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Incorrect Results in Software Engineering 
Experiments: How to Improve Research Practices 

Magne Jørgensen, Tore Dybå, Knut Liestøl, Dag I. K. Sjøberg 

Abstract— Context: The trustworthiness of research results is a growing concern in many empirical disciplines. Aim: The goals of this 
paper are to assess how much the trustworthiness of results reported in software engineering experiments is affected by researcher and 
publication bias and to suggest improved research practices. Method: First, we conducted a small-scale survey to document the presence of 
researcher and publication biases in software engineering experiments. Then, we built a model that estimates the proportion of correct 
results for different levels of researcher and publication bias. A review of 150 randomly selected software engineering experiments published 
in the period 2002–2012 was conducted to provide input to the model. Results: The survey indicates that researcher and publication bias is 
quite common. This finding is supported by the observation that the actual proportion of statistically significant results reported in the 
reviewed papers was about twice as high as the one expected assuming no researcher and publication bias. Our models suggest a high 
proportion of incorrect results even with quite conservative assumptions. Conclusion: Research practices must improve to increase the 
trustworthiness of software engineering experiments. A key to this improvement is to avoid conducting studies with unsatisfactory low 
statistical power. 

Index Terms— Controlled experiments, empirical software engineering, research methodology, statistical hypothesis testing 

——————————      —————————— 
 
 

Appearances to the mind are of four kinds. Things either are what they appear to be; or they 
neither are, nor appear to be; or they are, and do not appear to be; or they are not, and yet appear 
to be. Rightly to aim in all these cases is the wise man's task.  
Epictetus (AD 55-135), Discourses, Book 1, Chapter 27. 

 
1 INTRODUCTION 
 

he cover article, How Science goes wrong, of the October 19th 
2013 issue of The Economist describes the growing concern 
that the proportion of incorrect research results in many 

research domains is much higher than we would normally 
suppose, or like to think. If the proportion of incorrect results 
in a domain is high, the usefulness and trustworthiness of the 
research within the whole domain may be at stake. The much 
debated and cited paper from 2005, by J. P. A. Ioannidis, with 
the telling title: “Why most published research findings are false” 
[1], is the origin of much of the recent discussions and 
concerns. There is, however, nothing new with concerns 
related to data fabrication [2], publication bias (not publishing 
statistically non-significant results) [3, 4], researcher bias 
(flexible analyses that lead initially statistically non-significant 
results to become significant) [2, 5] and low statistical power 
(low likelihood of rejecting the hypothesis of no difference, the 
null hypothesis, even when there is a difference) [6]. Already in 
1830, Babbage wrote about the decline in science, including 
what he called the “fraud of the observers” [7]. Babbage’s list 
of questionable practices (frauds) is similar to those discussed 
in this paper. Researchers may feel a strong pressure to publish 
results, which sometimes leads to questionable or even 
unethical researcher practices [8]. 

Although the use of questionable research practices is not a 
new phenomenon, an increasingly competitive research 
environment, a “publish or perish” culture, may have 

increased the amount of such practices over the years [9], i.e., 
increasingly competitive academic environments seem to 
increase not only the scientists’ productivity, but also their 
biases [10]. The use of questionable practices is hardly just a 
result of lack of knowledge about proper research practices. 
The survey reported in [11], for example, finds the amount of 
questionable research practices to be similar or, for some 
aspects, even increasing for researchers in the later stages of 
their research career. 

The goal of this paper is to examine to what extent the 
trustworthiness problems observed in a wide range of research 
domains [8, 12-16] are present in the context of software 
engineering experiments. If such problems are present, there 
may be a need for changes in the current research practices. 

The trustworthiness of a particular result of a study 
depends on the quality of the research method of that study 
and to what degree the result has been replicated by other, 
preferably independent, studies. In this paper, we assess the 
trustworthiness of the results within a domain as a whole. The 
approach we apply is limited to research results from statistical 
hypothesis testing and is based on a model that estimates the 
expected proportions of statistically significant results [1, 17, 
18]. Input to this model includes the level of publication and 
researcher bias, and the statistical power of studies conducted 
in a research domain. A high level of publication and 
researcher bias increases the proportion of incorrect research 
results and inflates the effect sizes [19, 20]. Similarly, low 
statistical power is also likely to increase the proportion of 
incorrect results [21].  

An illustration of the unfortunate consequence of strong 
publication bias, strong researcher bias and low statistical 
power on result trustworthiness is provided in Box 1. 
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Box 1: The result of publication and researcher bias in a study 

with low statistical power 
 
We wanted to test the following hypothesis: Researchers with longer 

names write more complex texts than researchers with shorter names. To test the 
hypothesis, we randomly selected twenty research papers using Google 
Scholar. For each of the papers, we collected information about the first 
author’s family name and the complexity of the text in the paper. We found 
a strong and significant (p<0.01) correlation between the length of the name 
and the complexity of the text, where the complexity of the text was 
measured either using the Flesch-Kincaid [22] reading level or the number 
of words per paragraph. The correlation with name length was 0.6 for both 
complexity measures. 

While our study contains no fabricated data, we do not believe that 
authors with longer names actually write more complex papers. It is more 
likely that our result is a consequence of three questionable, but perhaps 
not uncommon, research practices. The first questionable practice, which is 
an example of publication bias, was that we did not publish all the 
(fourteen!) complexity measures we tested, only the two ones that gave 
significant results. The second questionable practice, which is an example 
of researcher bias, was that we removed two outliers because we were 
unable to calculate the Flesch-Kincaid measure on the text. While in 
principle defendable, we made the outlier decision after looking at the 
effect it had on the results. Without the removal of these outliers, our 
results would not have been statistically significant. The third questionable 
practice, also an example of researcher bias, was that we changed the 
definition of the length of the name from the sum of the length of the first 
name and the family name, to the length of the family name only. This was 
defended by the observation that the first name was not available for all 
authors. We knew, however, that this decision would strengthen our 
results.  

All the questionable research practices we used to create 
statistically significant results in this study would, we think, easily go 
unnoticed or feel well motivated by the reviewers and readers. In this case, 
where collecting data is inexpensive, a reviewer may question why the 
sample is not larger or why no replications have been conducted. While this 
may be a valid comment for this study, sample sizes around 20 and less is 
common in software engineering experiments, where data collection 
typically is more expensive. As much as 36% of the 196 software 
engineering experiments in the review reported later in this article had a 
sample size of 20 or less. Almost half of the experiments (47%) had a 
sample size of 25 or less. 

A similar experience of how easy it is to generate statistically 
significant, but incorrect, results when willing to use questionable practices 
and studies with low statistical power is reported in [23]. 

 
 

 

The remaining part of the paper is organized as follows: 
Section 2 reports on a small-scale survey on questionable 
statistical practices of software engineering researchers. Section 
3 introduces models of the expected proportion of statistically 
significant results and the expected proportion of incorrect 
results. Section 4 reports on a review of the results of 
hypothesis tests of a random set of 150 papers describing in 
total 196 software engineering experiments. Section 5 uses the 
models described in Section 3 to argue that there is a 
substantial amount of researcher and publication bias, and 
calculate the expected rate of incorrect results in software 
engineering experiments. Section 6 uses the results to suggest 
improved research practices. Section 7 concludes. 
 
