Invited Talk at the New York University, Polytechnic School of Engineering

The NorNet Testbed –
Overview and Selected Results
from Multi-Path Transport Research

Thomas Dreibholz, dreibh@simula.no

Simula Research Laboratory

May 5, 2014

Contents

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

Overview: Motivation

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

Motivation: Robust Networks

- More and more applications rely on ubiquitous Internet access!
- However, our current networks are not as robust as they should be ...

How to make networks more robust?

Resilience by Redundancy

Multi-Homing

- Connections to multiple Internet Service Providers (ISP)
- Idea: if one ISP has problems, another connection still works

Is resilience really improved? What about multi-path transport?

Idea: A Testbed for Multi-Homed Systems

Research in realistic setups is necessary!

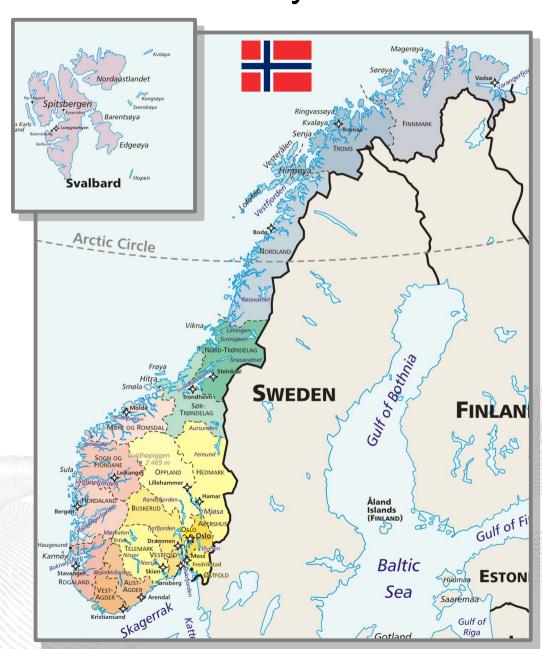
- A multi-homed Internet testbed would be useful
 - Something like PlanetLab?
 - Perhaps with better node availability?
 - Support for mobile access (e.g. 3G) as well as wired?
- NorNet A research testbed for multi-homed systems!
 - Lead by the Simula Research Laboratory in Fornebu, Norway
 - Supported by Forskningsrådet

Overview: The NorNet Project

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

Goals of the NorNet Project

- Building up a realistic multi-homing testbed
- Wired and wireless
 - Wired → "NorNet Core"
 - Wireless → "NorNet Edge"
- Perform research with the testbed!

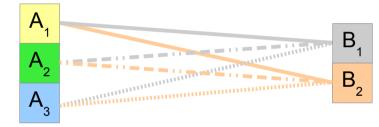


How to get a *realistic* testbed?

Idea: Distribution of NorNet over whole Norway

Challenging topology:

- Large distances
- A few "big" cities, many large rural areas
- Svalbard:
 - Interesting location
 - Many polar research institutions
- NorNet Core:
 - Currently 11+3 sites
- NorNet Edge:
 - Currently ca. 400 nodes

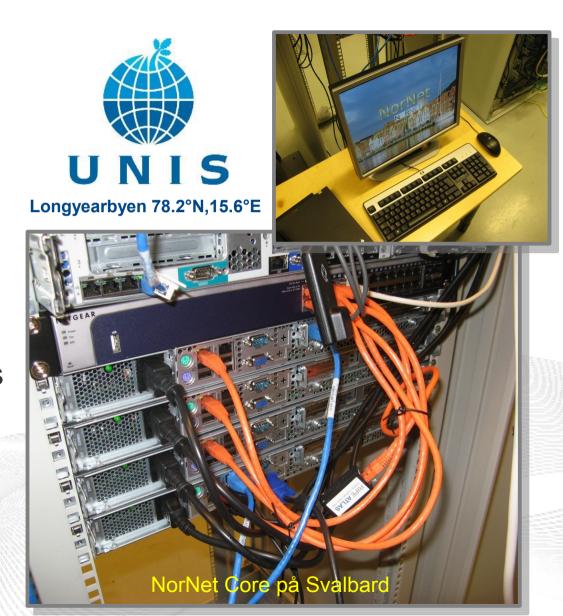


Overview: NorNet Core

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

Idea: Tunnelling

- Researchers require control over used ISP interfaces
 - Which outgoing (local site) interface
 - Which incoming (remote site) interface
- Idea: Tunnels among sites
 - Router at site A: IPs A₁, A₂, A₃
 - Router at site B: IPs B₁, B₂



