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Abstract— Software professionals do not always clarify what 
they mean by their effort estimates. Knowing what is meant by 
an estimate is, however, essential when adding individual effort 
estimates from a work breakdown structure to find the estimated 
total effort. Adding the most likely instead of the mean effort of a 
set of cost elements may result in substantial underestimation of 
the total effort. In a survey of forty-four software companies we 
found only two companies that clarified the meaning of their 
estimates and had a proper method for adding these estimates. 
The other companies typically added single point estimates 
without clarifying what they added or with types of estimates 
likely to give too low estimates of the total effort. We examine the 
effect of improper addition of estimates and find, for the studied 
contexts, that summing the most likely effort estimates would 
lead to a substantial under-estimation of the most likely total 
effort. We also find that the use of the PERT-method, which 
provides a proper statistical basis for adding effort estimates and 
is used by many software companies, is likely to underestimate 
the effort in software development contexts. This is caused by, we 
argue and illustrate with empirical data, people’s tendency 
towards providing too narrow minimum and maximum effort 
intervals. We outline a method that, we believe, better ensures 
that proper estimates of the total effort are produced. 

Keywords—Cost estimation; project management; adding 
estimates; work breakdown structures (WBS), uncertainty analysis 

I. INTRODUCTION 
A separation of the total software development work into 

cost element to produce a work breakdown structure (WBS) is 
a frequently used method for planning and estimation purposes 
in the software industry [1]. When a list of deliveries, use 
cases, activities, user stories or other types of cost elements has 
been produced, the effort needed for each element is estimated 
and summed to find the total work effort. Unfortunately, 
adding effort estimates of cost elements to find the total effort 
is not a trivial task in situations with a high degree of 
uncertainty in effort usage and a skewed outcome distribution, 
i.e., in situations typical for software development. 

As an illustration, assume that your organization plans the 
completion of ten tasks of similar size and complexity, and that 
the effort you think a developer will use on each individual 
task is distributed as depicted in Fig. 1. The distribution in Fig. 
1 reflects that you believe that a developer most likely will 
spend about 15 work-hours (the mode of the distribution), that 
it is hardly possible to spend less than 10 work-hours (the best 
case or minimum of the distribution), and that sometimes a 
developer may spend 40-50 work-hours (the worst case or 
maximum of the distribution). In about 50% of the cases you 

believe a developer will spend less than around 17 work-hours 
(this is the median or the p50-estimate of the distribution1). 
What is in this situation the estimated total effort needed for 
the ten tasks? 

 

Fig. 1. The effort outcome probatility distribution of one task 

An incorrect answer, reflecting some software companies’ 
estimation practice (more on this in Section II), is that the ten 
tasks will require ten times the most likely effort, i.e., 10 x 15 = 
150 work-hours. Another incorrect answer is that since it is 
50% likely to use less than the median effort, it is 50% likely to 
use less than 10 x 17 = 170 work-hours on ten tasks.  

A more accurate estimate of the most likely total effort is 
ten times the mean value, i.e., 10 x 20 = 200 work-hours. This 
reflects that we can only meaningfully add the individual mean 
effort values (and not the mode or the median values) of 
random values, and that the sum of the mean values of random 
variables approximates a normal distribution where the most 
likely, median and the mean values are similar (the central 
limit theorem). The meaningfulness of adding mean values is a 
consequence of the linearity of expected values of random 
variables. The normal distribution of the sum of the mean 
values is a consequence of the central limit theorem. Essential 
assumptions for the central limit theorem to apply fully in our 
estimation context include that the set of cost elements is large 
enough, that there is no strong dependencies between the cost 
elements and that there are no single or few elements that 

                                                             
1  The median effort of the Gamma distribution in Fig 1 may be 

approximated by the formula kΘ(3k-0.8)/(3k+0.2) + a threshold value, 
where k (the shape) is 2, Θ (the scale) is 5 and the threshhold value is 10. The 
mean value of the Gamma distribution is kΘ + the threshhold value, i.e., 2x5 
+ 10 = 20 work-hours. 



dominates with respect to size or uncertainty2. In our example, 
assuming that each cost element follows the Gamma 
distribution in Fig. 1, the distribution of the total effort of the 
ten tasks is as displayed in Fig. 2. In accordance with the 
central limit theorem, we see that the distribution is close to a 
normal distribution3, which means that the most likely, the 
median and the mean effort are close to each other.  