 
 
 

2 A SMALL-SCALE SURVEY OF QUESTIONABLE 
RESEARCH PRACTICES 
 
A web-based survey was conducted with questions about 
statistical research practices likely to contribute to publication 
and researcher biases. We sent a questionnaire to the 80 
participants and program committee members of the joint 
conference of the 23rd International Workshop on Software 
Measurement (IWMS) and the 8th International Conference on 
Software Process and Product Measurement (Mensura). In 
addition, we sent the questionnaire to a few members of the 
Dutch Software Measurement Association. We clarified that 
the respondents would be anonymous and that no one, not 
even the researchers analysing the responses, would be able to 
identify their names. 

We received 36 complete responses. For the purpose of the 
analysis in this section, we removed two responses where the 
researchers stated that they never used statistical hypothesis 
testing in their own research, leaving 34 responses. The four 
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first questions (P1–P4) of the questionnaire were related to 
publication bias and the last three questions (R1–R3) to 

researcher biases. The questions and the responses are 
displayed in Table 1. 

 
TABLE 1 

RESULTS FROM A SURVEY ON STATISTICAL PRACTICES 
 

 
Research Practice 

Have experienced/done this in my own research 
Never Seldom Occas. Often Don’t  

know 
P1: Paper rejected due to non-significance1 14 6 8 4 4 
P2: Paper not submitted due to non-significance2 16 6 8 4 1 
P3: Not reported non-significant results3 17 8 4 4 2 
P4: Not reported undesired results4 18 8 0 4 4 
R1: Post hoc hypotheses5 11 4 12 6 1 
R2: Post hoc outlier criteria6 14 5 9 3 3 
R3: Flexible reporting of measures and analyses7 10 10 5 7 2 

1: Reviewers stated that a reason for rejecting your paper was that the results of one or more hypothesis tests gave statistically non-significant 
results. 
2: You chose not to summarize and submit a paper, because the results of one or more of the hypothesis tests gave statistically non-significant 
results. 
3: You chose not to report the outcome of one or more of the hypothesis tests (but submitted/published a paper with other statistically 
significant results from the same study or on the same topic), because the tests gave statistically non-significant results. 
4: You chose not to report the outcome of one or more of the hypothesis tests (but submitted/published a paper with other statistically 
significant results from the same study or on the same topic), because the tests gave undesired results, e.g., results conflicting with the main 
message of the paper. 
5: You reported the results of one or more hypothesis tests where at least one of the hypotheses was formulated after you had looked at the 
data. 
6: You developed or changed the rules for whether to exclude data or not (e.g., outlier removal) after looking at the impact of doing so on the 
results. 
7: You used several variants of a measure or several tests and reported only the measures and tests that gave the strongest results. 

 
 

 

As can be seen in Table 1, practices likely to lead to 
publication bias were common among the respondents. A 
summary of the publication bias responses (excluding the 
category “Don’t know”) showed that 56% had experienced the 
rejection of a paper because it reported non-significant results, 
53% had chosen not to submit a paper due to non-significant 
results, 48% had not reported non-significant results when 
reporting from a study and 40% had chosen not to report 
undesired results. Practices potentially leading to researcher 
bias were also common. We found that 67% had statistically 
tested and reported post hoc hypotheses, 55% had developed 
or modified outlier criteria after looking at the impact of doing 
so on the results, and 69% had only reported the best among 
several measures on the same test. 

Self-report surveys on questionable research practices, 
even when reporting anonymously, are likely to 
underrepresent the true occurrences. Still, we found that 
between 40% and 69% of the respondents admitted to 
experiencing or using these practices. The practices reported in 
our survey correspond well with those from a survey with 
similar questions in psychology [24]. In that survey, 63% of the 
respondents admitted that they had failed to report all of a 
study’s dependent measures, 46% that they had selectively 
reported studies that “worked”, and 38% that they had decided 
whether to exclude data after looking at the impact of doing so 
on the results1. The presence of researcher and publication 
biases also corresponds with responses from a health education 
research survey [25, 26], where 46% had witnessed first-hand 
that statistical techniques were selected “for [their] ability to 
provide [a] more favourable outcome” and 59% “reported only 
significant findings in published research”. 

The researchers in our study were allowed to comment on 
their answers. The comments included the following two very 

                                                             
1 The results are those from the control group of the survey of the 

psychology researcher. The respondents of the “truth-telling incentive” 
group reported slightly higher use of questionable practices. 

honest explanations of practices leading to publication and 
researcher bias: 
• “It's extremely hard to publish a journal paper without 

'massaging' the data and the hypotheses first. If you do not do 
this, you will end up with no publications at all. I think journal 
editors and reviewers should do something, so that they 
encourage honest accounts of empirical work, and make 
researchers with non-significant results feel welcome.” 

• “… unless authors do something really stupid, it's very easy to 
get away with post-hoc interventions. Sneaking up and making 
it to a journal publication is common and if many fellows 
practice it, why should we discriminate against ourselves by 
discarding the practice? The price appears to be too high for 
this.”  
 
We should be careful about generalizing the results in 

Table 1 to most software engineering researchers. The 
respondents of our study do, however, resemble a typical 
population of empirically-oriented software engineering 
researchers, and we may at least use the results to argue that 
practices that lead to publication and researcher bias are 
present in the domain of software engineering. The results give 
us reason to suspect that the amount of questionable research 
practices can be a serious problem for the trustworthiness of 
the research results in software engineering experiments. 

 
 

3 MODELLING THE IMPACT OF PUBLICATION AND 
RESEARCHER BIAS 
 
We describe three models in this section. Section 3.1 describes a 
model of how publication and researcher bias affects the 
proportion of observed statistically significant findings. Section 
3.2 describes a model of the proportion of correct findings. 
Section 3.3 describes a model of the strength of the evidence 
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when reporting a statistically significant finding. The models 
are applied in Section 5, with input from the review in Section 
4. 

 

3.1 A Model of the Proportion of Statistically Significant 
Tests 
We assume a situation where the correctness of a simple 
hypothesis is evaluated, e.g., a situation with a null hypothesis 
stating that there is no difference between two experimental 
procedures or no effect of a variable. If such a simple null 
hypothesis is false, we consider that there is a true relationship.  

The concepts and variables described in Tables 2 and 3 are 
used to describe a model of the proportion of statistically 
significant hypothesis tests. The model is similar to the model 
in [1], with the exception that we add a variable for publication 
bias.  

A domain with reliable research results has few false 
negatives (Type II errors), i.e., true relationships not reported 
as statistically significant, and in particular few false positives 
(Type I errors), i.e., non-existent relationships reported as 
statistically significant (“false alarms”). When the sample size 
of a study is given, there will be a trade-off between the 
elements in Table 2. Requiring a lower p-value of a study to 
claim statistical significance means that the proportion of false 
positives decreases (which is good) at the cost of an increase of 
false negatives (which is not so good) [27].  

