
Congestion Management in

Lossless Interconnection Networks

Ernst Gunnar Gran

Doctoral Dissertation

Submitted to

the Faculty of Mathematics and Natural Sciences

at the University of Oslo in partial fulfillment

of the requirements for the degree

Philosophiae Doctor

September 2013

© Ernst Gunnar Gran, 2014

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1462

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Akademika Publishing.
The thesis is produced by Akademika Publishing merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

In supercomputers and modern data center clusters lossless interconnection networks are

frequently used to achieve high throughput and low latency. It has been known for three

decades however, that congestion and congestion spreading in such networks can lead

to severe performance degradation if no countermeasure is taken. Nevertheless, for a

long time, the challenges related to network-wide congestion in lossless interconnection

networks received little attention. A combination of tuning and tailoring of network char-

acteristics for a given application, together with overprovisioning of network resources,

kept congestion and congestion spreading from occurring in practice. To be able to dy-

namically manage congestion was then not really needed.

During the last decade, however, we have seen a renewed interest in congestion man-

agement for lossless interconnection networks. The use of virtualization together with

an increased focus on cost-efficient green computing have spawned a desire to operate

networks with dynamic and unpredictable traffic patterns closer to saturation. As such,

proper congestion management is needed. In this thesis, we study congestion manage-

ment in lossless interconnection networks in general, while giving special attention to the

congestion control mechanism specified for InfiniBand, currently one of the most popular

interconnection network standards. The contributions of the thesis include guidelines on

how to implement congestion detection in switches facilitating injection throttling at the

source nodes to avoid unfair treatment of contributors to congestion; an exploration of

the rich InfiniBand congestion control parameter space and the corresponding influence on

the performance of the congestion control mechanism; a study of the scope of an injection

throttling based congestion management mechanism, like the one specified for InfiniBand;

an abstract classification scheme for congestion trees of varying degree of dynamics; and

finally, two novel congestion management mechanisms for input buffered switches and

switches utilizing virtual output queuing, respectively, to overcome the weaknesses of

current congestion management mechanisms based on injection throttling or hot-flow dy-

namic isolation.

Acknowledgements

First and foremost I would like to thank my three supervisors Olav Lysne, Tor Skeie

and Sven-Arne Reinemo for their support, guidance and inspiration throughout the work

related to this thesis, and for the numerous fruitful discussions we have had. In addition,

I would in particular like to thank Olav for always believing in me and for giving me the

opportunity to pursue a Ph.D. at Simula Research Laboratory; Tor for his never ending,

encouraging enthusiasm for my work; and Sven-Arne for his precious and conscientious

day-to-day supervision.

Next, I would like to thank my coauthors of the papers constituting the scientific

work of this thesis. In addition to my supervisors, this includes Magne Eimot, Lars Paul

Huse, Gilad Shainer, Eitan Zahavi, and, last but not least, my Spanish collaborators and

friends José Duato, Jesús Escudero-Sahuquillo, José Flich, Pedro J. Garćıa, and Francisco

J. Quiles. Furthermore, I thank the HPC Advisory Council, Mellanox Technologies and

the Oracle division in Norway (previously part of Sun Microsystems) for their support.

Many thanks are also due to my former and current coworkers at Simula Research

Laboratory, and in particular the people at the Network Systems department, for a pleas-

ant and inspiring working environment. It is dangerous to start mentioning names, and

certainly a bit unfair, but still I feel the need to acknowledge three persons in particular:

A huge thank you goes to Wei Lin Guay for being a one of a kind fellow Ph.D. student. His

blissful optimism and humble personality turned the late evenings and nights we shared

working hard to meet common deadlines into memorable moments, and the trip we made

to Los Angeles and the CCGrid conference will forever stay in my book of favorite memo-

ries. A special thank you also goes to Ahmed Elmokashfi for the numerous discussions we

have had on subjects totally irrelevant to our work, and for a countless number of friendly

hugs. Thomas Dreibholz, I take off my hat to the dedication he shows in every aspect of

his work, to his admirable work capacity, and to the level of detail of which he reviewed

this thesis, a thesis written on a subject outside of his field of expertise.

Finally, I would like to thank my whole family for the endless support they have shown

during my years as a Ph.D. student. In particular, I would like to thank my parents, Maja

and Lasse, for their warm and unconditional love; My extraordinary sisters, Kari, Trine

and Marte, for cheering me up and carrying me forward; My beloved wife, Gunn Marit,

for showing patience out of this world; and last, but maybe most of all, my two dearly

loved sons, Isak and Jakob, for constantly reminding me of God’s grace. You are the joy

of my life!

Contents

Prologue 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research Methods . 8

1.3 Thesis Outline . 10

2 Background 13

2.1 Interconnection Networks . 13

2.1.1 The Basic Building Blocks . 13

2.1.2 Topologies . 14

2.1.3 Routing . 17

2.1.4 Switching and Flow Control . 19

2.2 Congestion in Lossless Networks . 23

2.3 Congestion Management . 28

2.3.1 Flow Isolation Strategies . 31

2.3.2 Injection Throttling Based Congestion Management 35

3 Summary of Research Papers 41

3.1 Paper I: InfiniBand Congestion Control, Modelling and Validation 43

3.2 Paper II: On the Relation Between Congestion Control, Switch Arbitration

and Fairness . 43

3.3 Paper III: First Experiences with Congestion Control in InfiniBand Hardware 44

3.4 Paper IV: Exploring the Scope of the InfiniBand Congestion Control Mech-

anism . 45

3.5 Paper V: Combining Congested-Flow Isolation and Injection Throttling in

HPC Interconnection Networks . 46

3.6 Paper VI: Efficient and Cost-Effective Hybrid Congestion Control for HPC

Interconnection Networks . 47

3.7 Future Work . 48

Bibliography 50

List of Appendices 59

VII

Prologue

Here I am, stuck, in my car, on the highway, in a traffic jam. I’m surrounded by cars

without knowing exactly why we’re not moving at all. Although it doesn’t actually matter,

I can’t help but start guessing. What’s going on further down the road, causing this traffic

jam? Are they doing some construction work on the road? Has there been an accident?

Maybe we’re just talking about an overloaded road or an inefficient intersection? There

is no news on the radio. They did mention something about a large pop concert earlier

today, though, didn’t they? Well, anyway, I’m here, I’m stuck, and I’ll have to wait like

everyone else for my fair share of the resource we’re all requesting, the road.

One thing strikes me, though, as I’m waiting. No matter the cause of this traffic jam,

I know for sure that I will never request the resources at the location actually originating

the problem. I’ll never pass the spot down the road being the root of the congestion. How

can I be sure about this? Well, the thing is, I can actually see my exit road just a few

hundred meters away, and it’s free! There are no cars over there, but it doesn’t really

matter, does it? I’ll still have to wait as I’m blocked by these other cars. I’m trapped.

This fact makes my situation less comfortable. The cars surrounding me, blocking my

path, are doing so even though they are actually waiting for a resource I do not want. How

annoying! I am an innocent victim of the congestion! In addition, being blocked, I block

others, and by that, I add to the problem! I’ve ended up contributing to a congestion

originally created by others, and the net result is what seems to be an unneeded waste

of resources; time, money, fuel, the road, the environment. The performance of the road

has gone belly up. Can’t we do better than this? Can’t we find a better way of utilizing

the roads, beneficial for all, a way where cars requesting a given resource are not being

blocked by cars waiting for other, distinct, resources?

1

Chapter 1

Introduction

Data networks come in all shapes and sizes. They have truly become ubiquitous, ranging

in size from the on-chip network inside the CPU of a quad core mobile phone resting in the

palm of your hand, to our precious Internet connecting autonomous networks all over the

world into a single global arena of digital communication. The networks are everywhere.

The characteristics of different types of networks, however, vary vastly, depending on

the area of application, where the disruptive nature of a mobile ad-hoc network stands

in stark contrast to the lossless high performance interconnection network we find in a

supercomputer or in a modern data center. The latter type of network is the subject of

this thesis, and in particular the management of traffic in such a network during “rush

hours” to avoid “traffic jams”.

1.1 Motivation

Strictly speaking, the term interconnection network may refer to any infrastructure that

allows distributed digital units to communicate [1, 2]. In this thesis, however, the term

interconnection network, or just network, should refer to the type of network that typi-

cally serves as the shared communication infrastructure in a High Performance Comput-

ing (HPC) supercomputer or a modern data center (e.g. facilitating cloud computing). To

achieve the high throughput and low latency required by a HPC or data center application,

it is beneficial to apply a lossless interconnection network. Contrary to a lossy network,

where forwarding nodes inside the network are allowed to drop data if they receive data

faster than what they are able to forward, a lossless network is not allowed to drop data

during regular operation. Dropping data is considered to be too expensive and inefficient,

both in terms of the wasted resources use by data that is later dropped, as well as the

potential addition in communication latency experienced by an application as data has

to be retransmitted. The lossless nature of an interconnection network, however, comes

at a cost. While it potentially improves the performance of the network by increasing the

utilization of the shared network resources, it comes with its own set of challenges and

pitfalls.

Lossless behavior in an interconnection network is typically achieved using a link-level

flow control mechanism. By means of the flow control mechanism, a forwarding node will

3

4 Introduction

make sure not to forward any data to another node unless this other node has buffer space

available to receive it. While this simple idea ensures that no data will be lost due to buffer

overflow inside the network, the mechanism at the same time allows for saturation at one

forwarding node to spread to others, and by that, congest a part of the network. As a node

runs out of buffer space, other surrounding nodes will not be allowed to forward traffic to

it. This could obviously have the effect that the buffers inside these surrounding nodes

also start to fill up, and, as they become full, further block other surrounding nodes again.

This backpressure effect of the flow control mechanism leads to congestion spreading in

the network, where a growing tree of buffer occupancies blocks an increasingly larger part

of the network as the branches of the tree stretch towards the data sources contributing

to congestion. The phenomenon is the same as the one most of us unfortunately have

experienced out in the streets, driving a car. Due to an accident, construction work, or

maybe just a narrow road or an intersection being a bottleneck during rush hours, traffic

starts to pile up in one area of the road, and then quickly spreads to other parts, blocking

an increasing numbers of cars as the phenomenon develops. A traffic jam is created. To

keep the backpressure effect of the flow control mechanism in a lossless interconnection

network from creating a similar traffic jam in our network, a traffic jam that hampers

overall network performance, congestion management1 is needed.

Previous Congestion Management

The negative consequences of congestion and congestion spreading in lossless intercon-

nection networks was first identified and expressed by Pfister and Norton in 1985 [3].

They showed that the network performance might collapse in such a network if no coun-

termeasure is taken against congestion. While this discovery immediately spawned quite

some efforts to solve the challenges of congestion spreading in interconnection networks,

the efforts soon died out due to the fact that congestion seemed to be less of a prob-

lem in practice. The reason was twofold: Interconnection networks were usually over-

provisioned, or they were configured and tailored for the specific application the network

was to support at a given time. Under such circumstances, any presence of congestion

was considered to be a system bug rather than a general interconnection network design

challenge. As a consequence, congestion management during the nineteen nineties and

the beginning of the new millennium primarily consisted of congestion avoidance through

over-provisioning and network tailoring. The world is changing, however, and these two

congestion avoidance techniques are, as elaborated on in the following sections, about to

become obsolete.

The major problem with over-provisioning is the lack of scalability. As Moore’s law [4]

is being challenged by the laws of nature, further growth in compute performance has

to be achieved through added parallelism. Note then, that as the number of compute

nodes is increased to add parallelism, a correspondingly decreasing fraction of each node’s

traffic is needed to create congestion in the network. Add to this the fact that the

number of CPUs, cores and threads running at each node increases concurrently, and

it becomes clear that the degree of over-provisioning has to increase together with the

1In the literature the terms congestion control and congestion management are used interchangeably.

1.1 Motivation 5

added parallelism to ensure that congestion does not occur. Even though the advances

in processor, memory and I/O technologies are held back by the laws of nature, so is

the case for the interconnection network technology itself, where the speed of light is

the most obvious limiting factor when moving data in the network. Furthermore, the

exchange of larger and more sophisticated data structures like XML-based messages, or

the transfer of complete virtual disk images between nodes in the network, increases the

bandwidth requirements even further. All together, the increasing bandwidth requirement

makes over-provisioning of the network an unsuited congestion management mechanism

for current and future interconnection networks.

For network tailoring to work as a congestion avoidance technique, the requirements

of the running application or algorithm, and the corresponding traffic pattern produced,

needs to be known in advance. Then, the network administrator may alleviate the neg-

ative consequences of congestion (if possible) by doing efficient load balancing of traffic

in the network. While information about the traffic pattern previously was readily avail-

able as a machine or cluster typically was running only a single well-known application

or algorithm at a time, virtualization changes this dramatically. Using virtualization, a

machine or cluster typically runs a dynamic set of concurrent applications and algorithms.

The traffic pattern in the network at any given time then becomes an overlay of several

applications’ and algorithms’ patterns, depending on what applications and algorithms

that are currently active, and where in the network they run. In addition, the virtual-

ization software, and the administration of it, may itself use the network. All in all, it

becomes extremely hard, if at all possible, to predict the traffic pattern while utilizing

virtualization, and by that, network tailoring becomes invalid as a congestion avoidance

technique.

Economically Efficient Green Computing

The environmental challenges facing the world, together with the economic slowdown in-

fluencing especially the western society, have lead to an increased focus on economically

efficient green computing. A necessity in this respect is to be able to fully utilize both

the compute nodes and the interconnection network in an HPC installation or modern

data center. Better utilization of the compute (or I/O) nodes can be achieved through

virtualization as it allows applications and algorithms to share common hardware in an

efficient and safe way, while better utilization of the interconnection network means run-

ning the network closer to saturation. Notice that this directly contradicts the two be-

fore mentioned congestion avoidance techniques, over-provisioning and network tailoring.

Over-provisioning the network not only increases the explicit costs of additional hard-

ware, or cost of hardware with greater capacity, to provide the over-provisioning itself,

but it is also likely to increase hidden costs in terms of additional space for hardware, sup-

plementary cooling needed, greater power consumption, and so on. On the other hand,

the dynamic and unpredictable traffic patterns resulting from virtualization, hampers the

possibility to do network tailoring. To be able to realize economically efficient green com-

puting in HPC installations and modern data centers, proper congestion management in

the interconnection network is needed.

6 Introduction

Research Challenges and Problem Statements

Due to the focus on economically efficient green computing, the last decade has slowly

rekindled an interest for congestion management in lossless interconnection networks –

both in the research community as well as in the industry. Contributions resulting from

this increased interest will be further described and elaborated on in chapter 2.3, contain-

ing a review of congestion management in general. One major industrial event, however,

was the extension of the InfiniBand [5] specification to include an appendix detailing sup-

port for congestion management, or congestion control as it is named in the context of

InfiniBand.

InfiniBand (IB) is currently one of the most popular interconnection network stan-

dards in the world. Referring to the top 500 list [6], a list being updated every half a year

containing the most powerful HPC supercomputers in the world, 52% of the top 100 su-

percomputers are based on IB technology (November 2012)2. The congestion control (CC)

mechanism of IB is based on a closed-loop feedback control system, where a forwarding

node detecting congestion inside the network is responsible for informing all nodes in-

jecting traffic contributing to the congestion about the situation. These contributors to

congestion are then expected to lower their injection rate of the corresponding traffic flows

to remove the congestion. It is important, though, that this injection throttling is just

sufficient to remove the congestion, and not too aggressive as it could leave the resources

at the root of the congestion idle. If these resources, originally causing the congestion, are

left idle, the result is an underutilization of highly sought-after network resources, which

again could have a dramatic negative impact on overall network performance.

The exact behavior of the IB CC mechanism depends on the values of a set of CC

parameters. These parameters determine characteristics like how aggressive the congestion

detection should be, the rate of feedback from the forwarding node detecting congestion to

the contributors of congestion, and then by how much and for how long the contributors

should lower their corresponding injection rates. While the set of CC parameters adds

flexibility to the IB CC mechanism, the IB CC specification gives no or little guidance

on how to set the parameter values for the CC mechanisms to be efficient. Therefore,

knowledge is needed on how to use the parameters, what effect the individual parameters

have on network performance, and how they relate to each other. Furthermore, the IB CC

specification leaves a lot of freedom to the hardware designer and manufacturer when it

comes to exactly how congestion should be detected at a forwarding node. It is important

that care is taken to make sure all contributors to congestion are treated in a fair manner,

i.e. that the throttling initiated by the CC mechanism ensures that the contributors all

get their fair share of the scarce resources at the root of the congestion. We are now ready

to state our first two research questions (RQs):

RQ1: How can the IB CC parameters be tuned to ensure efficient behavior of

the IB CC mechanism for a given scenario, and how do different parameters

impact the network performance?

2The second place is held by Cray Interconnect [7], accounting for 10% of the top 100 supercomputers,
while 29% of the installations are based on custom-made interconnection networks.

1.1 Motivation 7

RQ2: How should congestion detection and notification be carried out at a

forwarding node implementing an injection throttling based congestion man-

agement mechanism, like IB CC, to ensure fair treatment of the contributors

to congestion?

Any injection throttling based congestion management mechanism has a major chal-

lenge: No matter how efficient and clever the congestion detection at a forwarding node

is, it is an indisputable fact that it will take time from congestion is detected until the

contributors of congestion have been notified about the situation. Then, even more time

will pass by before the effect of any changes in injection rates at the contributors reaches

the location in the network originating the problem, the current hotspot. Even if we were

able to bypass the laws of nature, and instantly notify the contributors of congestion, there

are likely to be flows of traffic already on the way between the contributors to congestion

and the hotspot. As such, an injection throttling based congestion management mecha-

nism is bound to operate behind schedule, basing the injection rate adjustments on data

reflecting a previous state of the network. This fact has spawned questions and doubts

related to the possible success of any injection throttling based congestion management

technique in general, and the IB CC mechanism in particular. This challenge gives raise

to our third research question:

RQ3: What is the scope of an injection throttling based congestion management

mechanism like IB CC, and how does such a mechanism behave depending on

traffic dynamics in the network and the lifetime of the hotspots, and in the case

of IB CC, how robust are the IB CC parameters with respect to such changing

traffic dynamics?

To overcome the limitations imposed on reaction time by the closed-loop feedback

control system of an injection throttling based congestion management mechanism, action

needs to be taken immediately and locally at the root of congestion as soon the congestion

is detected. This local action at a forwarding node needs to make sure any negative effects

caused by the congestion are neutralized while the forwarding node waits for the throttling

based mechanism to take effect. As such, the local and immediate action could be of a

temporary nature. Our fourth research question seeks to cover the general limitation of

injection throttling based congestion management:

RQ4: How can we extend a throttling based congestion management mecha-

nism, like IB CC, to overcome the challenges imposed by the feedback control

loop by taking immediate local action at a forwarding node, while we wait for

the throttling mechanism to have effect?

These four research questions, RQ1 to RQ4, will be addressed throughout this thesis.

To answer the questions, the conducted research has included analyses of IB CC perfor-

mance measurements from carefully designed network experiments, in-depth analyses of

congestion management and IB CC based on network simulations, and finally the design

and implementation of new and improved congestion management mechanisms, evaluated

using network simulations. The two research methods experiments and simulations will

be further described in the next section.

8 Introduction

1.2 Research Methods

In the field of network research, when studying for example the characteristics of a network

phenomenon, comparing different network configurations, or evaluating a new network

technology, four research methods are commonly being used: empirical measurement,

analytical modeling, experiments, and simulations [8, 9]. Which method, or combination

of methods, that is applicable for a given scenario depends on the research questions being

addressed and the availability of resources (e.g. existence of hardware with the required

functionality). The following subsections will give a brief introduction to the four research

methods in the context of network research, and give reasons for our choice of methods;

experiment and simulation.

The idea behind empirical measurement is to gain knowledge about an existing network

through observation, without affecting the network or controlling its behavior. As such,

this research method is well suited to study and explore phenomena in a live network

like the Internet. While it might be challenging to collect the desired information in

an accurate way in a live system, and care needs to be taken to correctly analyze the

collected data, the validity of the underlying observed system itself is unquestionable. The

researcher is observing “the real world”, and not e.g. a simplified abstract or theoretical

model of it. Empirical measurement, however, is an option only if a network suitable to

address the research questions at hand is available. In particular, this is generally not the

case when the aim of the research is to reveal and validate new design principles (RQ2)

or develop and evaluate a new network technology like a novel congestion management

mechanism (RQ4). In addition, empirical measurement implies little or no control over the

network and its characteristics. When it is desirable to control a network while studying

it, e.g. to study the performance of an IB network as a function of IB CC parameter

values (RQ1) or the performance of an injection throttling based congestion management

mechanism as the traffic dynamics increases (RQ3), experiment is a more suitable research

method.

The first step in analytical modeling is to map the subject of research to a mathe-

matical or statistical model. Then, the model is analyzed using logical reasoning and

mathematical tools to acquire new knowledge about the subject. In network research,

analytical modeling provides a powerful tool in situations where available methods from

network calculus [10], queuing theory [11] and control theory [12] can accurately capture

the relevant aspects of a network. The complexity of the analytics increases rapidly, how-

ever, as the model of the network becomes more advance and detailed. To overcome the

growth in complexity, a simplification of the model, including the introduction of new

assumptions about the underlying network, could be needed to make the corresponding

analysis manageable. Such a devaluation of the analytical model will challenge the use-

fulness of the analytical results, though, and by that influence the applicability of the

analytical model itself. To address the research questions of this thesis, the level of detail

required to capture all relevant aspects of congestion management in a network was con-

sidered to make an analytical model too complex to be manageable using the available

set of analytical tools. As such, analytical modeling is not a viable option for our studies.

An experiment is an empirical measurement carried out in a controlled environment.

1.2 Research Methods 9

By controlling the environment, it becomes possible to repeat an experiment while chang-

ing only a subset of the experiment’s parameters, e.g. the parameters being subject for

research, and monitor the corresponding effect of the parameter change. In our case,

this translates into running experiments in a physical network to study the change in

network performance and network behavior as network characteristics and network pa-

rameters, like IB CC parameter values, are changed. As such, experiments are well suited

to address both RQ1 and RQ3. Again, however, adequate hardware and software, im-

plementing the functionality required to run the experiment, needs to be available. To

address RQ1, it was through the HPC Advisory Council3 possible to get hold of hardware

and software with preliminary support for IB CC. Using this equipment, experiments were

run and RQ1 addressed in Paper III4 [13]. To address RQ3, on the other hand, the small

IB network used to address RQ1 is inadequate. A larger network is needed to study the

scope of an injection throttling based congestion management mechanism in a realistic

manner. At the time the research addressing RQ3 was conducted, no such feasibly sized

IB CC capable network was available, and as such, experiment was rendered invalid as a

research method5. Therefore, simulation was picked as the reseach method of choice to

address RQ3.

As with analytical modeling, the first step when using simulation as a research method

is to create a model of the subject of research. Instead of defining a purely mathematical

or statistical model, however, an abstract model is designed and mirrored in software.

This model seeks to capture all relevant characteristics of the subject of study, includ-

ing functional relations, to allow the execution of the software, the simulation itself, to

represent the behavior of the model over time. The simulation is then used to draw

conclusions about the subject being researched. In the case of computer networks, this

translates into mapping all relevant network entities in software, including the interaction

between the entities, and then study the simulation as an imitation of a corresponding

physical6 network. The software executing the simulation is commonly referred to as a

network simulator.

The main strength of network simulation is tied to the abstract model’s independence

from available hardware, both with respect to functionality as well as quantity; simulation

makes it possible to study functionality yet not implemented in hardware, and in a flexible

way create network configurations that otherwise would not be available to the researcher.

Even though using simulation often implies a development phase to implement the needed

functionality into the network simulator, this phase is generally both faster and cheaper

than it would be to implement the same functionality in hardware. Furthermore, the sim-

3http://www.hpcadvisorycouncil.com/
4A list of the six research papers written as part of this thesis is included at the end of this chapter.
5Software stack support for CC in IB has later been included in the Open Fabrics Enterprise Dis-

tribution (OFED) [14], and as such, IB CC has in theory been made more available. However, as a
large IB installation with hardware support for CC is still an expensive and highly precious resource for
the relatively few owners of such installations, experiment has remained a theoretical, but not practical,
option. Nevertheless, at the time of writing this thesis, access to a large CC-capable IB installation was
still pursued to further extend the study later presented in this thesis to address RQ3.

6The network being studied does not necessarily have to be physical, as virtual networks like an overlay
network could also successfully be studied through simulation. In this thesis, however, we are concerned
about physical networks.

10 Introduction

ulator itself can often be used to automatically repeat several simulations using different

network configurations. The main challenge of network simulation is to make sure all

relevant aspects of the network of study have been captured by the abstract model being

used, and that the model is correctly implemented by the simulator. To make sure that

the executed simulations provide a trustworthy source of information, great effort needs

to be spent to ensure the validity of the simulator. In addition, as the execution time and

memory requirements of the simulator is a function of the abstract model’s complexity,

the researcher, when implementing the model, could be challenged by a trade-off between

simulation accuracy and resource usage. In such situations, additional care needs to be

taken to avoid disrupting the validity of the simulator.

Within network research, discrete event simulation [15, 16] (DES) has gained wide-

spread use. Using DES, the operation of a network, or the subset of it being studied, is

imitated as a sequence of discrete events in time, where each event represents a change

of state in the model representing the network. Between consecutive events, no change

of state occurs, and as such the simulation progress in time by handling the sequence

of events7. The granularity of the division of time associated with the discrete events,

together with the level of detail of the abstract model, determines the overall precision of

the DES.

To address RQ2, RQ3 and RQ4, two discrete event-based simulators have been used.

To accurately capture all the characteristics of IB CC, including the IB CC parameters,

a high-precision IB CC simulator was developed, based on a publicly available IB model

implemented in the OMNeT++ framework [17]. A description of the IB CC simulator,

as well as a validation of it, is given in Paper I [18]. The IB CC simulator is used

to address RQ2 and RQ3. In addition, the key elements of an injection throttling based

congestion management mechanism was implemented8, in part by porting from the IB CC

simulator, into a C++ based custom-made network simulator, the INASim, developed at

the Department of Computing Systems at the University of Castilla-La Mancha, Spain.

Even though no separate paper has been written on the subject, this C++ based simulator

has undergone a validation similar to the one described in [18]. The INASim simulator

is used to address RQ4.

1.3 Thesis Outline

This thesis is divided into two parts. The first part consists of three chapters: chapter 1,

Introduction (this chapter); chapter 2, Background; and chapter 3, Summary of Research

Papers. Chapter 2 starts with a brief introduction to interconnection networks, and

continues with a detailed discussion of congestion and congestion management in such

networks, including a description of IB CC. Chapter 3 consists of extended abstracts of

the 6 research papers written as part of the work with this thesis, and relates the papers

to our four research questions from chapter 1.1. Finally, the second part of this thesis

7It is possible to assign more than one event to a given timeslot. All events given the same timeslot
are then thought to happen concurrently.

8The implementation was done by Jesús E.-Sahuquillo, a coauthor of two of the papers included in
this thesis.

1.3 Thesis Outline 11

contains the complete versions of the 6 research papers summarized in chapter 3. These 6

papers reflect the major part of the research being conducted as part of the author’s Ph.D.

studies. Five of the papers have been published, while the last one has been submitted,

awaiting review. All paper titles, including place of publication, are listed below.

The Research Papers

Paper I InfiniBand Congestion Control, Modelling and Validation [18]

publised at The 4th International ICST Conference on Simulation Tools and

Techniques (SIMUTools2011, OMNeT++ 2011 Workshop)

authors Ernst Gunnar Gran and Sven-Arne Reinemo

Paper II On the Relation Between Congestion Control, Switch

Arbitration and Fairness [19]

publised at The 11th IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing (CCGrid 2011)

authors Ernst Gunnar Gran, Eitan Zahavi, Sven-Arne Reinemo, Tor Skeie,

Gilad Shainer and Olav Lysne

Paper III First Experiences with Congestion Control

in InfiniBand Hardware [13]

publised at The 24th IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2010)

authors Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo, Tor Skeie,

Olav Lysne, Lars Paul Huse, and Gilad Shainer

Paper IV Exploring the Scope of the InfiniBand

Congestion Control Mechanism [20]

publised at The 26th IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2012)

authors Ernst Gunnar Gran, Sven-Arne Reinemo, Olav Lysne, Tor Skeie,

Eitan Zahavi, and Gilad Shainer

Paper V Combining Congested-Flow Isolation and

Injection Throttling in HPC Interconnection Networks [21]

publised at The 40th Annual Conference – International Conference on

Parallel Processing (ICPP 2011)

authors9 Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa,

José Flich, Tor Skeie, Olav Lysne, Francisco J. Quiles, and José Duato

Paper VI Efficient and Cost-Effective Hybrid Congestion Control

for HPC Interconnection Networks [22]

submitted to IEEE Transactions on Parallel and Distributed Systems

authors10 Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa,

José Flich, Tor Skeie, Olav Lysne, Francisco J. Quiles, and José Duato

9The two first authors have equally contributed to the paper, and are listed in alphabetical order.
10See footnote 9.

Chapter 2

Background

This chapter starts with a brief introduction to the basic characteristics of lossless inter-

connection networks, presented with an eye to congestion and congestion management in

such networks. Then, a detailed treatment of congestion and congestion management is

given, including an introduction to the congestion control mechanism specified for Infini-

Band.

2.1 Interconnection Networks

As mentioned in chapter 1.1, the type of interconnection network studied in this thesis, is

the kind of network that typically serves as the shared communication infrastructure in a

HPC supercomputer or modern data center. The overall performance of such computer

systems are highly dependent on the performance of the interconnection network, which

again depends on the characteristics and properties of the network itself [1, 2]. The basic

characteristics of an interconnection network include the topology, the routing algorithm,

the switching technique and the flow control mechanism. These four characteristics will

be further described in the following sections, after we have defined the basic building

blocks of a network: nodes and links.

2.1.1 The Basic Building Blocks

From an abstract, high level point of view, an interconnection network consists of three

different elements: end nodes, forwarding nodes, and links, whereof the two first elements

are sometimes combined into a single unit. An end node is an injector or a sink of traffic

in the network, or both. In the capacity of an injector the end node is often referred to

as a source node, while an end node in the capacity of a sink is often referred to as a

destination node. A forwarding node, or just switch, is a node that forwards traffic in the

network on behalf of other nodes, while a link is the bidirectional communication channel

between two adjacent nodes1.

1We will not be concerned about shard communication channels like buses in this thesis, and as such,
a link is always connected to two nodes only. Furthermore, all links can carry traffic in both directions
concurrently (full-duplex).

13

14 Background

E2

E1

E3
S2S1

End node Switch Link Traffic flows

Figure 2.1: A small network with three end nodes and two switches.

Figure 2.1 shows a small network consisting of three end nodes, two switches, and four

links. Moreover, two traffic flows have been added, represented by the dotted lines. In

this scenario, the source node E1 is sending traffic to the destination node E2, while at

the same time E2 acts as a source node for another traffic flow headed for the destination

node E3. With respect to the flow from E1 to E2, the switch S1 is an upstream switch

of the switch S2 (as S1 is closer to the source than S2), while S2 is a downstream switch

of S1 (as S2 is closer to the destination than S1).

2.1.2 Topologies

The topology of a network defines how links and nodes are interconnected. In addition to

be seen as either regular or irregular, a topology can be classified as direct or indirect, or

in some cases as a hybrid of the two classes2.

In a direct network, every node acts both as an end node and as a switch. That is, each

node in the network is providing some sort of end node functionality (e.g. computation

or storage), in addition to conducting forwarding of traffic on behalf of other nodes. On

the contrary, in an indirect network there is a clearer distinction between end nodes and

switches. The switches are purely acting as forwarding nodes for the end nodes, and

as such, in an indirect network, it is possible to have a switch connected only to other

switches and no end nodes. The small network in figure 2.1 is an indirect network, while

figure 2.2 shows two examples of direct network topologies, the 4D hypercube and a 2D

mesh (we will soon get back to the two green traffic flows plotted in the figure).

In a regular topology, the links interconnecting the nodes follow a well-defined con-

nection pattern. Two large, general groups of such patterns include the ordering of nodes

along orthogonal n-dimensional rooms, and different strictly defined tree structures [1, 2].

The two topologies in figure 2.2 are both examples of the former. In an irregular topology,

no similar connection pattern is followed. Nodes are freely connected. This freedom adds

2In addition, the shared-medium networks, like buses and ring networks, constitute a third topology
class. Despite their relatively simple structure and natural support for broadcast communication, a
shared-medium network, where only one node can send traffic at a time, is seen to be unsuited for
HPC supercomputers and data centers. Consequently, we will pay no further attention to shard-medium
networks in this thesis.

2.1 Interconnection Networks 15

4D Hypercube 2D Mesh

src

dst

int 1
int 2

int 3

src int 1 int 2 int 3

int 4

int 5

dst

Figure 2.2: Two direct networks, each having 16 nodes.

flexibility to the network, particularly when it comes to incremental expansion, as new

nodes can be added as needed without adhering to a regular connection pattern. While

such a flexibility is highly appreciated in e.g. and office environment, a particular quality

of regular topologies are usually more sought-after when designing an high performance

supercomputer and data center: When using a regular topology, it becomes possible to

utilize knowledge about the structure of the topology to optimize the network, e.g. when

defining legal routes for traffic to follow through the network (for more about routing, see

section 2.1.3). Notice though, that a regular topology could quickly be transformed into

an irregular one when faults happen in the network.

The choice of topology will influence how traffic can be distributed in the network, and

in particular (together with the routing algorithm and the applications being executed)

influence how likely links and switches are to be saturated and congested. Notice that both

topologies in figure 2.2 have 16 end nodes. The hypercube, however, has 33% more links

than the mesh. That is, 32 v.s. 24 links, correspondingly. Not only does the additional

links imply more roads in the network to distribute the traffic onto, but the additional

links also decrease the distance between non-neighboring nodes, and by that the average

distance traffic has to travel in the network. The network diameter, defined as the longest

shortest-path between any two nodes in the network, is smaller in the hypercube than in

the mesh. The difference in network diameter between the two topologies in figure 2.2

is exemplified as traffic sent from the node src to the node dst (the dotted lines in the

figure). In the hypercube, the traffic has to pass through three intermediate nodes, while

the number has increased to five in the case of the mesh. Summing up, the additional

links of the hypercube are potentially lowering the likelihood of congestion to occur in the

network, both because the traffic could be distributed onto more links, and because the

traffic is potentially spending less time inside the network because of the smaller network

diameter. Nevertheless, congestion may still occur as the links are shared between nodes

in the topology. Among all possible topologies, there is actually only one that by its own

nature makes congestion impossible and congestion management unneeded, and that is

16 Background

Figure 2.3: A fat-tree with 16 root switches, 32 internal switches, and 64 end nodes.

the fully connected topology where every node in the network is connected to every other

node with a separate, dedicated communication channel. In such a network, even though

a link can be saturated if a source node is sending more traffic than a destination node

can handle, no congestion spreading is possible, and by that, no congestion management

is needed. A fully connected topology does not scale, however, and is of little interest in

the context of HPC supercomputers or large data centers.

There is currently a range of different topologies in use in HPC supercomputers and

high performance data centers. A popular family of topologies is the k-ary n-cubes (torus

topologies) [23]. A k-ary n-cube is a k-ary n-mesh with wraparound links, that is, a

direct orthogonal topology over n dimensions and k nodes in each dimension. By adding

wraparound links to the 4-ary 2-mesh in figure 2.2 (the 2D mesh), the topology is trans-

formed into an 4-ary 2-cube. Topologies used in real life HPC installations are naturally

much larger than this small example though, where e.g. the 3D torus of the Titan Cray

XK7 [24] at the Oak Ridge National Laboratory interconnects 18.688 compute nodes,

while the 5D torus of the IBM Sequoia [25] at the Lawrence Livermore National Labo-

ratory interconnects 98.304 compute nodes (the top two supercomputers in the top500

list [6], November 2012).

Another popular family of topologies is the fat-tree multistage interconnection net-

works [26, 27]. This type of networks has almost become the de facto standard for Infini-

Band based installations on the top500 list. The fat-tree is a family of regular indirect tree

topologies with multiple roots, where the roots and the branches of the interconnected

trees are build from switches, while the end nodes reside as leaves of the trees3. Figure 2.3

depicts a fat-tree consisting of 16 root switches (at the top), 32 internal switches, and 64

3Hybrid topologies also exist where additional end nodes are connected to the internal switches in the
tree structures.

2.1 Interconnection Networks 17

end nodes (at the bottom). This particular tree is an example of a parameterized sub-

type of the fat-tree family, the k-ary n-tree [27], where k defines the number of “downward

ports” at each switch (e.g. the number of end nodes connected to each leaf switch), while

n denotes the number of levels in the tree. Thus, the fat-tree in figure 2.3 is a 4-ary

3-tree. Notice that each level closer to the roots interconnects a set of smaller fat-trees

(further away from the root) in a regular fashion, where the full bisection bandwidth [2] is

maintained at each level. This characteristic, making it possible in an hierarchically way

to increase the size of the topology while maintaining full bisection bandwidth, together

with favorable properties when it comes to fault tolerance and non-blocking deadlock-free

routing, has made the fat-tree a widely deployed topology. Due to its popularity, partic-

ularly in the context of InfiniBand networks, the fat-tree has received special attention

when we have addressed RQ3 and RQ4 in the research papers IV, V and VI. The top

eight of the top500 list (November 2012) includes three HPC supercomputers utilizing the

fat-tree topology; the SuperMUC [28] at the Leibniz Rechenzentrum, the Stampede [29]

at the Texas Advanced Computing Center, and the Tianhe-1A [30, 31] at the National

Supercomputing Center of Tianjin.

2.1.3 Routing

The routing algorithm of a network defines which paths, or routes, through the network

traffic flows are allowed to follow. That is, when a source node is sending traffic to a

destination node, the routing algorithm decides which links and switches through the

network this particular flow will use. Notice, looking at figure 2.2 and figure 2.3, that

more than one possible path could be available when a routing algorithm is to make its

decisions. How the routing algorithm then through path selection chooses to distribute

the traffic in the network could greatly influence the likelihood of switches and links in

the network being congested.

A routing algorithm can be classified as deterministic, oblivious, or adaptive, depending

on the nature of operation and the degree of freedom the algorithm provides in dynamically

changing routes in the network. A deterministic routing algorithm always chooses a single

fixed route from a source node to a destination node. That is, all traffic going from a

specific source to a given destination will always use the same set of intermediate links

and switches. An oblivious routing algorithm, on the other hand, provides a set of legal

routes from a source node to a destination node, where one of the routes is picked when

traffic is to be sent. Notice then, that traffic from a specific source to a given destination

does not always follow the same path through the network. The selection procedure of an

oblivious routing algorithm, the procedure selecting one of the possible paths through the

network, does not, however, use any information about the current state of the network

when a path is to be selected. For instance, the selection procedure could randomly pick

one of the possible routes through the network each time a routing decision is to be made.

On the contrary, the selection procedure of an adaptive routing algorithm, an algorithm

that also provides a set of legal routes from a source node to a destination node, takes

into account the current state of the network each time a route is to be selected. As such,

an adaptive routing algorithm is able to dynamically change the routing, and by that

18 Background

the traffic distribution, in the network depending on the current network state, e.g. the

historical link and switch load in the network could be considered.

In general, the goal of a routing algorithm is to realize the potential of the topology.

To reach this goal, the routing algorithm needs to distribute the traffic in the network

in a way that maximizes the utilization of the network resources, i.e. the links and the

switches, on behalf of the end nodes and their requirements, while avoiding deadlocks4 [1].

An efficient routing algorithm then keeps a good balance between distributing load in the

network and keeping the length of the routes short. Ideally, the routing algorithm would

be both non-blocking5 and provide shortest-path routes between any pair of nodes.

While a deterministic routing algorithm could provide shortest-path routes, the lack

of path diversity inhibits the algorithm from performing load balancing. As a single fixed

path is always used for each source-destination pair, other paths that could potentially

balance the load in the network for a given scenario, and by that lower the probability of

congestion, are not utilized. In fact, for every deterministic routing algorithm, there exists

a traffic pattern that will cause large load imbalance in the network [2]. On the contrary, an

oblivious routing algorithm could distribute the traffic in the network through utilization

of its path diversity, though possibly at the expense of not selecting a shortest-path route.

Furthermore, an adaptive routing algorithm could even react and reroute traffic as a

consequence of congestion in the network. As such, both oblivious and adaptive routing

algorithms could alleviate the problems of congestion. However, as we will get back to in

section 2.3, an oblivious or adaptive routing algorithm can by itself not always successfully

avoid or resolve congestion. More specifically, an oblivious or adaptive routing algorithm

could actually make a situation of congestion worse if there is no alternative route around

the location in the network originating the congestion. This is in particular so if the root

of congestion is at the last downstream switch connected to an end node, or the end node

itself.

While an adaptive routing algorithm ideally could be the algorithm of choice for a

high performance lossless interconnection network, and indeed is in use in some large

installations like the before mentioned Titan Cray XK7 and IBM Sequoia, deterministic

routing algorithms are still in widespread use. They are relatively simple and inexpensive

to implement, ease deadlock prevention, and has by nature a property that is important

for certain applications; they provide in-order delivery of traffic. In addition, there is

no selection procedure present that could potentially introduce additional latency to the

routing algorithm. More specific, the InfiniBand architecture does not currently support

4A deadlock is a phenomenon that might arise in a network if traffic being sent is allowed to hold on
to a resource in the network while requesting another. If care is not taken, and chains of such requests
are allowed to be made in a circular fashion, a set of traffic flows could end up sharing the fate of the
dining philosophers [32, 33]; they could in a circular manner be waiting for resources held by others,
while refusing to let go of the resource they already hold on to themselves. Thus, no further progress is
possible, the traffic is halted, and (a part of) the network has deadlocked. If the topology by itself does
not prevent circular chains of requests, it is common to limit the available routes provided by the routing
algorithm to avoid that such chains form.

5A routing algorithm is non-blocking if it is always possible to route traffic from a source node src to
a destination node dst without interference from any other routed traffic flow in the network, given that
src is the only node sending to dst. For a routing algorithm to be non-blocking, the topology needs to
have a full bisection bandwidth.

2.1 Interconnection Networks 19

adaptive routing, and in particular, popular InfiniBand supported routing algorithms like

FTREE [34], DOR (Dimension Order Routing) [35], and LASH [36] are deterministic.

Before we move on to talk about switching and flow control, it is appropriate to mention

that the responsibility of choosing a route through the network can be given to the source

node, source routing, or handed to the intermediate switches, incremental routing. When

source routing is used, the source node chooses the entire route traffic is to follow through

the network. While source routing offloads the switches as they are exempted from making

routing decisions, it comes at the cost of embedding information about the entire chosen

route into the traffic being sent. On the contrary, when incremental routing is used,

the source node does not make any routing decisions, but includes information about

the destination node in the traffic. The intermediate switches then have to base their

forwarding at each intermediate step on this information about the destination node,

typically the destination node ID or address (e.g. through looking up the destination

address in a forwarding table).

2.1.4 Switching and Flow Control

While the topology of a network defines the interconnection of nodes and links, and

the routing algorithm provides legal routes through the network, the switching and flow

control mechanisms determine how traffic is forwarded along a given route through the

network. Roughly speaking, the switching technique defines how traffic flows through the

switches, while the flow control mechanism defines when traffic is allowed to flow between

neighboring nodes6. As switching and flow control together determine how traffic flows

through the network, they are naturally coupled tightly together. In addition, they are

closely connected to the buffer management in the network. A buffer in this context is a

storage area in a switch (or an end node) temporarily holding traffic on its way through

the network.

Switching

Several switching techniques exist, each having its set of advantages and disadvantages.

In the followings sections we will briefly describe two main families of such techniques;

circuit switching and packet switching, whereof the last one is further divided into three

subclasses, store-and-forward, virtual cut-through switching, and wormhole switching.

The carrying idea in circuit switching is a heritage from telecommunication, where a

dedicated communication channel had to be established before two parties could commu-

nicate. Thus, in a circuit switched network, the first step of communication is to reserve

the appropriate resources throughout the network between the nodes that want to com-

municate. Once this reservation has been made, and by that a circuit established, data

may be sent over the circuit until the circuit is deallocated. Circuit switching removes

the need for general congestion management. As resources are reserved in advance, no

6In this thesis, the term flow control will be used rather narrowly to refer to flow control at the link-
level. That is, flow control between two directly connected nodes. In the network literature in general,
the term flow control could include both switching and switching techniques in general, as well as flow
control between end nodes.

20 Background

contention arises (after a circuit has been established), and congestion is avoided. Note,

though, that care needs to be taken during the set up phase of a circuit, especially if the

requests for resources are allowed to happen at the head of the first data being transmit-

ted, as contention, and even deadlocks, could occur during this phase. While the use of

reserved resources makes forwarding efficient for the users of already allocated circuits,

the efficiency of the network as a whole could be low. Resources assigned to a given circuit

are private to that particular circuit and cannot be used by others. Thus, if a circuit is

currently not carrying traffic, resources are left idle, even if other nodes in the network

are awaiting access to the same resources. Furthermore, the set up phase of a circuit adds

initial delay to communication. If most or all communication is short-lived, e.g. consists

of a small number of short messages (or maybe even a single short one), the added delay

from a set up phase could make up a considerable part of the total communication latency

between two nodes.

Packet switching, having roots back to the early 1960’s, is a switching technique that,

compared to circuit switching, more dynamically is able to utilize resources in the network.

The traffic being sent between nodes is partitioned into packets. Each packet is then

sent and routed individually, without any initial reservation of resources. This packet

independence and freedom when it comes to resource usage, enables the switches in the

network to independently forward packets onto free links without considering if the link

is reserved by others, but currently idle (as could be the case with circuit switching),

given that the forwarding happens in accordance with the routing algorithm in use. The

increased flexibility comes at a cost though. The lack of a reserved path through the

network implies that a switch might have to store a packet while the packet is waiting

for access to a currently busy link. As such, additional buffers are needed at the switches

to handle contention for outgoing links, and communication latency may increase for

individual packets7.

The most basic form of packet switching is store-and-forward (SAF). Each time a

packet arrives at a switch, the complete packet is buffered before it is forwarded. A

switch then needs to be able to store at least one packet per incoming link, while it is

sufficient for the flow control to operate at the packet level. Recall that the task of the

(link-level) flow control is to make sure that one node does not send more traffic to another

node than this other node can handle. While SAF is easy to implement, and makes it

possible to remove erroneous packets from the network (if e.g. CRC [37] is used at the

packet level), the added latency per intermediate switch as a packet traverses the network

is high; the time it takes to receive the complete packet at each intermediate switch is

added to the total transfer latency of a packet.

Virtual cut-through switching [38] (VCT) takes advantage of the fact that it is possible

to decrease the total transfer latency of a packet if the packet is allowed to “cut through”

a switch before the complete packet is received. If the destination address of a packet is

stored at the head of the packet, i.e. as part of the packet header, which the destination

address typically is to allow for a fast selection of the next link to use, the packet could be

forwarded as soon as the packet header is received and the outgoing link has been selected

7When circuit switching is used, no buffering is actually needed in the switches after a circuit is
established [2].

2.1 Interconnection Networks 21

(and is free). Thus, the added latency of a packet per intermediate switch could be reduced

to the time it takes to receive the packet header only, compared to SAF switching where

the whole packet needs to be received before forwarding takes place. The flow control still

operates at the packet level, though. Consequently a switch still needs to be able to store

at least a complete packet at each incoming link in the case of contention for outgoing

links.

A switching technique that has the potential of not only reducing the transfer latency

of packets compared to SAF, but in addition lowers the buffer requirement at the switches

compared to VCT (and SAF), is wormhole switching [39, 40]. Using wormhole switching,

each packet is partitioned into flits, where the first flit of a packet contains the destination

address. As soon as the first flit has arrived at a switch, the forwarding decision can

be made, and the forwarding take place as soon as the selected outgoing link is free.

This behavior is comparable to VCT switching. However, as opposed to VCT, wormhole

switching makes use of flow control at the flit level. This increase in the granularity of the

flow control mechanism makes it possible for a downstream switch to halt a neighboring

upstream switch before a whole packet is received. Thus, the buffer requirements at a

switch can be reduced to a single, or a few, flits per incoming link. The packet is still

the smallest routable unit, though, meaning that flits from different packets cannot be

allowed to mix. The result is that a packet traversing the network will remain stretched

like a worm through switches and links, even when the head of the worm is blocked at a

switch due to link contention. Notice then, that such a worm may occupy resources in the

network that could be used by other packets, packets that are not headed for the switch

where the head of the worm is being blocked.

As larger buffers in switches became easier to integrate, saving buffer space got less

focus, and VCT increased in popularity. In particular, VCT is now the common switching

technique used in InfiniBand switches [41], and thus the switching technique we have

chosen for our congestion management studies. Notice that VCT behaves like wormhole

switching in a network with little or no contention, allowing for low transfer latency.

As the network moves closer to saturation, however, the behavior of VCT gets closer to

the behavior of SAF. VCT’s ability to store at least a complete packet at a switch then

effectively removes any “frozen worms”, worms that could potentially block other traffic

in the network when wormhole switching is used. The absence of such worms eases the

congestion management.

Flow Control

To prevent an upstream node from overwhelming a directly connected8 downstream node,

and by that avoid packet loss at the downstream node, flow control is needed at the link

level in a lossless interconnection network utilizing packet switching9. The task of the flow

8In this section, when we talk about upstream and downstream nodes in the context of flow control, we
will always assumed that the two nodes are directly connected with a link, even when the term “directly
connected” is left out to make the text more readable.

9We will in this thesis not be concerned about circuit switched networks, or any other potentially
“bufferless” networks e.g. utilizing continuous rerouting in an attempt to avoid packet drops, and as such,
we will restrict our discussion of flow control to buffered packet switched networks only.

22 Background

control mechanism is then to make sure that a node always has buffer space available when

a packet or flit arrives. In particular, to ensure this invariant, a downstream node needs

to be able to communicate to an upstream node when buffer space at the downstream

node is available (or not), and possibly the amount of such storage.

There are three main families of flow control mechanisms [2]: credit-based flow control,

on/off flow control, and ack/nack flow control. In a credit-based flow control scheme, an

upstream node keeps track of how many credits of free buffer space a downstream node

currently has. One credit could for example correspond to one packet or one flit. For the

sake of simplicity, we will in the following assume that the flow control operates at the

packet level, and that one credit equals one packet. Each time the upstream node then

forwards a packet, the local credit counter is decreased by one. When the counter reaches

zero, forwarding to the downstream node is prohibited. At the reception of the packet,

the downstream node does nothing credit-wise until the downstream node itself is able

to forward the packet, or process it if the downstream node is an end node. Then, the

downstream node sends a new credit to the upstream node, which then again increases

the local credit counter. To ensure a steady flow of traffic, the buffer of the downstream

node, and the corresponding credit counter at the upstream node, initially needs to be

big enough to allow for continuous forwarding of packets during a credit round-trip delay.

This delay is given by the time it takes to send a credit from the downstream node to

the upstream node, process the credit, send a packet from the upstream node to the

downstream node, and then finally process the packet at the downstream node, thus

allowing for a new credit to be sent.

When on/off flow control is used, the upstream node is either in an on state or an off

state, depending on if the node is allowed to send traffic to the downstream node or not,

correspondingly. The downstream node signals the upstream node each time it is necessary

to change the state. To implement this flow control scheme, the downstream node needs

to keep track of two thresholds, Toff and Ton, related to its buffer. If the amount of free

buffer space drops below Toff and the upstream node is currently in the on state, an off

signal is sent to the upstream node. Likewise, if the amount of free buffer space increases

above Ton and the upstream node is currently in the off state, an on signal is sent to the

upstream node. To make sure no packets10 are dropped, the Toff threshold needs to be

set high enough to allow for a continuous reception of packets at the downstream node,

without running out of buffer space, while the off signal propagates to the upstream node,

including any packets already “on the wire” when the off signal is received. At the same

time, to ensure that the downstream node does not unnecessarily run out of packets to

forward, the Ton threshold needs to be low enough to ensure that there are still enough

packets in the buffer to allow for continuous forwarding at the downstream node while

the node is waiting for the propagation of the on signal to the upstream node and, in

addition, for possible new packets to arrive from that node. Furthermore, Ton needs to be

set higher than, or equal to, Toff .

Ack/nack flow control takes on an optimistic approach. Using this flow control mech-

anism, the upstream node is always allowed to send packets. To still achieve lossless

operation, the downstream node acknowledges all packets it is able to buffer, while pack-

10For simplicity, we will continue to assume that the flow control operates at the packet level.

2.2 Congestion in Lossless Networks 23

ets that are dropped result in negative acknowledgments. That is, each time a packet is

received at the downstream node, an ack is sent to the upstream node, while a nack is sent

to the upstream node each time the downstream node drops a packet. It is then the task

of the upstream node to resend any nack’ed packets to ensure lossless operation. Thus, the

upstream node needs to buffer each sent packet until the corresponding ack is received.

Furthermore, as retransmission of nack’ed packets could result in out-of-order delivery of

packets to the downstream node, the downstream node needs to halt forwarding of all

ack’ed packets following a nack’ed packet, until the nack’ed packet has been retransmitted

and successfully buffered at the downstream node. Then, in-order forwarding of packets

can continue at the downstream node. The upstream node’s need to buffer a packet while

waiting for an ack, the possible retransmission of packets over the link, and furthermore,

the possible need to buffer and rearrange packets at a downstream node, are together

characteristics that could result in an inefficient use of network resources. Thus, ack/nack

flow control is rarely used in lossless interconnection networks.

While the three families of flow control mechanisms differ in the way they implement

lossless operation between neighboring nodes, they all create the before mentioned back-

pressure effect (chapter 1.1). This also goes for the absolute credit-based flow control

scheme specified for InfiniBand, a scheme we have applied in our studies, where the up-

stream node is kept notified about the total amount of traffic an upstream node has been

authorized to send to a downstream node since the link between them was initiated [42].

Indeed, the backpressure effect is the wanted local effect to hinder one node from swamp-

ing another. As the backpressure effect progresses between nodes, however, congestion

spreads. To avoid any negative consequences of such congestion spreading, proper con-

gestion management is needed. Congestion and congestion spreading is the subject of our

next section.

2.2 Congestion in Lossless Networks

Congestion is a situation that occurs in a network with shared network resources if too

much traffic is sent into a certain part of the network, exceeding network capacity in

this area. Initially, the buffers in the node at the root of the congestion will deplete.

If the situation continues over time, however, the flow control in a lossless network will

make buffers in surrounding nodes fill up as well, and as this backpressure effect of the

flow control continues, the phenomenon known as congestion spreading develops and a

congestion tree is grown11 [43]. The branches of this tree grow as buffers continue to

deplete in surrounding nodes, and may in the end grow all the way into the source nodes

in the network. Let us use a small example to further study the effect of congestion

spreading.

