
Fallacies and biases when adding effort estimates

Magne Jørgensen
Simula Research Laboratory

Fornebu, Norway
magnej@simula.no

Abstract— Software professionals do not always clarify what
they mean by their effort estimates. Knowing what is meant by
an estimate is, however, essential when adding individual effort
estimates from a work breakdown structure to find the estimated
total effort. Adding the most likely instead of the mean effort of a
set of cost elements may result in substantial underestimation of
the total effort. In a survey of forty-four software companies we
found only two companies that clarified the meaning of their
estimates and had a proper method for adding these estimates.
The other companies typically added single point estimates
without clarifying what they added or with types of estimates
likely to give too low estimates of the total effort. We examine the
effect of improper addition of estimates and find, for the studied
contexts, that summing the most likely effort estimates would
lead to a substantial under-estimation of the most likely total
effort. We also find that the use of the PERT-method, which
provides a proper statistical basis for adding effort estimates and
is used by many software companies, is likely to underestimate
the effort in software development contexts. This is caused by, we
argue and illustrate with empirical data, people’s tendency
towards providing too narrow minimum and maximum effort
intervals. We outline a method that, we believe, better ensures
that proper estimates of the total effort are produced.

Keywords—Cost estimation; project management; adding
estimates; work breakdown structures (WBS), uncertainty analysis

I. INTRODUCTION
A separation of the total software development work into

cost element to produce a work breakdown structure (WBS) is
a frequently used method for planning and estimation purposes
in the software industry [1]. When a list of deliveries, use
cases, activities, user stories or other types of cost elements has
been produced, the effort needed for each element is estimated
and summed to find the total work effort. Unfortunately,
adding effort estimates of cost elements to find the total effort
is not a trivial task in situations with a high degree of
uncertainty in effort usage and a skewed outcome distribution,
i.e., in situations typical for software development.

As an illustration, assume that your organization plans the
completion of ten tasks of similar size and complexity, and that
the effort you think a developer will use on each individual
task is distributed as depicted in Fig. 1. The distribution in Fig.
1 reflects that you believe that a developer most likely will
spend about 15 work-hours (the mode of the distribution), that
it is hardly possible to spend less than 10 work-hours (the best
case or minimum of the distribution), and that sometimes a
developer may spend 40-50 work-hours (the worst case or
maximum of the distribution). In about 50% of the cases you

believe a developer will spend less than around 17 work-hours
(this is the median or the p50-estimate of the distribution1).
What is in this situation the estimated total effort needed for
the ten tasks?

Fig. 1. The effort outcome probatility distribution of one task

An incorrect answer, reflecting some software companies’
estimation practice (more on this in Section II), is that the ten
tasks will require ten times the most likely effort, i.e., 10 x 15 =
150 work-hours. Another incorrect answer is that since it is
50% likely to use less than the median effort, it is 50% likely to
use less than 10 x 17 = 170 work-hours on ten tasks.

A more accurate estimate of the most likely total effort is
ten times the mean value, i.e., 10 x 20 = 200 work-hours. This
reflects that we can only meaningfully add the individual mean
effort values (and not the mode or the median values) of
random values, and that the sum of the mean values of random
variables approximates a normal distribution where the most
likely, median and the mean values are similar (the central
limit theorem). The meaningfulness of adding mean values is a
consequence of the linearity of expected values of random
variables. The normal distribution of the sum of the mean
values is a consequence of the central limit theorem. Essential
assumptions for the central limit theorem to apply fully in our
estimation context include that the set of cost elements is large
enough, that there is no strong dependencies between the cost
elements and that there are no single or few elements that

1 The median effort of the Gamma distribution in Fig 1 may be

approximated by the formula kΘ(3k-0.8)/(3k+0.2) + a threshold value,
where k (the shape) is 2, Θ (the scale) is 5 and the threshhold value is 10. The
mean value of the Gamma distribution is kΘ + the threshhold value, i.e., 2x5
+ 10 = 20 work-hours.

dominates with respect to size or uncertainty2. In our example,
assuming that each cost element follows the Gamma
distribution in Fig. 1, the distribution of the total effort of the
ten tasks is as displayed in Fig. 2. In accordance with the
central limit theorem, we see that the distribution is close to a
normal distribution3, which means that the most likely, the
median and the mean effort are close to each other.