The observed proportion of significant tests (PST) equals 
the sum of true positive and false positive tests, divided by the 
total number of tests, i.e.,  

 
(1) PST = (TP+FP)/(TP+FP+TN+FN) 
 

 
TABLE 2 

COMBINATIONS OF REPORTED AND ACTUAL RELATIONSHIPS 
 

 
Reported relationship 

Actual relationship 
True relationship False relationship  

Statistically significant 
(positive tests) 

True positives (TP) False positives (FP) 
(Type I errors) 

Statistically non-significant 
(negative tests) 

False negatives (FN) 
(Type II errors) 

True negatives (TN) 

 
 

TABLE 3 
VARIABLES USED IN THE MODEL 

 
Variable Description 
ptr Proportion of true relationships among those tested. If, for example, we have a 

domain where half of the hypotheses test true relationships, then ptr = 50%. The 
ptr-value is typically not known and will differ from domain to domain.  

! Probability of Type I error or significance level. ! corresponds to the expected 
proportion of false positives among actually false relationships. Typically ! is set to 
5% in software engineering experiments (88% of the experiment in the review 
reported later in the article chose this significance level), which means that we 
should expect, in the long run, that 5% of the tests give a statistically significant 
result when there is no true relationship. 

" Probability of Type II error. " corresponds to the expected proportion of false 
negatives. In software engineering experiments the median " has been estimated to 
be about 70% [28], which means that we should expect, in the long run, that as 
much as 70% of the true relationship gives a statistically non-significant test result. 
The statistical power equals (1 – ") [29]. 

rb Researcher bias. rb is the proportion of statistically non-significant results that 
becomes significant through questionable research or analysis practices, such as 
those described as R1-R3 in Table 1. For a more complete set of research practices 
that lead to researcher bias, see [24]. 

pb Publication bias. pb is the proportion of statistically non-significant results that are 
not reported. Not reporting non-significant results includes both the situation 
where papers are not accepted or submitted due to non-significant findings and the 
situation where one or more non-significant results within a study are not 
reported, i.e., all the situations described as P1-P4 in Table 1. 

 
 

Figure 1 illustrates the relationships between the variables. 
Each of the 1000 cells represents one hypothesis test. As can be 
seen, we have assumed that 50% of the tested hypotheses are 
actually true (ptr = 0.5), a significance level (!) of 5% and a 
statistical power (1–") of 30%. The left-hand part of Figure 1 
illustrates the situation with no researcher and publication 
bias, the middle part a situation with 20% researcher bias and 

no publication bias, and the right-hand part a situation with 
20% researcher and 30% publication bias. The cells above the 
thick horizontal black line (grey background) are the 
relationships that are actually true, while those below the line 
(yellow background) are those that are actually false. White 
cells denote tests that are non-significant, while the coloured 
cells (green = true positives, red = false positives, blue = 
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initially non-significant test appearing significant due to 
researcher bias) denote statistically significant tests. 

We assume a statistical power of 30%, which means that 
30% of the true relationships, i.e., 500 x 0.3 = 150 (15%) of the 
cells in Figure 1, are true positives (green cells) for a situation 
with no researcher or publication bias (left-hand situation). The 
remaining true relationships correspond to negative tests; i.e., 
there are 500–150 = 350 false negatives (white cells, upper half). 
A significance level of 5% means that we will expect that 5% of 
the tests will (falsely) show a positive test when there is no 
relationship; i.e., 500 x 0.05 = 25 (2.5%) of the cells are false 
positives (red cells). The remaining false relationships 
correspond to negative tests; i.e., there are 500–25 = 475 true 

negatives (white cells, lower half). The expected number of 
statistically significant tests, assuming no researcher or 
publication bias, is consequently 150 (true positives) + 25 (false 
positives) = 175; i.e., 17.5% of the total tests are expected to be 
statistically significant in the situation with no researcher and 
publication bias. 

More generally, the expected proportion of statistically 
significant relationships given no researcher and publication 
bias (PST0) can be expressed as: 

 
2   𝑃𝑆𝑇! = 1 − 𝛽 𝑝𝑡𝑟 + 𝛼(1 − 𝑝𝑡𝑟) 

  

 
Fig. 1. Illustration of the effect of researcher and publication bias 
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Adding 20% researcher bias, as we do in the middle part of 
Figure 1, means that 20% of the initially statistically non-
significant relationships become statistically significant. We 
assume in our calculations that the researcher bias affects the 
true negatives and the false negatives equally.2 The researcher 
bias implies that 20% (=70) of the 350 false negatives and 20% 
(=95) of the 475 true negatives become statistically significant. 
There will now not be 175 (as in the left-hand part of Figure 1) 
statistically significant results, but instead 175 + 70 + 95 = 340; 
i.e., 34% of the total tests will be expected to be statistically 
significant. The expected observed proportion of statistically 
significant findings (PST1) when adding researcher bias can be 
expressed as: 

 
 3   𝑃𝑆𝑇! = 𝑃𝑆𝑇! + 𝛽 ∙ 𝑟𝑏 ∙ 𝑝𝑡𝑟 + (1 − 𝛼) ∙ 𝑟𝑏 ∙ (1 − 𝑝𝑡𝑟) 

 
Adding 30% publication bias, as we do in the right-hand 

part of Figure 1, means that 30% of the statistically non-
significant relationships are removed from the total set of 
hypothesis testing. As for the researcher bias, we assume that 
this will affect the true negatives and the false negatives 
equally. Adding publication bias implies that 30% of the 
remaining 660 (=1000–340) statistically non-significant tests, 
i.e., 30% x 660 = 198 non-significant tests, are removed. There 
are now just 1000–198 = 802 tests left. There are still 340 
statistically significant tests, but they now constitute not 34% of 
the total number of reported tests, but instead 340/802 = 42%. 
The expected observed proportion of statistically significant 
findings (PST2) when adding researcher and publication bias 
can be expressed as: 

 
4   𝑃𝑆𝑇! = 𝑃𝑆𝑇! (𝑃𝑆𝑇! + (1 − 𝑃𝑆𝑇!) ∙ 1 − 𝑝𝑏 )  

 
We will use the expression in (4) to examine the levels of 

researcher and publication bias needed to produce the 
observed proportion of statistically significant results. 
 

