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Abstract. Configuration in the domain of integrated control systems
(ICS) is largely manual, laborious, and error-prone. In this paper, we
propose a model-based configuration approach that provides automation
support for reducing configuration effort and the likelihood of configura-
tion errors in the ICS domain. We ground our approach on component-
based specifications of ICS families. We then develop a configuration
algorithm using constraint satisfaction techniques over finite domains to
generate products that are consistent with respect to their ICS family
specifications. We reason about the termination and consistency of our
configuration algorithm analytically. We evaluate the effectiveness of our
configuration approach by applying it to a real subsea oil production
system. Specifically, we have rebuilt a number of existing verified prod-
uct configurations of our industry partner. Our experience shows that
our approach can automatically infer up to 50% of the configuration
decisions, and reduces the complexity of making configuration decisions.
Keywords: Model-based product-line engineering, Product configura-
tion, Consistent configuration, Constraint satisfaction techniques, For-
mal specification, UML/OCL.

1 Introduction

Integrated control systems (ICS) are large-scale heterogeneous systems that are
used in many industry sectors where hardware and software systems are in-
tegrated to control production processes and to ensure safety aspects. Exam-
ples include the energy, automotive, and avionics industries. In most situations,
product-line engineering approaches [46, 55, 39] are applied to develop integrated
control systems. Software development, in this context, is done through config-
uring a reference architecture, which provides a common, high-level, and cus-
tomizable structure for all members of the product family [46].

In our earlier work [7, 8], we studied the challenges of architecture-level soft-
ware configuration in families of integrated control systems. Findings reported
in [7] and in other published studies [24, 44] show that, in general, software config-
uration in large-scale embedded software systems is a laborious and error-prone
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task. This is due, in large part, to the complexity of such systems and inade-
quacies in the adoption of product-line engineering approaches. The latter is a
result of the lack of concise abstractions for product families and insufficient au-
tomation support for the configuration process – both crucial for a product-line
engineering approach to succeed [37].

Software configuration has been previously studied in the area of software
product lines, where support for configuration largely concentrates on resolv-
ing variabilities in feature models [35, 36] and their extensions [18, 20]. Feature
models, however, are not easily amenable to capturing all kinds of architectural
variabilities in the ICS domain. Furthermore, existing configuration approaches
either do not enable instant validation of configurations (e.g., [34]), or their no-
tion of configuration and their underlying mechanism are different from ours,
and hence, not directly applicable to our problem domain (e.g., [41]).

To overcome the configuration challenges in the context of integrated con-
trol systems, we propose a model-based and semi-automated approach for the
architecture-level configuration of software in such systems. Figure 1 depicts an
overview of our configuration approach. As shown in this figure, our approach
has two major steps: the product-family modeling step and the semi-automated
configuration step. In the first step (the product-family modeling step), a model
of the reference architecture of the product family is created. This model is then
used as an input to the second step (the semi-automated configuration step) to
provide automation support for creating reliable product configurations.
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Fig. 1. An overview of our model-based semi-automated configuration approach.

In this paper, we focus on the second step and propose a configuration frame-
work that enables us to reduce the configuration effort, the complexity of decision
making, and the likelihood of human errors, while ensuring that the configured
products are consistent with the input reference architectures. We utilize con-
straint satisfaction techniques over finite domains [29, 16] to provide the automa-
tion support for our configuration framework. The core idea of our approach has
been presented in [6]. The present article extends and refines our earlier work,
making the following contributions:

1. We formalize the notion of component-based reference architectures for ICS
families. Specifically, our formalization characterizes reference architectures,
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products, the definition of consistency of an individual reference architec-
ture and its related products, and various types of variabilities that arise
in ICS families (i.e., attribute, cardinality, type, topology). We further pro-
vide a (linear) mapping, casting configuration of ICS families to a constraint
satisfaction problem over finite domains.

2. We propose a configuration algorithm for the semi-automated configuration
step in Figure 1. Our algorithm supports the configuration of all types of
variabilities (i.e., attribute, cardinality, type, topology). We reason about
the consistency and termination of our algorithm. Specifically, our proof
of consistency shows that our algorithm, when given a consistent reference
architecture model, can always generate a complete and consistent product.
Our proof of termination shows that the algorithm always terminates in
finite time provided that every variability in the input reference architecture
can be resolved using a finite set of variants.

3. We provide an implementation of our configuration algorithm based on con-
straint satisfaction techniques. Our tool uses the SICStus Prolog constraint
solver [15, 4]. The tool interactively guides engineers to make configuration
decisions and automates some of the decisions.

4. We have applied our prototype tool to configure a family of subsea oil pro-
duction systems. We rebuilt three configurations from this product family.
The rebuilt configurations contained 343, 2830, and 5397 configurable param-
eters, and were configured in a total of 4735 configuration iterations. Our
experiments show that, for the subjects in our experiment, our approach can
automate up to 50% of configuration decisions, and within nine seconds pro-
vide the user with accurate valid domains, which on average shrink by 38%
with each configuration iteration, thus simplifying configuration decisions.

For the first step of Figure 1, in an earlier work [7], we proposed a modeling
methodology, named SimPL, characterizing the notion of reference architecture
in the ICS domain. This methodology describes an ICS family in terms of con-
structs from the Unified Modeling Language (UML 2) [1], and its extension
for Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [2].
In the current implementation of our configuration framework, input reference
architectures are SimPL models. Furthermore, the running examples provided
throughout the paper are excerpts of SimPL models.

Section 2 introduces the industrial background of our research and precisely
formulates the problem we aim to address in this paper. This section, further,
describes the current product configuration practice in the integrated control
systems domain under study. In Section 3, we describe the notion of reference
architecture in the ICS domain and briefly introduce the SimPL methodology
and its main concepts. We introduce our running example in this section. A
formal specification of the notion of reference architecture in the ICS domain
together with formal definitions of consistency is presented in Section 4. We de-
scribe the main configuration algorithm in Section 5. Consistency related aspects
of the configuration process are presented and formalized in Section 6. Charac-
teristics of our semi-automated configuration approach are described and proved
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in Section 7. Our prototype configuration tool and results of our evaluation of
the semi-automated configuration approach are presented in Sections 8 and 9.
In Section 10, we discuss the applicability and generalizability of both our mod-
eling and our configuration solutions. Section 11 discusses the related work and
Section 12 concludes the paper.

2 Configuration of ICSs: Practice and Problem Definition

Figure 2 shows a simplified model of a fragment of a subsea oil production
system produced by one of our industry partners, used in this paper as a case
study. As shown in the figure, products are composed of mechanical, electrical,

«HwComponent»
xt1: XmasTree

«artifact»
semAppA: SemApplication

s1: Sensor s2: Sensor v1: Valve

«ICSystem»
toySps: SubseaProdSystem

«communication path»
controls/monitors

«HwComputingResource»
semA: SubseaElectronicModule

Fig. 2. A fragment of a simpli-
fied oil production system.

and software components. Our industry partner,
similar to most companies producing ICSs, has
a generic product that is configured to meet the
needs of different customers. For example, differ-
ent customers may require products with different
numbers of subsea Xmas trees. A subsea Xmas
tree in a subsea oil production system provides
mechanical, electrical, and software components
(e.g., SemApplications) for controlling and monitor-
ing devices in a subsea well.

While Figure 2 shows a few types of generic
or configurable components only (e.g., XmasTree,
SemApplication), real-world ICSs typically consist
of hundreds of configurable components. In the ICS
domain, customized systems, which are created through configuration, consist
of thousands of components and tens of thousands of interdependent parame-
ters that need to be configured individually. For example, the product family
that we studied at our industry partner contains more than one hundred config-
urable software and hardware components. Two representative products derived
from this product family consisted of 2360 and 5072 hardware devices, and were
generated by configuring 29796 and 56124 parameters, respectively.

Product configuration is an essential activity in ICS development. It involves
configuration of both software and hardware components. In the rest of this
paper, whenever clear from the context, we use configuration to refer either to
the configuration process or to the description of a configured artifact.

The software configuration is done in a top-down manner where the con-
figuration engineer starts from the higher-level components and determines the
type and the number of their constituent (sub)components. Some components
are invariant across different products, and some have parameters whose values
differ from one product to another. The latter group may need to be further de-
composed and configured. Configuration stops once the type and the number of
all components and the values of their configurable parameters are determined.

For example, software configuration for a family of subsea oil production sys-
tems starts by identifying the number and locations of SemApplication instances.
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Each instance is then configured according to the number, type, and other details
of devices that it controls and monitors. To do this, the configuration engineer
(the person in charge of configuration) is typically provided with a hardware
configuration plan. However, he has to manually check if the resulting software
configuration conforms to the given hardware plan, and that it complies with
all the software consistency rules as well. In the presence of large numbers of in-
terdependent configurable parameters this can become tedious and error-prone.
In particular, due to lack of instant consistency checking, human errors such as
incorrectly entered values are usually discovered very late in the development
life-cycle, making localizing and fixing such errors unnecessarily costly.

In short, in the context of ICS development, existing configuration support
frequently faces the following shortcomings [8]: (1) There is no automated sup-
port to help engineers configure new products, and further, reusing configuration
data from old products is done in an old-fashioned way (e.g., by copy-and-paste).
(2) Instant configuration checking and verification of partially-specified configu-
rations are not supported. (3) Engineers are not provided with sufficient inter-
active guidance throughout the configuration process. In this paper, we propose
a model-based and semi-automated configuration solution to address the afore-
mentioned configuration challenges. Our solution interactively and instantly val-
idates configuration decisions and identifies implications of each decision. To do
so, it uses a model of the reference architecture of the product family.

3 The SimPL methodology

A major asset of a product family is its reference architecture, which provides
a common and high-level structure for all members of the product family [46].
A reference architecture specifies different types of reusable components that
may exist in some members of the product family. Each component type may
have relationships with other component types, and has a number of configurable
features through which it defines a number of variability points.

As shown in Figure 1, the reference architecture of a product family is one
of the inputs to the configuration process. During configuration and using the
user-provided configuration data, instances of component types are created and
configured. An instance of a component type is called a component, and con-
sists of a number of configurable parameters. Configurable parameters are the
variables that collect all the necessary configuration information throughout the
configuration process. Each configurable parameter is an instance of a config-
urable feature. A component is configured by assigning values to its configurable
parameters.

In our earlier work [7, 8], we proposed the SimPL methodology to create
models of reference architectures for product families in the ICS domain. The
running examples in this paper are presented using the SimPL methodology.
The SimPL methodology organizes a model of a reference architecture into two
main views: the system design view, and the variability view. Figure 3 shows
the SimPL model of the reference architecture for a family of ICSs. The system
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design view and the variability view are shown in the lower and the upper parts
of the figure, respectively.

System 
Design View

Variability View

Fig. 3. A fragment of the SimPL model (reference architecture) for the subsea oil
production family.

The system design view presents both hardware and software entities of the
system and their relationships using the UML class diagram notation [1]. A
class in the system design view represents a component type. Relationships be-
tween classes specify how components can be connected and structured. Each
SimPL model contains a special class stereotyped by «ICSystem» representing
the topmost component type (e.g., SubseaProdSystem in Figure 3). Each product
derived from a SimPL model has one instance of the topmost component type.

The variability view captures the set of system variabilities using a collection
of template packages. Each template package, in this context, is named a con-
figuration unit and is related to exactly one class in the system design view. A
template parameter of a template package represents a configurable feature and
describes a variability in the value, type, or cardinality of a property defined in
the context of the corresponding class.

In addition to the two views described above, each SimPL model has a repos-
itory of OCL expressions [3]. These OCL expressions specify constraints among
the values, types, or cardinalities of different properties of different classes. These
OCL constraints are part of the product family commonalities and must hold
for all the products in the family. Table 1 summarizes the product-line modeling
concepts and their equivalent constructs in the SimPL methodology.

In the rest of this section, we first present a fragment of a subsea product-
family model, which is used as our running example in the rest of the paper.
Then, we present a model of a small subsea product derived from that product-
family. Finally, we present a classification of configurable features. Based on this
classification we then describe the configuration process in subsequent sections.
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Table 1. Product-line modeling (PLM) concepts and their equivalent constructs in
SimPL.

PLM Concept SimPL Construct
Reference architecture SimPL model

Component types Classes & configuration units
Configurable features Properties & template parameters

Components Objects
Configurable parameters Object parameters

Constraints OCL expressions

3.1 Reference architecture for a family of subsea systems

Figure 3 shows a fragment of a SimPL model representing the simplified reference
architecture of a family of subsea oil production systems1 described in Section 2.
In a subsea oil production system, i.e., SubseaProdSystem, the main computation
resources are the Subsea Electronic Modules (SEMs), which provide electronics,
execution platforms, and the software required for controlling subsea devices.
SEMs and Devices are contained by XmasTrees. Devices controlled by each SEM
are connected to the electronic boards of that SEM. Software deployed on a SEM,
referred to as SemApp, is responsible for controlling and monitoring the devices
connected to that SEM. SemApp is composed of a number of DeviceControllers,
which is a software class responsible for communicating with, and controlling or
monitoring a particular device. The system design view in Figure 3 represents
the elements and the relationships discussed above.

The variability view in the SimPL methodology is a collection of template
packages. The upper part in Figure 3 shows a fragment of the variability view for
the subsea oil production family. In order to remain concise, we have shown only
two template packages in the figure, which should be enough for the reader to
understand the underlying principles. The package SystemConfigurationUnit rep-
resents the configuration unit related to the class SubseaProdSystem. Template
parameters of this package specify the configurable features of the component
type modeled by the class SubseaProdSystem. These configurable features are:
the number of XmasTrees (xTs), and the number of SEM applications (semApps).