Fig. 2. The effort outcome distribution of the total effort of the ten tasks

Adding anything else than the mean effort values will give
biased total estimates. It is, for example, 99% likely to exceed
the sum of the most likely estimates, i.e., actual effort > 150
work-hours with 99% probability. Similarly, it is 80% likely to
exceed the sum of the p50-estimates, i.e., actual effort > 180
work-hours with 80% probability.

To what extent do software companies fail to sum the mean
effort estimates? Is this likely to be a serious mistake and a
partial explanation of the tendency towards underestimating the
effort of software projects? Does the use of the PERT
(Program Evaluation and Review Technique) [3] or other
three-point estimation methods that aim to provide methods for
proper addition of adding estimates actually solve the problem?

In the remaining part of this paper we try to answer these
questions and provide some recommendations on improved
estimation practices addressing the identified problems.

There is not much previous work on challenges related to
adding effort estimates in software engineering, but see for
example [4-6] which addresses several of the elements
discussed in this paper. We have failed to find any studies that
mention this as a likely reason for cost overrun in software
projects. The theory for the statistical discussions of the paper,
e.g., related to properties of expected values of distributions
and the central limit theorem, can be found in introductory
textbooks on statistics [2].

2 In practice, the central limit theorem often works amazingly well even

when one or more of these assumptions are violated.
3 The distribution of the sum of ten identical Gamma distribution has the

same scale, but ten times higher shape (new shape = 2 x 10 = 20) and
threshold (new threshhold = 10 x 10 = 100).

II. ESTIMATION SUMMATION PRACTICES
We received effort estimates together with estimation

process description from forty-four small and medium large
software companies located in Europe and Asia. The
companies were identified through an internet search for
offshoring software companies. The companies were paid for
their estimation work. An examination of the estimates and
estimation processes for the purpose of the analyses in this
paper gave the following results:

• 73% (thirty-two) of the companies added single point
estimates of individual cost elements. In all these cases,
how to interpret the single point and the total effort
estimates was not clarified, or the type of estimate,
typically described as “most likely effort”, made adding
them statistically flawed in situations with skewed
effort outcome distributions.

• 14% (six) of the companies used three-point estimates
with varying names on the three estimation points, e.g.,
“minimum, average and maximum effort” or “best case,
most likely case, worst case”. One company estimated
only the maximum and minimum effort and calculated
the most likely effort as the average of these two values.

• Of the six companies using three-point estimates, only
two calculated and added the mean effort values, i.e.,
only two of the companies demonstrated awareness of
the essential difference between the mode and the mean
effort when adding effort estimates. These two
companies used the formula from PERT for finding the
mean effort from the minimum, most likely and
maximum effort (see Section IV for more about this).
The other four added all the minimum effort values, all
the most likely effort values, and all the maximum
effort values to find the total minimum, the total most
likely and the total maximum effort, i.e., they used a
(statistically incorrect) strategy similar to that used for
the single point estimates.

• 11% (five) of the companies applied a formal
estimation model (three used Function Points, one used
Use Case Points and one used COCOMO). These
models are top-down (and has their own challenges
[7]), which means that how to add the effort of
individual cost elements is not a central issue.

One may argue that the challenge related to adding effort
values to find the total effort is solved by adding a cost
contingency, e.g., by adding 30% to the sum of the most likely
effort values. While this may improve the situation in some
contexts, we found little evidence that this would solve the
problem among the surveyed companies. Only three of the
companies examined added such contingencies. Even if they
had added a cost contingency, it is in our opinion a poor
practice to use cost contingency to repair a flawed addition of
effort estimates. Not knowing the difference between the most
likely and the mean effort means, for example, that you will
not know how much to add as contingency.