3.2 A Model of the Proportion of Correct Tests  
In Figure 1 we have that the situation without researcher and 
publication bias (left-hand part), gives 150 true positives and 
475 true negatives. This means that 150 + 475 = 625 of the 1000 
tests (62.5%) are correct. Perhaps even more important, as 
many as 150 out of the 175 (=86%) statistically significant tests 
are correct. 3  When adding 20% researcher bias and 30% 
publication bias (right-hand part), the expected number of true 
positives (blue and green cells in the upper half) becomes 220, 
and the number of true negatives (white lower half) becomes 
266. The number of tests is now reduced to 802, which means 
that the tests give the correct results (266 + 220)/802 = 61% of 
the times. This is about the same proportion as in the situation 
without researcher and publication bias, and is mainly a result 
of the low statistical power assumed in the illustration. The 

                                                             
2 This assumption may not be valid if the studies with initially false 

negatives tend to have much lower p-values than the studies with initially 
true negatives. In that case, it may be easier to achieve statistically 
significant tests for false negatives (tests on true relationships) than for true 
negatives (tests on false relationships). An improvement of the model 
would, consequently, be to allocate a higher proportion of researcher bias 
to the false than to the true negatives. For a situation with studies with low 
statistical power, as in our context, we expect that the difference in the ease 
of achieving statistically significant results through researcher bias is 
approximately the same for these two situations, which defends our 
assumption. 

3 This illustrates how misleading it is to think that the significance 
level of a hypothesis test tells us how probable it is that a null hypothesis is 
true. In this scenario, the proportion of true null hypotheses when 
observing p<0.05 is 14%. Adding researcher and publication bias, as we do 
in Figure 1, increases this proportion to 35%. 

inclusion of researcher and publication bias gives, on the other 
hand, that only 220 (65%) of the 340 statistically significant 
tests now give the correct result; i.e., 35% of the statistically 
significant results are incorrect. 

We can express the proportion of observed correct results 
of a set of tests, i.e., the Proportion of Correct Results (PCR)4 
and Proportion of Correct Results among those statistically 
Significant (PCRS)5, as: 

 
5   𝑃𝐶𝑅 = !"!!!"#

!"!!!"#!!"!!!"#
 and 

 
6   𝑃𝐶𝑅𝑆 = !"!

!"!!!"!
, 

 
where PTP is the proportion of true positives, PFN the 

proportion of false negatives, PFP the proportion of false 
positives and PTN the proportion of true negatives. These 
proportions can be expressed as: 

 
7   𝑃𝑇𝑃 = 𝑝𝑡𝑟 ∙ 1 − 𝛽 +   𝑝𝑡𝑟 ∙ 𝛽 ∙ 𝑟𝑏 

 
8   𝑃𝐹𝑁 = 𝑝𝑡𝑟 ∙ 𝛽 ∙ (1 − 𝑟𝑏) ∙ (1 − 𝑝𝑏)   

 
9   𝑃𝐹𝑃 = (1 − 𝑝𝑡𝑟) ∙ 𝛼 + (1 − 𝑝𝑡𝑟) ∙ (1 − 𝛼) ∙ 𝑟𝑏   

 
10   𝑃𝑇𝑁 = (1 − 𝑝𝑡𝑟) ∙ (1 − 𝛼) ∙ (1 − 𝑟𝑏) ∙ (1 − 𝑝𝑏)   

 
The above expressions are based on the same ideas as 

those reported in [30], but add the effect of publication and 
researcher bias. Note that, with publication bias, the sum of the 
proportions will not be 100%; i.e., we calculate the proportion 
of correct results among the reported tests, not among all tests 
actually conducted. 

 

3.3 A Model of the Strength of the Evidence From a 
Statistically Significant Test 
Expression (6), which estimates the proportion of correct 
results among the statistically significant tests, includes no 
reference to the level of publication bias. This is as expected, 
since publication bias affects only the non-significant results, 
but should not be taken to mean that publication bias is 
harmless for the reliability of reported statistically significant 
results.  

A potential side-effect of publication bias is, however, that 
it makes it easier to publish studies that test many hypotheses 
on topics where the proportion of true relationships (ptr) is 
low. As can be derived from (6), a decrease of ptr will decrease 
the proportion of correct, statistically significant results. 

We will now demonstrate the effect of publication bias on 
result correctness through the use of a Bayes Factor [31] (see 
Expression (11)). The considerations leading to Expression (11) 
are described in the Appendix. 

 
(11) BF = !!! !!∙!"

!!!∙!" !  !∙!"∙!"
!! !!! ∙!"

!!!" !!∙!"!(!!!)∙!"∙!"
 

 
The Bayes Factor tells us how much the odds6  of the 

alternative hypothesis (true relationship) increase after 
observing that a test gave statistically significant results. While 
classical hypothesis testing only considers the evidence against 
the null hypothesis, i.e., how unlikely it is to observe the data 
actually observed or more extreme data given that there is no 
difference, the Bayes Factor compares the strength of the 

                                                             
4 Frequently denoted Accuracy (ACC) 
5 Frequently denoted Positive Predictive Value (PPV) 
6 Odds = Probability / (1-Probability) 
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evidence in favor of the null hypothesis (false relationship) 
with the strength of the evidence in favour of the alternative 
hypothesis. The Bayes Factor may consequently be interpreted 
as a measure of how much we should update our belief, or 
how much our a priori odds should change, based on the 
collected evidence. A Bayes Factor of 1 means that the evidence 
equally favours the null and the alternative hypothesis. Values 
between 1 and 3 are typically interpreted as “not worth more 
than a bare mention”, between 3 and 20 as “positive”, between 
20 and 150 as “strong”, and higher than 150 as “very strong” 
[31]. As pointed out in [32], while the Bayes Factor and 
traditional hypothesis testing almost always agree on which 
hypothesis is better supported by the data, they may disagree 
about the strength of this support. In [32], examining 855 t-tests 
from experiments in psychology, p-values between 0.01 and 

0.05 corresponded with Bayes Factors of less than 3, i.e., “not 
worth more than a bare mention”, in as much as 70% of the 
tests. 

 
 

4. THE PROPORTION OF STATISTICALLY SIGNIFICANT 
RESULTS IN SOFTWARE ENGINEERING EXPERIMENTS 
 
To find the proportion of reported statistically significant tests 
among all reported tests in software engineering experiments, 
we conducted a systematic literature review. The design of the 
review process is displayed in Table 4 and the results from the 
review are summarized in Table 5. 

 
 

TABLE 4 
THE REVIEW PROCESS 

 
Characteristic Description 
Population All reported software engineering experiments applying 

statistical hypothesis testing, including quasi-experiments 
(experiments without random allocation of treatment) in 
the period 2002-2013. 

Sample 25 randomly sampled papers from each of the periods: 
2002–2003, 2004–2005, 2006–2007, 2008–2009, 2010–2011, 
and 2012–2013. In total, 150 papers. 

Search process Full text search with Google Scholar using the term: 
“software engineering” AND “experiment” AND 
“hypothesis” for each of the sample periods. 

Inclusion criteria At least one statistical hypothesis test. 
Exclusion criteria Studies with all hypotheses stated “post hoc” (derived 

from analyses of the collected data) and studies with 
“unfocused” hypotheses, i.e., where a large number of 
hypotheses derived from a very general hypothesis were 
tested. 