As mentioned earlier, the SimPL model may include OCL constraints as well.
Two example OCL constraints related to the model in Figure 3 are given below.

context ElectronicConnection inv PinRange
pinIndex >= 0 and sem.eBoards->asSequence()->

at(ebIndex+1).numOfPins > pinIndex

context ElectronicConnection inv BoardIndRange
ebIndex >= 0 and ebIndex < sem.eBoards->size()

The first constraint states that the value of the pinIndex of each device-to-
SEM connection must be valid, i.e., the pinIndex of a connection between a device
and a SEM cannot exceed the number of pins of the electronic board through
1 This example is a sanitized fragment of a subsea oil production case study [8].
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which the device is connected to its SEM. The second constraint specifies the
valid range for the ebIndex of each device-to-SEM connection, i.e., the ebIndex of
a connection between a device and a SEM cannot exceed the number of electronic
boards on its SEM.

3.2 A subsea oil production system

Figure 4 shows a model of a small subsea oil production system created by
configuring the reference architecture given in Figure 3. The product shown in
Figure 4 is created by configuring a total of ten configurable parameters. The
topmost component in this product is an instance of the class SubseaProdSystem
and is named toySps. This component is configured by setting both the number
of its Xmas trees (i.e., XmasTree) and the number of its SEM applications (i.e.,
SemApp) to one. The components xt1 and semAppA are created as the result
of configuring toySps. The Xmas tree xt1 is configured to contain one subsea
electronic module (i.e., semA) and one device (i.e., s1). The subsea electronic
module semA has two electronic boards. The device s1 has a timeout of 100 ms
and is connected to the first pin of the first electronic board of semA as shown
in semAs1 (i.e., ebIndex = 0, and pinIndex = 0). Finally, the SEM application
semAppA is deployed to the subsea electronic module semA.

Fig. 4. Model of a simple product belonging to the product-family model in Fig. 3.

Configuration of a real subsea oil production system is similar to the config-
uration of the product described above, but involves assigning values to tens of
thousands of configurable parameters.

3.3 Classification of configurable features

As mentioned earlier, a configurable feature of a component type describes a
variability in the value, type, or cardinality of a property of that component
type. We classify configurable features into four groups according to the type of
the variability they express [8]. Figure 5 shows this classification. Each type of
configurable features in this classification is configured differently and its config-
uration carries different consequences. For example, configuring the cardinality
of a property may result in creating new components in the product (e.g., cre-
ating a new XmasTree instance), while configuring the value of a property does

8



not have such a consequence. In this section, we use the SimPL methodology
and its constructs to briefly describe each type of configurable features. Details
on the configuration of each type of configurable features are presented later in
the paper.

Fig. 5. Classification of configurable features.

1. Configurable attribute. A configurable attribute is represented by a con-
figurable feature specifying a variability in the value of an attribute of a
class in a SimPL model. For example in Figure 3, the value of attribute
pinIndex might be different for each instance of class ElectronicConnection,
and therefore this attribute introduces a variability that is represented by a
configurable feature of type attribute (i.e., a configurable attribute).

2. Configurable cardinality. A configurable cardinality is represented by a
configurable feature specifying a variability in the cardinality of a set of ob-
jects, attributes, or object pointers (i.e., denoting association ends in UML).
For example in Figure 3, the configurable feature modeled by the template
parameter xTs in SystemConfigurationUnit is a configurable cardinality.

3. Configurable type. A configurable type is represented by a configurable
feature specifying a variability in the concrete type of an object. In a refer-
ence architecture, configurable types are tightly coupled with generalization
hierarchies. Figure 6 shows a generalization hierarchy consisting of the ab-
stract class DeviceController and its subclasses. We use the term generic class
(or generic component type) to refer to any class (or component type) that
has a number of subclasses (or subtypes). Each instance of DeviceController
contained by an instance of SemApp must be typed by a concrete subtype
of DeviceController (i.e., either ValveController, SensorController, or Choke-
Controller). A configurable feature (e.g., controllers) is therefore needed in
SemApp to specify the variability in the concrete type of its contained De-
viceControllers. We refer to such a configurable feature as a configurable type.

4. Configurable topology. Each component in a product may have connec-
tions to other components. Connections between components of a product
form the topology of that product. Such a topology can vary from one prod-
uct to another. To achieve a different topology, connections between com-
ponents are configured differently. A connection is configured by specifying
the components connected to each of its ends. A connection between two
components is an instance of an association in the SimPL model. There-
fore, association ends in the SimPL model introduce variability in topology.
For an association end that introduces a variability in topology, a config-
urable feature is defined in the SimPL model. We use the term configurable
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Fig. 6. A generalization hierarchy that renders a configurable type.

topology to refer to such a configurable feature. Figure 7 shows a variabil-
ity in topology. Note that both variants in this figure have the same set of
components.

(a) (b)

Fig. 7. A variability in topology. Variants (a) and (b) have identical components, but
different connections between these components.

4 Formal specifications

In this section, we provide formal specifications for reference architectures that
are modeled using the SimPL methodology. Further, we provide formal speci-
fications for the products derived from such reference architectures. Then, we
precisely define the notion of product consistency, which is a central concept
in our approach to configuration. The definitions provided in this section, are
used in the following sections (Sections 5-7) to define the configuration process
and the functionalities required for checking and ensuring the consistency of
products with respect to their reference architectures, and to prove the main
characteristics of our semi-automated configuration approach.

4.1 Reference architecture

In the SimPL methodology, the reference architecture is a class model that de-
fines different types of reusable components, their relationships, and the con-
figurable features introduced by the components and their relationships. We
formally define such a reference architecture as follows:
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Definition 1 (Reference architecture). A reference architecture RA repre-
sents a family of systems, and is defined as a sextuple (CT,≺,G, N,A, Φ).

– CT is a set of component type names,
– ≺ is a decomposition relation over CT : ≺⊆ CT × CT × N0 × N∗2,
– G is a partial function over CT (G : CT 9 CT ), defining a generalization

relation,
– N is a set of association names,
– A is a function over N , defined as A : N → CT ×N0 ×N∗ ×CT ×N0 ×N∗

to represent association relations, and
– Φ is a set of constraints that should hold for all members of the product

family.

Each member (ct, ct′, l, u) in the decomposition relation ≺ specifies that each
instance of the component type named ct consists of at least l and at most u
instances of the component type named ct′. We use l..u to denote the multiplicity
of this decomposition. We refer to ct as the source of the decomposition and to ct′
as the target of the decomposition. Each member (ct′, ct) in G specifies that the
component type named ct′ is a subtype of ct. Note that the definition of G does
not allow multiple inheritance. We define a function subtypes : CT → P(CT )
to map each component type to the set of all of its subtypes. Specifically, let ct
be a component type in CT , then subtypes(ct) is the set of all component types
ct′ such that (ct′, ct) ∈ G. For each association name n ∈ N , A(n) is a sextuple
(ct, l, u, ct′, l′, u′) specifying that each instance of ct is linked, with a link named
n, to l′..u′ instances of ct′. Similarly, each instance of ct′ is linked, with a link
named n, to l..u instances of ct. The sets CT and N , the relations ≺ and G, and
the association function A are created from the classes and the relationships
between classes in the SimPL model of the product family.

Example 1. The SimPL model in Figure 3 can be represented by RA = (CT,≺
,G, N,A, Φ). Figure 8 shows how each element of RA is defined for the SimPL
model in Figure 3.

As shown in Figure 8, the set CT consists of the names of the UML classes
in the SimPL model. Each element of the decomposition relation ≺ maps to a
composition association in the SimPL model. The set G is empty, as there are no
generalization hierarchies in the SimPL model in Figure 3. The set N contains
the association names in the SimPL model, and the function A defines the asso-
ciation relations for the association names in N . For example, A(DeviceConn) is
the sextuple (ElectronicConnection, 1, 1,Device, 1, ∗). We use the symbol ∗ to de-
note there is no fixed upper bound for an integer interval (i.e., ∗ can be replaced
by any k ∈ N1). Finally, the set Φ contains a set of boolean formulas, including
two formulas representing OCL expressions BoardIndRange and PinRange defined
in Section 3.
2 Let N1 denote the set of positive integer numbers. Then, we define N0 = N1 ∪ {0},
and N∗ = N0 ∪ {∗}, where ∗ is a symbol that can be replaced by any k ∈ N0.

11



CT = {SubseaProdSystem, SemApp, Device, XmasTree, SEM,
DeviceController, ElectronicConnection}

≺ = {(SubseaProdSystem, SemApp, 0, *), (XmasTree, Device, 0, *),
(SubseaProdSystem, XmasTree, 1, *), (XmasTree, SEM, 1, *),
(XmasTree, ElectronicConnection, 1, *),
(SemApp, DeviceController, 1, *)}

G = ∅
N = {DeviceConn, BoardConn, SemDeploy}
A(DeviceConn) = (ElectronicConnection, 1, 1, Device, 1, *)
A(BoardConn) = (ElectronicConnection, 1, *, SEM, 0, 1)
A(SemDeploy) = (SemApp, 0, 1, SEM, 0, 1)
Φ = {φBoardIndRange, φPinRange}

Fig. 8. Mathematical structure for the SimPL model in Figure 3.

In Definition 1, each member of the set CT denotes a component type. A com-
ponent type in the reference architecture represents a reusable component and
is formally defined as follows:

Definition 2 (Component type). Let RA = (CT,≺,G, N,A, Φ) be a refer-
ence architecture. Each component type ct ∈ CT has a set of configurable fea-
tures. We use Fct to denote the set of configurable features of ct.

Let RA = (CT,≺,G, N,A, Φ) be a reference architecture and let ct ∈ CT be a
component type in RA. We partition the set Fct of configurable features of ct into
six disjoint setsAFct, ACct, DCct, SCct, DTct and TFct, denoting respectively the
sets of configurable attributes, configurable attribute cardinalities, configurable
decomposition cardinalities, configurable association cardinalities, configurable
types, and configurable topologies (See Section 3.3 for the definition of different
types of configurable features). Each member of the set AFct of configurable
attributes is typed by either integer, boolean, or a user-defined enumeration (i.e.,
a finite set of tags). Members of the sets ACct, DCct and SCct are all configurable
features of type cardinality and take their values from integer intervals (i.e.,
(l, u) ∈ N0 ×N∗). We use the term cardinality feature to refer to any member of
ACct, DCct or SCct. Each configurable feature in DTct represents a configurable
type and takes its value from a subset of CT . Finally, each configurable feature
in TFct represents a variability in topology and takes its value from a subset of
instances of the component types defined in CT .

We define a function type : Fct → UT to map each configurable feature
in Fct to its type. In the definition of the function type, the set UT denotes a
universal set of types (i.e., UT = {bool, int}∪E∪ (N0×N∗)∪P(CT )∪P([[CT ]]),
where E denotes the set of all user-defined enumerations in the SimPL model
of the reference architecture RA, and [[CT ]] denotes the set of all instances of
all the component types in CT ). Table 2 summarizes the six sets of configurable
features described above.
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Table 2. Different types of configurable features.

Name Set notation Type
Configurable attribute AFct {bool, int} ∪ E
Configurable attribute cardinality ACct Range(N0)

Configurable decomposition cardinality DCct Range(N0)

Configurable association cardinality SCct Range(N0)

Configurable type DTct P(CT )
Configurable topology TFct P([[CT ]])
Range(N0) = {(l, u)|l ∈ N0, u ∈ N0, l ≤ u}

Note that Fct contains both the configurable features that are directly defined
in ct, and the ones that are inherited from supertypes of ct. The same rule applies
to the sets AFct, ACct, DCct, SCct, DTct and TFct. In our approach, we do not
allow multiple inheritance. This implies that each component type has at most
one direct supertype, but it may as well have several indirect supertypes.

In the following, we define several functions to specify the dependencies be-
tween each type of configurable features and the elements of the reference archi-
tecture RA.

– Each member of the set ACct of configurable attribute cardinalities denotes
the variability in the cardinality of an attribute of ct. Recall that AFct is a
set of configurable attributes. Each feature in ACct is related to a member
of the set AFct. We define a function atr : ACct → AFct to map each feature
in ACct to its related member of AFct.

– Each member of the set DCct of configurable decomposition cardinalities
denotes the variability in the cardinality of a decomposition of ct. We define
a function chl : DCct → CT to map each feature f ∈ DCct to the target
of its corresponding decomposition. Specifically, let f be a feature in DCct,
then (ct, chl(f), l, u) ∈≺ is the corresponding decomposition, and we have
l 6= u.

– Each member of the set SCct of configurable association cardinalities denotes
the variability in the cardinality of an association in which ct is an endpoint.
We define a function asc : SCct → N to map each cardinality feature f
in SCct to the corresponding association name n in N . Specifically, let f
be a cardinality feature in SCct, then asc(f) identifies its corresponding
association name, and we haveA(asc(f)) = (ct, l, u, ct′, l′, u′) orA(asc(f)) =
(ct′, l′, u′, ct, l, u) and in both cases l′ 6= u′.

– Each member of the set DTct of configurable types denotes a type variability
introduced by a decomposition relationship between ct and a generic com-
ponent type (i.e., a component type with a number of subtypes). We define
a function chlT : DTct → CT to map each feature f ∈ DTct to the target
of the corresponding decomposition. Specifically, let f be a feature in DTct,
then (ct, chlT (f), l, u) ∈≺ is the corresponding decomposition, and we have
subtypes(chl(f)) 6= ∅.
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– Each member of the set TFct of configurable topologies denotes a variability
in the product topology. We define a function ascT : TFct → N to map
each configurable topology to the name of the corresponding association.
Specifically, let f be a feature in TFct, then ascT (f) ∈ N identifies the cor-
responding association name, and we have A(ascT (f)) = (ct, l, u, ct′, l′, u′)
or A(ascT (f)) = (ct′, l′, u′, ct, l, u).