Clearly, we cannot draw strong conclusions about the state-
of-practice in the software industry based on our survey of a

few small and medium large software development companies
in a few countries. The findings do nevertheless provide an
indication on that there are challenges related to the
interpretation and adding of effort estimates. The results are in
accordance with those reported in [8].

III. HOW MUCH WILL THE TOTAL ESTIMATES BE BIASED?
To illustrate how much adding the estimates of most likely

or median effort may bias the estimated total effort we use the
following measure of relative estimation error (REE):

(1) REE = Actual effort/Estimated most likely effort

Our illustration is based on the assumption that the
distribution of the REE-values reflects the distribution of the
effort outcome. If, for example, 25% of the cost elements have
50% or more effort overrun, i.e., have a REE-value higher than
1.5, this reflects that it is about 25% likely to use at least 50%
more than the estimated most likely effort. We believe that this
is a reasonable assumption, at least for a homogenous set of
cost elements. It simply reflects that a meaningful estimate of
the uncertainty of an estimate is the previous estimation
uncertainty, as measured by the estimation error, of similar cost
elements.

There are many different estimation contexts and some of
them do not even show a tendency towards that using more
effort than estimated is more likely than using less effort than
estimated [9], i.e., the most likely and the median estimation
overrun is about the same value. To reflect this diversity, at
least to some extent, we analyze the following two real-world
contexts:

• The context of forty-two small and medium sized software
development projects, using the data collected in [10].
Project can be seen as large cost elements and our
calculation reflects what will happen if a client (or
software company) wants to estimate or budget the total
cost of a portfolio of projects.

• The context of 440 smaller tasks (user stories) following an
agile development process. This is a context with more
feedback/learning and less estimation uncertainty
compared to the previous context4.

For each of these contexts we identified the mode values
(the most likely REE) of the distributions by manually
examining the empirical REE-distributions to identify the top
point5. We use the distributions to analyze the difference
between the mode and the mean and the median and the mean.
The REE-distributions are displayed in Figs. 3 and 4.

4 The data about 443 user stories were collected in a Norwegian software

company with a team of seven developers completing tasks on different
software systems. We removed three user stories where the effort was 2-5%
of the estimated effort, suggesting that the actual effort was not correctly
logged, resulting in 440 remaining user stories.

5 The outcome of this manual process depends on the interval width of
the histograms. To test the robustness of the manually found mode values, we
examined the resulting mode values when fitting a Gamma distribution to the
empirical data (using the statistical tool Minitab). This led to approximately
the same mode values as when manually inspecting the distribution.

Figs. 3 and 4 describe contexts where the most likely effort
is the estimated effort, i.e., the mode of the REE-distribution is
about 1.0 in both contexts. While the distribution in Fig. 3 is
strongly right-skewed, the distribution in Fig. 4 is less so and
has a larger proportion of observations to the left of the mode.

An analysis of the empirical data underlying Figs. 3 and 4
gives mean values of the REE-distributions of 1.42 and 1.16,
respectively. This implies, by applying the central limit
theorem and our assumptions of the relation between the REE
and the effort outcome distribution, that a company using the
sum of the most likely effort as their estimate of total effort
should expect about 42% (the first context) and 16% (the
second context) effort overrun. This level of effort overrun is
only due to the incorrect addition of estimates and will be
present even when the estimated most likely efforts of
individual cost elements are accurate. In none of the contexts
would the use of the median (p50) estimate remove the
estimation addition problem. In the first context adding the
median estimates would give 21% too low estimates of the
total effort, while in the second this would not change anything
at all, since the mode is the same as the median.