Figure 2.4(a) shows our topology from figure 2.1 extended with four new end nodes.

Two of the new nodes are connected to S1, while the other two are connected to S2. In

addition, the link between S1 and S2 has been given twice the link bandwidth of the other

links in the topology. Congestion spreading, and the Head-of-Line blocking phenomenon

11The phenomenon is called tree saturation in Pfister and Norton’s paper from 1985 [3].

24 Background

E1

E3

E4

E5

E7

S1 S2

E2

E6
(2x bw link)

(a) Three traffic flows headed for E5.

E1

E3

E4

E5

E7

S1 S2

E2

E6

The root of the congestion tree

(2x bw link)

(b) The congestion tree from ’a’.

E1

E3

E4

E5

E7

S1 S2

E2

E6
(2x bw link)

(c) Three contributors and one victim.

E1

E3

E4

E5

E7

S1 S2

E2

E6

The root of the congestion tree

(2x bw link)

(d) The congestion tree from ’c’

End node Switch Link Branch of congestion tree

Contributors VictimTraffic flows:

Figure 2.4: Congestion and congestion trees in a lossless network.

explained below, will be present even if all links have the same capacity, but by giving

the switch-to-switch link twice the capacity of the other links, the effect of the Head-

of-Line blocking will be more obvious. Thus, the negative consequences of congestion

and congestion spreading will be easier to grasp. Furthermore, the topology shown in

figure 2.4(a) is one of the topologies used in four of the research papers being part of this

thesis; paper I, II, III, and V (for more information about the papers, see chapter 3).

Three traffic flows are added to the topology in figure 2.4(a); the end nodes E2, E6,

and E7 send traffic headed for the end node E5. We assume that these three source nodes

all want to send at the full link capacity of their connected links. The link between the

switch S2 and the destination node E5 will then become a bottleneck, where each of the

three sources will get access to 1/3 of the link. As the three sources continue to send

traffic to E5, traffic will start to pile up at S2, the buffers in S2 will fill, and the flow

control will notify the neighbors S1, E6 and E7 of S2 that S2 is running out of buffer

space12. The three source nodes have, by their hot flows headed for the bottleneck link,

become contributors to congestion. At the switch S1, the flow control messages from S2

will prevent S1 from forwarding traffic from E2 to S2 at the desired pace. Thus, the

backpressure effect of the flow control has started, buffers will fill at S1, and furthermore,

the flow control will notify E2 about S1’s lack of buffer space.

Figure 2.4(b) shows the congestion tree resulting from the traffic scenario in fig-

ure 2.4(a), a tree formed by the buffer occupancy of the contributors to congestion. The

tree takes root at the outgoing link connecting S2 to E5, while the branches of the tree

12The nodes E4 and E5 could also be notified by the flow control, depending on the flow control scheme
and the buffer strategy being implemented in S2, but for our example such possible notifications are not
of importance.

2.2 Congestion in Lossless Networks 25

stretch along links and switches towards the contributors to congestion. This far the con-

gestion tree does not cause any real harm to the network performance. The link between

S2 and E5 is a bottleneck, there is no alternative path around it, and thus there is not

much else to do for the packets stored along the branches of the congestion tree than to

wait for their fair share of the bottleneck link. If a new traffic flow is added from E1 to

E4, however, the potential harm that can be caused by a congestion tree can be observed.

Figure 2.4(c) extends the previous example with a new traffic flow added from the

source node E1 to the destination node E4. As this new flow does not request the

bottleneck link between S2 and E5 (the flow is cold), and the link between the switches

has twice the capacity of the other links in the network, we would wish for this new

traffic flow to be able to progress towards its destination unaffected by the contributors

to congestion and the congestion tree they have grown. However, as the congestion tree

is occupying buffers in S2 and S1, the utilization of the link between the switches is held

back by the congestion tree. In fact, the cold flow from E1 will not be able to progress

any faster than the flow from E2 contributing to congestion, that is, at only 1/3 of the

end node-to-switch link capacity. Recall that the buffer in S2 is full due the contested

link towards E5. Traffic originating from E2 will at S2 get its fair share of the bottleneck

link, thus access to the bottleneck link is given to the flow from E2 each 1/3 of the time

the bottleneck link can carry traffic. When the flow from E2 is granted access to the

bottleneck link, and a packet from E2 is forwarded, the flow control of S2 will tell S1

that one more packet can be sent downstream. S1, being a fair switch, will alternate

between forwarding packets from E1 and E2. If a packet from E1 is chosen, the packet

will immediately be forwarded at S2, and S1 will once more be allowed by the flow control

to forward a packet to S2. This time, however, a packet from E2 will be chosen. Then,

upon reception at S2 the packet from E2 fills the buffer, which once more will remain full

until a new packet from E2 is granted access to the bottleneck link. Thus, the net effect

is that the progress of the flows from E1 and E2 both are dictated by E2’s access to the

bottleneck link; 1/3 of the link capacity.

This phenomenon where the traffic flow from a source node is held back by a congestion

tree even though the flow itself will never request resources at the root of the tree, is

referred to as Head-of-Line (HoL) blocking. A source node experiencing HoL blocking

is referred to as a victim of congestion, while the corresponding flow is referred to as a

victim flow. In our example, the HoL blocking results in an unnecessary 662
3
% drop in

performance for the victim E1. In addition, as the victim E1 is blocked at S1, traffic will

start to pile up towards E1 as well. Hence the congestion tree will actually continue to

grow, even towards the victim of congestion. Figure 2.4(d) shows the congestion tree of

our example as it has grown to include E1. While this additional growth has no real effect

in our small example, similar growth towards victims in a larger topology could make the

congestion tree, and the corresponding HoL blocking, spread to a significant part of the

total network.

There are two key observations to make from our small example. First of all, the main

reason we see a drop in performance when congestion spreads in the network is the HoL

blocking affecting the victim flows. To make matters worse, the HoL blocking may even

fertilize a congestion tree and make it grow to a larger part of the network. Secondly, as

26 Background

Roots of congestion trees Branches of congestion trees

root 1

root 2

root 3

,

Figure 2.5: A fat-tree with three congestion trees. One root is located at an end node while

the other two roots are located at switches.

there is no alternative path around the root of the congestion tree in our example, it is not

possible to improve the performance of the contributors to congestion. The link towards

the end node limits the performance. More specifically, the removal of any HoL blocking

caused by the congestion tree will not improve the performance of the bottleneck link.

In our example, the congestion was caused by several sources concurrently sending

traffic to the same destination, and the root of the corresponding congestion tree was

located at the last switch before the destination node. In general, the root of a congestion

tree could be located at any switch in a network, or at an end node not being able to

process traffic at the capacity of the connected link, and several congestion trees might

be present in the network at the same time. Figure 2.5 shows our fat-tree from figure 2.3

where three congestion trees are growing. An end node (root 1), not being able to process

traffic at the speed of reception, is the root of a single-branched congestion tree growing

towards the corresponding source node. One of the switches (root 2) is the root of a small

congestion tree with, this far, only two branches, while another switch (root 3) is the root

of a large congestion tree with several branches, whereof 27 of the branches have grown

all the way into source nodes in the network (some of the nodes possibly being victims).

Furthermore, the reasons for congestion could be many. As in our initial example,

hot spot traffic patterns could results in congestion. Other reasons for congestion could

include network burstiness, rerouting around faulty regions in the network, and link fre-

quency/voltage scaling to lower link speeds in order to save power. If a network ad-

ministrator knows all these factors in advance, the consequences of congestion may be

alleviated by effective load balancing of traffic. Generally, however, this is usually not the

2.2 Congestion in Lossless Networks 27

Figure 2.6: HoL blocking inside a switch.

case. In particular, in a large parallel computer running multiple jobs through virtualiza-

tion, or in a modern data center accepting jobs as an on-demand service facilitating cloud

computing, to have the complete knowledge about the traffic patterns in the network

might be impossible. Furthermore, in the case of a hot spot destination being present

in the network, no load balancing or adaptive rerouting is possible to avoid congestion.

Thus, proper congestion management is needed to avoid performance degradation in the

network.

High-Order and Low-Order HoL Blocking

The above mentioned HoL blocking phenomenon is the cousin of a HoL blocking phe-

nomenon that might occur inside a switch. This phenomenon internal to switches will be

explained by means of an example, using the switch shown in figure 2.6. This switch, hav-

ing four links, has been drawn unfolded with the four input ports to the left and the four

output ports to the right. Hence, the incoming links in1, in2, in3, and in4 correspond to

the outgoing links out1, out2, out3, and out4, respectively. The switch has buffers orga-

nized as first-in-first-out (FIFO) queues at the input ports, each buffer being able to hold

at least three packets. The switch fabric represents the internal network of the switch,

connecting input port to output ports. Concurrent transfers of packets through the switch

fabric are possible if the packets originate from different input buffers and are headed for

separate output ports. If two packets are requesting the same output port, however, one

of them will have to wait in its input buffer while the other packet is forwarded.

In figure 2.6, the first packet at each of the three buffers corresponding to the input

links in1, in3, and in4, i.e. the green packets, is requesting the outgoing link out2. The

packet from in3 is granted access to out2, while the two other packets residing at the

head of the queues from in1 and in4 have to wait. The queues from both in1 and in4,

however, also hold packets headed for other outgoing links. The queue from in1 holds a

packet headed for out3, the purple packet, while the queue from in4 holds a packet headed

28 Background

for out1, the red packet. Due to the FIFO nature of the buffers, the purple and the red

packets both have to wait, even if the resources they are requesting, the outgoing links

out3 and out1, respectively, are free. The two packets are HoL blocked internally in the

switch, and will not be able to progress through the switch fabric until the green packets

in front of them have been forwarded.

The HoL blocking caused by internal contention in a switch and the HoL blocking

caused by congestion spreading in a network share the same abstract characteristics: In

both cases some packets Pv are blocked by other packets Pc even though the packets in Pv

will never request the resources holding back the packets in Pc. Thus, the two phenomena

are given the same name. To keep the two phenomena apart when discussing both of

them together, the switch internal HoL blocking is sometimes referred to as low-order

HoL blocking, while the HoL blocking caused by congestion spreading is referred to as

high-order HoL blocking.

In this thesis we will mainly be concerned about high-order HoL blocking13. Low-order

HoL blocking can, as we will get back to in section 2.3, be avoided by clever organization of

buffers in the switches. To handle high-order HoL blocking, on the other hand, interaction

between traffic flows as they span more than a single node needs to be considered. As

such, an efficient network-wide congestion management mechanism needs to be able to

handle congestion spread by the flow control mechanism across multiple nodes in the

network.

2.3 Congestion Management

Congestion trees like the ones in figure 2.5, and the possible HoL blocking they cause,

may lead to severe performance degradation in a lossless interconnection network if no

countermeasure is taken [3, 13, 20, 21, 22, 43, 44]. While a combination of tuning and

tailoring of network characteristics for a given application, together with overprovisioning

of network resources, have been able to keep the challenges of congestion at a distance,

these techniques are, as mentioned in section 1.1, about to become obsolete; E.g. compo-

nent failures in a large network or the use of virtualization makes it difficult to predict

the traffic patterns a network will be exposed to, making tuning and network tailoring

hard, while the use of overprovisioning directly contradicts the current trend of making

HPC installations and data centers cost-effective and green.

Overprovisioning and network tailoring are proactive congestion management tech-

niques in the sense that the challenges imposed by congestion is addressed by avoiding,

or making it less likely, that congestion occurs in the first place. Other proactive tech-

niques have been suggested, though they are not appropriate for general HPC systems or

modern data centers as they do not in a universal and scalable way conduct congestion

management; In [45] and [46], a priori knowledge about the traffic is assumed, either as hot

traffic is predefined as synchronization messages [45], or as hot spot memory contention

is alleviated by using a software combining tree [46]. Flit-reservation flow control [47]

13Research papers V and VI also consider low-order HoL blocking. However, to avoid high-order HoL
blocking is still the main challenge addressed in these papers.

2.3 Congestion Management 29

improves buffer utilization and lowers the transfer latency of traffic by the use of sophis-

ticated resource scheduling. Control flits are sent ahead of data flits (possibly by the use

of a separate control network) to do resource reservation for the data. While the control

flits can do reservations ahead of time in the case of contention, the data flits can still be

stalled and congest the network. In [48], a request-grant mechanism detains packets at

the input buffers of the network until it is safe to inject them without creating congestion.

While this mechanism successfully avoids the creation of congestion inside the network,

i.e. the switch fabric, it is not clear how the request-grant mechanism scales as the net-

work diameter increases. If networks using the mechanism are interconnected without

the use of a common request-grant mechanism, congestion may still develop between the

networks, and HoL blocking is reintroduced. On the other hand, the use of a common,

global request-grant mechanism could add significantly to the transfer latency of traffic

in the network.

Adaptive routing [49, 50, 51, 52] and load balancing techniques14 [53, 54] may help

to alleviate congestion by distributing the traffic in the network in a favorable way. Fur-

thermore, if the adaptive routing or load balancing technique is able to do path selection

depending on network status [52, 53, 54], congestion trees might be pruned, removed or

made less likely to grow. It is important to note, though, that the act of distributing

the traffic in the network, e.g. to reroute around the root of a congestion tree, cannot

always be successful. This is particularly so if the congestion is caused by too much traffic

continuously being sent to one particular destination node, if a destination node is not

able to process received traffic fast enough, or in general if the root of a congestion tree is

located at the last downstream switch prior to a destination. In such cases, an attempt

to remove the congestion by adaptive routing or load balancing will not (necessarily) re-

move the congestion tree. Instead, the tree might grow wider and/or the root of the tree

might move closer to the destination node. The amount of potential HoL blocking in the

network could then increase instead of being reduced.

To see how dramatically adaptive routing can change a congestion tree, consider the

fat-tree from our previous examples, now with a new root of congestion shown in fig-

ure 2.7. In this example, 12 source nodes (orange nodes) are continuously sending traffic

to the same destination node (green node). For the time being, the network implements

a deterministic shortest-path routing algorithm where all traffic to a given destination

node is routed through the same root switch, independent of the location of the source

node (for this example we do not need to consider the case where the source and the

destination nodes reside inside the same subsection of the fat-tree). The FTREE routing

algorithm [34] routes traffic in a similar fashion. Recall that the switches in the top row

of the fat-tree are called root switches. As only a single (shortest) path between a root

switch and an end node exists in the topology, the complete route from a source node to

a destination node is given by the root switch selected to represent the destination. In

our example, the 12 orange nodes are all sending to the same destination node, thus their

14Adaptive routing and load balancing techniques may share characteristics, as the aim of adaptive
routing could be to perform some sort of load balancing in the network, while a load balancing technique
could involve some sort of adaptability when it comes to making routing decisions (at the switches or at
the end nodes).

30 Background

root

Branches of the congestion trees

Hot destination

Contributor to congestion

The root of the congestion tree

Figure 2.7: A fat-tree with a congestion tree created by 12 source nodes sending continuously

to the same destination node using deterministic routing.

traffic will be routed through the same root switch, and the complete traffic pattern is

given. The resulting congestion tree is shown in figure 2.7 as orange branches stretching

from the root of the congestion tree, located at the indicated root switch corresponding

to the hot destination.

Now let us change the routing algorithm used for the scenario shown in figure 2.7.

This time, an adaptive routing algorithm is implemented, where each traffic flow is routed

shortest-path and deadlock-free by using x links upward, followed by the same number

of links downward, to reach the destination node. In our example, x = 3 for all the

12 source nodes. At a switch, the adaptive routing algorithm will, as far as possible,

forward different traffic flows onto separate links to avoid sharing of resource. The 12

source nodes will still overwhelm the hot destination node, but as the adaptive routing

algorithm will do whatever it can to refrain traffic flows from sharing links, the root of

the congestion tree will be moved away from the previous location at the root switch in

the fat-tree (figure 2.7) to the last downstream switch prior to the destination node. One

possible resulting congestion tree is shown in figure 2.8. The adaptive routing algorithm

has dramatically widened the congestion tree in an attempt to distribute the traffic in

the network, and the amount of potential HoL blocking in the network has increased

correspondingly. While it can be argued that the situation in figure 2.8 is not likely

to occur in practice, it still proves to show that an adaptive routing algorithm can fail

miserably in conducting congestion management when there is no possible route around a

hot spot. In such cases, congestion trees are still allowed to grow and cause HoL blocking

2.3 Congestion Management 31

root

Branches of the congestion trees

Hot destination

Contributor to congestion

The root of the congestion tree

Figure 2.8: A fat-tree with a congestion tree created by 12 source nodes sending continuously

to the same destination node using adaptive routing.

in the network.

The two most successful families of congestion management strategies are the flow

isolation strategies and the injection throttling based congestion management mechanisms.

In the following sections we will discuss these two families in more detail.

2.3.1 Flow Isolation Strategies

The general idea behind flow isolation strategies is to identify and separate traffic flows,

or groups of such flows, to allow for them to travel through (parts of) the network without

interfering with each other15. The isolation is typically done by allocating private buffers

to each flow or group of flows in the switches, while access to the links in the network are

still shared.

A well known flow isolation strategy is the Virtual Output Queues (VOQ) scheme

implemented at the switch level [55, 56] (VOQsw). The buffer at an input port of a switch

is in VOQsw divided into separate sections, one section per output port. The input port

buffer section corresponding to a given output port is then reserved for arriving packets

headed for that particular output port. When a packet arrives, the routing decision is

made and the next output port selected. Then, the packet is stored in the corresponding

buffer section at the input port waiting to be forwarded through the switch fabric. As

15In this respect, the before mentioned identification and separation of synchronization messages in [45]
is also a flow isolation strategy.

32 Background

Figure 2.9: A switch implementing VOQsw prevents low-order HoL blocking.

packets waiting for different output ports never share buffer sections, HoL blocking internal

to the switch is not possible. Thus, VOQsw can be seen as a congestion management

mechanism that eliminates low-order HoL blocking.

Figure 2.9 shows our switch scenario from figure 2.6, this time with a switch imple-

menting VOQsw. Now, as the red and the purple packets have been queued according

to the VOQsw scheme, they are no longer blocked by green packets waiting for access to

out2, and can concurrently be forwarded through the switch fabric to their corresponding

output ports, out1 and out3. The HoL blocking inside the switch is gone. At the same

time, the green packet from in3 is forwarded to out2, while the three other green packets

have to wait – like before.

As VOQsw typically is the internal queuing scheme implemented by InfiniBand switches

[41], it is also the natural scheme to consider when we study congestion management in

InfiniBand. While VOQsw successfully avoids low-order HoL blocking, congestion is still

allowed to spread between switches, thus high-order HoL blocking may still occur. To

handle high-order HoL blocking, the InfiniBand specification now includes an appendix

detailing support for congestion control, as mentioned in section 1.1. We will get back to

the throttling based congestion control mechanism of InfiniBand in section 2.3.2.

The VOQ scheme can also be implemented at the network level (VOQnet). Each port

at every switch in the whole network then needs a separate, reserved buffer section for

every possible destination node. In particular, the buffer sections can never be shared, as

traffic headed for one destination would then be able to block traffic headed for another

destination. While an implementation of VOQnet would prevent both low- and high-order

HoL blocking throughout the network, and arrange for efficient use of the links in the

network, the solution does not scale, and the buffer space in the switches will in general

be extremely poorly utilized in a network with a large number of destination nodes.

Other queuing schemes that share some characteristics with VOQ include Dynamically

Allocated Multi-Queues [57] (a dynamic version of VOQsw), Destination-Based Buffer

2.3 Congestion Management 33

Management [58], Dynamic Switch Buffer Management [59] and Output-Based Queue

Assignment [60]. While all these techniques address the HoL blocking phenomenon, they

are only partly able to prevent HoL blocking from happening. The weakness they bear

in common is that packets belonging to cold and warm flows are not generally identified,

and thus they might still share queues and cause HoL blocking in the network.

A general idea that allows for flexible flow isolation in the network is the concept of

virtual channels [40, 44], introduced by Dally and Seitz in 1987. The idea behind this

concept is to divide each physical channel into a set of virtual channels (VCs), each VC

having its own private buffers. Traffic belonging to different virtual channels use the same

physical link, but are mapped to their corresponding buffers at the switches. Thus, a

packet travelling along one VC can in general bypass packets from other VCs. In particu-

lar, a cold packet could bypass any hot packets to avoid HoL blocking – given that the cold

and hot packets reside in different VCs. Indeed, all the above mentioned queuing schemes

can be mimicked using VCs. However, as each VC requires its private buffer at each

switch port, the scalability issue reappears. For instance, to ensure that no HoL blocking

occurs in the network, one VC per destination in the network would be required. Such a

number of VCs would be too costly to implement for any large interconnection network.

E.g. the InfiniBand specification supports only 16 virtual channels, or virtual lanes (VLs)

as they are called in the InfiniBand context, while existing InfiniBand hardware typically

implements only eight [61].

The vFtree [62] routing algorithm proposed for InfiniBand distributes traffic among

available VLs to limit the HoL blocking introduced by a congestion tree to only those

traffic flows that share VL with the tree. However, as congestion trees are still allowed

to grown inside each VL, the effectiveness of the vFtree algorithm is limited by the num-

ber of available VLs and how fortunate the algorithm is in distributing the traffic. The

dFtree [63] algorithm improves on vFtree by dynamically detecting congestion in the

network and moving contributors to congestion into a separate VL, the slow lane, while

regular traffic resides in the VL called fast lane. The detection and reconfiguration pro-

cess needed when congestion occurs, however, is not very fast, thus making the dFtree

algorithm best suited to handle permanent or long-lasting congestion.

All the flow isolation techniques mentioned this far, with the exception of the dFtree

algorithm, have one weakness in common: They do not dynamically detect and sepa-

rate flows contributing to congestion, thus their success in avoiding HoL blocking greatly

depends on the number of available queues per port. By contrast, a family of flow iso-

lation strategies we will refer to as Hot-Flow Dynamic Isolation (HFDI) techniques, de-

tects roots of congestion trees as they are about to form, and separates flows contribut-

ing to congestion into special, dynamically assigned queues. Flows not contributing to

congestion reside in the regular queues of a switch and experience no (or little) HoL

blocking. An early HFDI-based technique was proposed by Duato et al. in 2005 [64];

Regional Explicit Congestion Notification (RECN), designed for networks implement-

ing source routing. Other HFDI-based techniques include Regional Explicit Conges-

tion Notification-Distributed Deallocation [65] (RECN-DD), Regional Explicit Conges-

tion Notification-Input Queued [66] (RECN-IQ), and Flow-Based Implicit Congestion

Management [67, 68] (FBICM), whereof FBICM implements HFDI for networks with

34 Background

deterministic incremental routing.

HFDI techniques monitor the buffer occupancy at switch ports to detect congestion.

If the occupancy at a port exceeds a given detection threshold, a root of congestion is

detected, and a separate congested flow queue16 (CFQ) is allocated and associated with

the root. Packets contributing to the detected congestion are then stored in the CFQ,

while other packets are stored in the regular buffer at the port, i.e. in the normal flow

queue (NFQ). By allowing packets in the NFQ to bypass packets stored in the CFQ,

low-order HoL blocking is prevented.

When a root of congestion is detected and a CFQ allocated, information about the

corresponding root, the roots location, and information to identify packets headed for

the root, is stored in a control memory linked to the CFQ. The content of this control

memory is propagated to the next upstream switch if the occupancy of the CFQ exceeds

a propagation threshold. The purpose of this propagation is to notify an upstream switch

about a growing congestion tree before the tree itself is able to reach the switch. When

the upstream switch is notified about a downstream congestion tree, the upstream switch

can (when needed) allocate its own separate CFQ for the given tree and store packets

headed for the root of that tree in the CFQ. By following this scheme, packets belonging

to different congestion trees are separated in corresponding CFQs throughout the network,

while packets not contributing to congestion remains in the NFQs. Thus, high-order HoL

blocking is prevented. A CFQ is deallocated as soon as the congestion tree going through

the CFQ vanishes, and later reallocated if a new congestion tree grows.

Figure 2.10 shows a switch implementing HFDI. Each input port is equipped with

two CFQs in addition to a NFQ. In this particular scenario, a root of congestion has

been identified and associated with out3. The ports in1 and in2 have allocated one CFQ

each, as they both have traffic headed for out3 (the green packets). The port in3, on the

other hand, has both its CFQs unallocated, as in3 has no packets headed for out3, and

no other root of congestion is detected locally nor reported from downstream switches.

The occupancy of the allocated CFQ at in1 is above the propagation threshold, thus

information about the root associated with out3 is propagated upstream. Since in2 is

currently forwarding traffic from its CFQ to out3, the green packets at in1 have to wait.

However, as the green packets at in1 is waiting in a CFQ, HoL blocking is avoided, and

in1 can forward the red packet from the NFQ to out2. in3 is at the same time forwarding

its purple packet to out1. The root of congestion is in this scenario located locally. The

scenario would be similar, however, if the root of congestion was located at a downstream

switch of out3, and the green packets were headed for the root of the congestion tree. If

we in that case assume that the red packet at in1 is headed for out3, but not the root

of the congestion tree, the red packet would still reside in the NFQ of in1 and can be

forwarded prior to the green packet in the CFQ of in2. Thus high-order HoL blocking is

avoided.

The HFDI techniques are able to react fast and locally, and prevent any significant

HoL blocking17 by isolating the branches of the congestion trees in the CFQs. The short

16The congested flow queues are called Set-Aside-Queues (SAQs) in RECN.
17Depending on the exact implementation of HFDI and the buffer management in the switches, short-

lived HoL blocking might still occur in some cases.

2.3 Congestion Management 35

Figure 2.10: A switch implementing HFDI with one detected root of congestion.

reaction time of the HFDI techniques, and in particularly the implementation of FBICM,

is an important source of inspiration when we address research question RQ4, presented

in paper V and paper IV. Recall that this research question seeks to deal with the delay

in reaction time imposed by the feedback control loop of an injection throttling based

congestion management technique like the one specified for InfiniBand.

On the other hand, the fact that a HFDI technique does not remove a congestion tree

from the network poses a challenge. The number of congestion trees a port can handle

is strongly tied to the number of available CFQs. If a port has x available CFQs, and

more than x congestion trees grow through the port, at least one of the trees will grow

into the NFQ, and HoL blocking is reintroduced. In a network with long-lived congestion

trees, this flaw could be particularly challenging, as the likelihood of several trees growing

into the same port increases. Then only a few large congestion trees could be enough to

exhaust all the CFQs of a large number of ports in the network.

2.3.2 Injection Throttling Based Congestion Management

An injection throttling based congestion management mechanism aims to avoid HoL block-

ing in a network by removing the real cause of the problem, the congestion trees. To resolve

congestion, the source nodes first need to be notified, in an implicit or explicit way, about

congestion in the network. Then, by adjusting their injection rates accordingly, the source

nodes can remove the congestion trees.

This detect-notify-react scheme can be implemented in a number of ways, and numer-

ous proposals exist. All the nodes in the network could gather and share, possibly by the

use of a separate control network, relevant information about the global status of the net-

work, and use this global network view to tune injection rates and avoid congestion [69].

Another option is to only notify a source node directly connected to a switch about locally

detected congestion at the switch, though differentiating between congestion where the

36 Background

local node is contributing, and congestion created by others [70]. In a wormhole network,

blocked worms, possibly padded, can be used to detect congestion (or deadlocks) if the

tail of the worm still resides inside the source node when the blocking occurs [71].

A subclass of the throttling strategies relies on the switches to detect congestion and

notify the source nodes by the use of explicit congestion notifications (ECN). An ECN can

be piggybacked to a packet contributing to congestion in order to notify the destination

node, whereupon the destination node notifies the corresponding source node about the

situation. This forward explicit notification approach is taken by InfiniBand, where pack-

ets are marked as contributing to congestion by setting a specific bit in the packet headers.

On the contrary, the switches could take a backward explicit notification approach where

switches send ECNs directly back to the source nodes. Such an approach is taken by the

Data Center Bridging standard [72]. Furthermore, in the context of ECN strategies, work

has been conducted on what information to include in the ECN, e.g. information about

the severity of the congestion could be included; where and when to mark the packets, e.g.

packets can be marked both at the input and the output buffers; and on how to design

the source response function at the source node, i.e. how a node reduces and increases

the injection rate of packets as a response to the ECNs [73, 74, 75, 76].

The InfiniBand congestion control mechanism is given special attention in this thesis,

and as such, we will give a detailed description of the mechanism below. First, however,

we will recall the general challenge related to the feedback loop of ECN-based injection

throttling strategies; it takes time to propagate information about congestion from a

switch to an end node. This delay imposed by the feedback loop not only challenges

the effectiveness of injection throttling as a congestion management mechanism, but it

could also have implications on the stability of traffic in the network. When congestion

occurs, it will take time from congestion is detected at a switch until the contributors

to congestion receive the notifications, and furthermore, more time will pass before the

effect of lowering an injection rate at a source reaches the root of the congestion tree.

During this total period of time, HoL blocking might take place in the network. Thus,

when a source node starts to receive ECNs, ideally the node should immediately halt the

traffic contributing to congestion just long enough to prune the congestion tree all the way

down to the root – but not longer, as a further halt in traffic could result in unfortunate

underutilization of the scarce resources at the root of the tree. Then, when the tree is

pruned, the source node should preferably inject traffic at a rate corresponding to this

traffic flow’s fair share of the resources at the root of congestion. Unfortunately, this rate

is neither static nor accurately known – because of the delay of the feedback loop.

Furthermore, while congestion is present, the delay created by the feedback loop makes

the source nodes continue to adjust their injection rates based upon information about

a previous network state. In an unfortunate situation, a source node could then end up

throttling a traffic flow that is no longer contributing to congestion, as the congestion tree

the flow previously was contributing to has been resolved, e.g. by a general change in the

traffic pattern in the network. To minimize the effect of such dangling assumptions about

congestion, it is important that source nodes increase their injection rates rapidly again

as the reception of ECNs is decreasing. That is, a source node should in some situations

quickly increase the injection rate, while in other situations just as quickly decrease the

2.3 Congestion Management 37

Figure 2.11: Congestion control in InfiniBand.

injection rate again. An unfortunate side effect of this, on the one hand desired, behavior

at the source nodes, is the oscillation in individual traffic flow throughputs observed

in [13, 77].

Altogether, ECN-based injection throttling aims to reduce HoL blocking in the network

by removing the cause of the problem, the congestion tree. This group of techniques can in

general be implemented with less hardware at the switches, compared to HFDI, and does

not suffer from a scalability issue when it comes to the number of concurrent congestion

trees supported before HoL blocking is reintroduced. On the other hand, the general

effectiveness of an ECN-based injection throttling mechanism is challenged by the delay

imposed by the feedback loop, and traffic oscillation might be introduced.

InfiniBand Congestion Control18

The InfiniBand (IB) Congestion Control (CC) mechanism [78], is based on a closed-loop

feedback control system, similar to the feedback loop described in the previous section.

An overview of the IB CC feedback loop is shown in figure 2.11. Here, a source node is

contributing to congestion detected by the switch to the right. That is, the root of the

congestion tree is located at this switch. A packet from the source node going through

the root of the congestion tree is then marked at the switch as a contributor to congestion

by setting a specific bit in the packet header, the Forward Explicit Congestion Notifi-

cation (FECN) bit (figure 2.11, �). An explicit congestion notification is then carried

through to the destination by this bit. The destination registers the FECN bit, and re-

turns a packet with the Backward Explicit Congestion Notification (BECN) bit set back

to the source (figure 2.11, �). By the reception of the BECN bit (figure 2.11, �), the

source node knows that the corresponding flow is contributing to congestion and reduces

the injection rate of the flow accordingly.

The exact behaviour of the IB CC mechanism depends upon the values of a set of

CC parameters governed by a Congestion Control Manager. These parameters determine

characteristics like when switches detect congestion, at what rate the switches will notify

destination nodes using the FECN bit, and how much and for how long a source node con-

tributing to congestion will reduce its injection rate. Appropriately set, these parameters

should enable the network to resolve congestion and avoiding HoL blocking, while still

utilizing the network resources at the root of the congestion tree efficiently. The following

18This section is a slightly modified version of a similar section existing in the research papers (of this
thesis) specifically addressing InfiniBand congestion control.

38 Background

Channel Adapter Switch
CongestionControlTable (CCT) Threshold
CCTI (CCT index) V ictim Mask
CCTI Increase Packet Size
CCTI Limit Marking Rate
CCTI T imer
CCTI Min

Table 2.1: InfiniBand CC channel adapter and switch parameters.

subsections detail the IB CC features at a switch and at a channel adapter (CA) (e.g. an

end node), and explain the corresponding CC parameters (summarized in table 2.1).

IB CC features at a Switch:

The switches are responsible for detecting congestion and notifying the destination nodes

using the FECN bit. A switch detects congestion on a given port and a given Virtual Lane

(Port VL) depending on a threshold parameter. If the threshold is crossed, a port may

enter the Port VL congestion state, which again may lead to FECN marking of packets.

The threshold, represented by a weight ranging from 0 to 15 in value, is the same for

all VLs on a given port, but could be set to a different level for each port. A weight of

0 indicates that no packets should be marked, while the values 1 through 15 represent

a uniformly decreasing value of the threshold. That is, a value of 1 indicates a high

threshold with high possibility of congestion spreading, caused by Port VLs moving into

the congestion state too late. A value of 15 on the other hand indicates a low threshold

with a corresponding low possibility of congestion spreading, but at the cost of a higher

probability for a Port VL to move into the congestion state even when the switch is

not really congested. The exact implementation of the threshold depends on the switch

architecture and is left to the designer of the switch.

A Port VL may enter the congestion state if the threshold is crossed and it is the root

of congestion, i.e. the Port VL has available credits to output data. If the Port VL has

no available credits, it is considered to be a victim of congestion and shall not enter the

congestion state unless a specific V ictim Mask is set for the port. The V ictim Mask is

typically set for a switch port connecting a CA. A CA that is not able to process received

packets fast enough will not consider itself to be a root of congestion even if a congestion

tree then builds up with the CA as the root. In this special case the Port VL at the switch

connecting the CA should consider itself to be the root of congestion, even if it is actually

a victim, and move into the congestion state.

When a Port VL is in the congestion state, its packets are eligible for FECN mark-

ing. A packet will then get the FECN bit set depending on two CC parameters at the

switch, the Packet Size and the Marking Rate. Packets with a size smaller than the

Packet Size will not get the FECN bit set. The Marking Rate sets the mean number of

eligible packets sent between packets actually being marked. With both the Packet Size

and the Marking Rate set to 0, all packets should get the FECN bit set while a Port VL

2.3 Congestion Management 39

is in the congestion state.

IB CC features at a Channel Adapter:

When a destination CA receives a packet with a FECN bit set, the CA should as quickly

as possible notify the source of the packet about the congestion19. As earlier mentioned,

this is done by returning a packet with the BECN bit set back to the source. The packet

with the BECN bit could either be an acknowledgement packet (ACK) for a reliable con-

nection or an explicit congestion notification packet (CNP). In either case it is important

that the ACK or the CNP is sent to the source as soon as possible to ensure a fast response

to the congestion.

When a source CA receives a packet with the BECN bit set, the CA lowers the

injection rate of the corresponding traffic flow. To determine how much and for how long

the injection rate should be reduced, the CA uses a Congestion Control Table (CCT) and

a set of CC parameters. The CCT holds injection rate delay (IRD) values that define

the delay between consecutive packets sent by a particular flow (the IRD calculation

being relative to the packet length). Each flow with CC activated holds an index into

the CCT, the CCTI. When a new BECN arrives, the CCTI of the flow is increased

by CCTI Increase. The CCT is usually populated in such a way that a larger index

yields a larger IRD. Then, consecutive BECNs increase the IRD which again decreases

the injection rate. The upper bound of the CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a CCTI T imer, maintained

separately for each Service Level (SL) of a port. Each time the timer expires, the CCTI

is decremented by one for all associated flows. When the CCTI of a flow reaches zero,

the flow no longer experience any IRD. Furthermore, each SL also has a CCTI Min

parameter. By using the CCTI Min it is possible to impose a minimum IRD to the SL,

as the CCTI should never be reduced below the CCTI Min.

The IB CC can operate either at the SL or at the Queue Pair20 (QP) level at an CA.

Any lowering of the injection rate as a result of BECN reception then affects the whole SL

or the single QP depending on the level of CC operation. While operating at the SL level

may require less resources at the CA than operating at the QP level, choosing the SL level

will have an impact on both fairness and performance. The reason is that a single traffic

flow contributing to congestion will lower the injection rate of all traffic flows within the

same SL at the CA. This could include traffic flows not contributing to the congestion at

all as they are not going through the root of the congestion tree, but headed for other

parts of the network.

19There are three exceptions. The FECN bit in a multicast packet, acknowledgement packet or conges-
tion notification packet should be ignored. That is, no congestion notification is sent back to the source
in these three cases.

20A Queue Pair is an endpoint of a communication channel used by applications to communicate using
InfiniBand’s messaging service.

Chapter 3

Summary of Research Papers

This chapter presents the six research papers written as part of this thesis. An extended

abstract is given for each paper, summarizing their contributions. The link between the

papers and the research questions in chapter 1.1 is given below. Five of the papers have

been published at peer-reviewed international conferences, while the last paper has been

submitted to the IEEE Transactions on Parallel and Distributed Systems journal. Some

ideas related to future work are presented at the end of the chapter.

Paper I [18] gives a detailed description of the simulator extensions developed by the

author to support the research conducted as part of this thesis. As such, the paper is

not directly connected to any of our research questions, but describes a tool used to

study injection throttling based congestion management in the context of InfiniBand. In

particular, the simulator has been the main tool used to produce the results presented in

Paper II [19] and Paper IV [20].

In Paper II [19] we address research question two1: How should congestion detection

and notification be carried out at a forwarding node implementing an injection throttling

based congestion management mechanism, like IB CC, to ensure fair treatment of the con-

tributors to congestion?. We show that the threshold mechanism used to detect congestion

and initiate packet marking at a switch leads to unfair treatment of the contributors to

congestion if the mechanism is implemented by a single threshold, even if the switch im-

plements a generally fair arbitration algorithm. To solve this unfairness issue, we propose

to add hysteresis to the congestion detection by implementing the threshold mechanism by

the use of a lower and upper threshold. In the paper, we demonstrate how fairness among

contributors to congestion is reintroduced by our proposed hysteresis. Furthermore, we

demonstrate how injection throttling as specified for InfiniBand can solve the parking lot

problem [19, 79] if the congestion control mechanism is properly configured.

Paper III [13] targets research question one: How can the IB CC parameters be tuned

to ensure efficient behavior of the IB CC mechanism for a given scenario, and how do

different parameters impact the network performance?. By systematically running exper-

iments on a small InfiniBand cluster, we show how performance of a congested network

varies as a function of IB CC parameter values. As part of this studies, we introduce

the treatment variation variable to indicate unfairness among contributors to congestion.

1To maintain a logical ordering of the papers, we present the paper that address research question two
before the paper that address research question one.

41

42 Summary of Research Papers

When a subset of IB CC parameter values is identified as leading to the desired IB CC

behavior, we use these values to demonstrate that IB CC capable hardware is able to

efficiently remove the congestion tree and avoid HoL blocking, while still utilizing the

scarce resources at the root of the congestion tree in a fair way.

In Paper IV [20] we build on the knowledge from Paper III to address research question

three: What is the scope of an injection throttling based congestion management mecha-

nism like IB CC, and how does such a mechanism behave depending on traffic dynamics

in the network and the lifetime of the hotspots, and in the case of IB CC, how robust are

the IB CC parameters with respect to such changing traffic dynamics? By using a single

set of IB CC parameter values we study how IB CC performs as the traffic dynamics

increases in a fat-tree topology with 648 end nodes. An abstract classification scheme for

congestion trees of varying degree of dynamics is introduced, and should be seen as one

of the contributions in the paper. The paper shows that IB CC, even when using a single

set of parameter values, outperforms a network running without CC for a large range of

congested situations. However, as the lifetime of the hotspots in the network decreases,

the benefit from enabling IB CC in the network becomes limited.

In Paper V [21] and Paper VI [22] we study how injection throttling can be combined

with a HFDI technique to address research question four: How can we extend a throttling

based congestion management mechanism, like IB CC, to overcome the challenges imposed

by the feedback control loop by taking immediate local action at a forwarding node, while

we wait for the throttling mechanism to have effect?. In [21] we propose the CCFIT con-

gestion management mechanism. CCFIT combines an IB CC inspired injection throttling

mechanism with a FBICM inspired HFDI technique for input buffered switches. In [22]

we present EcoCC, a comprehensive redesign of the CCFIT mechanism to utilize switch

architectures supporting virtual output queuing, VOQsw. The VOQsw’s ability to elim-

inate low-order HoL blocking allows EcoCC to focus solely on high-order HoL blocking.

By extracting the best of two worlds, injection throttling and HFDI, without inheriting

their respective weaknesses, CCFit and EcoCC are able to in an efficient, fair and scal-

able way conduct congestion management, outperforming injection throttling and HFDI

techniques as separate approaches.

While the research Papers I, III and IV specifically targets the InfiniBand platform,

research Paper II, addressing congestion detection and notification, should be seen as

a contribution for general injection throttling based congestion management techniques.

Thus, the knowledge from Paper II is also incorporated into the CCFIT and EcoCC mech-

anisms. CCFIT and EcoCC are proposed as general congestion management mechanisms

for lossless interconnection networks, though inspired by IB CC and FBICM.

3.1 Paper I: InfiniBand Congestion Control, Modelling and Validation 43

3.1 Paper I: InfiniBand Congestion Control,

Modelling and Validation [18]

Access to large InfiniBand clusters with support for congestion control is not easily gained.

In addition, a simulator model provides flexibility when it comes to experimenting with

functionality yet not available or accessible in hardware. Therefore, a simulator model to

study IB CC and gain knowledge about the behavior and characteristics of an injection

throttling based CC mechanism in general would be a valuable tool. In this paper we

present our CC capable IB model implemented in the OMNeT++ environment [17].

The CC capable IB model is based on the IB model made available to the OMNeT++

community by Mellanox Technologies Ltd in 2007/2008. We have ported the original IB

model to the OMNeT++ 4 environment, made several bug fixes, and added some general

extensions to make the model more suitable for our CC studies. Furthermore, the CC

functionality specified for IB in release 1.2.1 [78] is carefully implemented by the use of

the simple and compound module concepts of OMNeT++. In particular, support for all

the IB CC parameters have been implemented according to the IB specification.

The high level of detail required to precisely capture all aspects of the IB CC mecha-

nism and the corresponding dynamics imposed by injection throttling in a network, could

be a challenge for the scalability and usefulness of a simulator. Our experience shows that

the OMNeT++ environment and the IB model tackles the scalability issue quite well.

Furthermore, an important part of implementing a simulator is to validate it properly

to ensure that the simulation results are trustworthy. Our IB CC model has been carefully

validated against the hardware implementation of CC in the Mellanox ConnectX Host

Channel Adapters [80] and the Mellanox InfiniScale IV switches [61]. Validation results

presented in this paper shows that our CC capable IB model is able to closely resemble

the CC capable hardware from Mellanox.

3.2 Paper II: On the Relation Between Congestion

Control, Switch Arbitration and Fairness [19]

While the InfiniBand standard describes the functionality of IB CC, some freedom is

provided when it comes to implementing the concept. Several design decisions are left to

the hardware designer, as standards typically do. As we further elaborate on in this paper,

one must be cautious when making these design decisions not to introduce unfairness.

Fairness is an important property of any interconnection network. Different traffic flows

having the same priority should all get equal access to shared resources in the network.

In this paper we study by simulation the relationship between injection throttling

based congestion control, switch arbitration, and fairness. More specifically, we look at

fairness in two different situations: First, we look at fairness among different traffic flows

arriving at a hot spot switch on different input ports, as CC is turned on (Type I).

We demonstrate that a straightforward implementation of an (IB) injection throttling

mechanism using a single threshold results in unfairness, even if the switches implement

a fair arbitration scheme like round robin [2]. Furthermore, we show that this unfairness

44 Summary of Research Papers

is unstable in the sense that the distribution of bandwidth to the different flows depends

on the utilization of the different flows that just happened to prevail at the instance of

time when congestion occurred.

The second type of fairness we study is the fairness among traffic flows at a switch

where some flows are exclusive users of their input ports while other flows are sharing an

input port (Type II). This fairness, or lack of it, is related to the parking lot problem; An

arbiter at a switch will in general not differentiate between two separate traffic flows f1

and f2 arriving at the same input port ip1, both headed for the output port op. When a

third flow f3 arrives at a different input port ip2, but is headed for the same output port,

op, a fair round robin arbitration will alternate between forwarding packets from ip1 and

ip2. Such an arbitration, however, will give half the bandwidth of op to f3, while f1 and

f2 each will be left with only 1/4 of the op bandwidth. The three traffic flows are not

treated in a fair way. The result of this type of unfairness could be dramatic in a network

with a large diameter and/or if switches with many ports are used.

In this paper, we propose to solve Type I unfairness by adding hysteresis to the con-

gestion detection mechanism, and we demonstrate that the needed hysteresis successfully

can be implemented by means of two thresholds, one upper and one lower, where the dis-

tance between the two is at least one MTU (maximum transmission unit). Furthermore,

the paper shows that Type II unfairness can be avoided if the above mentioned hysteresis

is implemented and an aggressive marking rate for packets contributing to congestion is

applied. That is, properly configured, IB CC is able to solve the parking lot problem.

3.3 Paper III: First Experiences with

Congestion Control in InfiniBand Hardware [13]

The InfiniBand CC concept is rich in the way that it specifies a set of parameters that

can be tuned in order to achieve effective CC. There is, however, limited experience with

the InfiniBand CC mechanism in general, and in particular knowledge about how to tune

the different CC parameters is needed. In this paper we present the first experiences with

CC capable InfiniBand hardware in a small 2-switch/7-end-node cluster. By conducting

extensive testing on a selection of the CC parameters, we explore the parameter space,

and show that if properly configured, IB CC capable hardware is able to efficiently remove

the congestion tree and avoid HoL blocking, while still utilizing the resources at the root

of the congestion tree.

This paper consists of three main sections. First we study, by the use of an (by us)

identified set of IB CC parameter values and synthetic traffic patterns, how different traffic

flows are affected by properly configured IB CC. In particular we study how enabling

IB CC affects both the victim and the contributors to congestion in a scenario where

four contributors are creating a congestion tree causing HoL blocking of a single victim

(Scenario 1). Experiments show that activating CC in this case results in an order of

magnitude improvement in throughput for the victim flow, independent of packet size,

and that the throughput achieved by the victim flow when CC is enabled coincides with the

throughput the same flow achieves in a network with no congestion. The contributors to

3.4 Paper IV: Exploring the Scope of the InfiniBand Congestion Control
Mechanism 45

congestion are still able to utilize the resources at the root of the congestion tree (and the

parking lot problem is solved), but some oscillation is introduced as the contributors are

trying to settle for their fair share of the bottleneck resource. Furthermore, a scenario with

only contributors to congestion, and no potential victim flows, is investigated (Scenario 2).

Note that in such a situation there is no potential benefit from enabling CC. In this

scenario, the contributors to congestion experience a slight drop in performance (3.5%),

while the oscillation introduced is evident.

In the next main section of the paper, we continue to study Scenario 1 as described

above, but this time the victim flow is exchanged with traffic produced by the HPC

Challenge benchmark [81, 82]. By using the benchmark together with a synthetically

generated hotspot, we imitate the network conditions an application, here represented

by the benchmark, might experience if the network is shared with another application

creating congestion. The improvement in performance experienced by the benchmark

as CC is enabled depends on the communication sensitivity of the different applications

included in the benchmark. We observe performance improvement ranging from 1.7% to

248.1%. Again, the observed performance of the benchmark in a congested scenario with

CC enabled is very close to the performance we observed in a scenario without congestion.

In the last section of the paper, we elaborate on how the IB CC parameter values

we use in the paper were identified through extensive testing, with a particular focus on

the threshold parameter and the relation between the Marking Rate at a switch and

the CCTI T imer implemented by an end node. Furthermore, the treatment variation

variable is introduced as a tool to indicate unfairness among contributors to congestion.

Our studies show that even though the performance of IB CC is sensitive to the IB CC

parameter values, it is possible to find a parameter value“sweet spot”for our test scenarios.

3.4 Paper IV: Exploring the Scope of the InfiniBand

Congestion Control Mechanism [20]

Even though it has been shown that the InfiniBand CC mechanism, properly tuned, is able

to improve both throughput and fairness in an interconnection network [13], it has been

questioned whether the mechanism is fast enough to keep up with dynamic network traffic,

and if a given set of parameter values for a topology is robust when it comes to different

traffic patterns or if the parameters need to be tuned depending on the applications in use.

Furthermore, uncertainty has lingered as to whether CC may actually be harmful in some

scenarios. In this paper we address these questions by studying the performance of the

IB CC mechanism, using a single set of IB CC parameter values, as the communication

pattern in the network gradually changes from a static to a dynamic scenario in a fat-tree

with 648 end nodes. The studies are conducted by means of simulation.

To be able to conduct a systematic study of how the IB CC mechanism performs as

the traffic dynamic increases, we start by introducing an abstract classification scheme

for congestion trees. According to this scheme, congestion trees are divided into three

nonexclusive categories, based on the nature of the trees’ (main) contributors and how

dynamic they are. Starting with the least dynamic category, a congestion tree can be

46 Summary of Research Papers

silent, windy, or even moving while wind is blowing through the tree’s crown.

A silent congestion tree is created by a set of static contributors to congestion perma-

nently sending traffic to the same hotspot. In such a scenario, a congestion tree will grow

with branches always following the same set of paths in the network. The tree’s braches

are not blowing in the wind, and as such the congestion tree is silent. On the other hand,

contributors to a windy congestion tree is alternating between sending traffic to a perma-

nent hotspot and sending traffic elsewhere in the network. Thus, depending on how fast

the contributors alternate, the branches of the congestion tree may move (or grow and

get pruned along different paths) by the traffic pattern itself, resembling wind blowing

through the crown of the congestion tree. A moving congestion tree is a silent or windy

congestion tree where the hotspot at given times move, that is, where the contributors to

congestion at times change focus from one hotspot to another.

Even though the three categories of congestion trees are nonexclusive and a traffic

pattern in a network naturally will create a diverse and stormy forest of congestion trees,

by controlling the main creation of congestion trees we were able to in a systematic way

measure the performance of the IB CC mechanism as the traffic dynamics increases in the

network. Our studies show that IB CC, using a single set of IB CC parameter values, is

quite capable of handling silent and windy congestion trees in a fat-tree topology with 648

end nodes, showing up to a seventeen-fold increase in throughput over a network where

CC is not enabled. However, as the congestion trees start to move, the IB CC mechanism

is challenged, and as the hotspot lifetime reaches 1ms the benefit from enabling IB CC in

the network is more or less gone. Then again, the only adverse effect we ever registered

when enabling IB CC was a negligible decrease in throughput for the contributors to

congestion.

3.5 Paper V: Combining Congested-Flow Isolation

and Injection Throttling in HPC Interconnection

Networks [21]

Existing congestion management mechanisms in interconnection networks can be divided

into two general approaches. One approach is to throttle traffic injection at the sources

that contribute to congestion, while the other approach is to isolate the congested traffic in

specially designated resources. These two approaches have different, but non-overlapping

weaknesses. An injection throttling mechanism is able to remove the congestion tree,

and by that the introduced HoL blocking, but the mechanism has a challenge when it

comes to reaction time. It operates behind schedule. A mechanism based on congested-

flow isolation, on the other hand, reacts immediately and locally at a switch, but faces

scalability issues as the number of congestion trees increases. A switch may run out

of specially designated resources to handle congestion. In addition, there is another less

obvious difference between the two mechanisms: A throttling mechanism has the potential

of improving fairness in the network by solving the known parking lot problem.

Observing that the two approaches have non-overlapping weaknesses, we were inspired

3.6 Paper VI: Efficient and Cost-Effective Hybrid Congestion Control for
HPC Interconnection Networks 47

to overcome the shortcoming of a throttling-based congestion management mechanism like

IB CC by combining it with a congested-flow isolation mechanism like FBICM. At the

same time, such a combination has the potential of overcoming the shortcoming of a

congested-flow isolation mechanism, as the throttling could remove the congestion trees

before the flow isolation mechanism runs out of the specially designated resources at the

switches.

In this paper we present Combined Congested-Flow Isolation and Throttling (CC-

FIT), a novel mechanism which combines the two abovementioned approaches, injection

throttling and flow isolation. The paper gives a detailed description of the switch and end

node architecture, as well as their specific operation, to support CCFIT.

Through simulation studies we first demonstrate the respective flaws of injection throt-

tling and flow isolation. Then, we show that CCFIT is able to overcome these flaws. More

specifically, we show that CCFIT is able to quickly remove HoL-blocking, assure scala-

bility by removing the congestion trees, improve fairness in the network, and last but

not least, CCFIT achieves an allover higher throughput than injection throttling and

congested-flow isolation do as standalone concepts.

3.6 Paper VI: Efficient and Cost-Effective Hybrid

Congestion Control for HPC Interconnection

Networks [22]

As shown in paper V [21], the CCFIT mechanism is able to provide efficient, scalable and

fair congestion management, and is in particular able to outperform congestion manage-

ment implemented by means of injection throttling or flow isolation alone. However, as

CCFIT was design with input buffered switches in mind, the mechanism needs to handle

both low- and high-order HoL blocking. On the contrary, state-of-the-art HPC switch

architectures typically applies a VOQ-based buffer organization, e.g. implemented by

the use of memory with several read ports at each switch port. A VOQ-based switch is

then by its own internal structure able to eliminate low-order HoL blocking. This fact

encouraged us to rethink the CCFIT mechanism in a context where the congestion man-

agement mechanism needs to consider high-order HoL blocking only. The result is the

new congestion management mechanism presented in this paper.

In this paper we propose a new Efficient and cost-effective Congestion Control (EcoCC)

mechanism. EcoCC combines injection throttling and congested-flow isolation in a way

similar to CCFIT, but by taking advantage of a modern VOQ-based switch architecture

several and significant improvements over CCFIT were made possible. In particular, as

the VOQ scheme eliminates low-order HoL blocking, the specially designated resources

to handle packets contributing to congestion can be reserved for packets contributing to

high-order HoL blocking only. In addition, the VOQ characteristic of the switch makes

it possible for EcoCC to do exact congestion detection, while CCFIT’s detection mech-

anism is of probabilistic nature. Furthermore, the design of EcoCC makes it possible

to detect congestion using only two thresholds, while five is needed for CCFIT, thereby

48 Summary of Research Papers

further reducing the implementation complexity. The paper includes a description of the

architecture of a switch and end node supporting EcoCC.