Example 2. Each UML class in the SimPL model in Figure 3 represents a com-
ponent type. Configurable features of each component type are defined based
on its attributes, its relations to other classes, and the template parameters of
its related configuration unit. Figure 9 shows mathematical representations for
two component types (namely, SubseaProdSystem and SemApp) of the SimPL
model in Figure 3. As shown in Figure 9, the component type SubseaProdSystem
declares two configurable features, xTsdc and semAppsdc, both of type decom-
position cardinality. These configurable features correspond to the template pa-
rameters of the configuration unit SystemConfigurationUnit associated with the
class SubseaProdSystem (Figure 3). The feature xTsdc represents the variability in
the cardinality of the decomposition relationship between SubseaProdSystem and
XmasTree. Therefore, we have chl(xTsdc) = XmasTree. Similarly, for semAppsdc
we have chl(semAppsdc) = SemApp. Configurable features of the component type
SemApp are also defined in Figure 9 in the same manner.

SubseaProdSystem (SPS)
FSPS = {xTsdc, semAppsdc} = DCSPS

AFSPS = ACSPS = SCSPS = DTSPS = TFSPS = ∅
chl(xTsdc) = XmasTree
chl(semAppsdc) = SemApp

SemApp (SA)
FSA = {controllersdc, controllersdt, semtf}
DCSA = {controllersdc}
DTSA = {controllersdt}
TFSA = {semtf}
AFSA = ACSA = SCSA = ∅
chl(controllersdc) = DeviceController
chlT (controllersdt) = DeviceController
acsT (semtf ) = SemDeploy

Fig. 9. Mathematical structure for component in the SimPL model in Figure 3.

Let RA = (CT,≺,G, N,A, Φ) be a reference architecture. We use FCT to
denote the set of all configurable features defined by RA. Specifically, FCT =⋃

ct∈CT Fct.

4.2 Product

In our approach, a product represents an integrated control system and spec-
ifies it through its components, the connections between the components, the
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configurable parameters of the components, and the values of those configurable
parameters. The formal specification of a product is given in Definition 3.

Definition 3 (Product). A product P is denoted by a quadruple (C,�, N, L),
where:

– C is a set of component names,
– � is a decomposition relation over C : �⊆ C × C,
– N is a set of link names, and
– L ⊆ C ×N × C denotes a set of named links between the components in C.

A decomposition (c, c′) ∈� specifies that component c encompasses compo-
nent c′ (i.e., c′ is a subcomponent of c). We define a function parts : C → P(C)
to map each component to the set of its subcomponents. Specifically, let c be a
component in C, then parts(c) ⊂ C is the set of all components that are in a
decomposition relationship with c (i.e., ∀c′ ∈ parts(c).(c, c′) ∈�). A named link
(c, n, c′) ∈ L specifies that a link, named n, connects the component named c to
the component named c′.

Example 3. The object diagram in Figure 4 specifies a simple product. Accord-
ing to Definition 3, we denote this product using the quadruple P = (C,�, N, L).
Figure 10 depicts the mathematical representation of the product given in Fig-
ure 4. As shown in Figure 4, xt1 has three subcomponents: s1, semAs1, and semA.
Therefore, parts(xt1) = {s1, semAs1, semA}.

C = {toySps, semAppA, xt1, semA, s1, semAs1}
� = {(toySps, semAppA), (toySps, xt1), (xt1, s1),

(xt1, semA), (xt1, semAs1)}
N = {DeviceConn, BoardConn, SemDeploy}
L = {(semAs1, DeviceConn, s1), (semAs1, BoardConn, semA),

(semAppA, SemDeploy, semA)}

Fig. 10. Mathematical representation for the product in Figure 4.

A product specifies an individual member of a product family and is derived
from the reference architecture describing the product family. Let RA = (CT,≺
,G, N,A, Φ) be a reference architecture. We use [[RA]] to denote the set of all
products that can be derived from the product family represented by RA. Let
P = (C,�, N, L) be a product derived from RA (i.e., P ∈ [[RA]]). Each compo-
nent c in C is an instance of a concrete component type ct in CT . We use [[ct]]
to denote the set of all instances of the component type ct. We define a function
T : C → CT to map each component c to its corresponding concrete component
type. The concrete type of a component can have a number of super types. Let
ct be a component type and ct′ be a super type of ct (i.e., (ct, ct′) ∈ G), then
[[ct]] ⊆ [[ct′]]. We define the function types : C → P(CT ) to map each component
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to the set of all of its component types. Specifically, let c be a component in C,
then types(c) ⊂ CT contains all component types ct such that c ∈ [[ct]]. In other
words, for a component c ∈ C, members of types(c) are the concrete type of c
(i.e., T (c)) and all the direct and indirect super types of T (c). The set N of link
names of P is the same as the set of association names of RA, and each link
between two components of P is an instance of an association relation defined by
A in RA. A precise specification of the conformance of a product to its reference
architecture is discussed in Section 4.3.

Example 4. The product given in Figure 4 is derived from the SimPL model in
Figure 3. The concrete type of the component named xt1 is XmasTree. Therefore,
we have T (xt1) = XmasTree. Since XmasTree has no super types according to
Figure 4, types(xt1) has only one member which is XmasTree.

Definition 4 (Component). Let P = (C,�, N, L) be a product. Each com-
ponent c in C has a set of configurable parameters. We use Pc to denote the
set of configurable parameters of component c. Furthermore, each configurable
parameter in the set Pc is an instance of a configurable feature in the set FT (c).

Example 5. As shown in Figure 4, the component toySps is an instance of the
component type SubseaProdSystem, which defines two configurable features xTsdc
and semAppsdc (See Example 2). Both configurable features are cardinality fea-
tures and one instance of each exists in the set of configurable parameters of
toySps. Both configurable parameters are configured, in Figure 4, by assigning
the value one to them. As a result of this configuration one instance of XmasTree
and one instance of SemApp are created. As shown in Figure 4 these instances
are named xt1 and semAppA, respectively.

Let P = (C,�, N, L) be a product, and let RA = (CT,≺,G, N,A, Φ) be the
reference architecture corresponding to P . We use PC to denote the set of all
configurable parameters in the product P . Specifically, PC =

⋃
c∈C Pc. For a

component c ∈ C, several instances of each configurable feature in FT (c) may
exist in Pc. Let f be a feature in FT (c), and let ρc(f) denote the set of all
configurable parameters q ∈ Pc, such that q is an instance of f . We refer to the
cardinality of the set ρc(f) as the cardinality of feature f in the component c. Let
ct ∈ CT be a component type, and let f ∈ Fct be one of its configurable features.
We say that f has a fixed cardinality, iff ∀c, c′ ∈ [[ct]]. ]ρc(f) = ]ρc′(f). All
cardinality features have fixed cardinalities and their cardinalities is always one.
Specifically, let ct be a component type, then for every cardinality feature f of ct
(i.e., f ∈ ACct ∪DCct ∪SCct), we have ∀c ∈ [[ct]]. ]ρc(f) = 1. Moreover, for each
configurable feature with an unfixed cardinality, there exists a corresponding
cardinality feature in the same component type.

Fully- and partially-configured components and products
Recall from Section 3 that a component is configured by assigning values to
its configurable parameters. A component is called fully-configured iff all of its
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configurable parameters are assigned values, and it is called partially-configured
iff at least one of its configurable parameters is not assigned a value. Similarly,
a product is called fully-configured if all of its contained components are fully-
configured, and it is partially-configured if at least one of its contained compo-
nents is partially configured. The set [[RA]] defined above contains both fully-
and partially-configured products. Similarly, the set [[ct]] contains both fully- and
partially-configured components.

4.3 Product consistency

A central concept in our approach is the consistency of a product with respect
to its reference architecture. Intuitively, a product is consistent with its refer-
ence architecture, if and only if all the four conditions listed in Figure 11 hold.
Definition 5 formally defines the notion of product consistency.

1. Each component in the product is an instance of a component type in the reference
architecture.

2. A component of type ct contains a subcomponent of type ct′ only if there is a
decomposition relationship between ct and ct′ in the reference architecture.

3. Two components of types ct and ct′ are connected only if there is an association
between component types ct and ct′ in the reference architecture.

4. The product satisfies all the constraints defined in the reference architecture.

Fig. 11. Product consistency rules.

Definition 5 (Product consistency). Let RA = (CT,≺,G, N,A, Φ) be a ref-
erence architecture, and let P = (C,�, N, L) be a fully- or partially-configured
product in [[RA]]. We say the product P is consistent w.r.t. RA, iff:

1. ∀c ∈ C. T (c) ∈ CT ,

2. ∀(c, c′) ∈� . ∃(ct, ct′, l, u) ∈≺: c ∈ [[ct]] ∧ c′ ∈ [[ct′]],
3. ∀c ∈ C,∀ct ∈ types(c),∀(ct, ct′, l, u) ∈≺ . l ≤ ]{(c, c′) ∈� |c′ ∈ [[ct′]]} ≤ u,

4. ∀(c, n, c′) ∈ L. ∃n ∈ N : A(n) = (ct, l, u, ct′, l′, u′) ∧ c ∈ [[ct]] ∧ c′ ∈ [[ct′]],
5. ∀c ∈ C,∀ct ∈ types(c),∀n ∈ N.[( A(n) = (ct, l, u, ct′, l′, u′)⇒ l′ ≤ ]{(c, n, c′) ∈

L|c′ ∈ [[ct′]]} ≤ u′) ∧ (A(n) = (ct′′, l′′, u′′, ct, l, u) ⇒ l′′ ≤ ]{(c′′, n, c) ∈
L|c′′ ∈ [[ct′′]]}| ≤ u′′)],

6. C |= Φ (≡ ∀φ ∈ Φ. C |= φ).

The first item in Definition 5 provides the formal specification of the first
condition in Figure 11. The second and the third items in the definition ad-
dress the second consistency rule. The third item, in particular, ensures that the
numbers of subcomponents of each component are consistent with the multiplic-
ities of the corresponding decompositions. The next two items in the definition
address the third consistency rule about associations. The fifth item in the def-
inition specifies the consistency with respect to the multiplicities of association
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relations. Finally, the last item in Definition 5 specifies the last consistency rule
in Figure 11.

Example 6. The product in Figure 4 is consistent w.r.t. the reference architecture
represented by the SimPL model in Figure 3. In particular, the last item in
Definition 5 holds for the product in Figure 4 as the values of attributes pinIndex
and ebIndex in semAs1 and the value of attribute eBoards in semA satisfy the
constraints φPinRange and φBoardIndRange (i.e., the OCL constraints in Section 3.1).

Based on the notion of product consistency we define the consistency of a
reference architecture (e.g., representing a SimPL model) as follows:

Definition 6 (Consistent reference architecture). A reference architecture
RA is consistent iff there is a fully-configured product P ∈ [[RA]], such that P is
consistent w.r.t. RA.

In our context, a SimPL model represents a consistent reference architecture
if it conforms to the UML metamodel and the SimPL profile defined in [8], and
its set of constraints are consistent. There is a large body of research dealing
with UML/OCL consistency [13, 14, 25, 32]. In our approach to configuration,
we assume the input reference architecture is consistent (i.e., its consistency is
guaranteed using one of the approaches listed above). Checking the consistency
of a reference architecture is, however, out of the scope of this paper.

4.4 Syntax and semantics of constraints

As noted in Definition 1, a reference architecture incorporates a set of constraints.
In this section, we provide a syntax for such constraints and formally define
the satisfiability of such constraints in the context of product configuration. In
our work, we focus on a subset of OCL to specify our constraints. This subset
is sufficiently expressive to capture all the constraints in our industrial case
study. Specifically, our constraint language captures all arithmetic and first order
logic formulas described over primitive literals (e.g., numbers), and over sets or
individual components and their attributes. By basing our constraint language on
first order logic, we can efficiently encode the reference architecture constraints
in an input program for constraint solvers (e.g., [15, 4]).

4.4.1 A grammar for boolean formulas
Let RA = (CT,≺,G, N,A, Φ) be a reference architecture. Each member φ of
the set Φ of constraints is a tuple (ct, ϕ), where ct ∈ CT is a component type
denoting the context of the constraint φ, and ϕ is a boolean expression over the
set FCT of the configurable features defined in RA. The boolean expression ϕ
can only be evaluated for instances of ct, and must be true for all of them. Each
constraint φ, therefore, equivalent to the formula ∀c ∈ [[ct]].ϕ.

A simplified grammar for the language of boolean expressions is given in Fig-
ure 12. This grammar is defined based on the basic OCL operators that we use
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bool_expr ::= bool_term (OR bool_term)*;
bool_term ::= bool_factor (AND bool_factor)*;
bool_factor ::= bool_literal | qualified_name |

’(’ bool_expr ’)’ | rel_expr | NOT bool_factor |
FA ’(’ qualified_name ’,’ bool_expr ’)’ |
EX ’(’ qualified_name ’,’ bool_expr ’)’ ;

rel_expr ::= num_expr (GT | LT | GEQ | LEQ | EQ | NEQ) num_expr;

num_expr ::= num_term ((PLUS | MINUS) num_term)*;
num_term ::= num_factor ((MUL | DIV) num_factor)*;
num_factor ::= num_literal | qualified_name |

’(’ num_expr ’)’ | NEG num_factor;

Fig. 12. A simplified grammar of boolean formulas.

in specifying constraints in the SimPL methodology. These operators include,
for all, exists, arithmetic, relational and logical operators. In Figure 12, FA rep-
resents the universal quantifier, which maps to OCL forAll operator. Similarly,
EX represents the existential quantifier, which maps to OCL exists operator.

