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Abstract

One of TCP’s key task is to react and avoid network congestion episodes
which normally arise in packet switched networks. A wide literature is
existed in many different scenarios concerning the behaviour of congestion
control algorithms and several congestion control algorithms have been
proposed in order to improve performances. WLAN links have already
been studied extensively in the literature. In this paper we focus on Mobile
Broadband (MBB) networks that are in use today. We used NorNet Edge
node which is connected to 3 different 3g ISP’s (UMTS and CDMA2000).
We also use three different TCP congestion control algorithms: TCP
NewReno, TCP CUBIC as loss-based algorithms and TCP Vegas as delay
based algorithms and try to see the impact of each TCP congestion control
algorithm on the QoS characteristics. In the other word, we want to see
how each MBB provider could affect the same TCP connection with same
characteristics. We present QoS characteristics (e.g. Godput, delay) and
discuss our observations. Our results could be used later for improvements
in multi-path congestion controls.
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Chapter 1

Introduction

The Internet has been in constant evolution since the early 1980s, where
The Transmission Control Protocol (TCP, [3, 39, 61]) and the User Data-
gram Protocol (UDP, [62]) introduced. These two protocols carried more
than 90% of the packets through the Internet between years 2001 and 2008,
while TCP is dominant with more than 70% of this share [11]. TCP is a
reliable, connection-oriented, full-duplex, byte-stream transport-layer pro-
tocol [54, 71] which supports congestion control [3] and flow control. Due
to the reliability of the TCP, it has become the de facto standard used by
many end-user applications, ranging from HTTP to bulk data transfer such
as FTP.

TCP was designed for wired networks [61], where random Bit Error
Rate (BER) is far more fewer than in wireless networks and the main cause
of the packet loss is congestion, while in wireless networks the packet
loss could be due to the limitations of radio coverage, user mobility, bad
weather condition and etc. Hence, TCP misunderstands error loss as con-
gestion loss which results in a way that sender backs off and the connection
will face performance (Throughput) degradation [35]. It was also designed
in a way that the connection establishment can takes place only in one path,
meaning that establishing a TCP connection involves exactly one IP ad-
dress per endpoint.

Due to the wide use of TCP in the Internet, it is thus crucial that TCP
performs well over all kinds of wireless networks so the wired Internet be
able to extend to wireless world.Wired networks and wireless networks
are very different in terms of bandwidth, delay and reliability. There are
several other factors that affect packet transmission in wireless networks
such as:

• Random Loss

• Larger Round Trip Time (RTTs)

• Bandwidth Limitation

• Handoffs

1



CHAPTER 1. INTRODUCTION

• asymmetric channel allocation [7, 40]

Unimproved TCP interprets the packet loss in this environment as a
sign of congested network and triggers congestion control system [37].
hence, the transmission rate slows down in order to reduce congestion
which results in a considerably low throughput [48, 49].

As of today, Many improvements have been made on standard TCP
(example: TCP Reno, TCP Tahoe [25] and TCP NewReno [27]) to improve
its performance in wired networks. As a result, several TCP variants have
been proposed which they have different approaches to how to deal with
packet loss and what to do with congestion window, such as TCP Cubic
[34], TCP Vegas [12], TCP Westwood[16] and TCP SACK [29]. However
all these mechanisms and various versions do not work same as wired
environment in wireless networks [14].

The research for finding a suitable TCP enhancement for heterogeneous
networks (i.e. wired-wireless) is ongoing. In [9, 23, 51, 64, 68], the authors
have compared different TCP enhancement schemes for mobile/wireless
networks. They can be categorized as below:

• End-to-end connection
The enhancement of TCP is applied at end hosts, and does not require
any support from routers in between. Some notable proposals in this
category are TCP Westwood [16], Freeze TCP [32], JTCP [72] and TCP
Probing [69]

• Split connection
TCP connection is divided to two connections. One is between the
fixed host and base station/access point which uses the standard
TCP connection and the other part which is between the base
station/access point and mobile host which uses the proposed TCP
schemes such as, Indirect TCP (I-TCP, [6]) and Mobile-TCP (M-TCP,
[13])

• Localized link layer
A link-level retransmission policy is performed at base station to
recover from wireless losses quickly. Snoop [8] and its improved
scheme [59] and Delayed Duplicate ACK (DDA) [70]

As a result of advancement in wireless technology and enhancements
in TCP recent years have faced an ever-increasing usage of wireless net-
works ranging from wireless Local Area Networks (WLANs, IEEE 802.11)
and Wireless wide-area networks (WWANs) such as 3G or 4G cellular sys-
tems. The number of handheld wireless terminals is increasing signific-
antly. Today many people surf the internet by their mobile devices (e.g
smartphones, tablets, laptops) via wireless technologies.

Based on the report by Ericsson[24], the number of mobile broadband
subscriptions in the world passed 2 billion in 2013 and are expected to reach
8 billion by 2019. Also by the end of the same year, the report expects that

2



1.1. MOTIVATION

around 90 percent of the world’s population will have access to Internet
using 3G networks. These numbers together with the expected 10 times
increase in mobile data traffic by the end of year 2019, shows why Mobile
Broadband (MBB) has become much more interesting way for communic-
ation the recent years.

1.1 Motivation

The authors in [74] have discussed the transport protocol performance in
IEEE 802.11 WLAN in details, therefore the focus of this thesis will be on
Mobile Broadband networks.

In this thesis, we’re trying to measure the QoS characteristics in
Mobile Broadband networks and observe the TCP protocol behavior with
different flavours - like, Congestion Controls, buffer sizes and etc. - with
different MBB operators (different paths) to realize how is the imapct of the
differences in TCP, in different network in multipath. In the other word,
we are going to observe how different MBB networks behave with a same
TCP connection and try to find out how does that difference impact the
performance in multipath connection.

1.2 Problem Statement

This study focuses on measuring the Qos characteristics of different Mobile
Broadband networks while they deal with same TCP connection (i.e. same
Congestion control and same buffer size and etc.). Having the statement
above, The following is the main Problem statement in this thesis:

How to choose the best type of TCP variant for different types of TCP traffic
over different Mobile Broadband networks with different characteristics?

During this report, it is strived to address the following questions in
order to reach our main problem statement:

• How do differnet types of TCP Congestion Control (CC) schemes perform
over different MBB networks?

• How do differnet types of TCP traffic (e.g. Bulk, App-limited) perform over
different MBB networks?

3
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Chapter 2

Background

2.1 Transmission Control Protocol (TCP)

TCP [61] is a connection oriented transport protocol which guarantees a
reliable end-to-end

delivery of data packets to the application layer. The application data
that is submitted to TCP is divided to segments before transmission. TCP
uses Automatic Repeat reQuest (ARQ) mechanism based on acknowledg-
ments in order to achieve reliability. Each byte is numbered in TCP , There-
fore the number of the first byte in a segment is used as a sequence number
in the TCP header. In addition, A receiver, sends a cumulative acknowledge-
ment (ACK) in response to the incoming segment, meaning that number of
segments can be acknowledged at the same time.

2.1.1 Loss Recovery

When a segment is transmitted, TCP initiates a retransmission timer. The
segment will be retransmitted , if the timer expires before the segment is
acknowledged. This timer is called Retransmission Timeout (RTO) and
its value is calculated dynamically based on the measurement of the time
it takes from the transmission of a segment until the acknowledgement
is received, referred as Round Trip Time (RTT). When a timeout occurs,
the sender retransmits the lost segment and doubles the RTO (exponential
backoff ) [60].

By this method, A TCP sender can sample the RTT upon receiving each
ACK. But if the sender receives an ACK which contains a sequence number
of a segment which has alredy retransmitted, the sender can not distinguish
whether the ACK is the receiver’s answer to the original segment (e.g.
reordered) or to the retransmitted segment.

There are two ways to overcome this problem. One is to use Karn’s
Algorithm [41], which ignores ACKs to retransmitted segments while
estimating RTT. Another one is to use timestamp option field in TCP
header. If both endpoints support this feature, then the current time
will be included in timestamp option field in TCP header upon sending
each segment. Therefore the correct and reliable RTT can be estimated.

5
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i.e. sender can distinguish whether the ACK from receiver is for the
retransmitted segment or for the original segment which has been sent for
the first time [39].

Fast Retransmit

In order to avoid waiting a long time (i.e. one RTT) til the RTO expires
for a missing segment, TCP employs a scheme called fast retransmit. It
is possible that TCP receiver have some gaps of outstanding data in the
received stream due to the fact that IP packets can get lost, duplicated or
even reordered in the network. In this case, the receiver can not increase the
ACK number, although it is receiving the new data. Therefore it sends an
unchanged ACK number upon arrival of each new data. This ACK which
its number is identical to previous ACK is called a duplicate ack (DupACK).
This DupACK informs the sender that the receiver is missing one segment.

Fast retransmit assumes 3 consecutive DupACKs as the sign of packet
loss. In this condition, the TCP sender resets the transmission timer and
triggers fast retransmission.

2.1.2 Flow Control

In TCP, flow control ensures that a sender does not send more data than
a receiver can handle. Since the data arrival at the receiver must be the
exact same order that it was sent by the application, therefore, a TCP
receiver should buffer out-of-ordered data until all gaps in the stream are
filled before forwarding the complete and ordered stream to the receiving
application. The receiver specifies a receive window (rwnd) in every ACK
that it sends back to the sender to inform the sender that how many bytes
it is allowed to send without overloading the receiver buffer [61].

2.1.3 Congestion Control

In 1986, the Internet faced its first congestion collapse. The end hosts
transmitted as much data as they could, where the routers were not
able to handle them, Due to the retransmission of the lost segments, the
transmission rate did not get lower either. Van Jacobson proposed a a
mechanism called congestion control [37] which has been implemented in
TCP. Congestion control is TCP’s attempt of not sending more data than
what can be in flight on the path from sender to receiver.

The two values that limit the number of bytes a sender is allowed to
transmit before receiving any ACK back are: the receive window (rwnd)
and the congestion window (cwnd). The first is used for flow control and
dictated by receiver, while the second is used to avoid network congestion
and is an estimated value defined by the sender. The congestion window
shows the estimated number of bytes that can be injected into the network
without causing network congestion. A TCP sender must oblige both the
rwnd and cwnd limits and calculates its send window (swnd) as:

6



2.1. TRANSMISSION CONTROL PROTOCOL (TCP)

swnd = min(rwnd, cwnd)

In TCP congestion control, the congestion window is gradually in-
creased until packet loss is detected. By the detection of packet loss, the
congestion window is quickly reduced in order to avoid causing conges-
tion. this behavior is called additive increase/multiplicative decrease (AIMD).

Slow Start and Congestion Avoidance

There are two phases called slow start and congestion avoidance which they
control the congestion window growth. In slow start phase, the capacity of
the network is estimated by quickly increasing the number of sent packet
per round trip time (RTT). This phase ends as soon as the cwnd reaches
the threshold or packet loss is detected. which shows that the data rate is
overloading the path capacity. In congestion avoidance phase, the cwnd is
increased less quicker than slow start phase. The border between these two
phases is slow start threshold sshthresh which can be referred as a value for
sending data without congestion. When TCP establishes for the first time,
it starts in the slow start phase, with the congestion window size of 1 seg-
ment and the slow start threshold set to a randomly high value. During
slow start, the congestion window is increased by 1 Maximum Segment
Size (MSS) for each incoming ACK. While during congestion avoidance,
the congestion window is increased by 1 MSS per RTT.

The cwnd growth will stop when the sender detect that a segment is
missing at the receiver, whether by receiving DupACK or if RTO expires
and timeout occurs. In both cases, standard TCP interprets this loss of
data as sign of network congestion and reduces both cwnd and ssthresh.
As discussed in previous section, a TCP sender tries to recover from
segment loss either after RTO expiration or after receiving 3 DupACK (fast
retransmit). In both cases, the sshtresh will be reduce to half of the cwnd
value.

ssthresh = cwnd/2

The difference is that, after timeout (i.e., RTO expiration), TCP will be
forced back to slow start phase, in which the cwnd will be reset to 1. while
after a fast retransmit, TCP goes to congestion avoidance phase by setting
the cwnd equal to sshthresh.The standard TCP congestion control which is
only based on RTO loss recovery and fast retransmit, normally referred as
TCP Tahoe [25, 37].

Fast Recovery

The idea behind fast recovery is the fact that in fast retransmit, The receiv-
ing of DupACks also means that the segment that the sender has sent, is
now received and stored at the receiver, meaning that the network still is
not congested. Therefore the sender knows that it can send new segments
upon receiving every Dupacks and increments the cwnd by 1. This phase
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ends by the reception of an ACK which acknowledges the new data (i.e.,
the ACK number has changed). At this point, the cwnd will be reduced to
sshthresh which had been set before during the fast retransmit. The first
TCP which uses both fast retransmit and fast recovery is TCP Reno[25, 38].

For the first and second DupACK, TCP uses the limited transmit which
allows TCP to send a new data segment upon receiving the first two
DupACKs, but the cwnd will not get incremented [2]. It proposed for
scenarios such as very low-bandwidth paths in which the cwnd is too
small, or when too many ACKs are lost. In this situations, A lost segment
is not followed immediately by enough DupACKs which triggers the fast
retransmit.

TCP New Reno

TCP Reno gets better path capacity utilization than TCP Tahoe, because of
fast recovery mechanism. But it still has the limitation of retransmitting
only a single segment per RTT, even in the cases that more than one seg-
ment were lost from the sent window. TCP Reno assumes that fast recovery
phase will be finished with an ACK for the entire window. If for instance,
two segments in a row get lost, then the fast recovery phase will be finished
with an ACK that acknowledges only the first lost segments. Therefore the
second lost segment never get retransmitted during fast recovery which
results in retransmission timer to expire after the fast recovery phase.

TCP New Reno [27], have been proposed to cover this drawback of TCP
Reno. It uses a mechanism which keeps track of the highest transmitted
sequence number at the time that fast retransmit occurs. In this way, TCP
New Reno stays in fast recovery phase until all the lost segments up to that
highest transmitted sequence number are acknowledged.

2.1.4 Enhanced Congestion Control Algorithms

Many other congestion control algorithms have been proposed in order to
achieve better utilization of the available path capacity. They differ from
each other in terms of how to detect congestion. In addition to packet loss,
which is a sign of a network congestion, other factors can also interpreted
as a sign of this phenomenon. For instance an increase in RTT could be
the result from congested router buffer. Therefore these different proposed
congestion controls deal with different signs of congestion. Another dif-
ference is how they deal with congestion in terms of adjusting cwnd and
sshthresh if it is detected.

The reason behind different proposed congestion controls algorithms
is the fact that they are designed to improve the performance of TCP in
different path environments. Some have been proposed for lossy wireless
environments, while other work best in high speed networks or over
satellite links with high latency. In Table 2.1, Kaspar [42] have summarized
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all available congestion control algorithms in Linux (as of kernel 2.6.32)
based on their functionality according to their estimated usage in Internet
provided by [75]

TCP Version Congestion detection Specialized for high Internet
usage [75]Name loss based RTT based bandwidth RTT loss

New Reno [27] 3 - - - - 17-25 %
BIC [73] 3 - 3 3 - 14%
CUBIC [34] 3 - 3 3 - 30%
H-TCP [50] 3 - 3 3 - 0.49%
Hybla [15] 3 - - 3 3 -
Illinois [52] 3 3 3 3 - 0.76%
Low-Priority [45] 3 3 - - - -
Scalable [43] 3 - 3 3 - 1.86%
Vegas [12] 3 3 - - - 1.57%
Veno [31] 3 3 - - 3 1.22%
Westwood+ [20] 3 - - - 3 2.82%
YeAH [5] 3 3 3 3 3 1.95%

Table 2.1: Enhanced TCP Congestion Control Algorithms [42]

TCP Vegas

TCP Vegas [12], is one of the proposed algorithms which relies on accurate
RTT estimation. In TCP Vegas, an increasing RTT will be interpreted as sign
of the congestion in the network. TCP Vegas uses the difference between
the expected and actual flows rates to estimate the available bandwidth in the
network. Hence, when the network is not congested, the actual flow rate
will be close to the expected flow rate. By using this difference in flow rates,
TCP vegas, estimates the available bandwidth and updates the window
size accordingly. TCP Vegas, modifies three of TCP Reno techniques as
below [47, 58]:

1. Congestion Avoidance:

First, the sender calculates the expected flow rate as:

Expected =
CWND

BaseRTT

Where :
CWND = current window size

Base RTT = minimum Round Trip Time

Second, the sender calculates the actual flow rate as:

Actual =
CWND

RTT

9
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Where:

RTT = The actual Round Trip Time o f the packet

When the sender receives an ACK, it calculates the difference
between the expected throughput and actual throughput as Diff
using below equation:

Di f f = (Expected− Actual)× BaseRTT

TCP Vegas also defines two thresholds, α and β which their values
is suggested to be (1, 3) in packet. The value of BaseRTTis updated if
Di f f < 0 since Expected value should exceed Actual value. According
to Diff, the sender updates its window size based on Algorithm 1.

