary users is obtained
through non-cooperative game. The competition is in terms of the size of the spectrum they
request. A dynamic game is formulated in which the selection of strategy by the secondary
users is solely based on the pricing information obtained from the primary user.

In [25], the authors modeled service competition and pricing in a WiMAX and
WiFi based heterogeneous wireless access network using non-cooperative Stackelberg and
Bertrand game models respectively and the performance was compared for the two models.

In [26], spectrum trading for cognitive radio networks was investigated considering mul-
tiple primary services that are willing to sell the available spectrum to the secondary service.
Distributed algorithms were presented for three different pricing schemes: market equilib-
rium, competitive and cooperative pricing models and the performance of all three schemes
were compared.

In [28], the problem of spectrum trading with multiple primary users selling spectrum
opportunities to multiple secondary users is considered. The competition among primary
users is formulated as a non-cooperative game where each primary user sets the size of spec-
trum to be shared and the price of the spectrum such that its own payoff is maximized. It
is assumed that the secondary users can evolve over time to buy the spectrum opportunities
that provide the best payoff in terms of performance and price.

In [15], spectrum allocation among primary and secondary users is modeled as a bilateral
pricing process to maximize the utilities of both primary and secondary users and a distrib-
uted collusion-resistant dynamic pricing approach with optimal reserve prices was proposed
to achieve efficient spectrum allocation while combating user collusion. Double auction sce-
nario was considered for the pricing game. A belief function was introduced that builds up
certain belief of other players’ future possible strategies for each user to assist its decision
making.

In [17], the competition among providers was studied on a non-cooperative game theoretic
framework. The authors introduced a pricing model dealing with how for fixed prices, total
demand is split among providers following Wardrop’s principle and determined the existence
and uniqueness of Nash equilibrium under mild conditions.

In [35], the economic interactions are modeled considering both price of the offered
spectrum and its quality. The analysis scenario consists of multiple self interested spectrum
providers operating with different technologies and offering the spectrum at different costs
that compete with each other to get potential customers that are grouped into two catego-
ries: quality sensitive group and price sensitive group. In [35], the authors have proposed a
practical price updating strategy using structured stochastic learning for which the price is
shown to converge to the optimal equilibrium.

In [14], a game theoretic framework was developed to facilitate dynamic spectrum leasing
(DSL) in cognitive radio networks in which primary users are also included as active decision
makers in a non-cooperative game with secondary users by selecting an interference cap on
the total interference they are willing to tolerate.

In [29], the joint spectrum bidding and pricing scheme was proposed for dynamic spec-
trum access in the exclusive usage model for IEEE 802.22 based cognitive radio network.
Multiple TV broadcasters offer the available TV bands and WRAN service providers bid for
these TV bands. A sealed bid double auction scenario was considered for the procurement
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Fig. 3 Classification of related work on spectrum sharing based on resource allocation and spectrum trading

of TV bands from TV broadcasters in terms of the number of TV bands and the trading
price. After buying TV bands, multiple WRAN service providers compete with each other
to sell the spectrum to WRAN users. A non-cooperative game was formulated to model the
competitive environment for bidding and pricing strategies.

In [27] the authors have proposed a market-equilibrium based model for spectrum
trading between primary and secondary services using supply and demand functions. A
non-cooperative game is formulated between primary and secondary users where a distrib-
uted generalized fading memory algorithm is used by the secondary service to estimate
spectrum price and adjust spectrum demand accordingly so that the market equilibrium can
be reached for the price and size of the spectrum allocated for the secondary service by the
primary service.

5 Classification of Related Work Based on Issues and Solutions

In this section, we categorize the related work on modeling the economic interactions in
cognitive radio networks on three different bases as following.

Figure 3 shows the classification based on different aspects of spectrum trading and
resource allocation as described in Sect. 1. The related work on spectrum trading between pri-
mary and secondary users address competition among primary users and competition among
secondary users. While [17,23,26,35] deal with price competition among primary users/ser-
vice providers for profit maximization, [22,24] address the competition among secondary
users in terms of the size or quality of spectrum demanded. On the other hand [15,27,28]
address the competition among primary services as well as among secondary users for spec-
trum trading.

In terms of resource allocation, while [14,36] consider the coexistence between primary
service providers and secondary users, [19,33,34] explore self coexistence among secondary
users. Although both [14,36] consider the coexistence between primary and secondary sys-
tems, [36] is based on the cooperation between primary and secondary users, while in [14],
the framework is non-cooperative. The payment selection game among secondary users
in [36] however is a non-cooperative game. For self coexistence among secondary users,
while [33] proposes a non-cooperative dynamic channel switching game, [19] considers a
cooperative approach for channel allocation. On the other hand, [34] considers a non-cooper-
ative framework and a pricing based cooperative approach for self coexistence of secondary
users.

Figure 4a shows the classification based on the particular game models described in
Sect. 2. Both [25,36] use Stackelberg game model. However, while the approach consid-
ered in [36] is a cooperative framework between primary and secondary users, [25] uses
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(a) (b)

Fig. 4 Classification of related work on spectrum sharing based on solution approaches

Stackelberg game for price competition among WiMAX and WiFi service providers.
However, when all players in the game should act simultaneously, the price competition
game can be modeled using Bertrand game as in [23,25]. When the competition is not in
terms of price, but in terms of the size of the spectrum, Cournot game was applied to model
the competition among secondary users [22,24].

In a distributed scenario with incomplete information, the players have access to local
information only and they have to learn about the strategy of other players adaptively. Such
interactions can be modeled using games with learning [15,19,23,24,28,35]. In [23], when
a primary service provider has the information about the demand from secondary service but
no information about the current pricing strategy of other primary services, a non-cooperative
game with learning was used to decide its strategy based on the past strategy of other primary
services. Similar approach is applied but in case of secondary users in [24]. [28] addresses
the issue for both primary and secondary users when there are multiple primary services and
multiple secondary users. In [15], belief assisted approach (using belief function) was used
for selfish users to reduce pricing overhead. In [35], a price updating strategy was proposed
using structured stochastic learning when the sellers have no knowledge about each others’
strategy and also about the consumer population. In [19], the authors have used a learning
based game called Regret Tracking for channel allocation among cognitive radio users.

Coalitional game was used in [32] for collaborative spectrum sensing. In [8], coalition
game combined with repeated game was used to make the boundary nodes and backbone
nodes collaborate for packet forwarding. In [23], repeated games were used to prevent selfish
primary services from deviating unilaterally for individual profit that may lower the profit
for other primary services. The combination of repeated and coalitional games can be a very
effective way to introduce cooperation among network users. A bargaining game was used
in [3] in a cooperative and distributed framework for spectrum assignment. An MMG was
used in [33] in a non-cooperative framework for channel switching.

Figure 4(b) depicts the classification based on the particular models/approaches from
price theory and market structure described in section 3. In [30], VCG auction was used for
dynamic spectrum allocation in a cooperative and centralized framework. Double auction
scenario was considered in [15,29] in a non-cooperative frame- work. Bargaining game was
used in [3] in a cooperative and distributed framework for spectrum assignment. Oligopoly
market structure was considered for analyzing pricing schemes in [23–26,28]. While [21,27]
considered market equilibrium as the pricing solution, [15] used competitive equilibrium for
the case without user collusion in the network.

The applicability of particular game models or pricing schemes/market structure depends
on many factors. The selfish behavior of network users and the limited amount of information
available usually requires distributed schemes for spectrum sharing. On the other hand, the
synchronization issues and the information exchange overhead in a distributed system is a
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huge research challenge. The implementation of pricing schemes can also cause significant
communication overhead to the system. In many cases, Nash equilibriums are not efficient
and Pareto optimal solutions provide higher revenues/payoffs. However, the cost to make the
users act cooperatively in a distributed environment may be quite high, which leaves users
no other choice but Nash equilibrium. The trade off is in terms of information exchange and
computation complexity versus distributedness.

6 Open Research Problems

Some possible directions for future research in investigating the economic interactions for
spectrum sharing in cognitive radio networks are as following.

6.1 Coalition Formation and Communication Overhead

Many of the literature that propose cooperative strategies for primary/secondary users have
not considered the cost for cooperation. The cost can be the power required for negotiation,
delay because of the information exchange etc. In a practical scenario, it is not reasonable to
neglect this cost for spectrum management especially in a resource constrained network like
cognitive radio. Therefore, investigating the overhead caused by the communication to form
a coalition for cooperation for spectrum sharing can be an interesting direction for future
research.

6.2 Bidder Collusion

While the objective of primary services to participate in spectrum trading is to maximize
their revenue, the purpose of secondary services is to get the spectrum as cheap as possible
such that the required quality of service is also maintained. So, it is likely that the bidders
may attempt to lower the price of the spectrum offered by the primary services by acting
collusively. Bidder collusion [18] is probably the most serious practical threat to the revenue
of the primary users but there has not been much work on this. So, another possible direction
for future research may be to study the interactions in presence of bidders’ collusion and to
explore its effect on the payoff of primary and secondary users.

6.3 Incentive Driven Spectrum Sensing

Spectrum sensing, a crucial function for opportunistic spectrum access, requires significant
share of the network resources (energy, time etc.). So, selfish secondary users tend to take a
free ride as far as possible by overhearing the sensing results from other secondary users. To
prevent such behavior and to maintain the motivation to perform sensing, incentive or reward
driven sensing schemes can be another possible direction for further research.

6.4 Trust and Security in Collaborative Sensing

Trust and security is one of the key issues in cognitive radio networks. The presence of
malicious sensors and their possible attack against honest sensors can pose a serious threat
to the reliability of the results obtained from collaborative spectrum sensing. Investigating
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different issues such as how can malicious sensors attack the honest sensors, how to detect
them, how to counteract such attacks, the criteria that the reliability of the results obtained
from collaborative sensing can be maintained despite the presence of malicious sensors etc.
using game theory can be a very interesting research area.

6.5 Assumption of Rationality and Complete Information

Although game theory is a powerful tool for modeling resource allocation problems, it inher-
ently assumes that the players are rational and often the payoff functions of all players are
assumed to be common knowledge, which in many scenarios may not be valid. Game theory
merely suggests what strategies should be taken to maximize individual/total utility. It does
not provide much insight into the analysis of what the players are most likely to do and how
much rational the players are likely to be when the information available is incomplete or
faulty. Therefore, further study is needed to investigate the factors that may make the players
irrational and to predict the natural behavior of players in addition to the strategies that are
towards maximizing the individual or total utility.

7 Conclusion

We have described different types and models of games, price theory and market principles
that have been used to model the economic activities of primary and secondary users for
resource allocation and spectrum trading. An extensive summary of the related work on eco-
nomic approaches has been presented with the classification based on the spectrum sharing
issues and solutions. We also discussed the research challenges of using game theory and
price theory/market theory for their application in cognitive radio research. We discussed the
open research problems and proposed some interesting directions for future research about
economic approaches in cognitive radio networks.
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Abstract

Real time traffic such as voice and video have strict requirements on the acceptable end-to-

end packet delay. When there are different types of traffic with different requirements on tolerable

latency, priority based packet scheduling schemes are normally used in order to reduce the queuing

delay for real time services. However, in cognitive radio networks, the time that the system spends

on spectrum sensing adds further delay to the packet transmission. In this paper, we propose a new

scheme to significantly reduce the overall packet delay, including the delay due to sensing for real

time services in cognitive radio networks. We derive the expression for average packet delay for the

proposed scheme and the simulation results match well with the analytical results. The numerical

results show that the priority based scheduling scheme combined with our scheme substantially

reduces the packet delay for real time applications.

I. INTRODUCTION

Spectrum sensing is a crucial function for cognitive radio networks [1] to detect available

channels from primary user spectra and also to make sure that the primary users returning to

a channel being used by secondary users are detected so that the secondary users can vacate

the channel immediately. Spectrum sensing can be classified into two categories based on

the duration it needs to detect the primary users: fast sensing and fine sensing. Fast sensing

takes less time as it uses energy detection to detect the primary users. Fine sensing takes

longer as it uses feature detection [7]. In the IEEE 802.22 Wireless Regional Area Network



(WRAN) standard [2][3], quiet periods are scheduled periodically to detect returning primary

users in the channel being used by secondary users. During quiet periods, all secondary users

stop their transmission and listen for primary users. In conventional scheme, fast sensing is

performed at regular intervals of time and fine sensing is performed if fast sensing gives an

alarm.

The typical duration of energy detection is less than 1 ms while feature detection takes

much longer (e.g. 24.2 ms for field synchronous detector) [6]. The acceptable packet delay

for real time applications is quite small. The typical values for voice communication is 20 ms

and for video applications is 40 ms. In order to reduce the delay for real time services, priority

based packet scheduling schemes are often used where real time packets have a higher priority

over non-real time packets (e.g. [8]). However, such schemes reduce queuing delay only. In

cognitive radio networks, apart from queuing delay, the delay induced by sensing also comes

into the picture. The duration of fast sensing is relatively small. Hence, the quiet period due

to fast sensing is not a big issue. However, if the transmission is stopped for the duration of

fine sensing, it is a critical issue for real time applications in terms of the tolerable latency.

Therefore, it is very important to reduce the fine sensing induced delay for real time services.

In [4], a packet scheduling algorithm based on the estimation of packet loss amount was

proposed to reduce average packet loss rate of real time traffic for IEEE 802.22 WRAN.

In [5], the authors proposed a sensing scheme that consists of a series of consecutive energy

detections followed by feature detection to suppress the effect of false alarms generated by

energy detection. However, the issue of the duration of fine sensing (when performed) for

real time packets was not addressed in these works. The motivation for our work stems from

the need to reduce the effect of sensing induced delay for real time traffic in IEEE 802.22

WRAN.

In this paper, we propose a new scheme to significantly reduce the packet delay due to

sensing for real time traffic. In our proposed scheme, during fine sensing, only non-real time

users listen for primary users while real time users continue their transmission. Thus, the

packet delay due to fine sensing is eliminated for real time packets. We combine this scheme

to reduce fine sensing induced delay for real time traffic with the priority based packet

scheduling scheme. The numerical results show that the proposed scheme can drastically

reduce average packet delay for real time services with insignificantly increased delay for non-

real time services. We derive an analytical expression for the average packet delay including

the delay due to sensing and verify the analytical results with the simulation results.
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The rest of the paper is organized as following: Section II shows the system model and

explains our assumptions. We describe the proposed model in section III. Results are presented

and analyzed in section IV. Section V concludes the paper.

II. SYSTEM MODEL

We consider one primary base station (BS) with a single TV channel of bandwidth 6 MHz,

an IEEE 802.22 system with one secondary base station and N secondary users as shown

in Figure 1. Among N users, Nr is the number of secondary users with real time traffic and

Nn is the number of secondary users with non-real time traffic.

The dark gray area in the primary user spectrum in Figure 1 means that the channel is

being used by the primary user. The white spaces indicate that the channel is vacant. We

assume that the primary user activity is a two-state birth-death process such that the on-

time and off-time are exponentially distributed with rate β and α respectively. Let pa be the

probability that the primary user is active. Then,

pa =
β

(β + α)
. (1)

Fast sensing (energy detection) is performed by all secondary users once every superframe

at the beginning of the superframe. We assume that all secondary users are synchronized for

sensing. One common approach to combine the results of spectrum sensing from secondary

users is to use OR rule of data fusion. If fast sensing gives an alarm, the base station schedules

fine sensing for more reliable detection. The probability of miss detection is defined as the

probability that the channel is claimed to be vacant although it is actually occupied by the

primary user. The probability of false alarm is defined as the probability that the channel

is claimed to be occupied although it is actually vacant. Let PMD,c and PFA,c denote the

probability of miss detection and the probability of false alarm, respectively of fast sensing.

Then, using cooperative energy detection based on OR rule, we have,




PMD,c =

∏N
i=1 PMD,c,i,

PFA,c = 1−∏N
i=1(1− PFA,c,i).

(2)

where PMD,c,i and PFA,c,i are the probability of miss detection and the probability of false

alarm, respectively of secondary user i for fast sensing. With more number of users performing

sensing, PMD,c decreases but PFA,c increases. Thus the false alarm rate of fast sensing based

on OR rule is often very high. IEEE 802.22 WRAN requires in-band sensing to achieve
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the probability of miss detection and the probability of false alarm of at most 10%. The

achievable values of PMD,c and PFA,c depend on the number of secondary users from which

the sensing results are combined. The base station chooses certain number of sensing users

to combine the sensing results from in order to maintain PMD,c <= 0.1 and PFA,c <= 0.1.

Fig. 1: System Model

III. DELAY REDUCTION SCHEME

A. Fine Sensing by Non-Real Time Users

Figure 2 shows the proposed delay reduction scheme. The white spaces are IEEE 802.22

WRAN transmission, the light colored areas indicate fast sensing and the dark areas indicate

fine sensing. The duration of the sensing interval is fixed as 1 superframe. Each superframe

consists of 1 frame for fast sensing, which is a quiet period and 10 data frames each of

duration 10 ms. In our scheme, fast sensing is performed by all secondary users at the

beginning of each superframe. When an alarm is issued by fast sensing, feature detection is

performed for reliable detection. However, different from the conventional approach [2], we

use non-real time users only to perform fine sensing while all real time users continue their

transmissions during this period. During fine sensing, even though there is background traffic

from real time secondary users, the non-real time secondary users can still detect primary
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user activity because feature detection can differentiate signals based on their modulation

type and cyclic frequencies. The result obtained from fine sensing is considered accurate

enough and based on that, the base station decides whether to continue transmission or to

stop/move to another available channel, which is followed by all secondary users (including

real time users).

Fig. 2: Proposed Scheme to Reduce Fine Sensing Induced Packet Delay

B. Priority Based Scheduling

In order to maintain relatively low queuing delay for real time packets, we reserve certain

data rate for them based on the real time traffic intensity. Let rmin be the minimum data

rate reserved for real time users. Then, we use the following linear function for the data rate

reserved for real time users (Rr):

Rr = (aNr + b)rmin (3)

where a and b are constants and rmin is chosen such that the service rate is at least greater

than the total arrival rate of real time packets. The total data rate left for non-real time users

(Rn) is then given by

Rn = Rtotal − (aNr + b)rmin (4)

where Rtotal is the total data rate of the channel. As the number of real time users increases,

the data rate left for non-real time users decreases which increases the delay for non-real
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time packets. Such a strategy of reserving data rate for real time services might even lead to

data rate starvation for non-real time users [8]. We, however, consider Rtotal, a, b and rmin

such that the effective service rate for non-real time users with the leftover data rate is at

least greater than the total non-real time packet arrival rate.

C. Proposed Delay Reduction Scheme

In our proposed delay reduction scheme, only non-real time secondary users perform fine

sensing and real time secondary users continue their transmission even during fine sensing.

To further reduce the delay, we combine the priority based packet scheduling scheme with

the sensing delay reduction scheme. Let tQP, tFD and tSF be the duration of fast sensing, fine

sensing and that of a superframe, respectively as shown in Figure 3. Then the average time

spent on sensing per superframe by real time users (ts,r) and by non-real time users (ts,n) are




ts,r = tQP,

ts,n = tQP + pAlarmtFD.
(5)

where pAlarm is the probability that fast sensing issues an alarm. This probability is the

sum of the probabilities that the primary user is detected when it is active and that a false

alarm is issued although the primary user is not active, i.e.

pAlarm = PFA,c(1− pa) + (1− PMD,c)pa. (6)

We consider Poisson arrival of packets for both real time users and non-real time users

with mean arrival rates of λr and λn, respectively. The size of a real time packet is Sr bytes

and the size of a non-real time packet is Sn bytes. The secondary BS holds separate queues of

infinite length for real time and non-real time packets. The packet arrival process is Poisson,

the packet size is constant, thus the service time is deterministic for both real time and non-

real time traffic and there is a single server (base station). Hence, we can employ M/D/1

model for the queues. The effective service rates for real time traffic (µr,eff) and for non-real

time traffic (µn,eff) are




µr,eff =

Rr,eff

Sr
,

µn,eff =
Rn,eff

Sn
.

(7)

where Rr,eff = Rr(1− ts,r
tSF

) and Rn,eff = Rn(1− ts,n
tSF

).

The M/D/1 queuing delay for real time packets (dr,q) and non-real time packets (dn,q) are
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dr,q = (2−ρr)

2µr,eff(1−ρr) ,

dn,q = (2−ρn)
2µn,eff(1−ρn)

.
(8)

where ρr = λr

µr,eff
and ρn = λn

µn,eff
.

Within a superframe, the arrival time of a particular packet u is the sum of the inter-arrival

times of the first packet until the uth packet. Because the inter-arrival time between any two

packets is exponentially distributed, the probability density function (pdf) of the arrival time

of the uth packet is Erlang distribution. Thus, the pdf of the uth real time packet fr(t;u, λr),

can be written as

fr(t;u, λr) =
λur t

(u−1)e(−λrt)

(u− 1)!
. (9)

Let t1, t2, t3 and t4 be the beginning of a typical superframe, the end of fast sensing of

the superframe, the end of fine sensing and the duration of the superframe, respectively as

shown in Figure 3. For real time traffic, let pru,1 and pru,2 be the probabilities that the uth

real time packet arrives in the interval (t1, t2) and (t2, t4), respectively. Then,

Fig. 3: A typical superframe for real time and non-real time users




pru,1 =

∫ t2
t1
fr(t;u, λr)dt,

pru,2 =
∫ t4
t2
fr(t;u, λr)dt,

(10)

where pru,1 + pru,2 = 1. Let E(taru,1) be the expected arrival time of the uth real time packet

in the interval (t1, t2). Then,

E(taru,1) =

∫ t2
t1
tfr(t;u, λr)dt∫ t2

t1
fr(t;u, λr)dt

, t1 < taru,1 < t2 (11)
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where taru,1 is the arrival time of the uth real time packet if it comes in the interval (t1, t2).

Let dru,1 be the expected delay that the uth real time packet experiences because of stopping

transmission during fast sensing. Then, dru,1 is the time from E(taru,1) until t2 and can be

expressed as

dru,1 = t2 − E(taru,1). (12)

If m packets arrive during a superframe duration, the total delay faced by all real time

packets that arrive during sensing is
∑m
u=1 pru,1dru,1 . The average packet delay is therefore

{ 1
m

∑m
u=1 pru,1dru,1}. Let prm be the probability that the total number of real time packets

arriving in a typical superframe is m, given by

prm =
(λrtSF)

me(−λrtSF)

m!
. (13)

Now, considering all packets that arrive during a superframe duration, the average delay

for a real time packet that arrives during sensing can be written as

dr1 =
∞∑

m=1

prm{
1

m

m∑

u=1

pru,1dru,1}. (14)

The packets that arrive at the base station during sensing period of a superframe can be

transmitted only after sensing is over. As soon as sensing ends, some packets will already

have accumulated. These packets need to be transmitted before transmitting the packets that

come after sensing. This is depicted in Figure 4. Let Mr,1 denote the average number of

real time packets that arrive during ts,r, where Mr,1 = λrts,r. Let Tr,1 be the service time

for Mr,1 real time packets, given by Tr,1 = Mr,1

µr,eff
. Let Mr,2 be the average number of real

time packets that arrive during Tr,1, where Mr,2 = λrTr,1. Then Mr,2 real time packets

face a delay of Tr,1 before their transmission begins. Similarly, Mr,3 real time packets face

a delay of Tr,2 before their transmission begins and so on until Tr,l is so small that no

packet arrives in that duration. For real time packets the total delay due to this effect is

dr2tot = Mr,2Tr,1 +Mr,3Tr,2 + ... = λr((Tr,1)
2 + (Tr,2)

2 + ...) = λr
∑∞
l=1 (Tr,l)

2. Therefore,

if dr2 be the average delay faced by all real time packets that arrive during tSF, due to this

effect, then

dr2 =
1

λrtSF

λr
∞∑

l=1

(Tr,l)
2, (15)
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Fig. 4: Effect of Sensing in Packet Delay

which gives dr2 =
1
tSF

∑∞
l=1 (Tr,l)

2.

The average delay (due to M/D/1 queue and due to sensing) for real time packets (dr) is

dr = dr1 + dr2 + dr,q. (16)

For non-real time packets, the pdf of the wth non-real time packet fn(t;w, λn), is

fn(t;w, λn) =
λwn t

(w−1)e(−λnt)

(w − 1)!
. (17)

Let pnw,1 , pnw,2 and pnw,3 be the probabilities that the wth non-real time packet arrives in

the interval (t1, t2), (t2, t3) and (t3, t4), respectively. Then,





pnw,1 =
∫ t2
t1
fn(t;w, λn)dt,

pnw,2 =
∫ t3
t2
fn(t;w, λn)dt,

pnw,3 =
∫ t4
t3
fn(t;w, λn)dt.

(18)

where pnw,1 + pnw,2 + pnw,3 = 1. Let E(tanw,1) and E(tanw,2) be the expected arrival time

of the wth non-real time packet in the interval (t1, t2) and (t2, t3), respectively. Then,





E(tanw,1) =

∫ t2
t1
tfn(t;w,λn)dt

∫ t2
t1
fn(t;w,λn)dt

, t1 < tanw,1 < t2

E(tanw,2) =

∫ t3
t2
tfn(t;w,λn)dt

∫ t3
t2
fn(t;w,λn)dt

. t2 < tanw,2 < t3

(19)
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where tanw,1 and tanw,2 are the arrival times of the wth non-real time packet in the intervals

(t1, t2) and (t2, t3), respectively. Let dnw,1 and dnw,2 be the expected delays that the wth non-

real time packet experiences because of stopping transmission during sensing if it comes in

the range (t1, t2) and (t2, t3), respectively. In case of a non-real time packet, the delay due

to fine sensing is also added to packet delay but only if fine sensing is performed. Hence,

dnw,1 and dnw,2 can be expressed as




dnw,1 = t2 − E(tanw,1) + pAlarmtFD,

dnw,2 = pAlarm(t3 − E(tanw,2)).
(20)

Similar to the case of real time packets, we can derive the average delay for a non-real

time packet that arrives during sensing as

dn1 =
∞∑

m=1

pnm{
1

m

m∑

w=1

(pnw,1dnw,1 + pnw,2dnw,2)}, (21)

where pnm = (λntSF)me(−λntSF)

m!
, is the probability that the total number of non-real time packets

arriving in a typical superframe is m.

Let Mn,1 be the average number of non-real time packets that arrive during ts,n as shown

in Figure 4, where Mn,1 = λnts,n. Let Tn,1 denote the service time for Mn,1 non-real time

packets, given by Tn,1 =
Mn,1

µn,eff
. Let Mn,2 be the average number of non-real time packets that

arrive during Tn,1, where Mn,2 = λnTn,1. Then Mn,2 non-real time packets face a delay of

Tn,1 before their transmission begins. Similarly, Mn,3 non-real time packets face a delay of

Tn,2 before their transmission begins and so on until Tn,l is so small that no packet arrives

in that duration. If dn2 be the average delay faced by all non-real time packets that arrive

during tSF, due to the propagating effect of sensing, with similar analysis as in case of real

time services, it can be expressed as

dn2 =
1

tSF

∞∑

l=1

(Tn,l)
2. (22)

The average delay (due to M/D/1 queue and due to sensing) for non-real time packets (dn)

is

dn = dn1 + dn2 + dn,q. (23)
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TABLE I: Parameters Used for Analysis

Parameters Values

Bandwidth 6 MHz

Considered transmission Downlink

Data rate (Rtot) 10 Mbps

Real time packet size 60 bytes

Non-real time packet size 500 bytes

Mean on time for PU 0.1s

Mean off time for PU 0.9s

PMD,c 0.1

PFA,c 0.1

tQP 1 ms

tFD 25 ms

a 0.4

b 10

rmin 0.2 Mbps

IV. NUMERICAL RESULTS

The parameters used for numerical analysis are shown in Table I.

Figure 5 shows the average packet delay for real time and non-real time packets for the

proposed scheme with respect to λr. The theoretical curves were plotted using (16) and (23)

and the simulations were performed in matlab using 100 trials. The analytical results match

well with the simulation results. This validates the correctness of the analysis model and

simulation as well.

We compare the performance of the proposed scheme with two different schemes: First

Come First Serve (FCFS) scheme that uses all secondary users to perform fine sensing,

(hereafter referred to as FCFS-Conv) and priority based scheme with data rate reservation

for real time packets that uses all secondary users to perform fine sensing (hereafter referred

to as PRIO-Conv).

Figure 6 and Figure 7 show the average packet delay with respect to λr for real time

services and non-real time services, respectively. The packet delay increases with higher

packet arrival rate, which is expected. PRIO-Conv has lower delay for real time packets

compared to FCFS-Conv. However, the improvement is not significant. The proposed scheme

shows drastic improvement in delay for real time packets because it allows real time users

to escape the significant part of sensing delay due to feature detection. The delay in the

11
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Fig. 5: Average packet delay for real time and non-real time services for the proposed scheme

(λn = 1000 packets/s)

proposed scheme is almost constant for real time users because a packet suffers almost no

sensing delay. Hence, the dominant delay in this case is only queuing delay.

The delay for non-real packets becomes higher in PRIO-Conv compared to FCFS-Conv

(Figure 7). The delay in PRIO-Conv starts increasing at a higher rate for non-real time

packets after λr = 6000. This is because of the increase in the reserved data rate for real

time users thus leaving relatively less data rate for non-real time users. The delay is same

for PRIO-Conv and the proposed scheme for non-real time packets.

Figure 8 and Figure 9 show the packet delay with respect to λn for real time packets and

non-real time packets, respectively. The delay is almost constant with respect to λn for both

PRIO-Conv and the proposed scheme because the data rate reserved for real time traffic is

independent of λn. The proposed scheme yields lower delay compared to PRIO-Conv, which

is maintained at about 0.2 ms. An interesting observation here is that the delay in FCFS-Conv

is smaller than that in PRIO-Conv when λn < 900. This can be explained as follows. When

λn is much smaller than λr, reserving a fixed data rate does not give real time users as much

data rate as they can get out of total data rate in FCFS-Conv.

For non-real time users, the delay increases with higher value of λn and is higher in

PRIO-Conv and the proposed scheme compared to FCFS-Conv. The delay is the same in

PRIO-Conv and the proposed scheme, which indicates that our scheme to reduce sensing

delay does not add extra cost for non-real time packets, compared to PRIO-Conv. The delay
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Fig. 6: Average packet delay for real time services (λn = 1000 packets/s)
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Fig. 7: Average packet delay for non-real time services (λn = 1000 packets/s)

starts increasing rapidly after about λn > 1300. This sharp increase is because the data rate

leftover for non-real time users is fixed while the packet arrival rate is increasing.