The EcoCC mechanism is evaluated by simulating a combination of synthetic and

trace-based traffic patterns in 3, 4, and 5 stage fat-tree topologies with 64, 256, and 1024

end nodes, respectively (in the case of trace-based traffic patterns, only the 4 stage fat-tree

was used). The results show that the EcoCC mechanism is able to show significant im-

provements over injection throttling and flow isolation techniques as standalone concepts,

and in particular that EcoCC operates very close to the theoretical maximum in most

cases (represented by VOQnet). In addition, in an indirect comparison between EcoCC

and CCFIT, the improvements EcoCC achieves over the standalone concepts and a net-

work without congestion management, are higher than those made by CCFIT in (almost)

all cases, despite the more sophisticated switch architecture used when EcoCC is com-

pared against the standalone concepts; VOQ switches avoiding low-order HoL blocking

improves the base network performance. Thus, it can be concluded that EcoCC is able

to more accurately locate congestion roots and more efficiently use resources to isolate

contributors to congestion, compared to its counterpart CCFIT. Furthermore, EcoCC

requires less and simpler hardware to implement than CCFIT.

3.7 Future Work

Throughout this thesis we have shed some light on the challenges related to congestion

and congestion spreading in a lossless interconnection network, and new insight and new

proposals in the context of congestion management in such networks have been put forward

and evaluated, primarily in the attached research papers. Nevertheless, more interesting

challenges lay ahead, whereof a few are listed below.

While we have shown that IB CC is able to successfully conduct congestion manage-

ment in a large range of scenarios, and that promising discoveries have been made in

relation to IB CC parameter value robustness and fat-trees, the IB CC mechanism is still

not fully understood. It is of particular interest to extend the investigations started in this

thesis with studies of IB CC applied in popular direct topologies like Tori and Meshes,

and ultimately provide general guidelines on how to configure the IB CC mechanism.

Furthermore, access to a large IB CC capable cluster to confirm our findings and extend

our knowledge about IB CC’s efficiency as a congestion management mechanism is still

pursued.

IEEE have recently through the Data Center Bridging (DCB) task group supplemented

the IEEE 802.1 family of standards with an 802.1Qau specification detailing support for

congestion management in the context of Ethernet [72, 83]. The specification describes an

injection throttling based congestion management mechanisms baring similarities to IB

CC, but with two notable differences that could potentially improve the efficiency of the

throttling mechanism: In the DCB mechanism the congestion notification messages are

sent directly from a switch back to a contributing source. That is, the notifications are

not sent via the destination node, as in IB CC, thus the feedback loop is shortened. Fur-

thermore, the DCB notification message includes a quantized feedback about congestion,

3.7 Future Work 49

and by that carries information about the severity of congestion back to the contributor.

This information could be utilized by a contributor when it is adjusting its injection rate.

It would be interesting to study how these two potential improvements of DCB throttling

over IB CC actually play out in practice and how they influence the efficiency of the

throttling mechanism in general.

Adaptive routing has desirable characteristics when it comes to e.g. load balancing

and the flexibility to dynamically reroute around a faulty region in the network or a switch

being switched off to save power. Then again, as we have shown in chapter 2.3, adaptive

routing cannot always successfully conduct load balancing to alleviate congestion, but

might in some cases actually make a situation of congestion worse. A proper congestion

management mechanism is therefore still needed. However, just applying a well known

HFDI or injection throttling based congestion management mechanism to a network us-

ing adapting routing will not work, as the adaptivity of the routing algorithm disturbs

the fundamental assumptions made by the congestion management mechanisms. HFDI

mechanisms, like FBICM and the corresponding parts of CCFIT and EcoCC, relies on

a determinist routing algorithm to be able to decide at an upstream switch if a packet

further downstream will pass through the root of a congestion tree, and by that, if the

packet should be stored in a congested flow queue or in a normal flow queue. On the

other hand, when it comes to injection throttling, it is not clear how the fact that adap-

tive routing detaches a packet from a given path influences the marking of packets and

the injection throttling scheme; a source node will in general not differentiate between

packets belonging to the same traffic flow where some of the packets are contributing to

a congestion tree, and thus should have been throttled, while other packets are taking a

different uncongested path through the network, and by that should not be throttled. In

general, how to combine adaptive routing with a true congestion management mechanism

is not well understood and needs to be studied.

Last, a switch implementing a HFDI-based congestion management technique needs

to arbitrate between packets in normal flow queues and packets in congested flow queues.

Packets in a normal flow queue needs to be given priority to avoid HoL blocking, while

at the same time, starvation of the congested flow queues needs to be avoided. Ideally

the arbitration scheme should be able to take into account the situation at the root of

the congestion tree to find the right arbitration balance, avoiding both HoL blocking and

starvation. We have some initial ideas for such an arbitration scheme to improve the

general scheme used by, among others, FBICM, CCFIT and EcoCC. To refine, implement

and validate our ideas, however, is left as future work.

Bibliography

[1] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks An

Engineering Approach. Morgan Kaufmann, revised edition, 2003.

[2] William J. Dally and Brian Towles. Principles and practices of interconnection net-

works. Morgan Kaufmann, 2004.

[3] Gregory F. Pfister and V. Alan Norton. ”Hot Spot” Contention and Combining in

Multistage Interconnection Networks. IEEE Transactions on Computers, 34(10):943–

948, 1985.

[4] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics

Magazine, 38(8), 1965.

[5] InfiniBand Trade Association. Infiniband Architecture Specification, 1.2.1 edition,

November 2007.

[6] Top 500 supercomputer sites. http://top500.org/, November 2012.

[7] Ron Brightwell, Kevin T. Pedretti, Keith D. Underwood, and Trammell Hudson.

SeaStar Interconnect: Balanced Bandwidth for Scalable Performance. IEEE Micro,

26(3):41–57, 2006.

[8] Mark Crovella and Balachander Krishnamurthy. Internet Measurement: Infrastruc-

ture, Traffic and Applications. Wiley, John Wiley & Sons, Inc., 2006.

[9] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. Wiley Computer

Publishing, John Wiley & Sons, Inc., 1991.

[10] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Determin-

istic Queuing Systems for the Internet. In G. Goos, J. Hartmanis, and J. van Leeuwen,

editors, Network Calculus: A Theory of Deterministic Queuing Systems for the Inter-

net, volume 2050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg,

January 2001.

[11] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory. John Wiley,

New York, 3 edition, 1997.

[12] Karl Johan Åström and Richard M. Murray. Feedback Systems: An Introduction for

Scientists and Engineers. Princeton University Press, 2010.

51

52 BIBLIOGRAPHY

[13] Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo, Tor Skeie Olav Lysne,

Lars Paul Huse, and Gilad Shainer. First Experiences with Congestion Control in

InfiniBand Hardware. In Proceedings of 2010 IEEE International Symposium on

Parallel Distributed Processing (IPDPS 2010), pages 1–12, 2010.

[14] Mellanox Technologies. Mellanox OFED for Linux User Manual, 1.5.3 edition, Febru-

ary 2012.

[15] John S. Carson. Modeling and simulation worldviews. In Proceedings of the 1993

Winter Simulation Conference, WSC ’93, pages 18–23. ACM, 1993.

[16] Thomas J. Schriber and Daniel T. Brunner. Inside discrete-event simulation software:

how it works and why it matters. In Proceedings of the 2002 Winter Simulation

Conference, volume 1, pages 97–107 vol.1, 2002.

[17] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation en-

vironment. In Proceedings of the 1st International Conference on Simulation Tools

and Techniques for Communications, Networks and Systems & Workshops, SIMU-

Tools, pages 60:1–60:10. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), 2008.

[18] Ernst Gunnar Gran and Sven-Arne Reinemo. InfiniBand Congestion Control: Mod-

elling and validation. In Proceedings of the 4th International ICST Conference on

Simulation Tools and Techniques, SIMUTools ’11, pages 390–397. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering), 2011.

[19] Ernst Gunnar Gran, Eitan Zahavi, Sven-Arne Reinemo, Tor Skeie, Gilad Shainer,

and Olav Lysne. On the Relation between Congestion Control, Switch Arbitration

and Fairness. In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), pages 342–351, 2011.

[20] Ernst Gunnar Gran, Sven-Arne Reinemo, Olav Lysne, Tor Skeie, Eitan Zahavi, and

Gilad Shainer. Exploring the Scope of the InfiniBand Congestion Control Mechanism.

In Proceedings of 2012 IEEE 26th International Parallel Distributed Processing Sym-

posium (IPDPS 2012), pages 1131–1143, 2012.

[21] Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa, José Flich, Tor

Skeie, Olav Lysne, Francisco J. Quiles, and José Duato. Combining Congested-

Flow Isolation and Injection Throttling in HPC Interconnection Networks. In 2011

International Conference on Parallel Processing (ICPP), pages 662–672, 2011.

[22] Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa, José Flich, Tor

Skeie, Olav Lysne, Francisco J. Quiles, and José Duato. Efficient and Cost-Effective

Hybrid Congestion Control for HPC Interconnection Networks. Submitted to IEEE

Transactions on Parallel and Distributed Systems, 2013.

[23] William J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks.

IEEE Transactions on Computers, 39(6):775–785, 1990.

BIBLIOGRAPHY 53

[24] The Titan Cray XK7. Location: Oak Ridge National Laboratory, United States.

Local site: http://www.olcf.ornl.gov/titan/

Top500 system site: http://www.top500.org/system/177975, November 2012.

[25] The IBM Sequoia - BlueGene/Q. Location: Lawrence Livermore National Labora-

tory, United States. Local site: https://asc.llnl.gov/computing resources/sequoia/

Top500 system site: http://www.top500.org/system/177556, November 2012.

[26] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware-Efficient Super-

computing. IEEE Transactions on Computers, C-34:892–901, 1985.

[27] Fabrizio Petrini and Marco Vanneschi. k -ary n-trees: High Performance Networks

for Massively Parallel Architectures. Technical report, Dipartimento di Informatica,

Universita di of Pisa, 1995.

[28] The IBM SuperMUC - iDataPlex DX360M4. Location: Leibniz Supercomputer Cen-

tre, Germany. Local site: http://www.lrz.de/services/compute/supermuc/

Top500 system site: http://top500.org/system/177719, November 2012.

[29] The Dell Stampede - PowerEdge C8220. Location: Texas Advanced Computing

Center, United States. Local site: http://www.tacc.utexas.edu/stampede

Top500 system site: http://top500.org/system/177931, November 2012.

[30] The Tianhe-1A - NUDT YH MPP. Location: National Supercomputing Center in

Tianjin, China. Top500 system site: http://top500.org/system/176929, November

2012.

[31] Min Xie, Yutong Lu, Kefei Wang, Lu Liu, Hongjia Cao, and Xuejun Yang. Tianhe-1A

Interconnect and Message-Passing Services. IEEE Micro, 32(1):8–20, 2012.

[32] Edsger W. Dijkstra. Two starvation-free solutions of a general exclusion problem.

EWD 625, Plataanstraat 5, 5671 AL Nuenen, The Netherlands.

[33] Kanianthra M. Chandy and Jayadev Misra. The Drinking Philosophers Problem.

ACM Transactions on Programming Languages and Systems, 6(4):632–646, October

1984.

[34] Eitan Zahavi, Gregory Johnson, Darren J. Kerbyson, and Michael Lang. Optimized

InfiniBandTMFat-tree Routing for Shift All-To-All Communication Patterns. Con-

currency and Computation: Practice and Experience, 22(2):217–231, February 2010.

[35] Herbert Sullivan and Theodore R. Bashkow. A large scale, homogeneous, fully dis-

tributed parallel machine, I. SIGARCH Computer Architecture News, 5(7):105–117,

1977.

[36] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. Layered Shortest Path (LASH) Routing

in Irregular System Area Networks. In Proceedings of International Parallel and

Distributed Processing Symposium (IPDPS 2002), pages 8 pp–, 2002.

54 BIBLIOGRAPHY

[37] Larry L. Peterson and Bruce S. Davie. Computer Networks, A Systems Approach.

Morgan Kaufmann, 1996.

[38] Parviz Kermani and Leonard Kleinrock. Virtual Cut-through: A New Computer

Communication Switching Technique. Computer Networks, 3(4):267–286, September

1979.

[39] Charles Seitz et al. Wormhole Chip Project Report, Winter 1985.

[40] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multipro-

cessor Interconnection Networks. IEEE Transaction on Computers, C-36(5):547–543,

May 1987.

[41] Chris Eddington. InfiniBridge: An InfiniBand Channel Adapter with Integrated

Switch. IEEE Micro, 22(2):48–56, 2002.

[42] InfiniBand Trade Association. Infiniband Architecture Specification, 1.2.1 edition,

November 2007. (Chapter 7.9, Flow Control:212-216).

[43] Pedro J. Garćıa, José Flich, José Duato, Ian Johnson, Francisco J. Quiles, and Finbar

Naven. Dynamic Evolution of Congestion Trees: Analysis and Impact on Switch

Architecture. In High Performance Embedded Architectures and Compilers, pages

266–285, 2005.

[44] William J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and

Distributed Systems, 3(2):194–205, March 1992.

[45] Mu-Cheng Wang, Howard J. Siegel, Mark A. Nichols, and Seth Abraham. Using a

Multipath Network for Reducing the Effects of Hot Spots. IEEE Transactions on

Parallel and Distributed Systems, 6(3):252–268, 1995.

[46] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-Spot

Addressing in Large-Scale Multiprocessors. IEEE Transactions on Computers, C-

36(4):388–395, 1987.

[47] Li-Shiuan Peh and William J. Dally. Flit-Reservation Flow Control. In Proceedings of

Sixth International Symposium on High-Performance Computer Architecture HPCA-

6, 2000, pages 73–84, 2000.

[48] Nikolaos I. Chrysos. Congestion Management for Non-Blocking Clos Networks. In

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and

communications systems, ANCS ’07, pages 117–126. ACM, 2007.

[49] William J. Dally and Hiromichi Aoki. Deadlock-Free Adaptive Routing in Multi-

computer Networks Using Virtual Channels. IEEE Transactions on Parallel and

Distributed Systems, 4(4):466–475, April 1993.

[50] José Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole Net-

works. IEEE Transactions on Parallel and Distributed Systems, 4(12):1320–1331,

1993.

BIBLIOGRAPHY 55

[51] Mithuna Thottethodi, Alvin R. Lebeck, and Shubhendu S. Mukherjee. BLAM: A

High-Performance Routing Algorithm for Virtual Cut-Through Networks. In Pro-

ceedings of the International Parallel and Distributed Processing Symposium (IPDPS

2003), pages 10 pp.–, 2003.

[52] Paul Gratz, Boris Grot, and Stephen W. Keckler. Regional Congestion Awareness

for Load Balance in Networks-on-Chip. In IEEE 14th International Symposium on

High Performance Computer Architecture, HPCA 2008, pages 203–214, 2008.

[53] Daniel Franco, Indhira Garcés, and Emilio Luque. A New Method to Make Com-

munication Latency Uniform: Distributed Routing Balancing. In Proceedings of the

13th international conference on Supercomputing, ICS ’99, pages 210–219, New York,

NY, USA, 1999. ACM.

[54] Arjun Singh, William J. Dally, Brian Towles, and Amit K. Gupta. Globally Adaptive

Load-Balanced Routing on Tori. Computer Architecture Letters, 3(1):2–2, 2004.

[55] Yuval Tamir and Gregory L. Frazier. High-performance multiqueue buffers for VLSI

communication switches. In Conference Proceedings of 15th Annual International

Symposium on Computer Architecture, 1988, pages 343–354, 1988.

[56] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker. High-

Speed Switch Scheduling for Local-Area Networks. ACM Transactions on Computer

Systems, 11(4):319–352, November 1993.

[57] Yuval Tamir and Gregory L. Frazier. Dynamically-Allocated Multi-Queue Buffers for

VLSI Communication Switches. IEEE Transactions on Computers, 41(6):725–737,

1992.

[58] Teresa Nachiondo, José Flich, and José Duato. Buffer Management Strategies to

Reduce HoL Blocking. IEEE Transactions on Parallel and Distributed Systems,

21(6):739–753, June 2010.

[59] Wladek Olesinski, Hans Eberle, and Nils Gura. Scalable Alternatives to Virtual Out-

put Queuing. In Proceedings of IEEE International Conference on Communications,

2009. ICC’09, pages 1–6, 2009.

[60] Jesús Escudero-Sahuquillo, Pedro J. Garćıa, Francisco J. Quiles, and José Duato. An

Efficient Strategy for Reducing Head-of-Line Blocking in Fat-Trees. In Proceedings

of the 16th international Euro-Par conference on Parallel processing: Part II, Euro-

Par’10, pages 413–427, Berlin, Heidelberg, 2010. Springer-Verlag.

[61] Mellanox Technologies Ltd. InfiniScale IV, [Online, May 2013].

http://www.mellanox.com/related-docs/prod silicon/PB InfiniScale IV.pdf.

[62] Wei Lin Guay, Bartosz Bogdanski, Sven-Arne Reinemo, Olav Lysne, and Tor Skeie.

vFtree - A Fat-Tree Routing Algorithm Using Virtual Lanes to Alleviate Congestion.

In Proceedings of the 2011 IEEE International Parallel & Distributed Processing Sym-

posium (IPDPS 2011), pages 197–208. IEEE Computer Society, 2011.

56 BIBLIOGRAPHY

[63] Wei Lin Guay, Sven-Arne Reinemo, Olav Lysne, and Tor Skeie. dFtree: A Fat-Tree

Routing Algorithm Using Dynamic Allocation of Virtual Lanes to Alleviate Conges-

tion in InfiniBand Networks. In Proceedings of the First International Workshop on

Network-Aware Data Management, NDM ’11, pages 1–10. ACM, 2011.

[64] José Duato, Ian Johnson, José Flich, Finbar Naven, Pedro J. Garćıa, and Teresa

Nachiondo. A New Scalable and Cost-Effective Congestion Management Strategy

for Lossless Multistage Interconnection Networks. In Proceedings of the 11th Inter-

national Symposium on High-Performance Computer Architecture, HPCA-11, pages

108–119, 2005.

[65] Pedro J. Garćıa, Francisco J. Quiles, José Flich, José Duato, and Ian Johnson. RECN-

DD: A Memory-Efficient Congestion Management Technique for Advanced Switch-

ing. In Proceedings of International Conference on Parallel Processing, 2006. ICPP

2006, pages 23–32, 2006.

[66] Gaspar Mora, Pedro J. Garćıa, José Flich, and José Duato. RECN-IQ: A Cost-

Effective Input-Queued Switch Architecture with Congestion Management. In Pro-

ceedings of the 2007 International Conference on Parallel Processing, ICPP, pages

74–. IEEE Computer Society, 2007.

[67] Jesús Escudero-Sahuquillo, Pedro J. Garćıa, Francisco J. Quiles, José Flich, and José

Duato. FBICM: Efficient Congestion Management for High-Performance Networks

Using Distributed Deterministic Routing. In Proceedings of the 15th International

Conference on High Performance Computing, HiPC, pages 503–517. Springer-Verlag,

2008.

[68] Jesús Escudero-Sahuquillo, Pedro J. Garćıa, Francisco J. Quiles, José Flich, and

José Duato. Cost-Effective Congestion Management for Interconnection Networks

Using Distributed Deterministic Routing. In Proceedings of the 2010 IEEE 16th

International Conference on Parallel and Distributed Systems, ICPADS, pages 355–

364, 2010.

[69] Mithuna Thottethodi, Alvin R. Lebeck, and Shubhendu S. Mukherjee. Self-Tuned

Congestion Control for Multiprocessor Networks. In Proceedings of the Seventh Inter-

national Symposium on High-Performance Computer Architecture, HPCA-7, pages

107–118, 2001.

[70] Elvira Baydal and Pedro López. A Robust Mechanism for Congestion Control: INC.

In Harald Kosch, László Böszörményi, and Hermann Hellwagner, editors, Euro-Par

2003 Parallel Processing, volume 2790 of Lecture Notes in Computer Science, pages

958–968. Springer Berlin Heidelberg, 2003.

[71] Jae H. Kim, Ziqiang Liu, and Andrew A. Chien. Compressionless Routing: A Frame-

work for Adaptive and Fault-tolerant Routing. In Computer Architecture, 1994.,

Proceedings the 21st Annual International Symposium on, pages 289–300, 1994.

BIBLIOGRAPHY 57

[72] IEEE 802 LAN/MAN Standards Committee. IEEE Standard for Local and Metropoli-

tan Area Networks—Virtual Bridged Local Area Networks - Amendment: 10: Con-

gestion Notification., Available at http://www.ieee802.org/1 IEEE 802.1Qau-2010

edition.

[73] Joan-LLúıs Ferrer, Elvira Baydal, Antonio Robles, Pedro López, and José Duato.

Congestion Management in MINs Through Marked & Validated Packets. In 15th

EUROMICRO International Conference on Parallel, Distributed and Network-Based

Processing (PDP’07), pages 260 – 7, 2007.

[74] Joan-LLúıs Ferrer, Elvira Baydal, Antonio Robles, Pedro López, and José Duato. On

the Influence of the Packet Marking and Injection Control Schemes in Congestion

Management for MINs. In Euro-Par 2008 Parallel Processing. 14th International

Euro-Par Conference, pages 930 – 9, 2008.

[75] Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman. Evaluation of

Congestion Detection Mechanisms for InfiniBand Switches. In Proceedings of the

Global Telecommunications Conference, 2002. GLOBECOM ’02, pages 2276–2280,

2002.

[76] Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman. End-to-End Con-

gestion Control for InfiniBand. In Proceedings of Twenty-Second Annual Joint Con-

ference of the IEEE Computer and Communications. INFOCOM. IEEE Societies,

volume 2, pages 1123–1133, 2003.

[77] Gregory F. Pfister, Mitch Gusat, Wolfgang Denzel, D. Craddock, N. Ni, W. Rooney,

T. Engbersen, Ronald P. Luijten, R. Krishnamurthy, and José Duato. Solving Hot

Spot Contention Using InfiniBand Architecture Congestion Control. Invited paper

in High Performance Interconnects for Distributed Computing, july 2005.

[78] InfiniBand Trade Association. Infiniband Architecture Specification, 1.2.1 edition,

November 2007. (Annex A10, Congestion Control:1650-1697).

[79] Mike Galles. Spider: A High-Speed Network Interconnect. IEEE Micro, 17(1):34–39,

January 1997.

[80] Mellanox Technologies Ltd. ConnectX, [Online, May 2013].

http://www.mellanox.com/related-docs/prod silicon/PB ConnectX Silicon.pdf.

[81] HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/, [Online, May 2013].

[82] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,

Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi. Introduction

to the HPC Challenge Benchmark Suite. Technical Report LBNL-57493, Lawrence

Berkeley National Laboratory, April 2005.

[83] Sven-Arne Reinemo, Tor Skeie, and Manoj K. Wadekar. Ethernet for High-

Performance Data centers: On the New IEEE Datacenter Bridging Standards. IEEE

Micro, 30:42–51, 2010.

List of Appendices

Paper I InfiniBand Congestion Control, Modelling and Validation

publised at The 4th International ICST Conference on Simulation Tools and

Techniques (SIMUTools2011, OMNeT++ 2011 Workshop)

authors Ernst Gunnar Gran and Sven-Arne Reinemo

Paper II On the Relation Between Congestion Control, Switch

Arbitration and Fairness

publised at The 11th IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing (CCGrid 2011)

authors Ernst Gunnar Gran, Eitan Zahavi, Sven-Arne Reinemo, Tor Skeie,

Gilad Shainer and Olav Lysne

Paper III First Experiences with Congestion Control

in InfiniBand Hardware

publised at The 24th IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2010)

authors Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo, Tor Skeie,

Olav Lysne, Lars Paul Huse, and Gilad Shainer

Paper IV Exploring the Scope of the InfiniBand

Congestion Control Mechanism

publised at The 26th IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2012)

authors Ernst Gunnar Gran, Sven-Arne Reinemo, Olav Lysne, Tor Skeie,

Eitan Zahavi, and Gilad Shainer

Paper V Combining Congested-Flow Isolation and

Injection Throttling in HPC Interconnection Networks

publised at The 40th Annual Conference – International Conference on

Parallel Processing (ICPP 2011)

authors Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa,

José Flich, Tor Skeie, Olav Lysne, Francisco J. Quiles, and José Duato

Paper VI Efficient and Cost-Effective Hybrid Congestion Control

for HPC Interconnection Networks

submitted to IEEE Transactions on Parallel and Distributed Systems

authors Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa,

José Flich, Tor Skeie, Olav Lysne, Francisco J. Quiles, and José Duato

59

Paper I

InfiniBand Congestion Control

Modelling and Validation

Ernst Gunnar Gran and Sven-Arne Reinemo

InfiniBand Congestion Control

Modelling and validation

Ernst Gunnar Gran
Simula Research Laboratory

Martin Linges vei 17
1325 Lysaker, Norway
ernstgr@simula.no

Sven-Arne Reinemo
Simula Research Laboratory

Martin Linges vei 17
1325 Lysaker, Norway
svenar@simula.no

ABSTRACT

In a lossless interconnection network congestion may results
in performance degradation if no countermeasure is taken.
To relieve the consequences of congestion, and by that to
achieve good utilization of networks resources even at high
network load, congestion control (CC) has been added to the
InfiniBand specification. The behavior of the InfiniBand CC
is, however, governed by a set of CC parameters. Exactly
how to set these parameters to ensure an all over efficient
network is still not well understood. It is time consuming,
costly and hard to explore the CC parameter space in a large
scale cluster. Therefore, a simulation platform is needed. In
this paper we present our CC capable IB model implemented
in the OMNeT++ environment. We explain the basics of
our model, and validate it against CC capable hardware to
show its high accuracy.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network
Operations—Network Management ; C.2.5 [Computer Com-

munication Networks]: Local and Wide-Area Networks—
High-speed ; I.6.4 [Simulation and Modeling]: Model Val-
idation and Analysis; I.6.5 [Simulation and Modeling]:
Model Development; I.6.8 [Simulation and Modeling]:
Types of Simulation—Discrete event

General Terms

Simulation, validation, performance, design

Keywords

InfiniBand, congestion control, OMNeT++

1. INTRODUCTION
Congestion control (CC) is a hot topic in interconnection

networks for large high performance computing (HPC) clus-
ters. It is considered especially important in this domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2011 March 21, Barcelona, Spain.
Copyright 2011 ACM ...$10.00.

because the interconnection networks used in HPC are loss-
less, i.e. they use flow control to avoid packet loss caused by
buffer overflows. In lossless networks congestion may spread
and result in severe performance degradation if no counter-
measures are taken[3, 5, 6, 10].

Congestion control was added to version 1.2.1 of the In-
finiBand (IB) standard [7], and hardware with support for
CC has just recently appeared, even though the CC fea-
tures are not yet generally available. A major challenge
with the congestion control mechanism found in IB is how
to properly use it, i.e. how to configure the congestion con-
trol parameters properly for a given system. This problem
is not yet understood, and it is time consuming, costly, and
difficult to explore the parameter space in a large scale clus-
ter. Another related question is how CC affects performance
in scenarios with and without congestion, which is equally
hard to understand. Therefore, a simulation model would
be a valuable tool in the search for a better understanding
on how to properly configure IB CC in various topologies of
different sizes, and useful to study the effect of congestion
control in different application scenarios.

Our contribution in this paper consists of an implementa-
tion of the IB CC mechanism in OMNeT++ [12] and a val-
idation of this model against the hardware implementation
of CC in the Mellanox ConnectX Host Channel Adapters [8]
and Mellanox InfiniScale IV switches [9].

The paper is structured as follows: In section 2 we give
an overview of the IB CC mechanism, followed by a detailed
description of the simulation model in section 3. Then we
describe the hardware test-bed we have used to validate the
simulation model in section 4. The validation scenarios and
results are described and analysed in section 5 and 6, re-
spectively. Finally, we conclude in section 7.

2. THE CC CONCEPT IN INFINIBAND
In this section we give an overview of the IB CC mech-

anism as specified in the InfiniBand Architecture Specifica-
tion release 1.2.1 [7]. The IB CC mechanism is based on a
closed loop feedback control system where a switch detect-
ing congestion marks packets contributing to the congestion
by setting a specific bit in the packet headers, the Forward

Explicit Congestion Notification (FECN) bit (fig. 1 (1)).
The congestion notification is carried through to the desti-
nation by this bit. The destination registers the FECN bit,
and returns a packet with the Backward Explicit Congestion

Notification (BECN) bit set to the source (fig. 1 (2)). The
source then temporarily reduces the injection rate to resolve
congestion (fig. 1 (3)).

Figure 1: Congestion control in InfiniBand.

The exact behaviour of the IB CC mechanism depends
upon the values of a set of CC parameters governed by
a Congestion Control Manager. These parameters deter-
mine characteristics like when switches detect congestion,
at what rate the switches will notify destination nodes using
the FECN bit, and how much and for how long a source node
contributing to congestion will reduce its injection rate. Ap-
propriately set, these parameters should enable the network
to resolve congestion by avoiding head-of-line blocking [10],
while still utilizing the network resources efficiently.

2.1 Congestion Control at a Switch
The switches are responsible for detecting congestion and

notifying the destination nodes using the FECN bit. A
switch detects congestion on a given port and a given Vir-

tual Lane (Port VL) depending on a threshold parameter.
If the threshold is crossed, a port may enter the Port VL
congestion state, which again may lead to FECN marking
of packets.

The threshold, represented by a weight ranging from 0
to 15 in value, is the same for all VLs on a given port, but
could be set to a different level for each port. A weight of 0
indicates that no packets should be marked, while the values
1 through 15 represent a uniformly decreasing value of the
threshold. That is, a value of 1 indicates a high threshold
with high possibility of congestion spreading, caused by Port
VLs moving into the congestion state too late. A value of
15 on the other hand indicates a low threshold with a cor-
responding low possibility of congestion spreading, but at
the cost of a higher probability for a Port VL to move into
the congestion state even when the switch is not really con-
gested. The exact implementation of the threshold depends
on the switch architecture and is left to the designer of the
switch.

A Port VL enters the congestion state if the threshold
is crossed and it is the root of congestion, i.e. the Port
VL has available credits1 to output data. If the Port VL
has no available credits, it is considered to be a victim of
congestion and shall not enter the congestion state unless a
specific V ictim Mask is set for the port. The V ictim Mask

is typically set for ports connecting a channel adapter (CA)
to the switch. A CA that is not able to process received
packets fast enough will not consider itself to be a root of
congestion even if a congestion tree[6] then builds up with
the CA as the root. In this special case the Port VL at the
switch connecting the CA should consider itself to be the
root of congestion, even if it is actually a victim, and move
into the congestion state.

When a Port VL is in the congestion state its packets are

1The number of credits at a port determines how much traf-
fic the port is allowed to send to the next port downstream.
The credit value corresponds to the available buffer space at
the downstream port.

eligible for FECN marking. A packet will then get the FECN
bit set depending on two CC parameters at the switch, the
Packet Size and the Marking Rate. Packets with a size
smaller than the Packet Size will not get the FECN bit
set. The Marking Rate sets the mean number of eligible
packets sent between packets actually being marked. With
both the Packet Size and the Marking Rate set to 0, all
packets should get the FECN bit set while a Port VL is in
the congestion state.

2.2 Congestion Control at a Channel Adapter
When a destination CA receives a packet with a FECN

bit, the CA should as quickly as possible notify the source of
the packet about the congestion2. As earlier mentioned, this
is done by returning a packet with the BECN bit set back to
the source. The packet with the BECN bit could either be
an acknowledgement packet (ACK) for a reliable connection
or an explicit congestion notification packet (CNP). In either
case it is important that the ACK or the CNP is sent to the
source as soon as possible to ensure a fast response to the
congestion.

When a source CA receives a packet with the BECN bit
set, the CA lowers the injection rate of the corresponding
traffic flow. That is, the injection rate of either the related
queue pair (QP) or the corresponding service layer (SL) will
be reduced. Congestion control at a CA port operates either
at the QP or at the SL level, exclusively. To determine how
much and for how long the injection rate should be reduced,
the CA uses a Congestion Control Table (CCT) and a set of
CC parameters. The CCT , consisting of at least 128 entries,
holds injection rate delay (IRD) values that define the delay
between consecutive packets sent by a particular flow (QP
or SL). Each flow with CC activated holds an index into the
CCT, the CCTI. When a new BECN arrives, the CCTI

of the flow is increased by CCTI Increase. The CCT is
usually populated in such a way that a larger index yields
a larger IRD. Then consecutive BECNs increase the IRD
which again decreases the injection rate. The upper bound
of the CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a
CCTI T imer, maintained separately for each SL of a port.
Each time the timer expires the CCTI is decremented by
one for all flows associated with the corresponding port SL.
When the CCTI of a flow reaches zero, the flow now longer
experience any IRD. Each port SL also has a CCTI Min

parameter. Using the CCTI Min it is possible to impose
a minimum IRD to the port SL, as the CCTI should never
be reduced below the CCTI Min.

3. THE SIMULATION MODEL
Our IB CC implementation is based on the IB model made

available to the OMNeT++ community by Mellanox Tech-
nologies Ltd in 2007/2008. We have ported this model to
the OMNeT++ 4 environment, made several bug fixes, and
added some general extensions to the IB model to make it
more suitable for our CC studies (e.g. support for interval
logging of network statistics like bandwidth and buffer occu-
pancy, and detailed control of the startup time for the traffic

2There are three exceptions. The FECN bit in a multicast
packet, acknowledgement packet or congestion notification
packet should be ignored. That is, no congestion notification
is sent back to the source in these three cases.

Figure 2: The HCA compound module of the IB

model.

generators). Below we start by giving a brief overview of the
IB model, before we give a more detailed explanation of the
IB CC extensions to the model in the next section.

3.1 The IB Model
The IB model consists of a set of simple and compound

modules to simulate an IB network with support for the IB
flow control scheme, arbitration over multiple virtual lanes,
and routing using linear forwarding tables.

The two building blocks for creating networks using the
IB model are the Host Channel Adapter (HCA) compound
module and the Switch compound module, shown in figure
2 and 3 correspondingly. The Switch consists of a set of
SwitchPorts, which are by themselves compound modules.
During a simulation, an HCA represents both a traffic injec-
tor and a traffic sink in the network, while a Switch acts as
a forwarding node. The HCAs and switches are connected
using gates, corresponding to links in the network.

The HCAs and the SwitchPorts consist of a set of common
simple modules ibuf, obuf, and vlarb (the ccmgr is part of the
IB CC extension), while the simple modules gen and sink

are exclusive to the HCAs. The ibuf represents an input
buffer with support for virtual lanes, virtual output queuing
(VoQ) and virtual cut through switching. The obuf rep-
resents a simple output buffer, while the vlarb implements
round robin arbitration over the different VLs and multiple
input ports (if the module is part of a SwitchPort). The gen

implements traffic generation in a HCA, while the sink is
the part of the HCA responsible for removing traffic from
the network. The gen module supports several traffic gen-
eration schemes, e.g. varying the injection rate, the packet
size and the destination node distribution.

In general, the gen module at an HCA generates traffic
that is forwarded through the vlarb to the obuf of the HCA.
From there it is sent out into the network. At a Switch(Port)
the ibuf receives the traffic, does the routing decision and
moves the traffic into the corresponding VoQ. Here the traffic
waits until the vlarb of the given output port grants access
to the corresponding obuf. At an HCA the ibuf receives
traffic and forwards it to the sink. The IB flow control is
managed by the ibuf s and the obuf s, exchanging flow control
messages.

Figure 3: The switch compound module of the IB

model.

3.2 The IB CC Extensions
The InfiniBand Congestion Control mechanism is imple-

mented by the simple module ccmgr. The ccmgr is included
in the compound modules for the HCA and the Switch-

Port, and manages everything related to congestion control
in these modules, with the help of the other simple mod-
ules therein. In particular, all CC parameters specified in
the InfiniBand Architecture Specification release 1.2.1 [7] are
supported by the ccmgr module.

3.2.1 The Switch Model

At a Switch, the ccmgr is responsible for detection and
notification of congestion. The ibuf at a given SwitchPort

reports every change in the fill ratio of one of its VoQs to
the ccmgr of the SwitchPort corresponding to the VoQ in
question. This reporting is done at the VL level. Notice that
the mentioned ibuf and ccmgr in most situations will be lo-
cated in different SwitchPorts, as the traffic usually leaves
and enters a switch on different ports. Now, using the up-
dates from the different ibuf s, the ccmgr keeps track of the
fill ratios of all VoQs headed for the corresponding obuf,
and decides whether the corresponding Port VL should be
considered to be in the congestion state or not. The de-
cision is based upon the value of the threshold, a consid-
eration of the V ictim Mask, as well as how the fill ratio
is evaluated against the threshold. This evaluation of the
threshold against the fill ratios of the VoQs, is an example
of a design decision that is left to the switch designer. Our
IB CC extension supports three different ways of doing this
mapping: comparing the fill ratio of each individual VoQ to
the threshold, comparing the sum of the fill ratios of the
VoQs to the threshold, and last comparing the sum of the
fill ratios of the VoQs to a threshold divided by the num-
ber of contributing input ports. At the obuf, each time the
module wants to send a new packet into the network, the
ccmgr is asked to update the FECN bit of the packet be-
fore it is sent. When doing this, the ccmgr considers if the
corresponding Port VL is in the congestion state, as well as
if the two CC parameters Marking Rate and Packet Size

qualify for setting the FECN bit.

3.2.2 The HCA Model

At an HCA, the ccmgr inspects every packet entering the

ibuf to check if the FECN or BECN bit is set (if both bits
are set, the FECN bit is ignored). Upon detection of a
FECN bit, the ccmgr creates a CNP to send a BECN back
to the source of the FECN marked packet; a contributor to
congestion. The CNP is placed in a special CNP queue at
the ccmgr. The obuf of the HCA gives priority to the CNP
queue over other traffic to make sure that the CNPs are sent
as soon as possible.

The CCT is contained in the ccmgr of an HCA. Upon re-
ception of a CNP with the BECN bit set, the ccmgr updates
the CCTI of the corresponding SL or QP - depending on
the level of congestion control operation - by the value of
CCTI Increase. At the same time, the related timer is up-
dated. Each timer corresponding to a SL or a QP is in our
IB CC extension implemented as a CCTI T imer delayed
message sent from the ccmgr to itself. If the message is not
canceled, the return of the message will cause the CCTI

identified by the message to be decreased (and a new timer
message is sent, if needed).

When the vlarb at the HCA arbitrates between flows from
the gen requesting access to the obuf, the ccmgr calculates
the needed IRD values from the CCT to assist in the arbi-
tration process. The vlarb uses the feedback from the ccmgr

during arbitration to make sure that only traffic flows con-
tributing to congestion is held back. The calculation of the
IRD values follows the guidelines given in the IB specifica-
tion[7].

3.3 Scalability
The level of detail required from the simulation model to

be able to accurately simulate the IB CC mechanism and its
parameter space, could be a challenge for the scalability and
the usefulness of the simulator. Our experience shows that
the OMNeT++ environment and the IB model scales quite
well, and there are no specific limitations regarding topology
or network size in the model itself. In addition to simulations
of network sizes similar to the examples given in this paper,
we have run extensive CC simulations of the Sun Datacenter
InfiniBand Switch 648[11]. This is an IB 1.2 compliant QDR
capable switch with 648 ports. The internal topology of the
switch is a three-stage full non-blocking Clos network. Even
for such a complex network structure, with all CC features
enabled and 648 active end nodes, the memory requirement
for a simulation is less than 1.5GB. Simulating 0.5 seconds
of real time network traffic, corresponding to approximately
100GB of data transferred in the network, takes 1-2 days to
complete depending on the CC parameters and if the CC
operates at the SL or QP level. This is when running on an
Intel Q6600 CPU, using only one out of four cores. We plan
to parallelize the model in the future in order to reduce the
simulation time.

4. THE HARDWARE TEST BED
The hardware test bed used to measure the behavior of

the IB CC is shown in figure 4. Seven Sun Fire X2200 M2
hosts (H1-H7) are connected to two InfiniScale IV Mellanox
switches (IS4). The host-to-switch links have a capacity of
20 Gbit/s each, while the switch-to-switch link has a capac-
ity of 40 Gbit/s.

The Mellanox ConnectX HCAs and IS4 switches are the
latest generation of IB hardware from Mellanox Technolo-
gies, and both the HCAs and switches include hardware sup-

Figure 4: The test bed.

Figure 5: Flow configuration in scenario 1.

port for the IB CC mechanism3.
The compute nodes in our test bed consists of seven Sun

Fire X2200 M2 servers that are connected as hosts H1-H7
in figure 4. Each host has a dual port DDR HCA fitted in
a 8x PCIe 1.1 slot, one dual core AMD Opteron 2210 CPU,
and 2GB of RAM. All hosts run Ubuntu Linux 8.04 x86 64
with kernel version 2.6.24-24-generic and OFED 1.4.1. The
PCIe 1.1 8x slots in these machines have a signalling rate
of 20 Gbit/s, which equals a theoretical bandwidth of 16
Gbit/s when counting for the 8b/10b encoding overhead.
The achievable bandwidth is further reduced by PCIe pro-
tocol overhead, the speed of other system components etc.

To generate traffic on the hosts we used several different
tools. Netpipe [2], which measures bandwidth and latency
for different packet sizes, is used to get some basic perfor-
mance numbers. To be able to study congestion in a con-
trolled manner we have implemented some changes to the
perftest application suite (part of OFED) to support reg-
ular bandwidth reporting and continuously sending traffic
at full capacity. The modified perftest is used to both cre-
ate congestion in the network and to measure the impact of
congestion.

5. THE VALIDATION SCENARIOS
In order to validate the performance of the simulation

model we have defined two scenarios as described below.

5.1 Scenario 1
The purpose of communication scenario 1 is twofold. First,

it illustrates the negative effect that congestion can have on
a flow not contributing to congestion, a victim flow (flow 1
from H1 to H4 in fig. 5). Second, it illustrates how this
negative effect can be avoided by using congestion control.

In this scenario we use the following communication pat-
tern (fig. 5): Flow 1 (F1) from H1 to H4, and flow 2 - 5
(F2-F5) where H2, H3, H6, and H7 all send to H5. Com-
munication starts with only F1 active, then F2 - F5 are ac-

3To enable congestion control, custom firmware is required
for both switches and HCAs. This is not yet generally avail-
able.

Figure 6: Flow configuration in scenario 2.

tivated one by one with one second intervals. When a flow
is active it tries to send at maximum speed, using a reliable
connection.

5.2 Scenario 2
The purpose of communication scenario 2 is to study how

congestion control performs when there is no victim present,
and by that no HOL blocking to reduce in order to poten-
tially improve overall performance.

In this scenario we use the following communication pat-
tern (fig. 6): Flow 1 (F1) from H1 to H4, flow 2 (F2) from
H2 to H5, and flow 3 (F3) from H3 to H6. Communication
starts with only F1 active, then F2 and F3 are activated
one by one with one second intervals. As before, when a
flow is active, it tries to send at maximum speed, using a
reliable connection. In this scenario there is no victim flow,
but there is contention for bandwidth on the link between
S1 and S2 that is shared by all three flows.

6. THE VALIDATION RESULTS
The figures 7, 8 and 9 show the results from our validation

studies of scenario 1 and 2, comparing hardware experiments
with simulation results.

6.1 Scenario 1
We start by studying the hardware measurements from

scenario 1 with congestion control turned off. In figure 7(a)
we see the presence of both head of line (HOL) blocking and
the parking lot problem[4]: As soon as the third flow, F3, is
added after about 2.5 seconds, we see a drop in performance
for all three flows down to half the bandwidth. The link from
the switch S2 to the end node H5 has become a bottleneck,
creating a congestion tree growing towards the contributors
to congestion, H2 and H3. The congestion tree causes HOL
blocking, hindering the flow F1 from progressing any faster
between S1 and S2 than F2 and F3. As we add the flows
F4 and F5, the HOL blocking continues. In addition, due to
the fact that the switch S2 during (round robin) arbitration
considers the flows F2 and F3 as a single flow, we see an
unfairness in the amount of access the different traffic flows
are given to the bottleneck link. The two locally connected
flows, F4 and F5, are each given the same access to the
bottleneck link as the two flows F2 and F3 combined; the
parking lot problem is evident.

If we turn on congestion control in the hardware and re-
peat our scenario 1 experiment, we got the results presented
in figure 7(b). Now, both the HOL blocking and the park-
ing lot problem are removed. The flow F1 is sent through
the network independently of the other flows, and all the
contributors to congestion each got a fair share of the scarce
resources at the root of the congestion tree. This was studied

in-depth in [6].
Let us now turn our attention towards the simulator to

see how it compares to hardware. Figure 7(c) and 7(d)
show simulation results for scenario 1 with congestion con-
trol turned off and on, respectively. As we can see from fig-
ure 7(c), comparing it to figure 7(a), the simulator adheres
to the hardware quite accurately when congestion control is
turned off. The traffic flows are all experiencing the same
throughput in the simulator as in the hardware, and both
the HOL blocking and the parking lot problem is present.
When congestion control is turned on, the resemblance be-
tween the hardware and the simulator is still quite good,
as figure 7(b) and 7(d) show. The HOL blocking and the
parking lot problem are both removed at the same cost in
both the hardware and the simulator: increased oscillation
among the contributors to congestion as they are constantly
trying to adjust their injection rate to their fair share of
the bottleneck link. Figure 9 shows how the fairness has
improved for both the hardware measurements and the sim-
ulation results, when all four contributors are active. Each
colored area represents the fraction of the total throughput
given to the corresponding flow in each case. It is clear from
the figure that the parking lot problem is removed, despite
the oscillation observed for all the contributors.

There is one noticeable difference in the two figures 7(b)
and 7(d) though: In the one second time interval from 2s to
3s, the flow F1 experiences some oscillation during a sim-
ulation, an oscillation that is not present in the hardware
experiment. This difference in behavior is related to the ag-
gressiveness of the two contributors to congestion and the
utilization of the bottleneck link. The hardware is not able
to fully utilize the bottleneck link during the time where only
two contributors to congestion are active. This is clearly vis-
ible in figure 7(b). The two contributors together achieve a
throughput of approximately 11Gbps on average, while the
capacity of the bottleneck link (or actually the end node
connected to it) is just above 13Gbps. In the simulator,
during the same time interval, the two contributors to con-
gestion achieve approximately 13Gbps. This increased ag-
gressiveness makes it possible to fully utilize the bottleneck
link. Furthermore, it also results in a greater demand for
resources at the left switch, S1. More specific, if the two
contributors are too aggressive they will, together with flow
F1, request more resource from the switch-to-switch link
than the link can handle, and by that create a congestion
tree with the root of the tree at S1, and not S2. When
this happens, the flow F1 is actually a contributor to con-
gestion itself, and should lower its injection rate just like
any other contributor. This is exactly what is happening
when we see a drop in performance for the flow F1 in the
time interval between 2s and 3s during a simulation. The
F1 drop in performance is not due to any HOL blocking,
but a result of proper congestion control behavior from H1
when the switch S1 experiences congestion. This behavior
is never seen in hardware as the contributors are less aggres-
sive (resulting in an underutilization of the bottleneck link).
When the flows F4 and F5 are added during a simulation,
the congestion at the right switch, S2, is more severe, which
again means that the injection rates of the flows F2 and F3
are never high enough to create congestion at the switch S1.

6.2 Scenario 2
In figure 8(a) and 8(b) we see the results from the hard-

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1 (Victim)

F2

F3

F4

F5

(a) Hardware. Congestion Control turned OFF.

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1 (Victim)

F2

F3

F4

F5

(b) Hardware. Congestion Control turned ON.

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1

F2

F3

F4

F5

(c) Simulation. Congestion Control turned OFF.

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1

F2

F3

F4

F5

(d) Simulation. Congestion Control turned ON.

Figure 7: Throughput for flows in scenario 1 from both the hardware measurements and simulations.

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(a) Hardware. Congestion Control turned OFF.

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(b) Hardware. Congestion Control turned ON.

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(c) Simulation. Congestion Control turned OFF.

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(d) Simulation. Congestion Control turned ON.

Figure 8: Measured throughput for flows in scenario 2.

Figure 9: Fairness between the flows contributing to

congestion.

ware experiments of scenario 2 (fig. 6), with congestion con-
trol turned off and on, respectively. The link between the
two switches becomes the bottleneck in both experiments
as soon as we add the third flow after two seconds. At this
point the switch S1 becomes congested. When CC is turned
off(fig. 8(a)), the three flows all experience the same drop in
performance down to approximately 11.4 Gbps. The situa-
tion is both fair and stable. When CC is turned on, however,
all three flows will constantly try to adjust their injection
rates as a result of the congested situation at S1. The effect
is seen as oscillation in figure 8(b) as soon as the third flow
is added. In addition, the average throughput of the three
flows drops to approximately 9Gbps.

Figure 8(c) and 8(d) show the simulation results for sce-
nario 2. When the CC is turned off (fig. 8(c)), we see a
drop in throughput as soon as the third flow is added, just
as we experienced in hardware (fig. 8(a)). The simulator
and the hardware show the same behavior and the same
performance. If we turn the CC on(fig. 8(d)), the oscil-
lation becomes evident again at the time 2s as the three
contributors to congestion are constantly trying to adjust
their injection rates. The characteristics of the flows in the
simulator are similar to the ones in hardware, even though
the oscillation is less dominant in the simulator.

Overall, the figures 7, 8 and 9 show a good resemblance
between our simulator and the hardware. Both the through-
put and the traffic characteristics are very close for both the
scenario 1 and the scenario 2 cases, especially considered the
complex dynamics of a closed loop feedback control system
like the IB CC mechanism. We are simulating a “black box”
where several design decisions are left to the hardware de-
signer. The exact behavior and performance of the IB CC
mechanism is therefore likely to vary among switches and
HCAs from different vendors – depending on the chosen de-
sign. Our aim is to catch the general IB CC characteristics
to be able to study them. The simulator does this very well.
It is able to catch the effect of the HOL blocking as well as
the performance improvement possible with IB CC.

7. CONCLUSIONS
Congestion control is an important topic in interconnec-

tion network research because congestion can severely de-
grade performance if no countermeasures are taken. In this

paper we described a new simulation model for OMNeT++
that accurately simulates IB congestion control and that
can be used to study the effect of, and how to configure,
IB CC. Moreover, we presented measurements from a small
real cluster that validates our simulation results. We expect
the model to be a useful tool for further research, and we
already have several works in progress using the simulation
model.

8. ACKNOWLEDGMENTS
We would like to thank the HPC Advisory Council [1] for

the support throughout the development and validation ac-
tivities and for the contribution of the switches and firmware
that were used for the validation. We would also like to
thank Magne Eimot for his contributions to the develop-
ment of the simulator, and last but not least, a thank you
to Eitan Zahavi and Mellanox Technologies for the original
implementation of the IB model and for sharing it with the
OMNeT++ community.

9. REFERENCES
[1] High Performance Computing - Advisory Council.

http://www.hpcadvisorycouncil.com/.

[2] NetPIPE - Network Protocol Independent
Performance Evaluator, Sept. 2009.
http://www.scl.ameslab.gov/netpipe/.

[3] W. J. Dally. Virtual-Channel Flow Control. IEEE

Transactions on Parallel and Distributed Systems,
3:194–205, Mar. 1992.

[4] W. J. Dally and B. Towles. Principles and practices of

interconnection networks, chapter 15.4.1, pages
294–295. Morgan Kaufmann, 2004.

[5] P. J. Garćıa, J. Flich, J. Duato, I. Johnson, F. J.
Quiles, and F.Naven. Dynamic Evolution of
Congestion Trees: Analysis and Impact on Switch
Architecture. In High Performance Embedded

Architectures and Compilers, pages 266–285, 2005.

[6] E. G. Gran, M. Eimot, S.-A. Reinemo, T. Skeie,
O. Lysne, L. P. Huse, and G. Shainer. First
Experiences with Congestion Control in InfiniBand
Hardware. In Proceeding of the 24th IEEE

International Parallel & Distributed Processing

Symposium, pages 1–12, 2010.

[7] InfiniBand Trade Association. Infiniband architecture

specification, 1.2.1 edition, November 2007.
http://www.infinibandta.org/.

[8] Mellanox Technologies Ltd. ConnectX, 2009.
http://www.mellanox.com/related-docs/prod_

silicon/PB_ConnectX_Silicon.pdf.

[9] Mellanox Technologies Ltd. InfiniScale IV, 2009.
http://www.mellanox.com/related-docs/prod_

silicon/PB_InfiniScale_IV.pdf.

[10] G. F. Pfister and V. A. Norton. ”Hot Spot” Contention
and Combining in Multistage Interconnection
Networks. IEEE Trans. Computers, 34:943–948, 1985.

[11] Sun Microsystems. Sun Datacenter Infiniband Switch
648 Architecture And Deployment, 2009.
http://www.oracle.com/us/sun/.

[12] A. Varga. Using the OMNeT++ discrete event
simulation system in education. IEEE Transactions on

Education, 42(4):11 pp., Nov. 1999.

Paper II

On the Relation Between Congestion

Control, Switch Arbitration and

Fairness

Ernst Gunnar Gran, Eitan Zahavi, Sven-Arne Reinemo,

Tor Skeie, Gilad Shainer, and Olav Lysne

On the Relation Between Congestion Control, Switch Arbitration and Fairness

Ernst Gunnar Gran∗, Eitan Zahavi†, Sven-Arne Reinemo∗, Tor Skeie∗, Gilad Shainer†, Olav Lysne∗
∗Simula Research Laboratory, Fornebu, Norway. Email: {ernstgr, svenar, tskeie, olavly}@simula.no

†Mellanox Technologies, Israel/USA. Email: eitan@mellanox.co.il, Shainer@Mellanox.com

Abstract—In lossless interconnection networks such as Infini-
Band, congestion control (CC) can be an effective mechanism
to achieve high performance and good utilization of network
resources. The InfiniBand standard describes CC functionality
for detecting and resolving congestion, but the design decisions
on how to implement this functionallity is left to the hardware
designer. One must be cautious when making these design
decisions not to introduce fairness problems, as our study
shows.

In this paper we study the relationship between congestion
control, switch arbitration, and fairness. Specifically, we look
at fairness among different traffic flows arriving at a hot spot
switch on different input ports, as CC is turned on. In addition
we study the fairness among traffic flows at a switch where
some flows are exclusive users of their input ports while other
flows are sharing an input port (the parking lot problem).

Our results show that the implementation of congestion
control in a switch is vulnerable to unfairness if care is not
taken. In detail, we found that a threshold hysteresis of more
than one MTU is needed to resolve arbitration unfairness.
Furthermore, to fully solve the parking lot problem, proper
configuration of the CC parameters are required.