Algorithm 1 TCP Vegas Congestion Avoidance

if Diff < α then
CWND = CWND + 1

else if Diff > β then
CWND = CWND− 1

else
CWND = CWND

end if

2. Retransmission:

If a single DupACK is received by the sender, it checks whether
the difference between the current time and the sending time plus
BaseRTT is greater than RTO or not, if it exceeds the RTO value, Vegas
retransmits the lost packed without waiting for three DupACKs
(Algorithm 2).

Algorithm 2 TCP Vegas Retransmission

if Current time− (Sending time + BaseRTT) > RTO then
send the lost packet and don’t wait for 3 DupACKs

end if

3. Slow Start:

During the slow start phase, TCP vegas uses the spaces between the
ACKs to estimate the available bandwidth so it can set the sshthresh
appropriately and respectively not exceed the available bandwidth.

In addition to TCP vegas, some other congestion control algorithms
proposed later -like, TCP Veno [31] and TCP Illinois [52] which they mainly
use the ideas behind TCP Vegas but not only depend on RTT estimation as
a main sign of congestion.
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TCP CUBIC

TCP CUBIC [34], is a proposed TCP variant with an optimized congestion
control algorithm for high speed networks. It’s an improved version of TCP
BIC [73] with better window control and TCP friendliness. The main factor
of TCP CUBIC is that its window size updates are independent of RTT and
is only based on the time between two consecutive congestion events.

TCP CUBIC, is the default congestion control mechanism implemented
in Linux kernel from version 2.6.26. It is similar to TCP Reno in some stages
such as, Slow Start, Fast Retransmit and Fast Recovery. but differs when
it comes to the adjustment of the congestion window. Instead of linear
window growth function which TCP Reno uses, TCP CUBIC has a cubic
window growth function as below:

Wcubic(W0, t) = C(t− K)3 + W0 (2.1)

Where:
W0 = Window size at the congestion event

t = elapsed time since the last congestion

K = the time required by the window to reaches the W0 value with no loss

Which is:

K =
3

√
W0 × (

β

C
)

where: C is a constant (usually 0.4) and is called the Cubic parameter and β
is another constant (usually 0.2) which is called multiplicative drop factor.
In case of packet drop, the window will be reduced to (1− β)W0.

When congestion happens, the window size grows quickly with the
sharp steep towards W0 which is the window size at the time that
congestion happened. When the window size is near to W0 (steady state),
it increases slowly. If the window size stays near W0 for reasonable amount
of time without any congestion, again the window size increases with the
sharp steep to find a new steady state.

A high speed protocol can be referred as TCP-friendly if it is acting fair
with standard TCP, i.e., takes equal amount of bandwidth when there
is another standard TCP connection on the link. In order to reach link
utilization and TCP friendliness, TCP CUBIC uses two window growth
functions. The 2.2 function is the second function which is for when TCP
CUBIC is operating in TCP friendly zone:

WTCP(W0, t) = W0(1− β) + 3
β

2− β
× t

RTT
(2.2)

When an ACK is received, both equations 2.1 and 2.2 will be evaluated
in order to know the mode of the operation according to algorithm 3.
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Algorithm 3 TCP CUBIC window growth function

if WTCP(W0, t) > Wcubic(W0, t) then
Use equation 2.2
Operate in TCP friendly region

else
Use the cubic window growth function in equation 2.1

end if

Another high-speed optimized congestion control is TCP Illinois [52].
It uses packet loss as sign of congestion. However, it adapts the window
relative to estimated queueing delay. Same as BIC and CUBIC, the outcome
is the fast growth in window when there is no congestion and a slow
growth, when congestion is probable.

2.1.5 Enhanced TCP Mechanisms

In addition to enhanced congestion controls which have been expressed in
previous section, there are several other improvements to TCP which can
be used in order to even more enhance the congestion control algorithms
and TCP’s loss recovery mechanism.

Selective Acknowledgements (SACK)

The problem with cumulative ACK (explained in 2.1), is that the receiver
does not acknowledge the new segments that it has received after a seg-
ment loss and only sends dupACKs with the lost segment’s sequence num-
ber to the sender upon receiving every new segment. therefore, the sender
does not know whether the receiver has received new segments or not,
meaning that it should wait either for an entire RTT to detect a lost seg-
ment, or retransmit the segments again which could be unnecessary. Select-
ive Acknowledgement (SACK) [57], provides additional information to the
sender about the segments that the receiver has received and those that it
hasn’t received by using additional information in the option field of ACKs.
Hence, the sender has better overview of the receiver’s stack and can make
better decisions about which segments to retransmit, which dramatically
reduces the number of unnecessary retransmissions [25].

Through the connection establishment, the SACK usage is negotiated
via SYN segment between the sender and the receiver. If the negotiation
is successful, then the receiver will be able to acknowledge a list of non-
contiguous blocks of data by using the SACK blocks in the ACK’s header
option field. Each SACK block contains two sequence numbers, referring
as Left Edge and Right Edge. Because of the limitation of 40 bytes in TCP op-
tions, only four SACK blocks can be included in each ACK. The first block
of SACK always represents the latest segment than receiver has received.
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In a SACK enabled connection, the sender keeps a list called retransmis-
sion queue, which is a list of all segments that have been sent but haven’t
been acknowledged yet. By receiving the ACK with SACK blocks from re-
ceiver, the sender marks the segments in retransmission queue as SACKed
which have been specified in SACK blocks. Hence, unmarked segments
previous to the highest SACKed segment are most likely lost and need
to get retransmitted. A mechanism that uses SACK information to accur-
ately estimate the outstanding segments in the network has been specified
by RFC6675 [10] referred to a conservative SACK-based loss recovery al-
gorithm for TCP.

Forward Acknowledgements (FACK)

The Forward Acknowledgement algorithm [56] looks for the most forward
SACKed sequence number, referred as snd.fack, to get the better over-
view of the network and recover form situations where multiple segments
are lost. Hence, the sender knows how many segments are missing and
considers all unacknowledged segments (holes) between SACK blocks as
lost and triggers fast retransmit if the number of holes is larger than the
dupACK threshold.

FACK has the drawback in the situations where the holes are caused by
packet reordering instead of packet loss. In such these situations, FACK
behaves aggressively and triggers unnecessary retransmission for all holes.
Operating Systems which use FACK e.g. Linux, disable FACK mechanism
after packet reordering detection [42].

Duplicate Selective Acknowledgements (DSACK)

The Duplicate Selective Acknowledgements specified by RFC 2883 [28], al-
lows a receiver to inform the sender about duplicate segments. The spe-
cification which SACK does not cover. A DSACK block is same as SACK
block with the difference that the duplicate segment is mentioned as a
single first SACKed segment and followed by the block that it is belongs
to and additional blocks if there are any more.

Although DSACK itself does not provide any specific actions that the
sender should implement, It lets the sender to distinguish between the
events that the sender that only uses SACK is unable to do. The events
that DSACK can express to sender can be summarized as below:

• Replication by the network:

When a sender receives an ACK which includes a DSACK block
stating to the segment that got never retransmitted, then the sender
knows that the segment must got duplicated in the network. If the
ACK is a dupACK, then the sender can make sure that the reason
for dupACK is replication and not loss. Although the SACK itself
can let the sender to identify the dupACKs that do not acknowledge
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new data, but the DSACK option gives the sender a stronger basis for
knowing that the dupACK does not acknowledge new data. Figure
2.1, shows the example in wich the segment has replicated in the
network, and the receiver has notified the sender via DSACK option.

Figure 2.1: Replication by the network in DSACK
[28]., Sender sends segments with 500 bytes each.

• False retransmit:

If a sender receives an ACK with a DSACK block referring to the
segment that the sender has been retransmitted already, then the
sender knows that the DSACKed segment was not lost and it just
got reordered (i.e. the segment arrived more than 3 packets out of
order) and caused an unnecessary retransmit. Figure 2.2, illustrate
the scenario in which the segment got delayed and reordered, while
the sender retransmitted it again. Hence, the receiver sends an ACK
with DSACK option specifying that the retransmitted segment is a
duplicate segment. In contrast, the SACK mechanism would not
report the second received segment (duplicate one) as duplicate.
hence, the sender wrongly thinks that the segment was lost.

Figure 2.2: DSACK provides information to the
sender, so the sender knows that the segment was
reordered not lost [28].

• Early retransmit timeout:

If the RTO of the sender is too small, then the retransmission timeout
can occur, in which the sender retransmits the delayed segments
knowing that the original segments were lost. However, the original
segments of packets arrives at the receiver, resulting in sending
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ACKs for received segment. After that, the retransmissions of the
segments arrive which result in ACKs with DSACK which identify
the duplicate segments. Hence, the sender learns that the RTO value
is too short and it triggered false timeout. Figure 2.3 illustrates this
scenario.

Figure 2.3: DSACK provides information to the
sender, so the sender knows that the RTO is too small
[28].

• Retransmit timeout because of ACK loss:

If all the ACKs for an entire window is lost, the timeout will
occurs. However, with the first ACK received after the timeout
with a DSACK block, the sender will be notified about the duplicate
segments received. SACK itself can not notify the sender about this
matter. Hence, the sender won’t be notified that none of the segments
were dropped (Figure 2.4).

Figure 2.4: DSACK provides information to the
sender about the duplicate segments received, so the
sender knows that the segments were not lost [28].

One of the drawbacks of the DSACK is that it’s unable to refrain the
retransmission of a full window of segments when the false retransmit
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timeout occurs. The reason is the sender is only able to know that the
timeout is false one RTT after the false retransmission has occurred by
receiving the first ACK containing DSACK block for the retransmitted
segment from receiver (last line of Figure 2.4). However, during the elapse
of that RTT the rest of the segments of the entire window are getting
retransmitted continuously due to timeouts. The Forward RTO Recovery
algorithm described in the following resolves this issue.

Forward RTO Recovery (F-RTO)

By the expiration of the RTO, TCP perceives that a loss has happened and
not only enters to slow start stage, but also triggers the retransmission
timeout, which results in unnecessarily sending the entire window of seg-
ments which are currently in-flight (outstanding). However, these timeouts
could be because of normal delay spikes that even the most reliable links
have and it even looks more common in wireless networks (e.g, loss of ra-
dio coverage or handover between base stations).

A TCP sender can use the F-RTO algorithm [66] to detect the false
retransmission timeouts and refrain the whole window to get unnecessarily
retransmitted. The main purpose of F-RTO is to send new segments rather
than retransmitting the old segments in case of retransmission timeout
occurs. Therefore, F-RTO looks for the next two incoming ACKs in order
to perceive whether the timeout was false or not. If any of them were
dupACK, then the F-RTO algorithms stops and TCP RTO recovery takes
over. In contrast if the both incoming ACKs after timeout acknowledge
new data, it means that the timeout was false and F-RTO continues sending
new segments. Note that the first retransmission is unavoidable even
with F-RTO. But it prevents further false retransmissions occurrence which
unnecessarily occupy the link.

The Eifel Algorithm

The Eifel algorithm [55], is another enhancement to TCP for cases where
false retransmissions and false timeouts occur frequently. It mainly uses
timestamp option to know if the received ACK is the answer to original
segment received or is the answer to the retransmission of the segment.
Whenever the sender retransmit a segment for the first time, it stores
its timestamp. If the sender receives an ACK with the related sequence
number, it then checks its timestamp. If the timestamp value of the received
ACK was smaller than the timestamp of the retransmitted segment, then
the sender makes sure that the ACK is for the original segment and the
retransmission was unnecessary. In addition, if there is only a single false
retransmission occurs, the Eifel algorithm undo the congestion window
adjustment by reverting it back to the value before entering loss recovery.
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2.1.6 Linux TCP

Linux implements many of the recent TCP enhancements suggested by the
IETF’s RFCs. Some of these enhancements such as DSACK, FACK, TCP
timestamp option, F-RTO recovery, and algorithms for packet reordering
adaptation and undoing the wrongly reduced congestion window size still
are not widely deployed in TCP implementations. Linux TCP also differs
from the standard TCP New Reno and SACK TCP loss recovery schemes.
Sarolahti and Kuznetsov, have summarized TCP features that differ from a
typical TCP implementation in [65] as following:

• Retransmission timer calculation

• Undoing congestion window adjustments

• Delayed Acknowledgements

• Congestion window validation

• Explicit Congestion Notification

Linux provides a platform for testing the recent enhancements in
an actual network. Therefore it is possible to to configure many of
these mechanisms via sysctl command in Linux. Table 2.2, shows
the parameters and their range along with their default values which
previously described in subsections 2.1.4 and 2.1.5.

Parameter name Value range Linux TCP Default value

Congestion control algorithm Table 2.1 CUBIC
Sack 0 , 1 1
FACK 0 , 1 1
DSACK 0 , 1 1
F-RTO 0 , 1 , 2 SACK-enhanced {2}
timestamps boolean 1
reorderingmin [1 ... 127] 3

Table 2.2: Linux TCP parameters [42]

The result of possibly combining congestion control algorithms, loss
recovery methods and performance enhancement mechanisms is a vari-
ous TCP versions, also called TCP flavors. TCP Tahoe, TCP Reno and Ne-
wReno, SACK TCP and Eifel TCP are some examples of different TCP fla-
vors. However, with Linux TCP , it is possible to emulate some of these
TCP flavors via changing some of the described parameters in Table 2.2,
since each TCP flavor has its own attributes (e.g, TCP New Reno, doesn’t
use SACK, FACK and etc..).

Table 2.3 shows the required values for specified parameters in Linux
TCP, in order to reach the behavior of some of widely implementd TCP
flavors such as, TCP NewReno, SACK TCP and Eifel TCP together with
the Linux TCP values.
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Parameter name TCP NewReno SACK TCP Eifel TCP Linux TCP Default value

Congestion control NewReno NewReno NewReno CUBIC
Sack 0 1 1 1
FACK 0 0 0 1
DSACK 0 0 0 1
F-RTO 0 0 0 SACK-enhanced {2}
timestamps 0 0 1 1
reorderingmin 3 3 3 3

Table 2.3: Different TCP flavors emulation by Linux TCP [42]

Loss Recovery in Linux TCP

The Linux TCP sender, determines the number of currently outstanding
segments in the network instead of comparing the congestion window to
the difference of snd.nxt and snd.una. It then compares the number of
outstanding segments to the congestion window in order to decide how
much new data can be transmitted to the network and for recovering
lost data segments. Note that Linux, tracks the number of outstanding
segments in units of full-sized packets and does not compare cwnd to the
number of transmitted octets. When SACK information is available, the
Linux TCP sender uses the following equations to count the number of
outstanding segments (in_flight):

left_out = sacked_out+ lost_out (2.3)

in_flight = packets_out− left_out+ retrans_out (2.4)

In equation 2.3, sacked_out is the number of all SACKed segments
and lost_out is the estimated number of lost segments in the network.
In 2.4, packets_out is the number of all originally transmitted segments
(i.e, snd.nxt - snd.una) and retrans_out is the number of retransmitted
segments, as its name shows. Determining the lost_out value is not as
easy as the other parameters - since they are computed based on sent
data and receiving the SACK information from the returning ACK - and
depends on selected recovery method based on algorithm 4.