 

Fig. 2. The effort outcome distribution of the total effort of the ten tasks 

Adding anything else than the mean effort values will give 
biased total estimates. It is, for example, 99% likely to exceed 
the sum of the most likely estimates, i.e., actual effort > 150 
work-hours with 99% probability. Similarly, it is 80% likely to 
exceed the sum of the p50-estimates, i.e., actual effort > 180 
work-hours with 80% probability. 

To what extent do software companies fail to sum the mean 
effort estimates? Is this likely to be a serious mistake and a 
partial explanation of the tendency towards underestimating the 
effort of software projects? Does the use of the PERT 
(Program Evaluation and Review Technique) [3] or other 
three-point estimation methods that aim to provide methods for 
proper addition of adding estimates actually solve the problem?  

In the remaining part of this paper we try to answer these 
questions and provide some recommendations on improved 
estimation practices addressing the identified problems. 

There is not much previous work on challenges related to 
adding effort estimates in software engineering, but see for 
example [4-6] which addresses several of the elements 
discussed in this paper. We have failed to find any studies that 
mention this as a likely reason for cost overrun in software 
projects. The theory for the statistical discussions of the paper, 
e.g., related to properties of expected values of distributions 
and the central limit theorem, can be found in introductory 
textbooks on statistics [2]. 

                                                             
2 In practice, the central limit theorem often works amazingly well even 

when one or more of these assumptions are violated. 
3 The distribution of the sum of ten identical Gamma distribution has the 

same scale, but ten times higher shape (new shape = 2 x 10 = 20) and 
threshold (new threshhold = 10 x 10 = 100). 

II. ESTIMATION SUMMATION PRACTICES 
We received effort estimates together with estimation 

process description from forty-four small and medium large 
software companies located in Europe and Asia. The 
companies were identified through an internet search for 
offshoring software companies. The companies were paid for 
their estimation work. An examination of the estimates and 
estimation processes for the purpose of the analyses in this 
paper gave the following results: 

• 73% (thirty-two) of the companies added single point 
estimates of individual cost elements. In all these cases, 
how to interpret the single point and the total effort 
estimates was not clarified, or the type of estimate, 
typically described as “most likely effort”, made adding 
them statistically flawed in situations with skewed 
effort outcome distributions. 

• 14% (six) of the companies used three-point estimates 
with varying names on the three estimation points, e.g., 
“minimum, average and maximum effort” or “best case, 
most likely case, worst case”. One company estimated 
only the maximum and minimum effort and calculated 
the most likely effort as the average of these two values. 

• Of the six companies using three-point estimates, only 
two calculated and added the mean effort values, i.e., 
only two of the companies demonstrated awareness of 
the essential difference between the mode and the mean 
effort when adding effort estimates. These two 
companies used the formula from PERT for finding the 
mean effort from the minimum, most likely and 
maximum effort (see Section IV for more about this). 
The other four added all the minimum effort values, all 
the most likely effort values, and all the maximum 
effort values to find the total minimum, the total most 
likely and the total maximum effort, i.e., they used a 
(statistically incorrect) strategy similar to that used for 
the single point estimates. 

• 11% (five) of the companies applied a formal 
estimation model (three used Function Points, one used 
Use Case Points and one used COCOMO). These 
models are top-down (and has their own challenges 
[7]), which means that how to add the effort of 
individual cost elements is not a central issue. 