In the grammar given in Figure 12, a qualified name (i.e., qualified_name)
represents a typed variable (i.e., a configurable feature3), and may represent an
individual item or a collection of items. For example, in the OCL expressions in
Section 3.1, the qualified name pinIndex represents a single item of type integer,
and the qualified name sem.eBoards represents a collection of items, where each
item is typed by the enumeration ElecBoard. In the formula ∀c ∈ [[ct]].ϕ, all
qualified names in ϕ are of the form c.a1.a2....an

4, where a1 refers to an attribute
of c, and ai (for 1 < i ≤ n) refers to an attribute of ai−1. In addition, an can be
“size()”. In this case, the qualified name c.a1...an−1.size() represents the size of
the collection c.a1...an−1.

Qualified names together with literals and operators are used to create nu-
merical, relational, and boolean expressions. Qualified names of numerical types
(i.e., integer or a user defined enumeration) form one type of numerical factors
and are used in creating relational expressions. Qualified names of type boolean
form one type of boolean factors. Qualified names representing collections of
items can be combined with set quantifiers (i.e., for all and exists) to form an-
other group of boolean factors.

3 Note that in our approach, we distinguish between configurable features and the
features (e.g., attributes) that are evaluated at run-time. We call the latter non-
configurable features. In our approach, non-configurable features may exist in the
reference architecture, but they cannot be used for defining constraints since their
values can change at run-time. As non-configurable features cannot be used in ex-
pressing constraints, they are excluded from our formal specification.

4 Note that, whenever needed in the OCL expressions used in this paper, we have used
-> is instead of dot, to conform to OCL syntax.

19



4.4.2 Constraint satisfiability semantics
Let RA = (CT,≺,G, N,A, Φ) be a reference architecture, and let P = (C,�
, N, L) be a product consistent w.r.t. RA. The last item in Definition 5 requires
that the components in the set C and the values of their configurable parameters
satisfy all the constraints defined in Φ. In this section, we precisely define the
semantics of constraint satisfiability based on the elements of P and RA.

Let φ = ∀c ∈ [[ct]].ϕ be a constraint in Φ, and let q1, ..., qn denote all the
qualified names in the boolean expression ϕ (or ϕ(q1, ..., qn) to be more precise).
Recall that each qi is of the form c.a1.a2....ak. For each instance c of ct, each
qualified name qi in ϕ specifies a particular subset of PC , which we denote as
R(qi, c)5. Let L(qi, c) be a list representation of the elements in R(qi, c). Using
this definition, we rewrite the boolean expression ϕ(q1, ..., qn) for each component
c ∈ [[ct]] and denote it as R(ϕ, c), and we have:

R(ϕ, c) ≡ R(ϕ(q1, ..., qn), c) ≡ ϕ(L(q1, c), ...,L(qn, c)).

Note that R(ϕ, c) is a boolean expression over the configurable parameters in
PC . Let p1, ..., pm denote all the configurable parameters in the boolean expres-
sion R(ϕ, c). We say that c |= ϕ (i.e., c satisfies ϕ) iff there exist values v1, ..., vm
for parameters p1, ..., pm that evaluate the boolean expression R(ϕ, c) to true.
To denote it mathematically, we write:

c |= ϕ ⇔ ∃v1, ..., vm : R(ϕ, c)(v1, ..., vm) = true. (1)

Definition 7 (Constraint satisfiability). Let RA = (CT,≺,G, N,A, Φ) be
a reference architecture, and P = (C,�, N, L) be a product in [[RA]]. For each
constraint φ = (ct, ϕ) in the set Φ, we say that C satisfies φ and denote it as
C |= φ iff:

∀c ∈ [[ct]]. c |= ϕ. (2)

Example 7. The OCL constraints in Section 3.1 are written in the context of
component type ElectronicConnection. In Figure 4, the only instance of Electron-
icConnection is the component semAs1. Therefore, in order to check the con-
sistency of the product in Figure 4, the constraints φPinRange and φBoardIndRange
should only be evaluated for semAs1. To do so, we rewrite these constraints for
component semAs1, resulting in two boolean expressions in terms of the config-
urable parameters of the components in Figure 4. The following shows these two
boolean expressions, both of which evaluate to true.

semAs1.pinIndex >= 0 and
semA.eBoards[semAs1.ebIndex+1].numOfPins > semAs1.pinIndex

semAs1.ebIndex >= 0 and semAs1.ebIndex < semA.eBoardsac

5 We apply name resolution rules, typically found in programming languages, for re-
solving qualified names with dot-notations, to calculate the set R(qi, c).
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As mentioned in Section 4.2, products may be partially configured. Fully-
configured products can be created from partially-configured products by con-
figuring all their unconfigured parameters. In addition, new components may
be needed to create a fully-configured product from a partially-configured prod-
uct. According to Definition 7, when assessing the consistency of a partially-
configured product, we evaluate constraints only for its existing components,
not the ones that may be added later.

5 The configuration process

In this section, the process of creating an individual product from a reference
architecture is explained. The configuration process is a stepwise process, where
in each step a value is assigned to a configurable parameter. We call each con-
figuration step a value-assignment step. As a result of assigning a value to a
configurable parameter, new components or new configurable parameters may
be created. Here, we first explain the process of configuring a single compo-
nent then we explain the overall product configuration process. We define both
processes using the notations introduced in Definitions 1-4.

5.1 Component configuration

Let RA = (CT,≺,G, N,A, Φ) be a reference architecture, P = (C,�, N, L) be a
partially-configured product of RA, and c ∈ C be an unconfigured or partially-
configured component. Suppose c is an instance of the component type ct ∈ CT ,
and has been created in an earlier step during the configuration of product
P . When instantiating a component type some of its configurable features are
instantiated immediately and some of them are instantiated later during the
configuration process, when the information required for instantiating them is
provided. More specifically, a configurable feature is instantiated immediately
iff it has a fixed cardinality. Examples of such configurable features are cardi-
nality features and configurable attributes that have fixed multiplicities of the
form k..k. For example, one instance of each cardinality feature defined by the
component type ct is created and added to Pc when the component c is created.
Configurable features that have unfixed cardinalities are instantiated only after
their corresponding cardinality features are configured.

In this section, we explain how a single component is configured and what are
the consequences of each configuration step. To do so, we assume that at each
configuration step a value is assigned to a configurable parameter and explain
the details for each kind of configurable parameter separately. In the following,
c ∈ C is a component in the context of product P , q ∈ Pc is the configurable
parameter to be configured, and ct denotes the concrete type of the component
c (i.e., ct = T (c)).

5.1.1 Configurable attribute (members of AFct). Let f be a feature
denoting a configurable attribute in AFct and let q be an instance of f . The
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configurable parameter q is configured by assigning to it a value from the type
of the the configurable attribute f (i.e., type(f)).

5.1.2 Configurable attribute cardinality (members of ACct). Let f be
a feature denoting a configurable attribute cardinality in ACct and let q be an
instance of f . The configurable parameter q is configured by assigning to it a
valid integer value k. As a result of this value-assignment step, k configurable
parameters – each an instance of the configurable attribute atr(f) – are added
to the set Pc. These configurable parameters are to be configured in the later
steps of configuration.

5.1.3 Configurable decomposition cardinality (members of DCct).
Let f be a feature denoting a configurable decomposition cardinality in DCct

and let q be an instance of f . The configurable parameter q is configured by
assigning to it a valid integer value k. Depending on whether chl(f) (i.e., the
component type denoting the target of the corresponding decomposition rela-
tionship) has some subtypes or not, one of the following two cases is followed as
a result of this configuration step:

1. chl(f) has no subtypes. In this case, k new components, each an instance
of chl(f), are created and added to the set C. Let c1, ...ck be the newly
created components. For each component ci we add the tuple (c, ci) to the
set �. The newly created components are to be configured in the later steps
of configuration.

2. chl(f) has a number of subtypes. In this case, k new configurable param-
eters are added to the set Pc of configurable parameters. Each configurable
parameter represents a configurable type and is an instance of a configurable
feature f ′ ∈ DTct, where chlT (f ′) = chl(f). Each newly created configurable
parameter is to be configured in a later step of configuration.

5.1.4 Configurable association cardinality (members of SCct). Let f
be a feature denoting a configurable association cardinality in SCct and let q be
an instance of f . The configurable parameter q is configured by assigning to it a
valid integer value k. As a result of this value-assignment step, k new configurable
parameters are added to the set Pc. Each of the configurable parameters is an
instance of a configurable topology f ′ ∈ TFct, where acsT (f ′) = acs(f). Each
of the newly created configurable parameters is to be configured in a later step
of configuration.

5.1.5 Configurable type (members of DTct). Let f be a feature denoting
a configurable type in DTct and let q be an instance of f . The configurable
parameter q is configured by assigning to it the name of a component type ct ∈
subtypes(chlT (f)). As a consequence of this configuration step a new instance
of ct is created and added to the set C. Let c′ be the newly created component.
We add the tuple (c, c′) to the set � as a result of this configuration step. This
newly created component is to be configured in the later steps of configuration.
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5.1.6 Configurable topology (members of TFct). Let f be a feature
denoting a configurable topology in TFct and let q be an instance of f . The
configurable parameter q is configured by assigning to it the name of a component
already existing in the set C. Suppose c′ is the chosen component. As a result
of this configuration step, we add the tuple (c, ascT (f), c′) to the set L.

Table 3. Summary of the configuration of each kind of configurable parameter.

Feature kind Configuration decision Change of the state of P
in each iteration

Configurable attribute
v(q) ∈ type(f) –(f ∈ AFct)

Configurable attribute
v(q) = k ∈ N0

P i+1
c = P i

c ∪ {q1, .., qk},
cardinality (f ∈ ACct) qj ∈ ρc(atr(f))

v(q) = k ∈ N0

if subtypes(chl(f)) = ∅:
Ci+1 = Ci ∪ {c1, .., ck},

cj ∈ [[chl(f)]],
Configurable decomposition �i+1=�i ∪

⋃
j=1..k{(c, cj)}

cardinality (f ∈ DCct)
else (∃f ′ ∈ DTct :

chl(f) = chlT (f ′)):
P i+1
c = P i

c ∪ {q1, .., qk},
qj ∈ ρc(f ′)

Configurable association
v(q) = k ∈ N0

P i+1
c = P i

c ∪ {q1, .., qk},
cardinality (f ∈ SCct) qj ∈ ρc(f ′), f ′ ∈ TFct,

asc(f) = ascT (f ′)

Configurable type v(q) = ct′, Ci+1 = Ci ∪ {c′},
(f ∈ DTct) ct′ ∈ subtypes(chlT (f)) c′ ∈ [[ct′]],

�i+1=�i ∪{(c, c′)}
Configurable topology

v(q) = c′ ∈ C Li+1 = Li ∪ {(c, ascT (f), c′)}(f ∈ TFct)

Table 3 formalizes the details of configuring component c as explained above. In
this table, we use ct to denote the type of component c, q ∈ Pc is the configurable
parameter that is configured, f ∈ Fct is the respective configurable feature, and
v(q) denotes the value assigned to q. We use Ci, �i, Li, and P i

c to specify
the state of product P in the ith step of configuration. We assume these sets
remain unchanged as a result of completing the configuration step unless stated
otherwise.

5.2 Product configuration

The process of creating a product P = (C,�, N, L) from a reference architec-
ture RA = (CT,≺,G, N,A, Φ) starts by creating an instance of the topmost
component type in the SimPL model of RA. The topmost component type is a
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UML class stereotyped by «ICSystem» in the SimPL model and is denoted by
cts ∈ CT . Each product has only one instance of the topmost component type.
We refer to this single instance of cts as cs.

The configuration process starts after the component cs with its initial list
of configurable parameters is created. At this stage, for the product P we have
C = {cs}, �= ∅, and L = ∅. Most of the configurable parameters in Pcs are
of type cardinality at this stage, and so, in the first steps of configuration these
configurable cardinalities are configured. Configuration of such parameters even-
tually results in the creation of new components. The configuration process then
proceeds with configuring these new components. The overall configuration pro-
cess is given in Algorithm 1. This algorithm and the rest of algorithms in this
paper follow the pseudocode convention given in [17].

Algorithm 1 Configuration
Input: a reference architecture RA = (CT,≺,G, N,A, Φ)
Output: a product specification P = (C,�, N, L)

B Initialization
1 cs ← createNew(cts)
2 C ← {cs}
3 while there are unconfigured parameters in PC do
4 read(i)
5 read(PC [i])
6 applyConfigDecision(PC [i], P ) B May result in the creation of new config-

urable parameters, new components, or new relations.
7 return P

In each iteration of the while-loop in Algorithm 1, one user-selected config-
urable parameter is configured by assigning a user-provided value to it. The user
selects the desired parameter in line 4, and assigns a value to it in line 5. The
algorithm terminates when all the configurable parameters are assigned a value.
The output in this case is a complete product specification. In practice, the al-
gorithm may be terminated at the end of each configuration iteration if the user
decides to do so. In this case, the output is a partial product specification. The
function createNew, in the configuration algorithm, creates a new instance
of the input component type; and the function ApplyConfigDecision applies
the configuration decision and updates the product specification as specified in
Section 5.1 and summarized in Table 3. An algorithm implementing Apply-
ConfigDecision is indeed a switch-case statement, which can be derived from
Table 3. For each kind of configurable feature (i.e., each row of Table 3), we have
a case statement in the algorithm. In each case statement, the action is specified
by the third column of the table.
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6 Semi-automated configuration

The semi-automated configuration approach in Figure 1 performs three main
activities: (1) ensuring the consistency of the products by validating configu-
ration decisions, (2) automatically making some of the configuration decisions,
and (3) guiding the user throughout the configuration process. We refer to these
activities as configuration functionalities. Central to the implementation of the
configuration functionalities is the notion of valid domains. Given a partially-
configured product, the valid domain of a configurable parameter specifies the
set of all values that can be assigned to that configurable parameter without
resulting in any inconsistencies in the product. After each individual value as-
signment, we need to update the valid domains accordingly. We use constraint
propagation over finite domains to recompute the valid domains at the end of
each configuration iteration. To do so, we cast the configuration problem as a
constraint satisfaction problem over finite domains.