2.2 Mobile Broadband Networks

From a few years ago the mobile communications technology changed the
way people communicate. looking to the history of this evolutionary path,
we faces to the first generation of mobile broadband (1G) which accom-
plished the basic mobile voice, backs into analog cellular technologies goes
back to 1980s. The second generation (2G) has introduced capacity and cov-
erage with short messages and low speed data. The CDMA2000 1xRTT and
GSM are kinds of 2G technologies while 2G technology became available
in the 1990s. The third generation (3G) have been initiated data at higher
speed which UMTS-HSPA and CDMA2000 EV-DO were the primary 3G
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Algorithm 4 Linux TCP loss recovery method

if SACK is enabled then
if FACK is enabled then

Count all un-ACKed data between SACKed blocks as lost
# Aggressive FACK-based recovery

else
Consider all un-ACKed data as outstanding

# Conservative SACK-based recovery
end if

else
Increase sacked_out by one for each incoming dupACK

# TCP New Reno
end if

technologies. This evolution combined with portability of mobile broad-
band (MBB) networks led into debatably increase in impertinence of MBB
as a communication platform. The usage of MBB varies in mobile devices
such as smart phones and tablets with fast speed and high capacity MBB
networks [44, 46] .

2.2.1 Universal Mobile Telecommunications System (UMTS)

The universal mobile telecommunications systems (UMTS) is the third genera-
tion mobile broadband network based on GSM and have 3GPP (3rd Gen-
eration Partnership Project) as the standardization.

Two main subsystems of 3G-UMTS are:

• Terrestrial radio access networks (UTRAN)

• Core Network (CN)

The UTRAN communication network known as the 3G while contains
radio network controller (RNC), user equipments(UEs) and base stations which
is known as (NodeBS).

The RNC has responsibility of controlling one or more NodeBs which
the RNS and NodeBS can be the same device in the network, Although
there is no necessity for them to be physically separated , but the have
different logical interface. The RNc make UEs to access to the CN and
based on the UEs state transitions the NC keeps track of UEs radio resource
control (RRC).

While the UEs are connected the RNC will assigned a RRC-state based
on the its state on its NodeBS. Typically three RRC-state are available: IDLE
or DISCONNECTED, forward access channel (CELL-FACH), and dedic-
ated channel (CELL-DCH).
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CELL-DCH is a dedicated channel with high bandwidth, while the
CELL-FACH is a low-bandwidth channels. The RRC state are controlled
by two timers and one threshold of data rate as illustrated in Figure 2.5.

Figure 2.5: Example of 3G-UMTS RRC State Machine [26].

When a data threshold is exceeded and state demotion are controlled
by timeout, the state promotions are perform T1 and T2 shows in Figure
2.5. At the time that data arrives, depend on the RRC configuration the the
RRC-state transition can be CELL-FACH or CELL-DCH, while the CELL-
DCH are limited in NodeBs and dedicated in single UE[26].

2.2.2 CDMA2000 1xEV-DO (Evolution-Data Only)

The CDMA2000 1xEV-DO is a 3G telecommunication standard which is
an evolution of CDMA2000 and has been standardized by 3rd Generation
Partnership Project 2 (3GPP2), while CDMA2000 1xEV-DO Rev.A is a revi-
sion of EV-DO that adds several addition to the protocol with keeping the
compatibility with revision 0.

The CDMA2000 created with different components compare to the
UMTS networks, nevertheless there are similarities in components num-
ber and functionality such as UEs RRC is like UMTS.

If the High Speed Packet Access (HSPA+) is available the 3G-UMTS
supports maximum data rates, up to 21Mbit/s in downlink and 11Mbit/s
in uplink, while 3G-CDMA2000 1xEV-DO Rev.A supports 3.1Mbit/s and
1.2Mbit/s in downlink and uplink respectively[26].

2.3 Related Work

From the 1990s the Quality of Service (QoS) characteristics of wireless
networks have been a point of interest which so many research went
around it.

The authors in [74] studied IEEE 802.11 WLAN and proposed a
discussion about the transport protocol performance in wireless networks.

In [17], the authors focused on the TCP performance in 3G networks
and considered the rate and delay differences.
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The aouthers in [19], focused on applications with different QoS re-
quirements in CDMA networks. They studied different TCP performance
parameters, such as throughput, round-trip times and loss rates, and they
introduce they estimate the bandwidth to achieve application Qos.

Tan et.al. performed a measurements in 3G networks to assess temporal
and location of network characteristics and proposed analysis study of the
TCP performance impact on the Application Layer [67].

In [53], a measurement study has been provided to observe the
relationship between the MAC layer in Code , Division Multiple Access
(CDMA) and TCP with different congestion control mechanisms.
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Chapter 3

Approach

This chapter provides an overview of the methods and techniques used
in this research. It covers the considered ways that tries to answer the
problem statement following by design of experiments needed to reach the
operationalization. Furthermore the methodology and the testbed used in
this study will be covered in this chapter followed by the expected results
and analysis methods in order to be bale to interpret the differences and
the way to best answer the problem statement.

3.1 Experiments design

In order to properly answer the problem statement, a proper experimental
design should be considered. A testbed should be considered which
consists of two machines. one can be considered as Client and the
other one as Server. According to the assumption that different Mobile
Broadband (MBB) network paths should be observed, therefore there
should be different connection paths provided by different MBB providers
for either Client or Server ( depending on the experiment scenario ). A TCP
connection could be established on different network paths between client
and server and specific traffic type could be generated between two nodes
depending on whether the direction of the traffic is from server to client or
from client to server (i.e, Downlink or Uplink).

3.1.1 Requirements

The experiments should be designed in a way that they represent a real
usage experience over MBB network (e.g, simulating the type of traffic and
usage that a user with handheld MBB terminal can experience. Upon each
connection, the different parameters as following could be used in order to
construct this experiment.

Quality of Services (QoS) variables

It is crucial to define the variables that should be measured and compared
in these sets of experiments. Thus the QoS variables and their explanations
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could be as following:

• Throughput:

The rate of successful message delivery over a network path. It
usually measured in bits per second or Bytes per second.

• Goodput

The application level Throughput could be referred as Goodput.
In Goodput, the amount of data that the application is receiving
excluding protocol overhead and retransmitted data packets is
considered, rather than the total amount that the network interface
receives successfully (i.e, Throughput). The goodput is always lower
than the throughput.

• RTT

The time that it takes from the transmission of a segment until the
acknowledgement is received. Described in section 2.1.1 on page 5.

• One-way Delay

The time that the packet spends in travelling across the network in
one way (e,g uplink or downlink).

Congestion control variants

Since the problem statement focuses on impact of different TCP congestion
control mechanisms in different networks, therefore it is needed to conduct
the experiments in a way that measurements could be categorized in spe-
cified congestion control algorithms, meaning that experiments (i.e, TCP
connections described above ) could be run with the same type of conges-
tion control algorithm each time on every network paths available for the
experiments and the behaviour of each connection with same congestion
control algorithm could be observed and compared.

The selection of the congestion control algorithms for experiments
could be based on their congestion detection type provided in Table
2.1 on page 9. Hence, by having mixture of loss-based and RTT (delay)
based congestion control algorithms as variants in our experiments, the
comparison would cover both types of congestion control mechanisms and
makes the analysis stronger by comparing the behavior of the loss based
and delay based algorithms together in the same condition and path.

Different networks

As noted in the problem statement, we are interested to see the impacts
of different congestion control algorithms in different MBB networks.
Therefore we should set the experiments in a way that it runs the same
TCP connection with same congestion control algorithm across different
MBB networks. The selection of different MBB networks could be from
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different MBB providers in Norway , preferably with different technologies
as described in . By choosing different technologies and comparing
them under same condition (i.e, congestion control and etc..), we can
conclude whether the difference in technology is involved in the impact
of congestion controls on our specified QoS parameters or not.

Traffic variation

In order to simulate the usage of a user and compare the QoS results of
different congestion control mechanisms over different networks, various
traffics must be generated and observed. These traffics could represent
the user side usage working with mobile terminal equipped with Mobile
Broadband technology. The proposed traffics could be as following:

• Large data transfer (bulk traffic)

Emulates the downloading or uploading a large file by the user. In
this type of traffic the delay is not an important factor since it is
not application sensitive traffic. The rate of the transfer could be
important factor to monitor. This kind of traffic could also be referred
as long flow traffic in which, the sender and receiver try to reach to
maximum available capacity of the link i,e. the sender sends as much
segments as possible unless the receiver or the routers on the path
can’t handle the rate of transferring packets resulting in packet loss or
RTO and triggering the congestion control mechanism of the sender
and backing of from saturating the link.

• web surfing (onoff traffic)

Represents the web surfing, in which concurrently downloads or
uploads a certain amount of data for a specified time and then stays
idle for some other specified time. Aiming at emulating the users
web surfing, while downloading a web page in limited amount of
time(e.g, 1 second) and then stay idle for the time more it took for
downloading the page and reading it for instance. This type of traffic
could also referred as short flow traffic. During the transmission time,
the sender tries to send as much segment as possible (i.e, the link
capacity has been reached and saturated).

• Streaming (Application limited traffic) Normally when applications
such as video/audio streaming servers, video/audio chats, Voice
over IP (VoIP) and etc. stream the data, the rate of the transferring
segments is limited and has a fixed threshold which depends on the
codec and bitrate of the stream, the segment transferring rate differs.
An example of bandwidth and rate consumption of different codecs
in VoIP traffic is provided by Cisco in [18]. Since the rate is limited
by the application, therefore this kind of traffic could be referred as
application limited traffic. In application limited traffic, the sender
does not saturate the network by aiming to reach the maximum
transferring rate.
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System settings

As described in 2.1.6 in Background Chapter, It is possible to tune and
configure Linux TCP parameters in order to properly combine and simulate
the behavior of some of the well known and widely implemented TCP
flavors. However, In this thesis we’re mainly interested in congestion
control algorithms and also the buffer size of the receiver. The latter will
be considered mainly because of simulating the current wireless handheld
terminals in which, the amount of memory that the TCP stack could use
for its buffering is low due to the resource limitation in these devices
comparing to other devices like - laptops, etc. This buffer size value could
be set via the sysctl command in Linux.

3.1.2 Design

By assuming the requirements mentioned above, if we consider B as the
buffer size, T as the traffic type, C as congestion control algorithm and N
as the network, therefore the definition of each experiment defined as Exp
could be as:

Exp(B,T,C,N)


B ∈ [limited, unlimited]
T ∈ [bulk, onoff, stream]
C ∈ {loss based, delay based}
N ∈ [Network A, Network B, Network C]

(3.1)

For buffer size in equation above, limited could represent the wireless
handheld terminal with limited memory and unlimited could be a value
much higher than limited value (e,g. equal to the amount of data in bulk
transfer in Mega Bytes).

Knowing the structure and variables of the experiments, A tool could
be designed and implemented in order to provide the desired experiment.
The design of the measurement tool is described as following.

Measurement tool

With the assumption of the required parameters described above, a tool
must be implemented which runs the measurements between the client
with multiple network interfaces and the server machine.

The tool which will be a script could be deployed in two versions. One
for client and the other for server. Based on the given parameters to the
server version, it listens to the given TCP port and waits for an incoming
socket connection from the client. Once the connection established between
the client and the server, both machines could start capturing the pack-
ets by using command line packet analyzer tool such as tcpdump. The
server could also run ss command simultaneously in order to investigate
the established socket connection and extract the values such as RTT, RTO,
CWND, ssthresh and etc. The capturing will continue during the connection
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and will be written to a file on disk in a csv format when the connection is
closed.

The direction along with the type of the traffic could be given to both
versions. Hence, based on the direction of the traffic (i.e, download or up-
load) the server sends or receives the packets which will be generated based
on the given type of traffic. For bulk traffic, the additional argument could
be given to the script which specifies the amount of traffic that should be
generated and transmitted from server to client in download direction and
from client to server in upload direction. In this case, another file could
be created by the script which contains the numbers of received segments
from the socket connection in each time, preferably in epoch time format.
This file could be used as Goodput values which represents the amount of
received segments from the application point of view. For onoff and stream
traffic, some existing tools could be used which generate the customized
traffic based on the specified number of packets and the rate of transferring
packets per second. Also the duration and the interval of the transfer could
be specified in order to simulate the onoff traffic.

The congestion control algorithm could be another given argument
to both scripts. Based on the direction of the traffic which species the
sender, the congestion control algorithm could be changed on the sender
via sysctl command based on the given name of the algorithm.

In addition, the interface name could be another argument for client
script, in which based on the given interface name, the socket could binded
to that interface resulting in establishing the connection to the server via
the specified interface. Figure 3.1 illustrates the design of the measurement
scripts.

The core of the experiments are the output files from the measurement
scripts stated above. However, the trace files are usually too long due to
the big number of captured segments they contain. Hence, some other
scripts are required in order to filter the trace files and extract the needed
parameters in a way that we could use them as a results of the experiment
for comparison and analysis. This could be done by using some statistics
on the distribution of the parameters values in order to obtain the mean and
standard deviation and some other factors of each individual measurement
and store the distribution of these samplings as another distribution (e.g,
distribution of sample means from all experiments). In addition, some
scripts could be implemented which draw the plot of the evolution of
the parameters from beginning of the connection through its end which
is described in following.

Plotting tool

The trace files resulted from measurement script need to be filtered in a way
that only show the segments that have been transferred between the client
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Figure 3.1: Measurement tool design, the client initiates the connection to
the server and recieves the generated segments from the server.

and the specified port of the server (i.e, the other traffics destined and from
other ports of the server must get excluded). This could be done by us-
ing a packet analyzer tool (e.g, Wireshark, Tshark, tcptrace and etc.) which
provides the ability to filter segments to be shown based on the provided
attributes.

After filtration, the needed parameters could get plotted by using some
scripts and command line plotting tools. This visualization helps us better
to observe the behavior of the key parameters that we’re interested in each
measurement. The plots that could be informative in each measurement
could be as below:

• Throughput

• Goodput

• Congestion window (CWND)

• RTT

• Sequence number of the segments
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The Goodput plot could be created from the Goodput file which is one
of the output files from the measurement scripts. However, for Through-
put plot the client trace file could be used since the amount of received
segments at the interface is stored in the trace file. Hence, by using the
packet analyzer tool the amount of received data ( in Bytes or segments
unit) in each time unit ( e.g, epoch time) could be extracted and used.

For Congestion window, the output file resulted of the ss command
which will be embeded in the server version of the measurement script
could be used where the value of CWND in each time stamp is stored in
that file. Moreover, for RTT and Sequence number the sender’s ( server in
our case) trace file could be used. All these values could be extracted by
combining the packet analyzer command with proper options. The X axis
in all mentioned plots above could be time in seconds.
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3.2 Procedure and Collecting data

The procedures and methods that should be considered for the experiment
will be described in this section.

3.2.1 Repetition

In order to have a reliable results, the experiments should run for enough
number of times, normally more than 30 measurements for each category
in which we could have a valid sampling distributions for the QoS para-
meters that we’re interested.

However, to avoid the cache problem which could exist on the routers
on the path between two nodes and even in the client and server’s network
stack, there should be a quite reasonable interval between each measure-
ment. In addition since we’re interested in QoS differences with various
congestion control algorithms between different networks, the results of
measurements could be more realistic if the measurements take place in
the times of the day in which the network is busy with reasonable amount
of users (e.g, working hours).

Since the Mobile Broadband data plans are quite expensive comparing
to other types of Internet connections (e.g, ADSL, Cable and etc.) and
in order to not pass the quota limit of the MBB monthly data plan, the
repetition must carefully considered in a way that both reliable results
could be collected and fulfill the monthly data plan quota’s terms and
conditions. Therefore the amount of data that will be transferred should
not be too big to eats the quota plan and not be too small which results in a
not reliable measurement.

3.2.2 Expected output

As described earlier in 3.1.2, Two of the output files from the measurement
tools are trace files generated by packet analyzing tool. The output format
of the trace files which tcpdump generates are as following:

tcpdump output format

[source IP address].[source port] > [destination IP address].[destination port] \
[header flag] [initial sequence number]:[ending sequence number (implied)] \
([size in bytes]) [acknowledgement number] [advertised window size] ([other flags])

However, by using the packet analyzer tools (e.g, Wireshark, Tshark
and tcptrace) again on the trace files, it is possible to apply the desired fil-
ters in order to extract the required information from them and write to the
disk as CSV format, so they could later get used for plotting and statistics
operations.