Data collected For each experiment, we collected the following 
information: 
1) Paper reference (year, authors, title and source) 
2) Study unit (students, professionals, projects, etc.) 
3) Sample size (total number of subjects in study) 
4) Number of treatments, including control group 
5) Significance level chosen for study (1%, 5%, etc.) 
6) Number of hypotheses tested 
7) Number of non-significant tests 
8) Number of tests with p-value less than 0.01 
9) Number of tests with p-value between 0.01 and 

0.05 
10) Number of tests reported as significant, but 

without exact p-value 
A paper could include more than one experiment. 

Review process Three of the authors participated in the review process. 
The first author reviewed all the studies, while the second 
and fourth authors reviewed 50% of the studies each; i.e., 
all studies were reviewed by two of the authors. When 
there were disagreements on data collection or 
interpretations of study results, the paper was re-
reviewed and discussed until agreement on the data 
collection was reached. 

Synthesis The data was summarized and the number of 
experiments, the median sample size, the number of 
hypothesis tests and the proportions of test results with 
p<0.01 and p<0.05 were calculated. 
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TABLE 5 

RESULTS FROM THE REVIEW 
 

 Total 2002–
2003 

2004–
2005 

2006–
2007 

2008–
2009 

2010–
2011 

2012–
2013 

No. papers 150 25 25 25 25 25 25 
No. experiments 196 30 31 32 37 35 31 
Median sample 
size 

29 47 33 32 23 26 27 

No. hypothesis 
tests 

1279 212 210 251 220 215 171 

p<0.051 52%  53% 59% 52% 46% 52% 54% 
p<0.012 29%  27% 32% 31% 25%  33% 26%  
1: Proportion of statistical hypotheses tests with reported p-value lower than 0.05. 
2: Proportion of statistical hypotheses tests with reported p-value lower than 0.01. A few tests only 
reported that p<0.05 without reporting the exact p-value. We assumed that half of these tests had p-
values less than 0.01 and half had p-values between 0.01 and 0.05. 

 
 

Table 5 shows that 52% of the hypothesis tests in the 
reviewed software engineering experiments resulted in 
statistically significant results when assuming a significance 
level of 𝛼 = 0.05. Furthermore, 29% of the hypothesis tests had 
p-values less than 0.01. The median sample size is as low as 29 
subjects.7 

Among the 150 studies, 140 (93%) reported at least one 
statistically significant hypothesis test. This is consistent with a 
situation where software engineering experiments are more 
likely to be published when they produce a statistically 
significant result. The alternative explanation is that nearly all 
experiments include the test of at least one true relationship 
and have sufficient statistical power to produce a positive test. 
The low sample size, and consequently low statistical power, of 
many of the experiments suggest that the first explanation is 
more likely than the second one. 

The study reported in [34] found a proportion of 
statistically significant results in the field of computer science 
of about 80%, i.e., a much higher proportion than we found. 
This difference in results may be caused by a difference 
between the broader field of computer science and its subset of 
experimental software engineering. More likely, it is caused by 
a difference in review methods. It seems as if the review in [34] 
only examines whether a paper’s “main” hypothesis is fully or 
partly supported, i.e., one hypothesis per paper. We, on the 
other hand, study all reported hypothesis tests of an included 
experiment. Only examining the hypothesis reported as the 
“main” one may easily lead to a new type of “publication 
bias”, because an author may tend to emphasize the result that 
is statistically significant as the main result. 

 
5. RESEARCHER AND PUBLICATION BIAS, AND RESULT 
CORRECTNESS 
 
To estimate the presence of researcher and publication bias in 
software engineering experiments and its effect on result 
correctness, we apply the models introduced in Sections 3.1–
3.3. For this purpose, we need to make assumptions about the 
significance level (𝛼 ), the statistical power (1-𝛽 ) and the 

                                                             
7 The low sample size may reflect the typical number of students in a 

software engineering class. Availability of subjects may consequently be 
the practical reason for the very low statistical power of software 
engineering experiments. This is further supported by the observation that 
around 90% of the experiments in our review used students as subjects. 
The proportion of professionals as subjects in software engineering 
experiments has not increased since the 1993–2002, see [33].  

proportion of true relationships test (ptr). Table 6 displays and 
motivates the assumptions. 

 
TABLE 6 

VARIABLE VALUE ASSUMPTIONS 
 

Variable Valu
e 

Motivation 

𝛼 0.05 In our review of software engineering 
experiments, we found that almost 90% 
of the tests used 0.05 as the threshold 
for statistical significance. 

(1-  𝛽) 0.3 A median statistical power of about 
0.3, for medium–large effect sizes, was 
reported from a review of software 
engineering experiments in [28]. A 
medium– large effect size for software 
engineering experiments was 
documented in an analysis of the same 
experiments in [35]. The similarity 
between our set of studies and those in 
[28] with respect to sample size and the 
proportion of statistically significant 
results motivates the use of 0.3 as the 
median statistical power; i.e., there has 
not been much change since the 
previous review was conducted. (The 
median sample size was 34 in the 
previous review and 29 in our review, 
and the proportion of statistically 
significant results was 49% in the 
previous review [35] and 52% in our 
review.) 

ptr 0.7 The proportion of true relationships 
tested by statistical hypothesis testing 
in software engineering experiments is 
unknown. To be on the safe side, i.e., to 
avoid the critique that we make 
assumptions that make the reliability 
of results from software engineering 
experiments look worse than it is, we 
assume a ptr-value that corresponds to 
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a situation where as much as 70% of 
the tested hypotheses are true.8 A ptr-
value of about 0.7 is what is assumed 
to be the proportion of true 
relationships in a confirmatory meta-
analysis situation in [1], i.e., in 
situations where one has good reasons 
to believe that there is a true 
relationship. 

 
The expected proportions of statistically significant 

findings for different levels of researcher and publication bias 
by using Expression (4) and the values in Table 6, are 
displayed in Table 7. The values in bold type are examples of 
combinations of researcher and publication bias with values 
close to the observed proportion of statistically significant 
results (52%).  
 

TABLE 7 
EXPECTED MEDIAN PROPORTIONS OF SIGNIFICANT 

FINDINGS 
 

 Researcher bias (rb) 
0 0.1 0.2 0.3 0.4 0.5 

Publication 
bias (pb) 

0 23% 30% 38% 46% 54% 61% 
0.1 24% 33% 41% 48% 56% 63% 
0.2 27% 35% 43% 51% 59% 66% 
0.3 29% 38% 47% 55% 62% 69% 
0.4 33% 42% 50% 58% 66% 72% 
0.5 37% 46% 55% 63% 70% 76% 
0.6 42% 52% 60% 68% 74% 80% 
0.7 49% 59% 67% 74% 79% 84% 
0.8 59% 68% 75% 81% 85% 89% 

 
Table 7 shows that 52% of the statistically significant tests 

that we observed in our review do not match a situation with 
no or low researcher and publication bias. In the case of no 
researcher and publication bias (rb=pb=0), we should observe 
only 23% of statistically significant findings. Even if all the 
hypotheses in software engineering experiments test true 
relationships (ptr=1.0), we should not observe more statistically 
significant tests than are predicted by the typical statistical 
power, i.e., around 30%.  