Fig. 3. The REE-distribution of the small and medium-large projects

Fig. 4. The REE-distribution of agile development tasks

The above real-world scenarios have a few limitations:

• We assume that the estimates leading to the REE-
distribution reflect the estimated most likely effort. In the
first context we explicitly asked for their estimates of most
likely effort and in the second we have experienced that
this is a common interpretation of estimates in agile
estimation. In spite of this, we do not know how well the
estimates actually reflect most likely effort and there may
be a mixture of different interpretations behind the
estimates and consequently the REE-values.

• The two contexts examined are selected by convenience,
i.e., that we had the data available, not by any
consideration about representativeness. The commonly
observed tendency towards effort overruns in context
similar to the first context and lack of such tendency in
less competitive contexts [9], such as the second context,
suggest that the contexts may be representative for a large
set of contexts.

Notice that the non-symmetric distribution in Fig. 1 is
consistent with, and could have been caused by, a lack of
proper addition of estimates of cost elements within each
project. If the projects had added the mean estimates of the cost
elements of the projects, and these had been accurately
estimated, the REE-distribution should have been symmetric.
Lack of proper addition of estimates is, however, not the only
possible explanation for the non-symmetric REE-distributions
and it is highly speculative to use this as evidence for improper
addition of estimates.

In spite of the above limitations, we believe that our results
at least illustrates that lack of proper methods for adding
estimates has the potential to explain parts of the effort
overruns typically observed in software development contexts
[11, 12] and that the awareness of how to properly add
estimates is low.

IV. DO THE USE OF PERT AND SIMILAR METHODS SOLVE
THE ADDITION PROBLEMS?

The PERT (Program Evaluation and Review Technique) was
initially meant for estimating the duration, including the
identification of the critical path, of a project [3, 13]. Many of
the ideas, however, apply for effort estimation and are applied
many software companies for that purpose, as well. The typical
steps are as follows:

• Identify the minimum, the most likely (mode) and the
maximum effort of each cost element. In practice, the
interpretation of minimum and maximum is not based on
the absolute minimum and maximum (which makes no
meaning in software contexts), but for example a 90%
minimum-maximum interval (90% likely to include the
actual effort). It may also be requested on the format of
p10-estimate (10% likely not to exceed) and p90-estimate
(90% likely not to exceed), or more vague instructions
such as: “Be almost sure (not) to include the actual effort
in the minimum-maximum interval”.

• Calculate the mean (expected) effort of each cost element:
(2) Mean effort = (Minimum effort + 4 x Most likely effort
+ Maximum effort)/6

• Calculate the variance of each cost element:
(3) Variance of effort = (Maximum effort – minimum
effort)2/36

• Calculate the estimated total effort (which will be close to
the most likely and the median effort given that
sufficiently large number of activities are included and
other assumptions of the central limit theorem are met) as
the sum of the mean effort.

• Calculate the total variance as the sum of the variance of
each cost elements.

• Use the standard deviation (square of the total variance)
and the assumption of normal distribution to find the pX-
estimates, where X for example X is 50% and the p50-
estimate is the number of work-hours 50% likely not to be
exceeded).

The analytical calculation steps are sometimes replaced
with so-called Monte Carlo simulation, which is more robust
and flexible than the above process [14].

The PERT has frequently been criticized on basis on its
statistical assumptions [13], but an even more serious problem
is in our opinion related to the quality of the input. If PERT or
the Monte Carlo simulation-based method do not receive
realistic minimum and maximum effort values as input, they
will, not surprisingly, provide biased estimates of the mean
effort of the cost elements and consequently give a biased
estimate of the total effort.

There are good reasons to believe that the input to PERT
often is of low quality. It is, for example, well documented that
people tend to provide too narrow minimum-maximum
intervals [15, 16]. Our study in [17], for example, reports that
the minimum-maximum intervals of cost elements in projects
where the software professionals were instructed to be 90%
sure (or almost sure) to include the actual effort in their
minimum-maximum intervals, included the actual effort, on
average, only about 30% of the time.