I. INTRODUCTION

Traffic congestion in interconnection networks may de-

grade the network and the compute system performance

severely if no countermeasures are taken[1], [2], [3]. Con-

gestion is simply a result of high load of traffic fed into a

network link, exceeding the link capacity at that point. Hot

spot traffic patterns, network burstiness, re-routing around

faulty regions, and conducting link frequency/voltage scaling

(lowering the link speed in order to save power), can all lead

to congestion. If all these factors are known in advance, the

network administrator may alleviate the consequences by

effective load balancing of the traffic, but typically this is

not the case. Furthermore, in cases where multiple nodes

send more data to a single destination than the node can

handle, no dynamic re-routing can be done to avoid network

congestion. It becomes even more severe when a parallel

computer is running multiple different jobs as an on-demand

service (e.g. cloud computing), where the resulting traffic

pattern becomes totally unpredictable.

Congestion control (CC) as a countermeasure for relieving

the consequences of congestion has been widely studied in

the literature. In particular, this problem is well understood

and solved by dropping network packets in traditional lossy

networks such as local area networks (LANs) and wide

area networks (WANs). In these environments packet loss

and increased latency are indications of network conges-

tion. Herein it is mainly TCP that implements end-to-end

congestion control, either by a traditional window control

mechanism [4] for detecting dropped packets or through

changes in latency [5], [6]. Very often those networks are

also over-provisioned in order to avoid congestion.

In high performance computing (HPC) data centers low

latency is crucial, and packet dropping and retransmission

are not allowed under regular circumstances, contrary to

LANs and WANs, due to the loss of performance that is

associated with packet drops. Lossless behavior is achieved

with credit based link-level flow control, which prevents a

node or a switch from transmitting packets if the downstream

node or switch lacks buffer space to receive them.

Typically, when congestion occurs in a switch, a conges-

tion tree starts to build up due to the backpressure effect of

the link-level flow control. The switch where the congestion

starts will be the root of a congestion tree that grows towards

the source nodes contributing to the congestion. This effect

is known as congestion spreading. The tree grows because

buffers fill up through the switches as the switches run

out of flow control credits (not necessarily in the root). As

the congestion tree grows, it introduces head-of-line (HOL)

blocking[7] and slows down packet forwarding that also

affects flows which are not contributing to the congestion,

severely degrading the entire network performance. The

HOL blocked flows become victims of congestion[7].

Congestion control for link-level flow controlled networks

cannot be based on a traditional window control mechanism

as deployed by TCP, though it effectively limits the amount

of buffer space that a flow can occupy in the network[8].

The reason for this is the relatively small bandwidth-delay

product in this environment, where even a small window

size may saturate the network [7]. A rate control based CC

mechanism is more appropriate for link-level flow controlled

networks, since it increases the range of control compared

to a window based system. The mechanism relies on the

switches to detect congestion, and inform the sources that

contribute to the congestion that they must reduce their

corresponding injection rates. There are basically two ways

to inform the source nodes in such an explicit congestion no-

tification scheme. Either the switches can mark the packets

contributing to congestion in order to notify the destinations

about the situation which subsequently notifies the sources

(the forward explicit notification approach), or the switches

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE
DOI 10.1109/CCGrid.2011.67

342

can themselves generate notification packets that are sent

directly to the source nodes (the backward explicit notifica-

tion approach). The InfiniBand (IB) [9] network applies the

former approach, while the emerging Data Center Bridging

standard [10] is implementing the latter.

There is a body of work that propose different strategies

for congestion notification and marking, e.g. a congested

packet can be marked both in the input and output buffer

as well as being tagged with information about the severity

of the congestion. Furthermore, there are several different

approaches to the design of the source response function, i.e.

the actions taken to reduce the injection rate, later followed

by an increase in the rate when congestion is resolved [8],

[11], [12], [13].

There are also congestion control mechanisms targeting

link-level flow controlled networks that take a completely

different approach. Instead of removing the congestion tree

itself, these approaches strive to relieve the unfortunate side

effects the congestion tree has on flows not contributing

to the congestion. That is, they try to remove the HOL

blocking by using special set aside queues for contributors

to congestion, effectively making it possible for victim flows

to bypass the contributors to congestion without actually

removing the congestion tree[14], [15]. Such an approach

has the advantage of being able to react immediately and

locally at each switch, at the cost of the extra buffers needed

for the set aside queues and the added complexity in the

switch to manage them. The real cause of the problem,

sources injecting too much traffic into the network, is

though left untouched. Furthermore, such a CC mechanism

is not directly applicable in InfiniBand, the interconnection

network technology we will use as a basis for our congestion

control and fairness studies in this paper.

InfiniBand was standardized in October 2000 and over the

years it has increased its marked share, when referring to the

Top500 list [16], to 42% of the HPC market. Furthermore, 4

out of 7 Petaflop systems in the world are using InfiniBand

as the system interconnect. Congestion control was added

in release 1.2 of the InfiniBand specification and is to some

extent based on the work done by Santos et. al. [8].

InfiniBand hardware with support for CC has been avail-

able since June 2008 [17], but the firmware required for

using CC has just been released. Recently Gran et. al.

presented the first experiences with CC in IB hardware,

where they showed that the IB CC mechanism effectively

resolves congestion and improves fairness by solving the

parking lot problem, if the CC parameters are appropriately

set[7]. Another significant contribution is the work done by

Pfister et. al. [18], where they studied (through simulations)

how well IB CC can solve certain hot spot traffic scenarios

in fat tree networks.

The IB standard provides some freedom in the imple-

mentation of its CC concept; several design decisions are

left to the implementer (as standards typically do). Care

Figure 1. Congestion control in InfiniBand.

must be taken, however, regarding the implementation and

the use of both the threshold and the marking rate CC

parameters, in order to be able to resolve congestion and

achieve fairness. Fairness is an important property of any

interconnection network. Different traffic flows, having the

same priority, should all get equal access to shared resources

in the network. InfiniBand as well as other interconnection

networks uses a round robin arbitration scheme[19] for

selecting the next packet to be sent over a switch output

port.

In this paper we study the relation between CC, switch

arbitration, and fairness. Specifically, we look at fairness at a

switch in two types of situations: I) Fairness among different

traffic flows arriving at a hot spot switch on different input

ports (solving the congestion problem without introducing

unfairness), and II) Fairness among traffic flows where some

flows are exclusive users of their input ports while other

flows are sharing an input port (essentially solving the

parking lot problem[20]).

We outline the parameter use and implementation of IB

CC around a simulation model. In addition we present results

from experiments with hardware to confirm that there is a

good correlation between our simulator and the hardware

behavior.

The reminder of the paper is organized as follows: Section

II gives an overview of the CC mechanism supported by IB.

In section III we describe our simulation model, before we in

section IV and V study fairness of a IB CC capable switch

in the two types of situations explained above. In section

VI we show the correlation between our simulator and the

hardware, before we conclude in section VII.

II. CONGESTION CONTROL IN INFINIBAND

The IB CC mechanism, specified in the InfiniBand Archi-

tecture Specification release 1.2.1[9], is based on a closed

loop feedback control systems where a switch detecting

congestion marks packets contributing to the congestion by

setting a specific bit in the packet headers, the Forward
Explicit Congestion Notification (FECN) bit (fig. 1 (1)). The

congestion notification is carried through to the destination

by this bit. The destination registers the FECN bit, and

returns a packet with the Backward Explicit Congestion
Notification (BECN) bit set to the source (fig. 1 (2)). The

source then temporarily reduces the injection rate to resolve

congestion (fig. 1 (3)).

343

The exact behaviour of the IB CC mechanism depends

upon the values of a set of CC parameters governed by a

Congestion Control Manager. These parameters determine

characteristics like when switches detect congestion, at what

rate the switches will notify destination nodes using the

FECN bit, and how much and for how long a source

node contributing to congestion will reduce its injection

rate. Appropriately set, these parameters should enable the

network to resolve congestion, avoiding HOL blocking,

while still utilizing the network resources efficiently.

1) Switch Features: The switches are responsible for

detecting congestion and notifying the destination nodes

using the FECN bit. A switch detects congestion on a given

port and a given Virtual Lane (Port VL) depending on a

threshold parameter. If the threshold is crossed, a port may

enter the Port VL congestion state, which again may lead to

FECN marking of packets.

The threshold, represented by a weight ranging from 0

to 15 in value, is the same for all VLs on a given port, but

could be set to a different level for each port. A weight of 0

indicates that no packets should be marked, while the values

1 through 15 represent a uniformly decreasing value of the

threshold. That is, a value of 1 indicates a high threshold

with high possibility of congestion spreading, caused by

Port VLs moving into the congestion state too late. A value

of 15 on the other hand indicates a low threshold with

a corresponding low possibility of congestion spreading,

but at the cost of a higher probability for a Port VL to

move into the congestion state even when the switch is not

really congested. The exact implementation of the threshold

depends on the switch architecture and is left to the designer

of the switch. We will in section IV see that precaution needs

to be taken not to violate the fairness of the switch when

implementing the threshold.

A Port VL may enter the congestion state if the threshold

is crossed and it is the root of congestion, i.e. the Port

VL has available credits to output data. If the Port VL

has no available credits, it is considered to be a victim of

congestion and shall not enter the congestion state1. When

a Port VL is in the congestion state its packets are eligible

for FECN marking. A packet will then get the FECN bit

set depending on two CC parameters at the switch, the

Packet Size and the Marking Rate. Packets with a size

smaller than the Packet Size will not get the FECN bit

set. The Marking Rate sets the mean number of eligible

packets sent between packets actually being marked. With

both the Packet Size and the Marking Rate set to 0, all

packets should get the FECN bit set while a Port VL is in

the congestion state.

1If the V ictim Mask is set for the port, then the switch will move the
Port VL into the congestion state independently of the number of available
credits. The V ictim Mask is typically set for switch ports connection
HCAs to the switch as an HCA will never detect congestion itself.

2) Channel Adapter Features: When a destination CA

receives a packet with a FECN bit, the CA should as

quickly as possible notify the source of the packet about

the congestion. This is done by returning a packet with the

BECN bit set back to the source. The packet with the BECN

bit could either be an acknowledgement packet (ACK) for

a reliable connection or an explicit congestion notification
packet (CNP). In either case it is important that the ACK or

the CNP is sent to the source as soon as possible to ensure

a fast response to the congestion.

When a source CA receives a packet with the BECN bit

set, the CA lowers the injection rate of the corresponding

traffic flow. To determine how much and for how long the

injection rate should be reduced, the CA uses a Congestion
Control Table (CCT) and a set of CC parameters. The

CCT holds injection rate delay (IRD) values that define

the delay between consecutive packets sent by a particular

flow (the IRD calculation being relative to the packet length).

Each flow with CC activated holds an index into the CCT,

the CCTI . When a new BECN arrives, the CCTI of the

flow is increased by CCTI Increase. The CCT is usually

populated in such a way that a larger index yields a larger

IRD. Then consecutive BECNs increase the IRD which

again decreases the injection rate. The upper bound of the

CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a

CCTI T imer, maintained separately for each SL of a port.

Each time the timer expires, the CCTI is decremented by

one for all associated flows. When the CCTI of a flow

reaches zero, the flow no longer experience any IRD.

The IB CC can operate either at the Service Level (SL)

or at the Queue Pair (QP) level at an HCA. Any lowering of

the injection rate as a result of BECN reception, then affects

the whole SL or the single QP depending on the level of

CC operation. While operating at the SL level may require

less resources at the HCA than operating at the QP level,

choosing the SL level will have a negative impact on both

fairness and performance. The reason is that a single traffic

flow contributing to congestion will lower the injection rate

of all traffic flows within the same SL at the HCA. This

could include traffic flows not contributing to the congestion

at all as they are not going through the root of the congestion

tree, but headed for other parts of the network. This type of

unfairness is avoided if the CC operates at the QP level.

We will not consider this type of unfairness any further in

this paper, as we focus on the fairness provided by switches

running CC.

III. THE SIMULATION MODEL

Our network simulator and switch model is built on

the OMNet++ platform[21]. It is based on the IB model

made available to the OMNeT++ community by Mellanox

Technologies Ltd in 2007/2008. We have ported this model

344

to the OMNeT++ 4 environment, made several bug fixes, im-

plemented CC support, and added some general extensions

to it to make it more suitable for our studies.

Below we give a brief overview of the features and

the detail level of our simulation model. A more detailed

description of the simulator is given in [22].

A. The IB Model

The IB model consists of a set of modules to simulate

an IB network with support for the IB flow control scheme,

arbitration over multiple virtual lanes, congestion control,

and routing using linear forwarding tables.

The two building blocks for creating networks using the

IB model are the Host Channel Adapter (HCA) module and

the Switch module. During a simulation an HCA represents

both a traffic generator, traffic injector and a traffic sink

in the network, while a Switch acts as a forwarding node.

The HCA supports several traffic generation schemes, e.g.

varying the injection rate, the packet size and the destination

node distribution. The Switch is modelled as an input buffer

architecture with support for virtual lanes, virtual output

queuing (VoQ) and virtual cut through switching. It uses

round robin arbitration over the different VLs and multiple

input ports.

The InfiniBand Congestion Control mechanism is imple-

mented by the Congestion Control ManaGeR (CCMGR)

module. The CCMGR is part of the HCA and the Switch,

and manages everything related to congestion control in

these modules in compliance with IB CC as described in

the previous section.

IV. FAIRNESS - TYPE I

In the type I situation we look at the fairness among

traffic flows arriving at a switch on different input ports,

creating congestion as they are headed for the same output

port. In an IB CC capable network, the switch will detect

congestion as soon as the CC threshold is crossed, and

mark the contributing packets to tell the sources about the

contention at the switch.

Round robin (RR)[23], [19] is thought to be a fair

arbitration scheme for the type I situation. All input ports at

a switch are served in a round robin fashion. An input port

currently accessing an output port, will not get access to the

same output port again until all other input ports requesting

the same output port has been granted access. We will use an

example to illustrate the fairness of the RR scheme. Figure 2

shows a switch connecting seven end nodes, where all links

have the same bandwidth. Now, let us add traffic flows to the

network as indicated by the arrows in the figure, and study

the throughput of the different flows. The flows are added

one by one, with one second intervals, until all five flows are

active. The startup sequence follows the numeric ordering,

starting with H1. Notice that one flow, the one from H1, is

Figure 2. Topology and traffic flows.

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Flow

H1

H2

H3

H6

H7

Figure 3. Throughput - No congestion control.

headed for the node H4, while the four other flows are all

headed for the same destination, H5.

Figure 3 shows the throughput of the five traffic flows

during a simulation. The flow from H1 to H4 achieves a

steady throughput of 13Gbps during the whole simulation.

This is as expected as this traffic flow, being the only one

headed for H4, is independent of all the other traffic flows.

The throughput of this flow will serve as a reference as we

now add the four flows headed for H5. After one second we

add the first one, that is, the one originating from H2. This

flow also maintains a 13Gpbs throughput for one second.

Then, at 2s, we add the second traffic flow towards H5.

Now the two flows headed for H5 each experience a drop in

performance down to half the capacity of the bottleneck link,

the link from the switch to H5. Each flow is given the same

access to this link, that is, the arbitration scheme is fair. As

we add the third and fourth flow headed for H5, we see a

corresponding drop in performance for each new additional

flow. However, the available bandwidth at the bottleneck link

is evenly shared among the flows, that is, the RR scheme is

fair.

345

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Flow

H1

H2

H3

H6

H7

Figure 4. Throughput - Congestion control enabled.

A. Congestion Control Using One Threshold

Now, let see what happens to fairness when we enable

congestion control (CC) (this small topology could be part of

a greater network where it has been found reasonable to use

CC). Figure 4 shows the throughput of the five traffic flows

running the same simulation as before, but this time with CC

turned on. As we can see, even if the RR arbitration scheme

is fair, the CC has a negative impact on the fairness. When

we at 2s add the flow from H3, this flow is able to stabilize

at a throughput of a little more than 7Gbps. This is about

1Gbps higher than the other flow going to H5, the flow from

H2. Then, when we add H6 at 3s we see that the unfairness

is even more dramatic. This time the amount of traffic the

flow from H6 is able to get through the bottleneck link is

twice as much as what the flow H3 is able to get through.

The flow H2 settles in between at a little less than 5Gpbs.

Enabling CC has introduced unfairness in the network, even

if the arbitration scheme in the switch itself is fair. When

we add the last flow, H7, at 4s the situation continues; the

unfairness is still present.

The reason for the observed unfairness in figure 4 has

been identified to be the use of a single threshold to detect

congestion in the switch. Let us have a closer look at what is

happening inside the switch as different traffic flows headed

for H5 are active. First, at any time when only one of

the flows is active, no matter how much traffic is sent,

the buffers will not fill and no congestion control marking

occurs (assuming that all links have the same capacity, and

that the end node H5 is able to remove the traffic from the

network as soon as it arrives). When a second flows is active,

however, the one flow with the highest injection rate will fill

its virtual output queue (VoQ) buffer first2. This situation is

shown in figure 5a. The figure shows two different input

ports of a switch, and the virtual output queues of these

two ports, VoQf1 and VoQf2, corresponding to the shown

output port (the one connecting H5 to the switch in our

scenario). The threshold is shown as a vertical dotted line.

Here f1 is the flow with the highest injection rate, and hence

the flow filling its VoQ the fastest. Naturally, the fill ratio of

VoQf1 crosses the threshold at a time where the other flow is

given access to the output port. The crossing of the threshold

moves the output port into the congested state, and by that,

packets being forwarded on this output port will be marked

as contributing to congestion. While in this state, the RR

arbitration in the switch will alternate between giving the

two flows access to the output port, resulting in each flow

experiencing approximately the same amount of congestion

control marking. The two flows will lower their injection

rates correspondingly. As the flow f1 initially was the most

aggressive flow, and both flows receives approximately the

same amount of congestion control feedback, the flow f2 is

actually likely to empty VoQf2 before the fill ratio of VoQf1

is below the threshold. When this happens, f1 is given sole

access to the output port. Now having an injection rate lower

than the maximum capacity of the link, the VoQf1 will be

emptied below the single threshold and the output port will

be moved out of the congestion state, as figure 5b shows.

All in all, the situation is somewhat controlled by the

most aggressive flow, f1. Exactly how many packets that

will be marked as contributing to congestion from each

of the two flows f1 and f2, depends on the traffic flow

characteristics, packet and buffer sizes, and the threshold

chosen. Our simulation studies show, however, that in the

common situation the different flows receive approximately

the same amount of congestion control information. Keeping

this in mind, also notice that two different traffic flows

governed by congestion control might very well stabilize

at different injection rate levels, even if they receive the

same amount of congestion control information. This could

happen if one of the flows, when congestion occurs, is

initially sending at a higher injection rate than the other

one. Then, as both flows are throttled by the same amount

of congestion control information, the net result is that the

two flows are stabilizing at different injection rates after the

throttling as well.

Now, look at figure 4 again. Each time we add a new flow

contributing to congestion, the new flow starts out with a

higher injection rate than the already contributing flows. This

is exactly the situation explained in the previous section, and

the result is quite visible in the figure: the flow given the

largest share of the bottleneck link is always the last flow

added - a flow that started its injection at full bandwidth.

2In general, different end nodes may very well inject traffic into the
network at different injection rates.

346

(a) Output port moved into congested state. (b) Output port released from congested state.

Figure 5. Congestion control using a single threshold.

(a) Output port moved into congested state. (b) Output port released from congested state.

Figure 6. Congestion control using two thresholds.

More generally, an aggressive flow always being the last

one to empty its VoQ below the threshold, could benefit from

this behavior by constantly getting more than its fair share of

access to the bottleneck link. This is the behavior observed

in figure 4. One way to avoid this unfortunate situation is

to introduce a second threshold.

B. Congestion Control Using Two Thresholds

Let us now study the situation in figure 2 again, this

time with two thresholds per VoQ. Introducing a second

threshold, each VoQ now has a lower and upper threshold,

as shown in figure 6. When the fill ratio climbs above the

high threshold the corresponding output port is moved into

the congested state, as shown in figure 6a. The output port

is then not released from this state until the fill ratio is

lower than the low threshold, figure 6b. By using these two

thresholds we ensure that congestion control information

continue to be sent for an extended period of time, even

after the fill ratio is below the upper threshold. It is no longer

possible for a flow to first trigger congestion marking, and

then immediately release congestion again as soon as it itself

is being granted access to the output port. In particular, an

aggressive flow will experience congestion control marking

for an extended period of time, even when it has sole access

to the output port.

Figure 7 shows the same simulation as before, this time

using two thresholds instead of one. As we can see from the

figure, fairness is now restored. Each time a new contributor

to congestion is added, all contributors quickly settle for

their fair share of the congested link, even if the newly

added contributor initially was injecting traffic at a much

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Flow

H1

H2

H3

H6

H7

Figure 7. Throughput - Congestion control using two thresholds.

higher rate than the others. The use of two thresholds ensures

that any aggressive flow triggering congestion at a VoQ in

a switch, will receive a correspondingly high amount of

congestion control information, that is, BECNs.

Simulations have shown that an hysteresis of more than

one MTU (maximum transmission unit) is needed to resolve

unfairness. The distance between the upper and lower thresh-

old used during the simulations shown in figure 7 was a little

347

Figure 8. Topology and traffic flows (II).

more than 3 MTUs.

C. A common set of thresholds

For simplicity, each VoQ in figure 6 is shown to have

its own set of thresholds. Then CC is triggered as soon

as the threshold is crossed in at least one of the VoQs.

Another approach is to use a common threshold for all VoQs

related to a given output port. Then this common threshold

is compared against the sum of the buffer occupancy of all

corresponding VoQs. Using a common threshold, there is

no differentiation between a single flow occupying a large

part of its VoQ, and by that solely triggering congestion

marking, and several flows filling smaller parts of their

VoQ, but together occupying enough buffer space to trigger

congestion marking. Our simulations shows that the behavior

of the two approaches are quite similar. What matters is

that the threshold parameter is mapped to a fill ratio of the

VoQ(s) that ensures fast and proper congestion detection.

Special care must be taken when implementing the common

threshold approach, to make sure that the threshold maps to

a low enough fill ratio to allow for one single VoQ to trigger

congestion by its own. This is important as a single flow or

VoQ could create congestion alone in certain situations. E.g.

a source node injecting traffic into the network faster than

the destination node can handle, could singlehandedly create

a congestion tree with the root of the tree at the last switch

prior to the destination. A single VoQ could also very easily

create congestion alone in a network where different links

have different bandwidths. We will see an example of this

in the next section.

V. FAIRNESS - TYPE II

Let us turn our attention towards the type II situation.

In this scenario some traffic flows are sharing an input port,

while other flows are the exclusive users of their input ports.

By extending our topology from figure 2 with a second

switch, we can exemplify such a situation by adding the

traffic flows shown in figure 8. Notice that the switch to

switch link has twice the capacity of the other links. Now,

at the switch S2, the two flows from H2 and H3 headed for

H5 are sharing an input port and the VoQ corresponding to

the link towards H5, while the two traffic flows from H6
and H7 are exclusive users of their input ports. The Round

Robin arbitration scheme provides each input port with the

Time (s)
B

an
dw

id
th

 (
M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Flow

H1

H2

H3

H6

H7

Figure 9. Throughput - No congestion control (II).

same fraction of the output bandwidth, resulting in an unfair

arbitration for the flows heading to H5. The two flows from

H2 and H3 will by S2 be seen as one flow since they

share the same VoQ. Then, implementing RR arbitration,

the switch S2 will grant access to the link towards H5 as

if there were only three traffic flows requesting access to it

instead of four. The result is that the flows from H6 and H7
each get 1/3 of the total bandwidth of the link between S2
and H5, while the last 1/3 is shared by the two flows from

H2 and H3 giving them 1/6 of the bandwidth each. This

unfairness, due to the sharing of input ports and buffers by

some flows at an RR based switch, is often referred to as

the parking lot problem[24], [20].

Figure 9 shows the throughput achieved by the different

traffic flows when simulating the situation of figure 8. As

before, a new traffic flow is added to the network each

second, starting with the flow from H1. The unfairness

caused by the parking lot problem is clearly visible as

soon as we add the flows from H6 and H7 at 3s and 4s

respectively. During the time period from 3s to 4s, H6
achieves the same throughout as H2 and H3 combined.

When H7 is added at the time 4s, both H6 and H7
achieves twice the throughput of H2 and H3. The parking

lot problem is evident. Notice also that HOL blocking is

present. As soon as we add the flow from H3, a congestion

tree builds from S2 through S1 towards the sources, and

the flow from H1 is not able to progress any faster than the

contributors to congestion H2 and H3[7].

Most interconnection networks like InfiniBand are using

Round Robin arbitration between inputs of the switch. The

worst possible unfairness happens when all nodes send

348

103100 101 102

200 201 203202

110 111 112 113

210 211 212 213

120 121 122 123

220 221 222 223

130 131 132 133

231 232 233

000 001 002 003 010 011 012 013 020 021 022 023 030 032 033031

230

Figure 10. An example 4-ary 3-tree.

data to a single node. Formally, assuming traffic is flowing

through M out of the N − 1 input ports towards an output

port, the RR arbitration will provide 1/M of the output

bandwidth to each input. In the single switch scenario with

a network diameter of two, this is fair. In a larger network,

however, the Msi flows from a switch Si sharing the output

port towards the switch Sj , will at Sj together only be

assigned 1/Msj
of the capacity of the next output port (given

that they are all headed for the same output port at Sj as

well). That is, in the worst case scenario the unfairness

increases by Msx
for each additional switch on the path

from the source towards the destination. For large MIN

networks where M approaches N − 1, the worst possible

unfairness in bandwidth allocation is: (N − 1)D−2 where

D is the network diameter. For network topologies like k-

ary n-trees[25], the exact ratio depends on the routing used.

For D-Mod-K routing [26], [27], each down link in the

network carries traffic to a single destination. In the example

4-ary 3-tree provided in figure 10, there are 3 first level

neighbors to the destination, 42 − 4 = 12 second level

neighbors and 43 − 42 = 48 third level neighbors. With

RR arbitration, the bandwidth fraction provided is 1/4 and

1/4/4/4 = 1/64 for the first and second level neighbors,

respectively. For the third level neighbors, as they all go

through the same spine port, the bandwidth fraction for each

source is 1/4/4/48 = 1/768. More formally, for a k-ary

n-tree the furthest sources will in the worst case scenario

receive only 1/kn−1/(kn − kn−1) = 1/(k2n−1 − k2n−2)
of the bandwidth of the last link to the destination, while

a first level neighbor will receive 1/k. It is imminent that

with high radix switches the unfairness is so high that it

may actually cause transport timeouts in cases of many to

one communication. Similarly, timeouts could happen due

to unfairness in a network even with low radix switches if

the diameter is high.

Some alternatives to RR arbitration, that could solve the

demonstrated unfairness, rely on the number of different

flows through an input port as a weight for the arbitration.

Time (s)
B

an
dw

id
th

 (
M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Flow

H1

H2

H3

H6

H7

Figure 11. Throughput - Congestion control turned on (II).

The incurred cost of such a solution presented by [28]

makes it impractical for Interconnection Networks - where

the number of different flows is O(N2).
The topology in figure 8 is suitable for studying the

characteristics of CC in a controlled manner. At the same

time, recognize that this topology could be part of a larger

topology similar to the 4-ary 3-tree in figure 10. If we now

rerun our simulation of the scenario shown in figure 8 with

CC enabled, we get the results shown in figure 11. The four

traffic flows contributing to congestion are now equalized.

The HOL blocking is gone and the parking lot problem has

been resolved. Recall from section IV that any aggressive

flow will experience more congestion marking than less

aggressive flows, given that the CC mechanism is properly

implemented using hysteresis, that is, two thresholds. Then,

with the introduction of CC, using a marking rate of 13,

the close neighbors are punished as they are able to pass

more traffic through the congested port. The result is that,

on average, all flows will be throttled to provide the same

bandwidth, as can be seen from figure 11.

While the introduction of IB CC has the potential of

solving the parking lot problem, the degree of success in

solving this problem is not only related to the hardware

implementation of the IB CC, but also the values chosen for

the IB CC parameters. E.g. choosing an unfortunate marking

rate or CCTI T imer could result in the contributors to

congestion being slow in settling for their fair share of the

bottleneck link. An example is given in figure 12. Here

3The marking rate rule applied marks every packet going through a
congested link with probability P (1/(marking rate+1)). This adheres
to the IB CC specification.

349

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Flow

H1

H2

H3

H6

H7

Figure 12. Throughput - marking rate 10.

the marking rate is set to 10, while the CCTI T imer
is set 10 times as high as before to compensate for the

new marking rate. While the parking lot problem is still

to some degree solved, an unfairness is present in the

network for an extended period of time each time a new

contributor is added. How to set the IB CC parameters,

possibly independent of topology and traffic patterns, is a

subject of ongoing research. Both simulation studies and

hardware experiments[7] indicate, however, that the marking

rate should be kept low, preferable at 1, to ensure high

utilization of network resources and fairness.

VI. A COMPARISON WITH HARDWARE EXPERIMENTS

In the studies we have presented in this paper we have

been using a simulation model to examine the relation

between CC, arbitration and fairness. The use of a simulation

model was necessary because no hardware that we know of

gives us the same flexibility as simulations when it comes to

changing the internal behavior of the switch, as done in our

study. When using simulations, however, it is important to

validate, to the extent possible, the correctness of the model

with its real world equvivalent. We have done a general

validation of our simulation model against real hardware

as documented in[22]. Furthermore, we have compared the

simulation results from the threshold implementation using

hysteresis (two common threshold values for all VoQs cor-

responding to a given output port), to hardware experiments

using IB CC capable hardware from Mellanox Technologies

and Sun Microsystems, now Oracle. A hardware test bed

corresponding to the topology showed in figure 8 was put

together using two Mellanox InfiniScale IV switches and

seven Mellanox ConnectX Host Channel Adapters equipped

Time (s)

B
an

dw
id

th
 (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1

F2

F3

F4

F5

Figure 13. Throughput from hardware - Congestion control turned on.

in seven Sun Fire X2200 M2 hosts. Figure 13 shows the

hardware experiment results corresponding to the simulation

results shown in figure 11. As the figures show there is

a strong correlation between our simulation results and

the hardware results, which confirms our confidence in the

simulation model.

VII. CONCLUSIONS

Switch arbitration and its relation to fair utilization of

link bandwidth has been studied for decades. Congestion

control in interconnection networks on the other hand is far

less understood. This is particularly true for its relation to

various fairness aspects.

Ideally, the local switch-fairness provided by well func-

tioning switch arbitration should work independently of the

more global stream fairness provided by end-to-end con-

gestion control. In this paper we have demonstrated and ex-

plained why this is not always the case. Through simulations

calibrated with hardware measurements, we have shown that

a straightforward implementation of IB congestion control

leads to unfairness even in a simple one switch scenario.

Furthermore this unfairness is unstable in the sense that the

distribution of bandwidth to the different flows depends on

the utilization of the different flows that just happened to

prevail at the instance of time when congestion occurred.

We have demonstrated that a good solution to the above

problem is to introduce two congestion control marking

thresholds. We have also shown that this technique solves

the parking lot problem[20] and is quite robust with regards

to parameter settings. The detailed relation between our re-

sults and CC-parameters settings is still under investigation.

Preliminary results indicate that our main results prevail,

350

but that the marking rate influences the speed by which the

system converges to a stable state after a change of traffic

pattern. A full investigation of this is, however, left for future

work.

REFERENCES

[1] G. F. Pfister and V. A. Norton, “”Hot Spot” contention and
combining in multistage interconnection networks,” IEEE
Trans. Computers, vol. 34, no. 10, pp. 943–948, 1985.

[2] W. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–
205, 1992.

[3] P. Garcı́a, J. Flich, J. Duato, I. Johnson, F. Quiles, and
F.Naven, “Dynamic evolution of congestion trees: Analysis
and impact on switch architecture,” in High Performance
Embedded Architectures and Compilers, 2005, pp. 266–285.

[4] V. Jacobson, “Congestion avoidance and control,” in SIG-
COMM. ACM, 1988, pp. 314–329.

[5] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end
congestion avoidance on a global internet,” IEEE Journal on
selected Areas in communications, vol. 13, pp. 1465–1480,
1995.

[6] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP con-
gestion control over internets with heterogeneous transmis-
sion media,” in 7th International Conferance on Network
Protocols (ICNP99). IEEE Computer Society, 1999, pp.
213–221.

[7] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne,
L. Huse, and G. Shainer, “First experiences with congestion
control in InfiniBand hardware,” in Parallel Distributed Pro-
cessing (IPDPS), 2010 IEEE International Symposium on,
2010, pp. 1–12.

[8] J. R. Santos, Y. Turner, and G. J. Janakiraman, “End-to-end
congestion control for InfiniBand,” in INFOCOM, 2003.

[9] Infiniband architecture specification, 1st ed., InfiniBand Trade
Association, November 2007.

[10] IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks - Amendment: 10:
Congestion Notification., IEEE 802.1Qau-2010 ed., IEEE 802
LAN/MAN Standards Committee, 2010. [Online]. Available:
http://www.ieee802.org/1

[11] J. R. Santos, Y. Turner, and G. J. Janakiraman, “Evaluation
of congestion detection mechanisms for InfiniBand switches,”
in IEEE GLOBECOM – High-Speed Networks Symposium,
2002.

[12] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato,
“Congestion management in MINs through marked and vali-
dated packets,” in PDP, 2007, pp. 254–261.

[13] ——, “On the influence of the packet marking and injection
control schemes in congestion management for MINs,” in
Euro-Par, 2008, pp. 930–939.

[14] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and
T. Nachiondo, “A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks,” in HPCA ’05: Proceedings of the 11th Interna-
tional Symposium on High-Performance Computer Architec-
ture. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 108–119.

[15] J. Escudero-Sahuquillo, P. Garcı́a, F. Quiles, J. Flich, and
J. Duato, “FBICM: Efficient congestion management for
high-performance networks using distributed deterministic
routing,” in High Performance Computing - HiPC 2008, ser.
Lecture Notes in Computer Science.

[16] “Top 500 supercomputer sites,” http://top500.org/, Nov. 2010.

[17] Mellanox Technologies, “Mellanox announces availabil-
ity of industry’s first 40Gb/s InfiniBand switch silicon
device and product reference platforms,” Press release,
June 2008, http://www.mellanox.com/content/pages.php?pg=
press release item&rec id=214.

[18] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni,
W. Rooney, T. Engbersen, R. Luijten, R. Krishnamurthy,
and J. Duato, “Solving hot spot contention using InfiniBand
architecture congestion control,” Invited paper in High Perfor-
mance Interconnects for Distributed Computing, july 2005.

[19] N. McKeown, “The iSLIP scheduling algorithm for input-
queued switches,” IEEE/ACM Transactions on Networking,
vol. 7, no. 2, pp. 188–201, Apr. 1999.

[20] W. J. Dally and B. Towles, Principles and practices of
interconnection networks. Morgan Kaufmann, 2004, ch.
15.4.1, pp. 294–295.

[21] “Omnet++ network simulation framework,” http://www.
omnetpp.org/.

[22] E. G. Gran and S.-A. Reinemo, “InfiniBand congestion con-
trol, modelling and validation.” OMNeT++ 2011, Barcelona,
Spain.

[23] W. J. Dally and B. Towles, Principles and practices of
interconnection networks. Morgan Kaufmann, 2004.

[24] M. Galles, “Spider: A high-speed network interconnect,”
IEEE Micro, vol. 17, no. 1, pp. 34–39, 1997.

[25] S. Ohring, M. Ibel, S. Das, and M. Kumar, “On generalized fat
trees,” in Parallel Processing Symposium, 1995. Proceedings.,
9th International, Apr. 1995, pp. 37–44.

[26] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato,
“Deterministic versus adaptive routing in fat-trees,” in Par-
allel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, 2007, pp. 1 –8.

[27] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Opti-
mized InfiniBand fat-tree routing for shift all-to-all commu-
nication patterns,” in Concurrency and Computation: Practice
and Experience, vol. 22, no.2, pp. 217 –231, 2009.

[28] P. Gratz, B. Grot, and S. Keckler, “Regional congestion
awareness for load balance in networks-on-chip,” in High Per-
formance Computer Architecture, 2008. HPCA 2008. IEEE
14th International Symposium on, 2008, pp. 203 –214.

351

Paper III

First Experiences with Congestion

Control in InfiniBand Hardware

Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo,

Tor Skeie, Olav Lysne, Lars Paul Huse, and Gilad Shainer

First Experiences with Congestion Control in InfiniBand Hardware

Ernst Gunnar Gran,
Magne Eimot, Sven-Arne Reinemo,

Tor Skeie, Olav Lysne Member, IEEE
Simula Research Laboratory

Fornebu, Norway

Email: {ernstgr, magneei, svenar,

tskeie, olavly}@simula.no

Lars Paul Huse

Sun Microsystems

Email: Lars.Paul.Huse@sun.com

Gilad Shainer

Mellanox Technologies

Email: Shainer@Mellanox.com

Abstract—In lossless interconnection networks congestion
control (CC) can be an effective mechanism to achieve high
performance and good utilization of network resources. With-
out CC, congestion in one node may grow into a congestion tree
that can degrade the performance severely. This degradation
can affect not only contributors to the congestion, but also
throttles innocent traffic flows in the network. The InfiniBand
standard describes CC functionality for detecting and resolving
congestion. The InfiniBand CC concept is rich in the way that
it specifies a set of parameters that can be tuned in order to
achieve effective CC. There is, however, limited experience with
the InfiniBand CC mechanism. To the best of our knowledge,
only a few simulation studies exist. Recently, InfiniBand CC
has been implemented in hardware, and in this paper we
present the first experiences with such equipment. We show
that the implemented InfiniBand CC mechanism effectively
resolves congestion and improves fairness by solving the
parking lot problem, if the CC parameters are appropriately
set. By conducting extensive testing on a selection of the CC
parameters, we have explored the parameter space and found
a subset of parameter values that leads to efficient CC for our
test scenarios. Furthermore, we show that the InfiniBand CC
increases the performance of the well known HPC Challenge
benchmark in a congested network.

I. INTRODUCTION

Congestion in interconnection networks may degrade per-

formance severely if no countermeasures are taken[1], [2],

[3]. Congestion is simply a result of too much traffic fed

into a network link, exceeding link capacity at this point.

Hot spot traffic patterns, rerouting around faulty regions,

and conducting link frequency/voltage scaling (lowering

the link speed) in order to save power, can all lead to

congestion. If all these factors are known in advance, the

network administrator might alleviate the consequences by

effective load balancing of the traffic, but typically this

is not the case. It becomes even more difficult when a

parallel computer is running multiple different jobs as an

on-demand service (embedding virtual servers), where the

resulting traffic pattern becomes unpredictable.

Congestion control (CC) as a countermeasure for relieving

the consequences of congestion has been widely studied and

This work is in part financed by Sun Microsystems, Inc.

debated in the literature. In particular, this problem is well

understood and solved in traditional lossy networks such

as local area (LANs) and wide area networks (WANs). In

these environments packet loss and increased latency are

indications of network congestion. Herein it is mainly TCP

that implements end-to-end congestion control, either by

a traditional window control mechanism [4] for detecting

dropped packets or through changes in latency [5], [6]. Very

often those networks are also overprovisioned in order to

avoid congestion.

In high performance computing (HPC) low latency is cru-

cial and packet dropping and retransmission are not allowed

under regular circumstances, contrary to LANs and WANs.

Lossless behaviour is achieved with credit based link-level

flow control, which prevents a switch from transmitting

packets if the downstream switch lacks buffer space to

receive them.

Typically, when congestion occurs in a switch, a conges-

tion tree starts to build up due to the back pressure effect of

the link-level flow control. The switch where the congestion

starts will be the root in a congestion tree that grows

towards the source nodes contributing to the congestion.

This effect is known as congestion spreading. The tree

grows because buffers fill up through the switches as the

switches run out of credits (not necessarily in the root). As

the congestion tree grows, it introduces head-of-line (HOL)

blocking and slows down packet forwarding, also affecting

flows not contributing to the congestion, severely degrading

the network performance. Figure 1 shows how three flows

destined for the node H5 create congestion at switch S2.

A congestion tree builds up from S2 (fig.2, solid arrows).

The flow headed for H4 (fig.1) is blocked, even if that flow

is not requesting the congested link from S2 to H5. This

HOL blocking not only limits the transmission rate of the

flow destined to a non-congested link, but also makes the

congestion tree grow further (fig. 2, dotted arrow). The HOL

blocked flow has become a victim of congestion.

Congestion control for link-level flow controlled networks

cannot be based on a traditional window control mechanism

as deployed by TCP, though it effectively limits the amount

978-1-4244-6443-2/10/$26.00 ©2010 IEEE

��

��

��

��

��

��

�	

�
�

Figure 1. Congestion in an interconnection network.

��

��

��

��

��

��

�	

��� ���� �� ��� 	�
�����
 ����

�
�

Figure 2. A congestion tree in an interconnection network.

of buffer space that a flow can occupy in the network (and

otherwise offers the benefit that packet injection is self-

clocked), as discussed by [7]. The reason for this is the rel-

atively small bandwidth-delay product in this environment.

If we assume a network with 1 Gigabyte/sec links, 64 ns

switch forwarding delay, and a diameter of 32 switches we

get a bandwidth-delay product of 2048-bytes, which might

be just one single packet [7]. This means that a flow (of

2048-byte packets) limited to the window size of one packet

can roughly use all the bandwidth through the network, and a

window size of two will saturate the network. For link-level

flow controlled networks a rate control mechanism is more

appropriate, since it increases the range of control compared

to a window based system. The mechanism relies on the

switches to detect congestion (the root of the congestion

tree) and inform the sources that contribute to the congestion

that they must reduce the injection rate. There are basically

two ways to inform the source nodes. Either the switches

mark the packets contributing to congestion in order to notify

the destinations about the situation which subsequently noti-

fies the sources (the forward explicit notification approach),

or the switches themselves generate a notification packet that

is sent directly to the source nodes (the backward explicit

notification approach). InfiniBand (IB) [8] applies the for-

mer, while the emerging Data Centre Bridging standard [9]

(Ethernet) seemingly is to implement the latter. There is a

body of work that propose different strategies for congestion

notification and marking, e.g. a congested packet can be

marked both in the input and output buffer as well as being

tagged with information about the severity of the congestion.

Furthermore, there are several different approaches to the

design of the source response function, i.e. the actions taken

to reduce the injection rate, later followed by an increase in

the rate when congestion is resolved [7], [10], [11], [12]. In

this paper we will confirm to the congestion control strategy

specified by InfiniBand.

InfiniBand [8] was standardised in October 2000 and over

the years it has increased its marked share, when referring

to the Top500 list [13], to 30% of the market. For the top 20

super computers 45% is based on IB. Congestion control was

added in release 1.2 of the IB specification and is to some

extent based on the work done by Santos et. al. [7]. Only a

few contributions have assessed the effect of the IB CC and

how to use the various CC parameters. The most significant

contribution is the work done by Pfister et. al. [14], where

they studied (through simulations) how well IB CC can solve

certain hot spot traffic scenarios in fat trees.

InfiniBand hardware with support for CC has been avail-

able since June 2008 [15], [16], but the firmware required

for using CC is still not generally available. To the best of

our knowledge there are no published results on experience

with such hardware. In this paper we present experimental

results with CC on the latest generation of IB hardware.

Moreover, we add insight on how to use the CC parameters

by exploring a large set of parameter values. We will

also show how CC can benefit the well known HPCC

test benchmark. The reminder of the paper is organised as

follows: Section II gives an overview of the CC mechanism

supported by IB. In section III we describe our test bed and

the hardware and software used, while Section IV gives a

detailed description of our experiment set ups. Our results

are presented in Section V, VI, and VII. Section V presentes

our results from using CC to reduce the negative impact of

congestion, while Section VI presents similar results for the

HPCC benchmark. Section VII presents our results from a

study of the IB CC parameter value space and how to select

optimal values for these parameters. Finally, in Section VIII

we give our conclusions.

II. THE CC CONCEPT IN INFINIBAND

In this section we give an overview of the IB CC mech-

anism as specified in the InfiniBand Architecture Specifica-

tion release 1.2.1 [8]. As our studies focus on CC capable

equipment only, the parts of the specification defining credit

starvation to support legacy devices will not be covered1.

The IB CC mechanism is based on a closed loop feedback

control systems where a switch detecting congestion marks

packets contributing to the congestion by setting a specific

bit in the packet headers, the Forward Explicit Congestion

Notification (FECN) bit (fig. 3 (1)). The congestion notifi-

cation is carried through to the destination by this bit. The

destination registers the FECN bit, and returns a packet with

the Backward Explicit Congestion Notification (BECN) bit

1[8] also specifies functionality and parameters to perform monitoring
and logging of the congestion control mechanism in the IBA, but as these
features have not been extensively used during our experiments we will not
touch upon them any further in this section.

����������

�����

���� �� ���������

����
�

����

�

�

Figure 3. Congestion control in InfiniBand.

set to the source (fig. 3 (2)). The source then temporarily

reduces the injection rate to resolve congestion (fig. 3 (3)).

The exact behaviour of the IB CC mechanism depends

upon the values of a set of CC parameters governed by a

Congestion Control Manager. These parameters determine

characteristics like when switches detect congestion, at what

rate the switches will notify destination nodes using the

FECN bit, and how much and for how long a source node

contributing to congestion will reduce its injection rate. Ap-

propriately set, these parameters should enable the network

to resolve congestion, avoiding head-of-line blocking, while

still utilizing the network resources efficiently.

A. Congestion Control at a Switch

The switches are responsible for detecting congestion and

notifying the destination nodes using the FECN bit. A switch

detects congestion on a given port and a given Virtual

Lane (Port VL) depending on a threshold parameter. If the

threshold is crossed, a port may enter the Port VL congestion

state, which again may lead to FECN marking of packets.

The threshold, represented by a weight ranging from 0

to 15 in value, is the same for all VLs on a given port, but

could be set to a different level for each port. A weight of 0

indicates that no packets should be marked, while the values

1 through 15 represent a uniformly decreasing value of the

threshold. That is, a value of 1 indicates a high threshold

with high possibility of congestion spreading, caused by

Port VLs moving into the congestion state too late. A value

of 15 on the other hand indicates a low threshold with

a corresponding low possibility of congestion spreading,

but at the cost of a higher probability for a Port VL to

move into the congestion state even when the switch is not

really congested. The exact implementation of the threshold

depends on the switch architecture and is left to the designer

of the switch.

A Port VL enters the congestion state if the threshold is

crossed and it is the root of congestion, i.e. the Port VL

has available credits to output data. If the Port VL has no

available credits, it is considered to be a victim of congestion

and shall not enter the congestion state unless a specific

V ictim Mask is set for the port. The V ictim Mask is

typically set for ports connecting a channel adapter (CA)

to the switch. A CA that is not able to process received

packets fast enough will not consider itself to be a root of

congestion even if a congestion tree then builds up with the

CA as the root. In this special case the Port VL at the switch

connecting the CA should consider itself to be the root of

congestion, even if it is actually a victim, and move into the

congestion state.

When a Port VL is in the congestion state its packets are

eligible for FECN marking. A packet will then get the FECN

bit set depending on two CC parameters at the switch, the

Packet Size and the Marking Rate. Packets with a size

smaller than the Packet Size will not get the FECN bit

set. The Marking Rate sets the mean number of eligible

packets sent between packets actually being marked. With

both the Packet Size and the Marking Rate set to 0, all

packets should get the FECN bit set while a Port VL is in

the congestion state.

B. Congestion Control at a Channel Adapter

When a destination CA receives a packet with a FECN

bit, the CA should as quickly as possible notify the source of

the packet about the congestion2. As earlier mentioned, this

is done by returning a packet with the BECN bit set back to

the source. The packet with the BECN bit could either be

an acknowledgement packet (ACK) for a reliable connection

or an explicit congestion notification packet (CNP). In either

case it is important that the ACK or the CNP is sent to the

source as soon as possible to ensure a fast response to the

congestion.

When a source CA receives a packet with the BECN bit

set, the CA lowers the injection rate of the corresponding

traffic flow. That is, the injection rate of either the related

queue pair (QP) or the corresponding service layer (SL) will

be reduced. Congestion control at a CA port operates either

at the QP or at the SL level, exclusively. To determine how

much and for how long the injection rate should be reduced,

the CA uses a Congestion Control Table (CCT) and a set of

CC parameters. The CCT , consisting of at least 128 entries,

holds injection rate delay (IRD) values that define the delay

between consecutive packets sent by a particular flow (QP

or SL). Each flow with CC activated holds an index into the

CCT, the CCTI . When a new BECN arrives, the CCTI

of the flow is increased by CCTI Increase. The CCT is

usually populated in such a way that a larger index yields

a larger IRD. Then consecutive BECNs increase the IRD

which again decreases the injection rate. The upper bound

of the CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a

CCTI T imer, maintained separately for each SL of a port.

Each time the timer expires the CCTI is decremented by

one for all flows associated with the corresponding port SL.

When the CCTI of a flow reaches zero, the flow now longer

2There are three exceptions. The FECN bit in a multicast packet, ac-
knowledgement packet or congestion notification packet should be ignored.
That is, no congestion notification is sent back to the source in these three
cases.

��

��

��

��

��

�
� �
�

��

�	

�� � !

�� � !

Figure 4. The test bed.

experience any IRD. Each port SL also has a CCTI Min

parameter. Using the CCTI Min it is possible to impose

a minimum IRD to the port SL, as the CCTI should never

be reduced below the CCTI Min.

III. THE TEST BED

In this section we describe the hardware and software used

in our test bed, shown in fig. 4.

A. The Mellanox Switches and Adapters

Mellanox ConnectX InfiniBand adapters and InfiniScale®

IV switches (IS4 in fig. 4) are the latest generation of

IB solutions from Mellanox Technologies that have been

designed for HPC clustering technology. The ConnectX

HCAs and InfiniScale IV switches deliver up to 40 Gbit/s

of bandwidth between servers and up to 120 Gbit/s between

switches. This is matched with ultra-low application latency

of 1 μs, and switch latencies of 100 ns.

Mellanox ConnectX HCAs and InfiniScale IV switches

both include support for the InfiniBand CC mechanism,

and at the moment are the only end-to-end solutions to

provide this capability3. Furthermore, the adapters and

switches also include other critical capabilities for efficient

high-performance computing networking, such as adaptive

routing and application offload. Adaptive routing helps to

eliminate network congestion due to point-to-point commu-

nications that share the same path, while application offload

reduce the CPU overhead of networking processes. Adaptive

routing is out of scope for this paper, where we focus on

the IB CC capabilities and how it might eliminate congestion

that occur due to multiple traffic initiators and a single target.

B. Compute Nodes

The compute nodes in our test bed consists of seven Sun

Fire X2200 M2 servers that are connected as hosts H1-H7

in figure 4. Each host has a dual port Mellanox ConnectX

DDR HCA fitted in a 8x PCIe 1.1 slot, one dual core

AMD Opteron 2210 CPU, and 2GB of RAM. All hosts run

Ubuntu Linux 8.04 x86 64 with kernel version 2.6.24-24-

generic and OFED 1.4.1. The PCIe 1.1 8x slots in these

machines has a signalling rate of 20 Gbit/s, which equals

3Custom firmware is required both for switches and HCAs to enable
congestion control.

��

��

��

��

���� � !

�� � !

��

�	

���� �� ���������

�
�

��
��
��
��

�� ��	���

Figure 5. Flow configuration in scenario 1.

a theoretical bandwidth of 16 Gbit/s when counting for

the 8b/10b encoding overhead. The achievable bandwidth

is further reduced by PCIe protocol overhead, the speed of

other system components etc.

To generate traffic on the hosts we use several different

tools. Netpipe [17], which measures bandwidth and latency

for different packet sizes, is used to get some basic per-

formance numbers. To be able to study congestion in a

controlled manner we have in addition implemented some

changes to the perftest[18] application suite to support

regular bandwidth reporting and continuously sending traffic

at full capacity. The modified perftest is used to both create

congestion in the network and to measure the impact of con-

gestion. We also used the HPC Challenge [19] benchmark

to study the impact of congestion on a few well know HPC

applications.

IV. EXPERIMENT SCENARIOS

In this section we describe the two communication sce-

narios we have used to investigate the behaviour of CC in

our test bed.

A. Scenario 1

The purpose of communication scenario 1 is twofold.

First, it illustrates the negative effect that congestion has

on a victim flow (flow 1 from H1 to H4 in fig. 5). Second,

it illustrates how this can be avoided by using congestion

control.

In this scenario we use the following communication

pattern (fig. 5): Flow 1 (F1) from H1 to H4, and flow 2

- 5 (F2-F5) where H2, H3, H6, and H7 all send to H5.

Communication starts with only F1 active, then F2 - F5 are

activated one by one with one second intervals. When a flow

is active it tries to send at maximum speed, using a reliable

connection.

B. Scenario 2

The purpose of communication scenario 2 is to study

how congestion control performs when there is no victim

present, and by that no HOL blocking to reduce in order to

potentially improve overall performance.

In this scenario we use the following communication

pattern (fig. 6): Flow 1 (F1) from H1 to H4, flow 2 (F2) from

��

��

��

��

��

��

�	

�
�

���� �� ���������

�� � !

�� � !

��
��
��

Figure 6. Flow configuration in scenario 2.

H2 to H5, and flow 3 (F3) from H3 to H6. Communication

starts with only F1 active, then F2 and F3 are activated one

by one with one second intervals. As before, when a flow is

active, it tries to send at maximum speed, using a reliable

connection. In this scenario there is no victim flow, but there

is contention for bandwidth on the link between S1 and S2

that is shared by all three flows.

V. EXPERIMENT RESULTS

In this section we present and analyze the results obtained

from our scenario 1 and scenario 2 experiments, staring with

scenario 1. At the end we give a brief summary of our most

important findings.

A. Results from Scenario 1

Figure 7(a) shows the individual throughput of the five

traffic flows from scenario 1 (fig. 5) running without flow

control. For the first 1.5 seconds the flow from H1 to H4

(F1) is the only active flow in the network. During this

period the average throughput of this flow is 13 Gbit/s. This

is as expected with our hardware configuration, where the

throughput is limited by the PCIe capacity at the hosts[20],

[21]. Then we progressively add one new flow each second

until the four sources H2, H3, H6 and H7 are active (flows

F2-F5 in fig. 5, respectively), all with H5 as the destination.

The addition of flow F2 does not affect F1 as the two

flows only share the link between the two switches, a link

with twice the capacity of the switch-to-host links. Therefore

they both achieve a throughput of 13 Gbit/s. Now adding

the flow F3, we observe a major drop in throughput for all

three flows, leaving them at just below 7 Gbit/s each. This

happens because the link from switch S2 to H5 has become

a bottleneck, causing a congestion tree to be built from S2

towards the sources. Due to HOL blocking, F1 becomes a

victim flow which is also affected, even if that flow is not

requesting the congested resources at S2. F1 gets the same

share of the switch-to-switch link as F2 and F3, a share

determined by the individual access F2 and F3 get to the

bottleneck link. The growth of the congestion tree has led

to an underutilization of the switch-to-switch link, wasting

resources in the network.