One may argue that the challenge related to adding effort 
values to find the total effort is solved by adding a cost 
contingency, e.g., by adding 30% to the sum of the most likely 
effort values. While this may improve the situation in some 
contexts, we found little evidence that this would solve the 
problem among the surveyed companies. Only three of the 
companies examined added such contingencies. Even if they 
had added a cost contingency, it is in our opinion a poor 
practice to use cost contingency to repair a flawed addition of 
effort estimates. Not knowing the difference between the most 
likely and the mean effort means, for example, that you will 
not know how much to add as contingency. 

Clearly, we cannot draw strong conclusions about the state-
of-practice in the software industry based on our survey of a 



few small and medium large software development companies 
in a few countries. The findings do nevertheless provide an 
indication on that there are challenges related to the 
interpretation and adding of effort estimates. The results are in 
accordance with those reported in [8]. 

III. HOW MUCH WILL THE TOTAL ESTIMATES BE BIASED? 
To illustrate how much adding the estimates of most likely 

or median effort may bias the estimated total effort we use the 
following measure of relative estimation error (REE): 

(1) REE = Actual effort/Estimated most likely effort  
 

Our illustration is based on the assumption that the 
distribution of the REE-values reflects the distribution of the 
effort outcome. If, for example, 25% of the cost elements have 
50% or more effort overrun, i.e., have a REE-value higher than 
1.5, this reflects that it is about 25% likely to use at least 50% 
more than the estimated most likely effort. We believe that this 
is a reasonable assumption, at least for a homogenous set of 
cost elements. It simply reflects that a meaningful estimate of 
the uncertainty of an estimate is the previous estimation 
uncertainty, as measured by the estimation error, of similar cost 
elements. 

There are many different estimation contexts and some of 
them do not even show a tendency towards that using more 
effort than estimated is more likely than using less effort than 
estimated [9], i.e., the most likely and the median estimation 
overrun is about the same value. To reflect this diversity, at 
least to some extent, we analyze the following two real-world 
contexts: 

• The context of forty-two small and medium sized software 
development projects, using the data collected in [10]. 
Project can be seen as large cost elements and our 
calculation reflects what will happen if a client (or 
software company) wants to estimate or budget the total 
cost of a portfolio of projects. 

• The context of 440 smaller tasks (user stories) following an 
agile development process. This is a context with more 
feedback/learning and less estimation uncertainty 
compared to the previous context4. 

For each of these contexts we identified the mode values 
(the most likely REE) of the distributions by manually 
examining the empirical REE-distributions to identify the top 
point5. We use the distributions to analyze the difference 
between the mode and the mean and the median and the mean. 
The REE-distributions are displayed in Figs. 3 and 4. 

                                                             
4 The data about 443 user stories were collected in a Norwegian software 

company with a team of seven developers completing tasks on different 
software systems. We removed three user stories where the effort was 2-5% 
of the estimated effort, suggesting that the actual effort was not correctly 
logged, resulting in 440 remaining user stories. 

5 The outcome of this manual process depends on the interval width of 
the histograms. To test the robustness of the manually found mode values, we 
examined the resulting mode values when fitting a Gamma distribution to the 
empirical data (using the statistical tool Minitab). This led to approximately 
the same mode values as when manually inspecting the distribution. 

Figs. 3 and 4 describe contexts where the most likely effort 
is the estimated effort, i.e., the mode of the REE-distribution is 
about 1.0 in both contexts. While the distribution in Fig. 3 is 
strongly right-skewed, the distribution in Fig. 4 is less so and 
has a larger proportion of observations to the left of the mode. 

An analysis of the empirical data underlying Figs. 3 and 4 
gives mean values of the REE-distributions of 1.42 and 1.16, 
respectively. This implies, by applying the central limit 
theorem and our assumptions of the relation between the REE 
and the effort outcome distribution, that a company using the 
sum of the most likely effort as their estimate of total effort 
should expect about 42% (the first context) and 16% (the 
second context) effort overrun. This level of effort overrun is 
only due to the incorrect addition of estimates and will be 
present even when the estimated most likely efforts of 
individual cost elements are accurate. In none of the contexts 
would the use of the median (p50) estimate remove the 
estimation addition problem. In the first context adding the 
median estimates would give 21% too low estimates of the 
total effort, while in the second this would not change anything 
at all, since the mode is the same as the median. 