- IP tunnel for each combination:
 A₁↔B₁, A₁↔B₂, A₂↔B₁, A₂↔B₂, A₃↔B₁, A₃↔B₂
- Fully-connected tunnel mesh among NorNet Core sites (< 20)
- Each site's router (called tunnelbox) maintains the tunnels
 - Static tunnels
 - NorNet-internal addressing and routing over tunnels

A NorNet Core Site Deployment

A usual NorNet Core site:

- 1x switch
- 4x server
 - 1x tunnelbox
 - 3x research systems
- At least two ISP connections
 - Uninett UNINETT
 - Other providers
- IPv4 and IPv6 (if available)

Site Deployment Status (May 2014)

Site	Location	ISP 1	ISP 2	ISP 3
Simula Research Laboratory	Fornebu, Akershus	UNINETT	Kvantel	Telenor ²
Universitetet i Oslo	Blindern, Oslo	UNINETT	PowerTech	Broadnet 2
Høgskolen i Gjøvik	Gjøvik, Oppland	UNINETT	PowerTech	
Universitetet i Tromsø	Tromsø, Troms	UNINETT 1	PowerTech	Telenor ²
Universitetet i Stavanger	Stavanger, Rogaland	UNINETT 1	BKK	
Universitetet i Bergen	Bergen, Hordaland	UNMETT	BKK	
Universitetet i Agder	Kristiansand, Vest-Agder	UMINETT	PowerTech	
Universitetet på Svalbard	Longyearbyen, Svaledrd	UNINETT 1	Telenor 2,4	
NTNU Trondheim	Trondheim Sør frøndelag	UNINETT	PowerTech	
Høgskolen i Narvik	Narvik, Norland	UNINETT	PowerTech	
Høgskolen i Oslo og Akershus	St. Hanshaugen, Oslo	UNINETT		
University of Duisburg-Essen	Essen/Germany	DFN	Versatel ^{2,3}	
Hainan University	Haikou, Hainan/China	CERNET 1	Unicom ¹	
Karlstads Universitet	Karlstad, Värmland/Sweden	SUNET	_ 4	

¹⁾ IPv6 available from ISP, but not deployed to setup

²⁾ IPv6 not available from ISP 🙁

³⁾ Consumer-grade ADSL connection

⁴⁾ Negotiations in progress

Remote Systems Our servers may be really <u>remote!</u> The "road" to Longyearbyen på Svalbard, 78.2°N

Virtualisation

"Anything that can go wrong, will go wrong." [Murphy's law]

- Experimentation software is experimental
- How to avoid software issues making a remote machine unusable?
- Idea: virtualisation
 - Lightweight, stable software setup:
 Ubuntu Server 12.04 LTS
 - VirtualBox 4.3
 - Other software runs in VirtualBox VMs:
 - Tunnelbox VM on physical server #1
 - 2 LXC-based research node VMs on physical servers #2 to #4

ubuntu

In case of problem: manual/automatic restart or reinstall of VM

Idea: PlanetLab-based Software for Experiments

- Key idea:
 - Researchers should get virtual machines for their experiments
 - Like *PlanetLab* ...
 - ... but with multi-homing and IPv6, of course
- PlanetLab software:
 - Different "stable" distributions: PlanetLab, OneLab, etc.
 - Current implementation: based on *Linux VServers*
 - Not in mainline kernel
 - Patched kernel, makes upgrades difficult
 - The future: Linux Containers (LXC)
 - Active development by PlanetLab/OneLab
 - We are maintaining a NorNet-specific branch