Adding flow F4 (blue flow in fig. 7), the flows F1

(victim), F2 and F3 experience a new drop in performance,

Parameter Value

Threshold 15
Marking Rate 1
Packet Size 8
CCTI Increase 1
CCTI Limit 127
CCTI Min 0
CCTI T imer 150

Table I
CC PARAMETER VALUES FOR SCENARIO 1 AND 2.

roughly halving their throughput once more. Now, F1 suffers

even more due to the HOL blocking. Notice that F4 gets

more than its fair share of the bottleneck link, achieving a

throughput of almost 7 Gbit/s. This is an example of the

well known parking lot problem [22], [23]. As the flows F2

and F3 (and F1) from S1 are all treated by S2 as one traffic

flow, the flows F2 and F3 together only get access to the

same amount of the congested resources as the flow F4 does

alone.

Adding the last flow, F5, the same pattern repeats. F1

(victim), F2 and F3 is reduced to approximately 2 Gbit/s,

while F4 and F5 is reduced to approximately 4.5 Gbit/s.

Again, F1 suffers even more from the HOL blocking, while

we still see an unfairness among the flows headed for H5.

Figure 7(b) shows the scenario 1 experiment (fig. 5)

repeated with CC enabled. As we can see from the figure,

the CC mechanism is able to completely remove the HOL

blocking of the victim flow F1, giving the flow a more or

less constant throughput of 13 Gbit/s independent of the

other traffic flows. CC is activated at switch S2 as soon

as we add the flows F3, F4 and F5. Then some oscillations

occur among all the flows contributing to congestion as they

are constantly adjusting their injection rates depending on

the congestion notifications received at the sources. This

oscillating behaviour corresponds well to the simulation

results provided by [14]. When the flows F2 and F3 are the

sole contributors to congestion, they both experience a small

penalty in average throughput caused by the activation of the

CC. This penalty is, however, removed with the introduction

of the flows F4 and F5. Both the degree of oscillation and

the penalty in throughput caused by the activation of the

CC, depend on the CC parameter values being used. We

will explore the CC parameter space further in section VII.

Table I shows the parameter values used for our scenario 1

and scenario 2 experiments.

An interesting observation is that the activation of CC to

resolve congestion also solves the parking lot problem in

our test scenario. As mentioned earlier, the switch S2 treats

F2 and F3 as a single flow when providing access to the

congested link. This gives the flows F4 and F5 an unwanted

advantage. F4 and F5 both get access to 1/3 of the capacity

of the link towards the node H5, while F2 and F3 have to

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1 (Victim)

F2

F3

F4

F5

(a) Congestion Control turned OFF.

Time (s)
B

an
dw

id
th

 (M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1 (Victim)

F2

F3

F4

F5

(b) Congestion Control turned ON.

Figure 7. Measured throughput for flows in scenario 1.

To
ta

l T
hr

ou
gh

pu
t (

M
b/

s)

0

2000

4000

6000

8000

10000

12000

CC off CC on

Flow

F2

F3

F4

F5

Figure 8. Fairness between the flows contribution to congestion.

share the last 1/3 of the capacity. This skew is shown in the

first bar in fig. 8. The CC treats all contributors to congestion

in a fair way. If one contributor occupies more than its fair

share of the congested resources at the root of the congestion

tree, it will receive a correspondingly high share of the

congestion notifications, and by that throttle the injection

rate more than contributors occupying less resources at the

root of the tree. For the four contributors to congestion in

our experiment, the result is even access to the congested

link, effectively solving the parking lot problem. Figure 8,

second bar, illustrates this, showing how all four flows share

the congested link equally.

1) Packet size: All results presented this far are gathered

from experiments run with a packet size of 65536 bytes and

a MTU of 2048 bytes. The potential benefit from CC is,

however, by no means limited to this packet size. Figure 9

shows how a victim of HOL blocking, the F1 flow from the

last section, benefits from the CC, depending on the packet

size being used. As we can see from the graph, activating CC

results in an order of magnitude improvement in throughput

for this flow, independent of the packet size. The throughput

that the victim flow F1 achieves with CC enabled, coincides

with the throughput the same flow achieves when there is

no congestion in the network, while a congested network

without CC yields inferior results.

B. Results from Scenario 2

In scenario 2 (fig. 6) we turn our attention towards the

possible penalty of enabling CC in a network. We do this by

focusing on a scenario where only contributors to congestion

are present. In particular we have removed the HOL blocked

traffic flow that experienced a performance gain when we

enabled CC in scenario 1. In addition we have moved the

root of the congestion tree from S2 to S1, to maximize the

length the congestion notifications have to travel in our test

bed. Now the three sources H1, H2 and H3 sends traffic

to the three destinations H4, H5 and H6, respectively. We

denote the three flows F1 , F2 and F3 (fig. 6)

Figure 10(a) shows the throughput of the three flows

F1 to F3 when the CC is turned off. As in scenario 1,

we progressively add one flow each second to see what

impact each new flow has on the network performance.

When the third flow, F3, is added after approximately 2

seconds, we observe that the link based flow control throttles

the three sources. The switch-to-switch link has now reached

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(a) Congestion Control turned OFF.

Time (s)
B

an
dw

id
th

 (M
b/

s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(b) Congestion Control turned ON.

Figure 10. Measured throughput for flows in scenario 2.

Send size (B)

T
hr

ou
gh

pu
t (

M
b/

s)

100

101

102

103

104

100 101 102 103 104 105 106

Type

CC Active

CC Inactive

No Congestion

Figure 9. Throughput of the victim flow as a function of packet size.

its capacity (remember that this link has twice the bandwidth

of the switch-to-host links). A congestion tree has grown

towards the sources, constantly supplying the switch with

traffic to forward. All three flows get their fair share of the

bandwidth. This is as expected, given a fair switch.

If we enable the CC, the behavior in the network changes

when we add the third traffic flow, F3, (fig 10(b)). Now CC

is triggered at switch S1 as soon as the switch-to-switch link

becomes congested. The CC introduces oscillation caused by

the sources constantly trying to adjust their injection rate to

resolve congestion. The behavior is the same as we observed

for the contributors to congestion during scenario 1. The

throughput jitter experienced by the three traffic flows are

increased by more than an order of magnitude (table II).

While the oscillation is clearly visible, the average through-

put experienced by each of the three flows is, however, only

reduced by 3.5%. All three flows are treated fairly.

It is evident that enabling the congestion control with the

CC parameters from scenario 1 decreases throughput and

increases oscillation, as seen in Figure 10 and table II. Notice

though, that this is a worst case scenario with no possible

benefit from enabling the CC.

(a) Congestion Control turned OFF.

H1 H2 H3 All

Mean 10427.69 10427.82 10427.41 10427.64
SD 28.38508 42.83686 51.56237 42.02744
Min 10319.09 10339.89 9831.57 9831.57
Max 10503.43 10615.34 11076.06 11076.06

(b) Congestion Control turned ON.

H1 H2 H3 All

Mean 10065.51 10124.61 9986.035 10058.55
SD 1773.68 1743.891 1793.207 1770.445
Min 8504.688 8487.411 8496.641 8487.411
Max 13210.3 13206.15 13902.36 13902.36

Table II
THROUGHPUT STATISTICS FOR FLOWS IN SCENARIO 2.

C. Results Summary

Our results so far has shown that congestion can have

a negative impact on flows not contributing to congestion

and that IB CC is able to remove the negative impact

congestion has on a victim flow. Furthermore, we have seen

that the penalty of using IB CC is low even in a worst

case scenario where there is no victim present and by that

no HOL blocking to reduce in order to potentially improve

overall performance. Finally we have seen that IB CC have

an unforeseen positive side effect that gives fairness to flows

that would otherwise be treated unfairly due to the parking

lot problem.

VI. THE IMPACT OF CC ON THE HPC CHALLENGE

BENCHMARK

In the previous section we presented results from mea-

surements on two configurations where both the congested

flows and the victim flow used a synthetic traffic pattern. In

this section we present results from measurements where

the victim flow is replaced with a victim flow running

the HPC Challenge (HPCC) benchmark [19], [24], [25].

The congested flows are still synthetically generated, but

when combined with the HPCC benchmark this resembles

the network conditions that HPCC type applications would

experience when a hot spot is present, but not created by

the HPCC applications itself. E.g. a hot spot created by

a combination of I/O traffic and one or more concurrently

running applications. This configuration allows us to study

how congestion impacts the type of traffic generated by the

HPCC benchmark.

Table III shows the main results from the HPCC bench-

mark when performed a) without both congestion and con-

gestion control; b) with congestion and without congestion

control; c) with both congestion and congestion control.

For the Randomly ordered ring (ROR) test the observed

latency is increased by 544.6%, from 2036 μs to 11088 μs,

when comparing the non-congested and congested scenario.

When activating CC in the congested scenario the observed

latency is reduced by 81.3%, from 11088 μs to 2073 μs.

The observed difference between the uncongested scenario

and the scenario with congestion and CC active is less than

1.8%, showing that the CC is able to resolve the congestion

effectively. The other latency tests show similar behaviour.

The observed throughput for the ROR test is reduced by

48.8%, from 684.667 MByte/s to 350.357 MByte/s, when

congestion is present. When activating CC the observed

throughput is increased again by 95.1%, from 350.357

MByte/s to 683.452 MByte/s, which is very close to the ob-

served throughput without congestion. The same behaviour

can be seen for the other bandwidth tests. These results from

the latency and bandwidth tests are as expected and they

correspond well with what we saw for the synthetic traffic

Host Channel Adapter Switch

CongestionControlTable (CCT) Threshold
CCTI (CCT index) Marking Rate
CCTI Increase Packet Size
CCTI Limit V ictim Mask
CCTI Min
CCTI T imer

Table IV
INFINIBAND CC HOST AND SWITCH PARAMETERS.

in the previous section.

The remaining application benchmarks illustrates how the

network performance affects the application performance. To

what extent they are affected depends on how communica-

tion sensitive the application is. E.g. the Linpack test only

see a 2.1% improvement in performance when congestion is

present and CC is active, compared to the congested scenario

without CC. On the other hand the more communication

sensitive PTrans test see an improvement in performance by

76%. The RandomAccess and FFT tests show a 20.5% and

39.3% improvement in performance, respectively. Again,

the observed performance in a congested scenario with CC

enabled is very close to what we observe in the scenario

without congestion.

These results clearly shows how applications are nega-

tively affected by congestion and how IB CC can be used

to reduce, and sometimes remove completely, the negative

effect of congestion.

VII. EXPLORING THE EFFECT OF CC PARAMETERS

As explained in Section II, there are several CC pa-

rameters that can be configured at the switches and the

hosts. While analysing our results in the previous sections,

we briefly mentioned the CC parameters, postponing the

discussion concerning what parameter values to use. Now,

we turn our attention towards the CC parameter space itself.

We explore the space through reasoning and experiments,

adding insight into the impact the parameter space has on

performance, and by that how effective the corresponding

instance of the CC mechanism is. We have used the traffic

pattern from Scenario 1 as the main basis for our studies,

as that scenario contains both a victim flow and several

contributors to congestion.

A. Switch CC Parameters

Table IV summarizes the parameters introduced in

Section II. Starting with the switch, the four parame-

ters are threshold, Marking Rate, Packet Size, and

V ictim Mask, where threshold and Marking Rate

proved to be the most interesting. The V ictim Mask is

only used to ensure proper congestion detection when a host

4Shows the percentage decrease for latency and percentage increase for
throughput between column c) and b).

Network Lat. And BW a) No cong. b) Cong, CC off c) Cong, CC on Impr.4

Min Ping Pong Lat. (ms) 0.001132 0.001192 0.001172 1.7%
Avg Ping Pong Lat. (ms) 0.001678 0.012385 0.001729 86.0%
Max Ping Pong Lat. (ms) 0.001957 0.018001 0.002056 88.6%
Naturally Ordered Ring Lat. (ms) 0.002193 0.011396 0.002098 81.6%
Randomly Ordered Ring Lat. (ms) 0.002036 0.011088 0.002073 81.3%
Min Ping Pong BW (MB/s) 880.463 663.235927 876.049 32.1%
Avg Ping Pong BW (MB/s) 1354.021 733.159 1360.26 85.5%
Max Ping Pong BW (MB/s) 1590.559 879.125 1611.025 83.3%
Naturally Ordered Ring BW (MB/s) 742.469675 213.687109 743.769828 248.1%
Randomly Ordered Ring BW (MB/s) 684.66655 350.356751 683.451954 95.1%

Other HPCC Benchmarks a) No cong. b) Cong, CC off c) Cong, CC on Impr.4

PTRANS GB/s 0.755254 0.347585 0.611816 76.0%
HPLinpack 2.0 Gflops 1.819 1.79 1.827 2.1%
MPIRandomAccess Updates GUP/s 0.015118991 0.01195898 0.014409549 20.5%
MPIFFT Gflops/s 1.3768 0.982365 1.36891 39.3%

Table III
RESULTS FROM THE HPC CHALLENGE BENCHMARK.

is connected to a switch. Varying the Packet Size had little

impact, easily explained by the fact that the packet size of

the traffic flows within most of our experiments do not vary.

Given a constant packet size, it is only important to keep the

Packet Size below the size of the packets actually being

sent to keep the CC working. Differentiated FECN marking

depending on the packet size is not an issue when all packet

sizes are the same.

The threshold parameter indicates how aggressive a

switch shall be when deciding if a packet is experiencing

congestion. Its value affects how early a switch signals

congestion to a source. How fast a source is able to react

is, however, also affected by the distance the congestion

notifications have to travel, first going to the destination,

and then back to the source. On one hand, the threshold

needs to be aggressive enough to signal sources early while

the switch still has room for any in flight packets headed

for the contested resources at the switch. If the threshold

is not aggressive enough a congestion tree might grow. On

the other hand, being too aggressive, the switch might tell

the sources to cease sending packets too early, leaving the

contested resources at the switch idle as the buffers are

emptied. Furthermore, if the threshold is too aggressive, the

switch is more likely to detect congestion based on small,

temporary peaks in traffic, causing an unneeded reduction

of injection rates at the sources.

We have found that the CC works best with the threshold

at its maximum value for our test bed. It is good to signal

congestion early when there is still buffer space available,

as it prevents a congestion tree from forming. We expect

this to be true for larger networks as well, as the path

between the root of the congestion and the sources is then

generally longer, which implies a longer reaction time in

order to quench the sources. It is worth noting though, that

we have a deterministic traffic pattern in our experiments,

where an aggressive threshold never leads to a wrong

guess about congestion. The deterministic contributors to

congestion make sure that a guess about congestion is always

right, with a certain amount of upstream traffic on its way to

the contested resource. A more dynamic traffic pattern than

what we have studied so far might increase the impact of

the threshold parameter.
The Marking Rate parameter dictates the mean number

of packets eligible for FECN marking sent between packets

actually being marked at the switch. The Marking Rate

acts as a filter on top of the threshold with regards to

the number of FECNs sent. How many BECNs a source

receives when congestion occurs, and by that how much

the injection rate is reduced, is therefore closely related

to the value of the Marking Rate parameter. Figure 11

shows how the average throughput of our victim flow de-

pends on the Marking Rate (and the CCTI T imer of

a channel adapter). The plot is from Scenario 1 with all

five flows active. Even though the throughput for a given

Marking Rate is obviously not independent of the other

parameter, the CCTI T imer, it is evident that keeping the

Marking Rate low generally yields the best throughput.

Keeping it low becomes particularly important when us-

ing low values of the CCTI T imer. We will get back

to the correlation between the Marking Rate and the

CCTI T imer in the next section, where we will discuss

fig. 11 in more detail.

B. Channel Adaptor CC Parameters

The CC at a CA is centred around the Congestion Control

Table (CCT) and the set of related parameters given in

table IV. As explained in Section II, the CCT contains an

array of increasing IRD values used to control the injection

rate of a host, and thereby its contribution to congestion.

A low IRD means a high injection rate and vice versa.

The CCT size is given by the value CCTI Limit and

has a minimum value of 128. The CCTI Limit serves

as a upper bound for the CCTI Index parameter. The

Figure 11. Average throughput of the victim flow as a function of the
CCTI T imer and the Marking Rate.

CCTI Index refers to a given entry in the CCT for

a given flow (QP or SL), and is used to select an IRD

whenever a host should increase or decrease its injection

rate for this particular flow. The CCTI Index is increased

by CCTI Increase steps whenever a BECN is received,

and decreased by one whenever the CCTI T imer ex-

pires. The lower bound for the CCTI Index is given

by CCTI Min. To summarize, the CAs reaction to con-

gestion depends on the size and the population of the

CCT , and how the CCTI Index moves inside this ta-

ble. The movement of the CCTI Index is mainly deter-

mined by the CCTI Increase, the CCTI T imer, and the

Marking Rate in the switch (discussed in the previous

section).

A large CCT implies more IRD values and makes

it possible to increase or decrease the injection rate in

smaller steps than in a smaller table. In our test bed, the

minimum size of 128 entries proved to give a granularity

good enough to ensure efficient CC5. We used the values

CCTI Min = 0 and CCTI Limit = 127 to utilize the

whole CCT . The table was then populated by the formula

cct[i] = i2∗7/1062 (μs). This formula is a small adjustment

of the default formula provided by the switch manufacturer

(cct[i] = i2∗7/952). The adjustment of the IRDs was shown

through experiments to give a little less oscillation in our test

scenarios, while keeping the same average throughput. The

exact impact of the IRD values might be different though

in a larger network with a more dynamic traffic pattern, and

needs to be further investigated in such environments.

How the CCTI Index moves in the CCT , and by

that how much traffic a contributor to congestion in-

jects into the network, is as mentioned mainly deter-

mined by the CCTI Increase, the CCTI T imer, and

5Others has found that the minimum size is sufficient for larger topologies
as well [14].

Figure 12. Average throughput of the four contributors to congestion as
a function of CCTI T imer and Marking Rate.

the Marking Rate. Looking at fig. 11, we see the average

throughput of the victim flow shown as a function of the

CCTI T imer and the Marking Rate, while all five flows

are active. The CCTI Increase is kept at the default value

1. Then, if the CCTI T imer is too low, here below approx-

imately 150 μs, the contributors to congestion increase the

injection rate too early after receiving a BECN, effectively

allowing the congestion tree to form, no matter the value

of the Marking Rate. The victim suffers due to HOL

blocking. The corresponding low throughput of the victim

flow can be seen as the purple area of the surface in fig. 11.

When the CCTI T imer increases, the contributors keep

a low injection rate for a longer period of time, removing

the congestion tree and the corresponding HOL blocking. It

is, however, important to keep the Marking Rate low to

supply the contributors with a high frequency of BECNs.

As the CCTI T imer increases, the throughput of the

victim becomes less sensitive to the Marking Rate. The

contributors decrease the injection rate for a longer period

of time when throttled, and are able to remove the HOL

blocking even if they receive less BECNs. The victim suffers

from less HOL blocking in the area where the surface is first

turning orange, and later yellow. In the bright yellow area the

throughput of the victim is limited by the PCIe bus capacity

of the hosts.

One could suspect the CC to be too aggressive in the yel-

low area of the surface in fig 11, underutilizing the contested

resources in the network. Figure 12 shows, however, that the

average throughput of the four contributors to congestion

vary very little in this area (the surface has been rotated

to increase readability). The four contributors are able to

utilize the congested link, even when using a CCTI T imer

value as high as 2000 μs. This surface does, however, hide

an important aspect of the CC mechanism; how fast the

contributors are able to settle for a fair distribution of the

Time (s)

B
an

dw
id

th
 (M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6

Flow

F1 (Victim)

F2

F3

F4

F5

Figure 13. The scenario 1 experiment with a CCTI T imer value of
2000 μs.

contested resource at the root of the congestion tree when

congestion occurs.

Figure 13 shows our scenario 1 experiment repeated with

the CCTI T imer set to 2000 μs. Comparing this figure to

fig. 7(b), we clearly see how the contributors now experience

unfairness among each other for an extended period of time,

each time a new contributor is added. The CC mechanism

is not able to stabilize the contributors, with regard to

fairness between these flows, during the one second interval

between adding new flows. To further investigate how fast

the contributors stabilize we need to study the treatment of

the contributors during congestion. We do this by defining

a treatment variation variable (V ar) as a function of the

CCTI T imer and the Marking Rate parameters. For

each point in time where all four contributors are active in

scenario 1, we subtract the lowest throughput of any of the

four flows from the throughput of the flow with the highest

throughput. This results in an array of delta throughput

values for the time period where all four flows are active.

Then, calculating the variation of this delta array, we get

the V ar value indicating how fast the CC mechanism is

able stabilize and give the four flows a fair treatment when

congestion occurs. In fig. 14 V ar is plotted as a function

of the CCTI T imer and the Marking Rate. Now we

clearly see how a large part of the parameter space, the

orange part of the surface, will result in unfairness and

instability among the contributors. With regard to fairness,

the CC mechanism performs best when the CCTI T imer

is kept low.

Based on our experiment results and the insight from

fig. 11, fig. 12 and fig. 14, we have observed that we

achieve the best performance of the victim flow when both

the threshold and the CCTI T imer is high, while the

Marking Rate has limited impact on performance. The

situation is opposite for the flows contributing to con-

Figure 14. The treatment variation variable V ar as a function of
CCTI T imer and Marking Rate.

gestion. Here the best performance is achived when the

CCTI T imer is kept low. Moreover, we see that the set

of parameter values that gives good performance is small.

Based on these observations we were able to narrow down

the CC parameter space to the values given in table I, used

during our scenario 1 and scenario 2 experiments.

VIII. CONCLUSIONS

Congestion control has been an important subject for

researchers in interconnection networks for many years.

Still, hardware implementation of CC mechanisms have only

recently materialized. To the best of our knowledge, this

paper contains the first results on the behavior of congestion

control mechanisms in InfiniBand implemented in hardware.

Our main findings are the following:

• Without CC, the problems of flows being victims of

congestion without contributing to it is easy to provoke.

This problem is severe, as it makes the bandwidth

of links in the congestion tree lie idle, even if this

bandwidth is needed by a victim flow.

• The parking lot problem, where flows get uneven shares

of a congested link, is severe when CC is not active.

• Infiniband CC can alleviate both above problems. Our

results show that Infiniband CC can equally save the

victims of congestion, and give fairness to flows that

share a congested link.

• The cost of having Infiniband CC turned on can be

made small. In a scenario where there is congestion,

but no victims to save, the parameters can be set so

that there is a negligible penalty in throughput.

• The above results of Infiniband CC on synthetic flows

translate into highly significant improvements in the

performance of the more realistic traffic scenarioes of

the HPC Challenge benchmark.

• Even if the performance of Infiniband CC is sensitive

to parameter setting, we were able to find a sweet spot

for our test scenarios.

This first study of Infiniband CC in hardware has given

encouraging results. Still, there is further work to be done

before the mechanism is fully understood. Open questions

include how these results scale to bigger topologies, and to

what extent optimal tuning of the parameter setting is stable

over varying topologies, traffic patterns and applications.

These questions will be addressed in further work, that

will include the combination of hardware measurements in

limited topologies, and calibrated simulation tests in large

topologies.

ACKNOWLEDGEMENTS

We would like to thank the HPC Advisory Council [26]

for the support throughout the research and testing activities

and for the contribution of the switches that were used for

the testing. The HPC Advisory Council is a world-wide HPC

organization that support education, outreach and research

activities on high performance computing solutions.

REFERENCES

[1] G. F. Pfister and V. A. Norton, “”hot spot” contention and
combining in multistage interconnection networks,” IEEE
Trans. Computers, vol. 34, no. 10, pp. 943–948, 1985.

[2] W. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–
205, 1992.

[3] P. Garcı́a, J. Flich, J. Duato, I. Johnson, F. Quiles, and
F.Naven, “Dynamic evolution of congestion trees: Analysis
and impact on switch architecture,” in High Performance
Embedded Architectures and Compilers, 2005, pp. 266–285.

[4] V. Jacobson, “Congestion avoidance and control,” in SIG-
COMM. ACM, 1988, pp. 314–329.

[5] L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end
congestion avoidance on a global internet,” IEEE Journal on
selected Areas in communications, vol. 13, pp. 1465–1480,
1995.

[6] C. Parsa and J. Garcia-Luna-Aceves, “Improving tcp conges-
tion control over internets with heterogeneous transmission
media,” in 7th International Conferance on Network Proto-
cols (ICNP99). IEEE Computer Society, 1999, pp. 213–221.

[7] J. R. Santos, Y. Turner, and G. J. Janakiraman, “End-to-end
congestion control for infiniband,” in INFOCOM, 2003.

[8] Infiniband architecture specification, 1st ed., InfiniBand Trade
Association, November 2007.

[9] Data Center Bridging standard, Ieee 802.1qau ed., IEEE
802 LAN/MAN Standards Committee. [Online]. Available:
http://www.ieee802.org/1/

[10] J. R. Santos, Y. Turner, and G. J. Janakiraman, “Evaluation
of congestion detection mechanisms for infiniband switches,”
in IEEE GLOBECOM – High-Speed Networks Symposium,
2002.

[11] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato,
“Congestion management in mins through marked and vali-
dated packets,” in PDP, 2007, pp. 254–261.

[12] ——, “On the influence of the packet marking and injection
control schemes in congestion management for mins,” in
Euro-Par, 2008, pp. 930–939.

[13] “Top 500 supercomputer sites,” http://top500.org/, June 2009.

[14] G. Pfister, M. Guzat, W. Denzel, D. Craddock, N. Ni,
W. Rooney, T. Engbersen, R. Luijten, R. Krishnamurthy,
and J. Duato, “Solving hot spot contention using infiniband
architecture congestion control,” Invited paper in High
Performance Interconnects for Distributed Computing,
july 2005. [Online]. Available: http://www.cercs.gatech.
edu/hpidc2005/presentations/GregPfister.pdf

[15] M. Technologies, “Mellanox infiniscale iv switch
architecture provides massively scaleable 40gb/s server
and storage connectivity,” Press release, November 2007,
http://www.mellanox.com/content/pages.php?pg=press
release item&rec id=34.

[16] ——, “Mellanox announces availability of industry’s first
40gb/s infiniband switch silicon device and product reference
platforms,” Press release, June 2008, http://www.mellanox.
com/content/pages.php?pg=press release item&rec id=214.

[17] “Netpipe - network protocol independent performance evalu-
ator,” http://www.scl.ameslab.gov/netpipe/, September 2009.

[18] “Perftest - performance testing framework,” http://perftest.
sourceforge.net/, September 2009.

[19] P. Luszczek, J. J. Dongarra, D. Koester, R. Raben-
seifner, B. Lucas, J. Kepner, J. McCalpin, D. Bailey, and
D. Takahashi, “Introduction to the hpc challenge bench-
mark suite,” Lawrence Berkeley National Laboratory, Tech.
Rep. LBNL-57493, april 2005, http://repositories.cdlib.org/
lbl/LBNL-57493.

[20] J. Liu, A. Mamidala, A. Vishnu, and D. K. Panda, “Evalu-
ating infiniband performance with pci express,” IEEE Micro,
vol. 25, no. 1, pp. 20–29, 2005.

[21] M. J. Koop, W. Huang, K. Gopalakrishnan, and D. K.
Panda, “Performance analysis and evaluation of pcie 2.0 and
quad-data rate infiniband,” High-Performance Interconnects,
Symposium on, vol. 0, pp. 85–92, 2008.

[22] M. Galles, “Spider: A high-speed network interconnect,”
IEEE Micro, vol. 17, no. 1, pp. 34–39, 1997.

[23] W. J. Dally and B. Towles, Principles and practices of
interconnection networks. Morgan Kaufmann, 2004, ch.
15.4.1, pp. 294–295.

[24] “Hpc challenge benchmark,” http://icl.cs.utk.edu/hpcc/.

[25] R. Rabenseifner, S. Tiyyagura, and M. Muller, Recent Ad-
vances in Parallel Virtual Machine and Message Passing
Interface. Springer-Verlag, october 2005, vol. 3666, ch.
Network Bandwidth Measurements and Ratio Analysis with
the HPC Challenge Benchmark Suite (HPCC), pp. 368–378.

[26] “Hpc advisory council,” http://www.hpcadvisorycouncil.
com/.

Paper IV

Exploring the Scope of the InfiniBand

Congestion Control Mechanism

Ernst Gunnar Gran, Sven-Arne Reinemo, Olav Lysne,

Tor Skeie, Eitan Zahavi, and Gilad Shainer

Exploring the Scope of the InfiniBand Congestion Control Mechanism

Ernst Gunnar Gran, Sven-Arne Reinemo,
Olav Lysne, Tor Skeie

Simula Research Laboratory

Fornebu, Norway

Email: {ernstgr, svenar, olavly, tskeie}@simula.no

Eitan Zahavi, Gilad Shainer

Mellanox Technologies

Israel/USA

Email: eitan@mellanox.co.il,

Shainer@Mellanox.com

Abstract—In a lossless interconnection network, network
congestion needs to be detected and resolved to ensure high
performance and good utilization of network resources at
high network load. If no countermeasure is taken, congestion
at a node in the network will stimulate the growth of a
congestion tree that not only affects contributors to congestion,
but also other traffic flows in the network. Left untouched, the
congestion tree will block traffic flows, lead to underutilization
of network resources and result in a severe drop in network
performance.

The InfiniBand standard specifies a congestion control (CC)
mechanism to detect and resolve congestion before a congestion
tree is able to grow and, by that, hamper the network
performance. The InfiniBand CC mechanism includes a rich
set of parameters that can be tuned in order to achieve effective
CC. Even though it has been shown that the CC mechanism,
properly tuned, is able to improve both throughput and fairness
in an interconnection network, it has been questioned whether
the mechanism is fast enough to keep up with dynamic network
traffic, and if a given set of parameter values for a topology
is robust when it comes to different traffic patterns, or if the
parameters need to be tuned depending on the applications
in use. In this paper we address both these questions. Using
the three-stage fat-tree topology from the Sun Datacenter
InfiniBand Switch 648 as a basis, and a simulator tuned against
CC capable InfiniBand hardware, we conduct a systematic
study of the efficiency of the InfiniBand CC mechanism as
the network traffic becomes increasingly more dynamic.

Our studies show that the InfiniBand CC, even when using a
single set of parameter values, performs very well as the traffic
patterns becomes increasingly more dynamic, outperforming a
network without CC in all cases. Our results show throughput
increases varying from a few percent, to a seventeen-fold
increase.

I. INTRODUCTION

Traffic congestion in interconnection networks may de-

grade the network and the compute system performance

severely if no countermeasures are taken [1], [2], [3]. Con-

gestion is simply a result of high load of traffic fed into a

network link, exceeding the link capacity at that point. Hot

spot traffic patterns, network burstiness, re-routing around

faulty regions, and conducting link frequency/voltage scaling

(lowering the link speed in order to save power), can all lead

to congestion. If all these factors are known in advance, the

network administrator may alleviate the consequences by

effective load balancing of the traffic, but typically this is

not the case. Furthermore, in cases where multiple nodes

send more data to a single destination than the node can

handle, no dynamic re-routing can be done to avoid network

congestion. It becomes even more severe when a parallel

computer is running multiple different jobs as an on-demand

service (e.g. cloud computing), where the resulting traffic

pattern becomes unpredictable.

Congestion control (CC) as a countermeasure for relieving

the consequences of congestion has been widely studied in

the literature. In particular, this problem is well understood

and solved by dropping network packets in traditional lossy

networks such as local area networks (LANs) and wide

area networks (WANs). In these environments packet loss

and increased latency are indications of network conges-

tion. Herein it is mainly TCP that implements end-to-end

congestion control, either by a traditional window control

mechanism [4] for detecting dropped packets or through

changes in latency [5], [6]. Very often those networks are

also over-provisioned in order to avoid congestion.

In high performance computing (HPC) data centers low

latency is crucial, and packet dropping and retransmission

are not allowed under regular circumstances, contrary to

LANs and WANs, due to the loss of performance that is

associated with packet drops. Lossless behavior is achieved

with credit based link-level flow control, which prevents a

node or a switch from transmitting packets if the downstream

node or switch lacks buffer space to receive them.

Typically, when congestion occurs in a switch in a net-

work with link-level flow control, a congestion tree starts to

build up due to the backpressure effect of the flow control

mechanism. The switch where the congestion starts will be

the root of a congestion tree that grows towards the source

nodes contributing to the congestion. This effect is known as

congestion spreading. The tree grows because buffers fill up

through the switches as the switches run out of flow control

credits (not necessarily in the root). As the congestion tree

grows, it introduces head-of-line (HOL) blocking [7] and

slows down packet forwarding that also affects flows which

are not contributing to the congestion, severely degrading

the entire network performance. The HOL blocked flows

become victims of congestion [7].

Congestion control for link-level flow controlled networks

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE
DOI 10.1109/IPDPS.2012.104

1131

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE
DOI 10.1109/IPDPS.2012.104

1131

cannot be based on a traditional window control mechanism

as deployed by TCP, even though it effectively limits the

amount of buffer space that a flow can occupy in the

network [8]. The reason for this is the relatively small

bandwidth-delay product in this environment, where even

a small window size may saturate the network [7]. A

rate control based CC mechanism is more appropriate for

link-level flow controlled networks, since it increases the

range of control compared to a window based system.

The mechanism relies on the switches to detect congestion,

and inform the sources that contribute to the congestion

that they must reduce their corresponding injection rates.

There are basically two ways to inform the source nodes in

such an explicit congestion notification scheme. Either the

switches can mark the packets contributing to congestion in

order to notify the destinations about the situation which

subsequently notifies the sources (the forward explicit noti-

fication approach), or the switches can themselves generate

notification packets that are sent directly to the source

nodes (the backward explicit notification approach). The

InfiniBand [9] architecture applies the former approach1,

while the emerging Data Center Bridging standard [10] is

implementing the latter.

There is a body of work that propose different strategies

for congestion notification and marking, e.g. a congested

packet can be marked both in the input and output buffer

as well as being tagged with information about the severity

of the congestion. Furthermore, there are several different

approaches to the design of the source response function, i.e.

the actions taken to reduce the injection rate, later followed

by an increase in the rate when congestion is resolved [8],

[11], [12], [13].

There are also congestion control mechanisms targeting

link-level flow controlled networks that take a completely

different approach. Instead of removing the congestion tree

itself, these approaches strive to relieve the unfortunate side

effects the congestion tree has on flows not contributing

to the congestion. That is, they try to remove the HOL

blocking by using special set aside queues for contributors

to congestion, effectively making it possible for victim flows

to bypass the contributors to congestion without actually

removing the congestion tree [14], [15]. Such an approach

has the advantage of being able to react immediately and

locally at each switch, at the cost of the extra buffers needed

for the set aside queues and the added complexity in the

switch to manage them. The real cause of the problem,

sources injecting too much traffic into the network, is left

untouched.

Adaptive routing (AR) could be used as a mechanism

to alleviate congestion by spreading the traffic in the net-

work onto otherwise idle resources when congestion occurs.

1Congestion control was added in release 1.2 of the InfiniBand specifi-
cation and is to some extent based on the work done by Santos et. al. [8].

Notice, though, that AR as a sole solution to congestion

might not be effective. When there is no possible route

around an area of congestion (e.g. end node congestion),

trying to reroute around the problem will only make the

branches of the congestion tree spread out and cause more

HOL blocking than when using deterministic routing. To be

effective AR needs to work in conjunction with another CC

mechanism. Furthermore, the InfiniBand specification does

not yet support AR.

InfiniBand (IB) was standardized in October 2000 and

over the years it has increased its market share, when

referring to the Top500 list [16], to 42% of the HPC market.

If we only look at the top 100 supercomputers in the world,

the number increases to 62%, while 5 out of 10 Petaflop

systems in the world are using IB as the system interconnect.

The vast majority of the IB installations are fat-trees with

the most notable exceptions being Pleiades (11D hypercube)

and RedSky (3D torus).

In 2010 Gran et. al. presented the first experiences with

CC in IB hardware, where they showed that the IB CC mech-

anism effectively resolves congestion and improves fairness

by solving the parking lot problem, if the CC parameters

are appropriately set [7] and the switch arbitration properly

designed [17]. Another significant contribution is the work

done by Pfister et. al. [18], where they studied (through

simulations) how well IB CC can solve certain hot spot

traffic scenarios in fat-tree networks.

The IB standard provides a large degree of freedom,

but little guidance, when it comes to configuring the CC

mechanism. Care must be taken when configuring the CC

parameters because a bad configuration can result in low

performance and instability in the network [7].

In this paper we explore the scope of the IB CC mech-

anism with regards to the robustness and performance of

a given parameter set when the communication pattern

gradually changes from a static to a dynamic scenario.

We describe a set of communication patterns designed to

stress the IB CC mechanism and we present a large set of

simulation results showing that the IB CC mechanism is

both robust and increases performance in all the scenarios

studied independent of the communication pattern.

The reminder of the paper is organized as follows: Sec-

tion II gives an overview of the CC mechanism supported by

IB. In section III we describe different types of congestion

trees and the communication patterns used in our simula-

tions.Then the simulation model is described in section IV,

before we in section V discuss the simulation results. Finally,

we conclude in section VI.

II. CONGESTION CONTROL IN INFINIBAND

The IB CC mechanism, specified in the InfiniBand Archi-

tecture Specification release 1.2.1 [9], is based on a closed

loop feedback control systems where a switch detecting

congestion marks packets contributing to the congestion by

11321132

Figure 1. Congestion control in InfiniBand.

setting a specific bit in the packet headers, the Forward

Explicit Congestion Notification (FECN) bit (fig. 1 (1)). The

congestion notification is carried through to the destination

by this bit. The destination registers the FECN bit, and

returns a packet with the Backward Explicit Congestion

Notification (BECN) bit set to the source (fig. 1 (2)). The

source then temporarily reduces the injection rate to resolve

congestion (fig. 1 (3)).

The exact behaviour of the IB CC mechanism depends

upon the values of a set of CC parameters governed by a

Congestion Control Manager. These parameters determine

characteristics like when switches detect congestion, at what

rate the switches will notify destination nodes using the

FECN bit, and how much and for how long a source

node contributing to congestion will reduce its injection

rate. Appropriately set, these parameters should enable the

network to resolve congestion, avoiding HOL blocking,

while still utilizing the network resources efficiently.

1) Switch Features: The switches are responsible for

detecting congestion and notifying the destination nodes

using the FECN bit. A switch detects congestion on a given

port and a given Virtual Lane (Port VL) depending on a

threshold parameter. If the threshold is crossed, a port may

enter the Port VL congestion state, which again may lead to

FECN marking of packets.

The threshold, represented by a weight ranging from 0

to 15 in value, is the same for all VLs on a given port, but

could be set to a different level for each port. A weight of 0

indicates that no packets should be marked, while the values

1 through 15 represent a uniformly decreasing value of the

threshold. That is, a value of 1 indicates a high threshold

with high possibility of congestion spreading, caused by

Port VLs moving into the congestion state too late. A value

of 15 on the other hand indicates a low threshold with

a corresponding low possibility of congestion spreading,

but at the cost of a higher probability for a Port VL to

move into the congestion state even when the switch is not

really congested. The exact implementation of the threshold

depends on the switch architecture and is left to the designer

of the switch.

A Port VL may enter the congestion state if the threshold

is crossed and it is the root of congestion, i.e. the Port

VL has available credits to output data. If the Port VL

has no available credits, it is considered to be a victim of

congestion and shall not enter the congestion state2. When

a Port VL is in the congestion state its packets are eligible

for FECN marking. A packet will then get the FECN bit

set depending on two CC parameters at the switch, the

Packet Size and the Marking Rate. Packets with a size

smaller than the Packet Size will not get the FECN bit

set. The Marking Rate sets the mean number of eligible

packets sent between packets actually being marked. With

both the Packet Size and the Marking Rate set to 0, all

packets should get the FECN bit set while a Port VL is in

the congestion state.

2) Channel Adapter Features: When a destination CA

receives a packet with a FECN bit set, the CA should as

quickly as possible notify the source of the packet about

the congestion. This is done by returning a packet with the

BECN bit set back to the source. The packet with the BECN

bit could either be an acknowledgement packet (ACK) for

a reliable connection or an explicit congestion notification

packet (CNP). In either case it is important that the ACK or

the CNP is sent to the source as soon as possible to ensure

a fast response to the congestion.

When a source CA receives a packet with the BECN bit

set, the CA lowers the injection rate of the corresponding

traffic flow. To determine how much and for how long the

injection rate should be reduced, the CA uses a Congestion

Control Table (CCT) and a set of CC parameters. The

CCT holds injection rate delay (IRD) values that define

the delay between consecutive packets sent by a particular

flow (the IRD calculation being relative to the packet length).

Each flow with CC activated holds an index into the CCT,

the CCTI . When a new BECN arrives, the CCTI of the

flow is increased by CCTI Increase. The CCT is usually

populated in such a way that a larger index yields a larger

IRD. Then consecutive BECNs increase the IRD which

again decreases the injection rate. The upper bound of the

CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a

CCTI T imer, maintained separately for each SL of a port.

Each time the timer expires, the CCTI is decremented by

one for all associated flows. When the CCTI of a flow

reaches zero, the flow no longer experience any IRD.

The IB CC can operate either at the Service Level (SL)

or at the Queue Pair (QP) level at an HCA. Any lowering of

the injection rate as a result of BECN reception, then affects

the whole SL or the single QP depending on the level of

CC operation. Choosing the SL level will have a negative

impact on both fairness and performance. The reason is that

a single traffic flow contributing to congestion will lower

the injection rate of all traffic flows within the same SL at

the HCA. This could include traffic flows not contributing

2If the V ictim Mask is set for the port, then the switch will move the
Port VL into the congestion state independently of the number of available
credits. The V ictim Mask is typically set for switch ports connection
HCAs to the switch as an HCA will never detect congestion itself.

11331133

to the congestion at all as they are not going through the

root of the congestion tree, but headed for other parts of the

network. In this paper we only consider CC operating at the

QP level.

III. CONGESTION TREES

When contention leads to congestion in a lossless in-

terconnection network, a congestion tree will form, as ex-

plained in section I. Branches of the tree will grow from

the root of the tree, backwards towards the sources con-

tributing to congestion, as traffic competing for the contested

resources at the root starts to pile up. Buffers and links will

be occupied along each branch by traffic headed for the

root of the tree. Eventually, a branch might grow all the

way back into a source node. The HOL blocking caused by

the branches not only results in underutilization of network

resources, but will also stimulate further growth of the tree

towards nodes initially being victims of congestion. The role

of a throttling based congestion control mechanism like IB

CC, is to prune the branches of the congestion tree just

enough to remove any HOL blocking, while still utilizing

the bottleneck resources at the root of the tree.

Exactly how all the branches of a congestion tree grow

and get pruned, and by that how the congestion tree itself

develops and how much HOL blocking it causes, depends

not only on the actions taken by the congestion control

mechanism, but obviously also to a great extend on the traffic

patterns in the network. A highly dynamic traffic pattern

with lively contributors to congestion could lead to a vastly

dynamic congestion tree, which again could pose a great

challenge to the congestion control mechanism, compared

to a more stable tree having a permanent set of contributors.

At the same time, a dynamic traffic pattern could by its

own dynamic nature, relieve the effects of congestion as

the traffic pattern itself will hinder the formation of large

congestion trees and any extensive HOL blocking. To be

able to conduct a systematic study of the effectiveness of

the IB CC mechanism under different traffic scenarios, we

start by dividing congestion trees into three nonexclusive

categories, based on the nature of their (main) contributors

and how dynamic they are. Starting with the least dynamic

category, the congestion trees can be silent, windy, or even

moving while wind is blowing through their crowns.

A. The Silent Forest of Congestion Trees

The most basic congestion tree forms when a subset, C,

of the nodes, N , in the network constantly injects traffic to

a permanent hotspot, while the rest of the nodes, V , injects

traffic to other destinations3. Then we have N = C ∪ V ,

where C are the contributors to congestion, while V are the

potential victims suffering from HOL blocking. In such a

3Notice that in general, a node can be a contributor to one congestion
tree and a victim of another - at the same time - depending on the
communication patterns in the network.

Hotspot

C nodes

Source Nodes

Destination Nodes

Root

Contributor

Branch

Figure 2. A silent congestion tree.

situation, a stable congestion tree will grow branches from

the root of the congestion, ultimately the last link towards

the hotspot, along the backward paths towards each of the

nodes in C. In an IB network with CC enabled, the branches

in such a congestion tree will grow and get pruned as the

throttling mechanism constantly tries to adjust the injection

rates of the nodes in C to their fair share of the resources at

the root of the tree. Notice, however, that the branches will

not move. The growing and shortening of a branch always

happens along the same path. We refer to a congestion tree

with such branches as a silent tree, as the tree’s branches are

not blowing in the wind. Figure 2 shows an artificial network

topology where a silent congestion tree, represented by the

red lines, has grown all the way from the root of the tree to

the five source nodes contributing to congestion. We have

somewhat artificially gathered all the source nodes in the

network at the top, and the destination nodes at the bottom,

to make the congestion tree visually more appealing and the

characteristics of the tree easier to comprehend.

If C is divided into subsets C1, C2, ..., Cn where each sub-

set sends to a different hotspot, the corresponding network

will grow a forest of silent congestion trees. Such a forest

may resemble a set of nodes sending large virtual image

files back to file servers in a network, or a set of sensor

nodes continuously transferring large amounts of data back

to a set of collector nodes.

The task of the IB CC mechanism will, as always, be to

prune the branches of the trees all the way down to their

roots, without causing under utilisation of the bottleneck

resources. As the number of contributors is constant and

the hotspots are stable, the IB CC should have a relatively

easy task, given enough time, to adjust the injection rate of

each contributor to its fair share of the bottleneck resources.

The throttling mechanism at a source node does not need

to keep track of different injection rates related to different

destinations or traffic flows, and the recovery process after

a period of congestion has ended is not really challenged as

the hotspots are always present.

11341134

Hotspot

Source Nodes

Destination Nodes

Root

Contributor, t1 and t2

Branch, t1

Contributor, t2

Contributor, t1

Branch, t2

Active B nodes at time t1 and t2

Figure 3. A windy congestion tree.

B. The Windy Forest of Congestion Trees

Now consider a network where the nodes are not divided

into pure contributors to and possible victims of congestion,

like in the previous section, but instead consists of a different

type of nodes, B, that sends a certain percentage p of its

traffic to a hotspot, and then the rest 1 − p percent to

other nodes in the network. A B node can then be both

a contributor to and a victim of congestion, depending on

the time period we are looking at. In a network of B nodes,

the traffic creates a congestion tree, given that p is not too

low, but it will be different from a silent one. The root of

the congestion tree will as before be permanently related to

the hotspot, but the branches will now be more dynamic.

No longer will the branches only grow and shrink along

a specific set of paths, but the paths themselves change

as the nodes actually sending to the hotspot at any given

time changes. The branches of the congestion tree will be

moving like the branches of a tree blowing in the wind.

We have created a windy congestion tree. Figure 3 shows a

network topology where seven B nodes create such a tree.

First, at time t1, four nodes create a set of branches for

the congestion tree, the red lines, while later, at time t2,

a different set of nodes create a different set of branches,

the blue lines. The branches have moved, while the root

is the same. Notice that even though we in figure 3 show

the branches as having grown all the way back to the source

nodes, this will most likely not be the case in most situations.

The branches will usually have different lengths, depending

on the traffic pattern and the value of p.

Again, if B is divided into subsets B1, B2, ..., Bn where

each subset sends pi percent to its own hotspot, the corre-

sponding network will grow a forest of windy congestion

trees. Such a traffic scenario could bear a resemblance to a

set of compute nodes that communicate and exchange data

with their peers, while at the same time store data at a set of

storage nodes, i.e. the hotspots. The ratio between the peer

communication and the storage usage is then given by the

Root, t1

Root, t2

Hotspot, t1

Hotspot, t2

B or C nodes

Source Nodes

Destination Nodes

Contributor, t1 and t2

Congestion tree, t1

Contributor, t2

Contributor, t1

Congestion tree, t2

Figure 4. A moving congestion tree.

value of p.

The windy forest of congestion trees poses a new chal-

lenge for the IB CC mechanism. The branches of the

congestion trees need to be pruned as before, but now the

number of contributors are varying depending on p and what

nodes that happen to send to the hotspot at a given time. In

addition, it becomes important for the IB CC mechanism to

separate the injection rate of different flows, to make sure

that traffic not headed for the hotspot is not held back by the

throttling mechanism. It becomes important that the IB CC

operates at the QP level (or at least at the source-destination-

pair level), and not the SL/VL level. The recovery process

after a period of congestion has ended is, however, still not

really challenged as the hotspots are always the same.

C. The Forest of Moving Congestion Trees

Both the silent and the windy congestion trees have a

root related to a permanent hotspot. Now let us assume that

the contributors to congestion sending to the hotspot Hi, no

matter if they are contributing to a silent or windy congestion

tree, change their target destination to a new hotspot, hotspot

Hj . Independent of the congestion control mechanism, the

congestion tree caused by the traffic headed for Hi will now

have its root moved towards a new root location related to

the new hotspot Hj , where new branches will grow. The

congestion tree has moved4. Figure 4 illustrates a moving

congestion tree before and after a set of contributors have

changed focus from one hotspot at time t1, to another at t2.

The red lines correspond to the congestion tree at t1, while

the blue lines correspond to the congestion tree at t2. Again,

the branches are for clarity shown as having grown all the

way back to the source nodes.

A forest of moving congestion trees has a more dynamic

nature than a forest of silent or windy congestion trees, no

4Strictly speaking, what is happening is that one tree disappears as a new
one is created. The original congestion tree is not actually moving as such,
but as both events happen at the same time, with contributors changing
focus from one hotspot to another, we will think of it as a congestion tree
moving from one part of the network to another.

11351135

matter if the contributors of the moving trees are C or B

nodes, or both. As we shorten the lifetime of each hotspot,

the forest of moving congestion trees becomes increasingly

more dynamic. Different trees will grow and shrink around

the network in a continuously more nonsystematic way, and

the traffic pattern as a whole is moving closer to a chaotic

scenario where knowledge about the traffic is limited. Such

a traffic scenario could resemble a cluster running a set of

virtual machines or virtual jobs, where the communication

pattern is unknown, depending on the jobs currently running.

Short (and long) lived congestion can appear anywhere in

the network at any given time, depending on the lifetime of

the hotspots, the number of contributors and their nature.

In a forest of moving congestion trees, the IB CC

mechanism faces new challenges as the dynamics increases.

Not only is it still important to detect congestion fast,

decrease the injection rates accordingly, and separate flows

contributing to congestion from other flows at a source

node, but it also becomes important to recover fast from

congestion. That is, the injection rate of a flow contributing

to congestion should at a source node be increased again

fast enough to ensure good utilization of network resources

as soon as the congestion disappears. It is an indisputable

fact that a feedback control loop like the one the IB

CC mechanism relies upon, can lead to a CC mechanism

constantly operating (too far) behind schedule as it takes

time to bring information about the congestion from the root

of the congestion tree back to the contributors. The shorter

the lifetime of the hotspots, the more challenging it will be

for the CC mechanism to react fast enough to keep up with

the actual situation in the network, both when decreasing the

injection rate as congestion is detected, as well as increasing

it again when congestion is resolved. An interesting question

is then if this really poses a problem, as the shorter lifetime

of the hotspots, and the correspondingly more dynamic

traffic pattern, by itself implies that the occurrences of

congestion will be less severe, and the negative effects of

congestion less dramatic. The dynamic traffic pattern will

by its own nature reduce the severity of the HOL blocking

in the network.

The Diverse and Stormy Forest of Moving Congestion Trees

It can be argued that the classification of congestion trees

given above is somewhat artificial. In a network, even if the

main contributors to congestion create a silent congestion

tree, other small and short lived congestion trees will be

created by other traffic flows present in the network. In

addition, HOL blocking will make congestion trees grow

towards victims of congestion, and not only towards the

initial contributors like shown in figure 2. Furthermore, a

silent congestion tree can be seen as a windy congestion

tree with p = 1, and a moving congestion tree can be seen

as two separate events where one congestion tree disappears

while another one is created. Typically, in a network, we

will find a multitude of different congestion trees that all

have their own twists. The congestion trees truly come in

all kinds of flavors.

Still, even if a network in general can grow a diverse and

stormy forest of moving congestion trees, the classification

of congestion trees into silent, windy, and moving trees has

proved to be very useful when conducting a systematic study

of the IB CC mechanism’s performance as the degree of

dynamic behaviour in the network increases. By controlling

the type of main contributors to congestion, being C or B

nodes, and the duration of each hotspot, we control the main

types of congestion trees that will form in the network. The

main congestion trees are the ones causing the most HOL

blocking, and by that the main reasons for the performance

degradation observed in the network. Then, by starting with

contributors that create silent trees, and later moving on to

nodes creating windy and moving congestion trees, we can

study how well the IB CC mechanism is able to cope with

an increasingly more dynamic traffic pattern in the network.

In addition, notice that even though we focus on the three

different types of congestion trees, in our simulations (as in a

real network) any background traffic and the corresponding

HOL blocking introduced, will obviously both create a

multitude of small congestion trees, as well as make the

main trees grow towards victim nodes. This behavior will

be captured and included in the overall network performance

measurements presented in section V.

IV. THE SIMULATOR

Our network simulator and switch model is built on the

OMNet++ platform [19] and has been previously described

in [20]. Below we give a brief overview of the model and the

simulation parameters used in all the simulations presented

in section V. The IB model consists of a set of simple and

compound modules to simulate an IB network with support

for the IB flow control scheme, arbitration over multiple

virtual lanes, congestion control, and routing using linear

forwarding tables.

The two building blocks for creating networks using the

IB model are the Host Channel Adapter (HCA) compound

module and the Switch compound module. The Switch

consists of a set of SwitchPorts, which are by themselves

compound modules. During a simulation, an HCA represents

both a traffic injector and a traffic sink in the network, while

a Switch acts as a forwarding node. The HCAs and switches

are connected using gates, corresponding to links in the

network.

The HCAs and the SwitchPorts consist of the a set of

common simple modules ibuf, obuf, vlarb, and ccmgr, while

the simple modules gen and sink are exclusive to the HCAs.

The ibuf represents an input buffer with support for virtual

lanes, virtual output queuing (VoQ) and virtual cut through

switching. The obuf represents a simple output buffer,

while the vlarb implements round robin arbitration over the

11361136

different VLs and multiple input ports (if the module is part

of a SwitchPort). The gen implements traffic generation in a

HCA, while the sink is the part of the HCA responsible for

removing traffic from the network. The gen module supports

several traffic generation schemes, e.g. varying the injection

rate, the packet size and the destination node distribution.

In general, the gen module at an HCA generates traffic

that is forwarded through the vlarb to the obuf of the HCA.