When the ss command executes with desired options, The output
headers of the command is messy and needs to get properly arranged in
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a CSV format. The following field headers of the desired output format for
the values from ss command:

ss output format

timestamp,destination ip:port,congestion control,wscale,rto,rtt,mss,cwnd,ssthresh,\
rate

As described above, the expected output format of the files which will
be used by plotting tool are as following:

• Throughput
Throughput file format

timestamp,received segment(s) size

• Goodput
Goodput file format

timestamp,segment(s) size received by application

• CWND
CWND file format

timestamp,congestion window (CWND) size

• RTT
RTT file format

timestamp,responded ACK’s from the receiver rtt

• Sequence number
Sequence number file format

timestamp,sequence number of the sent segment(s)

3.2.3 Schedule of the experiments

By having the variants available for the experiments as described in 3.1,
there should be a plan which highlights how the experiment should get ex-
ecuted. Since the main goal of this thesis is to find the differences of various
TCP flavours in different MBB networks. Therefore the experiments should
be planned as Algorithm 5.

For each buffer size as b and traffic type as t, the algorithm 5 produces
a matrix consisting of c rows and l columns where each row represent one
congestion control algorithm and each column represents each network.
Hence, each element (i.e, aij), represents one experiment based on 3.1. For
instance:
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Algorithm 5 Experiments algorithm

Require: B, T, C, N
for b in (b ∈ B) do # buffer sizes

for t in (t ∈ T) do # traffic types
i← 1 # initiate first row
for c in (c ∈ C) do # congestion controls

j← 1 # initiate first column
for l in (l ∈ N) do # networks

aij ← Exp(b,t,c,l) # set the elements of matrix
j← j + 1

end for
i← i + 1

end for
Mb,t ← Matrix of c rows and l columns with aij as elements

end for
end for

a13 in Mb1t1 = Exp(B1,T1,C1,N3)

And
a24 in Mb2t3 = Exp(B2,T3,C2,N4)

Mb1t1 =


l1 l2 ... lN

c1 a11 a12 . . . a1N
c2 a21 a22 . . . a2N
...

...
...

. . .
...

cC aC1 aC2 . . . aCN



Mb1t2 =


l1 l2 ... lN

c1 a11 a12 . . . a1N
c2 a21 a22 . . . a2N
...

...
...

. . .
...

cC aC1 aC2 . . . aCN


...

MbBtT =


l1 l2 ... lN

c1 a11 a12 . . . a1N
c2 a21 a22 . . . a2N
...

...
...

. . .
...

cC aC1 aC2 . . . aCN
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If we group each measurement as one of the described matrices (e.g,
Mb1t1) consisting [a11 . . . aCN ] experiments, therefore the number of total
measurement groups is as following:

Total number of measurement groups =
B

∑
b=1

T

∑
t=1

Mbt (3.2)

Also, the total number of experiments that should be executed for this
thesis would be:

Total number of experiments =
B

∑
b=1

b×
T

∑
t=1

t×
C

∑
i=1

N

∑
j=1

aij (3.3)

In the other words, the measuring procedure in this thesis could be
separated and grouped based on buffer size and traffic type, in which
in each group, a set of experiments would run based on the elements
of the group which consist of one congestion control algorithm per
every available network. In this way, the behaviour of the congestion
control algorithm could be observed on different available networks while
the other parameters are same in each row of the measurement matrix
and the next row runs the experiments with another congestion control
algorithm again on every available networks. Hence, the behaviour of
the congestion control algorithm could be reliably concluded based on all
available variants.

3.2.4 Collected data

The collected data files which is the result of running experiment could be
stored in a Folder hierarchy manner. Since Each matrix represents a meas-
urement group, therefore the storing data method could be based on each
measurement group.

This could be done by assigning the buffer size variation as the root of
the folder hierarchy(b in matrix M) and setting the traffic type as the sub-
folder of the buffer size. Network would be a sub folder of traffic type
and parent folder of the Congestion control algorithm folder. As noted,
the network/congestion control/ which represent each experiment (e.g, a12
in matrix M) would exist for each sets of measurement group (i.e, matrix
M). The general overview of the folder hierarchy for data collection in this
thesis would be as following:

Buffer size/traffic type/network/congestion control/

A single measurement group (e.g, Mb1t1) which consists of a11...aCN
experiments could executed. Hence, the files resulting of measurement
scripts and some other analysis scripts would be stored in the path spe-
cified above. For instance the files for experiment Exp(B1, T2, C1, N4) could
be stored as : B1/T2/N4/C1/ f iles In addition to the files, a folder which
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holds plots of each individual experiment could be exist.

In order to have reliable and strong analysis each measurement group
should get executed several times which logically results in having several
Experiment with same attributes (e.g, B1/T2/N4/C1/ f iles), which results
in duplication or even overwritten. Therefore another level could be added
under congestioncontrol as sub folder. The folder with a date and time
of the experiment execution could make each experiment unique which
consist its own files respectively.An example could be as following:

B1/T2/N4/C1/exp− date− time/ f iles

3.3 Analysing data

In this chapter the methods that would take place in order to analyze the
resulted data from experiments will be described.

3.3.1 Analysis tools

In order to analyze the results from each experiment and also summarize
the repeated experiments and make a conclusion on them, another sets of
scripts should be created which traverse through the result files for the re-
quired QoS parameters and do statistical actions such as calculating the
mean and standard deviation of the distribution of the QoS values in every
single experiments and store the statistic values in a file in CSV format so
it could be used later.

Since each measurement matrix (M) would be run for several times,
therefore there would be several individual experiments (e.g, a11) which
they have identified and distinguished by their unique suffix which is the
combination of date and time appendix as described in previous section.
However, another step could be defined in which , all the statistical values
along with the experiment name for every single experiment could be
extracted from the experiment folders and written in a summary file which
contains the distribution of the means of each experiment. The format
and location of the summary file containing distribution of the means and
standard deviations of one specific QoS could be as following:

Exp(B1, T1, C1, N1)− date− time1, mean, stddev
Exp(B1, T1, C1, N1)− date− time2, mean, stddev
Exp(B1, T1, C1, N1)− date− time3, mean, stddev

...
Exp(B1, T1, C1, N1)− date− timen, mean, stddev

Buffer size/traffic type/network/congestion control/ (3.4)
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3.3.2 Plots

By having enough number of repeated experiments (usually more than 30)
in each measurement group and by having the distribution of the means
of each individual experiment, the behavior of each congestion control (C)
in every network (N) for each matrix (i.e, Mbt) could be easily visualised
by using the script based plotting tools based on the summary files which
located in 3.4. Statistical plots such as boxplot, CDF (Cumulative Distribution
Function), bar chart and scatter plots could be good candidate to represent the
results and help us to compare the differences with each other.
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Chapter 4

Results

This chapter starts with describing the actual implementation of the
measurements in which the materials and the parameters that have been
considered for the measurements will be explained in detail. Following
will be the result of all measurement groups which have been measured in
this thesis and the data will be showed.

4.1 Implementation

In this section, the actual implementation will be described. The Testbed
which have been used for running the measurement will be described, fol-
lowing by the actual design of the testbed. Furthermore, the operationaliz-
ation of the measurement and the actual QoS parameters which needed to
be observed will be described following by the functionality of the scripts.

4.1.1 Testbed

The experiments are running on Nornet Edge1[21, 33, 46], which is a pro-
grammable testbed for measurements and network research. The Nornet
Edge testbed is composed of customized single-board measurement nodes.
The measurement node is connected to multiple MBB operators2. Figure
4.1 shows the NorNet Edge measurement node which is used as a client
machine for running measurements in this thesis.

Three different MBB providers of Norway are considered for measure-
ments. Therefore, the measurement node is connected to two 3G-UMTS
operators by using similar USB 3G modems, and one 3G-CDMA2000 1xEV-
DO Rev.A3 network over USB. The 3G-UMTS modems support HSPA+
with theoretical data rate of up to 21.6 Mbit/s in downlink and 5.8 Mbit/s
in uplink while the 3G-CDMA2000 modem supports a theoretical data rate

1NorNet: https://www.nntb.no/.
2The name of the operators will be kept anonymized.
3The CDMA modem is a standalone modem with LAN output which is connected to

the node via LAN-to-USB adapter
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Figure 4.1: NorNet Edge measurement node with USB 3G
modems connected [46].

of 9.3 Mbit/s in downlink and 3.1 Mbit/s in uplink [26]. The actual meas-
urement setup is illustrated in Figure 4.2. The location of the measurement
node is in the Oslo region of Norway which is shown in Figure 4.3. The
node has no mobility and is in static condition.

In addition another machine is used which has the role of orchestrating
the measurements. This machine which is a desktop, runs the measure-
ment scripts automated by cron job on both server and node through ssh
command and collects the output files resulting of measurement scripts in
order to extract the QoS parameters and furthermore plotting the results.

4.1.2 Measurements

The QoS parameters that are considered in this thesis are: Goodput, RTT and
One-way delay. Also Three congestion control algorithms were considered:
TCP NewReno, TCP CUBIC and TCP Vegas. NewReno is included in the
measurement since it is a standardized algorithm and commonly is used as
a baseline for comparison with other TCP congestion control algorithms.
The TCP CUBIC algorithm is considered since it is the default congestion
control algorithm in Linux and is widely deployed on Web servers [75].
TCP Vegas is included in a measurements since it is a representative of a
delay-based congestion control algorithm while the two other algorithms
are loss-based. The following command changes the congestion control
algorithm to Vegas.

Setting Vegas as congestion control

$ sysctl -w net.ipv4.tcp_congestion_control=vegas
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Figure 4.2: The overview of actual measurement setup.

Linux TCP were used for measurements with the default values for the
parameters based on Table 2.2. However since we’re only interested in
congestion control algorithm and not the TCP flavor itself, therefore the
congestion control algorithm will change by just changing the congestion
control parameter according to Table 2.3. Although we referred to
NewReno as a baseline congestion control which is commonly used, In
practice, SACK-based recovery and FACK is used too.

In addition, the TCP metric cache is always flushed before establishing
new TCP connection (i.e, beginning of each experiment). This can be done
by the command below:

flushing the TCP metrics

$ sysctl -w net.ipv4.tcp_no_metrics_save=1

The considered traffic types for the measurements are: Bulk, Onoff and
Stream traffics which are described in Section 3.1.1 on page 25. The different
approach for traffic generation and the amount of sent segments for each
traffic type will be described in detail in Section 4.2. NetPerfMeter [22] is
used for traffic generation. NetPerfMeter is a network performance meter
for the UDP, TCP, SCTP and DCCP transport protocols and has the abil-
ity to simultaneously generate bidirectional traffics and write the results as
vector and scalar files.

For Stream (application limited) traffic type, two sub-types are considered.
One is Streaming traffic type running with 50% of the average rate of
each Exp elements e.g, a11 in bulk traffic type (Equation 4.1). The other
Streaming traffic type experiments run with 25% of the average rate of their
related elements in bulk traffic (Equation 4.2).

acn ≡ ExpRate
(Bb,Tstr50,Cc,Nn)

= 0.5× ExpRate
(Bb,Tbulk ,Cc,Nn)

(4.1)

acn ≡ ExpRate
(Bb,Tstr25,Cc,Nn)

= 0.25× ExpRate
(Bb,Tbulk ,Cc,Nn)

(4.2)
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Figure 4.3: The location of the measurement node Oslo, Norway.

We are mainly interested in downlink direction. Therefore the direction
of the traffic in the experiments are from Server to the node. Since the
congestion control algorithm is a sender side implication, therefore the
change of the congestion control algorithm takes place at server machine
and not node. Also another parameter will be set in the way which starts
every TCP connection in slow start phase. the command is as following:

Forcing the existing idle connections to start in slow start

$ sysctl -w net.ipv4.tcp_slow_start_after_idle=0

For buffer sizes, two parameters are changed: send buffer size
(tcp_wmem) and receive buffer size (tcp_rmem). Each parameters are vectors
of three integers and can be configured via sysctl command in Linux. The
format of the Linux TCP buffer size parameters are as following:

TCP send buffer size (wmem)

net.ipv4.tcp_wmem = min,default,max

TCP receive buffer size (rmem)

net.ipv4.tcp_rmem = min,default,max

In both parametrs, min value tells the kernel the minimum send/receive
buffer size for each TCP connection, and this buffer is always allocated to a
TCP socket, even under high pressure on the system. The default and max
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values tells the kernel the default and maximum send/receive buffer sizes
respectively.

As Described earlier in 3.1.1 on page 26, two sets of buffer sizes are
considered for measurements: Unlimited (unbounded) buffer size which is
equivalent to the amount of bytes that is considered for bulk traffic which
can be considered a very large value compared to Linux default value. The
Limited (bounded) buffer set size is considered based on the Android buffer
set size operating in HSPA+ networks. Table 4.1 shows the value sets for
each considered buffer sizes along with Linux default values for the node.

Default value Limited (bounded) value unlimited (unboounded) value

tcp_rmem 4096, 87380, 507104 4096, 87380, 1220608 4096, 87380, 16777216

tcp_wmem 4096, 16384, 507104 4096, 16384, 1220608 4096, 16384, 16777216

Table 4.1: Send/Receive buffer size values

By having the variables required for the measurements, Equation 3.1
could be redefined as Equation 4.3. Hence, according to Algorithm
5, the measurement matrices (M) will be generated. Therefore, each
measurement group (Mbt) which contains C × N experiments executed.
The measurements groups are as following:

Exp(B,T,C,N)


B ∈ {Limited, Unlimited}
T ∈ {Bulk, Onoff, Stream 50%, Stream 25%}
C ∈ {Reno, Cubic, Vegas}
N ∈ {eth1, ppp0, ppp1}

(4.3)
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MbUnlimited,tBulk =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



MbUnlimited,tOno f f =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



MbUnlimited,tstr50 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



MbUnlimited,tstr25 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



MbLimited,tBulk =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)


...

MbLimited,tstr25 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



According to Equations 3.2 and 3.3, The total number of measurement
groups and experiments are as following:

Total number of measurement groups =
Limited

∑
b=Unlimited

×
str25

∑
t=bulk

Mbt

= 2× 4
= 8
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Total number of experiments =
Limited

∑
b=Unlimited

b×
str25

∑
t=bulk

t×
Vegas

∑
i=Reno

×
ppp1

∑
j=eth1

aij

= 2× 4× 3× 3
= 72

The first measurement group, executed several times in downlink dir-
ection during workdays (Monday to Friday), between February and May
of 2014. After having enough number of experiment samples in first
group, the next measurement group execution took place and this execu-
tion method continues till the last measurement group execution. Two spe-
cific times of the day were considered for the execution of the measure-
ments: 8:00 AM and 4:00 PM. Since there is a peak usage in the mornings
from Mobile data users and less usage in the afternoon while the working
hours is finished and most of the users around the measurement area are
not existed. In addition, by providing this interval between each measure-
ment, we can assume that the caching memory of the existed routers and
other networking equipments in tha paths between the node and server are
emptied and the measurement results are totally independent than each
other. However, due to the expensive price of monthly data traffic for our
MBB subscriptions, the samplings are limited to less than 20 samples for
each experiment in each measurement group.

Once the execution of the measurement groups with Unlimited buffer
size finished, The values for Limited buffer sizes in Table 4.1 were
set manually on Server and node. After setting the buffer set size to
limited, the measurement groups with limited buffer size were executed
respectively. The following shows the commands used for setting the
buffer sizes to our specified limited value.

setting TCP buffer size sets with limited values

$ sysctl -w net.ipv4.tcp_rmem=4096 87380 1220608

$ sysctl -w net.ipv4.tcp_wmem=4096 16384 1220608

Python and Bash were used as the language of the scripts that used in
this thesis. The Python scripts were used for measurement scripts which
executed at server and node and a mixture of Python and Bash scripts were
used at the desktop machine for automating and scheduling the measure-
ments, collecting output files from server and node, extracting the QoS val-
ues, creating statistic files from QoS values, creating summary files from all
the available samples of each experiment and plotting.

tcpdump were used for capturing the sent and received packets and
creating trace files on both server and node. Additionally, the ss tool
used at the server which is the sender in our case to inspect the initiated
socket connection and extract the TCP socket parameters such as CWND,
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ssthresh, RTO and etc. tcptrace and tshark were used in order to filter the
trace files and extract the I/O statistics such as RTT, sequence numbers,
Throughput and Goodput. R programming language were used for
generating statistical plots which takes the statistic summary files and
creates the box and CDF plots.