 

Fig. 3. The REE-distribution of  the small and medium-large projects 

 

Fig. 4. The REE-distribution of  agile development tasks 

The above real-world scenarios have a few limitations: 



• We assume that the estimates leading to the REE-
distribution reflect the estimated most likely effort. In the 
first context we explicitly asked for their estimates of most 
likely effort and in the second we have experienced that 
this is a common interpretation of estimates in agile 
estimation. In spite of this, we do not know how well the 
estimates actually reflect most likely effort and there may 
be a mixture of different interpretations behind the 
estimates and consequently the REE-values. 

• The two contexts examined are selected by convenience, 
i.e., that we had the data available, not by any 
consideration about representativeness. The commonly 
observed tendency towards effort overruns in context 
similar to the first context and lack of such tendency in 
less competitive contexts [9], such as the second context, 
suggest that the contexts may be representative for a large 
set of contexts. 

Notice that the non-symmetric distribution in Fig. 1 is 
consistent with, and could have been caused by, a lack of 
proper addition of estimates of cost elements within each 
project. If the projects had added the mean estimates of the cost 
elements of the projects, and these had been accurately 
estimated, the REE-distribution should have been symmetric. 
Lack of proper addition of estimates is, however, not the only 
possible explanation for the non-symmetric REE-distributions 
and it is highly speculative to use this as evidence for improper 
addition of estimates.  

In spite of the above limitations, we believe that our results 
at least illustrates that lack of proper methods for adding 
estimates has the potential to explain parts of the effort 
overruns typically observed in software development contexts 
[11, 12] and that the awareness of how to properly add 
estimates is low. 

IV. DO THE USE OF PERT AND SIMILAR METHODS SOLVE 
THE ADDITION PROBLEMS? 

The PERT (Program Evaluation and Review Technique) was 
initially meant for estimating the duration, including the 
identification of the critical path, of a project [3, 13]. Many of 
the ideas, however, apply for effort estimation and are applied 
many software companies for that purpose, as well. The typical 
steps are as follows: 

• Identify the minimum, the most likely (mode) and the 
maximum effort of each cost element. In practice, the 
interpretation of minimum and maximum is not based on 
the absolute minimum and maximum (which makes no 
meaning in software contexts), but for example a 90% 
minimum-maximum interval (90% likely to include the 
actual effort). It may also be requested on the format of 
p10-estimate (10% likely not to exceed) and p90-estimate 
(90% likely not to exceed), or more vague instructions 
such as: “Be almost sure (not) to include the actual effort 
in the minimum-maximum interval”. 

• Calculate the mean (expected) effort of each cost element:  
(2) Mean effort = (Minimum effort + 4 x Most likely effort 
+ Maximum effort)/6 

• Calculate the variance of each cost element:  
(3) Variance of effort = (Maximum effort – minimum 
effort)2/36 

• Calculate the estimated total effort (which will be close to 
the most likely and the median effort given that 
sufficiently large number of activities are included and 
other assumptions of the central limit theorem are met) as 
the sum of the mean effort. 

• Calculate the total variance as the sum of the variance of 
each cost elements. 

• Use the standard deviation (square of the total variance) 
and the assumption of normal distribution to find the pX-
estimates, where X for example X is 50% and the p50-
estimate is the number of work-hours 50% likely not to be 
exceeded). 

The analytical calculation steps are sometimes replaced 
with so-called Monte Carlo simulation, which is more robust 
and flexible than the above process [14].  

The PERT has frequently been criticized on basis on its 
statistical assumptions [13], but an even more serious problem 
is in our opinion related to the quality of the input. If PERT or 
the Monte Carlo simulation-based method do not receive 
realistic minimum and maximum effort values as input, they 
will, not surprisingly, provide biased estimates of the mean 
effort of the cost elements and consequently give a biased 
estimate of the total effort. 