From there it is sent out into the network. There is no

internal HoL blocking in the gen module or in the HCA

so the only place where the traffic can experience blocking

is in the switches. At a Switch(Port) the ibuf receives the

traffic, does the routing decision and moves the traffic into

the corresponding VoQ. Here the traffic waits until the vlarb

of the given output port grants access to the corresponding

obuf. At an HCA the ibuf receives traffic and forwards it to

the sink. The IB flow control is managed by the ibuf s and

the obuf s, exchanging flow control messages.

The InfiniBand Congestion Control mechanism is imple-

mented by the simple module ccmgr. The ccmgr is included

in the compound modules for the HCA and the SwitchPort,

and manages everything related to congestion control in

these modules, with the help of the other simple modules

therein. In particular, all CC parameters specified in the

InfiniBand Architecture Specification release 1.2.1 [9] are

supported by the ccmgr module. The throttling mechanism

operates at the packet level. That is, all the flits belonging to

the same packet are always injected back-to-back, if allowed

by the link-level flow control mechanism, even when the

throttling mechanism is active. The IRD calculations follow

the IB specification. The simulation model, including the

CC behaviour, has been carefully tuned against Mellanox

MTS3600 InfiniBand switches as described in [20].

As our simulation scenario we have selected a three stage

fat-tree network, which is a topology common in large scale

InfiniBand switches [21], [22]. This topology supports non-

blocking communication of up to 648 compute nodes and is

built from 54 36-port crossbars. In our simulations we used a

link speed of 20 Gbit/s (4x DDR) and an MTU size of 2048

bytes. Each message sent by a node consists of two packets,

giving a total size of 4096 bytes per message. A node

injects packets at full link speed whenever possible. The

traffic patterns used correspond to the scenarios described in

section III, while the specific destination distributions used

are given during the discussion of the results in section V.

Frame I gives a detailed example of how traffic is generated

at a node during a simulation, here using a B node with

p = 50.

The congestion control parameter values used during all

the simulations discussed in this paper are listed in table I.

These values were found during our initial study of CC

capable IB hardware, a work presented in [7]. While it

proved to be a nontrivial task to identify the parameter

values, even in a small cluster with a simple and static

Frame I - packet generation at a B node with p=50:

A B node with p = 50 sends 50% of its generated traffic
to its designated hotspot, hs, while the rest is sent using a
uniform destination distribution including all nodes in the network
(expect the node itself). Using a message size of two packets,
corresponding to a total of 4096 bytes per message, the sequence
of packets generated and sent could then look like this:

• 2 x Msg sent with random destination addresses (most likely
two different destinations)

• 1 x Msg sent to hotspot hs (=4KB)
• 1 x Msg sent with random destination address
• 3 x Msg sent to hotspot hs (=12KB)
• 2 x Msg sent with random destination addresses (most likely

two different destinations)
• 1 x Msg sent to hotspot hs (=4KB)
• ... and so on.

In a scenario of moving congestion trees, the B node changes the
address of the hotspot at each new timeslot (e.g. each 1msec); the
hsi address changes into hsj , and by that the hotspot is moved,
while the value of p remains the same.

The packets are sent back-to-back when not held back by the CC
mechanism or the link-level flow control. Note though, that the p%
and (1−p)% fractions of a B node are related to the (simulation)
time, and not each other. That is, after a given time, t, a maximum
of p% of the traffic has been sent to the hotspot, while a maximum
of (1−p)% has been sent to the non-hotspots. The link will remain
idle when non-hotspot traffic has fulfilled its (1−p)% of the total
possible traffic sent (t times link capacity) and the hotspot traffic
is held back by the CC mechanism. It is important to keep the two
types of traffic (hotspot and non-hotspot) independent of each other,
i.e. it is important that non-hotspots traffic is not HOL blocked
internally in the generator when the hotspot traffic is held back by
the CC mechanism, while at the same time it is just as important
that the non-hotspot traffic does not exceed the (1 − p)% during
a simulation as this is the amount of traffic supposedly requested
by non-hotspot traffic during a simulation time.

Note that by changing the value of p, the fraction of traffic
going to the hotspot changes, and by that, the likely (and average)
lengths of the trains of packets going to the hotspot changes as
well. When using a B node with a p value of 50%, most trains
going to the hotspot will have sizes in the range of [4KB, a few
KB> while most trains going to non-hotspots will have the size of
a single message, 4KB, due to the uniform destination distribution.

Table I
CC PARAMETER VALUES.

Parameter Value Parameter Value

CCTI Increase 1 Threshold 15
CCTI Limit 127 Marking Rate 0
CCTI Min 0 Packet Size 0
CCTI T imer 150

traffic pattern, the values found in [7] have proved to be

quite robust, as we will see in section V. Note that the CCT

values have been increased to reflect the larger number of

possible contributors to congestion in our fat-tree topology,

compared to our earlier hardware experiments.

V. SIMULATION RESULTS

We have divided the presentation and the analysis of our

simulation results into three sections, corresponding to the

11371137

Table II
PERFORMANCE NUMBERS (GBPS), SILENT CONGESTION TREES.

No hotspots, no CC

Avg. receive rate 2.699

No hotspots, CC on

Avg. receive rate 2.701

Hotspots, no CC

Hotspots avg. rcv. 13.602
Non-hotspots avg. rcv 0.168

Hotspots, CC on

Hotspots avg. rcv. 13.279
Non-hotspots avg. rcv 2.246

Totale Network Throughput, Hotspots

Without CC 216.073
With CC 1543.793

three categories of congestion trees introduced in section III.

In the first section, section V-A, we start by looking at

the performance of the IB CC mechanism in a network

growing a quiet forest of eight silent congestion trees.

Then, in section V-B, we continue our study by gradually

exchanging the nodes in the network with B nodes, making

the congestion trees increasingly more windy, and by that,

the traffic pattern in the network more dynamic. Finally, in

section V-C, we end our study by looking at the performance

of IB CC as the hotspots move. By increasing the number of

times the hotspots move during a given timeslot, we decrease

the hotspot lifetimes accordingly, and by that, the dynamics

of the traffic pattern in the network increases even further.

A. The Silent Forest of Congestion Trees

In this scenario, the end nodes in the network are divided

into 80% C nodes and 20% V nodes. Recall that this means

that 80% of the 648 nodes in the network send traffic

solely to the hotspots. The rest of the nodes, the V nodes,

send traffic with a uniform destination distribution. The V

nodes are randomly distributed in the topology. All nodes

constantly try to inject traffic into the network at maximum

capacity; 13.5Gbps5.

Before enabling the C nodes, we simulate a scenario

where only the V nodes are active and the CC mechanism

disabled. Doing this, we get the throughput of the nodes in

the network that potentially will be victims of congestion

when the hotspots are introduced. As shown in the first

part of table II, the average receive rate of the nodes in

the network is approximately 2.7Gbps. This is as expected,

as each V node injects traffic at 13.5Gbps into the non-

blocking topology. The soon-to-be hotspots and the non-

hotspots receive the same amount of traffic. These perfor-

mance numbers remain the same if we enable CC, still

without activating the C nodes (the second part of table II).

5This corresponds to the injection rate of the end nodes the simulator is
tuned against, an injection rate limited by the PCIe v1.1 protocol overhead
and other system components in the hardware.

Enabling CC causes no harm to the network performance in

this lightly loaded network.

Now let us disable the CC again, and enable the C

nodes. The C nodes are evenly divided into eight sub-

sets, each subset sending to one of eight hotspots. The

third part of table II shows the average receive rates of

both the newly created hotspots and the non-hotspots. The

hotspots, randomly distributed in the network, each receives

13.6Gpbs6, while the non-hotspots have their average receive

rate lowered from 2.7Gpbs down to 0.168Gbps. The growth

of the eight silent congestion trees results in a huge amount

of HOL blocking in the network, and by that a severe

performance degradation for the V nodes. The V nodes have

become victims of congestion. To remove the congestion

trees and the HOL blocking, we turn the CC back on. The

fourth part of table II shows the resulting improvement in

performance. At the cost of a small drop in the receive

rate for the hotspots, down 2.5%, we improve the receive

rate of the non-hotspots by more than 1200%. Enabling the

CC mechanism of IB, the non-hotspots now experience a

receive rate only 17% below the receive rate they achieved

before the hotspots were introduced. The last part of table II

shows the total network throughput of the network running

with and without CC enabled. Even when accounting for the

drop in the receive rate of the hotspots when CC is enabled,

enabling CC leads to a performance improvement by more

than 610%. The CC mechanism, using the CC parameters

from Table I, is clearly able to improve the performance in

our network when silent congestion trees are present.

B. The Windy Forest of Congestion Trees

Let us now increase the dynamics of the traffic pattern

used in the previous section by gradually exchanging x%

of the nodes in the network with B nodes, increasing x

in steps of 25%. The eight permanent hotspots are still

present, but as x increases so does the amount of wind in

our congestion trees. The B nodes are evenly divided into

eight subsets, just like the C nodes, each subset sending to

one of the eight hotspots. The nodes not being B nodes, i.e.

(100 − x)% of the nodes, are divided into 80% C nodes

and 20% V nodes – as before. Note that until x reaches

100%, this implies that there are always some permanent

contributors to congestion present in the network (and some

permanent potential victims). The figures 5, 6, 7, and 8

show performance plots from simulations ran with x = 25%,

x = 50%, x = 75%, and x = 100%, respectively. These four

scenarios and their corresponding figures will be discussed

in the following subsections.

1) 25% B Nodes: The figures 5(a) and 5(b) show the

average receive rates of non-hotspots and hotspots, respec-

tively, in a network running with and without CC, as p

6This matches the receive rate of the end nodes the simulator is tuned
against. The hardware has a receive rate approximately 0.1Gbps higher than
the injection rate.

11381138

Value of p

A
vg

. n
on

−
ho

ts
po

t r
ec

ei
ve

d
(M

b/
s)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

CC

off

on

tmax

(a) Average receive rate, non-hotspots.

Value of p

A
vg

. h
ot

sp
ot

 r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

(b) Average receive rate, hotspots.

Value of p

Y
 t
im

e
s

im
p
ro

ve
m

e
n
t
in

 t
o
ta

l n
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
b
y

e
n
a
b
lin

g
 C

C

0

2

4

6

8

10

0 20 40 60 80 100

(c) Total network throughput improvement.

Figure 5. Measurements for a windy forest with 25% B nodes as p increases.

increases from 0 to 100. Recall that a B node sends p% of

its traffic to a given hotspot. The remaining (1− p)% of the

traffic is sent using a uniform destination distribution. Note

that this implies that as p increases, a decreasing amount of

traffic in the network is destined for the non-hotspots. That

is, as p increases, the theoretical maximum amount of traffic

that the non-hotspots can receive decreases. This theoretical

maximum is plotted as tmax in figure 5(a), and represents

the maximum average receive rate the non-hotspots could

possibly achieve if the hotspots were not present.

Looking at figure 5(a), it is evident that enabling CC in the

network results in an immense improvement in the average

receive rates for the non-hotspots, independent of the value

of p. At p = 0 the average receive rate of a non-hotspot

is 4.75Gbps when CC is enabled, compared to 0,55Gbps

when CC is disabled and the tmax value of 5.4Gbps. In

this case, enabling CC leads to an 8.6 times improvement

in performance; a 760% increase. As p increases from 0 to

10, the performance when CC is enabled drops from 88%

to 60% of tmax, while the relative performance actually

increases to a factor of 9.1 compared to the scenario with

CC disabled. As the B nodes start to send traffic to the

hotspots, but still generate 90% uniformly distributed traffic,

the CC mechanism is not fully able to cope with all the

HOL blocking in the network. As p increases from 10 to

60, however, the relative performance of CC compared to

tmax increases to 80% again, where it stays as p reaches

the value of 100. The performance increase by enabling CC

in the network, as the p values increases from 30 to 100,

equals to a factor ranging from 12.9 to 16.3, with the peak

at p = 60; a 1530% performance boost in the receive rate

of the non-hotspots at this point.

Turning our attention towards the hotspots, figure 5(b)

shows that the average receive rates of these nodes are

independent of the values of p. When CC is disabled, each

hotspot receives a steady 13.6Gbps, which equals to the

maximum receive rate of an end node. The average receive

rate then drops by 2.2%, down to 13.3Gbps, when the CC is

enabled. While this indicates a tiny underutilization of the

scarce resources at the roots of the congestion trees, bearing

the results from figure 5(a) in mind, the price we have to

pay when enabling CC is negligible. Figure 5(c) plots the

improvement in the total network throughput when CC is

enabled as a function of p. By enabling CC, we improve

the total network throughput by a factor ranging from 6.0

(p = 100) to 8.7 (p = 60). That is, a minimum improvement

in performance by at least 500%.

2) 50% and 75% B Nodes: Figures 6 and 7 show

performance plots from simulations where the fraction of

B nodes in our network is 50% and 75%, respectively.

Comparing these results with the ones presented in figure

5, we observe that the performance trends are the same.

Enabling CC leads to a vast improvement in the average

receive rates of the non-hotspots, without penalizing the

average receive rates of the hotspots. Notice that as the

fraction of B nodes increases and the fraction of C and

V nodes decreases, the impact the value of p has on the

overall traffic pattern in the network increases accordingly.

This influences the tmax values of the average receive rates

of the non-hotspots. At p = 0, the tmax value increases

as the fraction of B increases, because the traffic pattern

in the network as a whole then moves towards a uniform

destination distribution. On the other hand, at p = 100, the

tmax value decreases as the fraction of B nodes increases.

At this p value, a B node sends all its traffic to a hotspot,

and then as the fraction of B nodes increases, the fraction of

the traffic in the network headed for the hotspots increases

accordingly. To sum up, the graph of decreasing tmax values

as a function of p, becomes steeper as the fraction of B

nodes in the network increases. This influences the possible

11391139

Value of p

A
vg

. n
on

−
ho

ts
po

t r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

0 20 40 60 80 100

CC

off

on

tmax

(a) Average receive rate, non-hotspots.

Value of p

A
vg

. h
ot

sp
ot

 r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

(b) Average receive rate, hotspots.

Value of p

Y
 t
im

e
s

im
p
ro

ve
m

e
n
t
in

 t
o
ta

l n
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
b
y

e
n
a
b
lin

g
 C

C

0

2

4

6

8

10

12

0 20 40 60 80 100

(c) Total network throughput improvement.

Figure 6. Measurements for a windy forest with 50% B nodes as p increases.

Value of p

A
vg

. n
on

−
ho

ts
po

t r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

CC

off

on

tmax

(a) Average receive rate, non-hotspots.

Value of p

A
vg

. h
ot

sp
ot

 r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

(b) Average receive rate, hotspots.

Value of p

Y
 t
im

e
s

im
p
ro

ve
m

e
n
t
in

 t
o
ta

l n
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
b
y

e
n
a
b
lin

g
 C

C

0

2

4

6

8

10

12

14

0 20 40 60 80 100

(c) Total network throughput improvement.

Figure 7. Measurements for a windy forest with 75% B nodes as p increases.

benefit we can achieve by enabling CC in our network, an

effect clearly present in the graphs showing the total network

throughput improvement (figure 6(c) and 7(c)). The graphs

become increasingly more ∩ shaped as the fraction of B

nodes increases. At low and high p values the total network

throughput improvement decreases, while the peak at p = 60
increases. This effect becomes even clearer as we increase

the fraction of B nodes to 100%.

3) 100% B Nodes: Figure 8 shows the performance plots

as the fraction of B nodes has increased to 100%. We

are creating purely windy congestion trees with no traffic

generated by V and C nodes. Now, for the first time, we

observe a small penalty of 3% in the receive rate of the

non-hotspots at p = 0 as CC is enabled (figure 8(a)). Note

though that at this p value, the B nodes have no preference

for the hotspots. The traffic is uniformly distributed in the

network, and there is no real congestion for the CC to

resolve. As soon as the B nodes start to send traffic to

the hotspots (at p > 0), the improvement by enabling CC

is again evident. At p = 10, enabling CC leads to a 4.1

times improvement in the receive rate of the non-hotspots,

an improvement increasing to 64.1 times as p approves 90. In

this scenario, the non-hotspots experience a total collapse in

performance in a network without CC, while when enabling

CC, the same nodes experience a receive rate very close to

the theoretical maximum when p > 60. Figure 8(b) shows

that enabling CC has no negative effect on the receive rate of

the hotspots. Finally, looking at the total network throughput

improvement in figure 8(c), the IB CC mechanism’s ability

to improve network performance when congestion is present

in the network is clear. At p = 0 and p = 100, enabling CC

has virtually no effect, as the CC mechanism is left with

no room for improvement - as explained in the previous

section. Note though, that the CC mechanism does not

11401140

Value of p

A
vg

. n
on

−
ho

ts
po

t r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

tmax

(a) Average receive rate, non-hotspots.

Value of p

A
vg

. h
ot

sp
ot

 r
ec

ei
ve

d
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

(b) Average receive rate, hotspots.

Value of p

Y
 t
im

e
s

im
p
ro

ve
m

e
n
t
in

 t
o
ta

l n
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
b
y

e
n
a
b
lin

g
 C

C

0

5

10

15

0 20 40 60 80 100

(c) Total network throughput improvement.

Figure 8. Measurements for a windy forest with 100% B nodes as p increases.

cause any harm at these extreme p values. With p values

in the interval < 0, 100 >, the CC mechanism shows a

performance improvement, with a peak at p=60, leading to

a seventeen-fold increase in total network performance.

Summing up, a network with CC enabled outperforms a

network running without CC as long as congestion is present

in the network, no matter how windy the congestion trees

are, showing a peak in performance when approximately

60% of the traffic is headed towards the hotspots. Further-

more, the CC mechanism causes no harm to the network

performance when all traffic is headed for the hotspots, and

the reduced performance caused by CC in a network with

purely uniformly distributed traffic is negligible.

C. The Stormy Forest of Moving Congestion Trees

This far, all our hotspots were locked to a permanent

position in the network during a simulation. To continue

our study of the performance of the IB CC mechanism

as the dynamics in the network increases, we now start to

move the hotspots. During a simulated timeslot of 0.1s, the

hotspots are moved n times, n ranging from 10 to 100. This

corresponds to a shortening of the hotspot lifetimes from

10ms to 1ms. By measuring the performance of the IB CC

for different values of n, we can to study the performance

of the CC mechanism in a systematic way as the dynamics

in the network increases. The CC now needs to deal with

contributors that themselves, dynamically, tear down and

recreate congestion trees in the network. In addition, the

moving process itself may create temporarily congestion

trees at unforeseeable places in the network. By moving

the hotspots, we turn our network into a stormy forest of

moving congestion trees.

We start our study by moving silent congestion trees,

before we move on to a scenario where we move windy

congestion trees. The contributors are as before divided

into eight subsets, each subset sending to one of the eight

hotspots.

Figure 9(a) shows the average receive rate of all nodes in a

network consisting of 20% V nodes and 80% C as a function

of the decreasing hotspot lifetime. When the hotspots are

moved each 10th ms, the nodes receive 723Mbps when

CC is enabled, compared to 467Mbps in a network without

CC. The performance increases by 55% when enabling CC.

Then, as the lifetime of the hotspots are shortened, the

improvement in performance by enabling CC is reduced.

When the hotspots move every second millisecond, the

performance increase is down to 10%, and as the hotspot

lifetime reaches 1ms, the performance increase is only 4%.

The performance increase is less impressive than the ones

achieved when the hotspots are not moving, but the benefit

from enabling the IB CC mechanism is still clear even as

the hotspot lifetime approaches 1ms.

Note that as the lifetime of the hotspots decreases, the

receive rate increases in general, while the advantage from

enabling CC decreases. When the hotspot lifetime decreases,

the contributors change focus more often and by that they

actually distribute the traffic more evenly in the network. The

result is that the network throughput as a whole increases,

as it is less dependent on the limited number of hotspots’

ability to receive traffic. At the same time, the change in

focus of the contributors will help to resolve congestion in

the network. This also implies that the CC mechanism is

left with less room for improvement. In addition, when the

lifetime of the hotspots decreases, it becomes increasingly

hard for IB CC mechanism to keep up with the situation in

the network (due to the feedback loop).

A network with 20% V nodes and 80% C nodes has

relatively few possible victims of congestion; only 20% of

the nodes. Figure 9(b) shows the performance numbers we

get if we increased the number of V nodes to 60%. Now,

11411141

Hotspot lifetime (s) − decreasing

A
vg

. r
ec

ei
ve

 ra
te

 a
ll

no
de

s
(M

b/
s)

0

200

400

600

800

1000

1200

1400

0.010 0.008 0.006 0.004 0.002

CC

off

on

(a) 20% V nodes, 80% C nodes.

Hotspot lifetime (s) − decreasing

A
vg

. r
ec

ei
ve

 ra
te

 a
ll

no
de

s
(M

b/
s)

0

1000

2000

3000

4000

5000

6000

0.010 0.008 0.006 0.004 0.002

CC

off

on

(b) 60% V nodes, 40% C nodes.

Figure 9. Average receive rates in a network with silent congestion trees and moving hotspots, shown as a function of decreasing hotspot lifetimes.

the advantage of enabling CC has increased again when the

hotspot lifetime is 10ms. At this point, enabling CC results

in an increase in the average receive rate by a factor 2.6.

The advantage by enabling CC decreases faster, however,

than when having 20% V nodes. At a hotspot lifetime of

1ms, the improvement is down to 10% again.

Finally, figure 10 shows the average receive rate of the

nodes in a network consisting of only B nodes, using p

values of 30, 60, and 90. As we move the hotspots and

their corresponding windy congestion trees, we observe

the same performance trends as we did when moving the

silent congestion trees. The enabling of CC leads to an

improvement in performance in all cases, even though the

improvement decreases as the hotspot life time decreases

and the traffic pattern itself alleviate the side effects of

congestion in the network.

VI. CONCLUSIONS

A central question in the understanding of congestion

control in interconnection networks is whether throttling of

contributors to congestion may have adverse effects. Setting

parameters related to the feedback-loop of such mechanisms

have previously been shown to require deep understanding

of the problem, even for simple traffic. Therefore uncertainty

has lingered as to whether congestion control may actually

be harmful in some scenarios.

In this paper we have shown that for fat-trees, there exist

parameter settings that makes the throttle-based Congestion

Control of InfiniBand robust. Through carefully designed ex-

periments we have stressed the mechanism with congestion

scenarios varying from the completely static ones, to cases

where congestion is highly dynamic both with respect to

contributors, intensity, duration and placement of congestion

points. Our identified parameter settings showed increased

throughput varying from a few percent, to a seventeen-

fold increase. The only adverse effect we registered was

a negligible decrease in throughput for the contributors to

congestion.

Our most important result is that InfiniBand congestion

control can be tuned to be stable for a given installation

based on fat-trees. The tuning itself remains a highly spe-

cialized task [7], but the gains in performance is huge

when it is done correctly. Regarding other topologies, the

question is still open. There is reason to believe that other

multistage-topologies that have a similar pattern of inter-

relations between streams, will expose the same behavior.

Regarding Tori or Meshes, the picture is more unclear, thus

this question should form the basis for further research.

REFERENCES

[1] G. F. Pfister and V. A. Norton, “”Hot Spot” contention and
combining in multistage interconnection networks,” IEEE
Trans. Computers, vol. 34, no. 10, pp. 943–948, 1985.

[2] W. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–
205, 1992.

[3] P. Garcı́a, J. Flich, J. Duato, I. Johnson, F. Quiles, and
F.Naven, “Dynamic evolution of congestion trees: Analysis
and impact on switch architecture,” in High Performance
Embedded Architectures and Compilers, 2005, pp. 266–285.

[4] V. Jacobson, “Congestion avoidance and control,” in SIG-
COMM. ACM, 1988, pp. 314–329.

[5] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end
congestion avoidance on a global internet,” IEEE Journal on
selected Areas in communications, vol. 13, pp. 1465–1480,
1995.

11421142

Hotspot lifetime (s) − decreasing

A
vg

.
re

ce
iv

e
 r

a
te

 a
ll

n
o
d
e
s

(M
b
/s

)

0

500

1000

1500

2000

2500

0.010 0.008 0.006 0.004 0.002

CC

off

on

(a) B nodes with p = 30.

Hotspot lifetime (s) − decreasing

A
vg

.
re

ce
iv

e
 r

a
te

 a
ll

n
o
d
e
s

(M
b
/s

)

0

200

400

600

800

1000

1200

1400

0.010 0.008 0.006 0.004 0.002

CC

off

on

(b) B nodes with p = 60.

Hotspot lifetime (s) − decreasing

A
vg

.
re

ce
iv

e
 r

a
te

 a
ll

n
o
d
e
s

(M
b
/s

)

0

200

400

600

800

1000

1200

0.010 0.008 0.006 0.004 0.002

CC

off

on

(c) B nodes with p = 90.

Figure 10. Average receive rates in a network with 100% B nodes and moving hotspots, shown as a function of decreasing hotspot lifetimes.

[6] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP con-
gestion control over internets with heterogeneous transmis-
sion media,” in 7th International Conferance on Network
Protocols (ICNP99). IEEE Computer Society, 1999, pp.
213–221.

[7] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne,
L. Huse, and G. Shainer, “First experiences with congestion
control in InfiniBand hardware,” in Parallel Distributed Pro-
cessing (IPDPS), 2010 IEEE International Symposium on,
Apr. 2010, pp. 1–12.

[8] J. R. Santos, Y. Turner, and G. J. Janakiraman, “End-to-end
congestion control for InfiniBand,” in INFOCOM, 2003.

[9] Infiniband architecture specification, 1st ed., InfiniBand Trade
Association, November 2007.

[10] IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks - Amendment: 10:
Congestion Notification., IEEE 802.1Qau-2010 ed., IEEE 802
LAN/MAN Standards Committee, 2010. [Online]. Available:
http://www.ieee802.org/1

[11] J. R. Santos, Y. Turner, and G. J. Janakiraman, “Evaluation
of congestion detection mechanisms for InfiniBand switches,”
in IEEE GLOBECOM – High-Speed Networks Symposium,
2002.

[12] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato,
“Congestion management in MINs through marked and vali-
dated packets,” in PDP, 2007, pp. 254–261.

[13] ——, “On the influence of the packet marking and injection
control schemes in congestion management for MINs,” in
Euro-Par, 2008, pp. 930–939.

[14] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and
T. Nachiondo, “A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks,” in HPCA ’05: Proceedings of the 11th Interna-
tional Symposium on High-Performance Computer Architec-
ture. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 108–119.

[15] J. Escudero-Sahuquillo, P. GarcÃa, F. Quiles, J. Flich, and
J. Duato, “FBICM: Efficient congestion management for
high-performance networks using distributed deterministic
routing,” in High Performance Computing - HiPC 2008,
ser. Lecture Notes in Computer Science, P. Sadayappan,
M. Parashar, R. Badrinath, and V. Prasanna, Eds. Springer
Berlin / Heidelberg, 2008, vol. 5374, pp. 503–517.

[16] “Top 500 supercomputer sites,” http://top500.org/, November
2011.

[17] E. G. Gran, E. Zahavi, S.-A. Reinemo, T. Skeie, G. Shainer,
and O. Lysne, “On the relation between congestion control,
switch arbitration and fairness,” in Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, ser. CCGRID ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 342–351. [Online].
Available: http://dx.doi.org/10.1109/CCGrid.2011.67

[18] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni,
W. Rooney, T. Engbersen, R. Luijten, R. Krishnamurthy,
and J. Duato, “Solving hot spot contention using InfiniBand
architecture congestion control,” Invited paper in High Perfor-
mance Interconnects for Distributed Computing, july 2005.

[19] “Omnet++ network simulation framework,” http://www.
omnetpp.org/.

[20] E. G. Gran and S.-A. Reinemo, “InfiniBand congestion con-
trol, modelling and validation.” OMNeT++ 2011, Barcelona,
Spain.

[21] Sun Microsystems, “SUN DATACENTER INFINIBAND
SWITCH 648 ARCHITECTURE AND DEPLOYMENT,”
Sun Microsystems, Tech. Rep. June, 2009.

[22] “IS5600 - 648-port InfiniBand Chassis Switch,” Mel-
lanox Technologies, http://www.mellanox.com/related-docs/
prod ib switch systems/IS5600.pdf.

11431143

Paper V

Combining Congested-Flow Isolation

and Injection Throttling in HPC

Interconnection Networks

Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa,

José Flich, Tor Skeie, Olav Lysne, Francisco J. Quiles, and José Duato

Combining Congested-Flow Isolation and Injection Throttling in HPC
Interconnection Networks

Jesus Escudero-Sahuquillo∗, Ernst Gunnar Gran†, Pedro Javier Garcia∗, Jose Flich‡,
Tor Skeie†, Olav Lysne†, Francisco Jose Quiles∗ and Jose Duato‡
∗Dept. of Computing Systems, University of Castilla-La Mancha, Spain.

Email:{jesus.escudero, pedrojavier.garcia, francisco.quiles}@uclm.es
†Simula Research Laboratory, Norway. Email:{ernstgr, tskeie, olav.lysne}@simula.no

‡Dept. of Computer Engineering, Technical University of Valencia, Spain. Email:{jflich,jduato}@gap.upv.es

Abstract—Existing congestion control mechanisms in inter-
connects can be divided into two general approaches. One is
to throttle traffic injection at the sources that contribute to
congestion, and the other is to isolate the congested traffic
in specially designated resources. These two approaches have
different, but non-overlapping weaknesses. In this paper we
present in detail a method that combines injection throttling
and congested-flow isolation. Through simulation studies we
first demonstrate the respective flaws of the injection throttling
and of flow isolation. Thereafter we show that our combined
method extracts the best of both approaches in the sense that
it gives fast reaction to congestion, it is scalable and it has good
fairness properties with respect to the congested flows.

Keywords-Interconnection Networks; Congestion Manage-
ment; HoL-blocking;

I. INTRODUCTION

In interconnection networks [1], traffic congestion may
degrade the network and overall system performance if no
countermeasures are taken [2]–[4]. Congestion is simply a
result of high load of traffic fed into a network link, exceed-
ing the link capacity at that point. Hot spot traffic patterns,
network burstiness, re-routing around faulty regions, and
conducting link frequency/voltage scaling (lowering the link
speed in order to save power), can all lead to congestion.
If all these factors are known in advance, the network
administrator may alleviate the consequences by effective
load balancing of the traffic, but typically this is not the
case. Furthermore, in cases where multiple nodes send more
data to a single destination than the node can handle, no
dynamic re-routing can be done to avoid network congestion.
It becomes even more severe when a parallel computer is
running multiple different jobs as an on-demand service
(e.g. cloud computing), where the resulting traffic pattern
becomes unpredictable.

Congestion control (CC) as a countermeasure for relieving
the effects of congestion has been widely studied. In partic-
ular, this problem is well understood and solved by dropping
packets in traditional lossy networks such as local area
networks (LANs) and wide area networks (WANs). In these
environments packet loss and high latency are indications
of network congestion. Herein it is mainly TCP that imple-
ments end-to-end CC, either by a traditional window control
mechanism [5] for detecting dropped packets or through
changes in latency [6], [7]. Very often those networks are
also over-provisioned in order to avoid congestion.

In high performance computing (HPC) data centers low
latency is crucial, and packet dropping and retransmission

are not allowed under regular circumstances due to loss of
performance. Lossless behavior is achieved with credit based
link-level flow control, which prevents a node or a switch
from transmitting packets if the downstream node or switch
lacks buffer space to receive them.

Typically, when congestion occurs in a lossless network,
a congestion tree starts to build up due to the backpressure
effect of the link-level flow control. The switch where the
congestion starts will be the root of a congestion tree that
grows towards the source nodes contributing to the conges-
tion. This effect is known as congestion spreading. The tree
grows because buffers fill up through the switches in the
network as the switches run out of credits (not necessarily
in the root). As the congestion tree grows, it introduces
head-of-line (HoL) blocking [8] that slows down packet
forwarding. HoL-blocking appears when the packet of the
head of a queue is blocked and prevents packets behind
it from advancing. This effect also affects flows which
are not contributing to the congestion, severely degrading
the entire network performance. The HoL- blocked flows
become victims of congestion [8].

CC for link-level flow controlled networks cannot be
based on a traditional window control mechanism as de-
ployed in TCP, though it effectively limits the amount of
buffer space that a flow can occupy in the network [9].
The reason for this is the relatively small bandwidth-delay
product in this environment, where even a small window
size may saturate the network [8]. A rate control (throttling)
based CC mechanism is more appropriate for link-level flow
controlled networks, since it increases the range of control
compared to a window-based system. The mechanism relies
on the switches to detect congestion, and inform the sources
that contribute to the congestion they must reduce their
corresponding injection rates. By reducing the injection rate,
the sources remove the congestion tree and by that the HoL-
blocking as well.

A problem associated with throttling-based CC is that it
takes time from a switch detects congestion until the sources
contributing to congestion are notified about congestion.
During that time HoL-blocking degrades network perfor-
mance. This slow reaction has inspired Duato et. al. to take
a completely different approach for CC [10], [11]. Instead of
removing the congestion tree itself, this approach strives to
relieve the unfortunate side effects the congestion tree has on
flows not contributing to the congestion. That is, the HoL-
blocking is removed by using special set-aside-queues for
contributors to congestion, effectively making it possible for

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE
DOI 10.1109/ICPP.2011.80

662

victim flows to bypass the congested flows without actually
removing the congestion tree. Such an approach has the
advantage of being able to react immediately and locally
at each switch, at the cost of the extra buffers needed for
the set aside queues and the added complexity in the switch
to manage them. Isolating the congested flows in this way
does, however, not address the real cause of the problem,
sources injecting too much traffic into the network. The
congestion trees themselves are left untouched. This poses a
scalability challenge as the number of congestion trees could
exceed the resources available for the set aside queues in the
switches. If this happens, congestion trees will grow inside
the queues supposed to be used only for victim flows, and
by this reintroduce HoL-blocking and lead to performance
degradation in the network.

Summing up, an injection throttling mechanism is able to
remove the congestion tree, and by that the introduced HoL-
blocking, but the mechanism has a challenge when it comes
to reaction time. It operates behind schedule. A mechanism
based on congested-flow isolation, on the other hand, reacts
immediately but faces scalability issues as the number of
congestion trees increases. In addition, there is another less
obvious difference between the two CC mechanisms. A
throttling mechanism has been shown to have the potential
of improving fairness in the network by solving the well
known parking lot problem [12]. This problem arises when
several flows are stored in a queue at a switch while another
flow addressed to the same output port is the sole user of
another different queue. The flows sharing the same queue
are granted access to the requested output port with less
frequency, than the flow being the sole user of the queue.
The throttling mechanism solves the parking lot problem
by decreasing the injection rate on a per flow basis at
the sources. On the other hand, a congested-flow isolation
mechanism can actually have a negative effect on fairness
depending on the arbitration in the switches.

In this paper we present Combined Congested-Flow Iso-
lation and Throttling (CCFIT), a novel mechanism which
combines the ideas of congested-flow isolation with a throt-
tling mechanism. Using simulations, we show that CCFIT is
able to remove HoL-blocking immediately, assure scalability
by removing the congestion trees, improve fairness in the
network, and last but not least, CCFIT achieves an allover
higher throughput than injection throttling and congested-
flow isolation do as standalone concepts.

The remainder of the paper is organized as follows:
In Section II we discuss previous work related to CC in
interconnection networks, to place our proposed CCFIT
mechanism into the proper context. Section III contains a
thorough description of the CCFIT mechanism, while in
Section IV we evaluate the mechanism using results from
simulation studies. In Section V we conclude the paper.

II. RELATED WORK

Congestion control (CC) based on injection throttling is
a popular approach to congestion handling. As aforemen-
tioned, the basic idea is to detect congestion in the network
at the switches, then to notify the contributing sources

about the congestion, and finally for the contributors to
stop or cease traffic injection. This closed-loop feedback
control philosophy is the basic approach of several proposals
which, on the other hand, differ in several aspects. For
instance, notifications could be sent to all the sources [13]
or just to the sources contributing to congestion [14]. Other
proposed mechanisms [15] notify congestion just to the
local endpoints attached to the switch where congestion is
detected. Furthermore, the switches can mark the packets
contributing to congestion in order to notify the destinations
about the situation, which subsequently notify the sources
(the forward explicit notification approach), or the switches
can themselves generate notification packets that are sent
directly to the source nodes (the backward explicit notifica-
tion approach). The InfiniBand (IB) network [16] applies the
former approach, while the emerging Data Center Bridging
standard [17] is implementing the latter.

There is also a body of work that propose different
strategies for congestion notification and marking, e.g. a
congested packet can be marked both in the input and output
switch buffer, as well as being tagged with information
about the severity of the congestion. Moreover, there are
some different approaches for designing sources response
function, i.e. the actions taken to reduce the injection rate,
later followed by an increase in the rate when congestion is
resolved [9], [18]–[20].

The injection throttling part of the CCFIT mechanism
is inspired by the injection throttling mechanism specified
for InfiniBand (IB), one of the most successful interconnect
technologies. The IB Architecture Specification [16] defines
two bits in the packet header for congestion notification.
Specifically, if a packet is considered to contribute to con-
gestion at a switch port, the Forward Explicit Congestion
Notification (FECN) bit in the packet header is set. The
FECN bit is then carried through the network to the desti-
nation node by the packet contributing to congestion. Upon
reception of a “FECN-marked” packet, a destination will
return back to the source a packet whose header will have
the Backward Explicit Congestion Notification (BECN) bit
set. Any source receiving a BECN packet will reduce its
injection rate of the corresponding congested traffic flow,
thus alleviating congestion.

The performance of IB CC depends on several con-
figurable parameters. For instance, a threshold parameter
mapped to a buffer fill ratio at a switch port1 determines
when the port is considered to be congested. If the buffer
fill ratio is above the threshold the corresponding switch
port is moved into the Congestion State, given that the port
is also considered to be at the root of the congestion tree,
that is, the port has available credits to forward packets.
However, in order not to generate too many BECNs, not
all the packets crossing a port in the Congestion State are
“FECN-marked”: Only those whose size is greater than
the value of the Packet Size parameter, and among them
again, only a fraction corresponding to the Marking Rate

1For simplicity, the concept of Virtual Lanes (VL) has been left out of
this explanation of the IB CC.

663

parameter, are finally marked.
Similarly, the exact reaction of a source node upon

the reception of a BECN also depends on a set of CC
parameters. Specifically, the injection rate of a congested
flow is reduced by introducing a injection rate delay (IRD)
between consecutive packets of that flow. Source nodes store
a list of possible IRD values in a Congestion Control Table
(CCT), each congested flow holding an index (CCTI) into
this table. CCT values are typically arranged in such a
way that the higher the index, the greater the IRD. Upon
reception of a BECN the index of a flow is increased by
a value stated by the CCTI Increase parameter. The CCTI
is decremented again by one when a timer (whose value
is stated by the CCTI Timer parameter) expires. In this
way, flows contributing to congestion will be throttled while
congestion is present, and being released when congestion
vanishes. More details about the IB CC mechanism can be
found in [8].

While the IB CC mechanism, like injection throttling tech-
niques in general, has the potential to remove the congestion
tree and even improve fairness [8], the mechanism has a
major drawback. The delay between congestion detection
and reaction at the sources results in a CC mechanism
operating behind schedule, where oscillating sources are
adjusting their injection rates based on “old” information.

An alternative approach to the injection throttling mech-
anism is to remove the HoL-blocking without removing the
congestion tree, e.g. using a congested-flow isolation tech-
nique. If HoL-blocking produced by congested flows to non-
congested ones is eliminated, congestion turns harmless [4].

Many techniques have been proposed to reduce or elim-
inate HoL-blocking, most of them relying on having dif-
ferent queues at each switch port, in order to separately
store packets belonging to different flows. For instance, a
well-known HoL-blocking elimination technique is Virtual
Output Queues (VOQs), either at switch level (VOQsw) [21]
or at network level (VOQnet) [22]. The latter requires at
each port as many queues as destinations in the network.
Then, at each port, all the packets addressed to a specific
destination are exclusively stored in the queue assigned to
that destination, and they never share that queue with packets
addressed to other destinations, thus completely removing
HoL-blocking. Note, however, that VOQnet does not scale
with network size. VOQsw uses as many queues at each port
as output ports in the switch, so that each incoming packet
is stored in the queue assigned to its output port. VOQsw
scales with network size, and eliminates HoL-blocking in
a switch if it is directly caused by packets contending for
output ports in the same switch. Unfortunately, in switches
affected by congestion spreading from other switches, VO-
Qsw can not guarantee that congested packets do not share
queues with non-congested ones, thus VOQsw just partially
eliminates HoL-blocking. Other similar techniques that also
reduce HoL-blocking, but do not completely eliminate it,
are Dynamically Allocated Multi-queues (DAMQs) [23],
Destination-Based Buffer Management (DBBM) [24], Dy-
namic Switch Buffer Management (DSBM) [25] and Output-
Based Queue-Assignment (OBQA) [26].

All the mentioned HoL-blocking elimination techniques
do not explicitly identify congested flows, but they rely on
separating packets from different flows as much as possible
with the available queues at each port. Their effectiveness
then greatly depend on the number of queues per port.
By contrast, other techniques explicitly detect and keep
track of congested flows in order to isolate them in spe-
cial, dynamically-assigned queues, while the non-congested
flows may share queues without suffering significant HoL-
blocking. In this way, the number of queues required to
efficiently eliminate HoL-blocking is reduced. This is the
main strategy followed by Regional Explicit Congestion No-
tification (RECN) [10], [27], Regional Explicit Congestion
Notification-Input Queued (RECN-IQ) [28] and Flow-Based
Implicit Congestion Notification (FBICM) [11].

In order to identify congested flows, these techniques
implement some mechanism to locate congested points (i.e.
to detect congestion), then identifying congested packets as
those whose route crosses a congested point. In general, like
the IB mechanism, these techniques detect congestion by
locally monitoring queue occupancy at each switch port, and
comparing it with a Detection Threshold. Once congestion is
detected in a port, a special queue is immediately allocated
to store congested packets crossing that port. Additionally,
these techniques also require a set of queues, at each
port, devoted to store congested packets2, and some control
memory to manage them, mainly to store the location of
the congested point each special queue is assigned to. This
control memory is implemented by means of a Content-
Addressable Memory (CAM) present at each port. In the
case of RECN and RECN-IQ, designed for source-based
routing networks, each CAM line stores (among other infor-
mation) the explicit path towards the root of the congestion
tree assigned to a specific SAQ, while in the case of FBICM,
designed for deterministic distributed-based routing, stores
a set of destinations. If the occupancy of any SAQ (or
CFQ) in a port reaches a specific threshold, the conges-
tion information stored in its corresponding CAM line is
propagated (by control packets) to the switch connected
to that port, which in turn will allocate a new SAQ (or
CFQ) for this specific congestion tree. In this way, special
queues are allocated all along the way of congested flows to
separate them from non-congested ones, thereby eliminating
HoL-blocking. SAQs (or CFQs) are dynamically deallocated
when the corresponding congestion tree vanishes, and later
reallocated if a new congestion tree appears.

As mentioned in the introduction, although these solutions
are quite effective, they also present some flaws, probably
the most important one being the limited number of special
queues per port, which may not be enough to handle all
the possible congestion trees simultaneously present at a
port. Note, however, that it is unlikely that many congestion
trees are present in many ports at the same time, thus in
most cases only a small fraction of ports would run out of
SAQs. Nevertheless, any congestion tree may partially spoil

2These queues are called Set-Aside-Queues, SAQs, in RECN and RECN-
IQ, and Congested-Flow-Queues, CFQs, in FBICM.

664

network performance if not suitably managed in a port.
To conclude, note that two of the most popular strate-

gies for CC in high-performance interconnection networks,
injection throttling and HoL-blocking elimination based on
congested-flow isolation in dynamically-allocated queues,
present different drawbacks. The initial idea behind CCFIT
was that a combination of both approaches would alleviate
the respective flaws. On one hand, congested-flow isolation
eliminates HoL-blocking even if sources are not yet aware
of the appearance of congestion. On the other hand, the
throttling of congested flows would reduce the probability
of having many of them simultaneously present in any port,
i.e. also reducing the probability of running out of special
queues in any port. In the following sections we describe
and evaluate CCFIT, our new proposal to combine these
approaches to CC. In addition, we also show that CCFIT in
certain situations greatly improves fairness, both compared
to a CC mechanism based on congested-flow isolation alone,
as well as compared to a network configuration running
without CC.

III. CCFIT DESCRIPTION

In this section, we describe the CCFIT mechanism, de-
tailing the switch and end-node architecture, as well as
their specific operation. After that, we analyze the CCFIT
parameters.

A. Switch Architecture

The injection throttling part of the CCFIT mechanism is
heavily influenced by the CC throttling mechanism specified
for IB, evaluated in [8], [12]. This throttling mechanism
is then combined with FBICM to achieve congested-flow
isolation in switches using distributed routing. That is, the
CCFIT switches are responsible for both detecting conges-
tion and notifying the contributing sources, as well as isolat-
ing congested-flow packets, eliminating the HoL-blocking:
When detecting congestion, a CCFIT switch moves the
corresponding output port into the congestion state, mark
packets using this output port by setting the FECN bits, and
allocates a CFQ for packets belonging to the corresponding
congestion point.

Regarding switch architecture, CCFIT does not limit the
number of switch ports. Specifically, it has been developed
for Input Queued (IQ) switches, where memories are only
present at input ports. The current and popular IQ-switches
are simpler and cheaper than the CIOQ ones, offering high
bandwidth and low latency if Virtual Output Queues (VOQ)
are used [29].

Regarding switch routing logic, CCFIT has been designed
for networks using distributed deterministic routing (In-
finiBand being a prominent example), thus routing logic
can be implemented using any distributed deterministic
routing hardware solution, like tabled-based routing, look-
ahead routing, etc. The unique routing information packets
need to include in their header is the destination they are
addressed to, instead of a explicit, complete route as source
routing does. Actually, this routing information and the

Figure 1. CCFIT Input Port Organization Diagram.

stored congestion information allow CCFIT to detect if a
packet is congested or not.

In order to deal with the HoL-blocking effect, CCFIT uses
the input port organization shown in Fig. 1. Specifically,
RAM is organized in queues, dynamically managed: CCFIT
assumes two types of queues per input port: a normal flow
queue (NFQ), where non-congested packets are stored, and
a small number of congested flow queues (CFQs), where
congested packets are isolated, thereby, not delaying the
advance of non-congested ones. Moreover, CCFIT uses a
post-processing mechanism (see Section III-C), similar to
the FBICM one, in order to move congested packets from the
NFQ to the CFQs. As we describe latter, the post-processing
mechanism is in charge of moving an output port into the
congestion state.

Like FBICM, CCFIT uses content addressable memories
(CAMs) [30], in order to both keep track of the congestion
information and store the CFQ status. Notice that each CAM
line is associated with one CFQ. Although switch output
ports have neither NFQs nor CFQs, CCFIT requires a CAM
per output port, in order to propagate congestion information
from a given input port CAMs to upstream input port CAMs.
In that sense, CCFIT follows the same approach used in
FBICM for congestion information propagation and resource
deallocation.

Regarding switch scheduling, CCFIT uses iSlip [31], a
Round-Robin (RR) algorithm achieving a fair arbitration
inside the switch (as demonstrated in [12]). Specifically, all
the switch input ports are served in a round robin fashion.
An input port currently accessing an output port, will not
get access to the same output port again until all other input
ports requesting the same output port have been granted
access. In particular, when a congestion tree arises inside
the switch this scheduling policy allows a complete fairness
between all the input ports which have allocated CFQs,
even if several flows are sharing the same CFQ. Introducing
injection throttling, however, may break the fairness property
of RR if care is not taken. As shown in [12] it is important
to use two thresholds (“high” and “low”) for congestion
detection to maintain fairness in RR-based switches. CCFIT
follows this approach, though comparing the thresholds
against the fill ratio of the CFQs rather than the VOQs. This
is further described in Section III-C.

Although RR scheduling combined with the use of two
thresholds allows fairness between input ports, it does not
achieve fairness between traffic flows if some flows are
exclusive users of their CFQs while other flows are sharing
a CFQ (the parking lot problem). This problem is, however,
solved by introducing the injection throttling [12]. All in

665

Figure 2. CCFIT Input Adapter Architecture.

all, CCFIT is able to achieve fairness at two levels: among
different flows arriving at a hot spot switch from different
input port CFQs, and by solving the parking lot problem.
The fairness of CCFIT is further addressed in the evaluation
Section IV-C.

Summing up, by using the architecture outlined above, the
CCFIT switches are, as we describe in Section III-C, able
to detect congestion, move output ports into the congestion
state, marking packets contributing to congestion, isolating
congested flows in the CFQs, and finally, release the required
congestion information resources when congestion vanishes.
The next section describes the end-nodes architecture.

B. End-nodes Architecture
An end-node receiving a packet with the FECN bit active

should, as soon as possible, notify to the packet source about
the congestion in order to throttle the injection. Similar to the
IB CC mechanism, CCFIT returns a congestion notification
packet (CNP) with the BECN bit active. The BECN packet
has priority in the switches for being transmitted, and it
only uses NFQs. Fig. 2 shows a diagram of the end-node
architecture in charge of generating traffic, receiving BECNs
and throttling the injection. For the sake of simplicity, we
have omitted end-node structures in charge of receiving data
packets and generating BECNs. In the following, we will
refer this part of the end-node as the Input Adapter (IA).

Basically, CCFIT IAs have a fixed number of admittance
queues (AdVOQs) equal to the network end-nodes, each
AdVOQi storing packets addressed to destination i, thus
avoiding the HoL-blocking that may arise while generating
traffic. Like the switch input ports, IAs have an output buffer
organized in queues: one NFQ storing non-congested pack-
ets, and a small number of CFQs storing congested packets.
Moreover, IA has a CAM with the same behavior as the ones
located at switches. The CCFIT post-processing mechanism
moves congested packets to the corresponding CFQ, so the
HoL-blocking elimination is assured. Furthermore, CCFIT
IAs include specific structures for the injection throttling,
following an IB approach (see Section II). Specifically, the
Congestion Control Table (CCT) stores a list of Injection
Rate Delays (IRDs) which can be applied to any AdVOQi

in order to reduce its injection rate. The CCT indexes
array (CCTI) stores a CCT index for each AdVOQi and,
by that, the IRD for a given AdVOQi can be found at
CCT [CCTI[i]]. Each CCTI index is increased when a
BECN is received at the IA, thus increasing the value of
the IRD applied to the AdVOQi. Notice that, during heavy
congestion situations the IA will receive a lot of BECNs
which will increase the CCTI index, and therefore the IRD
value. In this way, the IA reduces the injection for the
congested destinations.

For a given AdVOQi, the Timer array is used to decrease
in one unit the CCTI[i] when the timer expires. In this
way the IRD is reduced for that AdVOQi. A Last Time
of Injection (LTI) array is in charge of storing the last time
an AdVOQi injected a packet in the network. This value is
used by the arbitration together with the IRD in order to
calculate if the next packet of the corresponding AdVOQi

could be sent or not. That is, the IA arbiter selects a packet
from a specific AdVOQi by applying a RR policy, making
the “arbitration decision” based on the CAM, Timer, LTI
and CCTI structures.

Finally, the most important effect of using CCFIT is
achieved by the injection throttling since the CAM lines and
CFQs, which were allocated when congestion appeared, are
released quickly. As we show in the CCFIT evaluation (sec-
tion IV) the network throughput is increased in comparison
with the RECN-like and injection throttling techniques. In
order to clarify the overall behavior of CCFIT at the IAs,
an operation example is described in Section III-D.

C. Switch Behavior

Fig. 3 shows an example of CCFIT switches behavior.
The switch stores an incoming packet (Event #1) in the cor-
responding NFQ. After that, CCFIT may detect congestion
(Event #2) based on the NFQ occupancy level. When the
NFQ fill ratio exceeds the congestion detection threshold,
a congestion situation is detected and a CFQ is allocated
in the input port, together with a CAM line containing the
information related to the new congestion point.3 Therefore,
the CAM line information is used to detect if an incoming
packet is addressed to the same destination. 4

Like FBICM, CCFIT moves congested packets from the
NFQ to the corresponding CFQ by means of the packet
post-processing mechanism (Event #3). Basically, when a
packet reaches the head of the NFQ, CCFIT looks up in
the input port active CAM lines if the packet destination
is stored in one of them. In the case of a match, the
packet is moved to the CFQ the CAM line is referred
to, otherwise, the packet crosses to the requested output
port. Note, the post-processing mechanism leaves in the
head of the NFQ only non-congested packets, thus avoiding
the HoL-blocking problem between congested and non-
congested packets. Moreover, this mechanism decides which
input port queue (NFQ or CFQs) can request the output

3Notice that CCFIT, like FBICM, only requires to store in the CAM the
destination the congested packet is addressed to.

4More information about FBICM CAMs can be found in [11], [32].

666

Figure 3. Example of the CCFIT Operation at Switches.

port. In that sense, it will create the crossing-requests that
the arbiter will use for crossing packets to their requested
output port. As we have described, the switch uses the iSlip
scheduling algorithm.

CCFIT follows the FBICM scheme for propagating
the congestion information. A CFQ Stop/Go flow control
(Events #4 and #5) is used between every two switches
containing allocated CFQs belonging to the same congestion
tree. In this way, CCFIT separates congested and non-
congested flows in different CFQs along any path followed
by congested packets, thus isolating them and minimizing
the HoL-blocking effect.

The dynamic and distributed resource deallocation process
begins when a CFQ satisfies some conditions: it is empty
and its associated CAM line is in Go status. When a CFQ
is deallocated (Event #6), and it is part of one congestion
tree branch (a previous “allocation” notification was sent to
the upstream switch), a “deallocation” message is sent to the
upstream switch to notify about the new situation. A similar
process takes place between deallocated output port CAM
lines and its linked input port CFQs+CAM lines.

As previously described, an important feature of the post-
processing mechanism is that it is in charge of deciding if
some output port should be moved into the congestion state.
For each CFQ allocated in the root of the congestion tree
(it is 1-hop away from the congested point), CCFIT looks
at the CFQ occupancy level and, if that CFQ occupancy
level exceeds the “High” threshold, the post-processing
mechanism moves the output port, pointed to by the CFQ,
into the congestion state. However, it may occur that the
output port was already in the congestion state. When this
happens CCFIT keeps track of the number of CFQs which
have an occupancy level above the “High” threshold. Packets
crossing an output port in the congestion state will be
marked (Event #7) as congested (FECN bit set). If the CFQ
occupancy level decreases below the “Low” threshold the

output port counter is decreased, until it reaches the value
0, then moving the output port out of the congestion state.
From this moment, no more packets are marked at the output
port. Notice that, a CFQ which is placed 2-hops away from
the congestion state (e.g. in Fig.3 CFQ0 of P2 at Switch A)
does not move its referred output into the congestion state,
thus packets are not marked.