In the following parts, the main functionality of the scripts along with
their input arguments will be described.

Measurement scripts

In this part, the two scripts which were used for initiating the measure-
ments between server and node is described. According to our considered
design in 3.1.2, The two measurement scripts have implemented by using
Python scripting language.

1. Server Script

The considered input arguments for the server scripts is as below:
Input arguments for server measurement script

$ server.py [server ip] [server port] [data amount] [number of execution] \
[start number] [direction: UL, DL] [filename] [congestion control] [traffic]

The server script consists of two main functions: tcpdump and ss com-
mands. Upon the execution of the script, The server creates a TCP
socket which listens to the specified input port number. Then it sets
the system settings through sysctl command based on the specified
congestion control algorithm from input. However, the other setting
such as flushing the metrics, buffer sizes (tcp_rmem and tcp_wmem)
can be changed manually. The following shows the system setting
that gets modified by executing the server script. The buffer size set-
ting is adjusted for Unlimited size.

1 subprocess.call(’sysctl -w net.ipv4.
tcp_congestion_control=’ + str(cc_alg), shell=
True)

2 subprocess.call(’ip tcp_metrics flush all’, shell=
True)

3 subprocess.call(’sysctl -w net.ipv4.
tcp_no_metrics_save =1’, shell=True)

4 subprocess.call(’sysctl -w net.ipv4.
tcp_slow_start_after_idle =0’, shell=True)

5 subprocess.call("sysctl -w net.ipv4.tcp_rmem = ’4096
87380 16777216 ’", shell=True)

6 subprocess.call("sysctl -w net.ipv4.tcp_wmem = ’4096
16384 16777216 ’", shell=True)

Right after that, the server starts listening on all of its available in-
terfaces for capturing sent and received packets by using tcpdump
tool and writing the trace files od the captured packets. simultan-
eously, the socket inspection takes place by running ss -into state
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established command as a daemon and the desired values extracted
from its output and stored in a file as CSV format as the format expec-
ted in 3.2.2. Based on the specified traffic type, the server generates
the traffic and send it to the node through the initiated TCP socket
connection from the node to the server. For bulk traffic type, the
string of random number of bytes equal to the data amount specified
as input, generated and sent through the socket to the node. Once
the total amount of the specified size has completely transferred, the
script finishes writing to the files and terminates the tcpdump and ss
commands. Hence, the output files - Trace file generated by tcpdump
and ss file generated by ss command - are stored in the server’s local
disk. The Following is the example of execution of the server script
with bulk traffic type and Reno as congestion control algorithm which
generates 16 MB of data.

Execution of server script with Reno in bulk

$ server.py 128.39.37.182 40000 16 1 1 DL experiment1 reno bulk

The following is the first 5 lines of the ss file resulted from the execu-
tion of the server script.

1 1399356258.36 ,46.66.157.66:57788 ,ts ,sack ,reno ,,
wscale ,5,5,rto ,528,rtt ,176/88 ,mss ,1348 ,cwnd ,10,
ssthresh ,,send ,RATE ,0.6127 , retrans ,,unacked ,10,
rcv_space ,28960

2 1399356258.43 ,46.66.157.66:57788 ,ts ,sack ,reno ,,
wscale ,5,5,rto ,528,rtt ,176/88 ,mss ,1348 ,cwnd ,10,
ssthresh ,,send ,RATE ,0.6127 , retrans ,,unacked ,10,
rcv_space ,28960

3 1399356258.49 ,46.66.157.66:57788 ,ts ,sack ,reno ,,
wscale ,5,5,rto ,500,rtt ,151/59 ,mss ,1348 ,cwnd ,14,
ssthresh ,,send ,RATE ,0.9998 , retrans ,,unacked ,14,
rcv_space ,28960

4 1399356258.56 ,46.66.157.66:57788 ,ts ,sack ,reno ,,
wscale ,5,5,rto ,488,rtt ,144/25 ,mss ,1348 ,cwnd ,21,
ssthresh ,,send ,RATE ,1.6,retrans ,,unacked ,20,
rcv_space ,28960

5 1399356258.62 ,46.66.157.66:57788 ,ts ,sack ,reno ,,
wscale ,5,5,rto ,436,rtt ,93.5/18 ,mss ,1348 ,cwnd ,34,
ssthresh ,,send ,RATE ,3.9,retrans ,,unacked ,34,
rcv_space ,28960

For Onoff and Stream traffic where the rate of the traffic and sent time
needed to be customized, NetPerfMeter was used. NetPerfMeter
consists of two modes. Passive mode and Active mode. Running
the NetPerfMeter by just providing the port number, puts it into
the passive mode in which it listens to the port and waits for the
connection to be initiated to the port from the machine which is
running the NetPerfMeter in active mode. The following command
puts the NetPerfMeter in background as Passive mode:
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running NetPerfMeter in background as passive mode

$ netperfmeter port &

The Server in our case is running NetPerfMeter in passive mode and
waits for the incoming connection from the node which is running
in active mode. The NetPerfMeter tool provides the number of
different options which could be used to generate complex and multi
directional traffics. However the options that we’re mainly interested
to use for active mode are: choosing local address, inbound frame
rate, inbound frame size, onoff feature, runtime, vector files. By
providing these options to the NetPerfMeter command and execute
it from the node, it goes in the active mode in which it receives the
customized generated traffic from the server (passive node).

2. Client script

The following shows the input arguments required for executing the
client script:

Input arguments for client measurement script

$ client.py [server ip] [server port] [data amount] [number of execution] \
[start number] [direction: UL, DL] [filename] [interface] [traffic]

Since we’re only interested in downlink measurements, therefore the
server is always has a sender role while the node has the receiver role.
According to this assumption we assigned the congestion control al-
gorithm argument only for server script and not for the client (node)
script, since it is only related to the sender. However, the buffer sizes
are set in node at the beginning of the script similar to server.

The client script is similar to the server script in a way that it runs
tcpdump and captures the packets. Since the node is equipped with
multiple MBB interfaces, therefore the selection of the interface is
based on the name of the interface as input of the script, in which the
socket which will be used for initiating the connection to the server
is binded to the specified interface. The following shows the example
of the execution of client script which initiates the connection to the
server described above from eth1 i.e, Network C in Figure 4.2 in bulk
traffic type and limited buffer size.

Execution of client script from eth1 in bulk

$ client.py 128.39.37.182 40000 16 1 1 DL experiment1 eth1 bulk

Once the client initiated the connection via eth1 to the server
successfully, the 16 MB of random data generated by the server which
has Reno set as its congestion control algorithm is sent back to back
to the client. The following shows the output sample of the Goodput
file resulted from the client script from this example.
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Goodput file content

1 timestamp, Received Bytes
2 1399356258.391555,1348
3 1399356258.401692,1348
4 1399356258.402262,1348
5 1399356258.403144,1348
6 1399356258.40353,1348
7 ...

The output above shows that at each timestamp, which represent
miliseconds in each second, 1348 Bytes of data has been received
by the socket. The trace files contain lots of detailed information
about each segments and therefore their example output could not
be shown here. However they were used by plotting scripts in which
the QoS values will be extracted from them and the evolution plots
were drown after each measurement.

Based on the design of the script in section 3.1.2, the Goodput file is
one of the needed output files of the client script. For bulk traffic, this
file could be created in a way that the size of each reception of the data
by node from the socket in bytes is stored with the epoch timestamp
of that moment in a CSV formatted file. Therefore this file could
be referred as the goodput file, in which it represents the amount
of data that the application receives at each timestamp without the
additional protocol or other overheads in the amount of received data
i.e, Throughput. However for Onoff and Stream traffic type, since
the NetPerfMeter is used for traffic generation, it is not possible to
interference with its socket to extract the goodput values, therefore
the trace file of the node itself is used to create the goodput file based
on the timestamps and the size of the each received segments.

Plotting scripts

After the successful execution of the measurement scripts on node and the
server, the trace file and ss file resulted from the server and the trace file
and goodput file resulted form the client script were generated. The steps
described below are the actual procedures and scripts in which the QoS
vales were extracted and the related plots were created.

• Filtering of trace files:

The trace files must be filtered in order to only show the segments re-
lated to the initiated connection between the node and the server for
the measurement i.e, sourced or destined from/to the specified server
port e.g, 40000 in previously mentioned examples. The filtering script
is bash script which uses tcptrace find the tcp stream number which
is related to our specified port number and then filters the trace file
by using the tcp stream number resulted from tcptrace as a filter ex-
pression for the tshark tool. The filtered trace file is written as a new
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file.

1 tcptrace -n -f’(port ==40000 or port ==40001 or port
==40002 or port ==40003 or port ==40004) and
data_bytes >1024’ $tracefile

2 stream_line=$(head -1 ./PF) #PF is the file which
tcptrace creates and writes the stream number in
it

3 tshark_stream=$(( stream_line -1))
4 filter="tcp.stream == $tshark_stream"
5 tshark -r $tracefile -Y "$filter" -w

$filtered_tracefile

• Congestion window plot

A Python script used for plotting the Congestion window (CWND)
and Slow Start threshold (ssthresh) in which it uses Gnuplot command
line tool to draw the plots. The CWND and ssthresh values from the
ss CSV file is used as Y axis values, while the X axis represents the
duration in seconds. Figure 4.4, shows the CWND/ssthresh plot of
the previously described measurement example.

Figure 4.4: The evolution of CWND and ssthresh for
Reno in bulk traffic at ppp0

• Sequence number plot

For plotting the evolution of the sent segments sequence numbers,
the filtered trace file of the server were used. the tshark command
were executed on the filtered trace file but this time with another fil-
ter expression (i.e, frame time, sequence number) and the result were
written to another CSV file as sequence number values in which this
file used as the input for the sequence number plotting script which
runs the draws the plot via Gnuplot with Y axis as sequence numbers
and X axis as the time in seconds. The following is the first 6 rows
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of the sequence number csv file. Also, Figure 4.5 shows the sequence
number plot based on the this file which is related to the example de-
scribed previously.

1 tshark -r $filtered_server_tracefile -T fields -e
frame.time_relative -e tcp.seq > $seqnr_csvfile

Sequence number CSV file content

1 time,sequence number in [ /1024] format
2 0.000000000,0.0
3 0.000052000,0.0
4 0.177947000,2.6337890625
5 0.178732000,5.2666015625
6 0.178922000,7.8994140625
7 0.179272000,10.5322265625
8 ...

Figure 4.5: The evolution of Sequence number for
Reno in bulk traffic at ppp0

• RTT plot

For extracting and plotting RTT values, the same method as extract-
ing sequence numbers were used, in which the filtered trace file of
the server which is the sender is used since the RTT is the time it takes
that the segment is sent and its related ACK is received. Therefore the
tshark command is executed this time with another filter expression
as following and the results is written to a csv file which again by us-
ing the Gnuplot the RTT plot is created with Y axis as RTT values and
X axis is the time in seconds of the measurement. Figure 4.6, shows
the plot of the evolution of the RTT for our example.

1 tshark -r $filtered_server_tracefile -T fields -e
frame.time_relative -e tcp.analysis.ack_rtt >
$rtt_csvfile
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RTT CSV file content

1 timestamp,RTT
2 0.000000000
3 0.000052000,0.000052000
4 0.176139000,0.176087000
5 0.177673000
6 0.177947000
7 ...

Figure 4.6: The evolution of RTT for Reno in bulk
traffic at ppp0

• Throughput plot

The Throughput plot were created by using the i/o statistic feature of
tshark tool on the client’s filtered trace file. However, the output of
the command is not in a csv format, therefore the STDOUT of the ex-
ecuted tshark command were stored to a text file and the plot script
parsed the text file and created the extracted values to another csv
formatted file. Hence, the Throughput plot were created based on
the file with its X axis as the time of the connection is seconds and the
Y axis as the throughput value in each second. The following com-
mand extracts the Throughput amount received by the client with the
1 second interval. The output example of the csv file and the resulting
plot is shown respectively.

1 tshark -q -z io ,stat ,1.0,"tcp.stream >=0" -r
$filtered_client_tracefile > $throughput_STDOUT.
txt

Throughput file content

seconds,received amount
1.0,0.07421875
2.0,0.140625
3.0,411.51953125
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4.0,509.28125
5.0,527.828125
6.0,443.65234375
...

Figure 4.7: The Throughput per second for Reno in
bulk traffic at ppp0

• Goodput plot

By the execution of the goodput script plot which takes the value
from the goodput file resulted from the client script described in
page 46. The script summarize the amount of data received in each
timestamp and plots the evolution of received goodput per each
second. Also the average rate of goodput is calculated by dividing
the total amount of received data in Kilo Bytes (KB) by the duration
of the connection (measurement). Figure 4.8 shows the evolution of
the goodput received in KB/S for our example.

For Onoff and Stream traffic types where the NetPerfMeter is used for
traffic generation, the goodput values were extracted from the Net-
PerfMeter vector log files. A simple Perl script used to parse the vec-
tor files for the Active node (client) and write the amount of received
data in each timestamp similar to goodput file format created by cli-
ent measurement script. Hence, the goodput plot of the Onoff and
Stream traffic types were created too. The following is the example of
the parsed vector file for the active node i.e, client.

NetPerfMeter active vector file

1 AbsolutTime,RelativeTime ,Action,AbsoluteBytes,RelativeBytes
2 000002,1399644017.54078,0.000000,0.000000,0.000,"Received",0,0
3 000008,1399644018.54157,1.000793,1.000793,3.712,"Received",120184,120184
4 000014,1399644019.54157,2.000793,1.000000,4.223,"Received",237472,117288
5 000020,1399644020.54151,3.000732,0.999939,3.354,"Received",357656,120184
6 000026,1399644021.54141,4.000639,0.999907,3.224,"Received",476392,118736
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Figure 4.8: The Goodput per second for Reno in bulk
traffic at ppp0

7 000032,1399644022.54148,5.000702,1.000063,3.780,"Received",595128,118736
8 ...

The columns needed for creating the goodput file are the RelativeTime
and RelativeBytes. Hence, the created goodput file is similar to the
goodput file which created by the client measurement script. The
following is the output of the parser script which creates the final
goodput file.

Goodput file created by parser script from NetPerfMeter

1 timestamp,Received Bytes
2 1399644017.54078,0
3 1399644018.54157,120184
4 1399644019.54157,117288
5 1399644020.5415120184
6 1399644021.5414118736
7 1399644022.54148,118736
8 ...

QoS calculation scripts

By having the files containing the distribution of the values such as RTT
and Goodput which were resulted from the execution of the plotting scripts,
it is needed to run statistics on the distribution of the mentioned values.
Therefore another set of scripts used which reads the RTT and goodput
files and calculates the mean and standard deviation of the values by using
numpy module in Pyhton. The statistical values were written to another csv
file with the name of the experiment.

The goodput values in the goodput file are related to each timestamp
which represent miliseconds. However, for calculating the goodput per
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second average, all the values within one second interval will be added to-
gether which represent the amount of data received in each second. Hence,
the mean (average) were calculated based on these per second values.

Goodput per second values

Seconds,Goodput value
1,396.23828125
2,368.59375
3,650.3046875
4,377.80859375
5,251.43359375
6,325.15234375
...

For RTT, the values from the RTT field in RTT csv file which showed in
Page 49 added to each other and divided to the total number of RTT values
in that field to get the average RTT value. The following shows the content
of the created files for goodput per second and RTT of the example described
before.

Average Goodput

Experiment Name,goodput mean,stddev
bulk-ppp0-reno-nne679-Tue-06-May-08-03,368.653586648,71.5459417968

Average RTT

Experiment Name,mean RTT
bulk-ppp0-reno-nne679-Tue-06-May-08-03,0.113

Another considered QoS parameter were One-way delay i.e, application
delay. It is the duration of time that it takes for the segments being sent
to the moment that the receiver application receives it. In order to get
the accurate value of this parameter, the timestamp option of the sent seg-
ment could be enabled. Hence, the sender labels each segment being sent
with the timestamp of the sent moment. Once the application receives the
segment, it can extract the one-way delay value by getting the difference
between the sent timestamp and current timestamp since they both are us-
ing epoch time format. However, in order to accurately get this value, the
time value on both machines should be exactly synced.