There are good reasons to believe that the input to PERT 
often is of low quality. It is, for example, well documented that 
people tend to provide too narrow minimum-maximum 
intervals [15, 16]. Our study in [17], for example, reports that 
the minimum-maximum intervals of cost elements in projects 
where the software professionals were instructed to be 90% 
sure (or almost sure) to include the actual effort in their 
minimum-maximum intervals, included the actual effort, on 
average, only about 30% of the time. 

As a demonstration of how much poor input to PERT is 
likely to affect an estimate of the total effort, we examined the 
minimum-maximum effort values the six companies in Section 
II that provided three-points estimates. One of the six 
companies with three-point estimates did this on a format 
difficult to use for this analysis and is not included. For the 
purpose of our examination we use the following measures: 

(4) Relative width of the interval = RWidth = (Maximum effort 
– Minimum effort)/Most likely effort 

(5) Ratio of minimum to most likely effort = MinToML = 
Minimum effort/Most likely effort 

(6) Ratio of maximum to most likely effort = MaxToML = 
Maximum effort/Most likely effort 

Table 1 displays the median values of the above measures 
for each of the five companies’ estimates of the same project. 
The median values are calculated as the median of the 
minimum estimates, the median of the most likely estimates 
and the median of the maximum effort estimates of all the 



identified cost elements. The companies identified between 10 
and 30 cost elements each for the project. 

Table I displays that the width of the effort intervals vary 
much among the companies. The median RWidth is 0.4. An 
RWidth of 0.4 reflects, for example, that a software company 
thinks it will maximum use 20% more and minimum 20% less 
than the most likely effort. Table I shows that the minimum 
effort values are as far (in percentage) from the most likely 
effort as the maximum effort values are from the most likely 
effort for all companies. This suggests a belief in a symmetric 
effort outcome distribution. A symmetric effort outcome 
distribution would mean that it is just as likely to spend more 
as it would be to spend less than the estimated most likely 
effort. This is, we believe, a highly questionable assumption in 
software development contexts and, as argued earlier in this 
paper, not consistent with the results from empirical studies on 
this issue, e.g., on the tendency to use more effort than 
estimated. 

TABLE I.  EFFORT INTERVAL PROPERTIES (MEDIAN VALUES) 

Company 
Measures 

RWidth MinToML MaxToML 

A 0.4 0.8 1.2 

B 1.0 0.5 1.5 

C 0.4 0.8 1.2 

D 1.5 0.5 2.0 

E 0.2 0.9 1.1 

Median 0.4 0.8 1.2 

 

Table II includes two scenarios illustrating the similarity in 
estimation bias between incorrect adding of estimates (as 
discussed in Section III) and incorrect input of minimum-
maximum to PERT and similar method. For our illustrative 
purpose we compare the following estimates: 

• TRUE-EST: The mean of the true distribution of effort 
values of a cost element. The true distribution is here 
assumed to be the REE-distribution in Fig. 3 for 
Scenario 1 and the REE-distribution in Fig. 4 for 
Scenario 2. The TRUE-EST is set to 100% for both 
scenarios, i.e., the other estimates (see below) are 
calculated as proportion of the true mean estimate. If , 
for example, the ML-EST is 80%, this means that ML-
EST is 80% of the TRUE-EST. 

• ML-EST:  The estimated most likely effort of a cost 
element. We use the same distributions as for TRUE-
EST, i.e., those in Figs. 3 and 4. Since the mean values 
were 142 and 116% of the most likely effort for 
Scenarios 1 and 2, we have that ML-EST values are the 
inverse, i.e., 100/142 = 70% and 100/116 = 86% of 
TRUE-EST. 

• PERT-EST: The PERT-estimated effort uses the 
median minimum and maximum effort values from 
Table I (the values in the last row). These values reflect 

the narrow and symmetric minimum and maximum 
values typically provided by the companies applying 
PERT in our survey (see Section II). PERT-EST is 
calculated as TRUE_MEAN-EST/(MinToML + 4 x ML 
+ MaxToML), where the denominator of the ratio is the 
PERT-formula for the mean estimate. 