In the configuration process presented in Section 5, we have neither addressed
the computation of the valid domains nor addressed the configuration function-
alities mentioned above. In this section, we explain how constraint propagation
techniques are intertwined with the configuration process presented in Section 5
to fill in this gap. In the remainder of this section, we first introduce the finite-
domains constraint program and describe some basic operations on it that help
computing the valid domains. We specify the mapping from the configuration
problem to the constraint program. Then we explain how the configuration func-
tionalities can be implemented using the valid domains. Finally, we present a
modified version of the configuration process of Section 5. In this modified ver-
sion, calculation of the valid domains and implementation of the configuration
functionalities are included. Using the definitions and algorithms given in this
section, we present and prove the main properties of our semi-automated con-
figuration approach in Section 7.

6.1 A finite-domains constraint program

A finite-domains constraint program cp is a quadruple (X,D, V, Ψ), where X is
a set of variables x1, ..., xn, D is a set of finite domains D1, ..., Dn, V is a set of
values for the variables in X, and Ψ is a set of constraints over the variables in
X. Variables in X get their values from the finite domains D1, ..., Dn. A finite
domain Di is a finite collection of tags that can be mapped to unique integers.
Let ψ be a constraint in Ψ , and let x1, ..., xm be the variables in ψ. We say that
ψ(v1, ..., vm) holds iff the values v1, ..., vm in D1, ..., Dm evaluate the constraint
ψ to true.

Several operations can be defined on a constraint program, including con-
sistency checking and constraint solving. For the purpose of consistent product
configuration, we are interested in two operations defined in [29]: checking do-
main satisfiability and computing reduced domains, which are defined below.
The following definitions are borrowed from [29] but slightly modified to match
our definition of constraint program.
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Definition 8 (Domain consistency). A constraint ψ is domain-consistent
w.r.t. D1, ..., Dn if, for each variable xi and value vi ∈ Di, there exist values
v1, ..., vi−1, vi+1, ..., vn in D1, ..., Di−1, Di+1, ..., Dn such that ψ(v1, ..., vn) holds.
A constraint program cp = (X,D′, V, Ψ) is domain-consistent w.r.t. D1, ..., Dn if
any constraint ψ in Ψ is domain-consistent w.r.t. D1, ..., Dn.

Definition 9 (Reduced domains). The reduced domains of a constraint pro-
gram cp = (X,D, V, Ψ) are the largest domains D′′1 , ..., D′′n such that cp is domain-
consistent w.r.t. D′′1 , ..., D′′n, i.e., for all domains D′1, ..., D

′
n such that cp is

domain-consistent w.r.t. D′1, ..., D′n, we have D′1 ⊆ D′′1 ∧ ... ∧ D′n ⊆ D′′n.
As noted in [29], the reduced domains of a constraint program cp exist and are

unique and all the solutions of cp are in its reduced domains. Domain consistency
is thus a sound approximation of consistency.

Definition 10 (Domain satisfiability). A constraint program is domain-sati-
sfiable iff none of its reduced domains is empty.

Constraint propagation is a technique for calculating the reduced domains
of a constraint program. Given a set of constraints and an initial set of finite
domains for the variables in those constraints, a constraint propagation algorithm
iterates over the set of constraints and for each constraint prunes the domains of
the involved variables by removing inconsistent values from them. The algorithm
iterates over the set of constraints until no more pruning is possible. Algorithm 26
shows the constraint propagation algorithm [40, 10].

Algorithm 2 Constraint Propagation Algorithm (AC-3)
Input: σ a set of constraints, D a set of finite domains
Output: D′ arc-consistent domains
1 queue← σ
2 while queue 6= ∅ do
3 c← dequeue(queue)
4 D′ ← reduce(c,D) B Domain reduction
5 if D′ 6= D then
6 queue← queue ∪ {c′ ∈ σ| Vars(c′) ∩ Vars(c) 6= ∅}
7 D ← D′

8 return D′

The constraint propagation algorithm is monotonic and terminates after a
finite number of iterations. The algorithm is monotonic because, during each
iteration, the size of each domain either decreases or remains unchanged. The
algorithm terminates after a finite number of iterations because there are a finite
number of input domains and a finite number of elements in each input domain.
6 AC-3 is the basic and simplest Arc-consistency algorithm used for constraint propa-
gation. More advanced and more efficient versions of this algorithms exist (i.e., AC-4
through AC-7), which may, in practice, be used for calculating the reduced domains.
A comparison of these variations can be found in [57].
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6.2 Consistent configuration through constraint programming

A product can be represented by a constraint program. In this section, we first
present a mapping specifying how a constraint program can be created from a
product specification. Then, we explain the changes that take place in the state
of the constraint program after each configuration step. Finally, we provide an
analysis of the time complexity of creating constraint programs from products.

6.2.1 Mapping a product to a constraint program.
Let RA = (CT,≺,G, N,A, Φ) be a reference architecture, and let the partially-
configured product P = (C,�, N, L) be a member of [[RA]]. To create the con-
straint program cp = (X,D, V, Ψ) for the product P , we add a variable to the
set X for each configurable parameter of each component in C. If the config-
urable parameter is already assigned a value, we add the configuration value
to the set V , otherwise we add the symbol ε to V to denote that the respec-
tive configurable parameter is not yet configured. For a configurable parameter
q ∈ PC being an instance of a configurable feature f ∈ FCT , a finite domain
Dq representing the initial domain of the configurable parameter q is computed
using the configurable feature f and is added to the set D. For each constraint
φ = (ct, ϕ) ∈ Φ, and each component c ∈ [[ct]], we add a constraint RX(ϕ, c) to
Ψ . Such a constraint is the same as R(ϕ, c) defined in Section 4.4.2, except that
configurable parameters are replaced by their equivalent variables in X.

Table 4 summarizes the mappings discussed above. For each element in a
constraint program, the related concepts in the product specification or the
reference architecture are listed in Table 4. In this table the column named
Origin specifies whether the concepts belong to the product specification or the
reference architecture.

Table 4. Summary of the mapping between product configuration concepts and the
elements in a constraint program.

Constraint program Product configuration concept
element Related concepts Origin
Variables Configurable parameters Product specification
Domains Configurable features Reference architecture
Values Configuration decisions User-provided data

(Product specification)
Constraints Constraints Reference architecture

In the following, we further elaborate how the domains in D are initialized
for each type of configurable features. Let f ∈ FCT be a configurable feature
defined in RA, let the configurable parameter q ∈ PC be an instance of f , and
let x ∈ X be the variable representing the configurable parameter q.

f is a configurable attribute. In this case, the initial domain of variable x
is specified by the type of the attribute represented by the feature f . The
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type of an attribute, in our context, can be boolean (i.e., {T, F}), an integer
interval (i.e., (lower..upper)), or an enumeration (i.e., {t1, ..., tn}). In all cases
the initial domain of x will be a finite set of tags.

f is a configurable cardinality. In this case, the initial domain of variable
x is specified by an integer interval (i.e., (lower..upper)). Such an integer
interval is extracted from the multiplicities in the reference architecture RA.
If the feature f is a configurable decomposition cardinality related to the
decomposition (ct, ct′, l, u) ∈≺, then the initial domain of variable x is the
integer interval indicated by l..u. The initial domains for configurable at-
tribute cardinalities and configurable association cardinalities can be defined
similarly.

f is a configurable type. In this case, the initial domain of variable x is speci-
fied by a finite set of tags, where each tag is the name of a subtype of chlT (f).

f is a configurable topology. In this case, the initial domain of variable x
is specified by a finite set of tags, where each tag is the name of a com-
ponent in C. More specifically, if f is introduced by association A(n) =
(ct, l, u, ct′, l′, u′), then the initial domain of x would contain all members of
C that denote a component of type ct′ (i.e., Dx = [[ct′]]).

The initial domains are pruned using the constraint propagation algorithm
to calculate the reduced domains of the variables in X. For a constraint program
cp representing a product P , the reduced domains of its variables exist and form
the valid domains of the configurable parameters in the product P . According
to Definition 10, if the constraint program is domain-satisfiable, then all of such
valid domains are non-empty.

6.2.2 Changes in the state of the constraint program.
Suppose P = (C,�, N, L) is a partially-configured product under configura-
tion, RA = (CT,≺,G, N,A, Φ) is the related reference architecture, and cp =
(X,D, V, Ψ) is the constraint program created for P . We use Xi,Di, V i and Ψ i

to denote the state of the constraint program cp in the ith step of configuration.
In the following we explain how the state of the constraint program cp changes
during the ith step of configuration as a result of assigning a valid value vj to
variable xj representing an instance of the configurable feature f .

General rule. As a general consequence of the aforementioned value-assignment
step, the jth element in the set V i will be replaced by vj in V i+1.

f is a cardinality feature. As discussed in Section 5.1, as a result of configuring a
configurable parameter of type cardinality new configurable parameters may be
added to the set of configurable parameters of the related component (See rows
2-4 in Table 3). For each new configurable parameter a new variable is added
to the constraint program. In other words, if in the ith step of configuration a
parameter of type cardinality is configured by assigning to it the integer value
vj , then Xi+1 will have vj more elements than Xi. Similarly, V i+1 will have vj
more elements than V i, and all of its additional elements will be set to ε.
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In certain cases (i.e., Section 5.1.3), configuring a configurable parameter of
type cardinality may result in the creation of new components. This is also the
case when an instance of a configurable type is configured (Section 5.1.5).

f is a configurable type. As a result of a value-assignment step new components
may be added to C. This is the case if, for example, the configured parameter
represents a configurable type (See the fifth row in Table 3). As a result of
adding a new component c to C, both a number of variables and a number of
constraints must be added to the constraint program cp. Assuming component
c has k configurable parameters at the time of its instantiation, we add k new
elements to the sets of variables and values (i.e., Xi+1 and V i+1 will each have
k elements more than Xi and V i, respectively). In addition, for each constraint
φ = (ct, ϕ) ∈ Φ where ct = T (c) (i.e., φ is a constraint defined in the context
of the type of the component c), we add a constraint RX(ϕ, c) to the set Ψ . In
other words, if l is the number of constraints defined in the context of T (c), then
Ψ i+1 will have l elements more than Ψ i as a result of this configuration step.

6.2.3 Time complexity of creating the constraint program

Lemma 1. Time complexity of creating a constraint program cp = (X,D, V, Ψ)
for a product P = (C,�, N, L) is linear with the number of configurable param-
eters in the product P .

Proof. The complexity of creating a constraint program is equal to the sum of
the complexities of creating variables, their initial domains, and the constraints.
A variable can be created in constant time from its corresponding configurable
parameter. Similarly, each initial domain can be specified in constant time. The
time complexity for creating variables and their corresponding initial domains is,
therefore, equal to O(Q), where Q is the total number of configurable parameters
in the product.

As discussed earlier in this section, a number of constraints are added to the
constraint program each time a new component c is created. Each constraint
is created by applying the transformation RX introduced at the beginning of
Section 6.2. This transformation has a complexity proportional to Q (i.e., O(Q)).
As a result, the total complexity of creating the constraint program is O(Q).

6.3 Implementing the configuration functionalities

As mentioned earlier, in our semi-automated configuration approach, we propose
three configuration functionalities. In this section, we describe how the two first
functionalities can be implemented having the valid domains. Valid domains can
as well be provided to the users as a form of configuration guidance, therefore
implementing the third functionality. In the following, let P = (C,�, N, L) be a
partially-configured product, and let cp = (X,D, V, Ψ) be the constraint program
created for product P .
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Validation of the configuration decisions. Suppose that in the ith step of
configuration of the product P , the user has assigned the value v to a configurable
parameter q ∈ PC . Let xi ∈ X be the variable representing the configurable
parameter q in the constraint program cp. We use the reduced domain Di ∈ D
to validate the value v. Specifically, the user-provided value v represents a valid
configuration decision if v ∈ Di.

Automated decision making. At the end of each configuration iteration, we
use the valid domains (i.e., Di ∈ D) to infer some of the configuration decisions
automatically. To do so, we check the size of all of the valid domains. A valid
domain of size one indicates that, given all other decisions, there is only one
way to configure the corresponding configurable parameter. Therefore, for each
valid domain Di containing only one value v, we automatically configure the
configurable parameter corresponding to the variable xi by assigning the value
v to it. Algorithm 3 shows the value inference algorithm.