This can be done by using the Network Time Protocol (NTP). Before
each measurement, the NTP on both server and node could be resynchron-
ized. But since the accuracy of the NTP is not better than 10 or 20 ms for
WAN networks [4] and is dependent to the machine’s hardware, and by
the assumption that one way delay value could be less than 10 to 20 ms,
another workaround were needed which described in [4].

Due to the limitations in our implementation, we couldn’t apply this
method for acquiring one-way delay. Instead, we used the difference
between each timestamp in our goodput files which represents the amount
of time that it took for the application to receive the next segment.
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Although this value is the difference of the goodput timestamps and not
the real absolute time that took for the segments to received by the applica-
tion, we can refer to this value as a representative of pattern that application
receives the segments and can compare this pattern through our different
variables i.e, networks, congestion controls, etc. Hence, we call this value
as one-way delay (application delay) throughout this report.

The following shows the first 6 lines of the one-way delay values calcu-
lated form the goodput file described earlier.

One-way delay values

timestamp differences
0.010136842727661133
0.0005700588226318359
0.0008819103240966797
0.0003859996795654297
0.017000198364257812
0.00045490264892578125
...

Similar to RTT and Goodput average values, the mean (average) of
these one-way delay values were calculated and were written to another
file with in csv format as following.

Average one-way delay file content

Experiment name,One-way delay mean,stddev
bulk-ppp0-reno-nne679-Tue-06-May-08-03,0.0038148321129,0.00912750750508

The methodology for calculating one-way delay for Onoff and Stream
traffics where NetPerfMeter is used for traffic generation is different. As
illustrated earlier in Page 51, the vector file resulted from the NetPerfMeter
which used to create Goddput file, shows the total amount of received
bytes in every one second in each line. Hence, the one-way delay cal-
culation which calculates the difference of each two lines in the goodput
file would result in same value (approximately 1 second). Therefore, the
method which were used to get the One-way delay value in bulk traffic
type could not be used for these traffics.

The only possible way to calculate the one-way delay in our setup were
to extract this information from the client’s (node) trace file. This were
done by using the tshark filter expression which displays the timestamps
in the epoch format of the received segments with server as their sources.
The results of this command were written to another file in which the one-
way delay calculator script takes the differences between each of the rows
i.e, timestamps and generates the one-way delay values file similar to bulk
traffic and furthermore the mean of the distribution of the values were cal-
culated and were written to a file similar to bulk traffic.
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The following shows the tshark command which were used to generate
the timestamp values of the segments.

1 tshark -t e -r $filtered_client_tracefile -Y "ip.src
==128.39.37.182" -T fields -e frame.time

As a result the file which contains all the timestamps in which the seg-
ments have been received were created. This file expands each seconds of
the illustrated goodput file created by parser script from NetPerfMeter in
Page 52 in milliseconds. The following shows the first 6 rows of the created
file containing the extracted timestamps from filtered trace client file.

file containing epoch timestamps for each received segments

1 1399644018.010442000
2 1399644018.020286000
3 1399644018.033289000
4 1399644018.045291000
5 1399644018.056289000
6 1399644018.064437000
7 ...

As can be seen from above, the lines in this file is the expansion of each
timestamp (in milliseconds) which the segments were received. These 6
lines are the expansion of the second row (18th second) in file showed in
Page 52. Furthermore, the one-way delay calculator script, takes the differ-
ences between each rows in this timestamp file and similar to bulk traffic
type, a file contains all the difference values and a file which contains the
mean of the values along with the experiment creted respectively. The fol-
lowing shows the average one-way delay file content for Stream traffic i.e,
generated by NetPerfMeter.

Average one-way delay file content for stream 50% traffic

experiment name, one-way delay mean,stddev
str50-eth1-reno-nne679-Fri-09-May-16-00,0.0121915651541,0.0053583169539

In addition to the described QoS parameters, another value which
was interesting to observe for each individual experiment was number of
changes in ssthresh value. As described in background section, Page 7, by
the occurrence of packet loss or timeout, the ssthresh value changes based
on the cwnd value. Although this behaviour only implies for loss based
congestion control algorithms (i.e, Reno and Cubic), this value could help
in analysis and comparison between mentioned loss based congestion con-
trols by referring to the average of this value for each measurement group.

The ssthresh change value were extracted from the ss file by observing the
number of times where the value of ssthresh is changed. Similar to previ-
ously mentioned QoS calculations, this number were written to a file along
with experiment name in csv format as following example.
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Number of ssthresh cahnges file

Experiment name,Number of ssthresh changes
bulk-ppp0-reno-nne679-Tue-06-May-08-03,13

In the shown example above, the ssthresh change value here indicates
that the ssthresh has changed 13 times, which by looking at Figure 4.4 we
can see the exact number of times that the ssthresh i.e, the green line has
changed which in this experiment they are all due to the packet loss.

Orchestration script

As mentioned in Section 4.1.1, a desktop machine was used in order to run
the measurements scripts simultaneously on the server and node via ssh
connection. A bash script named exp, created on this desktop machine ex-
ecuted by the provided argument in which based on the arguments such
as server address, server port, traffic type, congestion control, network and
etc. it executes the measurement scripts on both server and node.

Each execution of the exp script represents on Experiment i,e.
Exp(B, T, C, N). Since each experiment were meant to be repeated for sev-
eral times, Therefore, the experiment name which this script provides for
the measurement scripts should be unique and is based on the scheme de-
scribed in Section 3.2.4, which is traffic type-network-congestion control-node name-date-time.

Once the measurements finished, the script collects the resulted files
from both measurement machines in order to run the plotting script which
is another bash script that automates the execution of the plotting scripts
and QoS calculation scripts.

Once the plotting and QoS calculation scripts executed, the exp script,
creates the path related to its received input arguments as equation de-
scribed in 3.2.4. It also reads the contents of each QoS average values from
their created stat files and append them as a new line in the summary files
described in Section 3.3.1 for each QoS parameter for later statistical ana-
lysis.

Additional bash script was used which automates the execution of
the exp script in a way that one measurement group of experiments e.g,
Mblimited,tbulk executed. This script uses two-level for loop which iterates with
the congestion control algorithms as first level and network providers as its
second level loop. The sleeping time between each iteration in the network
providers loop is 120 seconds and 900 seconds for the congestion control
loop.

The following shows the loops where automates the execution of the
experiments and completes one measurement group (Mblimited,tbulk ) and cre-
ates the folder hierarchy inside cron-exp folder matrix described in Page 62.
The buffer size were set as limited size manually before the execution of
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the script.

1 for cc in reno cubic vegas
2 do
3 echo
4 PORT =40000
5 for int in eth1 ppp0 ppp1
6 do
7 echo ’Running Command with $cc as Congestion

Control and $int as interface ’
8 ./exp.sh 128.39.37.182 $PORT 16 1 1 DL $int $cc

cron -exp bulk TCP nne679
9 echo

10 sleep 120
11 ((PORT ++))
12 echo
13 done
14 sleep 900
15 done

Finally the execution of the automation script were added as a cron job
with the schedule described in Page 43. After having enough number of
experiments for each measurement group the traffic type and buffer size
changed until all the measurement groups were executed and had enough
number of repeated experiments.

Analysis plots

By finishing the measurements, the analysis plotting needed to be done in
order to summarize the behaviour of the different congestion control al-
gorithms in different networks based on the existed QoS parameters.

The following is one example of the summary file contains multiple
lines of different repeated experiments along with their average and stddev
values for Goodput per second as QoS in eth1 network with Reno as its conges-
tion control algorithm and with bulk traffic type and unlimited buffer size.

Goodput per second summary file for Mbunlimited ,tbulk ,cReno ,neth1

1 Experiment Name,Average goodput per second,stddev
2 bulk-eth1-reno-nne679-Fri-04-Apr-16-00,165.748325893,25.7972994805
3 bulk-eth1-reno-nne679-Mon-07-Apr-08-00,195.719879518,28.9097729184
4 bulk-eth1-reno-nne679-Mon-07-Apr-16-00,144.822524889,23.9795301902
5 bulk-eth1-reno-nne679-Tue-08-Apr-08-00,196.639871988,36.2611144664
6 bulk-eth1-reno-nne679-Tue-08-Apr-16-00,173.237699468,23.124142038
7 bulk-eth1-reno-nne679-Wed-09-Apr-08-00,199.572503811,19.4536403654
8 bulk-eth1-reno-nne679-Wed-09-Apr-16-00,194.096912202,27.5099317738
9 ...

As described earlier in Section 3.3.1, The place of the summary files are
as Equation 3.4. For instance, in the example above, the place of average
goodput per second summary file is at:
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unlimited/bulk/eth1/reno/

For every 9 experiments i.e, elements in one measurement matrix, there
were four summary files as below:

• Average Goodput per second

• Average RTT

• Average One-way delay

• number of changes in ssthresh value

The R programming language was used in form of scripts in order to
traverse through summary files for each QoS in every experiments folders
and add the values as a data set so it could create statistical plots from the
distribution of the imported data sets.

4.2 Measurement results

In this section the actual result of the experiments based on their
measurement group will be shown .

4.2.1 Bulk traffic

In this section, the results from the measurement groups with bulk as traffic
type with both limited and unlimited buffer set sizes will be shown.

For this type of traffic, 16 MB of data is sent from the server to the node.
The MSS (Maximum Segment Size) is 1448 Bytes, which means that each
packet size contains 1448 Bytes of data. The sending rate is not limited and
server tries to send as much data as possible i.e, saturates the network.

Figure 4.9, is the sample throughput plot of one experiment with bulk
traffic type which shows how server sends the segments.

Unlimited buffer size

The results in this section represents below measurement group matrix.
Figure 4.10, shows the Boxplots which are created based on the summary
files described in Section 4.1.2. The buffer size values were set based on the
values mentioned in the Unlimited field of the Table 4.1.

MbUnlimited,tBulk =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)
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Figure 4.9: The sample of throughput pattern in bulk traffic
type

Limited buffer size

Figure 4.11, shows the results from the similar experiments resulted previ-
ously , but this time with limited buffer set sizes which are based form the
limited field of the Table 4.1.

The measurement group matrix which represents these experiments is
as following:

MbLimited,tBulk =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



4.2.2 Onoff traffic

In order to generate Onoff traffic, the NetPerfMeter tool were used as de-
scribed on Page 45. Upon the execution of the client measurement script,
the NetPerfMeter command were executed as following:

1 netperfmeter "+str(server_addr)+":"+str(server_port)+" -
control -over -tcp -local="+str(ip)+" -vector="+
filename+".vec.bz2 -scalar="+filename+".sca.bz2 -tcp
const0:const0:const0:const1400:description=’onoff ’:
onoff =0,+1,+5,+1,+5,+1,+5,+1,+5,+1,+5,+1,+5,+1,+5,+1

,+5,+1,+5,+1 -runtime =60
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The parameters were used in this command makes NetPerfMeter’s
passive node i.e, server to start sending packets with 1400 bytes set as
MSS value. The sending frame rate is unlimited, meaning that the server
tries to send as much segment as is possible based on its cwnd size per
each seconds. After initiation of the connection, the server starts sending
segments for 1 second and then stays idle for 5 seconds. At 6th second,
again the server starts sending for 1 second and stays idle for the next 5
seconds. This pattern continues until the specified connection duration ex-
ceeded which is at second 60th.

Figure 4.12, shows the sample throughput plot in which the server
sends traffic for one second and stays idle for five seconds in connection
duration.

Unlimited buffer size

The results in this section represent the following measurement group mat-
rix.

MbUnlimited,tono f f =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



Figure 4.13 shows the boxplots of QoS’s considered in Onoff traffic type
with limited buffer size which is based on Table 4.1.

Limited buffer size

Figure 4.14, shows the boxplots resulted from experiments in following
measurement group in which the buffer set size are limited values accord-
ing to Table 4.1. The following is the measurement group matrix represent-
ing these series of experiments.

MbLimited,tono f f =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



60



4.2. MEASUREMENT RESULTS

4.2.3 Stream traffic

In order to run the measurements with Stream traffic type, the goodput
average values in each experiment i.e, aij elements were used as baseline
goodput values in each buffer set sizes. These baseline values together
with MSS value (1448 Bytes) and data size (16 MB) were hard-coded in
an script in which it calculates the desired output rate by dividing the
specified percentage (from input as argument) of the baseline rate values
to the MSS size. In addition, the number of packets were calculated by
dividing the data size in Bytes unit to the MSS size. Finally, the runtime
were calculated by dividing the number of packets to the output rate. The
Perl script code which does the described calculation is as following.

1 my $fullrate = $rate{$cc}{$int};
2 $outrate = ceil ((( $fullrate * ($percent / 100)) * 1024) /

$mss);
3 # calculate the packet numbers in the size
4 my $packets = (($size * 1024) * 1024) / $mss;
5 my $runtime = ceil($packets / $outrate);

The client measurement and orchestration scripts were reconfigured to
accept output rate, mss and runtime values as additional input arguments.
The client measurement script executes the NetperfMeter command with
specified frame rate and frame size and runtime as following.

1 netperfmeter "+str(server_addr)+":"+str(server_port)+" -
control -over -tcp -local="+str(ip)+" -vector="+
filename+".vec.bz2 -scalar="+filename+".sca.bz2 -tcp
const0:const0:const"+str(rate)+":const"+str(mss)+":
description=’stream ’:maxmsgsize="+str(mss)+" -runtime
="+str(runtime)

The average Goodput values from bulk traffic type which were used as
baseline for stream traffic type are shown in Table 4.2 and 4.3 for Unlimited
and Limited buffer set size respectively.

eth1 ppp0 ppp1

Reno 181.405 304.741 1137.788
Cubic 188.45 352.578 1273.132
Vegas 96.747 155.148 237.16

Table 4.2: The average Goodput per second in KB/s
values in bulk traffic with Unlimited buffer set sizes

Figure 4.15 and 4.16 show the throughput plots for stream traffic with
50% and 25% rate of the bulk traffic type which showed in Figure 4.9.
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eth1 ppp0 ppp1

Reno 252.571 359.85 1120.836
Cubic 270.437 361.136 1177.917
Vegas 91.079 134.56 220.186

Table 4.3: The average Goodput per second in KB/s
values in bulk traffic with Limited buffer set sizes

Stream with Unlimited buffer size

Figures 4.17 and 4.18 show the boxplots resulted from the measurement
group matrices as following.

MbUnlimited,tstr50 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



MbUnlimited,tstr25 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



Since the Goodput averages were set according to the baseline values
specified in Table 4.2, the Goodput values for stream traffic are constant
and similar to 50% and 25% of the goodput values in bulk traffic. Hence,
the goodput boxplots are similar to bulk traffic and were omitted from the
Figures shown in this section.

Stream with Limited buffer size

Similar to the previous sections, in this section the boxplots which represent
the last two measurement groups are shown. Figures 4.17 and 4.20 show
the results from the executed experiments with Stream traffic type with
50% and 25% of the bulk traffic’s Goodput per second rate. The followings
are the measurement group matrices which their results are presented in
his section.
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MbLimited,tstr50 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)



MbLimited,tstr25 =


leth1 lppp0 lppp1

cReno a(Reno,eth1) a(Reno,ppp0) a(Reno,ppp1)
cCubic a(Cubic,eth1) a(Cubic,ppp0) a(Cubic,ppp1)
cVegas a(Vegas,eth1) a(Vegas,ppp0) a(Vegas,ppp1)
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Figure 4.10: Bulk traffic with unlimited buffer sizes
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Figure 4.11: Bulk traffic with limited buffer set sizes



Figure 4.12: The sample of throughput pattern in Onoff
traffic type
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Figure 4.13: Onoff traffic with unlimited buffer sizes



Figure 4.14: Onoff traffic with limited buffer sizes
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Figure 4.15: The sample of throughput pattern in stream
traffic type with 50% of the bulk rate

Figure 4.16: The sample of throughput pattern in stream
traffic type with 25% of the bulk rate



Figure 4.17: Stream traffic with 50% of bulk goodput rate unlimited buffer
sizes
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Figure 4.18: Stream traffic with 25% of bulk goodput rate unlimited buffer
sizes



Figure 4.19: Stream traffic ith 50% of bulk goodput rate limited buffer sizes
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Figure 4.20: Stream traffic with 25% of bulk goodput rate limited buffer
sizes
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Chapter 5

Analysis

In this section the results from the measurement groups will be analysed
in order to show the impact of the different TCP congestion control char-
acteristics in QoS while they are running on different Mobile Broadband
networks.