Thus, compared to FCFS-Conv, our proposed scheme drastically reduces the delay for real

time packets with higher delay for non-real time packets. However, the non-real time packets

are not as sensitive to delay as are real time packets. Therefore, non-real time services can

tolerate this delay. Compared to PRIO-Conv, the proposed scheme significantly reduces the

delay for real time services without increasing the delay for non-real time services.
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Fig. 8: Average packet delay for real time services (λr = 4000 packets/s)
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Fig. 9: Average packet delay for non-real time services (λr = 4000 packets/s)

V. CONCLUSION

We proposed a scheme to reduce delay induced by fine sensing for real time services

in IEEE 802.22 WRAN. We derived a close form expression for average packet delay

for both real time and non-real time services for the proposed scheme. We compared the

performance of the proposed scheme with two existing schemes. The results show that our

proposed scheme yields drastic reduction in delay for real time services without worsening

the performance for non-real time services or with insignificant cost in terms of packet delay
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for non-real time services.
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Abstract

Cooperative spectrum sensing improves the reliability of detection. However, if the secondary

users are selfish, they may not collaborate for sensing. In order to address this problem, Medium

Access Control (MAC) protocols can be designed to enforce cooperation among secondary users

for spectrum sensing. In this paper, we investigate this problem using game theoretical framework.

We introduce the concept of correlated equilibrium for the cooperative spectrum sensing game

among non-cooperative secondary users and formulate the optimization problem for the case where

secondary users have heterogeneous traffic dynamics. We show that the correlated equilibrium

improves the system utility, as compared to the mixed strategy Nash equilibrium. While maximizing

system payoff is important, fairness is also equally important in systems with dissimilar users. In

order to address fairness issue, we propose a new fair social welfare correlated equilibrium, which

maximizes the system utility and ensures that the less well-off users do not starve. We employ a

no-regret learning algorithm for distributed implementation of the correlated equilibrium. Finally,

we propose a neighbourhood based learning algorithm and show that it achieves better performance

than the no-regret algorithm.

I. INTRODUCTION

Cognitive radio networks (CRNs) [1][2] have been proposed to address the problem of

spectrum scarcity and to make effective use of the electromagnetic spectrum by opportunis-



tically using the spectrum of the licensed users. The licensed users are called primary users

and the users of the cognitive radio network are called secondary users. Spectrum sensing

is a crucial function for cognitive radio networks to detect available channels from primary

user spectra and also to prevent excessive interference to primary users from secondary users.

Cooperative spectrum sensing [3]-[8] has been recognized as a powerful approach to improve

detection reliability. In most of the existing literature on cooperative spectrum sensing, there

is an inherent assumption that all secondary users cooperate with each other to maximize

the payoff for the system [9]-[11]. However, if the secondary users are selfish, they will not

collaborate with each other for cooperative sensing without any incentive [12]. This kind

of selfish behavior comes into the picture in many situations e.g., if the secondary users

belong to different systems, if their spectrum requirements are heterogeneous, if there is no

central authority to assign the sensing responsibility etc. Under such situations, the decision

of a secondary user to participate in cooperative sensing depends not only on the user’s

strategy but also on the strategies taken by other users. This framework can be modeled

using non-cooperative game theory.

There is only a limited literature investigating the selfish behavior of secondary users for

spectrum sensing using game theoretical framework. One of the pioneering works on model-

ing cooperation enforcement among selfish secondary users for cooperative spectrum sensing

is [13]. In [13], the authors modeled cooperative sensing as an N-player horizontal infinite

game and they proposed to use Carrot-and-Stick strategy, which results mutual cooperation

as the Nash equilibrium (NE) of the game. In [14], the authors proposed mixed strategy NE

as the solution of the non-cooperative game among secondary users for cooperative spectrum

sensing. They deployed an evolutionary game [15] among secondary users for their strategies

to converge to the equilibrium in distributed manner. However, the analytical framework was

limited to the case of users with homogeneous traffic, and the mixed strategy NE does not

always exist for the case when users are not homogeneous. In [19], we differentiated the

heterogeneous users as heavy traffic and light traffic users, and designed the sensing game so

as to encourage light traffic users take the sensing responsibility and allow heavy traffic users

get a free ride. In this paper, we derive the analytical framework for a more general case

with heterogeneous traffic dynamics and improve the system performance compared to the

mixed strategy equilibrium, using correlated equilibrium (CE) as the solution of the game.

Medium Access Control (MAC) protocols can be designed to enforce cooperation among

secondary users for spectrum sensing. In this paper, we investigate this problem using game
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theoretical framework. CE can improve the payoff of users in both cooperative and non-

cooperative games. The concept of CE has been used extensively for spectrum access and

transmission control [21]-[24]. These works focus on the issues of opportunistic spectrum

access such as rate control/adaption, power allocation etc. but none of them dealt with

the issues of spectrum sensing. In this paper, we apply the concept of CE to design the

cooperative spectrum sensing game among secondary users in order to improve the payoff of

the secondary users and the network. This is a novel approach in the context of opportunistic

spectrum access based on spectrum sensing performed by the non-cooperative secondary

users. In most of the studies on spectrum sharing and spectrum sensing, it is assumed that

the secondary users always have data to transmit and they want to use the channel as long

as possible. In a real network, the users may not necessarily have data to transmit all the

time. Taking this into account, we analyze the sensing game for users with heterogeneous

traffic: some of which have data to transmit all the time while others do not. We exploit the

heterogeneity among the secondary users and use CE to improve the system payoff. While

maximizing the system payoff is important, fairness is also equally important in systems

with dissimilar users. To incorporate fairness into the utility maximization problem, we

propose fair social welfare correlated equilibrium (f-SW CE), which maximizes system utility

while ensuring that the users with less traffic do not suffer severely. In addition, we employ

a no-regret (NR) learning algorithm for the game so that each secondary user’s strategy

converges to the CE using only local information. Furthermore, we propose a neighbourhood

based learning (NBL) algorithm which yields considerable improvement in the performance

compared to the NR algorithm. Thus, our three major contributions in this paper are as

follows:

1) We formulate the optimization problem for obtaining CE of the spectrum sensing

game among heterogeneous users and show that CE improves the system performance

considerably.

2) We propose f-SW CE scheme, which maximizes the system utility and ensures fairness

to all secondary users.

3) We propose a distributed NBL algorithm that needs exchange of some information

among users but yields higher performance compared to the NR algorithm.

The rest of this paper is organized as follows. In section II, we discuss the system model

and the energy detection mechanism for spectrum sensing. We derive the mixed strategy
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Fig. 1. Scenario and System Model

equilibrium for the game in section III. Our motivation to employ CE for the spectrum

sensing game is presented in sections IV-A and IV-B. The optimization problem is formulated

to maximize the system utility in section IV-C. We discuss schemes that incorporate fairness

at different levels and propose the f-SW CE in section IV-D. We describe NR algorithm and

propose an NBL algorithm in section V. The results are presented and analyzed in section

VI. Section VII concludes the paper.

II. SYSTEM MODEL

A. Network Model

We consider the sensing of M channels of the primary system. There are K secondary

users, located far away from primary base station as shown in Figure 1. In this scenario, the

received signal to noise ratio for secondary users from primary base station is very small.

We consider the frame based sensing and transmission scheme as shown in Figure 2.

Spectrum sensing is performed at the beginning of each frame. The duration of each frame is

T and the sensing duration is Ts. The users in the network have heterogeneous traffic. Among

4



Fig. 2. Cooperative Spectrum Sensing Scheme

them, some users always have data to transmit, while others have lower input data rate, thus,

they need less time to transmit their data and have idle time slots in a frame duration. Ti ≥ 0

is the idle duration for user i if it does not perform sensing, and 0 ≤ Ti2 < Ti is the idle

duration after it performs sensing, if it does. The signaling channel is used to share the

sensing results.

The secondary users that choose to perform sensing cannot transmit data while sensing.

In order to achieve a higher throughput, secondary users will tend to decide not to sense if

they are selfish, and take the advantage by overhearing the sensing results from other users.

However, if no user contributes in sensing, then, no user will achieve any payoff. Thus, the

users are fundamentally non-cooperative, but cooperation can emerge among them as none

of them desires zero or very low payoff. For this kind of scenario, it is important to study

their behavior dynamics such that cooperation can be enforced among the secondary users

to maintain the required level of detection performance.
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B. Spectrum Sensing Technique: Energy Detector

We employ energy detection mechanism to perform sensing. For energy detector, the

received signal x(n) is subject to a hypothesis test as following:




H0 : x(n) = w(n) primary user is absent,

H1 : x(n) = gs(n) + w(n) primary user is present,
(1)

where g is the gain of the channel between primary user transmitter and secondary user

receiver, s(n) is the signal from the primary user, which is assumed to be an i.i.d. random

process with zero mean and variance σ2
s and w(n) is an additive white Gaussian noise with

zero mean and variance σ2
w, n = 1, 2, ...., N is the discrete time index and N is the total

number of samples collected during sensing period.

Neyman-Pearson detection approach for this hypothesis test has two errors. The first is

the error that occurs when the primary signal is absent but the detector declares that the

signal is present, namely probability of false alarm (PFA). The second error occurs when the

channel is occupied, but the detector decides that the channel is vacant. This error is called

probability of miss detection (PMD). Each of these errors is associated with the particular

threshold γ for comparing the power of the received signal with, and can be calculated as

follows [20]:

PFA = Q(
γ −Nσ2

w√
Nσ4

w

), (2)

PD = Q(
γ −N(σ2

w + |g|2σ2
s)√

N(σ2
w + |g|2σ2

s)
2

), (3)

where PD = 1−PMD is the probability of detection and Q(.) is the standard complementary

Gaussian function. Let PD denote the target probability of detection. Then, substituting γ

from (3) to (2), PFA of sensing user i can be written as,

PFA,i = Q(Q−1(PD)(1 + λ) +
√
Nλ), (4)

where λ = |g|2σ2
s

σ2
w

is the received signal to noise ratio of the primary user under H1.

We use OR rule to combine the result of sensing from each secondary user in the sensing

group. If J = {s1, s2, ...., sJ} be the set of secondary users that participate in cooperative

sensing, then, the probability of false alarm for cooperative sensing is,
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P̂FA = (1−
J∏

i=1

PFA,i). (5)

III. GAME THEORETICAL FRAMEWORK FOR COOPERATIVE SPECTRUM SENSING:

MIXED STRATEGY EQUILIBRIUM

We model the spectrum sensing as a non-cooperative game. The players of the game are the

K secondary users K = {1, 2, ...., K}. As in [14], each user gets one channel if the primary

channel is found vacant. The strategy of player i is to choose from the binary strategy set

Ai = {0, 1} at the beginning of each sensing interval, where 0 means not-sense and 1 means

sense.

Let pH0 be the probability that the primary user is absent. Let us define 0 ≤ τi ≤ 1 as the

idle duration that user i will have in each frame after transmitting its data. The achievable

throughput for a sensing user can be written as

Ri(J) =





pH0(1− P̂FA)CH0(1− τi) if J ∈ [1, K] and τ
J
<= τi,

pH0(1− P̂FA)CH0(1− τ
J

) if J ∈ [1, K] and τi < τ
J
< 1

(6)

where τ = Ts
T

is the normalized sensing duration and CH0 is the data rate that one channel

offers the secondary user under H0.

We define the payoff as the difference between the obtained throughput and the associated

energy cost. Therefore, the average payoff for a sensing user is

Ui,s(J) =





U0(1− τi)− στ
J

if J ∈ [1, K] and τ
J
<= τi,

U0(1− τ
J

)− στ
J

if J ∈ [1, K] and τi < τ
J
< 1

(7)

where U0 = pH0(1− P̂FA)CH0 , σ is the energy consumed per unit of time for sensing.

If user i decides not to sense, its payoff can be derived in the similar manner and is given

by

Ui,ns(J) =





U0(1− τi) if J ∈ [1, K − 1],

0 if J = 0.
(8)

For a finite K user game in strategic form G = {K, (Ai)i∈K, (ui)i∈K}, where ui is the

utility function of user i, the strategy space for all users other than i is denoted as A−i. Let

us denote the actions taken by user i and the rest of the users as ai and a−i, respectively.

Then, for all i ∈ K, the strategy a∗i ∈ Ai is a Nash Equilibrium (NE) for user i if for every

alternative strategy ai ∈ Ai, (a∗i 6= ai), the following relation holds:

u(a∗i , a
∗
−i) ≥ u(ai, a

∗
−i). (9)
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Equation (9) indicates that at NE, a player cannot improve its payoff by deviating alone from

the equilibrium, given the strategies of all other players.

If the achievable payoff for being a free rider is greater than the achievable payoff for

contributing in cooperative sensing, each secondary user will tend to be a free rider [14].

Conversely, if the payoff of being a sensing user is greater, all users will take strategy sense.

One of the equilibria for the game is the point where the obtainable payoff for being a

sensing user is same as the obtainable payoff of being a not-sensing user. This point is called

the mixed strategy NE. Let, K1, K2, ...., KL (
L∑
l=1

Kl = K) be the number of secondary users

which choose to contribute in sensing with probabilities p1, p2,....,pL respectively. Then, for

user i which belongs to the group of Kl users, if it decides to contribute in sensing, the

achievable average utility U i,s will be,

U i,s =

KL∑
jL=0

..
Kl−1∑
jl=0

..
K1∑
j1=0


 KL

jL


 pL

jL(1− pL)(KL−jL)..


 Kl − 1

jl


 pl

jl(1− pl)(Kl−1−jl)..

 K1

j1


 p1

j1(1− p1)(K1−j1)Ui,s((
L∑
l=1

jl) + 1),

(10)

The average utility for user i for taking pure strategy not-sense is given by U i,ns,

U i,ns =

KL∑
jL=0

..
Kl−1∑
jl=0

..
K1∑
j1=0


 KL

jL


 pL

jL(1− pL)(KL−jL)..


 Kl − 1

jl


 pl

jl(1− pl)(Kl−1−jl)..

 K1

j1


 p1

j1(1− p1)(K1−j1)Ui,ns(
L∑
l=1

jl).

(11)

Now, using equality of payoff theorem, the mixed strategy NE pi for i ∈ K can be calculated

by solving

U i,s = U i,ns. (12)

We can get L such equations, solving which we can obtain p1, p2,....,pL.

IV. GAME THEORETICAL FRAMEWORK FOR COOPERATIVE SPECTRUM SENSING:

CORRELATED EQUILIBRIUM

A. Preliminary

In this paper, we introduce the concept of correlated equilibrium (CE) for the cooperative

spectrum sensing game among secondary users. The CE [16] is defined in a context where the

8



players are able to access certain common signals. These signals allow players to coordinate

their actions and to perform joint randomization over their strategies according to a certain

distribution. This probability distribution is called CE.

A probability distribution Pd over A1× .....×AK is a CE of game G if and only if for all

i ∈ K, for every strategy ai ∈ Ai and for every alternative strategy ai
′ ∈ Ai,

∑

a−i∈A−i
p(ai, a−i)[u(ai

′
, a−i)− u(ai, a−i)] ≤ 0, (13)

where p(ai, a−i) ≥ 0, represents the probability that user i takes action ai and the rest of the

users take actions a−i. The inequality (13) indicates that when the recommendation to user

i is to choose action ai, then choosing action ai
′ instead of ai cannot give a higher expected

payoff to user i. The set of correlated equilibria is nonempty, closed and convex in every

finite game. Moreover, it may include the distribution that is not in the convex hull of the

NE distributions. In fact, every NE is a CE and Nash equilibria correspond to the special

case where p(ai, a−i) is a product of each individual users probability for different actions.

If we replace the right-hand side of inequality (13) by ε ≥ 0, the CE is called correlated

ε-equilibrium.

The constraints (13) can be solved by using linear programming. This gives a set of

equilibria. Thus, there can be multiple set of the solutions of correlated equilibria. An

appropriate objective function should be defined in order to obtain a refined CE. In this

paper, we focus on social welfare and fairness related objective functions, considering the

unique characteristics of the spectrum sensing game.

B. Motivation

In this section, we explain the motivation behind introducing the concept of CE for the

cooperative spectrum sensing game and present examples to demonstrate that the system

performance can be improved by using CE. There are two reasons why CE is an important

solution for such games. Firstly, some games do not have a pure NE while some games have

multiple NE. Even the mixed strategy NE does not always exist but the set of correlated

equilibria is nonempty, closed and convex in every finite game. Secondly, CE can achieve

better utilities than NE. The following examples illustrate the efficiency of CE.

1) Spectrum Sensing Game Among Homogeneous Users: Let us consider the sensing game

between two homogeneous users, which always have data to transmit. The payoff table for the

two players is shown in Table I. The first element of each cell is the payoff of the first(/row)

9



TABLE I

PAYOFF TABLE FOR A HOMOGENEOUS 2 USER SENSING GAME (PD = 0.95, SNR = −14 dB, τ = 0.5, fs = 1 MHZ

CH0 = 10 Mbps)

sense not-sense

sense (6.75, 6.75) (4.5, 9.0)

not-sense (9.0, 4.5) (0, 0)

user and the second element is the payoff for the second(/column) user. The payoffs were

calculated for σ = 0. The game has two pure Nash equilibria: (4.5, 9.0) and (9.0, 4.5). A

mixed strategy equilibrium is that both user take the action sense with a probability of 2
3
,

that yields average utilities of 6.0 for both of them and the total utility is 12.

In terms of CE concept, let, (q1, q2, q3, q4) be the probabilities of taking action pairs

{0, 0}, {0, 1}, {1, 0}, and {1, 1}, respectively. The CE for this case to maximize the system

utility is (q1 = 0.0, q2 = 0.4702, q3 = 0.4702, q4 = 0.0596). Thus, the achievable utilities for

both users will be 6.75, giving the system utility of 13.5, higher than in the case of mixed

strategy equilibrium. Figure 3 shows the average utilities obtained at mixed strategy NE and

CE. It is clear that CE improves the average utility of each user and hence, it improves the

system utility.
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Fig. 3. Average utilities (K = 2)

2) Spectrum Sensing Game Among Heterogeneous Users: When the users have hetero-

geneity in traffic dynamics, the heterogeneity can be utilized to design a suitable approach for

the case of cooperative spectrum sensing. The secondary users with lower traffic intensity do

not need the full frame duration for their data transmission. The idle duration of such users
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TABLE II

PAYOFF TABLE FOR A HETEROGENEOUS 2 USER SENSING GAME

sense not-sense

sense (6.75, 6.75) (4.5, 7.2)

not-sense (9.0, 4.5) (0, 0)

can be exploited for sensing to increase the network utility, as illustrated in the following

example.

Let us consider the spectrum sensing game between two users with τ1 = 0.0, τ2 = 0.2.

The payoff table for the two players is shown in Table II with other parameters same as for

Table I. The game has two pure Nash equilibria: (4.5, 7.2) and (9.0, 4.5). A mixed strategy

equilibrium is that user 1 takes the action 1 with a probability of 0.91 and user 2 takes the

same action with a probability of 0.67. The average utilities obtainable at mixed strategy

are 6.0 for user 1 and 6.5475 for user 2, respectively with the total utility of 12.5475. The

CE for maximizing the system utility is (q1 = 0.0, q2 = 1.0, q3 = 0.0, q4 = 0.0) and the

achievable utilities for user 1 and user 2 will be 9.0 and 4.5 respectively, giving the system

utility of 13.5. Unlike the case of homogeneous users, the CE probability distribution may

be asymmetric in case of heterogeneous users as we saw in this example.

Always cooperating i.e. {1, 1} is not an equilibrium here because of the lack of cooperation

among selfish users. However, since the users adopt CE strategy, they jointly optimize their

actions by considering the low utility of mutual non-cooperation and the high utility when

both cooperate, thus the degree of cooperation is increased and the system utility improves.

C. Problem Formulation

There are 2K possible combinations of strategies for the sensing game with K secondary

users. Let us represent all possible combination of actions as matrix B = [Bi,j], where

the rows i ∈ [1 2K ] represent the combination of actions of each user and the columns

j ∈ [1 K] indicate the action chosen by each user, the matrix rows starts from {0, 0, .., 0}
and ends at {1, 1, .., 1}, the leftmost element being for user 1. For instance, B4,1 indicates

the action of user 1 for strategy combination 0011 for a 4 user game. When a user, say

kth user, chooses an action: 0 or 1, it will be removed from matrix B and the number of

possible combination of actions for the rest of the users will be 2K−1. Let us represent this

11



matrix as C = [Ci,j] : ∀i ∈ [1 2(K−1)],∀j ∈ [1 K], j 6= k, which is of size 2K−1 × (K − 1).

The optimization problem (P1) for the cooperative spectrum sensing game to obtain CE that

maximizes the social welfare (SW), can be defined as P1 (CE that maximizes social welfare)

max
p

K∑

i=1

2K−1∑

l=1

{
p(ai = 0, [ak]

K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,ns(Ks)

+ p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,s(Ks + 1)

}

(14)

s.t.

2K−1∑
l=1

p(ai = 0, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,ns(Ks)− Ui,s(Ks + 1)) ≥ 0 ∀i ∈ K, (15)

2K−1∑
l=1

p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,s(Ks + 1)− Ui,ns(Ks)) ≥ 0 ∀i ∈ K, (16)

p(ai = 0, ..) ≥ 0, p(ai = 1, ..) ≥ 0.

where Ks =
K∑

k=1,k 6=i
ak, is the total number of users performing cooperative sensing, for each

combination of strategies, Ui,s(.) and Ui,ns(.) are the utilities given by (7) and (8) respectively.

P1 is a linear programming problem and it can be solved in a centralized fashion by using

either the simplex method (SM) or the interior point method (IPM).

It is noteworthy that the optimization problem P1 looks similar for the case of homoge-

neous as well as heterogeneous users. However, the difference in the two cases lies in the

utility functions: Ui,s(Ks + 1) and Ui,ns(Ks). For the case of homogeneous users, the utility

achievable for each user is the same for one value of Ks, irrespective of which users are

contributing in sensing. This implies that the probabilities of choosing the combinations of

strategies for which Ks is the same, are equal. On the other hand, when we consider users

with heterogeneous traffic dynamics, the value of τi is different for each user. This means,

different users can get different utilities even for the same value of Ks. Consequently, the

probability distribution may also be asymmetric.

D. Fairness Consideration and Utility Maximization

When the users are heterogeneous, social welfare, although yields the highest system utility,

it may lead users that have worst conditions or those that demand less resources to starve.

The loss that the less well-off users suffer when the system utility is maximized, may be

undesirable in some situations. Let’s consider the example in section IV-B2. User 2 has 20%
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less traffic compared to user 1. But the utility of user 1 is twice the utility of user 2. Even

for smaller values of τ2 e.g., τ2 = 0.05, the payoffs that the users obtain will be 9.0 and 4.5

respectively. The difference in the utilities they get, increases further for higher values of τ .

Eg., when τ = 0.9, user 1 still gets a utility of 9.0 but the utility of user 2 will be 0.9. The

fairness issue is critical in this case and it is one of the worst consequences of maximizing

the system utility. In such systems, the objective function should be fairness centric rather

than social welfare. Next, we discuss two schemes that consider two standard definition of

fairness, and then we propose a new scheme to maximize the social welfare incorporating

fairness.

1) Max-min Fairness (MMF): One of the common approaches to focus on fairness, is

to use max-min fairness as the objective function. The optimization problem (P2) for the

cooperative spectrum sensing game to obtain CE that maximizes the utility of the worst user,

can be defined as P2 (CE that maximizes the utility of the worst user)

max
p

min
i

2K−1∑

l=1

{
p(ai = 0, [ak]

K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,ns(Ks)

+ p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,s(Ks + 1)

}

(17)

s.t.

2K−1∑
l=1

p(ai = 0, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,ns(Ks)− Ui,s(Ks + 1)) ≥ 0 ∀i ∈ K, (18)

2K−1∑
l=1

p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,s(Ks + 1)− Ui,ns(Ks)) ≥ 0 ∀i ∈ K, (19)

p(ai = 0, ..) ≥ 0, p(ai = 1, ..) ≥ 0.

P2 is also a linear programming problem and it can be solved in a centralized fashion by

using either the SM or the IPM.

When the difference in user requirements is not significant, using max-min fairness as

the objective function in P2 yields almost the same total utility as in P1 but it improves

the utility of the less-well off users significantly. This means, the max-min fairness greatly

improves the fairness without considerably degrading the system utility. On the other hand, if

the achievable utilities of the users have a vast difference, and we try to optimize the utility

of the worst user(s), the total utility will be affected significantly.
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2) Proportional Fairness (PF): There are several studies on rate control algorithms and

dynamic spectrum allocation with fairness [25]-[27]. PF ensures more fairness than the SW

scheme, while achieving better performance than the MMF scheme. The proportionally fair

distribution is a feasible vector x such that if one element of x is increased by y%, the total

percentage of reduction that has to be applied to the other elements of x in order to get

another feasible distribution vector must be more than y%. The optimization problem (P3)

for the cooperative spectrum sensing game to obtain CE that maximizes proportional fairness,

can be defined as

P3 (CE that maximizes proportional fairness)

max
p

K∑

i=1

2K−1∏

l=1

{
p(ai = 0, [ak]

K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,ns(Ks)

+ p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,s(Ks + 1)

}

(20)

s.t.

2K−1∑
l=1

p(ai = 0, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,ns(Ks)− Ui,s(Ks + 1)) ≥ 0 ∀i ∈ K, (21)

2K−1∑
l=1

p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,s(Ks + 1)− Ui,ns(Ks)) ≥ 0 ∀i ∈ K, (22)

p(ai = 0, ..) ≥ 0, p(ai = 1, ..) ≥ 0.

P3 is also a linear programming problem and it can be solved in a centralized fashion by

using either the SM or the IPM.

3) Fair Social Welfare (f-SW): System efficiency and fairness are two contradictory objec-

tives. The key motivation behind deploying CE for the cooperative spectrum sensing game is

to improve the overall system utility by utilizing the heterogeneity among the secondary users.

However, addressing the fairness issue among the secondary users is of great importance too.

We combine these two aspects and propose a new fair and efficient CE for the game, and

we name it f-SW CE.

The average utility of user i at CE is




U i =
2K−1∑
l=1

p(ai = 0, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,ns(Ks)

+
2K−1∑
l=1

p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,s(Ks + 1).

(23)
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Among K secondary users, let U j be the utility of the highest traffic user(s) i.e. U j =

max(Ui). In the proposed scheme, the highest traffic user gets the highest utility and the

difference in the utility obtained by user i is related to their traffic dynamics by an additional

constraint as following:

U j − U i

U j

≤ dτi ∀i, j ∈ K, i 6= j, (24)

where d ≥ 1 is a scaling parameter such that dτi ≤ 1 ∀i. Equation (24) can be written as

U j(1− dτi)− U i ≤ 0 ∀i, j ∈ K, i 6= j. (25)

The proposed CE aims at maximizing the system utility and incorporates fairness cri-

teria in it. The optimization problem (P4) for the f-SW CE scheme can be defined as

P4 (CE that maximizes system utility ensuring fairness)

max
p

K∑

i=1

(
2K−1∑

l=1

p(ai = 0, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,ns(Ks)

+
2K−1∑

l=1

p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )Ui,s(Ks + 1))

(26)

s.t.

2K−1∑
l=1

p(ai = 0, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,ns(Ks)− Ui,s(Ks + 1)) ≥ 0 ∀i ∈ K, (27)

2K−1∑
l=1

p(ai = 1, [ak]
K
k=1,k 6=i = [Cl,k]

K−1
k=1 )(Ui,s(Ks + 1)− Ui,ns(Ks)) ≥ 0 ∀i ∈ K, (28)

U j(1− dτi)− U i ≤ 0 ∀i, j ∈ K, i 6= j (29)

p(ai = 0, ..) ≥ 0, p(ai = 1, ..) ≥ 0.

As (25) is a linear constraint, P4 is a linear program, and thus it can also be solved using

either the SM or the IPM.

Note that the proposed scheme is different and more flexible than PF CE scheme. In f-SW

CE scheme, fairness can be controlled through parameter d for given τ and τi, which is not

the case in PF CE.
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V. DISTRIBUTED IMPLEMENTATION OF CE

A. No-Regret Algorithm

In order to solve the optimization problem for computing the CE, each player needs to

know the payoff matrix of other players as well. This makes the concept of CE difficult to

be implemented distributedly. We propose to use a No-Regret (NR) algorithm [17] so that

the secondary users’ strategy converges to the CE, by using only local information of each

secondary user.

The sensing game is played repeatedly through time t = 1, 2, 3, ...... Given the history

of play of each user until time t: h(t) = (am)tm=1, where am means the strategy taken at

time index m, each player i ∈ K chooses (at+1
i ) ∈ Ai according to a probability distribution

pt+1
i ∈ ∆(Ai), where ∆(Ai) = A1 × A2 × ....× AK , which can be calculated based only on

the local information of each player.

Let r, r′ ∈ Ai be two different strategies of player i. Then, for every action r that i took

until time t, if it had taken strategy r′ instead, the resulting difference in utility would have

been

Dt
i(r, r

′
) =

1

t

∑

m≤t:ami =r

[ui(r
′
, am−i)− ui(am)]. (30)

The average regret until time t for not playing strategy r′ every time it played strategy r

in the past is

Rt
i(r, r

′
) = max(Dt

i(r, r
′
), 0). (31)

The algorithm is shown in detail in Table III. The average regret in (31) can be calculated

based only on the local information, which enables the NR algorithm to be implemented in

a distributed manner.

At each stage of the game t, let zt ∈ ∆(A) be the empirical distribution of the Q-tuples

of strategies played until time t. Then, for every a ∈ A,

zt(a) =
1

t
|m ≤ t : am = a|, (32)

where |.| is the number of times the event inside || occurs.

If every player plays according to NR learning algorithm, then the empirical distributions

of play zt converge almost surely (with probability one) to the set of correlated equilibria

of the game as t→∞ [17]. A necessary and sufficient condition for this is that, all regrets
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TABLE III

THE NO-REGRET LEARNING ALGORITHM

Choose the probability distribution p1i ∈ ∆(Ai) randomly for each user i at the beginning of the game i.e. at t = 1.

for t = 1, 2, , ..... do

Compute Dt
i(r, r

′
) using (30).

Compute Rti(r, r
′
) using (31).

If r ∈ Ai be the strategy chosen by user i at time t i.e. ami = r, then, the probability distribution

pt+1
i ∈ ∆(Ai) used by user i at time t+ 1 can be calculated using

pt+1
i (r

′
) = 1

µ
Rti(r, r

′
) for all r

′ 6= r,

pt+1
i (r) = 1−∑

r
′∈Ai,r

′ 6=r p
t+1
i (r

′
),

where µ > 2Mi(ni − 1) ∀i ∈ K, Mi is the upper bound for |ui(.)| and ni is the number of strategies of user i.

end for when the probability distribution converges

converge to zero. In a more general form, this condition can be represented as the following

proposition:

Proposition:Let (at)t=1,2,.. be a sequence of plays (at ∈ A ∀t) and let ε ≥ 0. Then, ∀i ∈ K
and every r, r′ ∈ Ai with r 6= r

′ ,

lim
t→∞

supRt
i(r, r

′
) ≤ ε (33)

if and only if the sequence of empirical distributions zt converge to the set of correlated

ε-equilibria.

Proof: For each player i and every r, r′ ∈ Ai, using (30) and (32), we get,

Dt
i(r, r

′
) =

∑

a∈A,ai=r
zt(a)[ui(r

′
, am−i)− ui(am)]. (34)

On any subsequence where zt converges, say zt′ → ψ ∈ ∆(A), (30) can be written as,

Dt
i(r, r

′
) =

∑

a∈A,ai=r
ψ(a)[ui(r

′
, am−i)− ui(am)]. (35)

The result is immediate from the definition of correlated ε-equilibrium and (31). This com-

pletes the proof.