To estimate the reliability of reported findings in software 
engineering experiments, we use the four scenarios 
(combinations) of researcher and publication bias with the best 
match between the observed and the expected proportion of 
statistically significant findings, i.e., those corresponding to the 
values in bold letters in Table 7. These are the scenarios with 
researcher bias 0.4 and publication bias 0.0, researcher bias 0.3 
and publication bias 0.2, researcher bias 0.2 and publication 
bias 0.4, and researcher bias 0.1 and publication bias 0.6. The 
scenario with no publication bias is unlikely. We therefore 
include only the other three scenarios in the following 
discussion of the result correctness. 

Table 8 displays the values for the Expressions (5)–(10), i.e., 
proportion of true positives (PTP), proportion of false 
negatives (PFN), proportion of false positives (PFP), proportion 

                                                             
8 It may be argued that there will always be a true relationship, i.e., 

that it is unlikely that something is exactly the same, and that it is only a 
matter of sampling size whether we find a statistically significant 
difference or not. While this points out the problem of using statistical 
significance as a measure of practical significance, the validity of our model 
estimates is not affected. In our context, we may assume that a true 
relationship means a relationship that will be found to be significant for 
reasonable sample sizes. 

of true negatives (PTN), proportion of correct results (PCR) 
and proportion of correct results among those that are 
statistically significant (PCRS) for the three chosen scenarios. 
We denote the proportion of not reported results “PNR”. 

 
TABLE 8 

RESULT RELIABILITY FOR SELECTED SCENARIOS 
 

 Scenario 1 Scenario 2 Scenario 3 
Researcher bias 
(rb) 

0.3 0.2 0.1 

Publication bias 
(pb) 

0.2 0.4 0.6 

Proportion of True 
Positives (PTP) 

36% 31% 26% 

Proportion of False 
Negative (PFN) 

27% 24% 18% 

Proportion of False 
Positives (PFP) 

10% 7% 4% 

Proportion of True 
Negatives (PTN) 

16% 14% 10% 

Proportion Not 
Reported (PNR) 

11% 25% 42% 

Proportion Correct 
Results (PCR) 

58% 59% 62% 

Proportion Correct 
Result among 
those Statistically 
Significant (PCRS) 

78% 81% 86% 

 
In [1] it is claimed that “most published research findings 

are false”. While this is not the case for software engineering 
experiments, the situation is, we believe, unsatisfactory. As can 
be seen in Table 8, the proportion of correct outcomes (PCR) is 
only 58–62%, i.e., slightly more than 50-50 of correct and 
incorrect results. The low proportion is, as indicated by the 
high proportion of false negatives (PFN), to a large degree 
caused by the low statistical power of most software 
engineering experiments. The correctness of findings reported 
to be statistically significant (PCRS) is 76–86%; i.e., 14–24% of 
the statistically significant results will be incorrect. As pointed 
out earlier, the PCRS measure fails to take into account the 
decrease in evidence strength in situations with high 
publication bias, such as in Scenario 1. We discuss this effect 
later in this section. 

Our assumption on 70% true relationships (ptr = 0.7) 
among those tested is very conservative. If we, perhaps more 
realistically, assume that there are 50% true relationships 
among those examined (ptr = 0.5), the PCR value does not 
change much (the new interval is 59–64%), but the PCRS value 
does. It is now 60–72%; i.e., as much as 28–40% of the claimed 
statistically significant results will in this case be incorrect! We 
will hardly ever know the actual ptr value, but there seem to be 
few research domains where it is reasonable to assume a ptr 
value higher than 0.5, see [1]. If there are topics or sub-domains 
in software engineering where the proportion of true 
relationships is as low as 30% (ptr = 0.3), then the claim “most 
published research findings are false” is likely to be the case for 
software engineering experiments as well (PCR between 34 
and 40%, and PCRS between 48 and 61%).  

To test the robustness of the results in Tables 7 and 8, we 
re-calculated PCR and PCRS with the following two changes in 
assumption: 
• It may be argued that the chosen level of significance 

places too little emphasis on tests that are highly 
significant; i.e., the calculations do not sufficiently 



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING:                                          JØRGENSEN, DYBÅ, LIESTØL AND SJØBERG 

acknowledge that many tests will be significant at, for 
example, the 1% level. The consequence is that our model 
may give a too negative estimate of the research 
correctness (see [36] for a discussion on this critique). Our 
review of the software engineering experiments gave that 
about 50% of the statistically significant (p <  𝛼  = 0.05) 
results had p-values less than 0.01. We therefore modelled 
a situation where 50% of the studies had an 𝛼 of 0.01 and 
50% of the studies an 𝛼  of 0.05, applying the same 
assumptions as before. This gave results very similar to 
those reported in Tables 7 and 8. 

• The statistical power of software engineering experiments 
varies and it may give a biased outcome to use the median 
statistical power to represent the set of all experiments, 
especially if the distribution of statistical power values is 

strongly skewed. We therefore re-calculated the 
proportion of correct results using the empirical 
distribution of statistical power of the software 
engineering experiments reported in [28], i.e., for a similar 
set of software engineering experiments. This simulation, 
where we randomly selected 1000 statistical power values 
from the empirical distribution, again gave results that 
were very similar to those reported in Tables 7 and 8.  

 
Applying the Bayesian Factor, see Expression (11), for 

selected levels of researcher and publication bias, and 
assuming as before a statistical power of 0.3 and a significance 
level of 0.05, further supports the unsatisfactory situation 
resulting from researcher and publication bias (see Figure 2).  

 

 
Fig. 2. Decrease in strength of evidence with publication and researcher bias 

 
 

Figure 2 indicates that particularly the researcher bias 
affects the strength of the evidence from statistically significant 
findings. The three scenarios in Table 8, for example, result in 
Bayes Factors between 1.5 and 2.0, i.e., results categorized as 
“not worth more than a bare mention”. A Bayes Factor of 1.0 
means that the evidence supports the alternative hypothesis 
(true relationship) and the null hypothesis (false relationship) 
equally, while a Bayes Factor of 2.0 means that the data is just 
twice as likely to observe when the relationship is true 
compared with when the relationship is false. Clearly, Bayes 
Factors in the interval 1.5 to 2.0 cannot be considered to 
provide strong evidence in support of claiming a relationship 
based on a statistically significant finding.  

Figure 2 also shows that the maximum strength of 
evidence is a Bayes Factor of 6, which is categorized as 
“positive” but not as “strong evidence”. The low strength of 
evidence, even in an unbiased situation, is due to the very low 
average statistical power of software engineering experiments. 
As a comparison, a situation where studies have a statistical 
power of 0.8, where we observe statistical significance at p <  𝛼 

= 0.01, and where there is no researcher bias and publication 
bias, would give a Bayes Factor of 80, i.e., “strong evidence”. 