TABLE II.  USE OF ML OR PERT WITH BIASED INPUT  

Scenario 
Estimate in percentage of mean effort 

TRUE_EST ML-EST PERT_ EST 

1 100% 70% 72% 

2 100% 86% 88% 

 

As can be seen in Table II, the underestimation of the total 
effort when applying PERT with the narrow and symmetric 
minimum and maximum intervals typically applied by the 
companies, which results in estimates of 72% and 88% of the 
mean-based effort, will be substantial and similar to that 
observed when simply adding most likely value which will 
give 70% and 86% of the mean-based effort.  

A further illustration of the effect of too symmetric and 
narrow distribution is given in Figure 5, where an almost 
symmetric, narrow effort Gamma distribution (solid line, 
Shape = 5, Scale = 5, Threshold = 80) is compared with a 
wider and right-skewed Gamma distribution (dotted line, 
Shape = 2, Scale = 20, Threshold = 80). Assume that the 
distributions represent two possible representation of the effort 
outcome of the same cost element. Both distributions have the 
same most likely use of effort (the same mode), which in both 
cases equals 100. The mean values, however, differ very much 
(105 vs. 120). 

 

Fig. 5. Narrow, symmetric vs wide, asymmetric effort distribution for one 
cost element 

Assume furthermore that the actual effort outcome 
probability distribution of the ten cost elements is the dotted 
line, while the provided estimates are based on the solid line. 
The difference between the estimated and the actual 
distribution of the total effort of the ten tasks will then be as 
displayed in Fig. 6. 



 

Fig. 6. Narrow, symmetric vs wide, asymmetric effort distribution for total 
effort of ten cost elements 

When reading about PERT and similar methods in 
textbooks and frameworks we have failed to observe any 
instruction on how to provide the user with tools and 
techniques that ensure accurate input of minimum and 
maximum values. The textbooks and frameworks consequently 
seem to assume that people are good at knowing when they 
are, say 90% as compared to 60% or 95% confident in 
including the actual effort in their minimum-maximum 
interval. Our data, and many other papers, document that we 
are not and that we need support to find realistic minimum-
maximum intervals. If we cannot manage to give PERT or 
similar methods proper minimum and maximum, they are not 
of much help and perhaps lead to as biased estimates as just 
adding the most likely effort values. 

V. OUTLINE OF A METHOD FOR ADDING ESTIMATES 
How can we improve the estimation process so that adding 

the effort of different cost elements does not lead to biased, in 
particular too low, effort estimates? Below we outline a 
method that addresses some of the challenges identified in the 
previous sections. The outlined method assumes that the 
known software development work has been broken down into 
proper cost elements and that a risk analysis has led to the 
identification of risk elements. It is, furthermore, based on 
dividing effort uncertainty into three types: 

• Uncertainty connected with individual cost elements. This 
should be analyzed by assessing the uncertainty 
distributions of individual cost elements. 

• Uncertainty related to general (at least two cost elements) 
factors (frequently termed risk factors). This should be 
analyzed by assessing the probability and consequences of 
each uncertainty factor. 

• Uncertainty related to, at the time of the estimation, 
unknown risks, opportunities and activities. 

The goal of the proposed method is not to produce a single 
point estimate, but rather the distribution of effort outcome 
values, where different types of estimates can be used for 
different purposes, e.g. a p50-estimate for planning and a p85-
estimate for budgeting. Clearly, the method needs more work 

to be complete and empirical studies to examine whether it 
actually leads to improved estimates or not. The outline is just 
meant to be the start on this work and to indicate that some of 
the identified problems need new solutions. We are in the 
process of supporting the steps of the method with a simple 
(Monte Carlo simulation-based) tool. 

Phases and steps of the method: 

Phase I: Estimate the distribution of total effort of the cost 
elements 

1. Estimate the ideal effort of each cost element. The ideal 
effort may be understood as the effort required given that 
there are no disturbances and no major problems, e.g., 
similar to the concept “ideal hours” it in agile contexts. 