This algorithm requires player i to know its own payoff matrix but not those of other

players, and at time t+ 1, the history of play h(t). In terms of computation, player i needs

to keep a record of time t along with 2(2− 1) = 2 values of Dt
i(r, r

′
) for r 6= r

′ in Ai, and

has to update these numbers after each frame.
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B. Neighbourhood Based Learning Algorithm

We propose a new algorithm based on learning from the neighbours to improve the per-

formance of the NR algorithm. We call it Neighbourhood Based Learning (NBL) algorithm.

In this algorithm, the strategy of each user is calculated based on the total regret rather than

the user’s individual regret.

Let r, r′ ∈ Ai be two different strategies of player i. Then, for every action r that user i

took until time t, if it had taken strategy r′ instead its total utility would have been different.

The resulting difference in total utility would have been

Dt
i,net(r, r

′
) =

1

t

∑

m≤t:ami =r

∑

l∈K
{ul(ami = r

′
, am−i)− ul(am)}. (36)

To compute Dt
i,net(r, r

′
), at time t+1, each user should have the information about the history

h(t), as in NR algorithm. In addition, each user needs to compute the resulting difference in

the utilities of all other users for not having played r′ everytime it played r in the past . Each

user gets the information required to compute this difference through its neighbours. This

information exchange accounts for an additional cost for the proposed algorithm. However,

in the spectrum sensing game, the only extra parameter that each user needs to exchange in

the NBL algorithm is τi∀i ∈ K, only once at the beginning of the game. Thus, the overhead

due to this information exchange is negligible.The average net regret until time t for not

having played r′ every time it played r in the past is

Rt
i,net(r, r

′
) = max(Dt

i,net(r, r
′
), 0). (37)

The detailed algorithm is described in Table IV. In terms of computation in the NBL

algorithm, player i needs to keep a record of time t along with 2(2 − 1) = 2 values of

Dt
i,net(r, r

′
) for r 6= r

′ in Ai and has to update these numbers after each frame. But calculating

Dt
i,net(r, r

′
), needs K − 1 times more computation in this case.

Computing correlated equilibria for multi-player games becomes rapidly intractable in the

general case when the number of players is large because the input length is exponential

[18]. However, using the NBL algorithm, the users can start with an arbitrary strategy and

then, converge to the CE, with some extra computations which is only linearly proportional

to the number of users.
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TABLE IV

THE NEIGHBOURHOOD BASED LEARNING ALGORITHM

Choose the probability distribution p1i ∈ ∆(Ai) randomly for each user i at the beginning of the game i.e. at t = 1.

for t = 1, 2, , ..... do

Compute Dt
i,net(r, r

′
) using (36).

Compute Rti,net(r, r
′
) using (37).

If r ∈ Ai be the strategy chosen by user i at time t i.e. ami = r, then, the probability distribution

pt+1
i ∈ ∆(Ai) used by user i at time t+ 1 can be calculated using

pt+1
i (r

′
) = 1

µ
Rti,net(r, r

′
) for all r

′ 6= r,

pt+1
i (r) = 1−∑

r
′∈Ai,r

′ 6=r p
t+1
i (r

′
),

where µ is a sufficiently large number.

end for when the probability distribution converges

TABLE V

PARAMETERS USED FOR ANALYSIS

Parameters Values

PD 0.95

SNR −14 dB

τ 0.5

fs 1 MHz

CH0 10 Mbps

VI. NUMERICAL RESULTS AND ANALYSIS

The parameters used for evaluation are shown in Table V. Different values of the parameters

will give different CE probability distributions. However, for the purpose of illustration, we

use a set of realistic parameters in all analyses in this section. We consider K = 3 with

τ1 = τ2 = 0.0, τ3 = 0.2, unless otherwise stated. We refer to users 1 and 2 as heavy traffic

users and user 3 a light traffic user. In addition, for all plots in this section we consider

σ = 0, but please note that, similar analysis can be done for σ 6= 0 as well using our

analytical framework.

A. Utility Maximization for Heterogeneous Users: SW CE

The optimal CE probability distribution for this game can be obtained by solving P1. The

utilities obtained are depicted in Figure 4. This figure indicates that the system utility is

maximized if light traffic user(s) is(are) selected to contribute more in sensing. When SW
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is considered, the light traffic user may get even less utility than in mixed strategy NE but

the heavy traffic users get higher utilities compared to the mixed strategy NE. Thus the total

utility is higher in SW CE than in mixed strategy NE.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

U
ti
lit

ie
s

τ

 

 

U
avg,HT

,

mixed strategy

U
avg,LT

,

mixed strategy

U
tot

,

mixed strategy

U
avg,HT

, CE

U
avg,LT

, CE

U
tot

, CE

Fig. 4. Comparison of average utilities (CE and mixed strategy)

B. Comparison of SW CE, MMF CE and PF CE Schemes

We plot the utilities obtained by each user and the total utility in Figure 5, for the three

schemes. The figure depicts that the utility of the heavy traffic users (users 1 and 2) and the

total utility are high for the case of SW. In contrast, for the light traffic user (user 3), the

utility is better when MMF is considered. The performance of PF is close to that of SW for

smaller values of τ and it approaches MMF for higher values of τ .
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C. Performance of the Proposed f-SW CE Scheme

We compare the total utilities obtained at f-SW CE with SW CE, PF CE and MMF CE

schemes in Figure 6 for the scaling parameter d = 2. From the figure we see that the total

utility at f-SW CE is less than in SW CE scheme, but it is higher than in MMF CE scheme

for all values of τ . The total utility is better than in PF CE scheme as well for τ > 0.4. Figure

7 depicts the utilities per user obtained using SW CE, MMF CE and f-SW CE schemes. One

of the issues with MMF scheme is that the utility of users 1 and 2 is less than that of user

3 after τ > 0.5. This is not fair to users 1 and 2. In the proposed scheme, this problem is

eliminated as the utility of users 1 and 2 is always higher than that of user 3. The utilities of

users 1 and 2 is lower than in SW CE but higher than in MMF CE. Moreover, the utility of

user 3 is slightly less in the proposed scheme than in MMF CE but improves considerably

compared to SW CE scheme. Thus, fairness is achieved in the proposed scheme keeping the

total utility higher than in MMF CE scheme.
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D. Proposed NBL algorithm

The probability distribution for NBL algorithm is computed in similar manner as in case of

the NR algorithm. Here, we consider a two user game with τ1 = 0.0, τ2 = 0.2. q1, q2, q3, q4 are

the probabilities of the strategy combinations: {0, 0}, {0, 1}, {1, 0} and {1, 1}, respectively.

Figure 8 shows the performance of the NBL algorithm. The game converges to the probability

distribution (q1, q2, q3, q4) = (0.0, 0.37, 0.08, 0.55), indicating that the second user is involved
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more in sensing. Although not shown here, the sensing contribution from second user i is

more if τi is higher.
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Figure 9 compares the performance of the NR algorithm and the NBL algorithm for the

case of two users with τ1 = 0.0, τ2 = 0.2 for different values of τ . The figure shows that

the total utility obtained using the NBL algorithm is much closer to the total utility at SW

CE compared to the total utility obtained using the NR algorithm. The improvement in the

performance is more visible for larger values of τ .

One of the common questions for such schemes is, when each user is selfish, why would it

exchange information and make more computations for social welfare if this does not benefit
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itself. However, if the users act based on net the regret instead of the individual regret, the

utility of each individual user also increases. This is what motivates the users to exchange

information and to make extra computations. To consider more general case, we show the

performance (average utility of each user) of the proposed algorithm for the case of 10 users

in Figure 10 with τ1, τ2, τ3 = 0.0, τ4, τ5 = 0.1, τ6, τ7, τ8 = 0.2, τ9, τ10 = 0.3. The figure shows

that the performance of the NBL algorithm is close to that of the NR algorithm until about

τ = 0.3. The improvement brought by the proposed algorithm is significant for higher values

of τ . As the average utility of each user improves in NBL algorithm, it is obvious that the

total utility in NBL algorithm is higher compared to the NR algorithm.
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VII. CONCLUSION AND FUTURE WORK

We introduced the concept of correlated equilibrium for the cooperative spectrum sens-

ing game among non-cooperative secondary users of heterogeneous traffic dynamics and

illustrated that the correlated equilibrium improves the payoff of the users compared to

the mixed strategy equilibrium. We proposed fair social welfare correlated equilibrium to

maximize the social welfare without letting some users starve. We showed that the proposed

scheme always performs better than the max-min fairness scheme in terms of total utility

and ensures more fairness than the social welfare scheme. In order to implement correlated

equilibrium in distributed manner, we proposed the neighbourhood based learning algorithm

and the results show that this algorithm improves the performance compared to the no-regret

algorithm significantly. As a future work, we would like to extend our study by focussing

on the aspect of dynamic formation/splitting of the users for cooperative spectrum sensing

and the infrastructure requirement for the same.
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Abstract

Demand Response Management (DRM) is a key component in the smart grid to effectively

reduce power generation costs and user bills. However, it has been an open issue to address the

DRM problem in a network of multiple utility companies and consumers where every entity is

concerned about maximizing its own benefit. In this paper, we propose a Stackelberg game between

utility companies and end-users to maximize the revenue of each utility company and the payoff of

each user. We derive analytical results for the Stackelberg equilibrium of the game and prove that a

unique solution exists. We develop a distributed algorithm which converges to the equilibrium with

only local information available for both utility companies and end-users. Though DRM helps to

facilitate the reliability of power supply, the smart grid can be succeptible to privacy and security

issues because of communication links between the utility companies and the consumers. We study

the impact of an attacker who can manipulate the price information from the utility companies. We
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also propose a scheme based on the concept of shared reserve power to improve the grid reliability

and ensure its dependability.

Index Terms

Demand response management, dependability, reliability, reserve power, security, smart grid,

Stackelberg game.

I. INTRODUCTION

The demand of electricity consumers has been growing due to increased use of machines

and the new types of appliances such as plug-in hybrid electric vehicles. The concern towards

the impact on environment and on the reliability of power supply, has also been rising.

However, traditional power grids are not able to meet these demands and requirements because

of their inflexible designs and lack of prompt communications between the supply and the

demand sides. Recent blackouts [1] have indicated the inefficiency and serious reliability

issues of the traditional grid. Therefore, it is essential to transform the traditional power grid

into a more responsive, efficient and reliable system. Smart grid [2] is a future power grid

system that incorporates a smart metering infrastructure capable of sensing and measuring

power consumption from consumers with the integration of advanced information and com-

munication technologies (ICT). Thus the power generation, distribution and consumption is

efficient, more economical and more reliable in the smart grid network.

Demand Response Management (DRM), a key feature of the smart grid, is defined as

changes in electric usage by end-users in response to changes in the price of electricity over

time or across different energy sources. The importance of DRM can go far beyond reducing

the electricity bills of consumers or the cost of generating power. It helps to balance the

demand and supply in the power market through real-time pricing. It can also provide short-

term reliability benefits as it can offer load relief to resolve system and/or local capacity

constraints.

The recent studies on DRM can be categorized mainly into two areas: utility company

(UC) oriented and end-user oriented. There has been considerable amount of work in power

systems on supply-demand balance and market clearance [3], [4]. Such studies on power

systems have focused on the economic aspects at the planning and generation level and have

not considered user-utility as a significant component. On the other hand, the literature on

user-utility has introduced schemes to maximize user utilities, without considering the power
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generation costs or the revenue of the UCs. This has motivated us to consider the issue of

benefit maximization for users alongside with the revenue maximization for the UCs. Our

work aims to bridge the gap between the existing two research directions. In addition, with

increasing concerns towards environment, incorporating renewable energy resources becomes

important in the smart grid. This has motivated us to include in our work renewable energy

sources in addition to traditional fossil fuel based sources.

We study the interactions among multiple UCs and multiple consumers, who aim to

maximize their own payoffs. The UCs maximize their revenues by setting appropriate unit

prices. The consumers choose power to buy from UCs based on the unit prices. The payoff

of each consumer depends on the prices set by all the sources. In turn, the price set by each

UC also depends on the prices of other UCs. These complicated interactions motivate us to

use a game theoretical framework in our analysis. We develop a Stackelberg game between

the UCs and the users where the UCs play a non-cooperative game and the consumers find

their optimal response to the UCs’ strategies. The interactions between the UCs and the users

are enabled by the bidirectional communications between them.

An advanced metering infrastructure (AMI) is a communication infrastructure that enables

meters and utilities to exchange information such as power consumption, price update, or

outage awareness. Smart meters play the key role of gateway between the customers′ premises

and the utility network. Their functionality make them an interesting target for attackers [5].

Therefore it is important to assess possible consequences of attacks and develop mechanisms

to maintain the reliability and resilience of the grid in the face of unanticipated events. We

assess the impact of an attacker that can manipulate the price of the UCs, and propose a

scheme to ensure the reliability of power supply in the presence of an attacker, thus making

the smart grid a dependable system.

We have three major contributions in this work.

1) We establish an analytical model for the multiple-UCs multiple-consumers Stackelberg

game and characterize its unique Stackelberg equilibrium (SE).

2) We propose a distributed algorithm which converges to the SE with only local infor-

mation of the users and the UCs.

3) We propose a scheme based on a common reserve to improve the dependability of

the smart grid. We also discuss reliability of the grid when one of the sources gets

disconnected from the grid due to occurance of some physical incidents.

The rest of the paper is organized as follows. Related work is described in Section II. We
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introduce the system model and the communication model in Section III. In Section IV, we

formulate the problem as a Stackelberg game and prove the existence and uniqueness of the

SE. We propose a distributed algorithm for the game which converges to the SE, in Section

V. In Section VI, we study the impact of an attacker as a possible threat to grid stability

and propose a scheme based on maintaining a shared reserve power. We provide numerical

results and discussion in Section VII. Section VIII concludes the paper.

II. RELATED WORK

There are several studies on DRM in the smart grid [6]-[10]. In [6], the authors have

formulated the energy consumption scheduling problem as a non-cooperative game among

the consumers for increasing strictly convex cost functions. In [7], the authors have considered

a distributed system where price is modeled by its dependence on the overall system load.

Based on the price information, the users adapt their demands to maximize their own utility. In

[8], a robust optimization problem has been formulated to maximize the utility of a consumer,

taking into account price uncertainties at each hour. In [9], the authors have exploited the

awareness of the end-users and proposed a method to aggregate and manage end-users’

preferences to maximize energy efficiency and user satisfaction. In [10], a dynamic pricing

scheme has been proposed to incentivize costumers to achieve an aggregate load profile

suitable for utilities, and the demand response problem has been investigated for different

levels of information sharing among the consumers in the smart grid. In [11], the unit

commitment scheduling problem in smart grid communications has been studied using a

partially observable Markov decision process framework for stochastic power demand loads

and renewable energy resources. However, the analyses in [6]-[11], are limited in the sense

that there is either only one source or a number of sources/utilities treated as one entity.

Differently in our study, we include multiple UCs and consumers whose goal is to maximize

their own payoffs, using the concept of Stackelberg game.

We note that there is rich literature using Stackelberg games in the context of congestion

control, revenue maximization and cooperative transmission [14]-[15]. Our approach is similar

to those in congestion control to model the behavior of end-users, but our study involves

multiple UCs, and we adopt the non-cooperative game framework among UCs using the

Stackelberg solution concept.

DRM enhances the reliability of the grid [16] when the data communications is perfect.

However, the data communications in the smart grid may suffer attacks such as data manipula-
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tion or false data injection [17] from malicious nodes. In such cases, the UC or the users may

incur economic loss or physical impact e.g., grid instability. In [18], the authors have studied

the utility-privacy tradeoffs of smart meter data and shed light on the impact of leakage of

the data on the utilities of both the users and the suppliers. In [19], the authors have proposed

a secure routing protocol incorporating delay due to queue building. They have investigated

the tradeoffs between efficiency, reliability and resilience in centralized and decentralized

approaches for secure routing. [20] proposes a six-layer hierarchical security architecture

for the smart grid, identifying the security challenges present at each layer and addressing

security issues at three different layers. In [21] the authors have developed a formal model

for the C12.22 standard protocol to guarantee that no attack can violate the security policy

without being detected based on the concept of specification-based intrusion detection. It

is observed that there is no work that addresses the impact of attacks from an outsider on

DRM through the information exchange between the users and the UCs. Because of the

communications between the consumers and the UCs, there are inherent vulnerabilities that

attackers can exploit to harm the utilities of either side or to even cause physical damage on

the system.

III. SYSTEM MODEL

We consider N end-users, which we also call customers, and K electricity UCs. Fig. 1

depicts an overview of the scenario. The utility side consists of the renewable and non-

renewable energy sources. The fossil-fuel based energy generators have certain amount of

power available all the time. The power generated by the fossil fuel generators creates

pollution to the environment. On the other hand, the renewable energy sources can be seen as

pollution free but they do not always have power available. When renewable energy sources

are incorporated into the system, we add uncertainties to the utility side. There are many

studies where discrete time Markov chain models have been used to model the availability

of energy from the renewable sources (such as wind and solar energy) [11], [23], [24]. We

incorporate the renewable energy sources too, and consider a stationary distribution for the

states of the renewable energy generators. The end-user side consists of several consumers,

which may be residential users, commercial users or industries. These different types of users

have different needs for electricity. We differentiate them in terms of available budget which

is an upper bound on their affordability to buy power. We employ a utility function for each

user that increases with the amount of electricity the user can consume. At the same time,
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Fig. 1. Smart grid system model with multiple energy sources and end-users

we incorporate a cost constraint for each user. The UCs and the consumers have bidirectional

communications for exchanging price and demand information as shown in Fig. 2. The UCs

can also communicate with each other. The users receive the price information from the

utility companies and transmit their demand to them. The data communication is carried

out through the communication channel using wireless technologies, e.g., WiFi, WiMAX, or

LTE.

In practice, the electricity generation, distribution and consumption can be decomposed

into three layers as described in [22]: generators, aggregators or utility companies, and the

end-users. The acquisition of power by the utility companies from the generators is a separate

process. In this paper, we focus on the interactions between the UCs and the end-users. In

practice, the unit price of a UC is determined through the market by the system operator.

In this paper, the UCs play a non-cooperative game at the market level. Different from the

traditional perfect competitive market, the UCs participate in an imperfect competition. In a

perfectly competitive market, no market participant has the ability to influence the market

price through its individual actions, i.e., the market price is a parameter over which firms have

no control. Consequently, each firm should increase its production up to the point where its
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Fig. 2. Illustration of communications between utility companies and consumers

marginal cost equals the market price. This is valid when the number of market participants

is large and none of the participants controls a large proportion of the production. However,

in this paper, we consider a finite number of market participants (UCs) and each individual

UC has non-infintesimal influence in the market. This leads to imperfect competition, where

each firm determines its unit price based on its available power.

IV. UTILITY-USER INTERACTION: STACKELBERG GAME

When there are multiple UCs with different energy prices, the cost to each user varies

according to the prices set by each UC. In addition, the price set by a UC also depends on

the prices of other UCs. Game theory provides a natural paradigm to model the behavior

of the end-users and of the UCs in this scenario. The UCs set the price per unit power and

announce it to the users. The users respond to the price by demanding an optimal amount of

power from the UCs. Since the UCs act first and then the users make their decision based

on the prices, the two events are sequential. Thus, we model the interactions between the

UCs and the end-users as a Stackelberg game [25]. In our proposed game, the UCs are the

leaders and the consumers are the followers. It is a multi-leaders and multi-followers game.

The demand of the users depends on the unit price set by the UCs as well as their own
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cost constraints. In turn, the UCs optimize their unit prices according to the response of the

consumers.

A. User Side Analysis

Let xn,k be the demand of user n from UC k. We define the utility of user n, Uuser,n as

Uuser,n = αn ∑
k∈K

ln
(
βn + xn,k

)
, ∀k ∈K , (1)

where αn and βn are constants. The ln function has been widely used in economics for

modeling the preference ordering of users and for decision making [12], [13].

The motivation behind choosing the utility function for user n as in (1) is that it is closely

related to the utility function αn ∑ ln(xn,k) that leads to proportionally fair demand response

[12] [14]. If we use the utility function αn ∑ ln(xn,k), then a user gets a payoff of −∞ with

respect to (w.r.t.) UC k when xn,k = 0. With βn, when xn,k = 0, its benefit with w.r.t. that UC

becomes finite. A typical value of βn is 1.

Let yk be the unit price set by UC k and let Cn > 0 denote the budget of user n. For a

given set of prices from the UCs {y1,y2, . . . ,yK}, user n ∈N calculates its optimal demand

response by solving the user optimization problem (OPuser)

max
xn:={xn,k,∀k∈K }

Uuser,n (2)

s.t. ∑
k∈K

ykxn,k ≤Cn, (3)

xn,k ≥ 0; ∀k ∈K . (4)

OPuser is a convex optimization problem. Hence, the stationary solution is unique and optimal.

Let us start the analysis with N users and 2 UCs. We will later generalize the results to

K UCs. The optimization problem for user n in this case is

max
xn:={xn,1,xn,2}

αn

2

∑
k=1

ln(βn + xn,k) (5)

s.t. y1xn,1 + y2xn,2 ≤Cn, (6)

xn,1,xn,2 ≥ 0. (7)

Using Lagrange’s multipliers λn,1,λn,2 and λn,3 for constraints (6) and (7), we convert the

constrained optimization problem (5) - (7) to the form

Luser,n = αn

2

∑
k=1

ln
(
β1 + xn,k

)

−λn,1

(
2

∑
k=1

ykxn,k−C1

)
+λn,2xn,1 +λn,3xn,2 (8)
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and the complementarity slackness conditions

λn,1

(
2

∑
k=1

ykxn,k−Cn

)
= 0, (9)

λn,2xn,1 = 0, (10)

λn,3xn,2 = 0, (11)

λn,1 > 0,λn,2,λn,3,xn,1,xn,2 ≥ 0. (12)

The first-order optimality condition for the maximization problem is ∇Luser = 0, where Luser =

{Luser,n,∀n ∈N }. Since the only coupling between the users is through yk, ∇Luser = 0 leads

to
∂Luser,n

∂xn,k
= 0,∀n ∈N ,k ∈K , i.e., ,





αn
βn+xn,1

−λn,1y1 +λn,2 = 0,
αn

βn+xn,2
−λn,1y2 +λn,3 = 0.

(13)

The optimal demands of users can take one of the following forms.

1) Case 1 : xn,1,xn,2 > 0: In this case, λn,2 = λn,3 = 0. Substituting λn,2 and λn,3 into (13)

yields

xn,k =
αn

λn,1yk
−βn, ∀n ∈N ,k = 1,2. (14)

Using (14) in (9) yields

1
λn,1

=

Cn +βn
2
∑

k=1
yk

2αn
. (15)

Now substituting (15) into (14) yields

xn,k =

Cn +βn
2
∑

k=1
yk

2yk
−βn, k = 1,2. (16)

2) Case 2 : xn,1 > 0,xn,2 = 0: This is the case when
Cn+βn

2
∑

k=1
yk

2y2
= βn. Equation (10) implies

λn,2 = 0 and

xn,1 =
αn

λn,1y1
−βn. (17)

Substituting xn,1 into (9), we get,

λn,1

(
αn

λn,1
−βny1−Cn

)
= 0.
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Since λn,1 > 0, αn
λn,1
−βny1−Cn = 0 which gives λn,1 =

αn
Cn+βny1

. Using λn,1 in (17), we obtain

xn,1 =
Cn +βny1

y1
−βn =

Cn

y1
. (18)

Equation (18) can be written as xn,1 =
Cn+βn(y1+y2)

2y1
+ Cn−βn(y1+y2)

2y1
. From

Cn+βn
2
∑

k=1
yk

2y2
= βn we

get, βn(y2−y1) =Cn. Using this, we can write xn,1 =
Cn+βn(y1+y2)

2y1
+ βn(y2−y1)−βn(y1+y2)

2y1
. After

simplifying we get,

xn,1 =
Cn +βn(y1 + y2)

2y1
−βn. (19)

3) Case 3 : xn,1 = 0,xn,2 > 0: Similar analysis can be performed as in case 2 to obtain

xn,2 =
Cn

y2
=

Cn +βn(y1 + y2)

2y2
−βn. (20)

4) Case 4 : xn,1 = 0,xn,2 = 0: In this case, λn,1 = 0 and λn,2,λn,3 can be any non-negative

real value. This is an extreme case, which does not happen unless Cn = 0 or yk = ∞ ∀k ∈K .

Note that in cases 1-3 discussed above, both power constraint and the cost constraint are

satisfied as equalities.

Thus using (16), (19) and (20), the demands for the general case of N users and K UCs

that covers cases 1−3 for a given set of {yk}, can be formulated as

xn,k =
Cn +βn ∑k∈K yk

Kyk
−βn, (21)

where xn,k ≥ 0,∀k ∈K ,n ∈N . Since xn,k ≥ 0 ∀n ∈N ,∀k ∈K , (21) implies that

Cn +βn

(
∑

g∈K ,g6=k
yg

)
≥ βn(K−1)yk, ∀n ∈N ,∀k ∈K . (22)

Conversely, user n will demand xn,k ≥ 0 from UC k if

yk ≤
[

Cn +βn
(
∑g∈K ,g6=k yg

)

βn(K−1)

]
. (23)

We will derive a closed form for the necessary condition for xn,k ≥ 0,∀k ∈K ,∀n ∈N to

be satisfied, in Section IV-B2.

B. Utility Side Analysis

Let Pk > 0 denote the available power of UC k. Each UC aims to sell all the available

power. If it had been a single UC case, it could have a set a very high unit price to maximize

its revenue. In this case however, there are two factors that limit the unit price of the UCs.

The first one is the budget of the users and the second one is the competition among the

UCs. The UCs play a non-cooperative price selection game with each other to decide the
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optimal unit price. We assume that Pk is given for all k ∈K . For given Pk, since the cost of

power generation is given, we define the revenue of UC k, Ugen,k as

Ugen,k(yk,y−k) = yk ∑
n∈N

xn,k, (24)

where y−k is the price of UCs other than k. Then, the optimization problem for a UC (OPgen)

is formulated as

max
y:={yk,∀k∈K }

Ugen,k(yk,y−k) (25)

s.t. ∑
n∈N

xn,k ≤ Pk, (26)

yk > 0,k ∈K . (27)

Since the revenue of a UC is an increasing function in terms of the amount of power for a

fixed yk, (26) can be taken as an equality constraint. Since we do not assume the availability

of storage with the UCs, when the available power is given, each UC prefers to sell all its

power. In order to solve OPgen, we start by relaxing the positivity constraint (27) but will

show that the solution of (25)-(26) will lead to positive vector {yk,∀k ∈K }. Let us define

Lgen,k as

Lgen,k = yk ∑
n∈N

xn,k−µk

(
∑

n∈N
xn,k−Pk

)
(28)

The first order optimality condition for the UCs leads to ∂Lgen,k
∂yk

= 0,∀k ∈K . Using (21) in
∂Lgen,k

∂yk
= 0 for UC k, we obtain

(K−1)By2
k−µk

[
B

(
∑

g∈K ,g6=k
yg

)
+C

]
= 0, (29)

where B=∑n∈N βn and C =∑n∈N Cn. Eqn. (29) gives K equations. Further, ∂Lgen,k
∂ µk

= 0 gives

K equations, which are actually the original constraints: (26). Solving these 2K equations

we can obtain y∗ := {y∗1,y∗2, . . . ,y∗K} and µ∗ := {µ∗1 ,µ∗2 , . . . ,µ∗K}. Using y∗, we can compute

x∗ := {x∗n,k}. Now using (21) in the equality form of (26), we get

yk =

C+B

(
∑

g∈K ,g6=k
yg

)

KPk +B(K−1)
(30)

Substituting yk into (29), we arrive at

µk = (K−1)B

[
C+B

(
∑g∈K ,g6=k yg

)

K(Pk +B)

]
= (K−1)Byk (31)
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Here, B,C > 0. when K = 1, µk = 0 and y1 =
C

Pk+B . This means that there is no game when

there is only one UC. Our interest is in the case where K ≥ 2. Then, µk > 0 if yk > 0.

Equation (30) can be represented in the matrix form as

Ay = F, (32)

where

A :=




P1 +D −E .... −E

−E P2 +D .... −E

.. .. .... ..

−E −E .... PK +D



, (33)

y := {y1,y2, .....,yK}
′
, D := B(K−1)

K ,E := B
K and F := C

K . Thus, provided that A is invertible,

the solution of (32) is

y = A−1F. (34)

In order to obtain the closed-form of y, let us consider the following cases:

1) Homogeneous case: When P1 = P2 = .....= PK = P: If all UCs have the same amount

of power available, then, (32) can be solved to obtain

yk = y :=
F

−(K−1)E +D+P
=

C
KP

> 0 ∀k ∈K . (35)

As P increases, y decreases and vice versa. Now using (35) in (22), the condition for the

demand of user n from all UCs to be positive is

Cn > βn(K−1)y−βn(K−1)y, (36)

i.e., Cn > 0, which is always true. This indicates that when all UCs are homogeneous in

terms of the available power, they set the same unit price and all users will buy at least some

power from them.

2) Heterogeneous case: When different UCs have different available power: In this case,

it is difficult to judge the existence of the solution without knowing the nature of A−1 (if it

exists). Interestingly, matrix A possesses some special properties. Let us state the following

definitions and properties.

Definition 1. A real matrix A := {ai, j, i, j = 1,2, .....,K} ∈ RK×K , is said to be strictly

diagonally dominant if it satisfies the following condition:

|ai,i|−∑
j 6=i
|ai, j|> 0 i = 1,2, . . . ,K. (37)
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Property 1. A strictly diagonally dominant matrix is non-singular.

Property 2. If a matrix is strictly diagonally dominant by rows and has positive diagonal

entries, then, its determinant will be positive [26].

For matrix A, since, Pk +D− (K− 1)E = Pk +
(K−1)B

K − (K−1)B
K = Pk > 0, A is a strictly

diagonally dominant matrix. From Property 1, A is invertible and (32) yields a unique solution

to y.

Theorem 1. The unique solution obtained from (33) is positive.

Proof: The solution of (33) is given by

yk =
KK−1C
|A| ∑

g∈K ,g6=k
(B+Pg) ∀k ∈K . (38)

where |A| is the determinant of A. The numerator of (38) is always positive. Property 2

implies that the denominator is positive, and hence the solution from (38) always yields

yk > 0, ∀k ∈K .

Theorem 2. For the case of heterogeneous generators the necessary condition for the de-

mands of all users from all UCs to be non-negative, is:

Cn ≥
KK−1βnC
|A|

[(
∑

g∈K ,g6=k
Pg

)
− (K−1)Pk

]
∀k,∀n. (39)

Proof: The demand of user n from UC k is non-negative (xn,k ≥ 0) if Cn+βn ∑k∈K yk ≥
Kβnyk,∀n ∈N ,∀k ∈K , i.e., if Cn ≥ βn (Kyk−∑k∈K yk). Using (38), the condition can be

written as Cn ≥ βn
KK−1C
|A|

(
K ∑

g∈K ,g6=k
(B+Pg)− ∑

k∈K
∑

g∈K ,g6=k
(B+Pg)

)
After simplification,

the required condition takes the form given by (39).