Algorithm 3 inferValues
Input: a constraint program cp = (X,D, V, Ψ), and a product P = (C,�, N, L), and

a list of decisions dList
Output: updated cp and P
1 decisions : empty list
2 while there are singleton domains in D do
3 for each singleton domain Di = {v} do
4 xi ← v
5 append(decisions, (xi, vi))
6 applyConfigDecision(xi, v, P, cp)
7 updateValidDomains(P, cp)
8 if some domains are empty in cp then
9 rollBack(decisions, p, cp)

10 return False
11 append(dList, decisions)
12 return True

Inferring the value of a configurable parameter has the same consequences as
that of configuring such a configurable parameter. These consequences (discussed
in Sections 5.1.2-5.1.4) are of particular importance in the case of configurable
cardinalities and configurable types. Specifically, inferring the value of a config-
urable cardinality or a configurable type results in creating a number of new
configurable parameters or a number of new components and constraints in the
product under configuration. As a result of this change in the product speci-
fication, the constraint program is updated accordingly. Furthermore, in every
value-inference round, after assigning a value to a variable, we may need to prune
valid domains of other variables. That is why after each round of value inference,
we recompute the valid domains of the remaining variables in line 7. This may
result in some empty valid domains. Once we detect an empty valid domain,
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we roll back all the inferred values (line 9), and return false, indicating that the
value-inference was not successful. Otherwise, we iteratively infer values for all
the singleton valid domains and return true in the end.

6.4 Consistent product configuration

In this section, we present a new configuration algorithm that modifies the con-
figuration algorithm in Section 5 (i.e., Algorithm 1) by taking into account the
consistency aspects. In particular, we specify how configuration functionalities
are invoked during the configuration process to ensure the consistency of the
final product.

Algorithm 4 ConsistentConfiguration
Input: a reference architecture RA = (CT,≺,G, N,A, Φ)
Output: a consistent product specification P = (C,�, N, L)

B Initialization
1 cs ← createNew(cts)
2 C ← {cs}
3 cp← createConstraintProgram(RA,P )
4 dList : empty list of (variable, value) pairs
5 while there are unconfigured parameters in PC do
6 read(i) B i indicates the parameter that will be configured
7 do
8 read(tmp) B assigned value
9 readNext← True

10 if isValid(tmp,DPC [i]) then
11 readNext← False
12 append(dList, (i, tmp))
13 applyConfigDecision(PC [i], tmp, P, cp)
14 updateValidDomains(PC [i], tmp, cp)
15 if some domains are empty in cp or not inferValues(cp, P, dList) then
16 readNext← True
17 i←backtrack(dList, p, cp)
18 while readNext
19 return P

Algorithm 4 is our consistency-oriented configuration algorithm. This algo-
rithm has some additional steps compared to Algorithm 1. After initializing the
product, in lines 1 and 2 of the ConsistentConfiguration algorithm, an ini-
tial constraint program is created in line 3. The createConstraintProgram
function invoked in line 3 performs a first round of constraint propagation to
provide an initial version of the valid domains for the initial list of the config-
urable parameters. The constraint program is used in each configuration itera-
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tion (lines 5-18) to provide the configuration functionalities and to ensure the
consistency of the configured product7.

In each configuration iteration, instead of immediately assigning the user-
provided value to the selected configurable parameter, we first validate the de-
cision by invoking isValid in line 10. If the decision is valid (i.e., the value is
within the valid domain of the chosen configurable parameter), the algorithm
proceeds by applying the decision in line 13. To do so, applyConfigDecision
is called, which applies the configuration decision and, for each type of config-
urable features, updates the product as discussed in Section 5.1. In addition, the
constraint program will be updated accordingly by adding to it new variables,
their initial domains, and new constraints as discussed in Section 6.2. After the
configuration decision is applied and the constraint program is updated, the valid
domains of all the variables need to be recomputed. This is done in line 14 by a
call to updateValidDomains. Finally, at the end of each configuration itera-
tion the function inferValues is invoked to automatically make configuration
decisions. This is done in line 15 of the algorithm.

Algorithm 5 backtrack
Input: a list of decisions dList, a product specification p, and a constraint program

cp
Output: i index of variable vi in cp that must be configured next

B Initialization
1 do
2 continue← False
3 (i, tmp)← dList.last()
4 dList.remove((i, tmp))
5 rollBack((i, tmp), p, cp)
6 remove tmp from DPC [i]

7 if DPC [i] is empty then
8 DPC [i] ← original valid domain of vi
9 continue← True

10 while continue and dList 6= ∅
11 if continue then
12 return −1 B Exception: the input reference architecture is inconsistent
13 return i

After updating the valid domains in line 14, some of the valid domains in cp
may become empty. Alternatively, a value inference step (i.e., the inferValues
routine) may fail because it yields some empty valid domains. In either case,
we have to backtrack the decisions that result in an empty valid domain. In
line 15, we check these two possibilities. If it turns out that some valid domains
are empty, we call our backtracking algorithm (Algorithm 5) in line 17. Let i be
7 Note that the constraint program created in line 4, and updated in lines 14 and 15
contains only variables representing the instantiated configurable parameters and
the constraints over them.
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a variable and tmp be a value assigned to i, and let (i, tmp) be the last tuple in
dList, i.e., (i, tmp) represents the last decision. In the backtracking algorithm,
we remove (i, tmp) from dList, and remove the value tmp from the valid domain
of i. If this results in an empty valid domain for i, we set the valid domain of i
back to the original valid domain, and keep backtracking more. Otherwise, we
stop backtracking and ask the user to choose a new value for i different from
tmp.

Recomputing the valid domains. As mentioned above, in each configuration
iteration, after the configuration decision is applied and the constraint program
is updated, the valid domains are recomputed by a call to the function updat-
eValidDomains.

If the value-assignment step has not resulted in the creation of any new com-
ponents, then the valid domains are recomputed by propagating the constraint
ψ : x = tmp throughout the constraint program. To do so, we can reuse a
previous constraint propagation session and propagate the new constraint by
simply inserting it into the queue and executing the while loop of the constraint
propagation algorithm (Algorithm 2). We refer to this as on-the-fly constraint
propagation, which is guaranteed to preserve the monotonicity of the constraint
propagation algorithm. This is due to the fact that the constraint propagation
algorithm does not need to know about all the constraints and all the variables a
priori. Note that, in this case, the queue is empty before inserting the constraint
ψ, but constraints may be added to the queue, in line 6 of Algorithm 2, as a
result of the propagation of constraint ψ.

If the value-assignment step has resulted in the creation of some new compo-
nents, we cannot use the previous constraint propagation session and the on-the-
fly constraint propagation to recompute the valid domains. The reason is that,
as a result of the creation of new components, new items might have been added
to the valid domains of some configurable parameters, and in particular, config-
urable parameters of type topology. This growth of the valid domains violates
the monotonicity of the constraint propagation algorithm, which is necessary
for the algorithm to work correctly. Therefore, in this case, instead of using the
on-the-fly constraint propagation, we have to start a new constraint propagation
session from scratch. In other words, we have to start with a queue containing all
the constraints, not only ψ, and pruning the domains until the queue is empty.

7 Properties of the semi-automated configuration

In this section, we characterize the formal properties of our configuration algo-
rithm. In particular, we show that our configuration algorithm always terminates
in finite time and generates a fully configured and consistent product. We start
by presenting and proving two lemmas that are used in the proof of the formal
properties.
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Lemma 2 (Finite number of configurable parameters). Given a reference
architecture with no cyclic decomposition relation, value assignment to a config-
urable parameter does not indefinitely generate new configurable parameters.

Proof. In our algorithms presented in Section 6, new configurable parameters
may be generated as a result of invoking applyConfigDecision after value
assignment to a configurable parameter of type configurable cardinality or con-
figurable type. To show that value assignments cannot indefinitely generate new
configurable parameters, we discuss each value assignment case individually.

Value assignment to configurable parameters of type attribute cardinality or as-
sociation cardinality: The new configurable parameters generated as a result
of this value assignment cannot themselves generate new configurable pa-
rameters in the subsequent iterations.

Value assignment to configurable parameter of type decomposition cardinality:
This value assignment generates configurable parameters that can lead to
generation of new configurable parameters. However, since the decomposi-
tion relations in the reference architecture are acyclic, generation of new
configurable variables cannot continue indefinitely and has to stop at some
point.

Value assignment to configurable parameter of type configurable type: This value
assignment can generate only a finite number of configurable parameters of
type configurable cardinality. However, as discussed above a configurable
parameter of this type does not indefinitely generate new configurable pa-
rameters.

Lemma 2 implies that the total number of configurable parameters in any
possible configuration is finite.

Lemma 3 (Termination of the value-inference algorithm). Given a con-
sistent reference architecture with no cyclic decomposition relation, the value-
inference algorithm (i.e., Algorithm 3) terminates in finite time.

Proof. Algorithm 3 terminates when there is no “unassigned” variable (config-
urable parameter) with a singleton valid domain. At each iteration, we assign
a value to each configurable parameter with a singleton domain (line 4). We
never undo value assignments, unless at line 9, after which we immediately ter-
minate the algorithm. However, a value assignment (line 4) may create new
unassigned configurable parameters (at line 6, applyConfigDecision). Ac-
cording to Lemma 2, however, value assignments cannot indefinitely generate
new configurable parameters. Therefore, the number of configurable parameters
(“unassigned” variables) added at line 6 is finite, and Algorithm 3 terminates.

Theorem 1 (Termination of a configuration iteration). Given a consis-
tent reference architecture with no cyclic decomposition relation, Algorithm 4
terminates in finite time.
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Proof. To prove that Algorithm 4 is terminating, we note that all its sub-routines
are terminating: Algorithm 2 (invoked in line 14 as part of the updateValid-
Domain sub-routine) terminates according to [10], Algorithm 3 (invoked in line
15) terminates by Lemma 3, and the proof of termination of Algorithm 5 (in-
voked in line 17) is trivial and follows from the fact that at each iteration, we
remove one element from a finite list (dList).

We first argue that the while loop from lines 7 to 18 is finite. This while loop
terminates if there exists some value tmp for some variable i such that (1) tmp
is valid (line 10), and (2) tmp does not give rise to any empty valid domain for
other variables neither directly nor during value inference (line 15). The first
condition follows from the fact that user chooses tmp from a set of values which
are valid for i. Consider condition 2, and for the sake of contradiction, suppose
assigning any value tmp to any variable i results in some empty valid domain.
This implies that the reference architecture is unsatisfiable and inconsistent –
contradicting our assumption. Hence, the while loop from line 7 to 18 always
terminates by assigning some value tmp to some variable i.

We then argue that the while loop form line 5 to line 18 terminates. To show
that this loop terminates, we argue that the total number of times that the
backTracK algorithm is called is finite. This number is less than or equal to
the number of all possible value assignments to all the configurable variables.
We argued based on Lemma 2 that the total number of configurable parameters
is finite. Each configurable parameter is finite domain. Thus, the total number
of value assignments to all the configurable parameters is finite. Hence, we call
the backTracK algorithm a finite number of times. Therefore, the outer while
loop in Algorithm 4 terminates in finite time.

Theorem 2 (Product consistency and completeness). Given a consistent
reference architecture with no cyclic decomposition relation, Algorithm 4 can
always generate a complete and consistent product.

Proof. Let P be the product returned in line 19 of Algorithm 4. We define
completeness and consistency of product P as follows:

– Completeness: A product P is complete if all of its configurable parameters
are assigned a value.

– Consistency: A product P is consistent with its reference architecture, if
the six conditions mentioned in Definition 5 hold for it.

The sub-routines createNew and applyConfigDecision invoked in lines
1 and 13 of Algorithm 4 guarantee the conformance of product P to the first
five conditions in Definition 5. Below, we argue the completeness of P and its
consistency with respect to the last condition in Definition 5.

By Lemma 2, the total number of configurable parameters in our work is
finite. Let T = {p0, ..., pm} be the set of all configurable parameters. Due to our
configuration assumption, every configurable parameter pi in T is finite domain.
By Theorem 1, Algorithm 4 terminates by assigning some value tmp to every
variable pi in T . This proves that Algorithm 4 can always generate a complete
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product. Further, any value tmp assigned to variable pi passes the check on line
10 of Algorithm 4. This shows that all the value assignments are consistent, and
therefore the result of Algorithm 4 is consistent.

8 Prototype configuration tool

To empirically evaluate our semi-automated configuration approach, we devel-
oped a prototype configuration tool that implements the configuration algorithm
given in Section 6.4. Figure 13 shows the architecture of the configuration tool.
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Fig. 13. Architecture of the configuration tool.

Inputs to the configuration tool
are a model of the reference ar-
chitecture of the product family,
and the user-provided configura-
tion data. The configuration pro-
cess starts either from scratch by
creating an instance of the topmost
component type in the reference ar-
chitecture model, or by loading a
partial but consistent configuration
file. To collect configuration data
from the user, configurable param-
eters are presented to the user via
the interactive user interface shown
in Figure 14. The configuration tree
on the left-hand side of Figure 14
allows the user to freely explore the system-under-configuration and choose the
object (i.e., component instance) he wants to configure. Moreover, the configu-
ration engineer can create new components at configuration-time by adding new
nodes to the configuration tree. The right-hand side of Figure 14 is used for
assigning values to configurable parameters of the selected node of the config-
uration tree. Depending on the type of the configurable parameter, user inputs
can be provided either by entering a value into a textbox (e.g., for configuring
cardinalities), selecting an item from a drop-down list (e.g., for configuring the
type of a component), or by navigating to a desired node from the configuration
tree (e.g., for configuring topology).

For computing the valid domains, we use the clpfd library of the SICStus
Prolog environment [15, 4]. The finite domains constraint program, in this con-
text, is a Prolog/clpfd program. The clpfd library uses a variant of AC-6, which
is an efficient implementation of constraint propagation over finite domains [16].
In our implementation, we use the jasper library that provides an interface for
invoking the SICStus Prolog engine from a Java program.