In this thesis, we are interested to see that by having the type of traffic
that will be going to be used in TCP connection, how each congestion con-
trol algorithm performs over different Mobile Broadband networks and
vice versa.

The following sections analyse the results based on the traffic types in
which the behavior of the QoS’s will be evaluated in different congestion
control algorithms over different networks. The first section evaluates the
Bulk traffic type following by next section in which the Onoff traffic will be
evaluated. Finally the Stream traffic will be evaluated in the last section of
this chapter.

5.1 Bulk traffic

In this section, the Bulk traffic will be analysed. As described earlier in
Section 4.2.1, the sending rate is not limited. Hence, the sender utilizes the
network by increasing the congestion window. Based on the type of the
congestion control algorithm i.e, loss-based or delay-based the congestion
window decreases when congestion occurs in the network. For loss-based
algorithms i.e, Reno and Cubic, packet loss or timeout expiration is a sign
of congestion in the network while Vegas as delay-based congestion control
detects early congestion based on increasing RTT values.

As described earlier in Section 3.1.1, We conducted our measurements
with two type of system settings i.e, buffer sizes. Unlimited (unbounded)
buffers and Limited (bounded) buffers. The first was due to the fact that
we wanted to test the protocol itself without any limitation from the system
and the latter was according to simulate the behaviour of the TCP flavor in
a real world. Therefore we chose Android buffer set sizes to simulate the
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behavior of each TCP flavor in mobile devices platforms.

5.1.1 QoS in different congestion controls in same network

In this section we first try to analyze the behavior of the proposed con-
gestion controls in each network and try to see the impact of congestion
control in QoS by comparing different congestion control algorithm beha-
vior in with each other in one network.

In the next section, we will try to investigate how each networks
perform with one specific congestion control algorithm. Therefore we want
to see how different providers treat our TCP connection which has same
congestion control algorithm and system settings i.e, buffer sizes.

Unlimited buffer evaluation

Figure 4.10 shows an overview of the results from measurement group
Mbunlimited,tbulk . The box plots show the distribution of the QoS values res-
ulted from the repeated experiments in the measurement group.

In box plot, the samples are sorted. Then four equal sized groups are
made from the ordered samples. That is, 25% of all samples are placed
in each group. The lines dividing the groups are called quartiles, and the
groups are referred to as quartile groups. The median (middle quartile) shows
the mid point of the data and is shown by the line that divides the box into
two parts. The median is usually close to the average. Half of the samples
are greater than or equal to this value and half are less. The middle box
represents the middle 50% of samples for the group. The range of samples
from lower to upper quartile is referred to as the inter-quartile range. The
middle 50% of samples fall within the inter-quartile range. Hence, 75% of
the samples fall below the upper quartile and 25% of samples fall below the
lower quartile. The upper and lower whiskers represent samples outside
the middle 50%.

The Average Goodput per second box plots in Figure 4.10 show that ppp1
has approximately similar goodput rate in Reno and Cubic which is much
higher than the other two networks in both Reno and Cubic congestion
controls. However, in Reno, ppp1 has more variance in goodput value
than it has in Cubic. Figure 5.1g shows the CWND evolution taken from
one of the experiment in ppp1 network with Reno as congestion control
with unlimited buffer size. As can be seen, since there is no packet loss
in this network, Reno starts in slow start mode in which it increases the
CWND exponentially and it won’t go in congestion avoidance phase. Hence,
the CWND value reaches to 2700 in the end of connection which means
that in the last seconds of the connection, the sender sends roughly 2700
segments at each time. As a result, the RTT value which is shown in Fig-
ure 5.2g, increases relevantly to the growth of CWND and reaches to 4.5
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seconds. This behavior of ppp1 network can be interpreted as being a large
buffering on the path between known as Bufferbloat [1], in which all the
sent segments are buffered without network getting congested while the
RTT increases sharply. In contrast, the other two networks get quickly con-
gested by increasement in the CWND value.

The CWND value of ppp1 network with Cubic congestion control (Fig-
ure 5.1h), Does not reach to the CWND value in Reno and at its peak it
reaches to 600 segments in flight per second. This is due to the loss or
changing to TCP-friendly CWND growth mode described in Algorithm 3
in which the CWND increases slowly than it does in Reno. By looking at
the RTT value for this experiment in Figure 5.2h, it can be seen that since
the CWND in Cubic is less than the CWND in Reno, therefore the queue of
the routers are not overwhelmed. Hence, the RTT in Cubic is much lower
than RTT in Reno (Figure 5.2g). In addition, since the Rate is calculated
by dividing the CWND value to the RTT value, therefore the Goodput rate
value of the Cubic is higher by roughly 100 KB/S.

(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.1: CWND evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited bulk traffic

Table 5.1a shows that eth1 has similar goodput rate in both Reno and
Cubic. We know that eth1 network , uses different technology and has
lower capacity in case of bandwidth than the other two networks. Fig-
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(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.2: RTT evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited bulk traffic

eth1 ppp0 ppp1

Reno 181.405 304.741 1137.788
Cubic 188.45 352.578 1273.132
Vegas 96.747 155.148 237.16

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.675 0.449 1.732
Cubic 0.808 0.285 0.330
Vegas 0.092 0.076 0.050

(b) RTT [s]

eth1 ppp0 ppp1

Reno 8.1 5.1 1.2
Cubic 9.6 4.2 1.0
Vegas 15 9.9 5.6

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 2 12 -
Cubic 14 26 1
Vegas 64.4 131.5 150.2

(d) Number of changes
in ssthresh value

Table 5.1: The average values of Bulk traffic measurements with unlimited
buffer size.

ure 5.1a shows the CWND starts in slow start phase, however due to the
low capacity of the network, packet loss occurs when the rate reaches at 3
Mbit/s and Reno triggers the fast recovery. Hence, it starts in congestion
avoidance phase and halves the ssthresh and CWND values as described
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in Section 2.1.3. By going into congestion avoidance mode, the CWND
growth will become slow and therefore it takes time for CWND to reach
the value when the congestion happened although it has suffered from two
more packet losses during the connection. Cubic acts more aggressively
when tries to recover from congestion stage. As can be seen from Figure
5.1b, everytime the loss occurs the CWND in Cubic tries to reach the value
at the time of last loss. Therefore the CWND value stays at value usually
higher than it is in Reno. However, due to reaching the network capacity, it
faces with more packet loss than Reno according to Table 5.1d. This shows
that because of the limited link capacity, increase in CWND value makes
the queue in the paths full and as a result the RTT value starts to increase.
Hence, the rate is similar in both congestion controls.

The number of changes in ssthresh value could tell us that whether
packet loss or timeout had occured in Reno and Cubic congestion control
algorithms since they are loss-based. Table 5.1d shows that in all networks,
the Cubic has more changes in ssthresh than Reno. However, as described
above, it recovers faster and it is more aggressive than Reno. Therefore, the
Goodput value in all three networks for Cubic is higher than Reno.

ppp0 acts similar to eth1 in Reno and Cubic, however due to the less
delay in this network the rate in ppp0 with both Reno and Cubic is higher
than eth1. Also, we know that our subscription in network ppp0 has down-
link limitation rate to maximum 3 Mbps.

Vegas as a delay-based congestion control algorithm, tries to avoid
delay in the network. Hence, it adjusts the CWND in order to maintain
a small number of packets in the buffers of the routers in the path. Hence,
the average delay in Vegas is much smaller. Vegas adjusts its CWND based
on the queuing delay value which is the difference of the Base RTT and ac-
tual RTT of the sent packet. Base RTT is the minimum RTT measured in the
path.

According to Table 5.1b, eth1 has higher delay than the two other net-
works. Therefore by increasing the rate in eth1, the queuing delay in-
creases. Hence, Vegas tries to decrease the CWND in order to avoid the
increase in the queuing delay in the network. As a result the RTT stays in a
constant value which can be seen in Figure 5.2c. However the consequence
of keeping the delay minimal is degradation in goodput per second, since
the CWND value is relatively small comparing with two other congestion
control algorithms. Figures 5.2f and 5.2i also show how Vegas maintains
the delay at low values in the two other networks in order to avoid conges-
tion in the network.

Table 5.1c shows the One-way delay values for our experiments in this
group. Since we set our calculation of one-way delay on the differences in
the received segments in goodput file, therefore the higher value in good-
put per second value, means that the waiting time between receiving each
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segment in one second interval is smaller. These can be seen by looking
at Goodput average and Application delay box plots in Figure 4.10. The
only exception is for eth1 with Cubic congestion control which has higher
one-way delay than Reno while the goodput of eth1 in Cubic is higher than
Reno .

From the box plots in Figure 4.10, it can be seen that although ppp1 has
the higher goodput value than the two other networks in all congestion
controls, it also has bigger variation in goodput, while ppp0 is the second
network with highest variation in goodput value and eth1 is the network
with the least variation in goodput. ppp0 also has the highest variance
between two other networks in both Reno and Cubic congestion controls
for RTT values.

The Equations (5.1) – (5.3), show the overview the considered QoS in
each network with different congestion control.

RTT(Unlimited,Bulk)


eth1Cubic > eth1Reno > eth1Vegas

ppp0Reno > ppp0Cubic > ppp0Vegas

ppp1Reno > ppp1Cubic > ppp1Vegas

(5.1)

Goodput(Unlimited,Bulk)


eth1Cubic ≥ eth1Reno > eth1Vegas

ppp0Cubic > ppp0Reno > ppp0Vegas

ppp1Cubic > ppp1Reno > ppp1Vegas

(5.2)

One− way delay(Unlimited,Bulk)


eth1Vegas > eth1Cubic > eth1Reno

ppp0Vegas > ppp0Reno > ppp0Cubic

ppp1Vegas > ppp1Reno > ppp1Cubic

(5.3)

Limited buffer evaluation

Figure 4.11, shows the results of bulk traffic measurements with the limited
buffer set sizes as described in section 4.2.1.

By limiting the buffer sizes on both server and node, the CWND growth
will be limited to the amount of sender’s sending buffer and receiver’s
receiving buffer size. This could clearly observed in case of ppp1 network
- which has a higher bandwidth delay product - where with unlimited
buffer sizes in Reno and Cubic (Figures 5.1g and 5.1h), the CWND keeps
growing till the end of the connection. However, with limited buffer size
the CWND does not pass the value of 400 segments in flight which is
exactly correspond to the maximum buffer limit value that we have set
for both sender and receiver. As an example, we calculate the rate in the
second 10th of the selected experiment’s CWND value in Bytes shown as
Figure 5.1g and its corespondent RTT value from Figure 5.2g as following.
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Rate10 =
CWND10 ×MSS

RTT10

Rate10 =
400× 1500

0.5
Rate10 = 1200000 Bytes per second ≡ maximum limited buffer size in Table 4.1

The limitation in CWND value also results in smaller RTT value which
can be seen by comparing Figures 5.3c and 5.2g.Table 5.2, shows the aver-
age QoS values resulted from bulk traffic with limited buffer size measure-
ment group. By comparing the values to the values in Table 5.1 it could
be possible to find the differences and the impact of the buffer size on the
behavior of the congestion control algorithm in each network.

(a) CWND ppp1 (Reno) (b) CWND ppp1 (Cubic)

(c) RTT ppp1 (Reno) (d) RTT ppp1 (Cubic)

Figure 5.3: The CWND (first row) and RTT (second row) of ppp1 in Reno
and Cubic congestion control with limited buffer size

According to the comparison between the unlimited buffer experiments
and limited buffer sizes experiments, it can be seen that for Goodput, eth1
and ppp0 both have higher value with limited buffer size than they have
in unlimited buffer size, while ppp1 has roughly similar goodput in Cubic
and Reno with both limited and unlimited buffer sizes. In addition, Vegas
has almost same goodput value in all networks with both unlimited and

81



CHAPTER 5. ANALYSIS

limited buffer sizes.

The RTT values resulted in limited buffer size measurements, shows
that the RTT values in all three networks with Reno and Cubic as the con-
gestion controls are smaller than unlimited buffer size experiments while
in Vegas, the RTT values are similar to the values resulted from unlimited
buffer sizes.

From One-way delay values, it can be concluded that only eht1 in Reno
and Cubic has got smaller one-way delay values while ppp0 and ppp1 both
have the same one-way delay in Reno and Cubic with limited buffer as they
have in unlimited buffer. Additionally, Vegas has almost the same One-way
delay values in all networks with limited buffer as it runs with the unlim-
ited buffer size.

In addition the number of ssthresh changes show that Reno has got
more changes in both ppp0 and ppp1, while this value has been reduced
in Cubic. The summary of the congestion controls impact on QoS values in
each network are shown as Equations (5.4) – (5.6).

eth1 ppp0 ppp1

Reno 252.571 359.850 1120.836
Cubic 270.437 361.136 1177.917
Vegas 91.079 134.556 220.186

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.422 0.166 0.302
Cubic 0.534 0.149 0.198
Vegas 0.086 0.082 0.048

(b) RTT [s]

eth1 ppp0 ppp1

Reno 6 4.6 1.1
Cubic 6.1 4.1 1.1
Vegas 15 10 6

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 3.8 14 -
Cubic 11 22 1
Vegas 71 156 152

(d) Number of changes
in ssthresh value

Table 5.2: The average values of Bulk traffic measurements with limited
buffer size.

RTT(Llimited,Bulk)


eth1Cubic > eth1Reno > eth1Vegas

ppp0Reno ≥ ppp0Cubic > ppp0Vegas

ppp1Reno > ppp1Cubic > ppp1Vegas

(5.4)

Goodput(Limited,Bulk)


eth1Cubic > eth1Reno > eth1Vegas

ppp0Cubic ≥ ppp0Reno > ppp0Vegas

ppp1Cubic > ppp1Reno > ppp1Vegas

(5.5)
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One− way delay(Limited,Bulk)


eth1Vegas > eth1Cubic = eth1Reno

ppp0Vegas > ppp0Reno > ppp0Cubic

ppp1Vegas > ppp1Reno = ppp1Cubic

(5.6)

To summarize the behavior of the congestion controls in our three con-
sidered networks it can be said that the highest RTT value in eth1 which
uses CDMA as its technology, is achieved by using Cubic while the two
other networks which using UMTS technology have the highest RTT by
using Reno as congestion control.

Since in Bulk traffic (i.e, transferring large files) , the main considered
QoS could be Goodput per second value, therefore it can be concluded from
the results that for bulk traffic with both limited and unlimited buffer size,
the highest Goodput per second value could be achieved by using Cubic as
congestion control algorithm in all three networks. Meaning that according
to our study, regardless of the difference in the MBB technology, the Cubic
congestion control has the highest Goddput per second in both UMTS and
CDMA networks.

5.1.2 QoS with same congestion control over different networks

Until now, we have described the differences in QoS parameters of
each network while they’re running with different congestion control al-
gorithms. However, we’re mainly interested to see how a same TCP con-
nection e.g, Reno, Cubic with the same characteristics e.g, buffer sizes per-
form over our different existed networks. This way of look gives us the
ability to understand how different ISP’s deal with every single congestion
control algorithms.