Theorem 3. The values of price obtained from (34) maximize the revenue and are best

responses of the UCs to other UCs’ strategies.

Proof: Suppose yk is the solution obtained from (34) for UC k and it increases its price

from yk to y
′
k = yk +δyk while the prices of other UCs remains the same. Let us assume that

yk,y
′
k satisfy (23). The demand of users from this UC will change from xn,k to x

′
n,k given by

x
′
n,k =




Cn +βn

(
∑g∈K ,g 6=k yg + y

′
k

)

Ky′k
−βn


 .
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The difference in the total demands from the users from UC k will be

xn,k− x
′
n,k =

[
Cn +βn

(
∑g∈K ,g6=k yg

)

K

]
(y
′
k− yk)

yky′k
.

Clearly, (xn,k− x
′
n,k > 0). The users will demand less power than the power available with

the UC. The difference in the revenue of the UC because of the increase in the price will be

U
′
gen,k−Ugen,k = y

′
k ∑

n∈N
x
′
n,k− yk ∑

n∈N
xn,k =− (K−1)

K Bδyk . (40)

From (40), it is clear that Ugen,k(y
′
k,y−k)<Ugen,k(yk,y−k) if δyk > 0. If δyk < 0, y

′
k < yk, but

Pk is given. Consequently, the revenue will decrease. Therefore, the prices calculated using

(34) are the best responses to each other and are the prices that maximize the revenue of

each UC.

In addition to positivity, there are tighter limits on yk such that yk ∈ [yk,min,yk,max]. The

lower limit yk,min is due to the associated generation costs. The UCs will not reduce their

price below yk,min. The upper bound yk,max can be fixed according to government standards.

The power available with the UCs implicitly take into account these price limits. Thus, the

solution obtained by solving (34) should be within the specified limits. In case if the optimal

prices obtained are outside the range, we propose the following algorithm to calculate the

unit prices.

Algorithm 1:

1) If {yk}k∈K be the solution obtained from (38) but yi < yi,min or yi > yi,max for UC i,

then its price will be set as yi = yi,min or yi = yi,max.

2) The remaining UCs will use yi as a known value in (30) to obtain a square matrix of

size K−Ki, where Ki is the number of UCs for which the prices obtained are modified.

Then, the matrix of the reduced dimension is solved to get the prices of the remaining

K−Ki UCs.

3) The process continues until all the prices come within the specified range.

C. Stackelberg Equilibirum

The UCs play the non-cooperative game with each other to set the unit price, which is at

Nash equilibrium (NE) point, and announce the prices to the users. The equilibrium strategy

for the followers in a Stackelberg game is any strategy that constitutes an optimal response

to the one adopted (and announced) by the leader(s) [25].

Let Γgen,k and Γuser,n be the strategy sets for UC k and user n respectively. Then, the

strategy sets of all UCs and all users are Γgen = Γgen,1×Γgen,2× .....×Γgen,K and Γuser =
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Γuser,1×Γuser,2× .....×Γuser,N , respectively. Then, y∗k ∈ Γgen,k is a Stackelberg equilibrium

strategy for UC k if

Ugen,k(y∗,x(y∗))≥Ugen,k(yk,y∗−k,x(yk;y∗−k)),∀k ∈K , (41)

where y∗ = {y∗k}, x := {x1;x2; . . .xN} is the strategy of all users 1,2, . . . ,N such that x ∈
Γuser, x(y∗) is the optimal response of all users. The optimal response of user n for given

(y1,y2, .....,yK) ∈ Γgen,1×Γgen,2× .....×Γgen,K is

xn(y) = {ζuser,n ∈ Γuser,n;Uuser,n(y,ζuser,n)≥

Uuser,n(y,xn)},∀n ∈N . (42)

where ζuser,n := x∗n ∈ xn(y∗). The strategy x∗n is a corresponding optimal strategy for user n,

which is computed by using (21). The set (y∗,x∗) is a Stackelberg equilibrium of the game

between the UCs and the users.

D. Existence and Uniqueness of Stackelberg Equilibrium

OPuser has a unique maximum for a given y. Therefore, the Stackelberg game possesses a

unique SE if the price setting game among the UCs admits a unique NE.

Theorem 4. A unique Nash equilibrium exists in the price selection game among the UCs,

and thereby a unique Stackelberg equilibrium.

Proof: A Nash equilibrium exists for the UCs in the price selection game if

1) y is a non-empty, convex, and compact subset of some Euclidean space RK .

2) Ugen,k(y) is continuous in y and concave in yk,∀k ∈K .

In the price selection game for the UCs, the strategy space Γgen = Γgen,1×Γgen,2× .....×
Γgen,K where yk ∈ Γgen,k := [yk,min,yk,max], ∀k ∈K . Thus the strategy set is a nonempty,

convex and compact subset of the Euclidean space RK . From (24), we see that Ugen,k is

continuous in yk. Next, the second order derivative of Ugen,k w.r.t. yk is

∂ 2Ugen,k

∂y2
k

= 0, ∀k ∈K . (43)

Hence, Uk(y) is concave in yk. Therefore, NE exists in this game.

As proven in Section IV-B, there exists only one positive solution for the price selection

game given by (38). Therefore the NE of the UCs’ game is unique and hence the Stackelberg

game also admits a unique equilibrium.
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V. DISTRIBUTED ALGORITHM

In the previous section, the consumers calculate their optimal demands based on the prices

provided by the UCs but the UCs play the best response to other UCs’ strategies. In order

to calculate the unit prices, UCs need to know the power available with other UCs too. We

design a distributed algorithm that leads to the SE of the game without each UC knowing

the parameters of the other UCs.

Each UC starts with an arbitrary price yk,1 > 0 and all of them send their price information

to the consumers. This communication is enabled by the smart grid communication infras-

tructure between the UCs and the consumers. Each user decides how much to buy from each

UC {xn,k,1,∀k ∈K } using (21). The UCs get this demand matrix from all users. Then, one

of the UCs will calculate the difference between the available power and the total power

demanded from it by all users. Then, it will update its unit price using

yk,t+1 = yk,t +
∑n∈N xn,k,t−Pk

σk
, (44)

where t is the iteration number and σk is the speed adjustment parameter of UC k, which

is a sufficiently large number. Whenever a UC updates its price, it sends this information to

the users. The users again, update their demands vectors and inform the UCs. Then, other

UCs will update their prices sequentially at alternative turns between users and UCs. This

process continues until the price values converge.

We name this algorithm as Algorithm 2, which is shown in Table I. In the table, n = 1

indicates user number 1.

Theorem 5. Provided that ∀k ∈K ,∀n ∈N , t = 1,2,3, . . . ,

σk >
(KPk−βn)yk,t−βn ∑g∈K ,g6=k yg,t−Cn

Ky2
k,t

, (45)

Algorithm 2 converges to the optimal solutions for both the users and the UCs as long as

the individual strategies are updated sequentially.

Proof: The users’ response (21) is the optimal response to given {yk}. The demand

array of each user will converge to a fixed set once the price set converges to a fixed

point. Consequently, it is sufficient to show the convergence of the price vector to prove the

convergence of Algorithm 2.

The algorithm will diverge only if yk,t acquires a negative value in any iteration. If

∑n∈N xn,k,t−Pk < 0, for any k ∈K ,∀n ∈N , t = 1,2,3, . . . , then the sufficient condition for
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TABLE I

DISTRIBUTED ALGORITHM FOR PRICE AND DEMAND UPDATING

1: For t=1, arbitrarily choose yk,1 ∀k ∈K

2: Repeat for t=2,3,.....

3: User n=1,2,....N

4: Do

5: Solve (2) - (4) for given yt using (21).

6: Transmit xn,k,t to each k.

7: end

8: UC k ∈K , which has not updated the price for iteration t +1

9: Calculate yk,t+1 using (44).

10: If yk,t+1− yk,i = 0

11: Send a no-change signal to all users.

12: Go to 8.

13: else

14: Send the new value of price to all users.

15: Go to 3.

16: end

17: If yk,t+1 == yk,t∀k ∈K ,

18: stop.

19: else

20: Go to 2.

21: end.

yk,t+1 not to acquire a negative value is |∑n∈N xn,k,t−Pk
σk

|< yk,t . Since the condition should be sat-

isfied only when ∑n∈N xn,k,t−Pk < 0, we can rewrite the condition as σk >
Pk−∑n∈N xn,k,t

yk,t
∀k ∈

K ,∀n ∈N , t = 1,2,3, . . . . Using (21) and upon simplification, the sufficient condition takes

the form (45).

Equation (44) implies that the price yk of UC k increases if ∑n∈N xn,k,t − Pk is posi-

tive and the price decreases if ∑n∈N xn,k,t−Pk is negative. Equation (44) shows that when

∑n∈N xn,k,t−Pk = 0, the price will remain unchanged. This is the fixed point to which

Algorithm 2 converges. As discussed in section IV-B, the prices corresponding to stock

clearance are the prices that maximize the UC revenue. Therefore, if {yk,T} are the prices

at iteration T such that ∑n∈N xn,k,T −Pk = 0, then, Ugen,k(yk,T ,y−k,T ) ≥ Ugen,k(y
′
k,T ,y−k,T )

where Ugen,k(yk,T ,y−k,T ) and Ugen,k(y
′
k,T ,y−k,T ) are the utilities of UC k at price yk,T and

y
′
k,T respectively. Thus the fixed point to which Algorithm 2 converges is the NE of the game

among the UCs, i.e., SE of the game between the UCs and the consumers. Thereafter, the
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UCs will not deviate from this point.

VI. DEPENDABILITY OF DRM

One important component of dependability of DRM is the vulnerability due to attacks

from malicious agents. While the bidirectional communications between the UCs and the

users facilitates demand response management in a more timely and effective manner, it also

creates room for different kinds of threats to the system from attackers.

Next, we proceed to analyze this kind of attack. Let us assume that there is an attacker

who is an outsider. The goal of the attacker is to harm the UCs to the largest extent possible.

We constrain the attacker such that it can attack only one of the UCs at a time by injecting

the data or by manipulating the price. This assumption is reasonable because the attacker has

physical constraints to access the UCs.

A. Attack and Its Impact

An attacker can cause two kinds of harm to the UCs and the users: economic impact and

physical impact. We consider the case when all UCs have the same power to supply (P).

We assume that there is a range in which the price can vary. The users have the knowledge

of this range. Users get this range during the service agreement. If the attacker manipulates

the prices in such a way that it is out of the range, the manipulation will become obvious.

So, the attacker will launch the attack such that the resulting prices are within the specified

range. When the attacker does not manipulate any of the prices, the price set by each UC is

yk = y =
C

KP
, ∀k ∈K . (46)

Using (46) in (21), the demand of user n from UC k is

xn,k =
Cn

C
P.

The total demand of user n from all UCs is

∑
k∈K

xn,k =
Cn

C
KP.

Let the price of UC k, yk, be changed by the attacker through data injection or indirect

manipulation to y
′
k = yk +δy and all other prices are in-tact, where δy is a real number such

that |δy| ∈ [0,δy,max]. Positive value of δy means that the price is increased and negative value

means the price is decreased, δy = 0 corresponds to the case when the attacker does not act.

When the price is changed by the attacker, the demand of users will change from xn,k to

18



x
′
n,k. The attacker can change yk but will still keep it such that x

′
n,k is non-negative. It can be

calculated by replacing yk in (21) by yk +δy, which gives

x
′
n,k =

CnP−δyβn(K−1)P
(C+δyKP)

. (47)

Equation (47) shows that the demand of each user from UC k will decrease if δy is positive

and it will increase if δy is negative. The total demand from UC k from all users will be

∑
n∈N

x
′
n,k =

CP−δyB(K−1)P
(C+δyKP)

. (48)

Now, let us see if the change in the price of UC k affects other UCs. For UC g 6= k, the

demand from user n will be

x
′
n,g =

Cn

C
P+δyβn

P
C
. (49)

Using (49), the total demand from UC g 6= k takes the form

∑
n∈N

x
′
n,g = P

(
1+δy

B
C

)
. (50)

Equation (48) indicates that the total demand from UC k will decrease (increase) if yk is

increased (decreased) by the attacker compared to the case when there is no attack. If the

total demand decreases from UC k, a part of the available power will be wasted and it will

loose in terms of its revenue. On the other hand, if the demand increases than the available

power, serious problems such as black-out may occur to the users side. If the grid attempts

to produce the shortage power immediately, the grid might suffer physical damage. There

is an interesting observation here. Equations (49), (50) indicate that if the price of UC k is

changed, the other UCs will also be affected. If yk increases, the demand from the other

UCs increases. Consequently, because of the excessive demand from the UCs other than k,

problems such as grid instability may arise at the generation side while the users will suffer

black-out. On the other hand, when yk decreases, the demand from the other UCs decreases.

So, they will suffer economic loss while the generators that supply the demand of the users

from UC k may suffer physical damage. In either case (δy > 0 or δy < 0), the UCs and the

grid will suffer both monetary loss and physical damage.

B. Proposed Scheme with Individual Reserve Power

In a scenario where the UCs are aware that an attacker might attempt to create monetary

or physical damage, although both kinds of loss are serious, the physical damage can make

the grid unstable and it can affect the whole infrastructure on the UC side. Hence, we mainly
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focus on avoiding this problem, for maintaining the grid dependable. We propose that each

UC should have certain reserve power in addition to the available power to sell. Let us denote

the reserve power for UC k by Pk,res. The reserve power for each UC should be the difference

of the available power and the total possible demand from all the users in presence of the

attack. Using (48), for UC k, whose price has been changed, the reserve power is

Pk,res =
−δyP(B(K−1)+KP)

(C+δyKP)
. (51)

If δy > 0, then Pk,res will be negative, since the demand from UC k will be less than the

amount of power available. This means that no reserve power is needed. Hence, we have

P+
k,res = 0. (52)

For other UCs g 6= k, the reserve power can be calculated as

P+
g,res =

BPδy

C
. (53)

Equations (52)-(53) indicate that the amount of reserve power for each UC depends on the

value of δy. Theoretically, each UC can keep a large reserve so that there is always extra

power available even if the users demand more than the power desired to be sold. In practice,

this is not possible since the UCs have to pay the cost associated to buy or produce the reserve

power. Therefore, all UCs prefer to keep as minimum reserve power to save the associated

costs, but at the same time, it is extremely important for them to avoid the damage to their

infrastructure.

In contrast to communication problems where usually the average performance guarantee

measures are taken, we need to consider the worst case for the power-trade scenario. The

attacker aims to maximize the harm to the UCs and/or to the grid but without making the

demands become out-of-the-range values, e.g., negative demand from the users. The attacker

therefore, tries to manipulate yk in such a way that the demands from all UCs is non-negative

even from the user with the lowest budget. Let us examine the following cases.

1) δy > 0: If δy is positive, P+
k,res = 0. The maximum harm that the attacker can create in

this case would be by letting the user with the lowest Cn buy zero power from UC k, which

corresponds to x
′
n,k = 0.

δymax =
Cmin

βmin(K−1)
. (54)

20



where Cmin = min(Cn) and βmin = min(βn). If ymax is the maximum unit price allowed, the

range of δy given by δymax should still yield y
′
k ≤ ymax. Thus, y

′
k is given by

y
′
k =





yk +δy if δy ≤ ymax− yk,

ymax otherwise.
(55)

Therefore, δymax can be calculated as

δymax = min
{

Cmin

βmin(K−1)
,(ymax− yk)

}
. (56)

Hence, 0 < δy ≤ δymax and P+
g,res can be calculated by substituting δy = δymax into (53).

2) δy < 0: When δy < 0, the worst impact that the attacker can cause is by setting the

prices so low that the user with the lowest budget buys zero power from all UCs other than

k. In this case, solving x
′
n,g = 0 ∀g 6= k yields

δymax =
Cmin

βmin
,

where n corresponds to the lowest budget user. However, y
′
k should not be less than yk,min. If

y
′
k = yk− Cmin

βmin
> yk,min, then, substituting δy in (48) and (50), and substracting the available

power of the UC P, the reserve power for UCs (using β1 = β2 = .....= βN = β ) are




P−k,res =
NCn,min(K−1)β+Cn,minKP2

βC−Cn,minKP ,

P−g,res = 0.

If yk− Cmin
βmin
≤ 0 or if yk− Cmin

βmin
> 0 but y

′
k < ymin, then, the minimum y

′
k that can be chosen

by the attacker is y
′
k = ymin. Using this constraint on (47), then summing over n ∈N and

subtracting the available power P, we obtain

P−k,res =
C+B(K−1)yd−KPymin

Kymin
.

where yd =
C

KP−ymin. The UCs should avoid problems even in the worst case, Pk,res = P−k,res

and Pg,res = P+
g,res. However, the UCs may not know whether the attacker will choose δy > 0

or δy < 0. So, for each UC, the reserve power is

Pres = max{P+
g,res,P

−
k,res}. (57)

C. Proposed Scheme with Common Reserve Power

The reserve power given by (57) is the worst case reserve power if the UC is attacked and

if its price is lowered to the least possible value. Since, each UC needs to have this reserve

separately, while the actual number of UCs that will be attacked is limited to 1, there is
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definitely a huge wastage of the reserve power from all other UCs who are not attacked. In

particular, the UCs have to buy the reserve power from some sources and it is obvious that

each UC aims to minimize the reserve power while ensuring that there is no power-outage.

The total reserve power needed for the individual reserve scheme is

Ptot,res = KPres. (58)

From the analysis in section VI-B, we can see that the total demand from all the users from

all the UCs will be

Xtot ≤ KP+Pres. (59)

From (58) - (59), the total power that will not be used is

Ptot,unused ≥ (K−1)Pres. (60)

The incentive for the UCs to use a common reserve is that sharing common reserve power

saves a considerable amount of cost for each UC. Furthermore, it is also beneficial from the

overall system perspective, as there are increasing concerns towards minimizing the waste of

power.

Fig. 3. Common reserve scheme: different utility/generation companies share a common energy reserve

Following the reasoning in Section VI-B, we can show that the total reserve power needed

in this case will be

Ptot,res = Pres. (61)

Employing this power sharing, we can see that the UCs can maintain a reliable supply of

power to the users in the presence of the attacker with only a fraction of the reserve power
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needed for the individual reserve scheme. Thus, the supply side improves its dependability

with this reserve power scheme.

D. Discussion

The impact on DRM when one (few) of the generator(s) is (are) unavailable is also

important. In our proposed model, the UCs communicate with each other about their available

power before the prices are decided. If one of the generators is not available, the prices will

be calculated based on the power available with the UCs from the remaining generators. Our

model is therefore resilient to the unavailability of one or few generators.

There is another possible type of reliability issue with the generators, even in the absence

of an attacker. Even when all the generators have produced the power, one of the generators

can be disconnected from the grid after the UCs have transmitted the price information

to the users. This kind of problem arises due to physical phenomena e.g., if one of the

transmission lines suddenly gets disconnected. In this case, the users would already be using

their appliances and thus this kind of failure is critical. The reliability can be improved in

this case also by maintaining certain reserve power. This kind of reliability is referred to as

(K− 1) reliability. On similar grounds as in Section VI, it can be inferred that a common

reserve power equal to the available power of one UC (the maximum power in case of

heterogeneous UCs) should maintain the system stable in the face of such incidents.

VII. NUMERICAL RESULTS

In this section, we examine how the users choose their optimal power based on the unit

prices of the UCs and how the UCs optimize their unit prices based on their available power

and the users’ cost constraints. We also show the convergence of the distributed algorithm.

The last part of this section shows the reserve power needed in the presence of an attacker.

We consider 3 UCs and 5 users with parameters αn = 1,βn = 1 ∀n ∈N . The cost limits of

users are C1 = 5,C2 = 10,C3 = 15,C4 = 20,C5 = 25 and the available power of the UCs are

P1 = 10,P2 = 15,P3 = 20, respectively, unless mentioned otherwise.

A. Stackelberg Game

Figs. 4 - 7 show how the change in the prices set by the UCs affects the users’ utility, and

in turn how the power available and the affordability of the users affect the UCs’ equilibrium

prices when the budget of user 1 varies from 2 to 42. Fig. 4 shows the total demand of each
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user at equilibrium. The demand of user 1 is increasing because its budget is increasing. The

budget of other users do not change, but they ultimately demand less power because of the

increase in the budget of user 1. Fig. 5 shows the utility of the users at equilibrium. Fig.

6 depicts the equilibrium prices of the UCs. The prices increase linearly as the purchasing

capacity of the users increases. UC 1 charges the highest unit price, because it has the lowest

amount of power available and the reverse is true for UC 3. Fig. 7 shows the revenue of

each UC. UC 1 has the lowest utility despite its high unit price, because its available power

is the lowest. UC 3 receives the highest revenue although its unit price is the lowest.
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Fig. 4. User demands at equilibrium
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Fig. 5. User utilities at equilibrium
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0 10 20 30 40
20

25

30

35

40

C
1

R
e

v
e

n
u

e
s
 o

f 
th

e
 U

C
s

 

 

UC 1

UC 2

UC 3

Fig. 7. UC revenues at equilibrium

Next we show the equilibrium of the Stackelberg game for more UCs and a large number

of users for a large variation in the budget of one of the users. Figs. 8(a)-8(c) show the user

demands, user utilities and unit prices at equilibrium for 5 UCs and 100 electricity users.

The budget of user 1 varies from 2 to 400, the budget of users 2 to 25, users 26 to 50, users

51 to 75 and users 76 to 100 are 10,15,20 and 25, respectively. The available power of the

UCs used for plots are P1 = P2 = 150 units, P3 = P4 = 200 units and P5 = 250 units. The

behaviors of the users and the UCs are similar to Figs. 4-6.
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Fig. 8. Equilibrium for a large number of users and UCs for a large variation in user budget

B. Distributed Algorithm

Figs. 9 - 12 show the performance of the distributed algorithm for σk = 40,∀k ∈K . The

UCs reach the equilibrium price without communicating with each other. Consequently, the

users reach their optimal demands based on the prices from the UCs. The results show that

the equilibrium price and demand can be reached very quickly. Comparing Figs. 9 - 12 with

Figs. 4 - 7, we can verify that the distributed algorithm converges to the optimal values.
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Fig. 9. Reaching equilibrium using distributed algorithm: User demands

Next we evaluate the performance of the distributed algorithm for different values of yk,1 and

σk. Fig. 13(a) shows the performance when σk = 10,k = 1,2,3, . . . . We see from the figure

that the algorithm converges much faster (since σk is smaller) and the unit prices converge to

the same values as in Fig. 11. Figs. 13(b) and 13(c) depict that the algorithm converges to the

same values when we start from a different value for yk,1, for σk = 50 and 10, respectively
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Fig. 11. Reaching equilibrium using distributed algorithm: Unit prices

,∀k ∈K . We see that the convergence speed depends on the value of σk,∀k ∈K but the

algorithm converges irrespective of different initial points.

C. Dependability of DRM

We show the impact of an attacker in terms of the reserve power needed under the two

different schemes discussed in Sections VI-B and VI-C respectively in Fig.14. We consider

both cases: when the price is increased and when the price is decreased. We use P = 10

and [ymin,ymax] = [0.5C
KP , 2C

KP ] for the plot. For the sake of illustration, we suppose that the

attacker manipulates the price of the third UC. In practice, the attacker can choose any of
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(b) yk,1 = 5;σk = 50.
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(c) yk,1 = 5;σk = 10.

Fig. 13. The unit price of UCs for different initial starting points yk,1 and different values of σk,k = 1,2,3.

the UCs. This figure shows a number of interesting facts. It verifies that the UCs save a

lot in terms of the reserve power needed if they share a common reserve. The solid line

with square markers shows the extra power needed to cover the total demand of users. The

reserve power from a common reserve is sufficient to cover the demands of all the users

when the price is increased and also when it is decreased. In fact, this power is extra most

of the times and there is a considerable amount of unused power in both cases (individual

reserve and common reserve). The unused power is much more when each UC keeps its

own reserve as shown by the dotted line with ’+’ markers. The only case where the reserve

power is completely used is when the price is decreased to ymin. From this figure, it might

appear that the amount of power wasted is still significant even with the common reserve.

That is because our analysis is based on the worst case reserve. This figure also indicates

how expensive an impact an attacker can create even if it has access to only one UC’s price.
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The impact will be similar in case of the heterogeneous UCs with the difference in the scale

of the power to be reserved.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a Stackelberg game between the electricity UCs for optimal

price setting and the end-users for optimal power consumption. We have derived the SE of

the game in closed form and have proved its existence and uniqueness. We have designed

a distributed algorithm for convergence to the SE with only local information available to

the UCs. We have introduced two types of reliability issues associated with the smart grid:

reliability due to physical disturbance and dependability in the face of an attacker. We have

investigated the impact of an attacker who manipulates the price information from the UCs.

Furthermore, we have proposed a scheme based on the concept of shared reserve power

to ensure the reliability and dependability of the grid. We have shown the validity of our

concepts through analytical and numerical results.

This work opens the door to some interesting extensions. The DRM analysis incorporating

the modeling of instability of the renewable energy sources is a potential direction. Here we

have focused on a large time-scale one-period DRM scheme. A higher resolution multi-period

scheme with inter-temporal constraints is another possible extension to this work.
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Abstract

Demand Response Management (DRM) is a key component in the smart grid for reducing power

generation costs and user bills, and also for optimizing the profits of power generation companies

(gencos). However, DRM problem has not been investigated holistically in a network of multiple

gencos and consumers, incorporating multiple processes from power generation to market activities

and to power consumption. With this motivation, we propose a hierarchical system model that

captures the decision process involved in the smart grid, and establish a Stackelberg game between

gencos and end-users, where gencos behave as leaders maximizing their profit, and users act as

followers maximizing their utility. In the model, we differentiate between industrial users who

have strict power requirements and residential users with flexible power requirement but budget

constraints, to characterize their reliability and efficiency requirements. We derive analytical results

for the Stackelberg equilibrium of the game and prove that a unique equilibrium solution exists

for the game. We develop a distributed algorithm which converges to the equilibrium with only

price information available to both gencos and end-users. Furthermore, we extend our analysis to a

large population regime to obtain deeper insights into the sensitivities of the price and demands on

the equilibrium solution. Finally, we provide simulations and numerical examples to illustrate the

solutions and to corroborate the results.
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I. INTRODUCTION

The demand from electricity consumers has been growing due to new technology and

appliances such as plug-in hybrid electric vehicles (PHEVs). Accompanied with the growth

are concerns about environment impacts and power system reliability. Traditional power

grids, however, are not able to meet these demand and reliability requirements due to the

lack of efficient communications between supply and demand sides. Recent blackouts [1]

have further indicated these issues, and it is essential to transform the traditional power

grid into a more responsive, efficient and reliable system. The smart grid [2] is the future

power grid system that incorporates a smart metering infrastructure capable of sensing and

measuring power consumption from consumers with the integration of advanced information

and communication technologies (ICTs). The bi-directional flow of information provided by

the communications infrastructure will enable consumers to control and manage their own

electricity usage and allow generation companies (gencos) to effectively control the power

generation, achieving instantaneous balance of supply and demand.

Demand Response Management (DRM) is the response system of end-users to changes in

electricity prices over time or across different energy sources. In the smart grid, DRM plays

a key role in improving different aspects of both supply and demand sides. Effective DRM

can yield lower bills and higher utility efficiency for end-users. DRM can also reduce the

cost of power generation or improve the revenues of gencos. Existing works have mainly

focused on either adjusting the demand side by load shedding schemes when the supply is

given, or on improving the profit for the gencos on the supply side when aggregate user

demand is given. Efficient DRM relies on both demand and supply sides and an integrated

framework is needed to consider DRM in a holistic manner.

Gencos can optimize their profits by producing optimal amount of power and selling at

an optimal unit price. End-users, on the other hand, can optimize their utilities by choosing

optimally their demand strategies. We establish a multi-layer hierarchical Stackelberg game

model to incorporate these strategic behaviors in one single framework. In addition, different

types of users have their own reliability and efficiency requirements. Residential users usually

consume much less power compared to commercial and industrial ones, while commercial

and industrial users often have more strict power reliability and availability requirements.

In our game model, we categorize the electricity consumers into two types, i.e., residential

and industrial, to capture user-differentiations in the smart grid. The hierarchical Stackelberg
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game model consists of three levels:

• top level, where gencos determine optimal power generation,

• middle level, where energy prices are determined through competition among different

gencos, and

• lowest level, where end-users strategically respond to price signals (i.e., DRM).

In the three-level hierarchical game model, the gencos and end-users interact through the

prices determined at the middle level. The competitions among gencos are captured at the

top and middle levels where gencos determine the amount of power to generate as well as

the energy prices through a competitive market. The interactions between users are indirectly

coupled through the price signal at the lowest level. The coupling between the decisions

across the levels makes game theory an appealing approach for cross-level understanding

of a multi-player multi-level complex system. Since users respond to prices after gencos

announce their level of power production and unit prices, the sequential decision process

can be modeled by a Stackelberg game where the gencos behave as the leaders and the

users behave as followers. Hence, we adopt a Stackelberg game with multiple leaders as

competitors and multiple followers who react to their competition.

The model allows us to provide insights into the outcome of multi-level strategic inter-

actions with different type of players in the power system. We characterize analytically the

Stackelberg equilibrium solution to the hierarchical game and provide closed form solutions

for homogenous user case. To allow practical implementation of demand response algorithms,

we develop distributed algorithms so that both supply and demand side parameters can be

determined using only local information.

Another important factor of DRM that we consider in our model is the large population size

at the lower level in comparison to the number of gencos. The collective strategic responses of

a large number of users will have major impact on the decisions of gencos as compared to one

single individual in the large population. To capture this feature, we study the large population

approximations of Stackelberg equilibrium of the game for two specific cases: (i) one with

large residential population and (ii) one with large industrial population. The distinction

between these two cases depends on geographical locations and economic structures. This

enables us to gain useful insights into the problem regarding the sensitivities of the cost and

budget parameters in the game model. We also derive the necessary conditions on budgets of

the residential users to obtain the minimum required power in the large population regime.

Our major contributions in this work can be summarized as follows:
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1) We propose a three-level hierarchical Stackelberg game model incorporating gencos

from the supply side and the end-users from the demand side. The game-theoretic

framework provides a holistic analytical model to study strategic behaviors of the

players in DRM from both supply and demand sides.

2) We provide analytical results for characterizing the Stackelberg equilibrium (SE) of the

multi-genco and multi-user Stackelberg game, and develop distributed algorithms for

the gencos and the users to reach SE with only local information.

3) We differentiate the end-users into residential and industrial users based on their differ-

ent requirements for reliability and efficiency requirement. We develop large population

approximations of the SE and perform sensitivity analysis on parameters in the DRM

game model to provide deeper insights into the behavior of the gencos and the users.

The rest of the paper is organized as follows: Related work is described in Section II.

We introduce the system model in Section III. In Section IV, we formulate the problem

as a Stackelberg game and prove the existence and uniqueness of the SE. We propose a

distributed algorithm for the game which converges to the SE, in Section V. In Section VI,

we develop large population approximations. We provide numerical results and discuss about

them in Section VII. Section VIII concludes the paper. All analytical proofs are summarized

in Appendices A-C.