As a demonstration of how much poor input to PERT is
likely to affect an estimate of the total effort, we examined the
minimum-maximum effort values the six companies in Section
II that provided three-points estimates. One of the six
companies with three-point estimates did this on a format
difficult to use for this analysis and is not included. For the
purpose of our examination we use the following measures:

(4) Relative width of the interval = RWidth = (Maximum effort
– Minimum effort)/Most likely effort

(5) Ratio of minimum to most likely effort = MinToML =
Minimum effort/Most likely effort

(6) Ratio of maximum to most likely effort = MaxToML =
Maximum effort/Most likely effort

Table 1 displays the median values of the above measures
for each of the five companies’ estimates of the same project.
The median values are calculated as the median of the
minimum estimates, the median of the most likely estimates
and the median of the maximum effort estimates of all the

identified cost elements. The companies identified between 10
and 30 cost elements each for the project.

Table I displays that the width of the effort intervals vary
much among the companies. The median RWidth is 0.4. An
RWidth of 0.4 reflects, for example, that a software company
thinks it will maximum use 20% more and minimum 20% less
than the most likely effort. Table I shows that the minimum
effort values are as far (in percentage) from the most likely
effort as the maximum effort values are from the most likely
effort for all companies. This suggests a belief in a symmetric
effort outcome distribution. A symmetric effort outcome
distribution would mean that it is just as likely to spend more
as it would be to spend less than the estimated most likely
effort. This is, we believe, a highly questionable assumption in
software development contexts and, as argued earlier in this
paper, not consistent with the results from empirical studies on
this issue, e.g., on the tendency to use more effort than
estimated.

TABLE I. EFFORT INTERVAL PROPERTIES (MEDIAN VALUES)

Company
Measures

RWidth MinToML MaxToML

A 0.4 0.8 1.2

B 1.0 0.5 1.5

C 0.4 0.8 1.2

D 1.5 0.5 2.0

E 0.2 0.9 1.1

Median 0.4 0.8 1.2

Table II includes two scenarios illustrating the similarity in
estimation bias between incorrect adding of estimates (as
discussed in Section III) and incorrect input of minimum-
maximum to PERT and similar method. For our illustrative
purpose we compare the following estimates:

• TRUE-EST: The mean of the true distribution of effort
values of a cost element. The true distribution is here
assumed to be the REE-distribution in Fig. 3 for
Scenario 1 and the REE-distribution in Fig. 4 for
Scenario 2. The TRUE-EST is set to 100% for both
scenarios, i.e., the other estimates (see below) are
calculated as proportion of the true mean estimate. If ,
for example, the ML-EST is 80%, this means that ML-
EST is 80% of the TRUE-EST.

• ML-EST: The estimated most likely effort of a cost
element. We use the same distributions as for TRUE-
EST, i.e., those in Figs. 3 and 4. Since the mean values
were 142 and 116% of the most likely effort for
Scenarios 1 and 2, we have that ML-EST values are the
inverse, i.e., 100/142 = 70% and 100/116 = 86% of
TRUE-EST.

• PERT-EST: The PERT-estimated effort uses the
median minimum and maximum effort values from
Table I (the values in the last row). These values reflect

the narrow and symmetric minimum and maximum
values typically provided by the companies applying
PERT in our survey (see Section II). PERT-EST is
calculated as TRUE_MEAN-EST/(MinToML + 4 x ML
+ MaxToML), where the denominator of the ratio is the
PERT-formula for the mean estimate.

TABLE II. USE OF ML OR PERT WITH BIASED INPUT

Scenario
Estimate in percentage of mean effort

TRUE_EST ML-EST PERT_ EST

1 100% 70% 72%

2 100% 86% 88%

As can be seen in Table II, the underestimation of the total
effort when applying PERT with the narrow and symmetric
minimum and maximum intervals typically applied by the
companies, which results in estimates of 72% and 88% of the
mean-based effort, will be substantial and similar to that
observed when simply adding most likely value which will
give 70% and 86% of the mean-based effort.