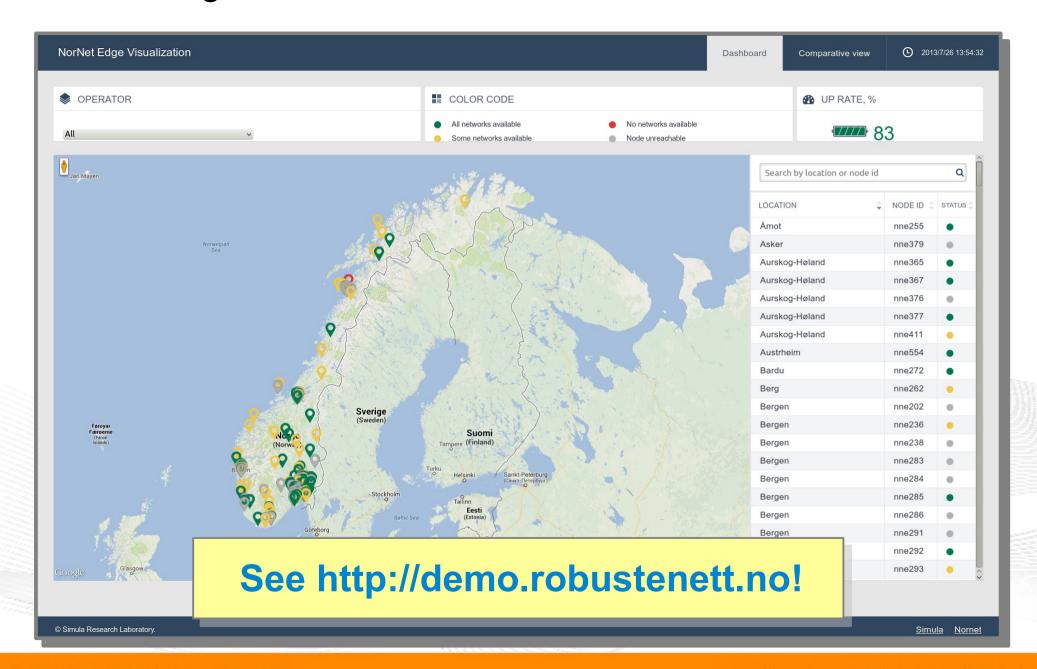
Overview: NorNet Edge

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

The NorNet Edge Box: Ready for Deployment (1)

Box contents:

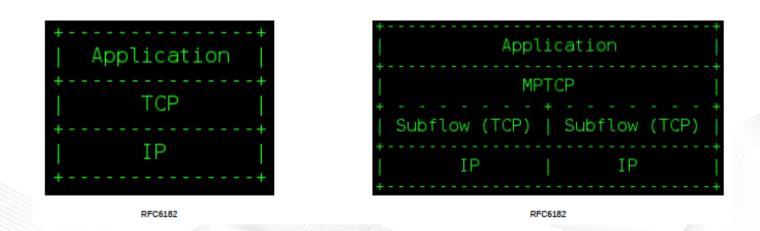
- Ufoboard or Beagle Bone embedded Linux system
- 4x USB UMTS:
 - Telenor, NetCom,
 - Network Norway, Tele2
- 1x ICE CDMA mobile broadband
- 1x Ethernet
- 1x WLAN (optional)
- Power supplies
- Handbook


The NorNet Edge Box: Ready for Deployment (2)

Ufoboard:

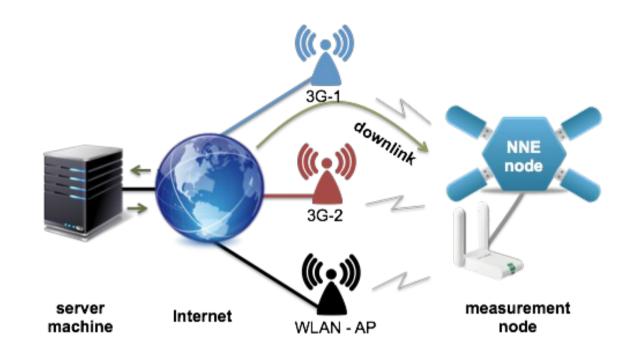
- Debian Linux
- Kernel 3.11.x
- MPTCP (0.88)

NorNet Edge Visualisation


Overview: Selected Research Topics

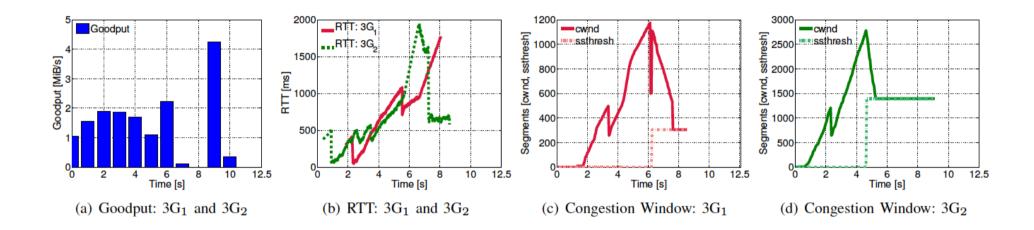
- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