II. RELATED WORK

There have been several studies on demand side management (DSM) and DRM in the

smart grid, including [5]-[13]. In [5], the authors have formulated an energy consumption

scheduling problem as a non-cooperative game among the consumers for increasing strictly

convex cost functions. In [6], the authors have considered a distributed system where price is

modeled by its dependence on the overall system load. Based on the price information, the

users adapt their demands to maximize their own utility. In [7], a robust optimization problem

has been formulated to maximize the utility of a user, taking into account price uncertainties

at each hour. In [8], the authors have exploited the awareness of the users and proposed a

method to aggregate and manage end-users’ preferences to maximize energy efficiency and

user satisfaction. In [9], a dynamic pricing scheme has been proposed to provide incentives

for costumers to achieve an aggregate load profile suitable for utility companies, and the

demand response problem has been investigated for different levels of information sharing

among the consumers. In [10], a two-level game framework is established to model distributed
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dynamic side management. At the lower level, each household schedules different appliances

for energy consumption. At the upper level, a dynamic game is used to capture the interaction

among different players in their demand responses through sticky market price. In [11], a

multi-resolution two-layer game is studied using mean-field game approach to incorporate

inner interactions between users in the region and outer interactions between regions for

dynamic distributed demand response in the smart grid. Recent studies [12], [13] on DRM

have also incorporated electric vehicles (EVs) or PHEVs into the DRM framework.

We observe that these studies have mainly focused on either only one source or a number

of sources/utilities treated as one entity, and the profit maximization of gencos on the supply

side has not been incorporated into the study of DRM. In our previous work [14], we

have introduced multiple gencos and multiple consumers, who aim to maximize their own

revenues and utilities, respectively, under a two-level Stackelberg game framework. In [14],

we have assumed that the available power of each genco is given. In this paper, however,

we consider the demand side together with the supply side, bringing both sides into one

single game framework, in which gencos optimize the revenues and users optimize their

demands under budget constraints. The game has three levels. The middle level models the

imperfect market where the energy price is determined by the competition between multiple

price-setting gencos. This level essentially glues the demand and supply sides together as one

problem. Our proposed scheme allows us to investigate the efficiency and reliability issues

of differentiate types of users in a holistic manner.

We note that there is rich literature using Stackelberg games for congestion control, revenue

maximization and cooperative transmission [17]-[18]. Our approach is similar to those in

congestion control and power control, but our game model involves multiple gencos and

multiple users. The coupling among followers, i.e., the users, comes indirectly from the price

determined by the competitions among the gencos. This special game structure allows us to

provide analytical results for the multi-player game with hierarchical structure. Furthermore,

our model has a three-level structure, where at the higher level, we treat the amount of

power to be produced as a variable to be optimized by each genco. This approach has some

similarity to the capacity expansion of the links proportional to the number of users, in the

context of congestion control, for a single link in [17], and for multiple links from a single

service provider in [18]. However, in the smart grid scenario, we need to take into account

the budget limit of the residential users, and the decision on power generation at the higher

level depends on the unit price determined through the competition at the middle level. These
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characteristics have made our problem distinct from methodologies in existing studies.

III. SYSTEM MODEL

Fig. 1 depicts our hierarchical system model. We consider N end-users, which we also call

customers, and K electricity gencos, K := {1,2, . . . ,K}. Gencos produce and sell electrical

energy. Each generator is owned by a genco. The end-user side consists of NR residential

users, NR := {1,2, . . . ,NR} and NI industrial users, NI := {1,2, . . . ,NI}, i.e., N = NR +NI.

The power is dispatched to the consumers through the transmission and distribution net-

works. The transmission companies (transcos) own transmission assets such as lines, cables,

transformers and reactive compensation devices. Distribution companies (discos) own and

operate distribution networks. A detailed description about gencos, transcos, market structure

and discos in the current power grid can be found in [19].

Fig. 1. Illustration of the hierarchical system model composed of multiple processes of power generation, transmission,

distribution and consumption. The power generation is at the top level; the price setting game between the gencos is at

the middle level, i.e., the market level. The power distribution is assumed to be ideal and the demand decisions from the

consumers are made at the bottom level.

Our hierarchical system model consists of three levels: the power generation from the

energy sources at the top level, the price determination at the middle level, i.e., the market

level, and the demand response to the price signals from the residential consumers at the

bottom level. In our model, the gencos and end-users interact through the prices determined

through the competitions among the gencos at the market level. Different from a traditional
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perfect competitive market, we have an imperfect competition between gencos. In a perfectly

competitive market, no market participant has the ability to influence the market price through

its individual actions, i.e., the market price is a parameter over which gencos have no control.

Consequently, each gencos should increase its production up to the point where the marginal

cost is equal to the market price. This is valid when the number of market participants is

large and none of them controls a large proportion of the production. However, in this paper,

we consider a finite number of market participants (gencos) and each individual genco has

non-infintesimal influence in the market. By fixing the demand response from the users, we

model the interactions among gencos as an imperfect competition using Cournot-type games.

The gencos and the consumers have bidirectional communications support to exchange

price and demand information. The communications between gencos and users for the three-

level hierarchical model are shown in Fig. 2. The competitions among gencos are captured at

the top and middle levels where gencos deterimine the amount of power to generate as well as

the energy prices through a competitive market. The interactions between users are indirectly

coupled through the price signal at the lowest level. The gencos can also communicate with

each other. The users receive the price information from the gencos and transmit their demand

to them. The data communication is carried out through the communication channel using

wireless technologies.

The industrial consumers have strict power requirements but do not have severe budget

constraints. Let PI,m denote the total power requirement of industrial user m,(m ∈NI). Then,

we write

∑
k∈K

xI,m,k = PI,m, ∀m ∈NI,

where xI,m,k is the demand of industrial user m from genco k.

In contrast, residential users have limited budgets CR,n ∈R++,∀n ∈NR. Let xR,n,k denote

the demand of residential user n from genco k. The residential users adjust their demands

according to the spot unit price of the gencos to fit their budget. This adjustment does not

apply to the industrial users.

IV. PROBLEM FORMULATION: A STACKELBERG GAME APPROACH

The price determination of each genco is affected by the strategies of other gencos. The

utility of the residential users and the cost to the industrial users are dependent on the

competition among the gencos to determining the unit prices. Moreover, the utility of a
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Fig. 2. Illustration of multi-layer interactions among the gencos and the end-users in the 3-level hierarchical DRM. Each

genco determines the amount of power to produce and the prices are determined at the market level through the balance of

supply and demand. Consumers, consisting of industrial and residential users, determine their consumption by responding

to the market prices.

residential user varies based on its own budget and the budget of other users. The strategies

of the gencos are directly coupled, while the interactions among users are indirectly coupled

through the price signal. These couplings between the decisions across the levels make game

theory an appealing approach for cross-level understanding of a multi-player multi-level

complex system. Since users respond to prices after gencos announce their strategies, the

sequential decision process can be modeled by a Stackelberg game [20] where the gencos

behave as the leaders and the users react to their strategies as followers.

The solution to the game is a Stackelberg equilibrium (SE). The SE solutions for the

hierarchical game constitute gencos’ strategies for power and unit prices, and users’ strategies

for demands. The unit prices are determined through the competition among gencos. For given

unit prices, users play optimal response, and gencos decide on the optimal amount of power

to generate, by solving its own optimization problem. We formulate the utility maximization

problem for each user and find the optimal demand response from the users for given energy

prices in Section IV-A. We formulate the profit maximization problem for each genco in

Section IV-B, and obtain the equilibrium unit prices given the optimal user responses. Using

this equilibrium solution, we determine the optimal amount of power to generate for each

genco. We glue Section IV-A and Section IV-B in Section IV-C, where we characterize the
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SE of the game combining parameters from both supply and demand sides. In Section IV-D,

we discuss the versatility of the proposed hierarchical Stackelberg game model and discuss

its applicability in a broader range of scenarios.

A. Demand Side Analysis

In this section we formulate the problem for the bottom level of the hierarchical model,

i.e., the demand response from the residential users. We define the utility of residential user

n,(n ∈NR), as

Uuser,R,n = αn ∑
k∈K

ln
(
βR,n + xR,n,k

)
, ∀k ∈K (1)

where αn and βR,n are constants. Typical values of αn and βR,n are 1. The logarithmic function

has been widely used in economics for modeling the preference ordering of users and for

decision making [13] - [16]. The motivation behind choosing the utility function (1) is that it

is closely related to the utility function αn ∑ ln(xR,n,k) that leads to proportionally fair demand

response [15] [17].

Let yk be the unit price set by genco k. For a given set of prices from the generators

{y1,y2, . . . ,yK}, user n(n ∈NR), calculates its optimal demand response by solving the user

optimization problem (OPuser)

max
xR,n:={xR,n,k,∀k∈K }

Uuser,R,n (2)

s.t. ∑
k∈K

ykxR,n,k ≤CR,n,

xR,n,k ≥ 0; ∀k ∈K .

OPuser is a strictly convex optimization problem. Hence, the stationary solution is unique and

optimal.

1) The Case of Two Gencos: Let us start the analysis with NR users and 2 gencos. We

will later generalize the results to K gencos. The optimization problem for user n in this case

is

max
xR,n:={xR,n,1,xR,n,2}

αn

2

∑
k=1

ln(βR,n + xR,n,k) (3)

s.t. y1xR,n,1 + y2xR,n,2 ≤CR,n,

xR,n,1,xR,n,2 ≥ 0.
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Using Lagrange multipliers λn,1,λn,2 and λn,3, we convert the constrained optimization prob-

lem (3) to the form

Luser,n = αn

2

∑
k=1

ln
(
βR,1 + xR,n,k

)
−λn,1

(
2

∑
k=1

ykxR,n,k−C1

)
+λn,2xR,n,1 +λn,3xR,n,2 (4)

with the complementarity slackness conditions

λn,1

(
2

∑
k=1

ykxR,n,k−CR,n

)
= 0, (5)

λn,2xR,n,1 = 0; λn,3xR,n,2 = 0,

λn,1 > 0, λn,2,λn,3,xR,n,1,xR,n,2 ≥ 0.

The first-order optimality condition for the maximization problem is ∇Luser,n = 0. Since the

only coupling between the users is through yk, ∇Luser,n = 0 leads to

∂Luser,n

∂xR,n,k
= 0,∀n ∈NR,k ∈K , i.e., ,





αn
βR,n+xR,n,1

−λn,1y1 +λn,2 = 0,
αn

βR,n+xR,n,2
−λn,1y2 +λn,3 = 0.

(6)

The optimal demands of the users can take one of the following forms.

Case 1 : xR,n,1,xR,n,2 > 0. In this case, λn,2 = λn,3 = 0. Substituting λn,2 and λn,3 into (6)

yields

xR,n,k =
αn

λn,1yk
−βR,n, ∀n ∈NR,k = 1,2. (7)

Using (5) and (7) we obtain

xR,n,k =

CR,n +βR,n
2
∑

k=1
yk

2yk
−βR,n. (8)

Case 2 : xR,n,1 > 0,xR,n,2 = 0. This is the case when
CR,n+βR,n

2
∑

k=1
yk

2y2
= βR,n. Equation (6)

implies λn,2 = 0 and

xR,n,1 =
αn

λn,1y1
−βR,n. (9)

Using (5) and (9), we get, λn,1 =
αn

CR,n+βR,ny1
and

xR,n,1 =
CR,n +βR,ny1

y1
−βR,n =

CR,n

y1
. (10)

xR,n,2 = 0⇒ CR,n+βR,n ∑2
k=1 yk

2y2
= βR,n. Using this and (10), and after simplifying, we obtain
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xR,n,1 =
CR,n +βR,n(y1 + y2)

2y1
−βR,n. (11)

Case 3 : x1,1 = 0,x1,2 > 0. Similar analysis can be performed as in case 2 to obtain

xR,n,2 =
CR,n +βR,n(y1 + y2)

2y2
−βR,n. (12)

Note that in cases 1-3 discussed above, both power constraint and the cost constraint are

satisfied as equalities.

Case 4 : xR,n,1 = 0,xR,n,2 = 0

In this case, λn,1 = 0 and λn,2,λn,3 can be any non-negative real values. This is an extreme

case, which does not happen unless CR,n = 0 or yk = ∞, ∀k ∈K .

2) The Case of K Gencos: Analyzing in similar manner, we can obtain the optimal

demands for the general case of NR residential users and K gencos can be formulated as

xR,n,k =
CR,n +βR,n ∑k∈K yk

Kyk
−βR,n. (13)

B. Supply Side Analysis

In this section we analyze the middle level and the top level of the hierarchical model, i.e.,

the price and the amount of power to be produced by the gencos. Let Pk,b denote the power

demand of all industrial users from generator k. Then, Pk,b = ∑NI
m=1 xI,m,k. If all industrial

users get the same amount of power from genco k, then, let xI,m,k = xI,k, ∀n ∈NI. In that

case, we have, Pk,b = NIxI,k. Let Pk,m≥ 0 be the power available for the residential users from

genco k, such that the power it generates is Pk = Pk,b +Pk,m. We employ a quadratic cost

function for all gencos for producing electric power as it has been widely used to model the

cost of power generation [5], [21]. Let ak,bk and ck be the coefficients of the cost function

for genco k, i.e., if the total power produced by source k is Pk, then, the cost of generation

is akP2
k +bkPk +ck. The payoff of a genco is the profit it gains by selling Pk at the unit price

of yk. Thus, we define the utility of genco k as

Ugen,k = yk

(
Pk,b +

NR

∑
n=1

xR,n,k

)
− (akP2

k +bkPk + ck).

The optimization problem for the gencos (OPgen) is described as follows:

maxUgen,k (14)

s.t. ∑
n∈NR

xR,n,k ≤ Pk,m; Pk,b ≤ Pk ≤ Pk,max; yk ≥ 0; ∀k ∈K ,
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where Pk,max is the maximum power generation capacity of genco k, which is sufficiently

large. Although the characterization of the solution to the optimization problem in (14)

requires a number of conditions, some of them can be relaxed. Since Pk,max is sufficiently

large, Pk,b,Pk << Pk,max, the second constraint can be relaxed. Similarly, the third constraint

is not a hard constraint, and thus, can be relaxed. Instead, after finding the solution to this

problem, we prove that there exists a set of real positive valued solutions: {yk,k ∈ K }.
Relaxing the second and third constraints, we define the Lagrangian Lgen,k for OPgen as

follows:

Lgen,k =Ugen,k−µk,1

(
∑

n∈NR

xR,n,k−Pk,m

)

where µk,1 is the Lagrange multiplier for the first constraint. Now the constrained optimization

problem of genco k can be converted to the unconstrained form as

maxLgen,k (15)

with the complementarity slackness conditions

µk,1

(
∑

n∈NR

xR,n,k−Pk,m

)
= 0; µk,1,yk ≥ 0.

Next, we decide the optimal amount of total power to be produced by a genco for

maximizing its profit. Since Pk,b is fixed, deciding Pk is equivalent to deciding Pk,m. For

given yk, since the revenue increases linearly with Pk, the profit will be maximized when

∑n∈NR xR,n,k = Pk,m. Then, the first constraint of (14) becomes an equality constraint, and

Lgen,k = Ugen,k = ykPk− (akP2
k + bkPk + ck), and thus, for given ({yk,k ∈K }), (15) can be

written as

max
Pk∈R+

ykPk− (akP2
k +bkPk + ck). (16)

For given prices {yk,k ∈K }, (16) is a convex optimization problem. Using the first order

optimality condition for the gencos, i.e., ∇Ugen,k = 0, we obtain ∂Ugen,k
∂Pk

= 0, for given yk,∀k ∈
K . Hence, using ∂Ugen,k

∂Pk
= 0, we arrive at the optimal amount of power to be generated by

genco k is

Pk =
yk−bk

2ak
; ∀k ∈K . (17)

With the optimal demand response of residential users (13) and gencos’ power generation

(13) in response to the energy prices, the objective of each genco is to set prices yk,k ∈ ‖
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through competition in the market. The genco’s utility function (14) can be rewritten and

maximized over the unit price subject to the equality form of the first constraint in (14), i.e.,

∑
n∈NR

xR,n,k = Pk,m. (18)

At the middle layer, the gencos play a non-cooperative game in the market to determine

their prices through competitions, which can be used to determine power generation at the

lop level and user demands at the bottom level. The equality constraint (18) implies that the

outcome of the competition among gencos is an equilibrium where the supply and demand

of the market are balanced. Since the coupling in (14) among gencos is only through the

equality constraint, our equilibrium analysis of the competition can be facilitated by only

using the constraints (18) of every k ∈K to obtain the equilibrium values of the prices. By

definition, Pk,m = Pk−Pk,b. Hence, (18) can be written as

∑
n∈NR

xR,n,k = Pk−Pk,b. (19)

Using (13) and (17) in (19) for genco k, we obtain a set of coupled equations

Ky2
k +
[
2(K−1)BRak−Kbk−2KPk,b

]
yk−

[
2BRak ∑

g∈K ,g6=k
yg +2CRak

]
= 0. (20)

where CR = ∑n∈NR CR,n,BR = ∑n∈NR βR,n. We assume a certain distribution of the budget of

the residential users. Let C̄ be the mean budget. Then CR can be calculated as CR = NRC̄.

The gencos set their prices based on CR. The residential users compute their optimal demand

based on their local parameters and the unit price set {yk,k ∈K }.
Theorem 1: Suppose Pk,b is sufficiently small compared to Pk,max. Then, a unique feasible

solution of (20) exists. We investigate the following two cases.

1) Case 1: When all the gencos have the same parameters, i.e., when ak = a,bk = b,ck =

c,Pk,b = Pb and yk = y,∀k ∈K , the unique positive solution of (20) is

y =
K(b+2Pba)+

√
K2(b+2Pba)2 +8CRKa

2K
(21)

2) Case 2: When the gencos have different parameters (each parameter indexed by k),

the unique positive solution of (20) is

yk =
−T1 +

√
T2

2K
(22)

where T1 = 2BR(K− 1)ak−Kbk− 2KPk,bak and T2 =
(
2BR(K−1)ak−Kbk−2KPk,bak

)2
+

8akK
(
BR ∑g∈K ,g 6=k yg +CR

)
.
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Proof: Given in Appendix A. �
Remark 1: Equation (13) indicates that for xR,n,k ≥ 0 to hold ∀n ∈ NR,∀k ∈ K , the

following must be satisfied ∀n ∈NR,∀k ∈K .

CR,n ≥ βR,n

[
(K−1)yk−

(
∑

g∈K ,g6=k
yg

)]
. (23)

When the gencos are homogeneous, xR,n,k = xR,n ≥ 0,∀n ∈ NR will hold if their budget

CR,n ≥ 0, i.e., the users can always get some power from each genco since CR,n > 0. When

the gencos are heterogeneous, if Pk,b increases, Pk and thus yk also increase. However, if yk

keeps on increasing, it may lead to the point where (23) is violated for residential users,

i.e., the point at which the demands from the residential users will be negative. The physical

meaning of such a point is that Pk,b is so large that the residential users should supply power

to the gencos to satisfy the demands from the industrial users. Therefore, Pk,b should be small

enough so that (13) is satisfied.

�

C. Stackelberg Equilibirum: Existence and Uniqueness

Given the behavior of the users, the gencos play a non-cooperative game to determine

energy prices and announce them to the users for DRM. In the three-level Stackelberg

game depicted in Fig. 2, where the users act as followers and the gencos act as leaders,

the Stackelberg equilibrium (SE) strategy constitutes energy generations and prices set by

the gencos and the level of energy consumptions of the customers in response to them [20].

Let ΓG,k, ∆G,k be the set of pricing and power generation strategies of genco k, respectively.

Let ΓR,n denote the set of demand strategies of user n. Hence the pricing and power generation

strategy spaces of all gencos are ΓG :=ΓG,1×ΓG,2× .....×ΓG,K and ∆G :=∆G,1×∆G,2× .....×
∆G,K respectively, and let the set of user profiles be defined by ΓR = ΓR,1×ΓR,2× .....×ΓR,N .

Let ΓC ⊆ ΓR be the constrained feasible set.

Let y = {yk,k ∈K } ∈ ΓG be the energy prices of the gencos, P = {Pk,k ∈K } ∈ ∆G be

the energy generations of the gencos and x := {x1;x2; .....xNR} ∈ ΓR is the strategy of all

residential users 1,2, .....,NR. Let x̂n : ΓG→ ΓR,n be the best response mapping of consumer

n to the energy prices given the power generation levels, i.e, xn = x̂n(y). Let P̂k : ΓG,k→ ∆G,k

be the best response mapping of genco k to the energy price yk given user demands, i.e.,

Pk = P̂k(yk). More formally, we can define SE solutions as follows.
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Definition 1 (Stackelberg Equilibrium): A strategy pair (x∗,y∗,P∗) ∈ ΓR×ΓG×∆G is a

SE strategy for the three-level Stackelberg game if the following inequalities hold

UG,k(P̂k(yk),y∗, x̂(y∗)) ≥ UG,k(P̂k(y∗k),yk,y∗−k, x̂(yk;y∗−k)), ∀k ∈K ,

for all yk ∈ ΓG,k ∩ΓC(y∗−k) and xn ∈ ΓR,n, where y∗−k is the pricing strategies of all gencos

other than k at SE, respectively; x̂(y∗) is the optimal response of all users for the price vector

y∗; ΓC(y∗−k) is the projected feasible set under coupled constraints when y∗−k is fixed. The

optimal response of user n∈NR for given (y1,y2, .....,yK)∈ ΓG,1×ΓG,2× .....×ΓG,K is given

by

x̂n(y) = {xn,ζR,n ∈ ΓR,n;UR,n(y,xn)≥UR,n(y,ζR,n)}.

and the optimal response of the power generation of genco k to the price yk given user

demands is

P̂k(yk) = {Pk,ξk ∈ ∆G,k;UG,k(Pk,yk,y−k,x)≥UG,k(ξk,yk,y−k,x)}

To characterize the SE for the game described in Section IV-A and Section IV-B, the

optimal response functions x̂ of users is obtained using (13), the best responses y∗ of the

gencos are calculated by solving (20), and the optimal solution P∗k for given y∗ and x∗ is

found in (17). Hence, the SE for the three-level game is given by (13) from Section IV-A,

(22), (17) from Section IV-B.

Theorem 2: A unique Stackelberg equilibrium exists in the hierarchical Stackelberg game.

Proof: Given in Appendix B. �

D. Flexibility and applicability of the proposed scheme

Despite fixed demands from industrial users and flexible demands from residential users in

our analysis, the model can accommodate industrial users who have some flexible demands

and residential users who have a minimum power requirement in addition, with only slight

changes to some variables. Let us consider the case when the industrial users have some

flexible demands too. We divide the demand of the industrial users into two parts: the strict

power requirement (which is usually much higher than the the requirements of the residential

users) and the flexible part for which a budget limit is assigned. Then, the problem can be

analyzed and solved in the same way as for the case of fixed demands from industrial

users, just by replacing NR by {NR,NI,flex}, where NI,flex is the set of industrial users with

some flexible power demand, and NI,flex = |NI,flex|. The strict demand for the minimum power
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requirement from the residential users will add an additional constraint to OPuser. Fortunately,

this constraint will not alter the analysis for calculating the optimal demands of the residential

users.

For a residential user the minimum power requirement is much less compared to that of the

industrial users and thus the budget is the key factor that decides its demands. On the other

hand, an industrial user might like to consume more (less) power when it is cheap (expensive).

However, the driving factor behind the operation of industrial users is the minimum power

requirement, not the budget limit for the flexible power consumption. Therefore, despite the

fact that both types of users can have some strict and some flexible power requirement, it is

important to note that the user-differentiation is necessary and useful to provide meaningful

insights.

Thus, our proposed scheme is very generic and applicable for a large range of scenarios.

V. DISTRIBUTED ALGORITHM

In the previous section, finding the SE of the game needs information exchange among

gencos about the cost of their power generations, in addition to their communication with

consumers. In this section, we design a distributed algorithm that leads to the SE of the game

without each genco knowing the parameters of other gencos.

For the distributed algorithm, subscript t is appended to all variables defined in the previous

sections, as the time index, i.e., t ≥ 1 indicates the iteration number. Each genco starts with

an arbitrary price yk,1 and all of them send their price information to the consumers. This

communication is enabled by the advanced metering infrastructure (AMI) between the gencos

and the consumers. The power demand of the industrial users is fixed and is known to the

gencos. Each residential user decides how much to buy from each genco {xR,n,k,1} using (13).

The gencos get this demand matrix from all users. Then, one of the generators will calculate

the difference between the optimal power generation for the given unit price for iteration t,

i.e., yk,t−bk
2ak

and the total power demanded from it by all users, i.e., ∑n∈NR xn,k,t +Pk,b. Then,

it will update its unit price for the t +1th iteration using

yk,t+1 = yk,t +
∑n∈NR xR,n,k,t− (

yk,t−bk
2ak
−Pk,b)

σk
, (24)

where t is the iteration number and σk is the speed adjustment parameter of genco k, which is

a sufficiently large number. Whenever a genco updates its price, it sends this information to

the users. The users again, update their demands vectors and inform the gencos. Then, other
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gencos will update their prices sequentially at alternative turns between users and gencos.

This process continues until the price values converge.

We name this algorithm Algorithm 1 and is shown in Table I.

TABLE I

DISTRIBUTED ALGORITHM FOR ITERATIVE UPDATES OF POWER GENERATION, PRICE AND CONSUMER DEMAND

(ALGORITHM 1)

1: For t=1, arbitrarily choose yk,1 ∀k ∈K .

2: Repeat for t=2,3,.....

3: User n = 1,2, . . . ,NR

4: Do

5: Find xR,n,t by solving (2) for given yt := {y1,t ,y2,t , . . . ,yK,t} and xR,n,t := {xR,n,1,t ,xR,n,2,t , . . .xR,n,K,t}.
6: Transmit xR,n,k,t to each genco.

7: end

8: Generator k ∈K , which has not updated the price for iteration t +1, calculate yk,t+1 using (24).

9: If yk,t+1− yk,t = 0,

10: Send a no-change signal to all consumers.

11: If any genco has not updated the price for iteration t +1,

12: Go to 8.

13: end 14: else

15: Send the new value of price to all consumers.

16: Go to 3.

17: end

18: If yk,t+1 = yk,t ∀k ∈K ,

19: stop.

20: else

21: Go to 2.

22: end.

Theorem 3: Let D1 := 2akBR ∑g∈K ,g6=k yg and D2 :=
[
2akCR−K(bk−2ak(K−1)BR−2akPk,b)

]
yk.

Provided that

σk >
Ky2

k,t−D2yk +D1

2akKy2
k,t

, (25)

Algorithm 1 converges to the optimal solutions for both the users and the gencos if the

individual strategies are updated sequentially.

Proof: Given in Appendix C. �
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VI. LARGE POPULATION REGIME

We have derived the closed form solutions for the unit price of the gencos. However, since

there are many variables involved, it may be hard to relate the prices with the variation of the

important parameters in all situations. In addition, the behavior of the involved entities can

be very different in different regions as the dominating parameters change. For instance, in

residential zones, either residential consumers are the only electricity users, or their number is

dominant over the number of commercial or industrial consumers. On the other other hand, in

industrial zones, either there are no residential users, or there are few residential users, making

the impact of the change in residential users’ parameters negligible. It is simpler to relate and

easier to understand the interdependencies if we separate the regions with noticeably different

behavioral patterns of the involved entities. Such analysis is of paramount importance for

practical implementation of the proposed schemes in different types of zones. In this section

we introduce large-population approximations which simplify the expressions and provide

some more insights into the behavior dynamics of the entities involved.

A. Large Population Approximations

For the case of homogeneous generators, yk = y,∀k∈K . Consequently, (20) can be written

as

Ky2−K (b+2Pb)y−2aC̄NR = 0 (26)

where C̄ = ∑n∈NR

CR,n
NR

= CR
NR

. The unique feasible solution of (26) is

y =
T3

2
+

1
2

√
T 2

3 +T4, (27)

where T3 := (b+2aPb) and T4 := 8aNRC̄
K . The generator coefficients a and b are small numbers.

For given a,b,C̄, the value of T3 depends on Pb. Pb can be written as Pb = NIDI , where DI

represents the average power demand of an industrial user from one genco. Therefore, Pb

is large either if NI is too large or if NI is low or moderate but if DI is too large. On the

other hand, for given a and C̄, the value of T4 is governed by NR. Thus, NI and NR are two

important parameters in understanding the price-setting behavior of the gencos. We further

divide our analysis into the following cases.
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1) Case 1: When NR is very large: This scenario is applicable either in completely

residential areas or in bigger areas for instance, a district or a county, where the density of

residential users is usually much larger than the density of industrial and commercial users.

We consider an oligopolistic market scenario i.e., K� NR. When the number of residential

users is very high, since K� NR, NR
K is also arbitrarily large. If NR� K(b+2aNIDI)

2

8aC̄ , T 2
3 � T4.

In this case, T4 +T 2
3 ≈ T4. Hence, (27) can be written as

y≈ 1
2
√

T4 =

√
2aNRC̄

K
, (28)

i.e., for given power generation cost parameters a,b and users’ parameter C̄, the unit price y

is a function of
√

NR.

When the gencos are homogeneous, we replace yk and xR,n,k in (13) by y and xR,n,

respectively. Then, the demand of residential user n from a genco can be expressed as

xR,n =
CR,n

Ky
, ∀n ∈NR, ∀k ∈K . (29)

Substituting y from (28) into (29) yields

xR,n =
CR,n√

2aKNRC̄
, ∀n ∈NR. (30)

For the user utility maximization problem defined in section IV, we introduced a positivity

constraint on the demand of the residential users i.e., xR,n,k ≥ 0,∀k∈K ,∀n∈NR. In practice,

even though the residential users are willing to adjust their electric power consumption to

reduce their electricity bills, they have certain minimum requirement for their non-shiftable

appliances. Let xth,n be the threshold power of user n i.e., the minimum power needed from

each genco. Now, we derive a necessary condition on the budget of residential users to satisfy

their minimum demand.

User n needs to get at least xth,n from all gencos, i.e.,

∑
k∈K

xR,n ≥ xth,n⇒CR,n ≥
√

2aNRC̄
K

xth,n. (31)

When all users are homogeneous, i.e., when they all have the same budget and the same

minimum power requirement, the demand of all residential users is xR =
√

C̄
2aKNR

, ∀n ∈NR.

Subsitituting CR,n = C̄,xth,n = xth,∀n ∈NR into (31), the minimum required budget of each

residential user can be written as

C̄ ≥ 2aNR

K
x2

th

19



2) Case 2:NI � NR or DI is arbitrarily large : This scenario is applicable in heavily

industrialized areas, where the number of industrial and/or commercial users is many folds

higher than the number of residential users, or the number of industrial users is few/moderate

but their power requirements are very high. In this case, Pb is arbitrarily large (but less than

Pmax). If NIDI�
√

8NIaC̄−b
√

K
2a
√

K
, T4� T 2

3 . This scenario is not likely to be the case where small

or medium scale gencos are involved. However this can be the case if some big gencos with

extremely large capacity are serving large or many industrial users. In this case T4+T 2
3 ≈ T 2

3 .