The configuration engine iteratively and interactively collects configuration
values from the user. At each iteration, the user provides a value for one config-
urable parameter. Using the valid domain of the configurable parameter, the con-
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Fig. 14. A snapshot of our prototype configuration tool.

sistency of the configuration value is checked. If the entered value is consistent,
the Query generator is invoked to update the constraint program accordingly
and to start a new constraint propagation session to identify the implications
of the user decision on domains of the remaining configurable parameters. The
new valid domains serve as input to the Inference engine, which implements the
inference mechanism explained in Section 6.3. Valid domains are also used by
the Guidance provider to report to the user the impacts of her decision (e.g.,
updated valid domains) and to help her make consistent decisions in the subse-
quent configuration iterations. In the current version of the prototype configu-
ration tool, inferences and the updated valid domains are reported to the user,
at the end of each configuration iteration, using the text box in the lower part
of the configuration window shown in Figure 14.

9 Evaluation

As discussed in Section 2, one main challenge in developing large-scale ICSs is the
issue of incorrect or inconsistent configurations. Identifying configuration errors
and debugging configurations are overwhelming tasks, that make development
of ICS products costly and time consuming. Configuration errors in large-scale
contexts are largely due to the high configuration workload, and the complex-
ity of decision making. Therefore, in our configuration approach, we seek three
objectives: (1) ensuring the consistency of full and partial configurations, (2)
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reducing the amount of manual configuration by automating some configuration
decisions, and (3) reducing the complexity of manual configuration by assist-
ing the configuration engineers with the remainder of configuration decisions. In
Section 7, we analytically proved that configured products produced by our ap-
proach are guaranteed to be consistent. In this section, we empirically evaluate
the effectiveness of our approach in addressing the two last objectives. Further-
more, we evaluate the performance of our approach by measuring the response
time of the tool. In particular, we answer the following research questions:

RQ1 What percentage of configuration decisions can be automated us-
ing our approach?
Due to the interdependencies among configuration parameters, a portion of
configuration decisions can usually be derived from the previously made de-
cisions. By automating the derivation of these decisions, we can reduce the
configuration workload, therefore reducing the likelihood of making incon-
sistent configuration decisions. Assuming that the workload is proportional
to the number of manual configuration decisions, the answer to the first
research question indicates how much the configuration workload can be
reduced using our approach, therefore providing an insight into how our
approach addresses the second objective.

RQ2 How much do the valid domains shrink at each iteration of config-
uration (i.e., lines 5 through 11 of Algorithm 4)?
An answer to this question provides an insight into how much we can reduce
the complexity of decision making using the guidance that our approach
provides. Recall that in our approach, in each configuration iteration, we
present updated valid domains to the user as a form of guidance. The user
is always expected to configure a parameter by selecting a value from the
associated valid domain. The smaller the valid domains are (i.e., the fewer
options the user has), the easier it is to make a decision.

RQ3 How long does it take, on average, for the configuration tool to
complete the computation of one configuration iteration?
The above question measures the response time of our tool. Since our ap-
proach is interactive, its usability greatly depends on the amount of time
required to complete individual configuration iteration.

To answer these questions, we designed an experiment in which we used our
configuration tool to rebuild three verified configurations from our industry part-
ner that produces subsea oil production systems, as explained in Section 2. All
the three configurations belong to a representative product family in the domain
of subsea oil production systems. One configuration belongs to the environmental
stress screening (ESS) test of the SEM hardware, which we refer to in this section
as the ESS Test. This configuration does not represent a complete product. The
other two are the verified configurations of two complete products, which we re-
fer to in this section as Product_1 and Product_2. All the configurations were
created from scratch and by following a representative configuration scenario.
We logged all the configuration-state changes (i.e., inferences and valid domain
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recomputations) and execution times in each configuration iteration. A total of
4735 configuration iterations were performed to obtain the results reported in
the remainder of this section (i.e., in Sections 9.1 through 9.3).

We performed our experiments using the simplified generic model of the
subsea product family given in Section 3.1. The simplified model contains all the
main components and consistency rules of the actual product family, but does
not go into the details of all parameters of all components. However, it covers
most of the defined types of variabilities (the only variability type that is not
included is configurable type), and therefore, contains a representative subset of
the configurable parameters.

Table 5 summarizes the characteristics of the investigated configurations.
Numbers of devices, objects, and variables in Table 5 are calculated w.r.t. the
simplified model. Numbers of constraints are extracted from the constraint pro-
grams created by the configuration tool. More accurately, the numbers reported
in the last column of Table 5 are the numbers of binary constraints created
and used by the clpfd library of the SICStus Prolog. Note that the number
of constraints in the constraint program changes throughout the configuration
process. The numbers reported in Table 5 belong to a random configuration
iteration, close to the end of the configuration, with all the required objects
being instantiated. Table 6 reports the number of configurable parameters for
each distinct type of configurable parameters. These parameters are instances of
the configurable features in the simplified model of the reference architecture,
where we have one configurable attribute cardinality, two configurable decompo-
sition cardinalities, four configurable attributes, and one configurable topology.
As shown in Table 6, a considerably high portion of the configurable parameters
are configurable attributes and configurable topologies.

Table 5. Characteristics of the rebuilt configurations.
# XmasTrees # SEMs # Devices # Objects # Variables # Constraints

ESS Test 1 1 111 226 343 223
Product_1 9 18 453 1396 2830 9967
Product_2 14 28 854 2619 5307 37606

Note that the numbers reported in Table 5 and Table 6 would be an or-
der of magnitude larger if we had used a complete model. With the simplified
model, it took about half a person-week to rebuild the configurations of the three
examples. However, creating actual configurations takes several months and is,
normally, performed by a team of expert engineers.

Table 6. Distribution of the types of configurable parameters.
# AttributeCard. # DecompositionCard. # Attribute # Topology

ESS Test 1 5 226 111
Product_1 18 37 1869 906
Product_2 28 57 3514 1708
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In Sections 9.1-9.3 we report the evaluation and analysis that were performed
on the experiments to answer the research questions. At the end of this section,
we further discuss threats to the validity of our results.

9.1 Inference percentage

To answer the first question and identify the effectiveness of our approach in
reducing the configuration workload, we have defined an inference rate which is
equal to the number of inferred decisions (i.e., decisions automatically made by
the configuration tool) divided by the total number of configuration decisions:

inference rate =
inferences

manual_decisions+ inferences
(3)

Table 7 shows the inference rates for each rebuilt configuration.

Table 7. Inference rates.
# Manual decisions # Inferred decisions Inference rate (%)

ESS Test 373 16 4.11
Product_1 1459 1426 49.42
Product_2 2802 2783 49.82

Note that the inference rate for Product_1 and Product_2 is very close to
50 %. This is because of the structural symmetry that exists in the architec-
ture of the system. Structural symmetry is achieved in a product when two or
more components of the system have identical or similar configurations. We have
modeled the structural symmetries using two OCL constraints. One specifies
that each XmasTree has two SEMs (twin SEMs) with identical configurations
(i.e., identical number and types of electronic boards and devices connected to
them). The other specifies that all the XmasTrees in the system have similar
configurations (e.g., all have the same number and types of devices). The first
OCL constraint applies to both Product_1 and Product_2, while the second
applies to Product_2 only. Neither of the OCL constraints applies to the ESS
Test, which contains only one XmasTree and one SEM. Therefore, it shows a
very low inference rate. In general, the architecture of the product family, and
characteristics of the product itself (e.g., structural symmetry) can largely affect
the inference rate.

This experiment shows that our approach can automatically infer a large
number of consistent configuration decisions, especially for products with some
degree of structural symmetry. Assuming that configuration workload is pro-
portional to the number of manual assignments, our approach can reduce the
configuration workload by about 50 % in the case of Product_1 and Product_2.
Note that this reduction of workload is calculated with respect to cases where
no support for reuse of configuration data is provided. Yet, in practice, primitive
support for reuse is usually provided, through the copy-and-paste mechanism.
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However, without a gain model specifying the impact of copy-and-paste we can-
not compare our approach with the cases where the copy-and-paste mechanism
is used to reduce the configuration workload.

9.2 Reduction of valid domains

In large systems, engineers often fail to predict the impact of configuration as-
signments on other parameters. The larger the systems and the more interde-
pendent the parameters, the more difficult it is for the configuration engineers to
predict the implications of their decisions. Providing engineers with parameters’
valid domains after each configuration assignment helps them avoid assigning
inconsistent values to interdependent parameters, and hence, reduces the chance
of creating inconsistent configurations. Recall from Section 6 that the valid do-
mains are pruned after each value-assignment. By doing so, we force the user to
choose a value among the remaining valid options. Having to choose from fewer
options eases decision-making.

As part of our experiment, we measured how the domains shrink after each
constraint propagation step. Such reduction of the domains is measured by com-
paring the size of each pruned domain before and after constraint propagation.
Such a comparison is possible and meaningful because all the domains are finite.
Table 8 shows the average reduction of domains for each rebuilt configuration.
Reduction rate in the table is defined as the proportion of the reduction size
(i.e., number of distinct values removed from a domain during constraint prop-
agations) to the initial size of the domain (i.e., number of distinct values in a
domain before constraint propagation). Note that in certain cases, recalculation
and reduction of the valid domains may result in value inferences (i.e., when the
valid domain is reduced to only one valid value). In the calculations reported in
Table 8, we have not considered domain reductions that had resulted in value
inferences. Results reported in Table 8 show that the domains of variables can be
considerably reduced when a value is assigned to a dependent variable. Specifi-
cally, after each value-assignment step, on average, 37.98% of the values of the
dependent variables are invalidated. Without such a dynamic reduction of the
valid domains, there would be a higher risk for the user to make inconsistent
configuration decisions.

Comparing the reduction rates of the three examples reported in Table 8
shows that, as opposed to inference rate that is highly affected by structural
symmetry, reduction rate is independent from the structural symmetry of the
configured artifacts. More specifically, reduction rates for Product_1 and Prod-
uct_2, which have structural symmetry, is very close to that of ESS Test, which
does not have structural symmetry.

9.3 Response time analysis

The configuration solution presented in this paper is highly interactive. In each
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Table 8. Average shrinking of the domains.

Count* Avg. initial domain size Avg. reduction size Avg. reduction rate (%)
ESS Test 732 30.557 13.803 45.17
Product_1 2564 62.125 21.367 34.39
Product_2 7557 35.97 14.205 39.49

Avg. over all cases: 37.98
* total number of domains that have been pruned or reduced.
Avg.: the average over all reduced domains in the whole configuration.

Fig. 15. Constraint propagation time
grows quadratically with the number of
variables (with a coefficient of determi-
nation of 0.9994).

iteration, the user’s decision is validated
and its implications are identified and re-
ported to the user. Providing automa-
tion as part of such an interactive con-
figuration process requires the underly-
ing computation to be sufficiently effi-
cient for our approach to be practical.

We define the efficiency of our ap-
proach as the amount of time needed
for validating and propagating the user
decision in each iteration. For this pur-
pose, we have measured at each configu-
ration iteration the execution time (i.e.,
response time), and the number of vari-
ables in the constraint program. Figure 15 shows the average time required for
executing one configuration iteration. As shown in this figure, for products with
less than 1000 variables (each representing one configurable parameter), it takes,
on average, less than half a second to validate and propagate the decision. How-
ever, this time grows quadratically with the number of variables. It is difficult to
compare this result with similar approaches, because to the best of our knowledge
the few similar interactive configuration techniques that exist in the literature
(see Section 11) do not report on the relation between the response time and the
size of the system under configuration (e.g., the number of variables).

Response time measurements reported in Figure 15 suggest that with the
current implementation, we can support the configuration of systems with up
to a few thousand parameters. However, for some of the real-world applications,
where the number of variables can be in the tens of thousands, this quadratic
growth of the response time can make our approach inefficient and impractical.
In particular, we cannot expect the user to wait several minutes for the configu-
ration tool to validate and propagate a configuration decision. This inefficiency
is largely a drawback of our current implementation of the algorithms presented
in the paper. In particular, in the current implementation, we are not benefit-
ing from the on-the-fly capability of the constraint propagation technique. This
is because the Java interface that we use from SICStus Prolog does not sup-
port this capability, although it is implemented in the SICStus Prolog engine.
Since the main computation in each configuration iteration is the recalculation
of valid domains through constraint propagation, inefficient invocation of the
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constraint propagation technique drastically impacts the efficiency of our tool.
In the current implementation, after the value-assignment in each iteration, all
constraints in the constraint program are evaluated, regardless of their relevance
to the value-assignment8, to prune the domains. However, on-the-fly constraint
propagation results in the same pruning of the domains, by evaluating only
the relevant constraints, which are expected to form a very small portion9 of
the constraints in the constraint program. Therefore, the on-the-fly capability is
expected to considerably improve the efficiency of our tool. Improving the imple-
mentation of our prototype configuration tool, together with further evaluation
and analysis of the efficiency of our tool, are planned to be done in the next step
of our work.

10 Discussion

Our configuration approach, which consists of the SimPL modeling methodol-
ogy [7] and the configuration framework presented in this paper, aims to address
the configuration problems that we observed in the domain of integrated control
systems in collaboration with an industry partner. While the SimPL methodol-
ogy targets the ICS domain, the configuration framework is deemed to be more
generic, and applicable to all kinds of component-based systems. The current
implementation of our configuration framework supports only SimPL models,
making the framework applicable to ICSs only. However, our work can be ex-
tended (using appropriate transformation steps) to support other component-
based variability models, targeting other types of systems. Finally, even though
the current implementation is limited to the SimPL methodology and the ICS
domain, we don’t consider this to be a severe restriction since ICSs already
represent a large industry sector.