A further illustration of the effect of too symmetric and
narrow distribution is given in Figure 5, where an almost
symmetric, narrow effort Gamma distribution (solid line,
Shape = 5, Scale = 5, Threshold = 80) is compared with a
wider and right-skewed Gamma distribution (dotted line,
Shape = 2, Scale = 20, Threshold = 80). Assume that the
distributions represent two possible representation of the effort
outcome of the same cost element. Both distributions have the
same most likely use of effort (the same mode), which in both
cases equals 100. The mean values, however, differ very much
(105 vs. 120).

Fig. 5. Narrow, symmetric vs wide, asymmetric effort distribution for one
cost element

Assume furthermore that the actual effort outcome
probability distribution of the ten cost elements is the dotted
line, while the provided estimates are based on the solid line.
The difference between the estimated and the actual
distribution of the total effort of the ten tasks will then be as
displayed in Fig. 6.

Fig. 6. Narrow, symmetric vs wide, asymmetric effort distribution for total
effort of ten cost elements

When reading about PERT and similar methods in
textbooks and frameworks we have failed to observe any
instruction on how to provide the user with tools and
techniques that ensure accurate input of minimum and
maximum values. The textbooks and frameworks consequently
seem to assume that people are good at knowing when they
are, say 90% as compared to 60% or 95% confident in
including the actual effort in their minimum-maximum
interval. Our data, and many other papers, document that we
are not and that we need support to find realistic minimum-
maximum intervals. If we cannot manage to give PERT or
similar methods proper minimum and maximum, they are not
of much help and perhaps lead to as biased estimates as just
adding the most likely effort values.

V. OUTLINE OF A METHOD FOR ADDING ESTIMATES
How can we improve the estimation process so that adding

the effort of different cost elements does not lead to biased, in
particular too low, effort estimates? Below we outline a
method that addresses some of the challenges identified in the
previous sections. The outlined method assumes that the
known software development work has been broken down into
proper cost elements and that a risk analysis has led to the
identification of risk elements. It is, furthermore, based on
dividing effort uncertainty into three types:

• Uncertainty connected with individual cost elements. This
should be analyzed by assessing the uncertainty
distributions of individual cost elements.

• Uncertainty related to general (at least two cost elements)
factors (frequently termed risk factors). This should be
analyzed by assessing the probability and consequences of
each uncertainty factor.

• Uncertainty related to, at the time of the estimation,
unknown risks, opportunities and activities.

The goal of the proposed method is not to produce a single
point estimate, but rather the distribution of effort outcome
values, where different types of estimates can be used for
different purposes, e.g. a p50-estimate for planning and a p85-
estimate for budgeting. Clearly, the method needs more work

to be complete and empirical studies to examine whether it
actually leads to improved estimates or not. The outline is just
meant to be the start on this work and to indicate that some of
the identified problems need new solutions. We are in the
process of supporting the steps of the method with a simple
(Monte Carlo simulation-based) tool.

Phases and steps of the method:

Phase I: Estimate the distribution of total effort of the cost
elements

1. Estimate the ideal effort of each cost element. The ideal
effort may be understood as the effort required given that
there are no disturbances and no major problems, e.g.,
similar to the concept “ideal hours” it in agile contexts.

2. Estimate the most likely effort by contrasting it with the
ideal effort. The full motivation and argumentation for
starting with ideal effort and contrast it with most likely
effort is given in [18], which documents that this improves
the realism of software professionals’ estimates. The study
in [18] also documents that software developers typically
provide the same estimates regardless of whether asked to
provide “most likely” or “ideal” effort, which suggest that
“most likely” effort is based on too idealistic assumptions.
This method has, we believe, the additional benefit of
improving the consistency of what is meant by the effort
estimates, which is essential for proper addition of them.