As it has been described in Section II, a FECN bit
will be set or not depending on Packet Size and Mark-
ing Rate parameters. The influence of the Packet Size and
Marking Rate parameters in the accuracy of the injection
throttling mechanism is described in Section III-E.

D. Input Adapter Behavior

Fig. 4 shows an example of CCFIT IAs behavior. Ba-
sically, the IA is connected to switch A, which has just
detected a congestion situation, which in turn, has been
triggered by an incoming packet (Events #1 and #2). The
post-processing mechanism moves all the congested packets
to the CFQ (Event #3), and the CFQ flow control (Event
#4) propagates the congestion information to the IA.

As the packets crossing through port P3 at Switch A are
marked, the IA will receive BECN notifications indicating
the injection throttling must start. When a BECN is received
at the IA (Event #6), CCFIT obtains the AdVOQi (i being
the destination generating the BECN) which is sending pack-
ets to the destination this BECN belongs to. At this moment,
CCFIT increases the CCTI[i] by one, thus increasing the
IRDi for the AdVOQi. Moreover, the Timer[i] (see Fig. 2)
is initialized with the CCTI Timer value. When the timer
expires (Event #7) the CCTI[i] is decreased by one and the
IRDi is reduced, thus the IA increases the injection rate.

The IA arbiter makes the decision of which packet must
be moved from the AdVOQi to the NFQ (Event #8) based
on a RR policy among all the AdVOQs. For each AdVOQi

667

Figure 4. Example of the CCFIT operation at IAs.

the arbiter checks if the IRDi value applied to that AdVOQ
is greater than the current time, thus allowing the injection.

In this way CCFIT reduces the injection for congested
destinations during congested situations, thus reducing the
congestion trees and releasing the required resources for
storing congestion information (mainly CFQs and CAMs) in
a fast way. The injection rate is increased when congestion
vanishes. As the evaluation shows (see Section IV), CC-
FIT significantly improves the overall network throughput
achieved by RECN-like approaches, such as FBICM, and
injection throttling ones.

E. Parameter Tuning Discussion
As it has been mentioned throughout the paper, CC-

FIT requires several parameters to be configured in the
switches and IAs. These parameters are Congestion de-
tection threshold, CFQ stop/go thresholds, CFQ High/Low
Thresholds, CCTI Timer, Marking Rate and Packet Size.
We have made the same experiences as in [8] for the
CCTI Timer, Marking Rate and Packet Size parameters,
thus a further description has been omitted. The remainder
of the parameters need to be established taking into account
the following ideas: The CFQ “High/Low” thresholds, as
it is described in [12], should have a distance of at least
one packet MTU. As one CFQ moves the corresponding
output port into the congestion state when its occupancy
level exceeds the “High” threshold, the “Stop” flow control
threshold should be greater than the “High” one, in order to
not block congested packets being transmitted from upward
switch CFQs. On its side, the difference between “Stop”
and “Go” thresholds needs to be sufficient for neither
blocking too much upward congested flows, or allowing too
much forwarding of congested traffic. Finally, the detection
threshold value should allow to detect congestion not too
early and not too late.

IV. EVALUATION

In this Section CCFIT is evaluated in terms of network
performance and fairness. It is important to note that the CC-

FIT main contribution is the significant good performance
in comparison to FBICM, which is achieved especially in
congestion situations where the latter has not a sufficient,
available number of CFQs for storing congested packets.
First of all, we describe the simulation tool, modeled traffic
patterns and network configurations used in the experiments.
Next, we analyze CCFIT performance results and fairness.

A. Simulation Model

The simulation tool used in our experiments is an event-
driven simulator written in the programing language C++,
which models interconnection networks at the cycle level,
end-nodes and links. In our experiments, we model different
network configurations which are shown in table I.

Table I
EVALUATED INTERCONNECTION NETWORK CONFIGURATIONS

Config. #1 Config. #2 Config. #3

Nodes 7 8 64

Topology Ad-hoc (Fig. 5) 2-ary 3-tree (Fig. 6) 4-ary 3-tree

Switches 2 12 48

Crossbar BW 5 GBytes/s 2.5 GBytes/s

Switching Virtual Cut-Through

Scheduling iSlip algorithm [31]

Packet MTU 2048 Bytes

Memory Size 64 KBytes

Link Bandwidth 2.5, 5 GBytes/s 2.5 GBytes/s

Flow Control Credit-based

Routing Algorithm Deterministic Deterministic (referred as DET [33])

Routing Logic Table-Based

Config. #1 (Fig.5) and Config. #2 (Fig.6) are used to study
throughput and fairness when several traffic flows create
congestion. Config. #2 is furthermore used for studying
congestion when uniform (random) traffic is generated. As
congestion appears/disappears in a fast fashion, congested-
flows need to be isolated immediately, while the fairness
is maintained. A third configuration, Config. #3, is used for

668

Figure 5. Configuration #1 Diagram.

Figure 6. Configuration #2 Diagram.

testing CCFIT’s reaction against heavy congestion situations,
where several congestion trees overflows the number of
available CFQs. In addition, the modeled traffic patterns for
the above configurations are:

• Case #1 (Config. #1). Five flows (F0, F1, F2, F5 and
F6, see Fig. 5) are injected in the network. The injection
rate is 100% of the link bandwidth (2.5 GBytes/s).
Specifically, F0 (the victim flow) is active during the
whole simulation period, while the other flows are
activated in a sequential way. F1 is active during the
time interval [2ms, 10ms], F2 between [4ms, 10ms],
F5 between [6ms, 10ms], and finally F5 is activated in
the interval [6ms, 10ms]. This traffic pattern generates
a congestion point in the link connecting switch 1 with
end-node 4.

• Case #2 (Config. #2). Like the Case #1, five flows (F0-
F4) are sequentially injected in the network at 100% of
the link speed. In this case the flow F1 remains active
during the whole simulation period. F0 is activated in
the interval [2ms, 10ms], F4 between [4ms, 10ms],
F2 between [6ms, 10ms], and F3 in the interval [6ms,
10ms]. This traffic pattern creates several congestion
points in the network which divide the link bandwidth
among all the flows contributing to congestion.

• Case #3 (Config. #2). Here the situation is the same as
for the Case #2, but three uniform traffic flows (sending
packets to random destinations) are now active during
the simulation (from nodes 5, 6 and 7). All the flows
are injected at 100% of the link bandwidth. In particular
this traffic pattern may add short lived congestion
situations which quickly appear and disappear. Such

congestion situations require a fast CC mechanism.
• Case #4. (Configuration #3) 75% of the sources inject

uniform traffic at 100% rate of the link bandwidth.
Suddenly, the remaining 25% of the sources generate
congested traffic during the time interval [1ms,2ms].
These sources stop injecting traffic after this time
period. This configuration tests if CCFIT copes with
heavy congestion situations where more congestion
trees than the number of CFQs are present. We have
introduced 1, 4 and 6 congestion trees in the network
during the congested traffic period of time.

We have modeled an IQ-switch architecture, thus RAM
memories are only added at each switch input port, with
different sizes depending on the CC technique. Specifically,
the simulator models the following CC techniques:

• Single Queue (1Q). This is the simplest case, with
only one queue at each input port storing all the
incoming packets. Hence, there is no HoL-blocking
reduction policy at all. Note that this scheme is used
for evaluating the performance of the DET routing
algorithm “alone”.

• FBICM. We use 2 CFQs per input port. Moreover, there
are CAMs both at input and output ports.

• Injection Throttling (ITh). We have fixed the
CCTI Timer to 8000 ns, and the Marking Rate to
85% of packets. We assume 8 Virtual Output Queues
(VOQs) per input memory. High/Low thresholds are
respectively set to 4 and 2 packets (2 MTUs as it is
discussed in [12]).

• CCFIT. We assume 2 CFQs per input port. Like ITh
technique, the same values for the CCTI Timer and
Marking Rate are assumed. Only uses 2 CFQs per
queue are defined for congested packets and entering
output ports in the congestion state as a difference
with ITh which has been configured with 8 VOQs.
Moreover, the “Stop” threshold is established to 10
packets MTUs while the “Go” one is set to 4 MTUs.

• VOQnet. This scheme (theoretically the most effective
one) requires greater memory sizes per input port,
because each memory must be divided into as many
queues as network end-nodes, and each queue requires
a minimum size. Considering flow control restrictions,
packet size, and link bandwidth and delay, we fix
minimum queue size to 4 KB, which implies port
memories of 256 KB for configuration #3 networks.
This scheme is actually almost unfeasible, but it is used
to show the theoretical maximum efficiency in HoL-
blocking elimination.

Finally, although the simulator offers many metrics, we
base our evaluation on two metrics: Flow Bandwidth, which
shows the throughput achieved by each traffic flow, and
network throughput, which shows network efficiency when
normalized. In the following subsections we analyze, by
means of these metrics, the obtained network performance.

B. Throughput Results
Fig. 7 and 8 show the overall network throughput as

a function of time for the network configuration #1, #2

669

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2e+06 4e+06 6e+06 8e+06 1e+07

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(n
o

rm
a

liz
e

d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

(a) Configuration #1. Traffic Case #1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2e+06 4e+06 6e+06 8e+06 1e+07

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(n
o

rm
a

liz
e

d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

(b) Configuration #2. Traffic Case #2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(n
o

rm
a

liz
e

d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

(c) Configuration #2. Traffic Case #3

Figure 7. Throughput versus Time. Flow-Based Traffic Configuration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1e+06 2e+06 3e+06 4e+06 5e+06

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(n
o

rm
a

liz
e

d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

VOQnet

(a) 1 Congestion Tree.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1e+06 2e+06 3e+06 4e+06 5e+06

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(n
o

rm
a

liz
e

d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

VOQnet

(b) 4 Congestion Trees.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1e+06 2e+06 3e+06 4e+06 5e+06

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(n
o

rm
a

liz
e

d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

VOQnet

(c) 6 Congestion Trees.

Figure 8. Throughput versus Time (Configuration #3, Traffic Case #4).

and #3, using different traffic patterns. Considering all the
plots, we clearly see how CCFIT outperforms the other
CC techniques, even FBICM in some of the configurations.
Specifically, in the plots shown in Fig. 7, the three CC
techniques all show similar results, while 1Q struggles as
soon as congestion is introduced in the network. In these
scenarios the injected traffic is small, leaving the congestion
less severe, making it rather easy for the different techniques
to cope with the situation. In Fig. 7a ITh experience a drop
in performance in the [4ms, 6ms] time frame due to conges-
tion detection at the left switch (Fig. 5). In configuration #2
case #3, Fig. 7c, we observe the tendency of ITh operating
too slow as it takes time for this throughput to reach the
level of the others.

In Fig. 8, we clearly see how CCFIT benefit from both
doing congested-flow isolation and injection throttling as we
increase the number of congestion trees from 1 to 4 and 6
in the network. In Fig. 8a, having one congestion tree in
the network, CCFIT achieves excellent performance, at the
level of FBICM. In this case FBICM, using 2 CFQs, have
sufficient resources to isolate packets belonging to the single
congestion tree. Notice that VOQnet, which achieves the
maximum performance, has 64 queues per input port and
uses 256 KB of memory, while the other CC techniques
use less queues and uses less memory. The ITh scheme is
not able to cope well with the situation. This could partly
be caused by unfortunate CC parameter values for ITh, but
then again finding optimal CC parameters for throttling is a
challenging task [8], and is probably the main reason for CC
not being in widespread use in IB networks today. Notice,
however that the CCFIT is not as sensitive to the parameters
(see in Fig. 8a), ITh reacts slow, even though the switches

are VOQsw based, while CCFIT only has 1 NFQ and 2
CFQs per input port.

Fig. 8b shows the network throughput when 4 congestion
trees are present in the network. Now FBICM struggles as it
has not enough resources to isolate all the congested flows in
a switch (FBICM uses only 2 CFQs per port): HoL-blocking
is happening in the NFQs. CCFIT, on the other hand,
shows a significant throughput improvement with respect to
FBICM. The CCFIT injection throttling is able to release
the resources used for isolating congestion flows (CFQs
and CAMs) before the congestion-flow isolation part of the
mechanism runs out of resources. Resources are released and
made available to handle new congestion situations before
the new situations arise. If we look at the ITh technique
alone, it is in this scenario able to better cope with the
congestion even though it still shows sign of instability
and oscillation; the “saw-shape” effect. The 1Q scheme,
which does not implement any HoL-blocking elimination
mechanism at all, again achieves the worst results.

Finally, when 6 congestion trees appear in the network
(Fig. 8c) we obtain similar results. This traffic pattern rep-
resents a situation where congested traffic is better balanced
in the network. Again, CCFIT outperforms FBICM, while
ITh needs more time to adjust the injection rate.

In conclusion, CCFIT significantly outperforms the other
CC techniques, even FBICM, especially as the number of
congestion trees grows, as the throttling part of CCFIT
is able to release the resources used for congested flow
isolation, preventing the congested-flow isolation part of the
mechanism to run out of resources.

670

C. Fairness Study

Fig. 9 shows the throughput as a function of time for each
individual traffic flow of config. #1 using traffic pattern case
#1 (Fig. 5). In Fig. 9a, when no CC mechanism is present,
not only does the throughput of the victim flow, F0, suffer
from HoL-blocking, but the contributors to congestion also
suffers from the parking lot problem as some contributors
(the ones being the sole users of their input buffers) got
more than their fair share of the link between switch 1
and end node 4. Enabling ITh, we not only improve the
performance of the victim flow, but at the same time the
parking lot problem is solved as the throttling happens at a
per flow basis. A flow exploiting the parking lot problem will
in return get more packets marked with a FECN (and then
receive more BECNs), and then slow down. The improved
fairness is clearly visible in Fig. 9b. Enabling FBICM, on
the other hand, improves the throughput of the victim, even
compared to ITh, but the parking lot problem prevails. The
flows being the sole users of their respective CFQs still get
more than their fair share of the bottleneck link towards
end node 4. Actually, the unfairness has increased when
using FBICM, as priority has been given to the victim flow
addressed to the end-node 3.

Similar fairness study results, for network configuration
#2, traffic case #2, are shown in Fig. 10. As can be seen
in Fig. 6, there are now 4 congestion points, the parking lot
problem possibly being present at two of them (switch 4 and
switch 6). Again, both HoL-blocking and the parking plot
problem leads to poor throughput and unfairness in the 1Q
scenario (Fig. 10a), while the introduction of ITh improves
performance in both aspects (Fig. 10b). FBICM improves
the throughput even further, but again the unfairness in the
network is dominant (Fig. 10c). Finally, Fig. 10d shows that
both the best throughput and the highest degree of fairness is
achieved by the CCFIT mechanism. It reacts fast due to the
congested-flow isolation and improves fairness by reducing
the injection rate on a per flow basis.

Summing up, besides efficiently eliminating HoL-
blocking, CCFIT improves fairness in the network by solv-
ing the parking lot problem.

V. CONCLUSIONS

The link-level flow control of interconnection networks
makes congestion spread from the oversubscribed link to the
rest of the network. This has the adverse effect that flows that
do not contribute to congestion will suffer from it. For this
reason mechanisms that handle congestion are important.

The two classes of congestion control mechanisms pre-
viously described, attack the problem in different ways.
Injection throttling approaches try to remove congestion
by reducing the amount of traffic that is injected. On the
other hand, congested-flow isolation methods lets conges-
tion prevail, but confines the traffic that goes through the
oversubscribed link to specially designated resources. This
ensures that flows that do not contribute to congestion do
not fall victim to it. These two approaches have different
strengths and weaknesses.

In this paper we have presented three insights. Firstly,
we have demonstrated that the weakness of injection throt-
tling mechanisms is the reaction time of congestion events
Secondly, we have shown that the weakness of congested-
flow isolation is that it has limited scalability with respect
to the number of congested points, and that it displays
poor fairness between congested flows. Finally, and most
importantly, we describe in detail CCFIT a mechanism that
combines congested-flow isolation with injection throttling.

Our simulation results demonstrate that CCFIT extracts
the best features of its two predecessors. In particular,
injection throttling works in a way that limits the number
of congested points that are alive in the network, and thus
removes the scalability problem of congested-flow isolation.
Furthermore, congested-flow isolation provides a quick and
local response to congestion that removes the problems
created by the slow reaction time of injection throttling.
Finally, the good fairness properties of injection throttling
are preserved in the combined method.

ACKNOWLEDGMENTS

This work is jointly supported by the MEC, MICINN and
European Commission under projects Consolider Ingenio-
2010-CSD2006-00046 and TIN2009-14475-C04, and by the
JCCM under projects PCC08-0078 (PhD. grant A08/048)
and POII10-0289-3724.

REFERENCES

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Net-
works An Engineering Approach, revised edition ed. Morgan
Kaufmann, 2003.

[2] G. F. Pfister and V. A. Norton, “”Hot Spot” contention and
combining in multistage interconnection networks,” IEEE
Trans. Computers, vol. 34, no. 10, pp. 943–948, 1985.

[3] W. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–
205, 1992.

[4] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and
F. Naven, “Dynamic evolution of congestion trees: Analysis
and impact on switch architecture,” Proc. 1st HiPEAC Conf.,
pp. 266–285, November 2005.

[5] V. Jacobson, “Congestion avoidance and control,” in SIG-
COMM. ACM, 1988, pp. 314–329.

[6] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end
congestion avoidance on a global internet,” IEEE Journal on
selected Areas in communications, vol. 13, pp. 1465–1480,
1995.

[7] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP con-
gestion control over internets with heterogeneous transmis-
sion media,” in 7th International Conferance on Network
Protocols (ICNP99). IEEE Computer Society, 1999, pp.
213–221.

[8] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne,
L. Huse, and G. Shainer, “First experiences with congestion
control in InfiniBand hardware,” in Parallel Distributed Pro-
cessing (IPDPS), 2010 IEEE International Symposium on,
2010, pp. 1–12.

[9] J. R. Santos, Y. Turner, and G. J. Janakiraman, “End-to-end
congestion control for InfiniBand,” in INFOCOM, 2003.

[10] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garcı́a, and
T. Nachiondo, “A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks,” in Proceedings of the 11th Symposium on High
Performance Computer Architecture (HPCA), 2005.

671

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(a) 1Q.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)
Time (nanoseconds)

F0
F1
F2
F5
F6

(b) ITh.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(c) FBICM 2-CFQ.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(d) CCFIT 2-CFQ.

Figure 9. Flow Bandwidth versus Time (Configuration #1, Traffic Case #1).

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(a) 1Q.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(b) ITh.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(c) FBICM 2-CFQ.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e+06 4e+06 6e+06 8e+06 1e+07

B
a
n
d
w

id
th

 (
G

B
y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(d) CCFIT 2-CFQ.

Figure 10. Flow Bandwidth versus Time (Configuration #2, Traffic Case #2).

[11] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich,
and J. Duato, “FBICM: Efficient congestion management
for high-performance networks using distributed determin-
istic routing,” in LNCS Series - 15th Conference on High
Performance Computing - (HiPC 2008), Bangalore, India,
December.

[12] E. G. Gran, E. Zahavi, S.-A. Reinemo, T. Skeie, G. Shainer,
and O. Lysne, “On the relation between congestion control,
switch arbitration and fairness,” in International Symposium
on Cluster, Cloud and Grid Computing (CCGrid 2011).

[13] M. Thottetodi, A. Lebeck, and S. Mukherjee, “Self-tuned
congestion control for multiprocessor networks,” in Proc. of
7th. HPCA, February 2001.

[14] J. Kim, Z. Liu, and A. Chien, “Compressionless routing: a
framework for adaptive and fault-tolerant routing,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 8, no. 3,
pp. 229 –244, Mar. 1997.

[15] E. Baydal and P. López, “A robust mecahnism for congestion
control: Inc,” in Euro-Par, 2003, pp. 958–968.

[16] InfiniBand architecture specification. Release 1.2.1, Infini-
Band Trade Association, Nov. 2007.

[17] IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks - Amendment: 10:
Congestion Notification., IEEE 802.1Qau-2010 ed., IEEE 802
LAN/MAN Standards Committee, 2010. [Online]. Available:
http://www.ieee802.org/1

[18] J. R. Santos, Y. Turner, and G. J. Janakiraman, “Evaluation
of congestion detection mechanisms for InfiniBand switches,”
in IEEE GLOBECOM – High-Speed Networks Symposium,
2002.

[19] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato,
“Congestion management in MINs through marked and vali-
dated packets,” in PDP, 2007, pp. 254–261.

[20] ——, “On the influence of the packet marking and injection
control schemes in congestion management for MINs,” in
Euro-Par, 2008, pp. 930–939.

[21] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed
switch scheduling for local-area networks,” ACM Transac-
tions on Computer Systems, vol. 11, no. 4, pp. 319–352,
November 1993.

[22] W. Dally, P. Carvey, and L. Dennison, “Architecture of the
Avici terabit switch/router,” in Proc. of 6th Hot Interconnects,
1998, pp. 41–50.

[23] Y. Tamir and G. Frazier, “Dynamically-allocated multi-queue

buffers for vlsi communication switches,” IEEE Transactions
on Computers, vol. 41, no. 6, June 1992.

[24] T. Nachiondo, J. Flich, and J. Duato, “Buffer management
strategies to reduce hol blocking,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, pp. 739–753, 2010.

[25] W. Olesinski, H. Eberle, and N. Gura, “Scalable alternatives
to virtual output queueing,” in Proc. IEEE International
Conference on Communications, 2009.

[26] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, and J. Duato,
“An efficient strategy for reducing head-of-line blocking in
fat-trees,” in LNCS Series. Parallel Processing, 16th Inter-
national Euro-Par Conference, Ischia, Italy, september 2010,
pp. 413–427.

[27] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles,
and F. Naven, “Efficient, scalable congestion management for
interconnection networks,” IEEE Micro, vol. 26, no. 5, pp.
52–66, September 2006.

[28] G. Mora, P. J. Garcı́a, J. Flich, and J. Duato, “RECN-
IQ: A cost-effective input-queued switch architecture with
congestion management,” in Proc. ICPP, 2007.

[29] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Wal-
rand, “Achieving 100% throughput in an input-queued
switch,” in IEEE TRANSACTIONS ON COMMUNICATIONS,
1996, pp. 296–302.

[30] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and
survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712–727, March 2006.

[31] N. McKeown, “The iSLIP scheduling algorithm for input-
queued switches,” IEEE/ACM Transactions on Networking,
vol. 7, no. 2, pp. 188–201, Apr. 1999.

[32] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich,
and J. Duato, “Cost-effective congestion management for
interconnection networks using distributed deterministic rout-
ing,” in Proceedings of the 16th International Conference on
Parallel and Distributed Systems (ICPADS 2010), Shanghai,
China, december 2010.

[33] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato,
“Deterministic versus adaptive routing in fat-trees,” in Work-
shop on Communication Architecture on Clusters, as a part
of IPDPS’07, March 2007, p. 235.

672

Paper VI

Efficient and Cost-Effective

Hybrid Congestion Control for HPC

Interconnection Networks

Jesús Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro J. Garćıa,

José Flich, Tor Skeie, Olav Lysne, Francisco J. Quiles, and José Duato

Part I: Main Paper

Part II: Supplemental Document

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 1

Efficient and Cost-Effective Hybrid Congestion
Control for HPC Interconnection Networks

Jesus Escudero-Sahuquillo, Member, IEEE, Ernst Gunnar Gran, Member, IEEE,
Pedro J. Garcia,José Flich, Member, IEEE, Tor Skeie, Member, IEEE,

Olav Lysne, Member, IEEE, Francisco J. Quiles, Member, IEEE, and José Duato

Abstract—Interconnection networks are key components in High-Performance Computing (HPC) systems, their performance having a
strong influence on the overall system one. However, at high load, congestion and its negative effects (e.g. Head-of-line blocking)
threaten the performance of the network, and so the one of the entire system. Congestion control (CC) is crucial to ensure an
efficient utilization of the interconnection network during congestion situations, as one major trend is to reduce the effective wiring
in interconnection networks to reduce cost and power consumption. This means that the network will operate very close to its capacity,
thus congestion control becomes essential. Existing CC techniques can be divided into two general approaches. One is to throttle traffic
injection at the sources that contribute to congestion, and the other is to isolate the congested traffic in specially designated resources.
However, both approaches have different, but non-overlapping weaknesses: injection throttling techniques have a slow reaction against
congestion, while isolating traffic in special resources may lead the system to run out of those resources. In this paper we propose
EcoCC, a new Efficient and Cost-Effective CC technique, that combines injection throttling and congested-flow isolation to minimize
their respective drawbacks and maximize overall system performance. This new strategy is suitable for current commercial switch
architectures, where it could be implemented without requiring significant complexity. Experimental results, carried out by means of
simulations under synthetic and trace-based traffic patterns, show that this technique improves by up to 55% over some of the most
successful congestion control techniques.

Index Terms—Interconnection Networks; Congestion Control; Head-of-Line blocking; Injection Throttling

�

1 INTRODUCTION

HIGH-SPEED, switch-based interconnection networks
are nowadays essential components for different

types of parallel-computing systems, from Networks-
on-Chip to Massively Parallel Processors. In particu-
lar, in High-Performance Computing (HPC) systems,
the performance offered by the interconnection network
must mandatorily meet the high requirements of the
applications supported by these systems; otherwise the
network would become the system bottleneck and the
processing nodes would be idle while waiting for new
data to arrive, thereby wasting computational power.
Thus, every aspect of the networks of HPC systems
(topology, routing, etc.) should be designed bearing in
mind the very high requirements of these networks.

Even thoroughly designed networks, however, may
experience performance degradation during situations of
congestion. Basically, congestion consists in intense traf-
fic clogging a number of internal network paths, thereby
slowing down traffic flows. Typical causes of conges-
tion are hot-spots, network burstiness, re-routing around
faulty regions, and conducting link frequency/voltage
scaling (i.e. lowering the link speed in order to save
power). Whatever the cause is, congestion originates
when several packet flows simultaneously request access
to the same output port in a switch, or if a destination
node is not able to process packets at the rate they
arrive. In networks where discarding blocked-packets is

• J. Escudero-Sahuquillo, Pedro J. Garcia and Francisco J. Quiles are with
the Computer Systems Department, University of Castilla-La Mancha,
Campus Universitario, s/n 02071, Albacete, Spain.
E-mail: {jesus.escudero, pedrojavier.garcia, francisco.quiles}@uclm.es

• Ernst G. Gran, Tor Skeie and Olav Lysne are with the Simula Research
Laboratory, Martin Linges vei 17, Fornebu, Norway.
E-mail: {ernstgr, tskeie, olav.lysne}@simula.no. Tor Skeie is also affiliated
with the University of Oslo. E-mail:{tskeie}@ifi.uio.no

• J. Flich and J. Duato are with the Department of Computer Engineering
(DISCA), Universitat Politècnica de València, Camı́ de Vera, s/n 46071,
Valencia, Spain. E-mail: {jflich, jduato}@disca.upv.es

not allowed (like those currently used in HPC systems),
any packet without granted access to a requested output
port will remain blocked in a queue until its request is
accepted. If this situation persists, the involved queues
rapidly fill up as new packets arrive, then blocking
packets in other switches due to the backpressure of the
link-level flow control. Eventually, congestion spreads
throughout the network from the disputed output port
or destination node where it originates, usually referred
to as the congestion root.

Note that congestion spreads not only across the paths
followed by flows going through the congestion root
(usually known as hot flows), but possibly also along
the paths of cold flows (i.e. flows that are not headed for
the congestion root). When a cold flow shares resources
with a hot flow, the cold flow is slowed down or even
blocked by the hot flow, so that eventually that cold
flow contributes to congestion spreading towards its
own origin. In this way congestion very well spreads all
the way back to source nodes of not only hot flows, but
back to source nodes of cold flows as well. The overall
structure of blocked traffic created by all the hot flows
(and possibly some cold ones), is in general known as a
congestion tree [1].

Figure 1 shows how a congestion tree is formed by
three hot flows, injected from sources A, B and D, all
addressed to destination X. Notice that other flows,
injected respectively from sources C and E, are addressed
to other destinations (Z and Y, respectively). Thus, at the
beginning of traffic injection, they do not contribute to
congestion (i.e. they are cold flows). The port connecting
Switch 8 to X has become the root of a congestion tree.
The injection rates of the three hot flows are 33% of
the link speed, due to the sharing of the bottleneck link
between Switch 8 and X. This, however, also reduces
the injection rates of the cold flows accordingly, as cold
packets addressed to Y and Z share queues with hot ones
at some ports (see the enlarged views of these queues in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 2

Fig. 1. Head-of-Line (HoL) blocking appearance

Figure 1). Eventually, cold flows end up advancing at
the same reduced speed as hot flows.

This effect is a particular case of Head-of-Line (HoL)
blocking that, in general, occurs when a blocked packet
at the head of a queue prevents other packets in the
same queue from advancing, even if these other packets
request free resources (i.e. idle output ports). Indeed, hot
flows may cause HoL-blocking to cold flows either at
the switch where congestion originates (low-order HoL-
blocking [2], e.g. that suffered by the flow addressed to Y
at Switch 8) or at switches along branches of a congestion
tree (high-order HoL-blocking [3], e.g. that suffered by
the flow addressed to Z at Switch 6). In general, cold
flows suffering HoL-blocking from hot flows are called
victim flows. Congestion does not only leads to HoL-
blocking. It may also lead to buffer hogging [4]. Indeed,
when dynamically assigning buffer space to traffic flows,
hot flows are likely to take most of the buffer space at
each port they visit. This can leave the cold flows visiting
the same ports with too little buffer space to maintain a
smooth flowing, resulting in a performance degradation
in the network, even if HoL blocking is not present.

All together, the problems derived from congestion
are serious enough to significantly degrade network
performance if no countermeasures are taken [1], [5], [6].
In this context, Congestion Control (CC) can be defined as
any strategy focused on avoiding, reducing, or eliminat-
ing congestion and/or its negative impact on network
performance. There exists a huge research body in this
field (see Section 6 in supplementary file). However, not
all the CC proposals are suitable for the interconnection
networks of current HPC systems (e.g. packet discarding
and network overdimensioning have become obsolete).

Nowadays, the two most popular approaches to CC in
HPC systems are injection throttling and queue-based flow-
separation. The first approach [5] relies on the switches
to detect congestion, and then inform the sources that
contribute to congestion that they must reduce their
corresponding injection rates. By reducing the injection
rates, the sources remove the congestion tree and by that
the derived problems (HoL-blocking, buffer hogging,
etc.). The second approach, i.e. separating flows into
different queues at switch ports, tries to prevent the
hot flows from interfering with the cold ones, thereby
preventing the negative effects of congestion without
removing the congestion trees. Many techniques follow
this approach (see Section 6 in the supplementary file),
but the most efficient ones are those that completely
isolate hot flows in queues dynamically allocated upon

congestion detection [7], [8], [9], [10], [11]. We will
hereafter refer to these strategies as Hot-Flow Dynamic
Isolation (HFDI) techniques.

Unfortunately, both injection-throttling-based and
HFDI techniques have drawbacks. The main problem
associated with throttling-based CC is the delay since
congestion detection to final notification to the sources
contributing to congestion. During this period, HoL-
blocking and buffer hogging degrade network perfor-
mance. Moreover, this delay in the notification process
may also lead to oscillation, as the contributors con-
stantly try to adjust their injection rates based on “old”
information about the situation in the network.

On the other hand, the main problem of the HFDI
techniques arises when the number of congestion trees
present in the network exceeds the maximum number
of queues assigned to hot-flow isolation. When this hap-
pens, congestion trees will grow inside the queues sup-
posed to be used only by cold flows, and by this, reintro-
duce HoL-blocking and lead to performance degradation
in the network. More details about the implementations
of these two approaches can be found in Section 6 of the
supplementary file, while their drawbacks are in-depth
analyzed in Section 2.

In [12] we showed that, by combining the two afore-
mentioned approaches, their respective weaknesses were
overcome. The HFDI part of the technique quickly reacts
to congestion, thereby overcoming the slow reaction of
the throttling-based mechanism. On the other hand, in
the case of several congestion trees, the injection throt-
tling part removes the trees before the HFDI mechanism
runs out of resources to isolate the hot flows. The result-
ing “hybrid” (i.e. combined) CC technique was called
Combined Congested-Flow Isolation and Throttling (CC-
FIT), and we showed that it is able to remove HoL-
blocking immediately, ensure scalability by removing the
congestion trees, improve fairness in the network, and
achieve higher throughput than injection throttling and
HFDI as standalone CC mechanisms.

In this paper we significantly refine and optimize
the hybrid CC approach to take advantage of features
in current state-of-the-art HPC switch architectures, so
that we can propose a CC technique that is even more
efficient and resource friendly. Specifically, CCFIT was
designed to prevent both the low- and high-order HoL-
blocking that appears in congestion situations, but mod-
ern commercial HPC switches “naturally” prevent low-
order HoL-blocking, as the de facto standard is to have
several read ports to connect each switch input buffer
separately to all the output buffers of the switch (i.e. the
effect is similar to have Virtual Output Queues (V OQs) at
switch level [13]). As a consequence, any CC technique
suitable for modern commercial switches can focus on
preventing only high-order HoL-blocking, thereby lever-
aging the resources and mechanisms devoted to deal
with congestion. The new Efficient and cost-effective
Congestion-Control technique (EcoCC) that we propose
in this paper has been designed according to this key
idea, so that (among other advantages) the available re-
sources are used more efficiently to isolate (and throttle)
hot flows, congestion is detected more accurately, and
implementation complexity is reduced.

The rest of the paper is organized as follows: Sec-
tion 2 focuses on the drawbacks of injection throttling
and HFDI techniques. Section 3 contains a thorough

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 3

description of the new EcoCC technique. In Section
4 we evaluate this technique using simulation results
obtained under different traffic conditions. In Section 5
some conclusions are drawn.

2 PROBLEM STATEMENT

From our point of view, a perfect solution to congestion
problems in interconnection networks of HPC systems
should fulfill a list of criteria:

1) Effectiveness: Flows that do not contribute to con-
gestion (i.e. cold flows) on any link should not
be affected by congestion in other places in the
network (i.e. there should not exist victim flows).

2) No adverse effects: Overall behavior of the network
should not suffer from having Congestion Control
turned on, relative to having it turned off (e.g.
the CC mechanism should not introduce out-of-
order packet delivery, and it should in particular
not cause any harm to the network performance
when no congestion is present).

3) Fairness: All flows that do contribute to congestion
on a link should get their fair share of the link
bandwidth. Otherwise, the CC mechanism may in-
troduce unfairness among hot flows [14]. Note that
this criterion also implies that the parking lot problem
[15] will be solved at the root of the congestion tree.

4) Scalability: The CC mechanism should be able to
handle any number of congestion trees concur-
rently present in a port or in the network as a
whole. Also, the mechanism should scale in terms
of network size.

5) Reaction time: The CC mechanism should be fast-
reacting, so that it can handle highly dynamic
congestion patterns before network performance
degradation becomes irreversible.

As mentioned above, the two main strands in research
on congestion control in interconnection networks of
HPC systems are the injection throttling approach and
the HFDI one. Both of these have been shown to fulfill
the effectiveness property, and the property that there
should be no adverse effects. The doubts that have
been associated with both of them are related to the
observation that each of them struggle to support some
of the requirements 3-5.

Specifically, the main weakness of the throttling ap-
proach, regardless of implementation details, is that the
feedback loop from the congestion point back to the
throttling sender is long and unpredictable. From the
moment that congestion appears until it is alleviated,
the congestion notification will have to travel a distance
that is dependent on network size and on where the
congestion is located. Furthermore, it will have a latency
dependent on how many congested points it crosses.
Thus, injection throttling is only efficient for congestion
situations that have some longevity, and it has clear
weaknesses related to the 5th requirement above.

Observing that the feedback loop of injection throttling
may be too long, the only reasonable remedy is to look
for methods whose effective reaction is taken close to the
congestion root. As mentioned above, HFDI techniques
are a family of methods that do this, as the different
variants of HFDI provide local, fast reaction to conges-
tion (i.e. they meet the 5th requirement in the above list).
On the other hand, it is clear that any implementation of
HFDI will have to decide a priori on the number of con-
current congestion trees it can handle. The reason for this

Decreasing efficiency
due to the delay of the
feedback loop v.s.
the hotspot lifetime.

Suitability

Increasing traffic dynamics

IThr
HFDI
ICC

Increasing efficiency as
HFDI is less likely to run
out of special queues to
handle congestion trees.

Fig. 2. An abstract view of the suitability of different
congestion control approaches.

is that this number is bound to the maximum number of
special queues per port that are configured to store hot
flows. Even though it can be argued that it is unlikely
that many congestion trees are present in several ports at
the same time, and thus unlikely that more than a small
fraction of ports would run out of special queues at any
given time, just one or a few congestion trees growing
outside of the special queues may be enough to spoil
network performance dramatically. HFDI is thus not able
to satisfy the 4th requirement. Furthermore, HFDI based
solutions are not able to assure fairness between the
contributors to congestion and by that solve “the parking
lot problem” (see 3rd requirement in the above list). The
hot flows are simply moved from the ordinary queues
over to the special queues.

The suitability of the two families of CC mechanisms
can also be seen in relation to the traffic dynamics in
the network. A throttling-based CC mechanism is able
to handle all kinds of congestion trees, including moving
congestion trees [16] with some longevity quite well, while
the mechanism struggles as the lifetime of the hot-spots
decreases or the congestion trees move faster. That is, the
efficiency of a throttling-based CC mechanism decreases
as the traffic dynamics in the network increase. An HFDI
mechanism, on the contrary, could actually be challenged
by stable hot-spots as such hot-spots grow long-lived
silent or windy congestion trees. Keep in mind that
an HFDI mechanism does not remove the congestion
trees. Even a small set of stable hot-spots could then
by their corresponding congestion trees permanently oc-
cupy most, or in the worst case all, of the special queues
in a large part of the network, leaving less or no room for
additional congestion trees. When that happens, HoL-
blocking is reintroduced.

Figure 2 gives an abstract view of the suitability of
the two main CC approaches, injection throttling (IThr)
and HFDI, as a function of the traffic dynamics in the
network. In addition, the behavior of an ideal CC (ICC)
mechanism is plotted. Even though the exact look of
such a figure obviously varies depending on the number
of hot-spots present, the traffic pattern, the topology
and so on, it still gives an intuitive idea about the
shortcomings of the two main CC approaches, compared
to how we would like an ideal CC mechanism to behave.

Summing up, it seems that the two main trends in CC
for HPC systems do not fulfill the list of requirements
previously stated. Note, however, that their respective
drawbacks are unrelated with each other, while their

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 4

Fig. 3. Assumed Switch Architecture.

advantages are complementary as they jointly meet all
the stated requirements. Hence, the idea of an approach
combining both philosophies is obviously appealing.
Next, we show in detail how these two approaches can
be combined in a switch architecture that leverages all
the features of modern interconnect technologies, then
obtaining an approach to congestion control that satisfies
all of the criteria listed at the beginning of this section.

3 ECOCC DESCRIPTION

In the following subsections we describe the EcoCC (Ef-
ficient and cost-effective Congestion Control) technique
as we detail the architecture of a switch and an end-node
supporting it.

3.1 The Switch Architecture

Figure 3 shows a schematic view of a switch architecture
implementing EcoCC, while Figure 4 shows in detail
the organization of each input port of the switch. For
the sake of clarity, the switch in Figure 3 is shown as
an “unfolded”, unidirectional switch having four input
ports and four output ports, where each port supports a
single virtual lane (VL). Note, however, that the EcoCC
technique is valid for bidirectional switches and by itself
it does not impose any restrictions regarding the number
of ports or VLs supported by a switch. We will refer to
these figures in the following subsections.

3.1.1 Low-Order HoL-blocking Prevention

State-of-the-art switches typically utilize a V OQ-based
switch architecture, where each input port administers
a buffer divided into several sections, one section per
possible output port. The input ports in Figures 3 and 4
implement such a V OQ scheme by providing a private
read port into the switch crossbar for each buffer section
corresponding to a given output port (i.e. the buffer at
an input port has one buffer section and a corresponding
read port per output port). Hereafter, a single instance
of such a buffer section with its corresponding read port
will be referred to as a V OQ. As soon as the part of a
packet header that contains the destination address (or
LID) is received at an input port, the routing decision is
made by the Router component (assuming Virtual Cut-
Through switching), and the packet is mapped to the
V OQ corresponding to the next output port for which
the packet is headed. At this queue the packet will
be held waiting to be forwarded through the switch,

Fig. 4. Input Port Organization for EcoCC.

i.e. through the crossbar. When arbitrating1, the multi-
ple read ports allow the arbiter to arrange concurrent
transfers from multiple V OQs of the same input port
in parallel through the crossbar, as the transfers are not
headed for the same output port. On the other hand, it
is worth pointing out that this architecture differs from
the one assumed by CCFIT, which lacks V OQ support.

Note that this architecture by its own features com-
pletely removes the low-order HoL-blocking. Packets
waiting for arbitration due to a busy output port will
never share a V OQ with packets requesting a free output
port, i.e. HoL-blocking due to local congestion (low-
order HoL-blocking) is not possible. High-order HoL-
blocking, on the contrary, is left untouched though, as
two packets headed for the same local output port at
a switch may share a V OQ even if they later, at a
downstream switch, will be considered to belong to two
different flows, one being hot, the other one being cold.

3.1.2 High-Order HoL-blocking Prevention

To avoid high-order HoL-blocking, EcoCC utilizes a
combination of HFDI and injection throttling similar to
CCFIT, but with several improvements and optimiza-
tions, as CCFIT considers neither several read ports nor
V OQs. In EcoCC, each V OQ, shown as a green queue
in Figure 4, initially functions as a Cold-Packet Queue
(CPQ). That is, in a non-congested scenario, all incoming
packets are stored in the CPQ corresponding to the next
output port the packet is headed for. Apart from the
CPQs, EcoCC also uses another type of queues at each
input buffer, called Hot-Packet Queues (HPQs), which
store only hot-packets, as explained later.

Each CPQ has two congestion-detection thresholds,
one lower and one higher bound, LTh and HTh, respec-
tively. When a CPQ is filled above the HTh threshold,
congestion is detected and the corresponding output
port is considered to be congested as long as the fill ratio
of the CPQ remains above the LTh. As explained in [14],
the use of two thresholds is also important for the assur-
ance of fairness among hot flows. Note that in contrast
with CCFIT that mixes in the same CPQ packets headed
for different output ports, the detection of congestion in
EcoCC is highly accurate, as all the packets stored in
a specific CPQ which has exceeded the HTh threshold
are headed for the same output port. Thus, this port is
for sure a congestion root (i.e. all the packets in a CPQ
detecting congestion are for sure hot packets). Thus, the

1. We assume the use of an efficient and fair scheduling algorithm
like iSLIP [17] to organize and grant the crossing requests.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 5

V OQ scheme removes the uncertainty of congestion root
detection in CCFIT.

When congestion is detected in a CPQ, the corre-
sponding output port enters into the congestion state and
starts to mark packets contributing to congestion, by
following the InfiniBand CC scheme2. If the output port
was already in the congestion state, the output port only
increases a counter to keep track of how many CPQs
are contributing to congestion. Anyway, the injection-
throttling part of EcoCC has now been activated. In
addition, the HFDI part of EcoCC is also activated as a
CAM line3 (Figure 4) is created to store information that
uniquely identifies the newly discovered congestion tree.
Specifically, the new CAM line contains this information:
the output port that is the root of the congestion tree
(op), number of hops to reach op (hops, initially 1 as
this port is inside this switch), and the number of the
CPQ/HPQ (Queue) that CAM line is referred to. A few
more bits for control information are used in every CAM
line: the stop bit (only active in upstream CAM lines)
indicates that the associated HPQ can forward packets,
the sentStop bit says that the CAM line has sent a stop to
the upstream switch, the propagated bit shows that the
CAM line information has been propagated upstream,
and the timer sets the life time of a CAM line. Further
details of the use of those control bits are given in [19].

At its allocation, the CAM line information is prop-
agated to the upstream switch by means of an allocate
congestion notification containing the location of the
congestion tree root. That notification includes the dList
field: a list of destinations obtained from the packets
crossing through the congestion root, that has been just
detected; the remainder information being a copy from
the source CAM line. Note that, at the switch where the
congestion root is located, no HPQ needs to be allocated
to isolate hot packets headed for that congestion root (i.e.
to prevent low-order HoL-blocking), as they are already
isolated in the CPQ. This is a further optimization over
CCFIT, where a special queue needs to be allocated
for each input port contributing to a congestion tree,
even when the root is local. Thus, EcoCC uses HPQs
exclusively to prevent the high-order HoL-blocking.

Initially, when an upstream switch receives an allocate
notification from a CAM line, this information is stored
in a CAM line at its output port, op, connected to the
input port sending that notification. Then, as CPQs of
the upstream switch request access to op, action has to
be taken to avoid high-order HoL-blocking: The first
time that a packet in a given input CPQx request to
use op and has a destination address that matches the
dList of a CAM line at op, the CAM line information is
propagated internally to the input port where CPQx is,
and a HPQx + CAM line (with local-switch op, hops,
dList, NextLine storing the CAM line number in the
next switch and Queue, pointing to HPQx) are allocated
there. When an HPQx is assigned, a post-processing pro-
cedure will move all packets, whose destination address
is included in the dList of the newly allocated CAM line,

2. A packet is marked as contributing to congestion according to
the parameters Packet Size and Marking Rate, and if the output port is
considered to be at the root of the congestion tree, i.e. the output port
has free credits [18].

3. The CAM line is implemented partially by means of a Content
Addressable Memory (CAM cells), hence the name.

Fig. 5. EcoCC Host Channel Adapter (HCA) organization.

from the CPQx to HPQx

4. For that purpose, any packet
arriving at the head of the CPQx will be compared
against the CAM information: if there is a match, the
packet is stored in the HPQx; otherwise it is forwarded to
its corresponding output port. In this way, all hot packets
associated with the congestion tree (i.e. “matching” a
given CAM line) are isolated in the HPQx, and high-
order HoL-blocking is prevented.

In HPQs, we use the same LTh and HTh thresholds
that are used in CPQs, so that the first time an HPQ is
filled above the HTh threshold, an allocate notification is
sent to the upstream switch to allocate a CAM line, and
so on. Thus, “consecutive” HPQs are allocated in consec-
utive switches to store packets from the same congestion
tree. To avoid oversubscription of HPQs, a Stop & Go
flow-control is implemented between consecutive HPQs,
based also on the LTh and HTh thresholds (i.e. stop no-
tifications are sent the second time the HTh threshold is
reached and further ones), and go notification is sent the
LTh threshold is reached. The LTh threshold is also used
to deactivate the marking of packets (i.e. the injection-
throttling part of EcoCC).

Finally, if an HPQ is completely emptied, this HPQ
and the corresponding CAM line are deallocated and
the corresponding upstream switch is notified about the
new situation. In particular this indicates that the same
CAM line can be removed from the output port of the
upstream switch. Thus, EcoCC, like CCFIT implements
a distributed, dynamic policy for releasing resources
devoted to CC. Further details about memory (RAM and
CAM) requirements of EcoCC can be found in Section 8
of the supplementary file.

Note that the use of only two thresholds, LTh and
HTh, is a further optimization of EcoCC over CCFIT. In
CCFIT five different thresholds are needed to keep track
of congestion detection for the injection-throttling and
HFDI parts of the technique, as well as for managing
the flow-control between consecutive HPQs.

3.2 The End Node Architecture

As previously described, the injection throttling part
of EcoCC is based on the InfiniBand CC: an output
port in the congestion state marks packets, by activating
the FECN (Forward Explicit Congestion Notification)
bit at their headers. When a FECN-marked packet is
received at an endnode, it generates a Backward Explicit
Congestion Notification (BECN) addressed to the source
endnode of the received FECN-marked packet. Source

4. This action is implemented by rearranging memory pointers for
the involved packets, without actually “moving” data inside the RAM.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 6

endnodes are in charge of applying the injection throt-
tling policy, as defined by the InfiniBand specification.
Figure 5 shows the organization of a Host Channel
Adapter (HCA) implementing EcoCC.

Specifically, the organization and behavior of the
endnode HCA is similar to the behavior of the Input
Adapters (IAs) used for CCFIT [12]. At the heart of
the EcoCC HCA is the Congestion Control Table (CCT)
holding preconfigured increasing values of Injection Rate
Delay (IRD). An IRD value indicates the delay in the
injection of two consecutive packets from the same traffic
flow. Each possible destination of a flow has three asso-
ciated registers: Timer, Last Time of Injection (LTI) and
CCTI Index (CCTI). Each time a congestion notification
message (BECN) associated with a flow with destination
D is received, the CCTI associated with D is increased,
so that it points to an entry in the CCT with a higher
value of the IRD, thus the injection rate of that flow is
decreased, accordingly. The CCTI, and by that the corre-
sponding IRD are decreased at regular intervals given by
the Timer. In this way, traffic flows have their injection
rates decreased/increased in response to congestion in
the network in a similar way to InfiniBand CC.

Each HCA defines a Network Interface Controller
(NIC) memory divided into as many generation queues
as endnodes in the network, so that each generated
message is stored in a queue#i, i being the LID of
its destination. Thus, the HoL-blocking is prevented at
traffic generation. Besides, each HCA has its own CPQ
and a set of HPQs managed by CAM lines in the same
way as for switches. Packets are transferred from the
generation queues to the CPQ. The purpose of these
CAM lines and HPQs is to avoid any HoL-blocking at
the HCA if the injection-throttling mechanism is not able
to remove a congestion tree before it reaches the HCA.
In turn, the HCA Arbiter conducts arbitration taking
into account the information in both the CAM and the
CCT. Specifically, a packet from a flow with destination
D is only eligible for arbitration if the time since the
last packet injection of that flow (LTI[D]), is greater than
the IRD (i.e. CCT[CCTI[D]]), and there exists no blocked
CAM-line (i.e. with the stop bit active) with a dList
including D.

3.3 Operation Example

Figure 6 shows how EcoCC deals with a congestion
situation in a portion of an interconnection network
composed of two switches (A and B) and two endnodes-
HCAs (#0 and #3). In the top part of the Figure, EcoCC
detects that congestion situation at the input port 1 (IP1)
of Switch B (Event #1), when the HTh is exceeded at
CPQ1. Thus, the output port 1 (OP1) of Switch B enters
into congestion state and an Allocate notification is sent
from IP1 to Switch A (Event #2), in order to propa-
gate the congestion-root information. From this moment,
packets will be FECN-marked at OP1 of Switch B accord-
ing to the EcoCC Marking Rate. Besides, at OP1 of Switch
A, when a hot-packet addressed to the congestion root
is received (Event #3) (i.e. a packet which matches the
CAM line information of that congestion root), an Allo-
cate notification is sent (Event #4) to the input port send-
ing that packet (IP1 at Switch A). The post-processing
mechanism (Event #5) moves the packets addressed to
the congestion root from the CPQ1 to HPQ1 at Switch
A. Note that low-order HoL-blocking is prevented at
Switch B, as there is one CPQ per output port, and

high-order HoL-blocking is prevented at Switch A, as
hot-packets are isolated in HPQs. Note also that, FECN-
marked packets are received at the destination HCA #3
(Event #6), so that BECN notifications are sent from that
endnode to the source HCA #0 (Event #7).

In the bottom part of Figure 6 when HPQ1 at IP1 of
Switch A fills up, it sends an Allocate notification to
HCA #0 (Event #8) that allocates an HPQ to isolate hot
packets. Besides, when a BECN notification is received at
source endnode-HCA #0 (Event #9), EcoCC increases the
CCTI, and so the IRD, for the flow with destination #3 in
order to adjust its injection rate (see Section 3.2). Thus,
the arbitration decision (Event #10) is made for those
flows with small IRD. Note that the post-processing
mechanism also happens in the HCA (Event #11).

Summing up, EcoCC ensures immediate reaction to
congestion by locally assigning HPQs to hot flows (HFDI
part), while the injection throttling (ITh) part removes
the congestion trees to prevent EcoCC from running out
of HPQs. Note that the ITh part of EcoCC and the as-
signment of HPQs at each switch are totally independent
of each other, even if they share the congestion-detection
mechanism. Thus, in the rare case that EcoCC runs out
of HPQs, the ITh part still removes the congestion trees.

3.4 Advantages of EcoCC over CCFIT

Although throughout the previous sections we have
indicated the differences between EcoCC and CCFIT,
in the following points these novelties are summarized,
pointing out their advantages:

• In order to be suitable for current commercial switch
designs, EcoCC is based on a switch architecture
with V OQ support, thus low-order HoL-blocking is
completely eliminated without need for allocation
of HPQs at the congestion root switch, in contrast
with CCFIT that requires this allocation. This leaves
more HPQs available to EcoCC for dealing with
high-order HoL-blocking. Note also that, if CCFIT
is used, some temporary low-order HoL-blocking
may occur since congestion appearance until “local”
HPQ allocation upon congestion detection, while
this is not possible for EcoCC.

• The V OQ support also guarantees that the
congestion-detection criterion (i.e. the identification
of the location of a congestion root) is absolutely
exact for EcoCC, as the root is for sure the output
port associated with a filled-up V OQ (i.e. CPQ).
By contrast, CCFIT introduces some degree of in-
accuracy since the congestion root is detected as the
output port requested by the packet at the head of a
filled-up queue where packets requesting different
output ports may be stored.

• The number of thresholds required by the whole
technique is lower in EcoCC (2 against 5 in CCFIT),
thereby reducing implementation complexity.

4 PERFORMANCE EVALUATION

In this section we evaluate EcoCC in comparison to other
congestion control (CC) techniques. First, we describe
the simulation model. Next, we show and discuss the
results obtained from the simulation experiments.

4.1 Simulation model

We base the EcoCC evaluation in a set of experiments
carried out by means of a custom-made, event-driven
simulation tool written in the C++ language. Specifically,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 7

Fig. 6. EcoCC Operation Example.
the simulation tool models, with cycle-level accuracy (i.e.
each event takes X cycles to finish, X being an integer),
several types of interconnection networks by defining
their topology, the routing algorithm, the switching and
flow-control policies, the switch architecture, and the
characteristics of the endnodes and links.

On the other hand, the simulation tool also models
some details of the InfiniBandTMspecification and other
well-known features included in commercial solutions
such as the usage of several read ports at input buffers
and the demultiplexed crossbars. Indeed, the simula-
tion tool has been validated against real, small-size
InfiniBand-based systems like those evaluated in [20].

Table 1 shows the network configurations that we
assume for our experiments. Specifically, we have mod-
eled several fat-tree patterns based on the k-ary n-tree
scheme. Fat-trees are a very popular network topology
for HPC systems. Note that, although EcoCC is valid for
other topologies, fat tree are among the most common
ones in HPC systems. For all the network configurations,
we assume serial full-duplex pipelined links with 5
GByte/s (40 Gbps) of bandwidth and 6 nanoseconds of
link propagation delay. We have assumed links with a
length of 1.2 meters and a delay of 5 ns/meter (based
on the InfiniBand specification [18]), both for switch-to-
switch and endnode-to-switch links.