The SimPL methodology enables the creation of structural and variability
models for integrated control systems. As discussed in [7], SimPL models can as
well capture behavioral variabilities. However, we note that SimPL models are
meant to be used for architecture-level configuration, and are not intended to
support requirements- or implementation-level configuration as discussed in [52].
Furthermore, the SimPL methodology does not focus on the needs of other types
of software systems, such as data-intensive, networked, or web-based systems.

Since the configuration functionalities in our configuration framework are
based on the input reference architecture models, the quality of these models
drastically affects the effectiveness of the configuration framework. In particular,
using our configuration approach, one can only configure the variabilities that
are captured in the generic model of the product family. Similarly, the approach
8 As mentioned in Section 6.4, such a value-assignment results in adding a constraint
of the form ψ : x = tmp to the queue in the constraint propagation algorithm. As
shown in line 6 of Algorithm 2, constraints relevant to ψ are the ones that involve
variable x.

9 Calculating the exact percentage of the relevant constraints is not possible using our
current implementation.
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can validate the decisions and automatically infer decisions only based on the
dependencies that are captured in the model. For example, in our earlier work [9],
we showed that inference rate increases when we augment SimPL models with
additional rules capturing internal similarities. In contrast, we expect that for
incomplete models (e.g., models where some dependencies or rules are missing)
the quality of validation results and the guidance produced by the configuration
framework decreases, and the inference rate to be suboptimal. Therefore, in order
to maximize the benefits of using the configuration framework presented in this
paper it is crucial to provide high-quality and informative models. Providing
such high-quality models although costly, is considered beneficial [7], since such
models are created once for a family and then repeatedly used for configuring
product instances.

In Section 6.4, we provided an algorithm that uses a basic backtracking mech-
anism to ensure consistency and completeness of our approach. Backtracking can
negatively impact usability and performance of our algorithm. We note that in
our industrial case study we were able to configure products in a backtrack free
manner. We speculate that we can avoid backtracking during configuration by
configuring variables in a particular order. In addition, the backtracking mech-
anism presented in Section 6.4 can be improved in various ways. In particular,
several heuristics in the constraint solving community are proposed that attempt
to improve the performance of backtracking. Examples of these heuristics include
back jumping and no-good learning [23]. For example, in back jumping, upon
reaching an empty valid domain (e.g., line 15 in Algorithm 4), we do not return
to the parent in the search tree, but to an earlier ancestor. In no-good learning,
corresponding to each sequence of decisions that lead to an empty valid domain,
we record a new constraint that characterizes the inconsistent value assignments
and use that constraint to detect dead-ends earlier in the future. In future, we
plan to characterize the conditions under which backtracking is not used during
configuration, and for situations that backtracking is inevitable, we intend to
experiment with heuristics such as back jumping or no-good learning to improve
performance and usability of our tool. Finally, we note that the logic in Figure 12
does not include some OCL operators (e.g., transitive closure) that we did not
require in our configuration problem. In future, we plan to extend our logic and
our translation to handle these operators.

11 Related work

Configuration spans a number of domains including artificial intelligence (AI),
software product lines (SPL), and formal methods and notations. Below, we
compare our work with approaches proposed in each of these domains.

11.1 Configuration in the AI community

Configuration in the AI domain is defined as “the task of composing a customized
system out of generic components”[49]. This definition matches the notion of
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configuration defined by the SPL community as well as the one we defined in
this paper. Configuration has been a subject of the AI research between 1970
and 1990, where a whole spectrum of configuration problems, mostly related to
validation and optimization of configurations, have been studied. Configuration
solutions provided by the AI community are composed of a knowledge-base and
a reasoner. At an abstract level, knowledge-bases are essentially similar to our
reference architecture models, specifying generic components and configuration
constraints and preferences. The reasoner is a constraint solver that provides var-
ious functionalities (e.g., constraint propagation, consistency checking) to enable
consistency checking of the components and their configuration constraints, to
identify inconsistencies, and to optimize the consistent configurations for the
given preferences.

In contrast to our UML-based reference models, AI knowledge-bases are not
described in standard software engineering notations and languages. While we
provide a methodology to help domain experts build reference models, there are
no guidelines on how to create knowledge bases. In addition, the functionalities
provided by the AI configuration reasoners are not tailored to a specific domain,
and do not aim to particularly enable configuration use cases, such as interactive
guidance, that occur in software engineering applications. In contrast, our work
provides an interactive configuration solution aiming at assisting and guiding
the configuration engineer throughout the configuration process in the domain
of ICSs.

As noted in [45], many of the configuration solutions developed by the AI
community have not been taken up by industry. Although a solid analysis of
the contributing factors is not available, being general purpose solutions and
lacking industrial case reports are deemed to be the main reasons for the industry
not to adopt the solutions developed by the AI community. Recent research on
configuration (performed by the SPL and the software engineering community)
attempts to alleviate this shortcoming by developing domain-specific solutions
to improve efficiency and usability [45].

11.2 Configuration in the SPL community

Since 1976, when the idea of software product families was described by Par-
nas [43], many approaches have been proposed for modeling product families
and configuring them. Product families are typically modeled and configured ei-
ther at the feature or requirements level, or at the architecture and design level.
In this paper, we presented an approach for architecture-level configuration of
ICS families. Below, we first compare feature-level and architecture-level config-
uration approaches. We, then, focus on existing architecture-level configuration
solutions to compare them with our work.

11.2.1 Feature-level versus architecture-level configuration
Feature diagrams [35] and their variants [36, 26, 27, 19] have been extensively
used for modeling and configuration in product line engineering. These diagrams
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provide simple means for capturing the variabilities specified at the feature-level.
Schobbens et. al. [50, 51, 30, 11] studied the notable variants of feature diagrams
and showed that these variants (namely, [36, 26, 27, 19]) are equally expressive.
Specifically, all these variants can be represented in terms of a generic abstract
syntax proposed in [50, 51, 30, 11]. Feature-level configuration [12], consistency
checking of configurations at the feature level [22], and interactive configuration
of feature diagrams [5, 33] have been previously studied in the literature for a
number of feature diagrams variants.

Feature models, however, are not easily amenable to the architecture-level
configuration of ICS families, for which more expressive abstractions (i.e., archite-
cture-level specifications of product families) are needed. In particular, the ex-
isting abstractions in feature models fall short in two ways if they were to be
used in architecture-level configuration: (1) Feature diagrams support boolean
types only, and (2) features and subtrees in a feature tree cannot be instanti-
ated or cloned during configuration. To better illustrate these two shortcomings
consider the following: Using the formalisms provided by Schobbens et. al., one
can create a constraint program, similar to the one in Section 6, for a feature
diagram. Suppose cp be the constraint program created from a sample feature
diagram, and suppose cp′ be a constraint program created for a sample reference
architecture as discussed in Section 6. These constraint programs are different in
two ways. First, all the variables in cp are boolean variables, while variables in
cp′ take their values from finite-domains where variables can take more than two
values. Second, the constraint program cp has a fixed size, while the constraint
program cp′ grows during the configuration. More specifically, as discussed in
Section 6, during the configuration of a product in our approach, new variables
and new constraints may be added to the constraint program cp′ and new values
may be added to some of its domains. In the case of feature diagrams, however,
the variables and the constraints in the constraint program do not change during
the configuration. These differences highlight the challenges of architecture-level
configuration compared to feature-level configuration. We have discussed in Sec-
tions 6 and 7, how we address these challenges in our semi-automated approach
to configuration.

11.2.2 Modeling and configuration at architecture level
In order to capture the complex concepts related to the architecture-level config-
uration, various extensions to feature models have been proposed, most notably
addition of feature cardinalities [18], group cardinalities [48], and feature dia-
gram references and attributes [18]. These extensions are integrated into a more
expressive feature modeling notation in [20]. We refer to this integrated notation
as the extended feature modeling notation, which is known to be as expressive
as UML class diagrams [22, 53]. Extended feature models can be combined with
OCL constraints or similar constraint modeling languages to form product-family
modeling languages that are as expressive as the SimPL methodology.

Extended feature models have been used as a basis for developing a wide
range of configuration approaches (e.g., [28, 31, 41, 42, 54, 56]) focusing on various
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configuration requirements, ranging from validation and consistency checking to
configuration scheduling. The closest work to ours are the approaches proposed
by Myllärniemi et. al. in [42] and by Mazo et. al. in [41] where architecture-
level configuration is enabled via extended feature models, and consistency of
the configuration results is ensured using constraint solvers over finite domains.
These approaches however differ from ours in the following aspects: (1) they
do not allow configuration-time cloning of features – which is identical to the
configuration-time creation of components and configurable parameters in our
approach (see Section 5.1), and (2) they don’t support the verification and the
analysis of complex constraints such as those in Section 3.1. Furthermore, the
notion of interactive configuration is missing from the approach proposed by
Mazo et. al. [41].

The idea of interactive configuration – where implications of user decisions are
propagated to avoid incorrect choices – has been previously proposed for original
feature models in [5, 33], and for extended feature models in [28, 54, 42]. Similar
to our work, all these approaches use constraint satisfaction techniques to en-
able interactive configuration. However, none of these approaches have addressed
the configuration-time creation of new instances (i.e., components, connections,
and parameters), its challenges, and its impacts on interactive configuration. In
our approach, we have proposed three types of cardinality features to enable
configuration-time creation of components, connections between components,
and parameters within the context of existing components (see Sections 5.1, and
6.2). Moreover, we have specified how constraint propagation can be applied to
determine and propagate the implications of configuration-time creation of new
instances.

In [31], Hubaux presents feature-based configuration, which addresses the is-
sue of multi-view multi-stage configuration. The goal is to enable collaborative
configuration. For this purpose, views are defined over feature models to estab-
lish insulated spaces in which users can safely configure the part of a feature
model assigned to them. The approach of [31] further resolves inconsistencies
by computing a set of resolutions when a configuration constraint is violated. In
our work, however, constraint violations are prevented by interactively guiding
the user during the configuration process.

11.3 Formalizing the notion of configuration

An important contribution of this paper is the formalism that we presented in
Section 4. Similar formalisms can be found in the literature. In particular, ex-
tended feature models and their configuration are formalized in a number of ways
(e.g, using grammars [21], and higher-order logic [34]). None of these, however,
discuss consistency of the configuration results. Another formalism is presented
in [31], where a rigorous formal semantic for extended feature models and the
notion of consistency is provided. This formalization focuses on the notion of
multi-view staged configuration and the feature-based configuration workflow.
In our approach, however, we emphasize on the interactive and iterative nature
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of architecture-level configuration, and further, describe how the configuration
state changes as a result of configuring each type of configurable parameter.

Another related line of work addresses the formalization of UML and OCL
(e.g., [47, 38]). In particular, Richters [47] provides an extensive and exhaustive
formal semantic for the most-commonly used (if not all) UML constructs. The
formalization given in [47] focuses on validating UML/OCL models. Although
this formalization is precise and comprehensive, it lacks explicit variability mod-
eling semantics for defining configurable elements. Note that the SimPL method-
ology extends UML by adding to it essential concepts for variability modeling.
Therefore, we chose to base our definitions and proofs on a new formalization
(presented in Section 4) that is more amenable to defining configuration logic
and configuration consistency.

12 Conclusion and future work

In this paper, we proposed a model-based and semi-automated approach for
architecture-level configuration of product-families in the integrated control sys-
tems (ICS) domain. Our configuration solution uses a model of the product
family’s reference architecture and constraint satisfaction techniques over finite
domains to provide automation support. The automation support has two major
properties: (1) it ensures the consistency of configured products with respect to
the input model of the product family’s reference architecture, and (2) it reduces
configuration effort and complexity of decision making.

We used analytical techniques to prove the first property. In particular, we
have presented and formalized the notions of reference architecture, architecture-
level configuration, and consistency in our context. A linear-time mapping for
casting a configuration problem to a constraint program is provided to precisely
describe how constraint propagation over finite domains can be used to ensure
the consistency of the configured products. Moreover, we proved that, given a
consistent product-line model, our iterative configuration algorithm terminates
and can always generate a complete and consistent product.

To show the second property of our configuration solution, we implemented a
prototype configuration tool and used it to empirically evaluate our approach. We
designed an experiment where we rebuilt three verified configurations of a family
of subsea oil production systems to evaluate three important practical factors:
(1) reducing configuration effort by inferring configuration decisions, (2) reducing
possibility of human errors by reducing the complexity of decision making, and
(3) scalability. Our evaluation showed that, in our three example configurations,
our approach (1) can automatically infer up to 50% of the configuration decisions,
(2) can reduce the size of the valid domains of the configurable parameters by
40%, and (3) can evaluate each configuration decision in less than 9 seconds.

While our preliminary evaluations demonstrate the correctness and effective-
ness of our approach, the value of our tool is likely to depend on its scalability
to very large and complex product families. In particular, being an interactive
tool, its usability and adoption will very much depend on how fast it can vali-
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date configuration decisions and determine their implications in each iteration.
Our analysis shows that in our current implementation the propagation time
grows polynomially with the size of the product. In future, we will improve our
implementation to reduce the propagation time and to improve the scalability
of our configuration tool.

The configuration approach presented in this paper does not allow any in-
consistencies. In general, however, having some tolerance against conflicts and
inconsistencies would be useful. Providing scalable solutions that can be applica-
ble in our context (where normally tens of thousands of variables are configured)
is another direction for future work. In addition, we will perform more exper-
iments by applying our approach to build more configurations, and we will do
this for various product families developed at our industry partner.
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