Thus the solution of (27) takes the form

y≈ T3 = (b+2aPb). (32)

The industrial users’ parameters will dominantly decide the unit price. This is a very inter-

esting case. Although the industrial users’ demands are fixed and they do not participate in

the game directly, when there is a large population of industrial users or when there are few

but large industries, their demands will decide the unit price of the gencos.

In this case, the demand of residential user n from a genco can be obtained by substituting

y from (32) into (29), giving

xR,n =
CR,n

K(b+2aPb)
, ∀n ∈NR.

With a similar approach as in section VI-A1, the minimum budget for user n to get at least

xth,n amount of power, is

CR,n ≥ (b+2aPb)xth,n, ∀n ∈NR.

In this case, for the case of homogeneous users too, the required minimum budget is C̄ ≥
(b+2aPb)xth.

B. Sensitivity Analysis

When the gencos are homogeneous, they all set the same unit price and produce the same

amount of power i.e., Pk = P,yk = y, ∀k ∈K . The power available for residential users is

PR = P−Pb. We investigate the following two cases:

1) Case 1: NR� NI: Let us start our analysis with the impact of different parameters on

the supply side. For a given small value of Pb, using approximation (28), the variation of y

w.r.t. the residential users’ parameter C̄, is

∂y
∂C̄

=

√
aNR

2KC̄
.
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This implies that if the average budget of residential consumers C̄ increases, the gencos will

increase their unit price also. Similarly, the variation of y due to a change in the generator

parameter a is
∂y
∂a

=

√
NRC̄
2Ka

.

This implies that if the quadratic cost factor of the generators increases, the gencos will

increase their unit price. Differentiating (30) w.r.t. C̄ and a gives

∂xR,n

∂C̄
=− CR,n

(aKNR)
1
2 (2C̄)

3
2
,
∂xR,n

∂a
=− CR,n

(KNRC̄)
1
2 (2a)

3
2
.

The demand of a residential user shows an inverse relationship to the average budget of the

residential population if its own budget is not equal to the average budget. Thus, the increase

in C̄ makes a user demand less, and vice versa. The demands also vary inversely w.r.t. the

power generation cost coefficient a. It is natural that if the cost of production increases, the

commodity becomes more expensive. Hence a user with the same budget will be able to buy

less.

When the residential users are homogeneous, the variations in their demand xR w.r.t. C̄

and a are as follows:

∂xR

∂C̄
=

1

2
√

2aKNRC̄
,
∂xR

∂a
=− 1

(2a)
3
2

√
C̄

KNR
. (33)

From (33), we observe that the demands will increase if C̄ increases. This difference in the

pattern of variation of xR,n and xR w.r.t. C̄ is an interesting fact. In the case of homogeneous

residential users, an increase (decrease) in the average budget of the residential population

actually means the increase (decrease) in every user’s budget. While in the case of heteroge-

neous consumers, the increase in the average budget when one’s own budget has not changed,

implies a relative decrease in its budget w.r.t. the average residential budget. Because of this

difference, the influence on users’ demands in the two cases are different. The influence of

the power generation cost factor a in the case of homogeneous users, is similar to the case

of heterogeneous users.

2) Case 2:NI � NR or D3 is arbitrarily large : For a given small value of NR, when

NI � NR or D3 is arbitrarily large, using approximation (32), the variation of y w.r.t. the

generator parameter b is
∂y
∂b

= 1.
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This implies that the unit price of the gencos varies linearly with the cost coefficient b. Note

that y does not change with a in this case. If the average budget C̄ changes, the impact

will not be reflected in the unit price i.e., when the industrial users dominate, the system

equilibrium is not influenced by the changes in the residential users’ parameters. It is to be

noted that when the population of residential users is large, the unit price will still be affected

by the demand from the industrial users, Pb. If Pb starts increasing, the unit price and hence

the demand from the residential users will also be affected even for very large NR.

The variation of xR,n w.r.t. b is

∂xR,n

∂b
=− CR,n

K(b+2aPb)2 . (34)

Equation (34) indicates that the demand from residential user n will decrease (increase) if b

becomes higher (lower).

VII. NUMERICAL RESULTS

In this section, we examine how the users determine their optimal demands based on the

unit prices of the gencos and how the gencos optimize their unit prices and the power to sell

based on the users’ budgets. This section is divided into three parts. In the first part, we show

the results for the SE of the game for heterogeneous gencos. The second section depicts the

convergence of the distributed algorithm to the equilibrium. The third part illustrates some

results for the large population regime.

Although the results are affected by the choice of the variables, for illustration purpose, we

have chosen 2 gencos and 100 residential users with parameters αn = 1,βR,n = 1, ∀n ∈NR,

and 2 industrial users. Note that, since, we have derived closed form solutions for the optimal

demands, unit prices and power, using K > 2 is trivial. The reason behind choosing K = 2

is so that we can show different curves for different gencos. Other parameters used were

C̄ = 5, a1 = 0.02,a2 = 0.01,b1 = 0.01,b2 = 0.1,c1 = 0.001,c2 = 0.002,P2,b = 100), unless

mentioned otherwise.

A. Stackelberg Game

Figs. 3(a)-3(c) show the unit price set by the two generators, user demands and the total

power sold by the gencos, respectively, at SE when the power demand of the industrial users

from genco 1 varies as indicated by the x-axis in these figures. From Fig. 3(a), we see that

when the power demand of the industrial users from genco 1 increases, the unit price of
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Fig. 4. Unit price, demands and cost when the population of industrial users increases (a1 = 0.02,a2 = 0.01,b1 = 0.01,b2 =

0.1,c1 = 0.001,c2 = 0.002)

that company goes up. Although, the demand from genco 2 has not increased, the unit price

charged by it rises as well because of the competition between the gencos. Consequently, the

demand of the residential users from genco 1 decreases. Even though the unit price of genco

2 has also increased, the increment is relatively less, thus the demand of the residential users

from genco 2 increases, as illustrated in Figure 3(b). Fig. 3(c) shows that the total demands

from the gencos (of both residential and industrial consumers) and the power generated are

exactly equal, indicating that the companies can generate an optimal amount of power and

gain an optimal profit by selling all of it. This figure indicates that the scheme helps to

balance the total supply and the total demand in the market, and also the supply and the
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demand of each individual genco.

Figs. 4(a)-4(c) illustrates the effect of the residential and industrial users on the genco

strategies and on each other. For these plots we used N = 50, NR and NI vary from 100 to 50

and 0 to 50, respectively. Each industrial user consumes 10 units of power. From Fig. 4(a)

we observe that the unit prices of both the gencos increase as the ratio NI
NR

increases, despite

the total number of consumers, budget of residential users and the demand of each industrial

user being constants. The reason is that the reduction in unit price caused by the decreasing

number of residential users is far too little to compensate the increase in price caused by the

increased demand from the total number of industrial users. The demands of the residential

users are lowered as illustrated in Fig. 4(b), which is the impact of the industrial users on

them. In Fig. 4(c) we observe that the cost paid by each of industrial user increases if their

number increases, despite the demand of each industrial user being fixed.

B. Convergence of the Distributed Algorithm

Fig. 5(a) shows the convergence of Algorithm 1 for determining the parameters of the

gencos. Fig. 5(a) shows the unit price of the gencos. The convergence is very quick, within

10 iterations. Since yk is the key parameter based on which other generator parameters can

be computed, it is clear that the total power generated and the utilities of the gencos will

also converge. Fig. 5(b) depicts the convergence of the residential users’ parameters using the

distributed algorithm. From this figure it is clear that both the average demands of residential

users and their average utility converge within about 10 iterations.

C. Large Population Regime

We compare the actual prices and the approximations for the case of homogeneous gencos

in Figs. 6(a)-6(c), when Pb = 100, Pb = 5000 and Pb = 100000, respectively. The x-axis

represents the number of residential users in log scale (log10 NR) and the y-axis represents

the unit price set by the gencos in log scale (log10 y). As indicated by Figure 6(a), when the

demand from industrial users is not heavy, the approximation T4 >> T 2
3 (dash-dash curve)

overlaps with the actual curve (solid line) for log10 NR > 3. The dashed-dotted line is the

approximation where the influence of the demand from the industrial users is the main factor

in deciding the price. But when Pb = 100, the large population of residential users have a

significant impact in the price setting game. In Figure 6(b), we see that the dashed-dashed

curve gets closer to the solid curve after log10 NR > 5. From the point where log10 NR≤ 3, the
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dashed-dotted curve and the exact solution overlap. This is the area where the impact of the

residential population is not comparable to the given demand from the industrial consumers.

In Figure 6(c), we observe similar behavior but it is evident that the dashed-dotted curve now

covers a large part of the solid curve and the dashed-dashed curve does not come close to

the actual price. This is an interesting fact. When the population of industry users becomes

very large or the demand from the existing industrial users increases heavily, then parameters

of the residential users will not impact the unit price setting of the gencos, even for a fairly

large residential population.
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(b) Pb = 5000
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Fig. 6. The unit price for three different values of Pb(a = 0.001,b = 0.01,c = 0.01)

Figure 7 depicts the minimum required budget of the residential users for getting a supply
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of xth, which is represented by the x-axis of the plot. The figure consists of four lines:

The solid line and the dashed line with ’o’ markers, represent the exact and approximated

required budgets, respectively, when Pb = 100 for a residential population of 1000 users.

The dotted line and the dashed-dashed line with ’+’ markers are the exact and approximated

budget requirements, when Pb = 10000. The figure clearly shows that the approximations

are very close to the exact values. The interesting point in this figure is the difference in

minimum C̄ for the two cases. When the minimum power requirement of a residential user

is 1 unit, the minimum budget required in the two cases are 4.472 and 40.02. The big

difference is a result of the difference in Pb, and the number of residential users NR. When

Pb = 10000, the power to be produced by each genco P is very large. Consequently the unit

price increases drastically, which explains why the users need to have such a large budget

even for a small power requirement, in this case. Furthermore, the difference in the amount

of power allocations may seem huge. However, it should be noted that Pb is the total amount

of power for all industrial users from one genco, while xth is the power requirement of one

out of 1000 residential users.
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Fig. 7. Minimum budget required for residential users (a = 0.001,b = 0.01,c = 0.001,NR = 103)

VIII. CONCLUSION

In this paper, we have proposed a hierarchical system model incorporating multiple pro-

cesses from power generation to market activities and to power consumption, into one

framework. We have modeled the decision processes of both supply and demand sides
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as a multi-leader multi-follower Stackelberg game, where the gencos act as the leaders to

maximize their profits, and the residential users are the followers, who optimally respond to

the strategies of the gencos. In our model, we also integrated differentiation to residential and

industrial users. We have developed analytical results for the Stackelberg equilibrium of the

game and have proved that a unique Stackelberg equilibrium exists. We have also designed

a distributed algorithm for the gencos to determine their unit prices without communicating

with other gencos, and for the users to determine their optimal demand response with only

price information available to them. Furthermore, we have extended our analysis to obtain

large-population approximations for specific cases and presented insights into the behavior

dynamics of the gencos and the users. Finally, we have provided extensive numerical results

to illustrate the performance of the proposed solutions, algorithms and approximations.

APPENDIX A

PROOF OF THEOREM 1

When ak = a,bk = b,ck = c,Pk,b = Pb and yk = y,∀k ∈K , (20) takes the form

Ky2−K (b+2aPb)y−2CRa = 0.

Solving for y, we get

y =
K(b+2Pba)±

√
K2(b+2Pba)2 +8CRKa

2K
. (35)

Here, K(b+ 2Pb)a > 0 and
√

K2(b+2Pba)2 +8CRKa > K(b+ 2aPb). Therefore it is clear

that y has a unique positive solution given by (21).

When the gencos have different parameters, the solution of (20) is yk =
−T1±

√
T2

2K . Suppose

the unit prices of all generators other than k (y−k) are positive. Then, we have the following

cases.

When 2BR(K−1)ak−Kbk
2Kak

≤ Pk,b ≤ Pk,max, T1 ≤ 0. Since −T1 <
√

T2, the root yk =
−T1+

√
T2

2K

yields a real positive value for yk. The root yk =
−T1−

√
T2

2K gives a real negative value for yk,

which is not a valid solution.

When Pk,b ≤ 2BR(K−1)ak−Kbk
2Kak

≤ Pk,max, T1 ≥ 0. Since −T1 <
√

T2, the root yk =
−T1+

√
T2

2K

yields a real positive value for yk. The root yk =
−T1−

√
T2

2K gives a real negative value for yk,

which is not a valid solution.

Therefore, a unique positive solution always exists for yk and is given by (22). �
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APPENDIX B

PROOF OF THEOREM 2

Given the prices y and power generations P, the optimal responses x̂ to y can be determined

by solving the strictly convex problem (2) in Section A. Given these unique responses, an

equilibrium exists for the non-cooperative game between price setting gencos if the following

conditions hold.

C1 y is a non-empty, convex, and compact subset of some Euclidean space RK .

C2 Ugen,k(y) is continuous in y and concave in yk,∀k ∈K .

In addition to positivity, there are tighter limits on yk such that yk ∈ [yk,min,yk,max]. The lower

limit yk,min is due to the associated generation costs. The gencos will not reduce their price

below yk,min. The upper bound yk,max can be fixed according to government standards. In the

price selection game for the gencos, the strategy space is Γgen = Γgen,1×Γgen,2× .....×Γgen,K

where yk ∈ Γgen,k := [yk,min,yk,max], ∀k ∈K . Thus the strategy set is a nonempty, convex and

compact subset of the Euclidean space RK . From (14), we see that Ugen,k is continuous in

yk. Next, the second order derivative of Ugen,k w.r.t. yk is

∂ 2Ugen,k

∂y2
k

=−2ak < 0, ∀k ∈K . (36)

Hence, Ugen,k(y) is concave in yk. Note that the genco utility function is not dependent on

the generation of other gencos when y and x are fixed, and it is strictly concave in Pk, which

leads to a unique solution in (17). Since the optimal response of users are given by (13),

using (C1) and (C2), we can conclude that a SE exists for the game.

As proven in Section IV-B, there exists only one positive set of solutions for the price

selection game given by (22). Therefore the equilibrium for the gencos price setting game

is unique and hence the solutions (22),(13) is the unique Stackelberg equilibrium of the

hierarchical DRM scheme. �

APPENDIX C

PROOF OF THEOREM 3

For iteration t+1, if ∑n∈NR xR,n,k,t +Pk,b < (
yk,t−bk

2ak
), then |∑n∈NR xR,n,k,t−(yk,t−bk

2ak
−Pk,b)|<

yk,t is the sufficient condition for yk,t+1 not to acquire a negative value. Upon simplification,

this condition takes the form (25).

The users’ response (13) is the optimal response to given {yk,∀k ∈K }. The demands

of the residential users, and the power generation of the gencos will converge to a fixed
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set once the price set converges to a fixed point. Consequently, it is sufficient to show

the convergence of the price vector to prove the convergence of Algorithm 1. Eqn. (24)

implies that the price yk of generator k decreases if ∑n∈NR xn,k,t− (
yk,t−bk

2ak
−Pk,b) is negative

and the price increases if ∑n∈NR xn,k,t − (
yk,t−bk

2ak
−Pk,b) is positive. Equation (24) shows that

when ∑n∈NR xn,k,t − (
yk,t−bk

2ak
−Pk,b) = 0, the price will remain unchanged. This is the fixed

point to which Algorithm 1 converges. The prices corresponding to stock clearance are the

prices that maximize the generator profit. Therefore, if {yk,T ,∀k ∈ K } be the prices at

iteration T such that ∑n∈NR xR,n,k,T −Pk = 0, then, Ugen,k(yk,T ,y−k,T ) ≥ Ugen,k(y
′
k,T ,y−k,T )

where Ugen,k(yk,T ,y−k,T ) and Ugen,k(y
′
k,T ,y−k,T ) are the utilities of genco k at price yk,T and

y
′
k,T respectively. Thus the fixed point to which Algorithm 1 converges is the NE of the game

among the gencos i.e., SE of the game between the gencos and the consumers. Thereafter,

the gencos will not deviate from this point. �
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Abstract

The smart grid is the next generation power grid with bidirectional communications between

the electricity users and the providers. Demand Response Management is vital in the smart grid

to reduce power generation costs as well as to lower the users’ electricity bills. In this paper, we

introduce multiple fossil-fuel and multiple renewable energy sources on the supply side, and propose

an end-user oriented generator selection scheme to minimize user costs. We formulate the problem

as a non-cooperative game, incorporating the uncertainty associated with the power supply of the

renewable sources, and prove that there exists a Nash equilibrium for the game. We develop a

joint scheme, to further reduce users’ costs by integrating shiftable load scheduling with generator

selection. We model the joint scheme also as a non-cooperative game, and prove the existence

of a Nash equilibrium for the game. For both schemes, we propose distributed algorithms for the

users to find the equilibrium of the game using only local information. We evaluate our schemes

and compare their performances to two other approaches. The results show that our joint generator

selection and load scheduling scheme incurs the least cost to the users.

I. INTRODUCTION

A smart grid is an intelligent electricity network that makes use of advanced information,

control, and communication technologies to save energy, reduce cost and enhance reliability

and transparency [1] of the grid. Demand response (DR) is the response system of the

end-users to manage their consumption of electricity in response to supply conditions. In

the smart grid, bidirectional communications between energy providers and end users, will

greatly enhance demand response capabilities of the whole system. E.g., consumers will be

able to control and manage their electricity usage, and the providers can plan and manage

the generation and supply of power in a more structured and efficient manner. Thus, power



generation, distribution and consumption are envisaged to be more efficient, more economical

and more reliable in the smart grid.

With the internationalization of energy market and the incorporation of new renewable

energy sources (e.g., wind and solar power) in the smart grid, users will have more options

in terms of choosing providers or the type or energy source they use. With this motivation,

we include multiple renewable energy generators on the supply side, in addition to the tradi-

tional fossil fuel based generators. However, incorporating renewable energy sources brings

uncertainty to the supply side. While existing literature has focused mainly on minimizing the

power generation cost of a single provider by scheduling the shiftable load of the end-users

to different time-slots, we introduce a generator selection approach for demand response

management (DRM), to minimize the costs of the users, considering the uncertainty about

the states of the renewable energy sources. To this end, in order to reduce the costs of the

users further, we develop a joint scheme by combining generator selection and conventional

load scheduling schemes. This joint scheme is very generic, and is useful for residential,

commercial as well as industrial electricity consumers.

The cost of a user depends not only on its own demand and scheduling, but also on

the demands and scheduling of other users, who prefer the same provider. Moreover, in a

multiple provider scenario which we focus on, the cost of each user varies according to the

cost of power generation of many sources, and the selection of the sources by other users,

thus making the interactions between users and sources, and among users, complicated. This

complicated coupling makes game theory an appealing approach to model users’ costs in this

scenario. In particular, since all users are selfish and their aim is to reduce their own costs,

we model these interactions as a non-cooperative game among the users to schedule their

demands by optimally choosing the generators and by optimally scheduling their shiftable

appliances in order to minimize their payments to the providers, and we characterize the

Nash equilibrium (NE) solution of the games.

Our contributions in this work are as follows.

1) We study DRM with multiple energy sources with a user-centric approach, incorporat-

ing uncertainty regarding the availability of renewable energy sources.

2) We propose a non-cooperative generator selection game among users, and develop a

distributed algorithm to find the NE of the game using only local information.

3) We introduce a joint generator selection and load scheduling scheme as a non-cooperative

game, to further improve the users’ costs, and propose a distributed algorithm to reach
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the NE of the scheme.

The rest of the paper is organized as follows: Related work is described in Section II. The

system model that includes the generator availability model and the cost model, is decribed

in Section III. In Section IV, we introduce a non-cooperative generator selection game among

the users and design a distributed algorithm for the game to converge to the NE. In Section

V, we develop a joint scheme by integrating shiftable load scheduling with the generator

selection scheme, and propose a distributed algorithm to find the NE of the game using only

local information. In Section VI we present and discuss our results and Section VII concludes

the paper.

II. RELATED WORK

There are several studies on DRM in the smart grid [3]-[9]. In [3], the authors formulated

the energy consumption scheduling problem as a non-cooperative game among the consumers

for increasing and strictly convex cost functions. In [4], the authors considered a distributed

system where price is modeled by its dependence on the overall system load. Based on the

price information, the users adapt their demands to maximize their own utilities. In [5], a

robust optimization problem was formulated to maximize the utility of a consumer, taking

into account price uncertainties at each hour. In [6], the authors have exploited the awareness

of the end-users and proposed a method to aggregate and manage end-users’ preferences

to maximize energy efficiency and user satisfaction. In [9], a dynamic pricing scheme was

proposed to incentivize costumers to achieve an aggregate load profile suitable for providers,

and the demand response problem was investigated for different levels of information sharing

among the consumers in the smart grid. We observe that [3]-[9] mainly focus on either only

one source or a number of sources/providers treated as one entity, and the cost minimization

problem was solved from the provider’s perspective. Differently in our study, we include

multiple renewable and non-renewable energy sources. We notice that there are few studies

exploring DRM in the context of multiple energy sources [11] [13]. These two studies are

based on the cost minimization of the supply side. In our study, we focus on minimizing

the cost for each user. In our previous work [10], we introduced multiple providers who aim

to maximize their revenues, and multiple consumers who aim to maximize their utilities.

In [10], we focused our analysis on a static one time slot game. In this paper, however,

we deploy a pricing scheme that is closely related to the cost of power generation, and we

also introduce the temporal aspect of DRM in the joint scheme. Recently there has been
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a drastic increase in the volume of work considering bateries as storage devices, or solar

panels at many buildings to reduce the peak-to-average ratio of power demand, and thus the

cost for the users [15], [16]. The problem we address is different. When each user has a

battery or a solar panel, these alternatives are local for each user. In our study, the renewable

energy sources are on the supply side and the same renewable sources can supply multiple

users, which makes the problem more complicated. Moreover, there has been an increasing

interest in integrating renewable energy sources into the grid with storage units [17], [18].

Our focus in this paper is different than the analyses in [17], [18]. While[17], [18] focus

on the integration issues of renewable sources into the grid, and provide simulation and/or

experiment based performance evaluation in the presence of storage units, we concentrate

our analysis on the market level and provide user-centric approaches to get economic benefits

by making optimal choices.

III. SYSTEM MODEL

Fig. 1 shows the system model. There are N energy users, N := {1, 2, ....., N}, and K

different providers, K := {1, 2, ....., K}. In our system model, each provider consists of one

energy source. Thus, we use the terms providers, generators and sources interchangeably.

Some of the energy sources are fossil-fuel based (which are the non-renewable sources),

and some are renewable energy sources. Then, we have, K = Kf + Kr, where Kf and

Kr are the number of fossil fuel generators and renewable energy sources, respectively. The

daily energy consumption schedule of each user is divided into different time slots. Each

user intends to select the source of energy that minimizes the cost it pays to the providers.

In each time slot, each user can select only one generator, but in case of deficit power

from a renewable source, the demand will be served by a fossil-fuel generator. There is

bidirectional communication between the providers and the consumers.The consumers form

a Neighborhood Area Network (NAN). The data from the users’ side (demands and generator

preferences), and from the providers’ side (price) is exchanged through the Neighborhood

Area Network Gateway (NAN-GW) as shown in Figure 1.

The fossil-fuel based energy sources are available all the time but the price they charge

to the users will include the cost due to their pollution emission. On the other hand, the

renewable energy sources are pollution free but they cannot provide a stable supply of power.

There are two components associated with a generator model: the cost of power generation

and the generator availability.
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Fig. 1. Communication between the providers and the users

A. Cost of Power Generation

We choose the cost function of each generator such that the following properties are

satisfied for both types of sources.

Property 1. The cost functions and hence the prices charged to the users are increasing

with higher demand for any time slot, i.e., if dk,tot, d̃k,tot ≥ 0, are the total demands from

generator k, (k ∈ K) such that dk,tot < d̃k,tot, and if Cgen,k(dk,tot) and Cgen,k(d̃k,tot) are

the corresponding costs of power generation, then, Cgen,k(dk,tot) < Cgen,k(d̃k,tot), ∀ dk,tot <

d̃k,tot, ∀k ∈ K.

Property 2. The cost functions and hence the prices charged to the users are strictly convex

in any time slot, i.e., Cgen,k(θdk,tot + (1 − θ)d̃k,tot) < θCgen,k(dk,tot) + (1 − θ)Cgen,k(d̃k,tot),

∀k ∈ K, where dk,tot, d̃k,tot ≥ 0, and 0 < θ < 1 is any real number.

Examples of cost functions that satisfy these properties can be the two-step conservation
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rate model, quadratic cost functions, etc. These types of cost functions are of significant

importance and are realistic too, since they have been deployed by many big power plants

such as BC Hydro [3], and they can be closely related to the cost of power generation. In

addition, when a pricing scheme closely related to the cost of generation is deployed, the

pricing scheme provides incentives to the end-users to adjust their demands such that the

peak-to-average ratio of demands from the generator is reduced. Thus the demand response

and demand side management can be autonomously related. This motivated us to employ a

quadratic cost function for the generators.

Let the coefficients of provider k for the cost of power generation be βk,2,prod, βk,1,prod and

βk,0,prod respectively . Let the pollution coefficients be αk,2, αk,1 and αk,0, respectively. Then

βk,2 := βk,2,prod +αk2, βk,1 := βk,1,prod +αk,1 and βk,0 := βk,0,prod +αk,0 are the coefficients of

the cost function of generator k. The users are charged proportional to the cost of producing

the electricity. Note that for a renewable energy generator, k, αk,2 = αk,1 = αk,0 = 0. Let

dhn denote the demand of user n at time slot h, h ∈ H, where H := {1, 2, . . . , H}. Let

gn := {ghn,k, k ∈ K, h ∈ H}, denote the generator selection strategy of user n, where ghn,k is

the decision of user n for generator k in hour h, i.e.,

ghn,k =





1 if user n selects generator k in hour h,

0 otherwise.
(1)

We use vectors ghn to represent the strategy of user n for hour h, i..e., ghn := {ghn,k, k ∈ K}.
Suppose user n prefers generator k in time-slot h. Let N h

k := {1, 2, . . . , Nh
k }, denote the

set of users who select generator k, where Nh
k := |N h

k |, is the total number of users who

prefer buying power from generator k in time-slot h. Then, the total demand from generator

k in time-slot h is
∑

m∈Nh
k
dhm. The cost of generating this amount of power is

Cgen,k = βk,2


 ∑

m∈Nh
k

dhm




2

+ βk,1


 ∑

m∈Nh
k

dhm


+ βk,0. (2)

B. Availability of Renewable Energy Generators

When renewable energy sources are incorporated into the system, we add uncertainty to the

supply side. We employ a discrete time Markov chain (DTMC) to model the power available

with the renewable sources. The users do not know the exact state of the generators, but they

have knowledge about their statistical behavior, i.e., the only information the users have is

the steady state probabilities of the DTMC.
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Fig. 2. DTMC for renewable energy generator k

The availability of the renewable energy generators is represented as an M state DTMC

as shown in Fig. 2. Let the state of the renewable energy generator k (k ∈ Kr,Kr :=

{1, 2, . . . , Kr};Kr := |Kr|) be shk at time slot h. Each state of a generator represents its

power supply level. The power supply state space can be divided into M discrete lev-

els i.e., shk = m, (m ∈ M,M := {1, 2, . . . ,M};M := |Mr|). Let the 1 × Kr vector

sh := (sh1 , s
h
2 , ....., s

h
Kr

) represent the power supply state of all renewable energy gener-

ators, i.e., the system state in time slot h. Then, the state space of this vector is Ωs =

{(ω1, ω2, ....., ωKr)|ωk = m, k ∈ K}. If the generators are independent, the dynamics of sh

follows DTMC with transition probability from state vector ω to ω′ , given by

P (ω, ω
′
) = Pr(sh+1 = ω

′|sh = ω)

=
Kr∏

k=1

Pk(ωk, ω
′
k) ∀ω, ω

′ ∈ Ωs, (3)

where ωk and ω′k are the kth element of the state vector ω and ω′ , respectively, and Pk(ωk, ω
′
k)

represents the state transition probability matrix of generator k.

For a time homogeneous DTMC model, the steady state probabilities of each renewable

energy source k, (k ∈ Kr) being in state m can be obtained as follows. Let us define
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πhk (ω
′
) = Pr(shk = ω

′
), ∀k ∈ Kr. (4)

Then,

πh+1
k = πhkP, (5)

where πk is a row vector. The stationary distribution is

πk = lim
h→∞

πhk , if the limit exists. (6)

If πk exists, it can be obtained by solving

πk = πkP,
∑

ω′

πk(ω
′
) = 1. (7)

C. Interactions between the providers and the users

Each user has some appliances whose power requirements are non-shiftable, and some

flexible appliances, whose power requirement shiftable in time. Each residential user has

a smart meter that, with the aid of the bidirectional communication, can perform load

scheduling and generator selection optimally in order to minimize the cost for the user.

The data communication among the users can be carried out through a NAN-GW as shown

in Fig. 1, or through a Local Area Network (LAN), as described in [3].

IV. GENERATOR SELECTION: A NON-COOPERATIVE GAME THEORETICAL APPROACH

Different users choose the energy generators independently. However, the aim of each user

is to minimize the cost that it pays to the providers. Next, we discuss the pricing scheme

and the cost model for the users.

A. Cost model for each user

In order to motivate the users to help in the demand side management, the providers employ

a pricing scheme such that the consumers are charged according to the cost of generating

the required power.

The electricity delivery process can be divided into two phases. In the first phase, the

power generation units are committed for a certain amount of demand from users; this phase

is called unit commitment. In the second phase, the electricity is dispatched i.e., the end-users

start using the energy; this phase is called economic dispatch. If a user chooses a renewable
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energy source but the source is not available or if the power supply level of the source is

not adequate to meet the demand, the total available power is supplied proportionally to the

users’ demands. The amount of power that can not be supplied by the source (deficit power)

will have to be generated by and bought from one of the fossil-fuel based sources. Since the

deficit power has be generated immediately, it is costlier than the power reserved from the

fossil-fuel based generator beforehand. We associate a scaling factor δk ≥ 1 with the price

charged to the users if deficit occurs for source k.

If a user chooses a renewable energy source, its cost will be affected by the type of the

renewable material. For instance, if the energy source is a wind generator, the price of energy

will depend on the wind speed, weather conditions of the place and other parts of the costs

of production. This dependency can be captured by the state transition matrix of the source.

Let us pk,m denote the steady state probability of the renewable energy source k, (k ∈ Kr),

being in state m. The steady state probabilities are obtained from πk = {pk,m,m ∈M}. Let

Shavl,k,m be the available power of the renewable generator in time slot h in state m. Then,

the amount of power supplied by the renewable energy generator k is

Shsupp,k,m = min


Shavl,k,m,

∑

l∈Nh
k

dhl


 .

If a user chooses renewable energy generator k, k ∈ Kr, in time-slot h i.e. if ghn,k = 1, then,

the amount of power that it gets from generator k is

Shuser,n,k = min

(
dhn,

dhn∑
l∈Nh

k
dhl
Shavl,k,m

)
.