3. Select a distribution (e.g., among a few premade
distributions of varying width and skewness) for different
cost elements. Let these distributions be based on
historical data (or experienced people’s memories) on the
relative estimation accuracy for similar types of tasks.
More on how to do this is described in [19]. There may be
a few cases where one should deviate from the premade
distributions, e.g., when one knows very much about the
uncertainty and how it affects the effort usage. The use of
premade, empirical data-based, distributions is motivated
by the need to widen and right skew the intervals in many
contexts. Just asking for minimum and maximum is not
likely to lead to this. In addition, we believe that premade
distribution has the potential of speeding up the estimation
process.

4. Use the mean effort of the distributions when adding the
effort of each cost element or add the distributions by
using Monte Carlo simulation.

Phase II: Add the effort distribution related to known
uncertainty

5. For each of the general uncertainty factors select a
distribution (among premade distribution of different
types) that reflects the extra (or reduced) effort connected
with it. This may very much be the same process as for the
cost elements, except that the most likely impact typically
will be zero work-hours. Preferably, the distributions to
select between should be based on empirical data, e.g.,
data about how frequently a type of risk occurs and its
consequences. Notice that an uncertainty factor can lead to
reduction of effort. This may in particular be the case

when there is flexibility in the delivered level of non-
functional requirements. The outcome of this step should
be a distribution with which the distribution from part I is
multiplied through Monte Carlo simulation.

Phase III: Add the effort related to unknown uncertainty

6. Add a probability distribution for unexpected activities and
events. This should, as with the other elements, be based
on historical data about the effort spent on non-planned
activities and events. The outcome of this step is a
distribution with which the effort distribution from part II
is multiplied through Monte Carlo simulation.

Monte Carlo simulation may for software professionals at
first sight sound complex. It is not and we have experienced
that software professionals quickly understand and feel
comfortable with this type of simulations. In fact, it may be
easier to explain and understand Monte Carlo simulation than
the weighting in, for example, PERT.

A few of the elements in the proposed method, in particular
the selection of pre-made, empirically-based uncertainty
distributions, have not been empirically tested, yet. A method
combining several of the other elements has, however, been
evaluated with good results in [20].

VI. SUMMARY
In this paper we argue that adding effort of cost elements

requires a precise understanding of what an estimate is and that
adding estimates to find an unbiased estimate of the total effort
is not a trivial task in many software development contexts. If
we add most likely or median estimates we may frequently get
as result a much too low estimate of the total effort, even when
the individual estimates are accurate when interpreted as the
most likely use of effort.

The real-world relevance of this problem is documented by
surveying a set of companies’ effort estimation processes. The
survey indicates a poor practice based on lack of preciseness in
use of estimates and questionable practices for adding
estimates. We found that only a few companies that apply
three-point estimates (minimum-most likely-maximum effort)
and use a proper statistical formula to calculate the mean effort
and the estimated total effort. While PERT and similar
methods are statistically sound, the usefulness of the methods
seems to be hampered by the input of too narrow and
symmetric minimum-maximum intervals. Our illustrative
analysis suggests that this may lead to just as large bias
towards too low estimates as when just adding the most likely
effort values.

We outline a probabilistic and uncertainty analysis based
method for adding effort that addresses the above problems.
We plan to further elaborate on and empirically evaluate this
method.

VII. REFERENCES
 [1] K. Moløkken and M. Jørgensen, "A review of

software surveys on software effort estimation," in

International Symposium on Empirical Software
Engineering, Rome, Italy, 2003, pp. 223-230.

 [2] T. H. W. Wonnacott and R. J. Wonnacott,
Introductory Statistics: John Wiley & Sons, 1990.

 [3] J. J. Moder, C. R. Phillips, and E. W. Davis, Project
management with cpm, pert and precedence
diagramming: Van Nostradn Reinhold, 1983.