Multi-Path TCP


Multi-Path TCP (MPTCP):

- Multi-path extension for TCP (RFC 6182/RFC 6824)
- Combination of sub-flows (like TCP)
- Idea: improve throughput and resilience

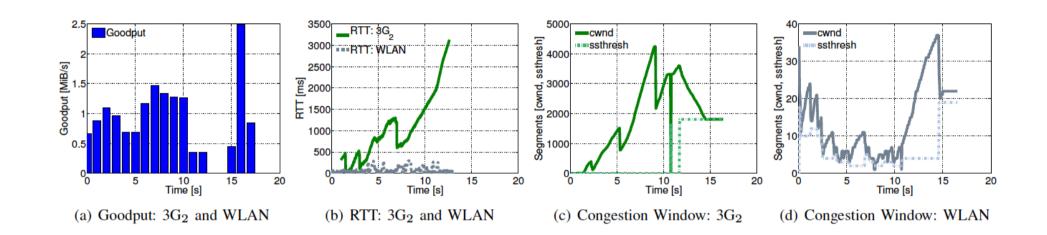
How behaves MPTCP in real networks?


Evaluation in NorNet Edge

Using NorNet Edge nodes (NNE):

- Two 3G ISPs (2G/3G)
- WLAN at the node location: real-world public WLAN hotspot (i.e. many users and interferences)

Standard MPTCP does not work very well ... 3G + 3G Paths



Paths are heterogeneous

- Varying overall goodput
- High RTTs → bufferbloat!

Performance issues caused by bufferbloat!

Standard MPTCP does not work very well ... 3G + WLAN Paths

The same performance issues apply for combining 3G and WLAN

How to avoid the bufferbloat issues?

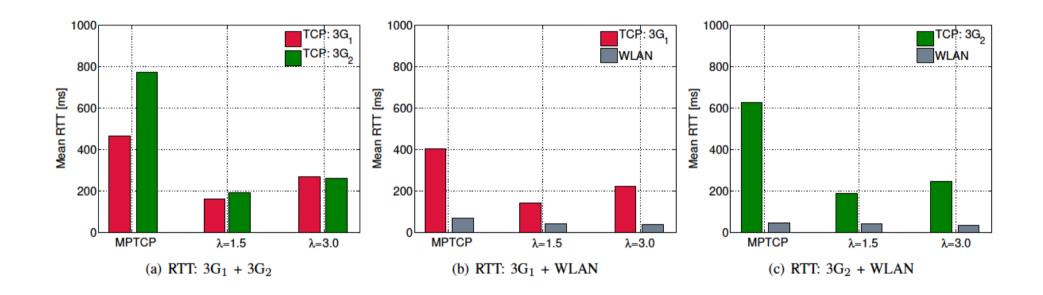
Multi-Path Transport Bufferbloat Mitigation (MPT-BM)

Algorithm 1 Per-Subflow Bufferbloat Mitigation by MPT-BM

Initialization:

$$sRTT \leftarrow \infty$$
$$sRTT_{min} \leftarrow \infty$$

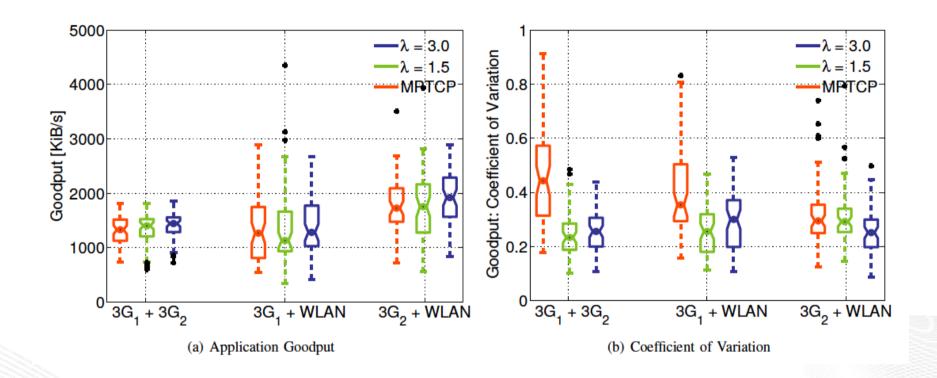
RTT estimation:


$$sRTT_{min} \leftarrow min(sRTT_{min}, sRTT)$$

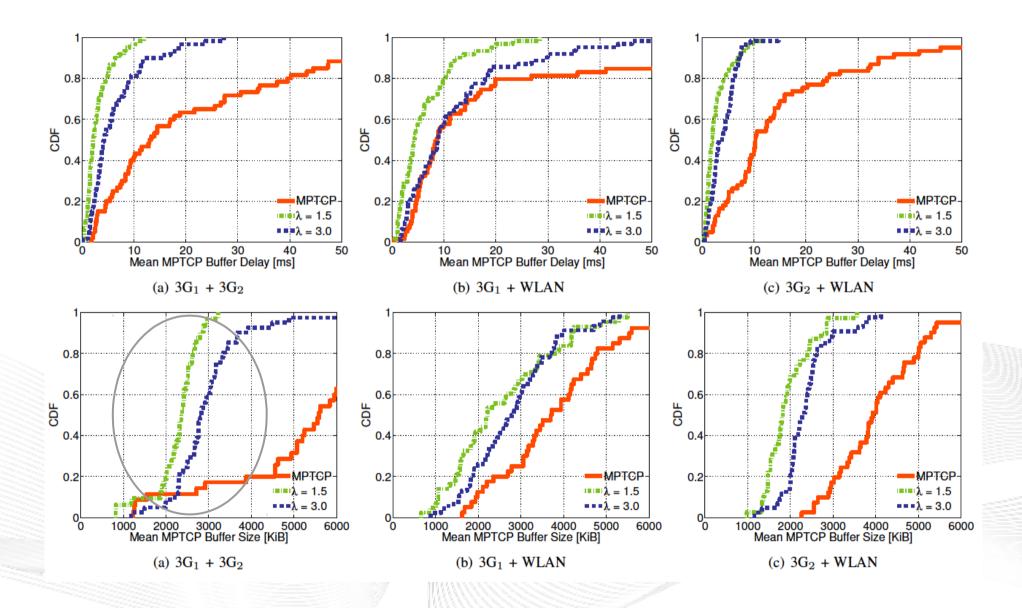
How many segments can be sent?

$$\begin{aligned} & cwnd_{limit} \leftarrow \lambda * \left(sRTT_{min} / sRTT \right) * cwnd \\ & send \leftarrow \begin{cases} & max(0, (min(cwnd, cwnd_{limit}) - inflight) \\ & max(0, cwnd - inflight) \end{cases} & (RTT_{min} \geq \Theta) \\ & (RTT_{min} < \Theta) \end{aligned}$$

- Idea:
 - Avoid extreme growth of the congestion window (cwnd)
 - Limitation controllable (parameter: λ)
 - Only necessary for large RTTs (parameter: Θ)


Evaluation: Round-Trip Times

Significant RTT reduction => bufferbloat is avoided


How does it affect the goodput?

Evaluation: Goodput

- No negative impact, sometimes even slightly better
- Variance is reduced

Evaluation: MPTCP Buffer Delay and Buffer Size

Further Details

- Ferlin-Oliveira, Simone; Dreibholz, Thomas; Alay, Özgü and Kvalbein, Amund: «Measuring the QoS Characteristics of Operational 3G Mobile Broadband Networks» (PDF, 1524 KiB, in English), in Proceedings of the 4th International Workshop on Protocols and Applications with Multi-Homing Support (PAMS), Victoria, British Columbia/Canada, May 16, 2014.
- Ferlin-Oliveira, Simone; Dreibholz, Thomas and Alay, Özgü: «Tackling the Challenge of Bufferbloat in Multi-Path Transport over Heterogeneous Wireless Networks», in Proceedings of the IEEE/ACM International Symposium on Quality of Service (IWQoS), ISBN 978-1-4799-4852-9, Hong Kong, May 2014.

https://www.nntb.no/publications

Overview: Conclusion

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion

Conclusion and Future Work

- The NorNet testbed is progressing!
 - Initial deployment completed
 - Ready for experiments (also for <u>your</u> experiments!)
- Future work:
 - Make more NorNet Core sites multi-homed (additional ISPs, IPv6)
 - Some additional sites
 - Improve and refine management software
 - Get more users (may be <u>you</u>?)

And, of course, do further research!

Coming Soon: The 2nd NorNet

The 2nd NorNet Users Workshop (NNUW-2)

Any Questions?

Visit https://www.nntb.no for further information!