The total amount of deficit power for renewable energy source k in time-slot h is

Shdef,k,m = max


∑

l∈Nh
k

dhl − Shavl,k,m, 0




If this deficit power is supplied by the fossil-fuel generator k′ , then, the total amount of

power to be supplied by generator k′ is

Shtot,k′ =



∑

l∈Nh

k
′

dhl +
∑

l∈Kh

r,k
′ ,ω∈Ωs

πhl (ω)Shdef,l,ω




where
∑

l∈Nh

k
′
dhl is the total demand from the fossil-fuel generator,

∑
l∈Kh

r,k
′ ,ω∈Ωs Shdef,l,ω is

the sum of the deficit powers of all renewable energy sources which has to be supplied by

fossil-fuel generator k′ when the system state is ω, Kh
r,k′

:= {1, 2, . . . , Kh
r,k′
} is the set of
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the users who choose renewable energy sources but whose demands are at least partially

supplied by fossil-fuel generator k′ , and Kh
r,k′

is the total number of these users. Therefore,

if user n chooses renewable energy generator k in time-slot h, the price charged to the user

(averaged over the possible states of the generator) will be

Ch
user,n :=

∑

m∈M
pk,m

(
Ch

user,n,r + δkC
h
user,n,f

)
(8)

where

Ch
user,n,r := βk,2S

h
supp,k,mS

h
user,n,k + βk,1S

h
user,n,k +

βk,0
Nh
k

,

is the cost to be paid to the renewable source k, k ∈ Kr, and

Ch
user,n,f = βk′ ,2S

h
tot,k′ max


dhn −

dhn∑
l∈Nh

k

dhl
Shavl,k,m, 0




+ βk′ ,1 max


dhn −

dhn∑
l∈Nh

k

dhl
Shavl,k,m, 0


+

βk′ ,0
Nh
k′
,

is the cost to be paid to the fossil-fuel based source k′ ∈ K. Since the price charged to the

users by each generator is closely related to its quadratic cost function, every additional unit

of energy will cost more. Consequently, we can also take δk = 1,∀k ∈ Kr. Note that even if

δk > 1, the users will choose renewable energy generator k, k ∈ Kr, only if the average cost

that it pays for selecting k is the least, for given generator selection of other users.

If consumer n chooses the fossil-fuel based generator k′ , i.e., gh
n,k′

= 1, the price charged

to it for time slot h will be

Ch
user,n = ak′ ,2S

h
tot,k′d

h
n + ak′ ,1d

h
n +

ak′ ,0
Nh
k′

(9)

The centralized cost minimization problem can be written as

min
{gn,n∈N}

∑

n∈N
Cuser,n = min

{gn,n∈N}

∑

n∈N

∑

h∈H
Ch

user,n. (10)

Since, each user is selfish, the objective of each user is to minimize its own cost. The

optimization problem for user n given the strategies of other users, (OPuser,n) is

min
gn

∑

h∈H
Ch

user,n. (11)
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For the generator selection game, the power consumptions and thus the costs are decoupled

in time. Hence, minimizing the total price over a time span of H time slots is equivalent to

minimizing the price in each time slot, i.e., (OPuser,n) takes the form

min
{ghn,k,k∈K}

Ch
user,n, ∀h ∈ H. (12)

B. A Non-Cooperative Game Among Users

The choice of generators by consumers depends not only on their own demands but also

on the demands and generator selection strategies of the other consumers. This implies that

the strategy of each user is coupled with the strategies of the other users. As each user is

concerned about maximizing its own payoff, a non-cooperative game [12] is a natural fit to

model the behavior of the users in this case.

The components of the game are as follows:

• Players: Users in the set N .

• Strategies: The strategy set of user n is the selection of energy source for all time slots

in a day, gn. The strategy space is defined as g := {g1 × g2 × . . .gN}.
• Payoffs: uuser,n(gn, g−n), for each user n ∈ N , where uuser,n(gn, g−n) = −Cuser,n, and

g−n is the strategy of all users other than n.

C. Existence of Nash equilibrium

Definition 1. For a finite N -user game in strategic form G := {N , (An)n∈N , (uuser,n)n∈N},
where uuser,n is the utility function of user n, the strategy set of user n is denoted by An and

the strategy space for all users other than n is denoted by A−n. Let us represent the actions

taken by user n and the rest of the users as an and a−n, respectively. Then, for all n ∈ N ,

the strategy a∗n ∈ An is a Nash equilibrium (NE) for user n if for every alternative strategy

an ∈ An, (a∗n 6= an), the following relation holds:

uuser,n(a∗n, a
∗
−n) ≥ uuser,n(an, a

∗
−n). (13)

Equation (13) indicates that at the NE, a player cannot improve its payoff by deviating

alone from the equilibrium, given the strategies of all other players.

For the generator selection game, the NE is any strategy set (g∗n,g
∗
−n) at which

uuser,n(g∗n,g
∗
−n) ≥ uuser,n(gn,g

∗
−n),
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where g∗n is the optimal generator selection strategy of user n, for given optimal strategies

of other users g∗−n, and uuser,n(.) = −Cuser,n(.).

Theorem 1. The generator selection game between the consumers is a concave N -user game

and a Nash equilibrium exists for the game.

Proof: For the generator selection game for one whole day, since there is no coupling

in time, it is sufficient to prove that an NE exists for the game for each time slot.

For time-slot h, the demand of user n from generator k can be written as dhn,k = ghn,kd
h
n =

{0, dhn}. If k is a renewable energy source, user n will get Shuser,n,k from the renewable

energy source, and [dhn,k − Shuser,n,k]
+ from the corresponding fossil-fuel generator, where

[θ]+ := max[θ, 0]. The demand of users other than n who also prefer generator k, can be

represented as dh−n,k = ghm,kd
h
m,∀m ∈ N h

k ,m 6= n. Suppose N h
k

′
:= {1, 2, . . . , n, . . . Nh

k

′
} is

the set of all users who get power from generator k. Note that Nh
k

′
is the total number of

users who buy power from generator k, while Nh
k is the total number of users who preferred

generator k. If k is a fossil fuel based generator, N h
k

′
includes those users who had chosen

renewable energy generators, but whose demands are at least partially supplied by generator

k. If k is a renewable energy generator, N h
k

′
= N h

k . Let us write the payoff of user n,

who gets power from generator k, as uuser,n(dhall,k) = uuser,n(dh1,k, . . . , d
h
n,k, . . . , d

h

Nh
k

′
,k

). Since

the cost functions are increasing and strictly convex for each generator, the payoff function

uuser,n(dhn,k,d
h
−n,k) is strictly concave w.r.t. dhn,k for given (dh1,k, . . . , d

h
n−1,k, d

h
n+1,k, . . . , d

h

Nh
k

′
,k

)

and is continuous in dhall,k. This holds for all users n ∈ N , who prefer a different generator

g ∈ K, g 6= k, too. Thus, the generator selection game is a concave N -user game. An NE

exists for a concave N -user game [14]. The game will be a concave game even if a part of

the demand of user n from k ∈ Kr, is supplied by a fossil-fuel generator, since the sum of

the convex functions is also convex. Consequently, an NE exists for this game.

D. Distributed algorithm to converge to NE

Equation (10) can be solved in a centralized manner by using integer programming.

However, with increasing N , the computation overhead will increase exponentially for a

centralized solution. Thus, for a practical implementation of the scheme, we need a dis-

tributed algorithm such that the end-users can reach their optimal strategies using only local

information. Notably, (11) or (12) can be solved by each user distributedly provided the users

can select their strategies sequentially. Exploiting this fact, next, we propose a distributed
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algorithm to implement the generator selection scheme.

Let, gn,t = {ghn,t, h ∈ H} denote the generator selection strategy of user n. Each user

starts by randomly selecting a generator for each time slot. In the next iteration, one of the

consumers solves the local optimization problem (12) and updates its strategy for the whole

day. Then, another user gets its turn to solve its local optimization problem and to update its

choice. If in one complete round of updating, the selection of generators from all users do

not change, the point is an equilibrium. We call this algorithm, Algorithm 1 and the detailed

algorithm is shown in Table I. The strategy update iterations should be performed until the

strategies of all users do not change compared to their strategies in the previous iterations.

Note that strategy update should be done sequentially by each user. The NAN-GW can be

used to send the control signal (e.g., a 1-bit signal) for asynchronously giving turn to each

user to update their strategies.

Note that the term iteration ’t’ and the term time-slot ’h’ are used to represent different

time scales. An optimal generator selection game for one time slot needs many iterations for

the users’ strategy to converge (see results in Section VI).

TABLE I

DISTRIBUTED ALGORITHM FOR NE

1: t=1; Arbitrarily choose gn,t = {gh
n,t, h ∈ H}, ∀n ∈ N , and announce the starting strategy, i.e., {gn,t, n ∈ N}.

2: t = t+ 1

3: Randomly choose user n, n ∈ N .

4: User n: Solve the optimization problem (12), ∀h ∈ H using integer programming to find optimal gn,t.

5: If gn,t changes compared to gn,t−1,

6: Send a control message to announce the new gn,t to other smart meters.

7: end

8: If any user has not updated its strategy for iteration t,

9: Send a control message to user l who has not updated its strategy for iteration t, l ∈ N , l 6= n.

10: Update n = l. User n, go to Step 4.

11: end

12: If gn,t changes compared to gn,t−1 for at least one user,

13: Go to Step 2.

14: end

Theorem 2. Algorithm 1 converges to an NE as long as the individual strategies are updated

sequentially.
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Proof: Line 4 in Table I finds the best response. If users play the best responses using

this algorithm in a sequential manner, the cost of each user decreases or remains unchanged

every time a user updates its strategy. However, the cost cannot decrease below a certain

value since Cuser,n ≥ 0. This implies that the algorithm converges to a fixed point, beyond

which the cost can not be improved, for given strategies of other users. To prove that this

fixed point is an NE, let us denote C∗user,n(g∗n,g
∗
−n) as the cost for user n at the fixed point,

which corresponds to the strategy set (g∗n,g
∗
−n) and let C ′user,n(g

′
n,g

∗
−n) be the cost for the

same user for the strategy set (g
′
n,g

∗
−n) where g∗n 6= g

′
n. By definition, if (g∗n,g

∗
−n) is a fixed

point of the generator selection game, then,

C∗user,n(g∗n,g
∗
−n) ≤ C

′
user,n(g

′
n,g

∗
−n),

⇒ u∗user,n(g∗n,g
∗
−n) ≥ u

′
user,n(g

′
n,g

∗
−n).

Thus, the fixed point (g∗n,g
∗
−n) is an NE of the game. If the NE is unique, the algorithm

converges to the unique NE. If there exist multiple Nash equilibria, the algorithm converges

to one of them depending on the initially selected strategies.

V. LOAD SCHEDULING AND GENERATOR SELECTION: A JOINT APPROACH

Scheduling in time is a conventional approach used to reduce the Peak to Average Ratio

(PAR) of a single generator/provider which consequently reduces the cost of generation for

the (single) generator and also the user bills. However, it should be noted that not all users

prefer saving on their bills by shifting their flexible load. Such time-scheduling schemes are

useful only for those users who have a considerable amount of flexible load. In fact, many

consumers may not even have any shiftable load, or they may have some flexible appliances

but they may prefer to use them at certain hours rather than scheduling them at any time

for the sake of reducing costs. In addition, the electricity requirements of the commercial

and the industrial consumers are usually rather strict, and scheduling in time may not be

a preferable option for them. On the contrary, if the users have shiftable appliances, their

costs can be reduced significantly by scheduling their shiftable appliances in different time

slots. We accommodate the needs and goals of all these types of consumers together into one

framework in our proposed DRM solution. To this end, we introduce a joint scheme where

users schedule their shiftable appliances in different time slots and also choose generators in

each time slot. While the generator selection game is played in a similar manner for each
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time slot to schedule the total load of the NAN among providers, the load scheduling in time

has to be done in advance for the whole day.

As mentioned in Section I, we would like to emphasize that the generator selection

scheme incorporating the uncertainty in the supply side associated with the renewable energy

resources, is one of our main contributions in this paper. The joint scheme is another

contribution of this work which further reduces the cost for the users. The joint scheme is not

a straightforward extension of the generator selection game. The joint scheme is comprised

of two levels of non-cooperative games: the optimal load scheduling in time for the whole

day and the optimal generator selection for all time slots in a day. It is worth noting that the

two scenarios have rather different application domains. The generator selection game finds

its extensive use in a scenario where the end-users have relatively strict power requirements

such as commercial and/or industrial users who have either no or very little flexible demands.

On the other hand, the scheduling in time is more useful for users with higher proportion

of shiftable appliances, such as residential users. The joint scheme is very generic and is

suitable for residential, commercial as well as industrial users.

In addition to a non-shiftable demand in each time slot, we now incorporate some shiftable

power requirement for each consumer. Let dhn,ns, d
h
n,s be the non-shiftable demand in time slot

h, and part of the shiftable demand of user n, scheduled in time slot h, respectively, for

a given scheduling in time. Here, the subscript s represents shiftable, n is the user index

and ns indicates non-shiftable. The total amount of shiftable power per day is fixed but its

scheduling across time and the selection of generators is the strategy of each consumer in

this case. We incorporate the coupling across different time slots for the shiftable load of

consumer n as
τn,2∑

h=τn,1

dhn,s = d̄n,s; d
h
n,s ≥ 0, ∀h ∈ [τn,1 τn,2].

For this scheme, the strategy of each consumer is {xn,gn}, where {xn} := {xhn, h ∈ H},
is a demand scheduling vector that incorporates its shiftable load d̄n,s, i.e., xhn = dhn,ns + dhn,s,

is the power requirement of user n in time slot h, and gn := {ghn,k, h ∈ H, k ∈ K} is the

generator selection strategy of user n for one complete day, for a given schedule of the

shiftable appliances. If a user chooses renewable energy generator k in time slot h, the price

charged on user n is calculated as follows. The amount of power supplied by the renewable
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energy generator k is

Shsupp,k,m = min


Shk,m,

∑

l∈Nh
k

xhl


 .

If a user chooses renewable energy generator k in time slot h i.e. if ghn,k = 1, then, the

amount of power that it gets from generator k is

Shuser,n,k = min

(
xhn,

xhn∑
l∈Nh

k
xhl
Shavl,k,m

)
.

The total deficit amount of power for renewable energy source k in time slot h in this case

is

Shdef,k,m = max


∑

l∈Nh
k

xhl − Shavl,k,m, 0




If this deficit power is supplied by the fossil-fuel generator k′ , then, the total amount of

power to be supplied by generator k′ is

Shtot,k′ =



∑

l∈Nh

k
′

xhl +
∑

l∈Kh

r,k
′ ,ω∈Ωs

πhl (ω)Shdef,l,ω




where
∑

l∈Nh

k
′
xhl is the total demand from the fossil-fuel generator,

∑
l∈Kh

r,k
′ ,ω∈Ωs Sdefh,l,ω is

the sum of the deficit power of all renewable energy generators which has to be supplied by

fossil-fuel generator k′ when the system state is ω. Therefore, if user n chooses renewable

energy generator k in time slot h, the price charged to the user will be

Ch
user,n :=

∑

m∈M
pk,m

(
Ch

user,n,r + δkC
h
user,n,f

)
(14)

where

Ch
user,n,r := βk,2S

h
supp,k,mS

h
user,n,k + βhk,1S

h
user,n,k +

βhk,0
Nh
k

,

is the cost to be payed to the renewable source and

Ch
user,n,f = βk′ ,2S

h
tot,k′ max


xhn −

xhn∑
l∈Nh

k

xhl
Shavl,k,m, 0




+ βk′ ,1 max


xhn −

xhn∑
l∈Nh

k

xhl
Shavl,k,m, 0


+

βk′ ,0
Nh
k′
,
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is the cost to be payed to the fossil-fuel based generator k′ ∈ K, k′ 6= k . If consumer n

chooses the fossil-fuel based generator k′ , i.e., gh
n,k′

= 1, the price charged to it for time slot

h will be

Ch
user,n = ak′ ,2S

h
tot,k′x

h
n + ak′ ,1x

h
n +

ak′ ,0
Nh
k′

(15)

The objective for a centralized approach would be to minimize the total daily cost of all

users i.e.,

min
{gn,xn,n∈N}

∑

n∈N
Cuser,n = min

{gn,xn,n∈N}

∑

n∈N

∑

h∈H
Ch

user,n (16)

s.t.
τn,2∑

h=τn,1

dhn,s = d̄n,s,∀n ∈ N .

The objective of each user, however, is to minimize its own cost given the strategy of other

users, i.e., the optimization problem for user n (OPuser,n) in this case, is

min
{gn,xn}

∑

h∈H
Ch

user,n, (17)

s.t.
τn,2∑

h=τn,1

dhn,s = d̄n,s. (18)

A. Existence of NE

For the joint generator selection and load scheduling game, the NE is defined as the strategy

set {x∗ := {x∗n,x∗−n},g∗ := {g∗n,g∗−n}} such that

Cuser,n(x∗n,x
∗
−n,g

∗
n,g

∗
−n) ≤ Cuser,n(xn,x

∗
−n,gn,g

∗
−n),

Theorem 3. The joint generator selection and load scheduling game is a concave N -user

game and a Nash equilibrium exists for this game.

Proof:

The payoff function is uuser,n(x,g) = uuser,n({x1, . . . ,xn, . . . ,xNk
}, {g1, . . . ,gn, . . . ,gNk

})
for user n, where (x1, . . . ,xn, . . .xNk

) and (g1, . . . ,gn, . . .gNk
) are the vectors that represent

the demands and the generator selection of users 1, . . . , n, . . . , Nk, all of whom get power

from generator k, (k ∈ K, here k may indicate different generators at different time slots).

For a given scheduling of the shiftable load of the users, an NE exists for the generator

selection game for each time slot, as shown in Section IV-C. Thus we need to prove that an

NE exists only for the scheduling game.
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Since the cost function of each generator is increasing and strictly convex, the payoff func-

tion uuser,n(xn,x−n) is strictly concave w.r.t. xn. For xn ∈ x, where x = x1×x2× . . .×xNk
,

uuser,n(x) is continuous in x and is concave in xn for given (x1, . . . ,xn−1,xn+1, . . . ,xNk
).

This holds for all users n ∈ N selecting different time slots h ∈ H for their load scheduling

from the same generator. Hence, the load scheduling game is a concave N -user game and

the existence of an NE for such a game is straightforward [14].

B. Distributed algorithm to find NE of the game

Problem (16) can be solved by using integer programming. The computation overhead,

however, can be quite high for a centralized implementation of this scheme since the com-

putation in this case is quite intensive. In particular, as the users have to choose both the

time slots and the generators optimally, the higher the number of generators and time slots,

the number of possible combinations of strategies is huge, thus drastically increasing the

computational complexity. Therefore, we need a distributed algorithm so that the optimal

scheduling can be done by the end-users, with only local information.

Equations (17), (18) represent a local optimization problem for each consumer given the

strategies of other users. Therefore, each user can reach the NE of the game starting from

some arbitrary initial selection vectors {xn,gn}. We devise a distributed algorithm for each

user to solve (17),(18) locally in order to find its optimal strategy. We name this algorithm,

Algorithm 2, and is described next.

Each user starts with a random scheduling of the shiftable appliances and by randomly

selecting a generator, for each time slot. To start the next iteration, a 1-bit control information

is sent to one of the users by the NAN-GW to update its strategy. The user who gets the

control signal solves the local optimization problem (17) for given {x−n,g−n} and updates its

strategy {xn,gn}. Then, another user is chosen randomly to update its strategy. The process

stops when the strategies of all users ({xn,gn, n ∈ N}) do not change. The detailed algorithm

is shown in Table II.

Theorem 4. Algorithm 2 converges to an NE as long as the updating of the individual

strategies is done sequentially.

Proof: Line 4 in Table II finds the best response. If users play the best responses

sequentially using this algorithm in an asynchronous manner, the cost of each user decreases
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TABLE II

DISTRIBUTED ALGORITHM TO FIND THE NE OF THE JOINT SCHEME

1: t = 1; Arbitrarily choose xn,t = {xh
n,t},gn,t = {gh

n,t}, ∀h ∈ H, such that (18) is satisfied ∀n ∈ N ,

and announce the starting strategies, i.e., {xn,t,gn,t, n ∈ N}.

2: t = t+ 1

3: Randomly choose user n, n ∈ N .

4: User n: Solve the optimization problem (17), (18) to find optimal {xn,t,gn,t} for given strategies of other users.

5: If {xn,t,gn,t} changes compared to {xn,t−1,gn,t−1},

6: Send a control message to announce the new {xn,t,gn,t} to other smart meters.

7: end

8: If any user has not updated its strategy for iteration t,

9: Send a control message user l who has not updated its strategy for iteration t, l ∈ N , l 6= n.

10: Update n = l. User n, go to Step 4.

11: end

12: If {xn,tgn,t} changes compared to {xn,t−1,gn,t−1}
for at least one user,

13: Go to Step 2.

14: end

or remains unchanged every time a user updates its strategy. However, the cost cannot decrease

below a certain value because Cuser,n ≥ 0. This implies that the algorithm converges to a

fixed point. Let us denote C∗user,n(x∗n,x
∗
−n,g

∗
n,g

∗
−n) as the cost for user n at the fixed point,

which corresponds to the strategy space {x∗n,x∗−n,g∗n,g∗−n} and let C ′user,n(x
′
n,x

∗
−n,g

′
n,g

∗
−n)

be the cost for the same user for the strategy space {x′n,x∗−n,g
′
n,g

∗
−n} where {x∗n 6= x

′
n,

g∗n 6= g
′
n}. By definition, if (xn,x

∗
−n,g

∗
n,g

∗
−n) is a fixed point of the game, then,

C∗user,n(x∗n,x
∗
−n,g

∗
n,g

∗
−n) ≤ C

′
user,n(x

′
n,x

∗
−n,g

′
n,g

∗
−n).

This implies that the fixed point (x∗n,x
∗
−n,g

∗
n,g

∗
−n) is an NE of the game. If the NE is

unique, the algorithm converges to the unique NE. If there exists multiple Nash equilibria,

the algorithm converges to one of them depending on the initially selected strategies.

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed algorithms. This section is

divided into two parts: convergence of Algorithms 1 and 2, and performance evaluation and

comparison of the two algorithms. The equilibrium of the game will certainly depend on the

values of the parameters. For the purpose of illustration, we use a certain set of parameters in
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all analysis in this section. Note that the value of the results may change with a different set

of parameters, but the pattern of the results will be similar. We consider 10 users (N = 10)

and 2 generators (K = 2). Generator 1 is fossil-fuel based and generator 2 is renewable.

We divide the daily consumption of users into 24 hours. The renewable generator has three

states: state 1 is the OFF state i.e. no power available, state 2 means it has a power of 15 KW

and state 3 means it has a power of 30 KW.

Each user has some non-shiftable appliances such as refrigerators, bulbs, heating/cooling

units, electric stoves, televisions, computers, etc., and some shiftable appliances such as

dishwashers, laundry machines, electrical vehicles, Plug-in hybrid electric vehicles (PHEVs),

etc. The power requirement for these appliances are typical standard values e.g., 1.32 -

3.96 KWh for refrigerators (depending on the number of refrigerators a household has),

1-2 KWh for bulbs, 6.4-9.6 KWh for heating, 3.9 KWh for electric stoves, 1.1-2.0 KWh

for televisions/computers, 1.44 KWh for a dish-washer, 3.43 KWh for a laundry machine

and 9.9 KWh for PHEVs. The power requirement for the non-shiftable appliances was

generated using a uniform random distribution over the typical values mentioned above.

Other parameters used are β1,2 = 0.1875, β1,1 = 0.02, β1,0 = 0.05, α1,2 = 0.1875, α1,1 =

0.02, α1,0 = 0.05, β2,2 = 0.02, β2,1 = 0.3, β2,0 = 0.5, δ2 = 1, unless otherwise stated. Note

that we have chosen β2,2 � β1,2, β2,0 � β1,0 assuming that the production cost is dominant

for fossil-fuel based generators and the initial installation cost is higher for renewable energy

sources. The transition probability matrix of the renewable energy generator used for the

numerical analysis is

P =




0.3 0.4 0.3

0.2 0.4 0.4

0.1 0.6 0.3


 .

A. Convergence of Generator Selection Algorithm

Fig. 3 shows that Algorithm 1 converges. This figure represents the convergence of the cost

of each user to the NE for a 24 hours period without using shiftable load. The convergence

is within 10 iterations. Fig. 4 depicts the total hourly cost for 24 hours i.e., the cost paid

by all users in the NAN every hour. We have used the abbreviation GS in the graphs to

indicate generator selection. The upper part of the figure shows the cost without employing the

generator selection scheme and the lower graph displays the performance when the generator

selection scheme is employed. It is evident that the cost decreases in every hour when the

20



0 5 10 15 20
0

10

20

C
o
s
t

0 5 10 15 20
10

20

30

C
o
s
t

0 5 10 15 20
25

30

35

C
o
s
t

0 5 10 15 20
20

25

30

C
o
s
t

0 5 10 15 20
15

20

25

C
o
s
t

0 5 10 15 20
10

12

14

C
o
s
t

0 5 10 15 20
14

16

18

C
o
s
t

0 5 10 15 20
20

25

30

C
o
s
t

0 5 10 15 20
15

20

25

Iterations

C
o
s
t

0 5 10 15 20
13.5

14

14.5

C
o
s
t

Iterations

Fig. 3. Convergence of the costs of each user to NE for a 10-users game

generator selection scheme is used. E.g., at hour 20, the total cost reduces from 29.5 to 17,

i.e., the generator selection scheme results in an improvement of upto about 40%.
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B. Generator Selection and Load Scheduling: Joint Cost Minimization

We added shiftable demands of 20 KWh to all the users such that each user needs this

amount of energy in 5 hours. Each user schedules this demand in time. Fig. 5 shows the total

cost of each user for a 24-hour period calculated using Algorithm 2. The figure shows that the

algorithm converges very fast, in about 20 iterations. Fig. 6 depicts the total cost of all users

for a 24-hour period. The figure shows four curves. The curve with ’+’ markers is the cost

when neither the optimal generator selection nor the optimal load scheduling is employed.

The dashed line shows the scheme where only optimal load scheduling is performed. The

dotted line with square markers shows the performance of the generator selection scheme. The

solid line shows the performance of our joint scheme where both optimal load scheduling and

optimal generator selection are employed. The fourth curve (solid line) shows that Algorithm

2 converges within 20 iterations. We observe that the load scheduling and the generator

selection schemes reduce the cost compared to the case when no scheduling is done, from

about 256$ to about 220$, and 180$, respectively, i.e., by 14.71% and 25.7%, respectively.

Our joint scheme incurs the least cost to the users compared to the remaining three schemes.

It reduces the cost paid by the users to 154$, i.e., by 3.2% compared to the generator selection

scheme, by 14.19% compared to the load scheduling scheme and by 28.9% compared to the

scheme without using generator selection and load scheduling.

Fig. 7 shows the total daily cost paid by each user. The total cost paid by all users may

not be reduced in every hour but the total daily cost is reduced for every user.

VII. CONCLUSION

We have formulated a generator selection problem as a non-cooperative game, incorporating

multiple renewable and non-renewable energy sources. We have proved that there exists a

Nash equilibrium for the game and have proposed a distributed algorithm that converges to the

Nash equilibrium. Next, we improved the performance of our proposed scheme by integrating

optimal load scheduling with it, using a two-stage non-cooperative game framework for

analysis. This is a novel approach exploiting both spatial and temporal dimensions for demand

response management in the smart grid. We have proven the existence of a Nash equilibrium

for this game also, and have developed a distributed algorithm to converge to the equilibrium.

We have verified the convergence of the proposed algorithms and have shown that while the

generator selection scheme improves the costs of the users compared to the case without any

scheduling, the joint scheme yields the lowest costs compared to three other schemes.
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0 2 4 6 8 10 12 14 16 18 20
140

160

180

200

220

240

260

T
o

ta
l 
c
o

s
t 

o
f 

a
ll 

u
s
e

rs

Iterations

 

 

Without GS and load scheduling

GS only

Shiftble load scheduling only

Using both GS and load scheduling

Fig. 6. Convergence of the total cost for all users (for one day)

REFERENCES

[1] H. Farhangi, The Path of Smart Grid, IEEE Power and Energy Magazine, Vol. 8, No. 1, pp. 18-28, Jan.-Feb. 2010.

[2] A & B National Energy Technological Laboratory (2007-07-27), A Vision for the Modern Grid, United State Department

of Energy, May 2010.

[3] A. H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober and A. Leon-Garcia, ”Autonomous Demand Side

23



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

User

T
o

ta
l 
c
o

s
t 

($
)

 

 

Without optimal GS and scheduling
With optimal GS and scheduling

Fig. 7. Comparison of daily costs per user

Management Based on Game Theoretic Energy Consumption Scheduling for the Future Smart Grid, IEEE Transactions

on Smart Grid, Vol. 1, No. 3, pp. 320-331, December 2010.

[4] Z. Fan, Distributed Demand Response and User Adaptation in Smart Grids, IEEE International Symposium on Integrated

Network Management (IM), 2011.

[5] A. J. Conejo, J. M. Morales and L. Baringo, Real-Time Demand Response Model, IEEE Transactions on Smart Grid,

Vol. 1, No. 3, pp. 236-242, December 2010.

[6] C. Wang and M. D. Groot, Managing End-user Preferences in the Smart Grid, in ACM e-Energy, 2010.

[7] A. H. Mohsenian-Rad and A. L. Garcia, Optimal Residential Load Control With Price Prediction in Real Time Electricity

Pricing Environments, IEEE Transactions on Smart Grid, Volume 1, No. 2, September 2010.

[8] D. Li, S. K. Jayaweera, O. Lavrova and R. Jordan, Load Management for Price-based Demand Response Scheduling:

a Block Scheduling Model, International Conference on Renewable Energy and Power Quality (ICREPQ’11), Apr. 2011

[9] S. Caron and G. Kesidis “Incentive Based Energy Consumption Scheduling Algorithms for the Smart Grid”,

SmartGridComm 2010, pp. 391-396.

[10] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Başar, “Dependable Demand Response Management in the Smart
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Abstract

Smart grid is widely considered to be the next generation of power grid, where power generation,

management, transmission, distribution and utilization are fully upgraded to improve agility, relia-

bility, efficiency, security, economy and environmental friendliness. Demand Response Management

(DRM) is recognized as a control unit of smart grid, with the attempt to balance the real-time load

as well as to shift the peak-hour load. Communications are critical to the accuracy and optimality

of DRM, and hence at the core of the control performance of smart grid. In this paper, we introduce

cognitive radio into smart grid to improve the communication quality. By means of spectrum sensing

and channel switching, smart meters can decide to transmit data on either an original unlicensed

channel or an additional licensed channel, so as to reduce the communication outage. Considering the

energy cost taxed by spectrum sensing together with the control performance degradation incurred by

imperfect communications, we formulate the sensing-performance tradeoff problem between better

control performance and lower communication cost, paving the way towards green smart grid. The

impact of the communication outage on the control performance of DRM is also analyzed, which

reduces the profit of power provider and the social welfare of smart grid, although it may not always
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decrease the profit of power consumer. By employing the energy detector, we prove that there exists

a unique optimal sensing time which yields the maximum tradeoff revenue, under the constraint

that the licensed channel is sufficiently protected. Numerical results are provided to validate our

theoretical analysis.