 [4] M. Klaes, A. Trendowicz, A. Wickenkamp, J.
Münch, N. Kickuchi, and Y. Ishigai, "The Use of
Simulation Techniques for Hybrid Software Cost
Estimation and Risk Analysis," Advances in
computers, vol. 74, pp. 115-174, 2008.

 [5] L. C. Briand, K. El Emam, and F. Bomarius,
"COBRA: A hybrid method for software cost
estimation, benchmarking, and risk assessment," in
International Conference on Software Engineering,
Kyoto, Japan, 1998, pp. 390-399.

 [6] M. Klaes, A. Trendowicz, and H. Nakao, "Handling
Estimation Uncertainty with Bootstrapping:
Empirical Evaluation in the Context of Hybrid
Prediction Methods," in ESEM, Banff, Canada, 2011,
pp. 22-23.

 [7] M. Jorgensen and B. Boehm, "viewpoints Software
Development Effort Estimation: Formal Models or
Expert Judgment?," IEEE Software, vol. 26, pp. 14-
19, Mar-Apr 2009.

 [8] S. Grimstad, M. Jorgensen, and K. Molokken-
Ostvold, "Software effort estimation terminology:
The tower of Babel," Information and Software
Technology, vol. 48, pp. 302-310, 2006.

 [9] T. Halkjelsvik and M. Jørgensen, "From origami to
software development: A review of studies on
judgment-based predictions of performance time,"
Psychological Bulletin, vol. 138, pp. 238-271, 2012.

 [10] K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan,
H. Gallis, A. C. Lien, and S. E. Hove, "A survey on
software estimation in the Norwegian industry," in
10th International Symposium on Software Metrics,
Chicago, IL, 2004, pp. 208-219.

 [11] D. Yang, Q. Wang, M. S. Li, Y. Yang, K. Ye, J. Du,
and Acm, "A Survey on Software Cost Estimation in
the Chinese Software Industry," in ACM/IEEE
International Sympsoium on Empirical Software
Engineering and Measurement, Kaiserslautern,
GERMANY, 2008, pp. 253-262.

 [12] K. Moløkken, M. Jørgensen, and I. C. S. Ieee
Computer Society, "A review of surveys on software
effort estimation," in International Symposium on
Empirical Software Engineering, Rome, Italy, 2003,
pp. 223-230.

 [13] J. E. Murray, "Consideration of PERT assumptions,"
IEEE Transactions on Engineering Management,
vol. 3, pp. 94-99, 1963.

 [14] Z. Laslo and G. Gregory, "PERT-type projects: time–
cost tradeoffs under uncertainty," Simulation, vol. 89,
pp. 278-293, 2013.

 [15] C. R. M. McKenzie, M. Liersch, and I. Yaniv,
"Overconfidence in interval estimates: What does
expertise buy you?," Organizational Behavior and
Human Decision Processes, vol. 107, pp. 179-191,
2008.

 [16] T. Connolly and D. Dean, "Decomposed versus
holistic estimates of effort required for software
writing tasks," Management Science, vol. 43, pp.
1029-1045, July 1997 1997.

 [17] M. Jørgensen, K. H. Teigen, and K. Moløkken,
"Better sure than safe? Over-confidence in judgement
based software development effort prediction
intervals," Journal of Systems and Software, vol. 70,
pp. 79-93, feb 2004 2004.

 [18] M. Jørgensen, "Contrasting Ideal and Realistic
Conditions as a Means to Improve Judgment-based
Software Development Effort Estimation,"
Information and Software Technology, vol. 53, pp.
1382-1390, 2011.

 [19] M. Jørgensen and D. I. K. Sjøberg, "An effort
prediction interval approach based on the empirical
distribution of previous estimation accuracy,"
Information and Software Technology, vol. 45, pp.
123-136, mar 2003 2003.

 [20] M. Jørgensen and K. Moløkken-Østvold,
"Eliminating over-confidence in software
development effort estimates," in PROFES, Japan,
2004, pp. 174-184.