 
6. WHAT SHOULD BE DONE TO IMPROVE RESEARCH 
PRACTICES? 
 
A high level of reliability of research results is a prerequisite 
for the use of scientific studies as input to evidence-based 
practices in software engineering [37]. Undoubtedly, there are 
many software engineering experiments of high quality. The 
results from the analyses of this paper suggest, nevertheless, 
that there is a need to improve research practices. Meta-studies 
on a particular research question, replications and/or careful 
reviews of the research quality of individual studies may 
improve the reliability of applied research results, but cannot 
fully remove the unfortunate effects of low statistical power 
and strong publication and researcher bias within a research 
domain. 

To address the identified challenges related to publication 
and researcher bias, we recommend the following 
improvement in researcher and reviewer practices (described 
in more detail in Table 9): 
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• Avoid studies with low statistical power 
• Avoid studies with complex design and many statistical 

tests 
• Improve the reporting of the study design, analysis and 

results 
• Emphasize effect sizes and their confidence intervals 
• Increase the acceptance of non-significant research results 
• Increase the number of replications and meta-analyses of 

studies 
• Make the raw data and details about the research process 

available  
 
There is no shortage of recommendations on how to 

conduct empirical software engineering studies (see, for 
example, [38-41]), and all our advice is included in previously 
reported, more general and more comprehensive guidelines 
and textbooks. What we add is a focus on the need to reduce 
researcher and publication bias by quantifying its negative 
effects. We also suggest changes in reviewer and editorial 
practices to help overcome the problem. We are aware that our 
suggestions, to some extent, are in conflict with the need for 
more empirical studies to answer the set of questions of high 
industrial importance [42]. Higher statistical power of studies, 
for example, means that a study may be more costly and 
require greater research competence, and, therefore, fewer 
empirical studies may be conducted. In spite of this 
consequence, we believe that it is not acceptable to ignore the 
identified challenges of research reliability. 

Previously published advice has typically not had much 
impact on research practice. The similarity, or even decrease, in 
sample size from the survey on software engineering 
experiments from 1993–2002 [28, 33] and 2002–2013 (this 
paper), for example, suggests that the clear advice about the 
need to increase statistical power has had little impact on 
actual statistical power. Reasons for the deviations between 
best and actual practice may include: 

• Lack of capability, e.g., due to a lack of financial resources 
or access to a large number of developers, to conduct 
large-scale experiments with sufficient statistical power. 
Classes of student programmers are consequently the 
easiest, and perhaps the only feasible, option.  

• Publication mechanisms implicitly reward the use of 
questionable practices [8]. As an illustration, there is 
frequently a higher probability of finding at least one 
statistically significant (publishable) finding when 
conducting many small studies with many hypotheses 
compared to the situation with one larger study with few, 
well-defined hypotheses, i.e., a publish or perish culture 
rewards many small, less reliable, studies. 

• Questionable practices, including very low statistical 
power, are common even among senior researchers. If they 
can, why shouldn’t I, i.e., “do as the others”. 

• It is harder to publish a replication of the findings of other 
researchers than to be the first one with an interesting, 
statistically significant, finding.  

• There is little to gain and much to lose from making data 
available. Hiding their own data, e.g., claiming that they 
are confidential, makes it much harder for other 
researchers to find embarrassing errors or weaknesses in 
the analyses. 
 
Changing software engineering researchers’ behaviour 

from questionable to more proper research practices is, we 
believe, not so much about better training in empirical studies, 
although that is important as well. Even more important is the 
creation of mechanisms that reward good practices. Such 
mechanisms must include changes in the reviewing process 
and paper acceptance criteria. For each recommended practice 
in Table 9, we therefore include what we believe are useful 
changes for reviewing policies.  
 

 
TABLE 9 

IMPROVED RESEARCH PRACTICES, AND SUGGESTED CONSEQUENCES, FOR SOFTWARE ENGINEERING EXPERIMENTS 
WITH HYPOTHESIS TESTING 

 
Advice Practical consequences 
Avoid low 
statistical power [21, 
41, 43] 

Researchers: 
• Carry out analyses of statistical power and use this to decide on 

sample size before running a study. 
• Cancel or re-design studies with unsatisfactory low statistical power. 
• Do not use the observed (post hoc) statistical power as an indicator for 

the statistical power of the study. 
Reviewers: 

• Require that papers include a discussion on the desired level of 
statistical power and the implied sample size as part of the design of 
the study. 

• Reject studies with unsatisfactory low statistical power for reasonable 
effect sizes, e.g., studies with statistical power of less than 0.5 for 
meaningful effect sizes, regardless of statistical significance. (Such 
studies provide a major contribution to low result reliability within a 
domain through decreased strength of evidence and increased 
temptation of researcher and publication bias.) 

Avoid complex 
studies with many 
statistical tests [40, 
44] 

Researchers: 
• Keep the design of the experiment simple and transparent.  
• Include few hypotheses and variables in your study.  

Reviewers: 
• Reward studies with a simple design and few hypotheses and 

variables.  
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• Reject studies with a high number of statistical hypothesis tests 
(“shotgun testing”), especially when it is likely that a substantial 
proportion of the statistical significant tests are due to chance or 
formulated post hoc, or when there are indications of publication bias. 

Improve the 
reporting of study 
design, analyses 
and results [40, 45, 
46] 

Researchers: 
• Make it clear whether a hypothesis was stated in advance or derived 

after looking at the data (exploratory hypothesis to be tested in follow-
up studies).  Avoid statistical tests on exploratory hypotheses. 

• Report on all evaluated tests and measures, especially when measures 
are on variants of the same construct. 

• Decide on inclusion/exclusion (outlier) criteria and statistical 
instruments in advance. 

• Avoid confusing statistical and practical significance. 
Reviewers: 

• Request that the authors make a statement where they declare that, for 
all experiments, they have accurately reported all hypothesis tests 
conducted, measures applied, conditions examined, data exclusions 
made, and how they determined their sample sizes. Making such a 
statement may be a mandatory step in the submission process for 
papers that report experimental studies, similarly to the declaration of 
vested interests in many research domains. 

Emphasize effect 
sizes and their 
confidence intervals 
[47] 

Researchers: 
• Many, probably most, research questions are better formulated as 

“How large is the effect?” rather than “Is there an effect?” Such 
questions should be answered by reporting confidence intervals of 
effect sizes, rather than by the use of p-values. 

• Use the confidence intervals of the effect sizes as the main means to 
interpret the importance and precision of the results, not the p-values.  

Reviewers: 
• Request that confidence intervals and their effect sizes are reported. 

Acknowledge that a confidence interval of effect sizes that includes 
“no effect”, e.g., zero difference in mean values, can be very 
informative. This is especially the case when the confidence interval is 
narrow. 

Accept non-
significant results 
[48, 49] 

Researchers: 
• Report well-powered studies and tests with statistically non-

significant results the same way you would do when finding 
statistically significant results.  