Index Terms

Demand response management, cognitive radio enabled smart grid, sensing-performance trade-

off

I. Introduction

Power grid is a large interconnected infrastructure for delivering electricity from power

plants to end users. New challenges are emerging in the traditional grid, e.g., rising demand,

aging infrastructure, and increasing greenhouse gas emission, which have become an urgent

global concern. As widely considered to be the next generation of power grid, smart grid

fully upgrades power generation, management, transmission, distribution and utilization to

improve agility, reliability, efficiency, security, economy and environmental friendliness [2]

[3] [4]. It is envisioned as a promising technology to integrate with renewable green energy

resources such as wind and solar power. Besides, it is an open market for electricity providers

and consumers with flexible pricing strategies and load shifting capabilities. For example,

the widespread use of plug-in hybrid electric vehicles with vehicle-to-grid capacity in smart

grid can help alleviate overload during peak hours [5].

Advances in smart metering and digital communications promote smart grid to be an

intelligent closed-loop system where power plants and end users interact closely to achieve

efficient and economical power generation, distribution and utilization. As shown in Fig. 1,

input of the system is supply provided by power plants, while feedback is demand of end

users measured by smart meter. Demand Response Management (DRM) acts as a control

unit to balance and shape the real-time load. Output of the system is electricity delivered

to each user through transmission and distribution. The forward path is power flow, and the

bidirectional path is information flow, which provides two-way communications in smart grid.

There are several studies on DRM, with the attempt to reduce and shift the peak-hour

load [6] [7] [8] [9] [10] [11]. Real-time pricing is known as one of the most common tools

that can encourage power utilization in an efficient and economical way. A distributed and

iterative algorithm is proposed in [8] [9] to balance and shape the real-time load. In [10]
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Fig. 1. A closed-loop system scheme of smart grid

[11], game theory is used to address DRM via price predication and energy consumption

scheduling. However, most of these studies assume perfect two-way communications which

is too strong for practical applications. Whereas, the impact of communication unreliability

on the control performance of DRM has not been revealed in the literature.

Communications are at the core of realization and performance of smart grid. Due to

low installation cost and high flexibility, wireless communications are prevalent in smart

gird. As depicted in Fig. 1, there are three main types of wireless networks different in size

and location, i.e., Home Area Networks (HAN), Neighborhood Area Networks (NAN), and

Wide Area Networks (WAN) [12]. In HAN, smart meters from home are connected to the

gateway based on wireless protocols such as ZigBee. Gateways transmit meter data to Data

Aggregate Unit (DAU) through NAN using WiFi. WAN connects all NANs in smart grid to

Meter Data Management System (MDMS) by employing broadband wireless communication

technologies (e.g., 3G and WiMAX) [13].

With the rapid development of smart grid, more and more smart meters are applied,

requiring tremendously increasing amount of meter data to be transmitted. Therefore, more

frequency bands are required to support wireless communications in smart grid, which poses

a significant challenge on originally scarce spectrum resources. According to the report by
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Federal Communications Commission of the United States, the allocated spectrum, however,

is heavily under-utilized in vast temporal, spatial and spectral dimensions [14]. The main

reason is that under the current regulatory policy, frequency bands are statically restricted to

the licensed users (Primary Users (PU)) and no reutilization is permitted for the unlicensed

users (Secondary Users (SU)). A novel technology to tackle the conflict between spectrum

scarcity and under-utilization is cognitive radio, which enables SU to opportunistically utilize

the channel when PU is absent, and to vacate it instantly when PU returns in order to avoid

interfering with PU [15] [16].

Spectrum sensing, which enables SU to detect the state of channel occupancy, is a core

technique for cognitive radio [17]. Since spectrum sensing and data transmission cannot be

performed at the same time, several works have been devoted to sensing time optimization to

tradeoff between interference avoidance and sensing efficiency [18] [19]. It has been widely

recognized that cognitive radio can dramatically improve channel utilization as well as SU’s

communication quality. Considering the energy consumption by spectrum sensing, the authors

in [20] [21] propose an energy-efficient algorithm to reduce the taxed cost.

The pioneering work of applying cognitive radio to smart grid communications is proposed

in [22] [23]. By means of spectrum sensing and channel switching, the smart meter can

decide to transmit its data on either an original unlicensed channel or an additional licensed

channel, in order to improve communication quality [1]. However, the sensing-dependent

energy consumption has not been taken into account. In [24], the impact of communication

unreliability on an independent price-demand model is considered. However, electricity price

and power supply/demand are always coupled with each other in smart grid.

Considering the cost taxed by spectrum sensing together with the performance degradation

incurred by imperfect communications, we attempt to achieve better control performance with

lower communication cost, paving the way towards green smart grid. Our contributions are

summarized as follows.

1) We introduce cognitive radio with spectrum sensing and channel switching into smart

grid to improve communication reliability;

2) We assess the impact of communication quality on the control performance of DRM;

3) We formulate the sensing-performance tradeoff problem in view of the sensing cost,

and provide both theoretical analysis and simulation verification.

The remainder of this paper is organized as follows. The sensing-performance tradeoff

problem is formulated in Section II. We analyze in Section III how cognitive radio improves
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the communication quality, and hence the control performance of DRM. The existence of

the optimal solution is proved in Section IV, followed by numerical results in Section V to

validate our theoretical analysis. We conclude this paper with future work in Section VI.

II. Problem Formulation

A. Demand Response Management

We consider a smart grid consisting of one power provider, a total of N power consumers,

and a control unit. The cycle of a day is divided into several time slots. In each slot, let

s denote the supply of power provider, and di be the demand of power consumer i (where

i = 1, 2, · · · ,N). We consider the cost function C (s) indicating the expense of supplying

power s by the provider, which is increasing and convex [11]. The power demand of each

consumer depends on electricity price and consumer type. Specifically, for each consumer

i, the gain function Gi (di) represents the obtained satisfaction as a function of its power

demand di, which is non-decreasing and concave [8].

For the power provider, under electricity price p, the profit by supplying power s is defined

as Pp (s) = ps −C (s). Its goal is to adjust its supply to maximize its profit, i.e.,

max
s

ps −C (s) (1)

For each consumer i, under electricity price p, the profit by demanding power di is

calculated as Pi
c (di) = Gi (di) − pdi. Its goal is to adjust its demand to maximize its profit,

i.e.,

max
di

Gi (di) − pdi (2)

From the social perspective, it is desirable that the expense of provider is minimized and

the aggregate satisfaction of consumers is maximized. Therefore, the social welfare can be

defined as Φ (s, {di}) =
∑N

i=1 Gi (di) − C (s) with
∑N

i=1 di ≤ s, which can be considered as the

control performance of DRM. Therefore, under the constraint that supply should satisfy the

total demand, the global optimization problem is:

max
s, {di}

∑N

i=1
Gi (di) −C (s) (3)

s.t. s ≥
∑N

i=1
di

Although (3) can be solved by convex optimization in a centralized manner [25], the

challenge is that the control unit needs to know the exact cost function of the provider and
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the gain function of each consumer. However, since the information is private, the control

unit may not be able to solve the problem.

In [8], the authors have shown it is possible to approach the optimal solution of (3) in a

distributed and iterative way as follows.

1) The control unit begins with any initial electricity price p1 ≥ 0 and announces it to the

provider and each consumer.

2) On receiving pk (where k ∈ N+ denotes the number of iterations), the provider updates

its supply s∗k by solving (1) and feeds back to the control unit; at the same time, each

consumer also updates its demand d∗i,k by solving (2) and feeds back too.

3) On receiving the local optimal supply s∗k and demand
{
d∗i,k

}
, the control unit updates the

electricity price pk+1 for next iteration using a gradient projection method, i.e., pk+1 =
[
pk − θ

(
s∗k −

∑N
i=1 d∗i,k

)]+
, where θ > 0 is the step size which adjusts the convergence

rate, and [x]+ ∆
= max {x, 0}.

4) Repeat steps 2) - 3) until the electricity price remains unchanged.
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· Update supply with      :

( )* argmax
k

k k k k
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s p s C s= -

Control Unit

· Update price with      and           :

( )* *

1 ,1

N

k k k i ki
p p s dq

+

+ =
é ù= - -ê úë ûå

Power Consumer

· Update demand with      :

( )
,

*

, , ,argmax
i k

i k i i k k i k
d

d G d p d= -

*

,i kd

Supply
*

ks

Price

Price kp

kp

kp

kp

*

ks { }*

,i kd

i

Power 
consumer

Power 
consumer

1 N

Fig. 2. Interactions in demand response management

The interactions in DRM are shown in Fig. 2. The above control process is based on perfect

two-way communications. Usually the control unit is located at the supply side, and reliable

communications are often assumed. However, the control unit is far away from the demand
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side, and power consumers are connected to it through wireless communications. Due to

the unreliability of wireless communication (e.g., packet loss and delay), outage events may

occur in the two-way communications between consumers and the control unit, as shown by

the dashed lines in Fig. 2. Let ζ denote the average outage, which is assumed to be uniform

and independent for all consumers. The control performance with outage ζ is defined as

Φ̃ (ζ). We show in Section III-B that the outage is critical to the accuracy and optimality of

DRM, and analyze the control performance degradation incurred by the outage.

B. Cognitive Radio

In order to improve the communication quality and reduce the outage, we integrate cogni-

tive radio into DRM. In HAN, smart meters periodically transmit data to the gateway. In this

paper, we consider that the data can be transmitted through two channels: one is from the

unlicensed spectrum, referred to as the original channel Ch1; the other lies in the licensed

spectrum, referred to as the cognitive channel Ch2, which is randomly occupied by PU. The

smart meter can opportunistically switch data transmission to Ch2. Let H1 denote the state

that Ch2 is busy (PU is in operation), and H0 be that Ch2 is idle (PU is absent). The traffic

pattern of PU can be modeled as a two-state independent and identically distributed process

[26]. Let P1 denote the probability of H1, and P0 be that of H0, where P1 + P0 = 1.

Spectrum sensing, incorporated into the transceiver of smart meters, is able to detect the

state of Ch2 for opportunistic reutilization. A collection of spectrum sensing techniques are

proposed in [27], among which the energy detector is popular and optimal for detecting a

weak unknown signal from a known zero-mean constellation [28].

With the energy detector, by integrating signal in bandwidth W over sensing time τ,

the smart meter compares the collected energy with a predefined threshold ε to decide

whether Ch2 is occupied by PU or not. There are two important metrics used to evaluate the

performance of spectrum sensing. The detection probability Pd is that the channel is detected

busy when PU is in operation; while the false alarm probability P f is that the channel is

detected busy when PU is absent. They can be calculated in terms of Q-function as [19]

Pd = Q


ε

2
√

Wτ(γ + 1)σ2
n

−
√

Wτ

 (4)

P f = Q


ε

2
√

Wτσ2
n

−
√

Wτ

 (5)
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where Q(z) ∆
= 1√

2π

∫ +∞
z

e−
β2
2 dβ, σ2

n is the variance of Additive White Gaussian Noise (AWGN),

and γ is Signal to Noise Ratio (SNR) at the smart meter. The higher the Pd, the better the

PU is protected; while the lower the P f , the more efficiently Ch2 can be reutilized by the

smart meter.

Proposition 1: With any detection and false alarm probabilities, spectrum sensing before

channel switching reduces collision probability on Ch2.

Proof: See Appendix A.

H0

Sampling period

Ch1

Smart

meter

Ch2

Measure Spectrum

sensing

H1

Data

transmission

tx

PU

Absent In operation

Fig. 3. Cognitive radio framework for two-way communications

Proposition 1 leads to two advantages: i) less collision with PU’s transmission guarantees

that PU is better protected; ii) lower collision probability means lower outage. As shown in

Fig. 3, in each sampling period, before data transmission, the smart meter performs spectrum

sensing on Ch2 to detect whether it is occupied by PU. If it is detected idle, the smart meter

can switch data transmission to Ch2 for lower outage; otherwise, the smart meter remains on

Ch1 to avoid interfering with PU.

C. Sensing-Performance Tradeoff Problem

Though cognitive radio is able to improve communication quality, it involves energy cost

for spectrum sensing. Therefore, the system should control the outage requirement using a

sensing-dependent cost, assumed to be an increasing and convex function ϕ (τ) of sensing time

τ. Although the energy consumed for channel switching is rather small compared with that for

spectrum sensing, we incorporate it into ϕ (τ). The control performance of DRM is dependent

on outage, while the outage is dependent on sensing time. Thus control performance is a

function of sensing time, which can be rewritten as Φ̃ (τ). Considering the cost taxed by

spectrum sensing together with the performance degradation incurred by outage, our aim is

8



to achieve better control performance with lower communication cost, towards green smart

grid.

Intuitively, the longer the sensing time, the lower the outage. The control performance

degradation incurred by outage will decrease, but the communication cost taxed by spectrum

sensing will increase. Thus there exists a fundamental tradeoff between sensing time and

system performance in cognitive radio enabled smart grid. The net revenue can be defined

as

R (τ) = Φ̃ (τ) − κϕ (τ) (6)

where the parameter κ > 0 is used to indicate the importance of Φ̃ (τ) and ϕ (τ) in the

revenue. Besides, the application of cognitive radio should not violate the protection of PU.

The objective of sensing-performance tradeoff is to find the optimal sensing time such that

the total revenue is maximized while the PU is sufficiently protected, i.e.,

max
τ

R (τ) (7)

s.t. Pd ≥ Pd (8)

where Pd is the low bound of detection probability with which the interference incurred to

PU is tolerable. In practice, Pd is chosen close to but less than 1, because if PU requires

full protection, the smart meter is no longer allowed to transmit data on Ch2. Besides, we

suppose P1 is small, such that it is economically advisable for the smart meter to switch

channels.

III. Theoretical Analysis

A. Cognitive Radio Improves Communication Quality

Under cognitive radio framework for two-way communications, the smart meter performs

spectrum sensing before channel switching. However, channel switching probability Psw is

not exactly equal to P0, due to the inaccuracy of spectrum sensing. Psw can be evaluated

considering two cases: i) when H1 but the smart meter misses to detect it, i.e., P1 (1 − Pd);

ii) when H0 and no false alarm is generated, i.e., P0

(
1 − P f

)
.

Psw = 1 − P1Pd − P0P f (9)

If spectrum sensing is perfect, i.e., Pd = 1 and P f = 0, then Psw = P0.

Let ζ1 and ζ2 denote the outages of Ch1 and Ch2 respectively. The resultant outage ζ with

cognitive radio can be evaluated considering two cases: i) when Ch2 is detected busy, the

9



smart meter remains data transmission on Ch1, i.e., (1 − Psw) ζ1; ii) when Ch2 is detected

idle, the smart meter switches data transmission to Ch2, i.e., Pswζ2.

ζ = (ζ2 − ζ1) Psw + ζ1 (10)

If ζ < ζ1, it is economically advisable for the smart meter to perform spectrum sensing and

channel switching. Thus we obtain ζ2 < ζ1, so it makes sense to assume the communication

quality of Ch2 to be better than that of Ch1.

Using the energy detector, since the collected energy depends on sensing time τ, it makes

sense to have the energy threshold ε also dependent on τ. We keep Pd = Pd to satisfy the

constraint of (8). From (4), the relationship between ε and τ can be formulated as

ε = 2
√

Wτ
(
Q−1

(
Pd

)
+
√

Wτ
)

(γ + 1)σ2
n (11)

Substituting (11) into (5), we obtain the false alarm probability

P f = Q
(
γ
√

Wτ + Q−1
(
Pd

)
(γ + 1)

)
(12)

Since Q-function is decreasing, P f decreases with an increase of τ, which means that

increasing sensing time can improve spectrum sensing in terms of P f .

Furthermore, keeping Pd = Pd and substituting (12) into (9), we obtain the channel

switching probability

Psw = 1 − P1Pd − P0Q
(
γ
√

Wτ + Q−1
(
Pd

)
(γ + 1)

)
(13)

It is observed that Psw increases with an increase of τ, which is because longer sensing time

can make spectrum sensing more accurate and provide the smart meter more chances to

switch data transmission to Ch2.

From the analysis above, the longer the sensing time, the lower the false alarm probability,

and then the higher the channel switching probability. We see from (10) that ζ decreases with

an increase of τ, which indicates that cognitive radio can reduce the communication outage.

B. Communication Quality Affects Control Performance

First assuming the two-way communications in smart grid are perfect, DRM converges to

the global optimal price p∗, which balances between supply and demand

s∗ =
∑N

i=1
d∗i (14)

10



By jointly solving (1), (2) and (14), we can obtain the optimal electricity price, supply and

demand as p∗ = f −1 (1), s∗ =
(
C
′)−1

(p∗), and d∗i =
(
G
′
i

)−1
(p∗), where f ∆

=

(
C
′ )−1

∑N
i=1 (G′i )

−1 .

However, when the two-way communications in smart grid suffer from outage ζ, the power

demand of each consumer i estimated at the control unit becomes (1 − ζ) d∗i,k. The electricity

price updated at the control unit becomes pk+1 =
[
pk − θ

(
s∗k − (1 − ζ)

∑N
i=1 d∗i,k

)]+
and the

iteration converges to a suboptimal price p̃ when

s̃ = (1 − ζ)
∑N

i=1
d̃i (15)

By jointly solving (1), (2) and (15), we can obtain the suboptimal electricity price, supply

and demand as

p̃ = f −1 (1 − ζ) (16)

s̃ =
(
C
′)−1

(p̃) (17)

d̃i =
(
G
′
i

)−1
( p̃) (18)

Note that the cost function C is increasing and convex, hence
(
C
′)−1

is positive and

increasing; while the gain function Gi is non-decreasing and concave, thus
(
G
′
i

)−1
is non-

negative and decreasing. Therefore f −1 is positive and increasing, and it is clear that p̃ < p∗,

s̃ < s∗ and d̃i > d∗i .

Usually the operational decision of smart grid is made in two stages [29]. In the first stage

called unit commitment, the provider reserves power from power plants according to the

estimated demand. Then, in the second stage called economic dispatch, the reserved power is

supplied to each consumer. However, if the reserved power is not enough, additional power

will be bought from the spot market to meet the demand [30]. Since the decision in unit

commitment stage is made in advance, consumers can choose and buy power with a cheaper

forward price p f than that in economic dispatch stage with an option price po.

Firstly, the profit of provider is calculated as

P̃p = p̃s̃ −C (s̃) (19)

Next, all consumers demand a total of
∑N

i=1 d̃i power, but only get s̃ from the provider with

a cheaper forward price p f = p̃. The additional
∑N

i=1 d̃i − s̃ = ζ
∑N

i=1 d̃i power will be bought

from the spot market with a more expensive optional price po > p̃. Therefore the aggregate

profit of consumers is calculated as

P̃c =
∑N

i=1
Gi

(
d̃i

)
− p̃s̃ − poζ

∑N

i=1
d̃i (20)
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Finally, the social welfare (control performance) is calculated as

Φ̃ = P̃p + P̃c (21)

Proposition 2: 1) The outage in two-way communications reduces the profit of power

provider;

2) The imperfect communication may not always decrease the aggregate profit of power

consumers;

3) The control performance of DRM drops with an increase of outage.

Proof: See Appendix B.

IV. Existence of Optimal Solution

When the energy detector is employed, substituting (13) into (10), we have

ζ(τ) = (ζ1 − ζ2) P0Q
(
γ
√

Wτ + Q−1
(
Pd

)
(γ + 1)

)

+ (ζ1 − ζ2) P1Pd + ζ2 (22)

which indicates that outage is a function of sensing time.

Theorem 1: There exists a unique optimal sensing time τ∗ which yields the maximum

revenue.

Proof: It can be verified from (22) that ∂ζ

∂τ
= (ζ1 − ζ2) P0

∂Q
∂z

∂z
∂τ

, where z = γ
√

Wτ +

Q−1
(
Pd

)
(γ + 1) is an increasing function of τ. Recall that the derivative of Q-function is

∂Q
∂z = − 1√

2π
e−

z2
2 , so

∂ζ

∂τ
= − A√

τ
e−

z2
2 (23)

where A =
(ζ1−ζ2)P0γ

√
W

2
√

2π
is a positive constant. Therefore,

∂R
∂τ

=
∂Φ̃

∂ζ

(
− A√

τ
e−

z2
2

)
− κϕ′ (24)

1) if τ→ 0, that is, z→ 0, we have

lim
τ→0

∂R
∂τ
→ ∂Φ̃

∂ζ

(
− A√

τ

)
> 0

2) if τ→ +∞, that is, z→ +∞, we have

lim
τ→+∞

∂R
∂τ
→ −κϕ′ < 0

In Appendix C, we further prove that R (τ) is concave. R (τ) first increases when τ is small

and then decreases when τ is large, which makes the maximum point to be unique.
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To solve (7)-(8), we can take the constraint into the objective by Lagrangian multiplier.

The Lagrangian is defined as L (τ, Pd, λ) = Φ̃ (τ)− ϕ (τ) + λ
(
Pd − Pd

)
, where λ is Lagrangian

multiplier associated with the constraint of (8). By calculating ∂L
∂τ

= ∂L
∂Pd

= ∂L
∂λ

= 0, we can

obtain the unique optimal sensing time τ∗.

V. Numerical Results

A. Demand Response Management

In order to evaluate the distributed and iterative approach to DRM, a simple one-provider

and one-consumer case is considered. However, the result can be trivially extended to the one-

provider and multi-consumer case. We consider a quadratic cost function C (s) = as2 +bs+c,

and a quadratic gain function G (d) =


ωd − α

2 d2, 0 ≤ d ≤ ω
α

ω2

2α , d > ω
α

. The parameters are set as

a = 0.1, b = 0.5, c = 0 and ω = 3, α = 0.5. The social welfare is defined as Φ (s, d) =

G (d) −C (s) when s ≥ d, and Φ (s, d) = G (s) −C (s) when s < d.
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Fig. 4. Demand response management

In Fig. 4, we fix step size at θ = 0.1, and set the initial price at p1 = 0 and 3 respectively.
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It is shown that in both cases the electricity price converges to the global optimum which

balances between supply and demand. The social welfare achieves the best, where the locally

optimal solution of the provider and consumer becomes globally optimal at the converged

price.

B. Cognitive Radio Improves Communication Quality

We conduct extensive simulations to understand the capability of cognitive radio in terms

of improving communication quality. PU on Ch2 has bandwidth W = 6MHz. The noise is

AWGN. We are interested in a low SNR scenario where γ = −15dB. The lower bound of

the detection probability is chosen to be Pd = 0.9 in order to protect PU.
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Fig. 5. Simulated and theoretical false alarm probability P f

Firstly, we compare the false alarm probability between simulation and theoretical results

from (12). In the simulation, for each sample under H1, we find out the energy threshold

ε to achieve the target detection probability based on 600 test statistics. Then ε is applied

under H0 to obtain the false alarm probability. As shown in Fig. 5, the false alarm probability

decreases with an increase of sensing time.

Next, we compare the channel switching probability between simulation and theoretical

results from (13). For the sake of simplicity, we assume that the durations of H1, H0 are

exponentially distributed with the means of t1, t0 respectively. The value of t0 is chosen to be

three times t1, then P1 = t1
t0+t1

= 0.25. As shown in Fig. 6, the channel switching probability

increases with an increase of sensing time, which is because the false alarm probability

decreases as sensing time increases.
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Fig. 6. Simulated and theoretical channel switching probability Psw
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Fig. 7. Simulated and theoretical outage ζ

Finally, we compare outage between simulation and theoretical results from (22). We have

assumed that ζ2 < ζ1, for instance, ζ1 = 0.5 and ζ2 = 0.2. Fig. 7 shows that outage decreases

with an increase of sensing time.

C. Communication Quality Affects Control Performance

We conduct simulations to verify the performance degradation when DRM suffers from the

communication outage. We first compare the electricity price, provider supply and consumer

demand under perfect communications with those suffering from outage. As shown in Fig. 8,

p̃ < p∗, s̃ < s∗ and d̃ > d∗, which is the same as our theoretical analysis.
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Next, we investigate how the outage will affect the control performance of DRM. The

optional price is chosen to be po = p∗. The outage ζ grows from 0 to 1, with the step

size of 0.1. As shown in Fig. 9, the electricity price and supply decrease, while the demand

increases, with an increase of the outage. From Fig. 10, we can draw such conclusion that

the outage in two-way communications reduces the profit of power provider and the social

welfare of smart grid, however it may not always decrease the profit of power consumer.
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D. Sensing-Performance Tradeoff

Numerical results are provided to demonstrate the sensing-performance tradeoff in cognitive

radio enabled smart grid. We consider the communication cost function to be quadratic as

ϕ (τ) = τ2. The parameter κ is set to be 104. Sensing time varies from 0.3ms to 2.7ms,

with the step size of 0.2ms. Fig. 11 shows the comparison between simulated and theoretical

tradeoff. It is shown that both the control performance and communication cost increase with

sensing time. The simulation results match with the theoretical analysis, where the revenue

first increases when sensing time is small and then decreases when it becomes large. There
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exists a unique optimal sensing time τ∗ which yields the maximum revenue.

VI. Conclusion

By introducing cognitive radio with spectrum sensing and channel switching into smart

grid, we show that the communication outage can be reduced. How the communication quality

affects the control performance of DRM is also analyzed. We claim that the outage in two-

way communications reduces the profit of power provider and the social welfare of smart

grid, however it may not always decrease the profit of power consumer. Given two channels,

there exists a unique optimal sensing time which achieves the best sensing-performance

tradeoff, while the PU on the licensed channel is sufficiently protected. This paper provides

the guidelines of achieving better control performance with lower communication cost, paving

the way towards green smart grid. In our future work, the impact of both supply uncertainty

and communication unreliability on the control performance of DRM will be considered.

Appendix A

Proof of Proposition 1

Let Y denote the duration of H0, and the meter data transmission time be tx. If the smart

meter switches data transmission to Ch2 without spectrum sensing in advance, the collision

probability Pns can be evaluated considering two cases: i) when H1, collision occurs; ii) when

H0, the smart meter’s transmission collides with PU if and only if PU returns during tx.

Pns = P1 + P0 Pr{Y < tx}

However, if the smart meter switches data transmission to Ch2 only when it is detected

idle, the collision probability Ps can be evaluated considering two cases: i) when H1 but the

smart meter misses to detect it, collision occurs; ii) when H0 and no false alarm is generated,

the smart meter’s transmission collides with PU if and only if PU returns during tx.

Ps = P1 (1 − Pd) + P0

(
1 − P f

)
Pr{Y < tx}

The difference of the collision probability on Ch2 by spectrum sensing before channel

switching is calculated as

∆ = Pns − Ps = P1Pd + P0P f Pr{Y < tx} > 0

where the inequality always holds because P1, P0, Pd, P f , Pr{Y < tx} > 0.
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Appendix B

Proof of Proposition 2

Firstly, the derivative of (19) is ∂P̃p

∂ζ
=

∂ p̃
∂ζ

s̃ + p̃ ∂s̃
∂ζ
− ∂C(s̃)

∂s̃
∂s̃
∂ζ

. Note that from (16) and (17) we

have ∂p̃
∂ζ

= −
(

f −1
)′

= − 1
f ′ and ∂C(s̃)

∂s̃ = p̃, where f
′

=

((
C
′ )−1

)′ ∑N
i=1

(
G
′
i

)−1−
(
C
′ )−1 ∑N

i=1

((
G
′
i

)−1
)′

(∑N
i=1 (G′i )

−1
)2 > 0, and

then ∂p̃
∂ζ
< 0. Therefore

∂P̃p

∂ζ
=
∂ p̃
∂ζ

s̃ < 0

which means that the profit of power provider decreases with an increase of outage.

Next, the derivative of (20) is ∂P̃c
∂ζ

=
∑N

i=1
∂Gi(d̃i)
∂d̃i

∂d̃i
∂ζ
−∂ p̃
∂ζ

s̃− p̃ ∂s̃
∂ζ
− po

∑N
i=1

(
d̃i + ζ ∂d̃i

∂ζ

)
. Note that

from (18) and (15) we have ∂Gi(d̃i)
∂d̃i

= p̃ and ∂s̃
∂ζ

= −∑N
i=1 d̃i + (1 − ζ)

∑N
i=1

∂d̃i
∂ζ

. Therefore

∂P̃c

∂ζ
= ( p̃ − po)

∑N

i=1

(
d̃i + ζ

∂d̃i

∂ζ

)
− ∂ p̃
∂ζ

s̃

where ∂d̃i
∂ζ

=

((
G
′
i

)−1
)′

∂ p̃
∂ζ
> 0.

1) When ζ → 0, then p̃→ p∗ and s̃→ ∑N
i=1 d̃i. If choose po = p∗, we have

lim
ζ→0

∂P̃c

∂ζ
→ −∂p̃

∂ζ
s̃ > 0

2) When ζ → 1, then s̃→ 0, and we have

lim
ζ→1

∂P̃c

∂ζ
→ ( p̃ − po)

∑N

i=1

(
d̃i +

∂d̃i

∂ζ

)
< 0

from which we can never infer that the aggregate profit of power consumers always decreases

with an increase of outage.

Finally, the derivative of (21) is

∂Φ̃

∂ζ
=
∂P̃p

∂ζ
+
∂P̃c

∂ζ
= ( p̃ − po)

∑N

i=1

(
d̃i + ζ

∂d̃i

∂ζ

)
< 0 (25)

which means that the control performance of DRM decreases with an increase of outage.

Appendix C

Concavity of R (τ)

Lemma 1: R (τ) is concave.

Proof: Assume the cost function C and the gain function Gi are at most quadratic, thus

we have f
′′

= −2
(∑N

i=1

(
G
′
i

)−1
)′ ((

C
′ )−1

)′ ∑N
i=1

(
G
′
i

)−1−
(
C
′ )−1

(∑N
i=1

(
G
′
i

)−1
)′

(∑N
i=1 (G′i )

−1
)3 > 0. Further, ∂2 p̃

∂ζ2 = − f
′′

( f ′)2 < 0

and ∂2d̃i
∂ζ2 =

(∑N
i=1

(
G
′
i

)−1
)′

∂2 p̃
∂ζ2 > 0.
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It can be verified from (25) that

∂2Φ̃

∂ζ2 =
∂ p̃
∂ζ

∑N

i=1

(
d̃i + ζ

∂d̃i

∂ζ

)
+ ( p̃ − po)

∑N

i=1

(
2
∂d̃i

∂ζ
+ ζ

∂2d̃i

∂ζ2

)
< 0

and further from (24) we have

∂2R
∂τ2 =

∂2Φ̃

∂ζ2

(
− A√

τ
e−

z2
2

)2

+
∂Φ̃

∂ζ

A
2τ
√
τ

(
1 + zγ

√
W

)
e−

z2
2 − κϕ′′ < 0

It says that ∂R
∂τ

is decreasing, which means R (τ) is concave.
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