2. Estimate the most likely effort by contrasting it with the 
ideal effort. The full motivation and argumentation for 
starting with ideal effort and contrast it with most likely 
effort is given in [18], which documents that this improves 
the realism of software professionals’ estimates. The study 
in [18] also documents that software developers typically 
provide the same estimates regardless of whether asked to 
provide “most likely” or “ideal” effort, which suggest that 
“most likely” effort is based on too idealistic assumptions. 
This method has, we believe, the additional benefit of 
improving the consistency of what is meant by the effort 
estimates, which is essential for proper addition of them. 

3. Select a distribution (e.g., among a few premade 
distributions of varying width and skewness) for different 
cost elements. Let these distributions be based on 
historical data (or experienced people’s memories) on the 
relative estimation accuracy for similar types of tasks. 
More on how to do this is described in [19]. There may be 
a few cases where one should deviate from the premade 
distributions, e.g., when one knows very much about the 
uncertainty and how it affects the effort usage. The use of 
premade, empirical data-based, distributions is motivated 
by the need to widen and right skew the intervals in many 
contexts. Just asking for minimum and maximum is not 
likely to lead to this. In addition, we believe that premade 
distribution has the potential of speeding up the estimation 
process. 

4. Use the mean effort of the distributions when adding the 
effort of each cost element or add the distributions by 
using Monte Carlo simulation. 

 

Phase II: Add the effort distribution related to known 
uncertainty 

5. For each of the general uncertainty factors select a 
distribution (among premade distribution of different 
types) that reflects the extra (or reduced) effort connected 
with it. This may very much be the same process as for the 
cost elements, except that the most likely impact typically 
will be zero work-hours. Preferably, the distributions to 
select between should be based on empirical data, e.g., 
data about how frequently a type of risk occurs and its 
consequences. Notice that an uncertainty factor can lead to 
reduction of effort. This may in particular be the case 



when there is flexibility in the delivered level of non-
functional requirements. The outcome of this step should 
be a distribution with which the distribution from part I is 
multiplied through Monte Carlo simulation. 

 

Phase III: Add the effort related to unknown uncertainty 

6. Add a probability distribution for unexpected activities and 
events. This should, as with the other elements, be based 
on historical data about the effort spent on non-planned 
activities and events. The outcome of this step is a 
distribution with which the effort distribution from part II 
is multiplied through Monte Carlo simulation. 

Monte Carlo simulation may for software professionals at 
first sight sound complex. It is not and we have experienced 
that software professionals quickly understand and feel 
comfortable with this type of simulations. In fact, it may be 
easier to explain and understand Monte Carlo simulation than 
the weighting in, for example, PERT. 

A few of the elements in the proposed method, in particular 
the selection of pre-made, empirically-based uncertainty 
distributions, have not been empirically tested, yet. A method 
combining several of the other elements has, however, been 
evaluated with good results in [20]. 

VI. SUMMARY 
In this paper we argue that adding effort of cost elements 

requires a precise understanding of what an estimate is and that 
adding estimates to find an unbiased estimate of the total effort 
is not a trivial task in many software development contexts. If 
we add most likely or median estimates we may frequently get 
as result a much too low estimate of the total effort, even when 
the individual estimates are accurate when interpreted as the 
most likely use of effort.  

The real-world relevance of this problem is documented by 
surveying a set of companies’ effort estimation processes. The 
survey indicates a poor practice based on lack of preciseness in 
use of estimates and questionable practices for adding 
estimates. We found that only a few companies that apply 
three-point estimates (minimum-most likely-maximum effort) 
and use a proper statistical formula to calculate the mean effort 
and the estimated total effort. While PERT and similar 
methods are statistically sound, the usefulness of the methods 
seems to be hampered by the input of too narrow and 
symmetric minimum-maximum intervals. Our illustrative 
analysis suggests that this may lead to just as large bias 
towards too low estimates as when just adding the most likely 
effort values. 

We outline a probabilistic and uncertainty analysis based 
method for adding effort that addresses the above problems. 
We plan to further elaborate on and empirically evaluate this 
method. 
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