Reviewers: 
• Accept non-significant results from studies with good research quality 

and reasonable statistical power.  
More replications 
and meta-studies 
[40, 50-52] 

Researchers: 
• Conduct replications of your own and others’ studies to evaluate the 

validity of previous results. Replications do not have to be, and 
frequently should not be, identical replications. Emphasize the 
replication of effect size, not so much the replication of statistical 
significance.9 

• Conduct meta-studies based on the original study and its replications. 
Adjust for strength of study, publication bias and look for indicators of 
researcher bias in individual studies. 

Reviewers: 
• Replications, especially of other researchers’ studies, and meta-studies 

should be welcomed, even when presenting non-significant results. As 
with other experiments, the statistical power of replications should be 
explicitly considered as part of the design of the replication. 

                                                             
9 It may feel natural that a replication of a study that finds p<0.05 should have a good chance of 

replicating the significance. This is frequently not the case and part of the fallacy “belief in the law of small 
numbers” [6]. While one should expect to find about the same effect size in a replication, one would need 
to strongly increase the number of subjects to have, for example, an 80% chance of replicating a slightly 
significant finding. 
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Make data available 
[40] 

Researchers: 
• Unless there are very good reasons for not disclosing the raw data, 

make them openly available, at least on request to the author. Include 
information about the data collection and analysis that might be 
needed to properly use the results of your study. 

Reviewers: 
• To publish a paper, it should be required that the data is made openly 

available unless strong confidentiality reasons prohibit it. 
 
 
5. CONCLUSION 
 
We first document the presence of publication and researcher 
biases in software engineering experiments through a small-
scale survey of statistical practices, see also [53, 54] for further 
evidence of such biases.  We then demonstrate that an 
unbiased situation does not match the observed proportion of 
statistically significant tests in software engineering 
experiments, and calculate the implication of the likely amount 
of bias for the reliability of the reported results. We argue that 
even assuming a best-case (conservative) scenario, the situation 
is unsatisfactory. The unsatisfactory reliability of the research 
results implies a need for improvement in research and review 
practices.  

Our suggested improved statistical practices have the 
potential of leading to a substantial improvement in the 
reliability of the research results. Unfortunately, the current 
publishing mechanisms do not always reward good research 
practices. Consequently, we urge the research community to 
improve the review practices, i.e., reconsider what is accepted 
and not accepted for software engineering journals and 
conferences. In particular, we argue, researchers in software 
engineering need to strengthen the statistical power of their 
studies. Correspondingly, reviewers of papers describing 
software engineering experiments should require that the 
researchers derive the population size of their studies based on 
consideration of reasonable levels of statistical power. 
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APPENDIX  
THE EFFECT OF SIGNIFICANCE LEVEL, STATISTICAL POWER, RESEARCHER BIAS AND  

PUBLICATION BIAS ON THE RELIABILITY OF STATISTICALLY SIGNIFICANT RESULTS 
 

 
In the following, we assume that our null hypothesis (H0) 

is that there is no relationship, and the alternative hypothesis 
(Ha) is that there is a relationship between two variables. The 
observation that a test is statistically significant at level ! is 
denoted S!. The other variables are as described in Table 3 
Section 3.1. The model is based on the same structure and 
assumptions as those explained in Section 3. 

 
Scenario 1: No researcher or publication bias (BF0) 
The Bayes Factor is in this case the probability of observing 

a statistically significant relationship when there is one, i.e., the 
statistical power of a study, divided by the probability of 
observing a statistically significant relationship if there is none, 
i.e., the significance level of a study. 

 
𝐵𝐹! = 𝑝 𝑆∝     𝐻!) 𝑝 𝑆∝   𝐻!) =    (1 − 𝛽) 𝛼 

 
Scenario 2: Researcher bias, no publication bias (BF1) 
The probability of observing significant results given that 

the relationship is true, i.e., p(𝑆∝  | Ha), increases with the 
probability of observing true negatives multiplied by the 
researcher bias, i.e., with  " ∙  rb. The probability of observing 
significant results given that the relationship is not true, p(𝑆∝ | 
H0), increases with the probability of false negatives times the 
researcher bias, i.e., (1- !) ∙  rb.  

 
𝐵𝐹!
= 𝑝 𝑆∝   𝐻!   ∧ 𝑟𝑏) 𝑝 𝑆∝   𝐻! ∧ 𝑟𝑏)= ( 1 − 𝛽 + 𝛽 ∙ 𝑟𝑏) 𝛼 + 1 − 𝛼 ∙ 𝑟𝑏  
 

Scenario 3: Researcher and publication bias (BF2) 
The probability of observing non-significant tests decreases 

and, accordingly, the probability of observing significant tests 
increases. The Bayes Factor expression is based on the 
following elements, which are assumed to be true for both H = 
H0 and H = Ha: 
• The probability of observing a non-significant finding = 1 – 

the probability of observing a significant finding = 1 - p(𝑆∝ 
| H). 

• A publication bias means that the probability of not 
reporting a non-significant finding, given that a non-
significant finding has been found, is (1- p(𝑆∝ | H)) ∙  pb. 
The new (reduced) bias is the initial probability of 
reporting a finding minus the probability of not reporting 
a finding, i.e., 1 - (1 - p(𝑆∝ | H)) ∙  pb. 
 

 
𝐵𝐹!

=
𝑝 𝑆∝   𝐻!   ∧ 𝑟𝑏)

1 − (1 − 𝑝 𝑆∝   𝐻!   ∧ 𝑟𝑏)) ∙ 𝑝𝑏
𝑝 𝑆∝   𝐻! ∧ 𝑟𝑏)

1 − (1 − 𝑝 𝑆∝   𝐻! ∧ 𝑟𝑏)) ∙ 𝑝𝑏
 

 

=
1 − 𝛽 + 𝛽 ∙ 𝑟𝑏

1 − 1 − ( 1 − 𝛽 + 𝛽 ∙ 𝑟𝑏 ) ∙ 𝑝𝑏
𝛼 + 1 − 𝛼 ∙ 𝑟𝑏

1 − 1 − (𝛼 + 1 − 𝛼 ∙ 𝑟𝑏 ) ∙ 𝑝𝑏 
 

 
To better illustrate the effect of publication bias on 

evidence strength, we may express this as: 
 

=
1 − 𝛽 + 𝛽 ∙ 𝑟𝑏

1 − 𝛽 ∙ 𝑝𝑏 +   𝛽 ∙ 𝑟𝑏 ∙ 𝑝𝑏
𝛼 + 1 − 𝛼 ∙ 𝑟𝑏

1 − 𝑝𝑏 + 𝛼 ∙ 𝑝𝑏 + (1 − 𝛼) ∙ 𝑟𝑏 ∙ 𝑝𝑏 
 
As can be derived, the higher the publication bias, i.e., the 

closer pb is to 1, the lower the Bayes Factor. In the extreme case, 
applying the BF-expression with a total publication bias (pb = 
1) gives a Bayes Factor of 1, i.e., there is no added value from 
observing a significant finding in a domain where none of the 
statistically non-significant findings are reported. This 
corresponds well, we believe, with common sense. 
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