TABLE 1
Evaluated BMIN configurations.

Network Size Topology #Switches #Stages

1 64× 64 4-ary 3-tree 48 3

2 256× 256 4-ary 4-tree 256 4

3 1024× 1024 4-ary 5-tree 1280 5

Regarding the switch architecture, we have modeled
the one described in Section 3.1, including switch in-
put buffers with several read-ports, in particular, as
many as there are output ports in the switch. We as-
sume that switches have 8-bidirectional ports (e.g. the
MellanoxTM’s non-blocking switch IS5022). The routing
algorithm is DESTRO [21]. The basic flow control policy
is credit-based, and it is performed at virtual lane (VL)
level. The packet size is 2048 bytes. The simulator models
several Congestion Control techniques:

• Single VL (1VL). This is the simplest case, with
only 1 Virtual Lane (VL) at each input port, and no
specific CC support. Note that the switch architec-
ture natively prevents the low-order HoL-blocking,
but this scheme cannot prevent the high-order HoL-
blocking, thus it is considered just to show the worst
reaction of the network when congestion arises. The
size of the buffer at input ports is 128 KB of RAM.

• IB-ITh. This is the congestion control mechanism
included in the InfiniBand specification [14], [20]. It
has been modeled in order to show the performance
of a CC technique based only on injection throttling
which is implemented in real hardware. It is also
assumed a 128 KB RAM per input port. Further-
more, we have set the CCTI Timer and Marking Rate
according to the analysis of [20].

• VOQnet. This scheme has been configured with as
many VLs as endnodes are in the network, each one
of them storing packets addressed to the same, sin-
gle destination. Theoretically, this is the most effec-
tive scheme, since it completely prevents the high-
order HoL-blocking, but it requires a prohibitive
memory space per input port, since each VL re-
quires a minimum space. Specifically, if we consider
flow-control restrictions and packet size, VOQnet
requires 8 MB of RAM per input buffer for network
configuration #1, 32 MB for network configuration
#2 and 128 MB for network configuration #35.

• EcoCC. It is modeled as explained in section 3. We
assume 1 VL and 128 KB of RAM per input buffer.
In addition, 2 HPQs are configured per input buffer,
along with a small CAM to control them. As we
have 7 CPQs and 2 HPQs per input buffer, we will
require 9 CAM lines per port, which are configured
with a limited number of destinations in the dList
field (8 destinations for network configuration #1,
16 destinations for network configuration #2 and
32 destinations for network configuration #3). The
High threshold (HTh) is established in 6 packets,
the Low threshold (LTh) is set to 4 packets (see Sec-

5. These values have been calculated assuming 64 packets per VL
and a packet size of 2 KB.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 8

TABLE 2
Synthetic traffic patterns.

Uniform Traffic Hot-Spot Traffic

%Srcs Gen. %Srcs. Gen. Gen. #Roots

Rate Rate Interval

1 87.5% 100% 12.5% 100% 1000−2000 μs 1

2 75% 100% 25% 100% 1000−2000 μs 4

3 62.5% 100% 37.5% 100% 1000−2000 μs 6

tion 7 in the supplementary file for further details
about the tuning of these parameters). Finally, the
CCTI Timer and Marking Rate have been set to the
same values as the IB-ITh technique.

• HDFI (Hot-Flow Dynamic Isolation). It is the HFDI
part of EcoCC, i.e. EcoCC without injection throt-
tling. Actually, it is an adaptation of the FBICM
technique (see Section 6 of the supplementary file)
to the switch architecture described in Section 3.1.

Endnodes are connected to switches by means of Host
Channel Adapters (HCAs), each one modeled with a
NIC memory organized as explained in Section 3.2, i.e.
divided into generation queues. Messages are packetized
before being transferred to HCA injection queues, which
are organized with the same queue scheme as that
established by the different techniques for the switch
ports. Note that, for EcoCC and HFDI, each HCA has
only 1 injection CPQ (see Figure 5) regardless of the
number of CPQs at switch input ports, while the number
of HCA HPQs is the same as in switch ports (2 HPQs).

Regarding traffic patterns, we use both synthetic traffic
modeling ideal traffic scenarios and real-traffic traces
from benchmarks used to measure the performance of
HPC systems. Synthetic traffic patterns (see Table 2)
allow us to evaluate the impact of sudden congestion
trees on the network performance. Specifically, for each
traffic case, a percentage of sources constantly generate
traffic with a uniform (random) distribution of desti-
nations, while the remaining sources generate traffic
addressed to 1, 4 or 6 hot-spot destinations only during
a time interval [1ms,2ms]. Note that, in traffic case #1 a
single congestion tree is generated, while in #2 and #3, 4
and 6 congestion trees are generated, respectively. These
traffic patterns are used for testing how EcoCC copes
with heavy congestion situations where there are more
congestion trees than the number of HPQs per port.

In addition, we have used real-traffic traces obtained
from several tests of the HPC Challenge benchmark [22],
by means of the Extrae tool v2.2.0 [23]. The collective
operations have been modeled as regular MPI point-to-
point communication messages. The specific HPCC tests
that we have run independently for extracting real-traffic
traces are indicated in Section 4.3.

Finally, although the simulation tool offers many, dif-
ferent metrics for analyzing the behavior of modeled
networks architectures, we base our evaluation on the
network throughput (normalized), the normalized exe-
cution time of traffic traces and, for EcoCC and HFDI
the number of switch ports that run out of HPQs (see
Section 9.1 in supplementary file).

4.2 Hot-Spot Traffic Results
Figure 7 shows normalized network throughput as a
function of time for all the network configurations of
Table 1 when traffic patterns #1, #2 and #3 of Table 2
are used. Note that we vary the network size and the
number of congestion trees generated in the network.

In the Figures 7a, 7d and 7g, (i.e. when only one hot-
spot suddenly appears in the time interval [1ms,2ms]),

the EcoCC and HFDI performance are close to that of
VOQnet, which achieves the maximum performance, but
requires as many VLs per input port as destinations in
the network. EcoCC and HFDI achieve similar, good
performance with only 2 HPQs because they are enough
to isolate hot packets belonging to the single congestion
tree, thereby preventing the high-order HoL-blocking.
Note that this behavior is independent of the network
size. The IB-ITh scheme is not able to cope with the
congestion situation, because the V OQs associated with
the congestion root (at different input ports of the root
switch) quickly grow in size as they receive many hot
packets. Then, those V OQs initially hog the buffer space
of their respective input ports and, due to the back-
pressure of the flow-control mechanism, congestion is
propagated to the switches forwarding packets which
contribute to congestion. Note that although the low-
order HoL-blocking is prevented in all the modeled tech-
niques due to the use of V OQs, it may happen that a full
V OQ hogs the buffer space, thereby struggling the space
of other V OQs. Besides, the congestion propagation is
faster than the injection throttling reaction, thereby the
IB-ITh technique being affected by the high-order HoL-
blocking, especially when the network size increases.
On the other hand, the Single Queue (1VL) scheme, as
expected, performs the worst as it is affected strongly by
the high-order HoL-blocking.

Figures 7b, 7e and 7h show network throughput as
a function of time when the traffic pattern #2 is used
(i.e. 4 congestion trees are generated during the time
interval [1ms,2ms]) for network configurations of Table
1. In general, HFDI suffers a significant performance
degradation as it has not enough HPQs to isolate all the
different congestion trees that may appear in a switch
port (HFDI has only 2 HPQs per port). On the other
hand, EcoCC significantly outperforms HFDI, as the
injection-throttling part of EcoCC eliminates congestion
trees before the hot-flow-isolation part of EcoCC runs out
of HPQs. Thus, the resources used for isolating hot flows
(HPQs and CAMs) are released and made available to
handle new congestion situations before these situations
arise. For its part, IB-ITh shows no sign of removing the
congestion tree in these figures. This is because sources
are waiting for a BECN notification to start the throttling,
HoL-blocking appearing throughout the network in the
meanwhile as four congestion trees are present and
no immediate countermesures are taken. This does not
happen for EcoCC thanks to its HFDI part, which is able
to assist and improve the throttling, dealing with HoL-
blocking as soon as it appears. The 1VL scheme again
achieves the worst results in all the cases.

Figures 7c, 7f and 7i show the network throughput
versus time when the traffic pattern #3 is used (i.e. 6
congestion trees are generated in the network) for the
network configurations in Table 1. Again, EcoCC outper-
forms HFDI, while IB-ITh is not able to cope with the
high-order HoL-blocking. Note that, in these networks,
EcoCC achieves performance results moderately close to
those of VOQnet, although the former is configured with
far fewer queues than the latter.

4.3 Real Traffic Results

In this section, we show experiment results when real
traffic traces are injected in network configuration #2 of
Table 1. We use the traces obtained from the following
tests included in the HPC Challenge (HPCC) Benchmark:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(a) Network Config.#1. Traffic #1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(b) Network Config.#1. Traffic #2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(c) Network Config.#1. Traffic #3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(d) Network Config.#2. Traffic #1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(e) Network Config.#2. Traffic #2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(f) Network Config.#2. Traffic #3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(g) Network Config.#3. Traffic #1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(h) Network Config.#3. Traffic #2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (nanoseconds)

Hot-Spot Generation

1VL
EcoCC

HFDI
IB-ITh

VOQnet

(i) Network Config.#3. Traffic #3.

Fig. 7. Normalized Network Throughput versus Time.

• mpifft. Calculates a Discrete Fourier Transform
(DFT) of a very large one-dimensional complex
data vector. This test requires the tasks exchanging
MPI messages, but it does not create significant
congestion. However, it has been used to test the
consistency of the modeled techniques when MPI
collective-operations are used by the applications.

• beff-NatRing. Effective bandwidth benchmark
(beff) is a set of MPI tests that measure the latency
and bandwidth of a number of simultaneous
communication patterns. In particular, we have
used the Natural Ring pattern, based on messages
exchange by following a ring communication
pattern among the MPI tasks. This traffic pattern
introduces a moderate load into the network.

• ptrans. Implements parallel matrix transpose that
exercises a large-volume communication pattern
whereby pairs of processes communicate with each
other simultaneously. This traffic pattern creates a
high traffic load in the network.

Besides, as other applications may contend with the
HPCC tests for the network resources of the HPC system,
we also combine the execution of HPCC traces with
synthetic traffic modeling “heavy” congestion situations.
Next, we summarize the modeled real-traffic scenarios:

• Real-traffic scenario #1 (SC1). Only HPCC tests are
present in the network, without contending with
other applications for the network resources.

• Real-traffic scenario #2 (SC2). Each HPCC test is
combined with synthetic traffic generating a single
hot-spot. Specifically, 32 endnodes generate traf-
fic addressed to destination #123 (i.e. a 12.5% of
endnodes generate hot-spot traffic, like traffic pat-
tern #1 in Table 2). The generation of the hot-spot
traffic occurs during all the execution time of the
HPCC application. In order to prevent the endnodes
from generating traffic both from real-traces and
synthetic traffic (i.e. to show the impact of both
types of traffic interacting only in the network), we
map synthetic traffic to odd nodes and the HPCC
test to even nodes. This traffic scenario models a
strong, permanent congestion situation appearing in
the network while the HPCC tests are run (e.g. due
to I/O traffic sharing the same network space).

• Real-traffic scenario #3 (SC3). HPCC traces are
combined with synthetic traffic generating a hot-
spot, similar to the traffic pattern #2 in Table 2. (i.e.
25% of the endnodes generate traffic addressed to
4 different hot-spots). This scenario is used to show
situations where HFDI may run out of resources,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 10

0.8

0.85

0.9

0.95

1

1.05

1.1

mpifft beff-NatRing ptrans

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

1VL
IB-ITh
HFDI

EcoCC
VOQnet

(a) SC1: Traffic traces alone.

0.8

0.85

0.9

0.95

1

1.05

1.1

mpifft beff-NatRing ptrans

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

1VL
IB-ITh
HFDI

EcoCC
VOQnet

(b) SC2: Traffic traces + 1 hot-spot.

0.8

0.85

0.9

0.95

1

1.05

1.1

mpifft beff-NatRing ptrans

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

1VL
IB-ITh
HFDI

EcoCC
VOQnet

(c) SC3: Traffic traces + 4 hot-spots.

Fig. 8. Simulation results with real-traffic traces from the HPCC Benchmark in network configuration #2 (See Table 1)

since it is configured with only 2 HPQs.
Figure 8 shows the execution time for the traffic sce-

narios described above, normalized with respect to the
1VL results. As the mpifft test does not create a high
traffic load, then it does not show significant differences
among the modeled techniques, so that its execution
time is barely affected by other applications sharing
the network. On the other hand, in SC1 (see Figure
8a), the beff-NatRing and ptrans tests show that VOQnet
achieves the best results (8% and 6% of improvement
with respect to 1VL for the beff-NatRing and ptrans tests,
respectively), near to the ones achieved by EcoCC and
HFDI (around 7% and 4% with respect to 1VL for beff-
NatRing and ptrans tests, respectively). Note that EcoCC
and HFDI achieve similar results, their available HPQs
being enough to deal with the temporary congestion
trees appearing in the network. Similar conclusions as
for synthetic traffic patterns can be extracted for 1VL
and IB-ITh (see Section 4.2). In SC2 (see Figure 8b),
the differences increase between 1VL and VOQnet, with
respect to SC1 (around 10% and 13%, for the beff-NatRing
and ptrans tests, respectively), as the hot-spot traffic
delays the execution of the HPCC tests. Besides, the
results of EcoCC and HFDI, using only 2 HPQs, are
close to those of VOQnet, and they improve those of 1VL
around 10% and 11% for the beff-NatRing and ptrans tests,
respectively. Note that in SC1 and SC2, HFDI results are
slightly worse than those of EcoCC: the major difference
is about 4% in the ptrans test of SC2 (see Figure 8b).
However, in SC3 (see Figure 8c) HFDI runs out of HPQs
in many ports to deal with the 4 congestion trees gener-
ated in this scenario, while the injection-throttling part of
EcoCC prevents the hot-flow-isolation part running out
of resources. Indeed, the improvement of EcoCC with
respect to HFDI is almost a 12% in this scenario.

4.4 EcoCC-CCFIT performance comparison
CCFIT [12] has not been considered in the evaluation
experiments whose results are shown in the previous
subsections. The reason is that CCFIT has been designed
for a switch architecture without V OQ support, in con-
trast with the architecture assumed by EcoCC, thus a
“direct” performance comparison between both tech-
niques would be neither accurate nor fair. However, as
other CC techniques like 1VL, IB-ITh, HFDI and VOQnet
are valid for both architectures, it is possible to get an
“indirect” performance comparison between EcoCC and
CCFIT based on their respective gains when separately
compared with the aforementioned techniques in the
appropriate switch architectures.

Table 3 shows that performance gain of both CCFIT
and EcoCC over the CC techniques described in Section
4.1 when traffic pattern #2 from Table 2 is used as

traffic load for BMIN configurations #1 and #2 from
Table 1. In general, the performance gain of EcoCC over
other CC techniques is better if compared to the CC-
FIT performance gain. Notice in particular that EcoCC
performance is much closer to VOQnet than the CCFIT
one. Notice also that the CCFIT gain is better than the
EcoCC gain only over 1VL in BMIN configuration #1
(specifically, 67% against 58%). The reason is that the
switches with multiple read-ports have a native low-
order HoL-blocking prevention which improves even the
1VL performance.

TABLE 3
Average Gain of EcoCC and CCFIT over other

techniques (Synthetic Traffic Pattern #2).

EcoCC CCFIT

Technique Net. conf.#1 Net. conf.#2 Net. conf.#1 Net. conf.#2

1VL 58% 83% 67% 60%

IB-ITh 55% 75% 46% 51%

HFDI 29% 43% 10% 20%

VOQnet � 0% � 0% −8% −33%

5 CONCLUSIONS

Interconnection networks are essential elements for HPC
systems. Network designers are focused on fulfilling
requirements such as low power consumption, cost-
effectiveness and scalability in order to cope with the
objective of the decade: exascale computing, while par-
allel applications programmers face the challenge of
managing and processing big amounts of data (big-data)
in a parallel way. In this context, new network designs
are prone to suffer from congestion and their negative
effects (e.g. the Head-of-Line blocking), since they reach
the saturation point with lower traffic loads. Thus, new
and powerful congestion control (CC) mechanisms, able
to deal with congestion problems, are required. In this
paper, we have analyzed the weaknesses of two of the
most successful CC approaches, and we have proposed
a new technique for CC that combines both approaches
to minimize their respective shortcomings, so that the
problems derived from congestion are more efficiently
eliminated. Our new hybrid technique, called Efficient
and cost-efficient Congestion Control (EcoCC), has been
designed for switch architectures that, like those of cur-
rent commercial switches, have Virtual-Output-Queuing
(V OQ) support, in contrast with our precedent hybrid
CC technique CCFIT. This improvement allows EcoCC
to more accurately locate congestion roots and to more
efficiently use resources to isolate and throttle hot flows.
Experiments results show that, under certain traffic con-
ditions, EcoCC outperforms by up 55% some of the
existing most popular CC techniques.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, APRIL 2013 11

REFERENCES

[1] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven,
“Dynamic Evolution of Congestion Trees: Analysis and Impact
on Switch Architecture,” Proc. 1st HiPEAC Conf., pp. 266–285,
November 2005.

[2] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output
queuing on a space-division packet switch,” IEEE Transactions on
Communications., vol. COM-35, pp. 1347–1356, 1987.

[3] M. Jurczyk and T. Schwederski, “Phenomenon of Higher Order
Head-of-Line Blocking in Multistage Interconnection Networks
under Nonuniform Traffic Patterns,” IEICE Transactions on Infor-
mation and Systems, vol. E79-D, no. 8, pp. 1124–1129, Aug. 1996.

[4] K. Yoshigoe, “Threshold-based Exhaustive Round-Robin for the
CICQ Switch with Virtual Crosspoint Queues,” in Proceedings of
IEEE International Conference on Communications, ICC 2007, Glas-
gow, Scotland, 24-28 June 2007, 2007, pp. 6325–6329.

[5] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney,
T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato, “Solving
Hot Spot Contention Using InfiniBand Architecture Congestion
Control,” in In Proceedings of Int. Workshop High-Performance Inter-
connects for Distributed Computing, 2005.

[6] W. Dally, “Virtual-Channel Flow Control,” IEEE Trans. on Parallel
and Distributed Systems, vol. 3, pp. 194–205, 1992.

[7] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garcı́a, and T. Na-
chiondo, “A New Scalable and Cost-Effective Congestion Man-
agement Strategy for Lossless Multistage Interconnection Net-
works,” in Proceedings of the 11th Symposium on High Performance
Computer Architecture (HPCA), 2005.

[8] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven,
“Efficient, Scalable Congestion Management for Interconnection
Networks,” IEEE Micro, vol. 26, no. 5, pp. 52–66, September 2006.

[9] G. Mora, P. J. Garcı́a, J. Flich, and J. Duato, “RECN-IQ: A
Cost-Effective Input-Queued Switch Architecture with Conges-
tion Management,” in Proc. ICPP, 2007.

[10] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich, and
J. Duato, “FBICM: efficient congestion management for high-
performance networks using distributed deterministic routing,”
in LNCS Series. Proceedings of the 15th international conference on
High performance computing, ser. HiPC’08, 2008, pp. 503–517.

[11] J. Escudero-Sahuquillo, P. J. Garcia, F. J. Quiles, J. Flich, and J. Du-
ato, “An Effective and Feasible Congestion Management Tech-
nique for High-Performance MINs with Tag-Based Distributed
Routing,” IEEE Transactions on Parallel and Distributed Systems, no.
DOI:10.1109/TPDS.2012.303, 2012.

[12] J. Escudero-Sahuquillo, E. Gran, P. J. Garcı́a, J. Flich, T. Skeie,
O. Lysne, F. J. Quiles, and J. Duato, “Combining Congested-
Flow Isolation and Injection Throttling in HPC Interconnection
Networks,” in Proc. Int. Conf. Parallel Processing, 2011.

[13] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed
Switch Scheduling for Local-Area Networks,” ACM Transactions
on Computer Systems, vol. 11, no. 4, pp. 319–352, November 1993.

[14] E. Gran, E. Zahavi, S.-A. Reinemo, T. Skeie, G. Shainer, and
O. Lysne, “On the Relation between Congestion Control, Switch
Arbitration and Fairness,” Cluster Computing and the Grid, IEEE
International Symposium on, vol. 0, pp. 342–351, 2011.

[15] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[16] E. G. Gran, S.-A. Reinemo, O. Lysne, T. Skeie, E. Zahavi, and
G. Shainer, “Exploring the Scope of the InfiniBand Congestion
Control Mechanism,” in 2012 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), B. Werner, Ed. IEEE
Computer Society, 2012.

[17] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188–201,
1999.

[18] InfiniBand architecture specification volume 1. Release 1.2.1, Infini-
Band Trade Association, Nov. 2007.

[19] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich, and J. Du-
ato, “Cost-Effective Congestion Management for Interconnection
Networks Using Distributed Deterministic Routing,” in Proceed-
ings of the 16th International Conference on Parallel and Distributed
Systems (ICPADS 2010), Shanghai, China, december 2010.

[20] E. Gran, M. Eimot, S. Reinemo, T. Skeie, O. Lysne, L. Huse, and
G. Shainer, “First experiences with congestion control in Infini-
Band hardware,” in In Proceedings of Int. Parallel and Distributed
Processing Symposium, 2010, pp. 1–12.

[21] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato, “De-
terministic versus Adaptive Routing in Fat-Trees,” in Workshop
on Communication Architecture on Clusters, as a part of IPDPS’07,
March 2007, p. 235.

[22] The HPCC Benchmark, Web Page at: http://icl.cs.utk.edu/hpcc.
[23] H. S. Gelabert and G. L. Sánchez, Extrae User Guide Manual for

version 2.2.0, Barcelona Supercomputing Center (BSC), November
2011.

1

SUPPLEMENTAL DOCUMENT
Jesus Escudero-Sahuquillo, Member, IEEE, Ernst Gunnar Gran, Student Member, IEEE,

Pedro J. Garcia, José Flich, Member, IEEE, Tor Skeie, Member, IEEE, Olav Lysne, Member, IEEE,

Francisco J. Quiles, Member, IEEE, and José Duato

In this document, we provide the supplemental material for the submission: “Efficient and Cost-

Effective Hybrid Congestion Control for HPC Interconnection Networks”, consisting of an overview

of existing congestion-management approaches in high-performance interconnection networks,

some details about the EcoCC parameters tunning and memory requirements, as well as

additional evaluation results not included in the main document due to space constraints.

�

6 CONGESTION CONTROL IN HIGH-PERFORMANCE INTERCONNECTS

As we mention in the main paper, some “classical” congestion control (CC) approaches like blocked-packet dis-
carding or network overdimensioning are not suitable for current HPC systems. Packet discarding in congestion
situations is allowed in computer communication networks (“lossy” networks, e.g. Internet). By contrast, in HPC
systems, low latency is crucial, thus packet dropping and retransmission are not allowed under regular circum-
stances, so “lossless”, high-speed networks are used (e.g. Infiniband [1]). Similarly, in the old days, CC in HPC
systems was performed using a combination of i) tuning and tailoring of network characteristics like topology and
routing, depending on the traffic pattern of a given application, and ii) overprovisioning of network resources.
By introducing virtualization to improve utilization, knowledge about the traffic pattern imposed is limited, thus
option i) has become obsolete. Furthermore, overprovisioning the network contradicts the current trend of making
the HPC installation cost-effective and green. This renders option ii) invalid.

Similarly, proactive CC techniques [2], [3], [4], [5] are not nowadays considered to be appropriate CC solutions
for HPC systems. These strategies assign network resources to each data transmission before it starts, according to
some planning, so that congestion situations never happen (or, at least, they are unlikely to happen). In general, this
approach requires a traffic scheduler (either centralized or distributed) usually based on a-priori knowledge of (total
or partial) network status and/or resource requirements for each transmission. In HPC scenarios, this information
may be difficult to provide and, in addition, the resource assignment procedure adds significant overhead. Actually,
this approach is more suited to Quality of Service (QoS) provision.

Other strategies that may help to alleviate congestion or delay its appearance are the use of fully adaptive routing
[6], [7], [8] or load balancing techniques [9], [10]. In order to be effective against congestion, these strategies should
make routing decisions based on network status, as the technique proposed for Networks-on-Chip in [11] does.
However, these techniques cannot avoid network performance degradation once congestion appears. In particular,
note that adaptive routing or load balancing techniques will not help when there is no alternative route avoiding
the root of the congestion tree. This is the case when the root of the tree is located at the last switch on the path
towards a hot-spot destination node, or in general when a destination node is overwhelmed with traffic. In such
a scenario, adaptive routing might actually broaden the congestion tree, and make the HoL blocking more severe.
As the routing mechanism is trying to distribute the traffic headed for the hot-spot destination in the network,
the effect of the routing on the congestion is unfortunately that the branches of the congestion tree are growing
wider and/or that the root of the congestion tree is moved closer to the destination node. In addition, adaptive
routing can cause out-of-order packet delivery, which is unacceptable to typical HPC applications. For their part,
efficient switch scheduling algorithms (e.g. iSLIP [12]) can only delay the appearance of low-order HoL-blocking,

• J. Escudero-Sahuquillo, Pedro J. Garcia and Francisco J. Quiles are with the Computer Systems Department, Escuela Superior de Ingenierı́a Informática,
Universidad de Castilla-La Mancha, Campus Universitario, s/n 02071, Albacete, Spain.
E-mail: {jesus.escudero, pedrojavier.garcia, francisco.quiles}@uclm.es

• Ernst G. Gran, Tor Skeie and Olav Lysne are with the Simula Research Laboratory, Martin Linges vei 17, Fornebu, Norway.
E-mail: {ernstgr, tskeie, olav.lysne}@simula.no. Tor Skeie is also affiliated with the University of Oslo. E-mail:{tskeie}@ifi.uio.no

• J. Flich and J. Duato are with the Department of Computer Engineering (DISCA), Technical University of Valencia, Camino de Vera, s/n 46071, Valencia,
Spain.
E-mail: {jflich, jduato}@disca.upv.es

2

and cannot prevent high-order HoL-blocking (examples of low- and high-order HoL-blocking can be found in the
main paper); indeed they are not actually CC mechanisms.

In most modern HPC systems, CC is based either on injection throttling or on separating hot flows from cold
ones in order to prevent the problems derived from congestion, mainly HoL-blocking. In the following sections we
analyze in-depth these two basic approaches and the main proposals based on them.

6.1 Injection-Throttling Strategies

As explained in the main document, the carrying idea of injection throttling is that the source nodes that contribute
traffic to a congested link should inject less traffic into the network. This requires a flow of information from the
switch adjacent to the congested link, i.e. the switch at the root of the congestion tree, and back to the source nodes.
There are countless variants of this procedure. For instance, congestion notifications could be sent to all the sources
[13] or just to the sources contributing to congestion [14]. Other proposed mechanisms notify congestion just to
the local endpoints attached to the switch where congestion is detected [15]. Furthermore, the switches can mark
the packets contributing to congestion in order to notify the destinations about the situation, which subsequently
notify the sources (the forward explicit notification approach), or the switches can themselves generate notification
packets that are sent directly to the source nodes (the backward explicit notification approach). InfiniBand applies
the former approach [16], [17], while the Data Center Bridging standard [18] is implementing the latter. There is
also a body of work that propose different strategies for congestion notification and marking, e.g. a hot packet can
be marked both in the input and output switch buffer, as well as being tagged with information about the severity
of congestion [19]. Moreover, there are some different approaches for designing sources response function, i.e. the
actions taken to reduce the injection rate, later followed by an increase in the rate when congestion is resolved [20],
[21], [22].

The injection throttling part of our hybrid proposals are inspired by the CC mechanism specified for InfiniBand.
The InfiniBand CC defines two bits in the packet header for congestion notification. Specifically, if a packet is
considered to contribute to congestion at a switch port, the Forward Explicit Congestion Notification (FECN) bit in
the packet header is set. The FECN bit is then carried through the network to the destination node by the packet.
Upon reception of a “FECN-marked” packet, a destination will return back to the source a packet whose header
will have the Backward Explicit Congestion Notification (BECN) bit set. Sources receiving BECN packets will reduce
the injection rate of the corresponding hot flow, thus alleviating congestion.

The performance of InfiniBand CC depends on several configurable parameters [23]. A congestion detection
threshold parameter mapped to a buffer fill ratio at a switch port1 determines when the port is considered to be
congested. If the buffer fill ratio is above the threshold the corresponding switch port is moved into Congestion State,
so that packets crossing that port may thereafter be FECN-marked. In order not to generate too many BECNs,
not all the packets crossing a port in Congestion State are FECN-marked: Only those whose size is greater than
the value of the Packet Size parameter, and among them again, only a fraction corresponding to the Marking Rate
parameter, are finally marked.

Similarly, the exact reaction of a source node upon the reception of a BECN also depends on a set of CC parameters.
Specifically, the injection rate of a hot flow is reduced by introducing an injection rate delay (IRD) between consecutive
packets of that particular flow. Source nodes store a list of possible IRD values in a Congestion Control Table (CCT),
each hot flow holding an index (CCTI) into this table. CCT values are typically arranged so that the higher the
index, the greater the IRD. Upon reception of a BECN the index of a flow is increased by a value stated by
the CCTI Increase parameter. The CCTI is decremented again by one when a timer (whose value is stated by the
CCTI Timer parameter) expires. Hence, hot flows are throttled while congestion exists, and released when congestion
vanishes. More details about the InfiniBand CC can be found in [23], [24], [25].

As discussed in Section 2 of the main document, the InfiniBand CC mechanism, like injection throttling techniques
in general, bear a weakness: the delay between the congestion detection at a switch and the reaction at the sources
results in a CC mechanism operating behind schedule [26], where oscillating sources are adjusting their injection
rates based on “old” information [23], [25].

6.2 Hot-Flow Isolation Strategies

Most proposals to prevent HoL-blocking by flow isolation are based on allocating several queues at each switch
port to separately store packets, thus lowering HoL-blocking probability. For instance, a well known HoL-blocking
prevention technique is Virtual Output Queues (VOQs), either at the switch level (VOQsw) [27] or at the network
level (VOQnet) [28]. VOQsw uses at each port as many queues as there are output ports in the switch. The incoming
packets are then managed in such a way that each packet immediately is mapped to a queue corresponding to

1. For the sake of simplicity, the concept of Virtual Lanes (VL) has been left out of this explanation of the InfiniBand CC.

3

its next output port. Thus VOQsw totally prevents low-order HoL-blocking, but not high-order one. On the other
hand, VOQnet prevents packets addressed to different destinations from sharing queues at any port, thereby totally
preventing low- and high-order HoL-blocking. This scheme, however, requires at each port as many queues as
destinations in the network, thus it does not scale with network size as each queue requires to reserve its own
memory space. The Dynamically Allocated Multi-Queues (DAMQs) [29] use the same queue scheme as VOQsw
(thus not preventing high-order HoL-blocking), but in this case queue size may dynamically vary as required.
Similar strategies are Destination-Based Buffer Management (DBBM) [30], Dynamic Switch Buffer Management
(DSBM) [31] and Output-Based Queue Assignment (OBQA) [32], [33], [34]; although these solutions have been
specially proposed to deal with the HoL-blocking caused by congestion, their mapping policies actually may lead
to hot packets sharing queues with cold ones, and thereby only partially preventing HoL-blocking.

Virtual Channels [35], VCs (or Virtual Lanes, VLs) may also reduce HoL-blocking, but their behavior depends
mainly on the specific policy used to map packet flows to VCs. Actually, all the aforementioned HoL-blocking
prevention techniques (or equivalent versions) could be implemented through VCs, provided that enough VCs are
available. An alternative proposal [36] shuffles different flows sharing a link among the available VLs, but (again)
this proposal can guarantee a complete HoL-blocking prevention only if the number of VLs equals the maximum
number of different flows in a link.

Note that all the aforementioned HoL-blocking prevention techniques do not explicitly identify hot flows, but
they rely on “obliviously” separating packets from different flows as much as possible with the available queues
at each port. Thus, their effectiveness greatly depend on the number of queues per port. By contrast, the Hot-
Flow Dynamic Isolation (HFDI) techniques explicitly detect congestion roots to keep track of hot flows, in order
to isolate them in special, dynamically-assigned queues. Then, the cold flows may share queues without suffering
significant HoL-blocking. Hence, the number of queues required to efficiently eliminate HoL-blocking is reduced.
The main HFDI techniques are Regional Explicit Congestion Notification (RECN) [37], [38], Regional Explicit Congestion
Notification-Input Queued (RECN-IQ) [39] and Flow-Based Implicit Congestion Notification (FBICM) [40]. The “HFDI-
part” of our hybrid proposals are inspired by the latter technique, as it has been proposed for interconnects using
distributed routing, like InfiniBand.

HFDI techniques detect congestion roots by locally monitoring queue occupancy at each switch port, and com-
paring it with a Detection Threshold. Once a congestion root has been located in a port, a special queue is allocated
to store hot packets contributing to that root. Such a technique then requires a set of special queues at each port to
store hot packets, one queue per identified root of congestion. These special queues are called Set-Aside-Queues,
SAQs, in RECN and RECN-IQ, and Congested-Flow-Queues, CFQs, in FBICM. In addition, a control memory is
required to manage these queues, mainly to store the location of the congestion root each special queue is assigned
to. This control memory is implemented by means of a Content-Addressable Memory (CAM) present at each port.
In the case of RECN and RECN-IQ, designed for source-based routing networks, each CAM line stores (among other
information) the explicit path towards the root of the congestion tree assigned to a specific SAQ, while in the case
of FBICM, designed for deterministic distributed routing, each CAM line stores a set of destinations. Hot packets
are identified by comparing the routing information of each packet arriving to a port with the information stored
in the active CAM lines at that port. If the occupancy of any SAQ/CFQ in a port reaches a specific threshold, the
congestion information stored in its corresponding CAM line is propagated (by control packets) to the neighboring
upstream switches, which in turn will allocate a new SAQ/CFQ for this specific congestion tree. In this way, special
queues are allocated all along the way of hot flows to separate them from cold ones, thereby completely preventing
HoL-blocking. SAQs/CFQs are dynamically deallocated when the corresponding congestion tree vanishes, and later
reallocated if a new congestion tree appears.

As discussed in Section 2 of the main document, although HFDI solutions are very effective, they bear the
important flaw of the limited number of special queues per port, which may not be enough to handle all the
possible congestion trees simultaneously being present at a port.

7 ECOCC PARAMETER TUNNING PRINCIPLES

As it has been mentioned throughout the main document of this paper, EcoCC requires several parameters to be
configured in the switches and HCAs. These parameters are High (HTh) and Low (LTh) Thresholds, CCTI Timer,
Marking Rate and Packet Size. Further details about the tunning of CCTI Timer, Marking Rate and Packet Size param-
eters are given in [23]. For their part, HTh and LTh thresholds must be configured bearing in mind the following
principles:

• At a given input port, when the occupancy level of a specific V OQ exceeds the HTh threshold, EcoCC moves
that output port (i.e. the root of the congestion) into the congestion state. In this moment, a percentage of the
packets crossing through that congestion root will be marked, according to the Marking Rate parameter. The

4

value of the HTh threshold has to be high enough to not propagate too early a congestion situation which
could disappear quite soon. Furthermore, it has to bee low enough to not detect the congestion too late.

• The HTh and LTh thresholds, as it is described in [24], should have a distance of at least two packet MTUs,
in order to implement a fair arbitration of the traffic flows belonging to the different HPQs.

• As mentioned above, when the occupancy level of one HPQ exceeds the HTh threshold, EcoCC sends con-
gestion notifications to upstream switches in order to implement the HPQ flow-control policy. The HTh value
for the HPQs should be low enough for both avoiding the buffer hogging, and assuring a minimum storage
space for the hot packets that may be flying over the link.

These principles have been taken into account to configure the values of the parameters used in our experiments,
that are indicated in Section 4.1 of the main document. Besides, the correctness of these principles have been
confirmed by simulation experiments, like those shown in the main paper and in this supplementary document.

8 MEMORY REQUIREMENTS

In this Section, we analyze the memory requirements of the congestion control techniques evaluated in the main
document in terms of area, power consumption and access time. In particular, we have first estimated the common
attributes for the data memories that we have assumed at input ports of the switches that we have modeled for
the evaluation shown in Section 4 of the main document. The values of these attributes have been calculated by
means of the CACTI tool v5.3 [41] using its pure SRAM modeling feature.

TABLE 3

CACTI parameters for input-port
data memories

Description Value

Type of memory SRAM

Number of banks 1

Total Size (KB) 128

Read Ports per bank 8

Write Ports per bank 1

Technology Size (nm) 32

Readout value (bytes) 5

Vdd 0.9

TABLE 4

Estimated results for SRAM attributes

Attributes for EcoCC / HFDI / IB-ITh / 1VL Value

Access time (ns) 1.19375615509

Random cycle time (ns) 0.201132407786

Total read dynamic energy per read port (nJ) 0.041173774067

Total read dynamic power per read port at max freq (W) 0.204709795504

Total standby leakage power per bank (W) 0.0761409420512

Total area (mm2) 7.07580828776

Table 3 shows the values of the SRAM parameters we have used in CACTI for the estimation of SRAM attributes.
Note that, as indicated in Section 4.1 of the main document, we assume input-port memories of 128 KB with 8 read
ports and one write port for EcoCC, HFDI, IB-ITh and 1VL techniques. Table 4 shows the obtained results. As the
same organization for the input-port data memories is assumed, this values are valid for all the aforementioned
techniques. However, as we have shown in the evaluation section of the main document, there are significant
differences among them in terms of network performance. Note also that we have not included results for VOQnet,
since this technique is unfeasible in large interconnection networks, especially in terms of area.

On the other hand, we have estimated the requirements, in number of cells, for the control memories (CAMs),
used by EcoCC and HFDI (each cell stores a bit of information). We assume that each CAM line (see Figure 4 of
the main document) requires 6 cells for the OP field to refer up to 64 switch ports, 6 cells for the Hops field to
refer a congestion root located to a distances up to 64 hops in the network, and 4 cells for the NextLine field to
refer up to 16 CAM lines in downstream CAM structures. Besides, some SRAM cells per CAM line are required
for the control bits: 1 cell for the stop bit, 1 cell for the SentStop bit, 1 cell for the propagated bit and 32 cells for
the timer bits. Summing up, 16 CAM cells and 35 SRAM cells are required per CAM line to store all the fields
apart from the dList one. In that sense, if N is the number of network endnodes, we need log2(N) CAM cells to
encode a single destination and store it in the dList field of a CAM line, this field consisting of a limited number
of destinations in order to be feasible. Specifically, as it is mentioned in Section 4.1 of the main paper, we assume
that 8 destinations are stored per CAM line in networks with 64 nodes (i.e. 8 × log2(64) = 48 CAM cells for the
dList field), 16 destinations in networks with 256 nodes (i.e. 16 × log2(256) = 128 cells for the dList field) and 32
destinations in networks with 1024 nodes (i.e. 32 × log2(1024) = 320 cells for the dList field). Table 5 summarizes
the number of CAM and SRAM cells required per CAM line for these network sizes.

It is worth pointing out that the number of cells per input port depends on the number of CPQs and HPQs per
input port, as each of these queues requires a CAM line. For instance, in Section 4.1 of the main document, we
define that 9 CAM lines are required per input-port buffer: one for each of the seven CPQs (remember that we
assume 8-port switches, thus 7 VOQs are defined per input-port) and one for the two HPQs configured. Thus, the

5

TABLE 5
CAM and SRAM cells required per CAM line

Network size #CAM cells #SRAM cells

64 nodes 64 35

256 nodes 144 35

1024 nodes 336 35

number of CAM cells per input port for a network of 1024 nodes (the most-requiring case among the evaluated
networks) is given by 9 CAM lines per input port × 336 cells per line = 3024 CAM cells per input port. Similarly,
9 × 35 = 315 SRAM cells per input port are required. It is worth mentioning that current technology allows the
CAMs structures to be implemented within the same area footprint as a standard RAM cell [42], [43]. Thus, the area
requirements of CAM structures per input port, for a network of 1024 endnodes, are equivalent to 3024+315=3339
cells (approximately 418 bytes) of RAM, which is quite affordable.

In conclusion, the requirements of EcoCC regarding both data (SRAM) buffers and CAM structures are reduced
in terms of area, access time and power consumption, thereby being cost-efficient.

9 ADDITIONAL EVALUATION RESULTS

In this Section, we show experiment results additional to those shown in Section 4 of the main document. Specifically,
we analyze how likely is that EcoCC and HFDI run out of HPQs during congestion situations. Besides, we also
add the complete experiment results for the evaluation of the CCFIT technique [26] that are summarized in Section
9.2.

9.1 HPQs demand

Figure 10 depicts, for EcoCC and HFDI, the total number of switch input ports in the network that have no
available HPQs to be allocated for isolating hot flows belonging to new congestion trees, i.e. those switch ports
where there are no free resources for preventing new hot flows from causing HoL-blocking and buffer-hogging.
Note that the simulation model is the one described in Section 4.1 of the main document. Thus, the assumed
network configurations are #1, #2 and #3 of Table 1 of the main document, and the traffic cases are those defined
in Table 2 of the main document.

Specifically, figures 10a, 10d and 10g show the results when only 1 hot-spot (traffic pattern #1 of Table 2 of the main
paper) is generated for the network configurations #1, #2 and #3 of Table 1 (see the main document), respectively.
In this case, the uniform traffic generated by the 87.5% of the source nodes (see Table 2 of the main paper), only
generates temporary congestion situations that disappear very quickly, thereby that percentage of “uniform” flows
only use HPQs during short periods of time. By contrast, hot flows contributing to the single generated hot-spot
(i.e. congestion root) will last for long time, but all of them will require only one HPQ to be isolated at any switch
port. Thus, regardless the life-time of this HPQ, both HFDI and EcoCC have enough resources to cope with this
congestion situation, as they have been configured with 2 HPQs per input port. For that reason, both techniques
achieve similar results.

On the other hand, figures 10b, 10e and 10h depict the results when 4 hot-spots are generated (traffic pattern #2
of Table 2 of the main paper), for the network configurations #1, #2 and #3 of Table 1 (see the main document),
respectively. In that case, the number of congestion trees is higher than the available number of HPQs per switch
input port. Thus, different hot flows contributing to the 4 different congestion trees could converge at the same
switch port; if so, some of these hot flows couldn’t be isolated in HPQs and would be stored in “normal” VOQs,
which are likely to fill up quickly due to the high reception rate of hot packets. If EcoCC is used, this situation
can be solved when the injection rate of the hot flows that have been previously isolated in HPQs is reduced, so
that some HPQ is eventually deallocated, then reallocated to isolate the hot flows mapped previously to VOQs. By
contrast, HFDI is not able to solve these situations as it does not throttle injection, thereby being likely to run out
of HPQs at many ports, as can be seen in the figures. Besides, as explained in the main document, EcoCC does
not require to allocate HPQs to isolate hot flows contributing to a “local” congestion root, while HFDI requires this
allocation, thus the former leverages the use of these resources more efficiently than the latter.

Similarly, figures 10c, 10f and 10i show the results when 6 hot-spots are generated (traffic pattern #3 of Table 2)
for the network configurations #1, #2 and #3 of Table 1 (see the main document), respectively. As the number of
hot-spots increases, so does the number of ports without free HPQs for the HFDI technique, while EcoCC allocate,
release and reallocate HPQs more efficiently, being less likely to run out of resources to deal with congestion.

6

(a) Network Config.#1, 1 hot-spot. (b) Network Config.#1, 4 hot-spots. (c) Network Config.#1, 6 hot-spots.

(d) Network Config.#2, 1 hot-spot. (e) Network Config.#2, 4 hot-spots. (f) Network Config.#2, 6 hot-spots.

(g) Network Config.#3, 1 hot-spot. (h) Network Config.#3, 4 hot-spots. (i) Network Config.#3, 6 hot-spots.

Fig. 10. Total number of switch ports without free HPQs vs. Time.

9.2 CCFIT Experiments Results

In Section 4.4 of the main document, EcoCC and CCFIT are compared based on their respective average performance
gains with respect to other techniques. The complete series of results used to obtain the average gains of EcoCC
are shown in the main document, while the complete series used to obtain the average gains of CCFIT are shown
in this Section, in Figure 11.

Specifically, these results have been obtained for network configurations #1 and #2 of the Table 1 (See the main
paper), when the traffic pattern #2 (see the Table 2 of the main document). We have made experiments for CCFIT
and for the CC techniques which are compared with EcoCC in the main document, but this time assuming switches
with single read-ports for all these experiments. CCFIT and HFDI have been modeled assuming buffers at switch
input ports organized in 1 CPQ and 2 HPQs, plus CAM structures using 2 CAM lines. For their part, 1VL, IB-ITh
and VOQnet have been modeled similarly as for the experiments analyzed in the main document.

Figure 11 shows network throughput as a function of time. In general, HFDI suffers a performance degradation
as it has not enough resources per port to isolate all the flows belonging to different congestion trees that may
be present in a switch port. Like EcoCC, CCFIT achieves a significant throughput improvement with respect to
HFDI. CCFIT also outperforms IB-ITh which suffers from the problems described in the main paper. The 1VL
scheme, which does not implement any HoL-blocking prevention mechanism at all, achieves the worst results in
all the cases, as expected. Overall, CCFIT achieves quite good results, outperforming other CC techniques except
VOQnet, the ideal but unfeasible technique. However, despite these good results of CCFIT, EcoCC achieves a higher

7

performance gain with respect to the other CC techniques anlyzed, as shown in Table 3, in Section 4.4 of the main
document.

�

�

�

�

�

�

�

��

��
�

��

(a) Network Configuration #1.

�

�

�

�

�

�

�

��

	

�

	�

(b) Network Configuration #2.

Fig. 11. Network Efficiency vs. Time. k-ary n-tree BMINs. Traffic pattern #2 (4 Congestion Trees).

REFERENCES

[1] InfiniBand architecture specification volume 1. Release 1.2.1, InfiniBand Trade Association, Nov. 2007.
[2] P. C. Yew, N. F. Tzeng, and D. H. Lawrie, “Distributing Hot-Spot Addressing in Large-Scale Multiprocessors,” IEEE Trans. Comput., vol. 36,

no. 4, pp. 388–395, 1987.
[3] M. Wang, H. J. Siegel, M. A. Nichols, and S. Abraham, “Using a Multipath Network for Reducing the Effects of Hot Spots,” IEEE Trans.

on Parallel and Distributed Systems, vol. 6, no. 3, pp. 252–268, March 1995.
[4] L. Peh and W. Dally, “Flit-Reservation Flow Control,” in In Proceedings of the International Symposium on High-Performance Computer

Architecture, 2000, pp. 73–84.
[5] N. Chrysos, “Congestion management for non-blocking Clos networks,” in In Proceedings of ACM/IEEE Symp. Architecture for Networking

and Communications Systems, 2007, pp. 117–126.
[6] J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 12, pp.

1320–1331, 1993.
[7] W. Dally and H. Aoki, “Deadlock-free Adaptive Routing in Multicomputer Networks Using Virtual Channels,” IEEE Transactions Parallel

and Distributed Systems, vol. 4, no. 4, pp. 466–475, April 1993.
[8] M. Thottetodi, A. Lebeck, and S. Mukherjee, “BLAM: A High-Performance Routing Algorithm for Virtual Cut-Through Networks,” in Proc.

Int. Parallel and Distributed Processing Symp., 2003.
[9] D. Franco, I. Garcés, and E. Luque, “A new method to make communication latency uniform: distributed routing balancing,” in ICS ’99:

Proceedings of the 13th international conference on Supercomputing. New York, NY, USA: ACM, 1999, pp. 210–219.
[10] A. Singh, W. Dally, B. Towles, and A. K. Gupta, “Globally Adaptive Load-Balanced Routing on Tori,” Computer Architecture Letters, vol. 3,

no. 1, pp. 6–9, July 2004.
[11] P. Gratz, B. Grot, and S. W. Keckler, “Regional Congestion Awareness for Load Balance in Networks-on-Chip,” in The 14th International

Symposium on High-Performance Computer Architecture (HPCA), 2008, pp. 203–215.
[12] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188–201, 1999.
[13] M. Thottethodi, A. Lebeck, and S. Mukherjee, “Self-Tuned Congestion Control for Multiprocessor Networks,” in Proc. Int. Symp. High-

Performance Computer Arch., 2001, pp. 107–118.
[14] J. Kim, Z. Liu, and A. Chien, “Compressionless Routing: a framework for adaptive and fault-tolerant routing,” in Computer Architecture,

1994., Proceedings the 21st Annual International Symposium on, apr 1994, pp. 289–300.
[15] E. Baydal and P. López, “A Robust Mechanism for Congestion Control: INC,” in Proc. Int. Euro-Par Conf., 2003, pp. 958–968.
[16] M. Gusat, D. Craddock, W. Denzel, A. Engbersen, N. Ni, G. Pfister, W. Rooney, and J. Duato, “Congestion Control in InfiniBand Networks,”

in In Proceedings of Hot Interconnects, 2005, pp. 158–159.
[17] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney, T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato, “Solving Hot

Spot Contention Using InfiniBand Architecture Congestion Control,” in In Proceedings of Int. Workshop High-Performance Interconnects for
Distributed Computing, 2005.

[18] IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged Local Area Networks - Amendment: 10: Congestion Notification., IEEE
802.1Qau-2010 ed., IEEE 802 LAN/MAN Standards Committee, 2010. [Online]. Available: http://www.ieee802.org/1

[19] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato, “On the Influence of the Packet Marking and Injection Control Schemes in
Congestion Management for MINs,” in Euro-Par, 2008, pp. 930–939.

[20] J. R. Santos, Y. Turner, and G. J. Janakiraman, “End-to-End Congestion Control for InfiniBand,” in INFOCOM, 2003.
[21] ——, “Evaluation of Congestion Detection Mechanisms for InfiniBand Switches,” in IEEE GLOBECOM – High-Speed Networks Symposium,

2002.
[22] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato, “Congestion Management in MINs through Marked and Validated Packets,” in

PDP, 2007, pp. 254–261.
[23] E. Gran, M. Eimot, S. Reinemo, T. Skeie, O. Lysne, L. Huse, and G. Shainer, “First experiences with congestion control in InfiniBand

hardware,” in In Proceedings of Int. Parallel and Distributed Processing Symposium, 2010, pp. 1–12.
[24] E. Gran, E. Zahavi, S.-A. Reinemo, T. Skeie, G. Shainer, and O. Lysne, “On the Relation between Congestion Control, Switch Arbitration

and Fairness,” Cluster Computing and the Grid, IEEE International Symposium on, vol. 0, pp. 342–351, 2011.
[25] E. G. Gran, S.-A. Reinemo, O. Lysne, T. Skeie, E. Zahavi, and G. Shainer, “Exploring the Scope of the InfiniBand Congestion Control

Mechanism,” in 2012 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), B. Werner, Ed. IEEE Computer Society,
2012.

[26] J. Escudero-Sahuquillo, E. Gran, P. J. Garcı́a, J. Flich, T. Skeie, O. Lysne, F. J. Quiles, and J. Duato, “Combining Congested-Flow Isolation
and Injection Throttling in HPC Interconnection Networks,” in Proc. Int. Conf. Parallel Processing, 2011.

8

[27] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed Switch Scheduling for Local-Area Networks,” ACM Transactions on Computer
Systems, vol. 11, no. 4, pp. 319–352, November 1993.

[28] W. Dally, P. Carvey, and L. Dennison, “Architecture of the Avici terabit switch/router,” in Proc. of 6th Hot Interconnects, 1998, pp. 41–50.
[29] Y. Tamir and G. Frazier, “Dynamically-Allocated Multi-Queue Buffers for VLSI Communication Switches,” IEEE Transactions on Computers,

vol. 41, no. 6, June 1992.
[30] T. Nachiondo, J. Flich, and J. Duato, “Buffer Management Strategies to Reduce HoL Blocking,” IEEE Transactions on Parallel and Distributed

Systems, vol. 21, pp. 739–753, 2010.
[31] W. Olesinski, H. Eberle, and N. Gura, “Scalable alternatives to virtual output queueing,” in Proc. IEEE International Conference on

Communications, 2009.
[32] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, and J. Duato, “An Efficient Strategy for Reducing Head-of-Line Blocking in Fat-Trees,” in

LNCS Series. Parallel Processing, 16th International Euro-Par Conference, Ischia, Italy, september 2010, pp. 413–427.
[33] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich, and J. Duato, “OBQA: Smart and cost-efficient queue scheme for Head-of-Line

blocking elimination in fat-trees,” J. Parallel Distrib. Comput., vol. 71, no. 11, pp. 1460–1472, 2011.
[34] ——, “Cost-effective queue schemes for reducing head-of-line blocking in fat-trees,” Concurrency and Computation: Practice and Experience,

vol. 23, no. 17, pp. 2235–2248, 2011.
[35] W. Dally, “Virtual-Channel Flow Control,” IEEE Trans. on Parallel and Distributed Systems, vol. 3, pp. 194–205, 1992.
[36] W. L. Guay, B. Bogdanski, S.-A. Reinemo, O. Lysne, and T. Skeie, “vFtree - A Fat-tree Routing Algorithm using Virtual Lanes to Alleviate

Congestion,” in Proceedings of the 25th IEEE International Parallel & Distributed Processing Symposium, Y. Xin, Ed. IEEE Computer Society
Press, 2011, pp. 197–208.

[37] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garcı́a, and T. Nachiondo, “A New Scalable and Cost-Effective Congestion Management Strategy
for Lossless Multistage Interconnection Networks,” in Proceedings of the 11th Symposium on High Performance Computer Architecture (HPCA),
2005.

[38] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven, “Efficient, Scalable Congestion Management for Interconnection
Networks,” IEEE Micro, vol. 26, no. 5, pp. 52–66, September 2006.

[39] G. Mora, P. J. Garcı́a, J. Flich, and J. Duato, “RECN-IQ: A Cost-Effective Input-Queued Switch Architecture with Congestion Management,”
in Proc. ICPP, 2007.

[40] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich, and J. Duato, “Cost-Effective Congestion Management for Interconnection Networks
Using Distributed Deterministic Routing,” in Proceedings of the 16th International Conference on Parallel and Distributed Systems (ICPADS 2010),
Shanghai, China, december 2010.

[41] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1. Technical Report HPL-2008-20,” Hewlett-Packard Development
Company, Tech. Rep., April 2008.

[42] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, March 2006.

[43] R. J. Bucki, J. S. Atwal, J. S. Barnes, K. Bernstein, and E. Robinson, “Compact Multi-port CAM Cell Implemented in 3D Vertical Integration,”
Patent US 8 343 814 B2, January, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (sGray)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