From Figures 4.10 and 4.11 and Tables 5.1 and 5.2, the following facts
could be concluded in congestion controls described in the following:

• Reno:

ppp1 network has the highest Goodput per second value with the
highest RTT and lowest one-way delay while it has roughly no loss.
However it also has the bigger variance in Goodput and RTT and
less variance in one-way delay. Limiting the buffer size only results
in less goodput value comparing to unlimited buffer size.Hence, the
RTT value is decrease and is less than eth1.

ppp0 has the highest number of changes in ssthresh value which
could be because of timeout or packet loss/reordering. However,
in both limited and unlimited buffer sizes when the rate exponen-
tially increases at the early moments of the connection, it follows
with a packet loss which as a result the goodput rate decreases. This
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could be somehow related to the fact that in this network the down-
link bandwidth is limited to 3 Mbit /s. Therefore whenever the
bandwidth-delay product is exceeding the limitation, a burst of con-
secutive losses occurs and as a result the rate will decreases. Figure
5.2d, shows that even with the low value of RTT, TCP Reno had sev-
eral changes in ssthresh which is shown in Figure 5.1d. The limitation
of the buffer size also results in having less RTT and one-way delay
variance.

In eth1 network, the RTT is higher except in unlimited buffer size
mode which ppp1 has the highest RTT. In addition, eth1 has the
highest one-way delay among other networks in Reno. while the
goodput is also low. After ppp0, this netwrk has the highest number
of ssthresh changes from approximately 2 to 4 changes with unlim-
ited and limited buffer respectively.

• Cubic:

Cubic in eth1 has higher RTT value than two other networks, while
this results to acquire less goodput among othe rtwo networks. It
shows that whenever that the CWND reaches 140 segments, RTT
reaches to roughly 2 seconds, which shows that the buffers in the
path get filled and as the consequence a packet loss occurs. Although
TCP Cubic quickly tries to reach to the CWND size at the time of con-
gestion i.e, 140 but again with another loss its CWND decreases. The
highest rate of delay i.e, RTT in this network makes it to have the
smallest goodput per second comparing to other networks. In addi-
tion it has the highest one-way delay value.

Same as in Reno, ppp0 starts the transmission by quickly reaching
to high CWND value, but it quickly receives burst of packet losses/-
timeout and as a result, the Goodput rate degrades. whenever the
CWND tries to reach to higher value a loss happens. This behavior
seems strange while the RTT does not reach a very high values. one
possible reasons could be that ppp0 network is very lossy or the more
possible answer is that the traffic shaper in the network tries to keep
the downlink rate to the 3 Mbit/s. The one-way delay is less than
eth1 and by limiting the buffer size the variances of the Goodput per
second, RTT and One-way delay is also smaller.

ppp1, has the highest Goodput value in Cubic congestion control
among two other networks. However the RTT is very close to ppp0.
The main reason of achieving higher goodput value is having only
one change in ssthresh value which is due to loss or packet reorder-
ing. therefore, the bandwidth-delay product of this network is very
high. In addition it has the lowest one-way delay which means that
the transferred data were received back to back fastest than two other
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providers.

• Vegas:

Vegas minimizes the number of inflight packets in the queues on
the path. Therefore as a result, the RTT of all networks are roughly
similar and only differs by 20 ms. ppp1 has the highest goodput
while eth1 has the least. ppp0 has higher variance in one-way delay.
interestingly the one-way delay in Vegas for all networks is higher
one-way delay values for Reno and Cubic for all three networks.

5.2 Onoff traffic

As described earlier in Sections 3.1.1 and 4.2.2, The Onoff traffic generated
by NetPerfMeter tool in order to simulate the short flow traffics. In which
for a limited period of time the sender sends traffic with unlimited sending
rate. meaning that the it sends as much segments as possible in the spe-
cified short period of time and then stays idle for another specified amount
of time. The way we conducted our measurements in this type of traffic, in
the duration of 60 seconds connection, the sender starts sending segments
for 1 second and then stays idle for 5 seconds, Therefore in the duration
of each measurement, there are normally 10 short flow traffics generated
and sent by the server. Although our specified sending duration is just 1
second, but due to the system overheads, each sending duration roughly
takes 1-3 for the receiver to receieve all the segments.

Same as measurements in long flow traffic (i.e, bulk), we measured the
short flow traffic with both unlimited and limited buffer sizes.in following
subsections, we first analyze the results from running the measurements
with Unlimited buffer sizes and next will be the results from limited buffer
sizes.

5.2.1 QoS in different congestion controls in same network

Unlimited buffer evaluation

Figure 4.13 shows the box plots resulted from the Onoff traffic with unlim-
ited buffer size measurement group.

As can be seen from Figure 5.4a, TCP Reno starts in slow start phase
from second 0 which is the start of the connection and CWND quickly
reaches to 140 segments, after that the server stays idle and doesn’t send
any traffic (the steady line from second 1st to 6th in CWND plot). Upon
starting the second period it can be seen that the CWND starts from 140
segments and continues in the slow start phase since there was no loss and
no ssthresh were set. From RTT plot in Figure 5.5a, it can be seen that RTT
increases meaning that the network buffers are filling up and hence the
packet loss occurs and CWND got halved. from this moment TCP Reno,
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goes to the congestion avoidance phase which increases the CWND by one
in each RTT. Hence, for the rest of the onoff periods, the increase of CWND
is slower.

However, in Cubic (Figure 5.4b), although more packet loss occurs, but
it tries to quickly recover and increase the CWND size. Hence, the RTT
(Figure 5.5b) increases too due to the less bandwidth and capacity of this
network. As a result the Goodput per second rate of Cubic in eth1 is less
than Reno.

TCP vegas increases the CWND if the difference between the base RTT
and the measured RTT which is called queuing delay is too small. In eth1
(5.5c) , TCP vegas starts increasing the CWND upon first sending interval
and by increasement in RTT, it quickly decreases the CWND and updates
its Base RTT value. during the 5 seconds of non sending traffic, the queues
in the path were emptied and by starting the next sending interval, Ve-
gas increases the CWND value since the queuing delay is small. In eth1
network, since the capcaity of the network is not high comparing to two
other networks, vegas gains more goodput than the Reno and Cubic by not
filling the buffers of the routers in the path. while in Cubic and Reno there
are packet losses because of this phenomenon and as a result they suffer
higher RTT value than Vegas.

In ppp0 and ppp1, due to the higher link capacity, the CWND value
reaches to 170 and 180 respectively for both Reno and Cubic. However,
in Cubic an early increasement in RTT value which is due to the sharp
increase in CWND value, results in loss. Therefore the CWND reaches to
its maximum size after 2nd or 3rd sending period. The reason for having
steady CWND value once it reaches the maximum value is the fact that
since the server only transmits the data for 1 second, therefore all the data
that server can transmit for that 1 second could be send by that CWND
value, therefore during that 1 second if no loss happens, the congestion
control won’t increase the CWND anymore since it has already sent all the
possible segments in that 1 second.

From Figure 4.13 and Table 5.3, it can be seen that in eth1 Cubic has
higher RTT than Reno while both have big variances. However, the delay
time for ppp0 and ppp1 in both Reno and Cubic are roughly same with the
assumption that ppp1 has more variance than ppp0. For Vegas, all three
networks have roughly same delay time.

For Goodput per second, eth1 has the highest rate with Vegas as con-
gestion control algorithm while Cubic achieved lowest rate. However, in
both ppp0 and ppp1 networks, the highest Goodput rate is achieved by
Reno and Vegas has the lowest rate. Also ppp1 has the highest Goodput
rate variance in all congestion controls.

From Application delay (One-way delay) plot, it can be seen that eth1
has the highest one-way delay of roughly 10 ms in all three congestion
control algorithms comparing the two other networks. While in ppp0 and
ppp1 , the highest one-way delay is when they run with Vegas as their con-
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(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.4: CWND evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited onoff traffic

eth1 ppp0 ppp1

Reno 68.642 105.063 139.607
Cubic 61.592 97.291 113.925
Vegas 71.133 89.270 102.293

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.467 0.335 0.213
Cubic 0.651 0.397 0.254
Vegas 0.108 0.100 0.074

(b) RTT [s]

eth1 ppp0 ppp1

Reno 11 3.3 1.8
Cubic 10 3.7 3.2
Vegas 12 5.4 3.8

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 2 - -
Cubic 6 1.5 1
Vegas 28.4 48.3 57.5

(d) Number of changes
in ssthresh value

Table 5.3: The average values of onoff traffic measurements with unlimited
buffer size.

gestion control algorithm.

Additionally, Table 5.3d, shows that only eth1 has changes in ssthresh
value by using Reno and has more changes in Cubic than ppp0 and ppp1.
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(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.5: rtt evolution of eth1, ppp0 and ppp1 in selected experiment with
Unlimited onoff traffic

The summary of the congestion controls impact on QoS values in each
network are shown as Equations (5.7) – (5.9).

RTT(Unlimited,On)


eth1Cubic > eth1Reno > eth1Vegas

ppp0Cubic > ppp0Reno > ppp0Vegas

ppp1Cubic > ppp1Reno > ppp1Vegas

(5.7)

Goodput(Unlimited,Ono f f )


eth1Vegas > eth1Reno > eth1Cubic

ppp0Reno > ppp0Cubic > ppp0Vegas

ppp1Reno > ppp0Cubic > ppp0Vegas

(5.8)

One− way delay(Unlimited,Ono f f )


eth1Vegas > eth1Cubic > eth1Reno

ppp0Vegas > ppp0Cubic > ppp0Reno

ppp1Vegas > ppp1Cubic > ppp1Reno

(5.9)
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Limited buffer evaluation

By limiting the buffer sizes values, it can be seen that although the overall
patterns has not changed, the variances of the experiment results are bigger.
Although that the goodput results of each network in different congestion
controls are roughly similar, However, it can be seen from Figure 4.14 and
Table 5.4 that the Goodput rate in eth1 with Reno is slightly more than
Vegas.

eth1 ppp0 ppp1

Reno 85.385 102.762 137.953
Cubic 80.871 86.784 116.577
Vegas 82.947 88.594 100.689

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.300 0.456 0.205
Cubic 0.420 0.465 0.255
Vegas 0.089 0.120 0.075

(b) RTT [s]

eth1 ppp0 ppp1

Reno 6 3.2 1.8
Cubic 6 3.7 2.7
Vegas 6.4 5.5 3.8

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 2 - -
Cubic 7 1.3 1
Vegas 31.25 54.5 52.5

(d) Number of changes
in ssthresh value

Table 5.4: The average values of onoff traffic measurements with limited
buffer size.

5.2.2 QoS with same congestion control over different networks

According to the results from both limited and unlimited buffer sizes we
can summarize the impact of each congestion control on QoS parameters
while they run on different MBB networks.

In Onoff traffic the delay is important QoS parameter. Therefore in this
section we will evaluate RTT and One-way delay to see how different pro-
viders impact on these parameters in each congestion control algorithm.

Figure 5.6, evaluates the impacts of each TCP congestion control in all
three different MBB providers. The Bag plots [63] which were shown here,
consist of two polygons, the inner polygon which is called bag has the me-
dian along with 50% of all data points and the outer polygon which is called
loop contains observations between the bag and the fence. The fence is the
inflation of the bag by a factor 3. Any observation outside the fence is out-
lier. In Figure 5.6, only the bag and loop were shown. The X axis represents
the One-way delay values i seconds while the Y axis represents RTT values
in seconds.

From Figures 5.6a and 5.6d it can be seen that in Reno, ppp0 and ppp1
are roughly similar where ppp0 has the lowest RTT delay and One-way
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delay meaning that the application gets better performance by having more
bandwidth which is due to the less RTT delay, and also the small one-way
delay time which can be caused by packet reordering or recovering from
loss. However, it can be seen that eth1 has highest delay both in RTT
and One-way delay, therefore the application which is in our case could
be the web browser, would suffer more delay comparing with other two
networks. Also it shows that limiting the buffer size sets increase the vari-
ance of the One-way delay variance while it decreases the RTT variance in
eth1.

Cubic congestion control behaves roughly similar to Reno in all three
networks in both limited and unlimited buffer set sizes. however, compar-
ing to Reno, ppp0 and ppp1 have slightly more variance in one-eay delay
time in Cubic (Figures 5.6b and 5.6e).

Figures 5.6c and 5.6f show that TCP Vegas achieved less delay and less
One-way delay while it runs over ppp1. However, eth1 and ppp0 have
gained roughly same amount of RTT delay and eth1 has higher One-way
delay than ppp0. In limited buffer sizes the RTT variance is higher for all
networks and as it shows, although ppp0 has more variance in RTT than
eth1 but their median are equal.

(a) Reno (unlimited) (b) Cubic (unlimited) (c) Vegas (unlimited)

(d) Reno (limited) (e) Cubic (limited) (f) Vegas (limited)

Figure 5.6: Bagplots of RTT-One way delay of networks in each congestion
control

5.3 Stream traffic

As described earlier in Sections 3.1.1 and 4.2.3 and same as Onoff traffic, the
NetPerfMeter were used in order to generate this type of traffic. The aim of
generating this traffic was to simulate the behavior of the congestion con-
trols in the networks while they’re dealing with application such as media
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streaming or VoIP in which the rate is limited by the application. Therefore
we tried to use the Goodput rate of the bulk measurements in which the
link were saturated and hence, generated the stream traffic by limiting the
rate via NetPerfMeter to 50% and 25% of their corespondent experiments
in bulk traffic.

Since in this traffic we have specified the Goodput rate manually there-
fore the Goodput rate is constant. Hence, we will not evaluate the Goodput
rate for Stream traffic. Thus, we are mainly interested for RTT and One-Way
delay as QoS in Stream traffic.

According to the different Goodput rates resulted from unlimited and
limited bulk traffic from Tables 4.2 and 4.3. The Goddput rates which were
considered for stream with 25% and 50% rate are differ in limited and
unlimited buffer sizes. Therefore we first analyze and compare the stream
50% and 25% with unlimited buffer size and the two other groups with
limited buffer size together.

By comparing the Figures 4.17 and 4.18 and looking at Tables 5.5 and
5.6, it can be seen that eth1 has the highest One-way delay in all congestion
control algorithms. Also from Figures 5.8 and 5.10 it can be depicted that
although the delay values are very close to each other, but eth1 has some
relatively high spikes in RTT figures in all congestion controls.

ppp1 has the lowest One-way delay in all congestion controls with
similar value in Reno and Cubic. In the other point of view, it shows that
TCP Vegas has the highest One-way delay among all congestion controls
while running on all networks.

eth1 ppp0 ppp1

Reno 87.611 136.736 446.331
Cubic 93.266 171.812 453.092
Vegas 48.511 73.815 115.001

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.077 0.079 0.049
Cubic 0.094 0.152 0.046
Vegas 0.076 0.062 0.041

(b) RTT [s]

eth1 ppp0 ppp1

Reno 16 9 2.7
Cubic 15 7.3 2.7
Vegas 29 15 9.6

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 2 0.5 -
Cubic 3 1.8 1
Vegas 29 114 92.5

(d) Number of changes
in ssthresh value

Table 5.5: The average values of stream 50% traffic measurements with
unlimited buffer size.

91



(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.7: CWND evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited stream 50 traffic

eth1 ppp0 ppp1

Reno 45.374 71.758 274.191
Cubic 46.880 87.569 274.554
Vegas 25.172 38.809 58.528

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.079 0.073 0.041
Cubic 0.079 0.062 0.041
Vegas 0.100 0.057 0.038

(b) RTT [s]

eth1 ppp0 ppp1

Reno 31 15 4.4
Cubic 30 12 4.4
Vegas 56 21 14

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 1.5 1.3 -
Cubic 1.9 1 1
Vegas 93.7 28.4 5.9

(d) Number of changes
in ssthresh value

Table 5.6: The average values of stream 25% traffic measurements with
unlimited buffer size.
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(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.8: RTT evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited stream 50 traffic

eth1 ppp0 ppp1

Reno 116.145 170.609 440.455
Cubic 126.529 172.681 405.086
Vegas 45.359 66.840 106.085

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.081 0.091 0.063
Cubic 0.088 0.069 0.561
Vegas 0.076 0.060 0.040

(b) RTT [s]

eth1 ppp0 ppp1

Reno 12 7 2
Cubic 11 7.2 59
Vegas 31 15 10

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 1 1 -
Cubic 3 1.6 1
Vegas 18.8 121.8 74.25

(d) Number of changes
in ssthresh value

Table 5.7: The average values of stream 50% traffic measurements with
limited buffer size.



(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.9: CWND evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited stream 25 traffic

eth1 ppp0 ppp1

Reno 61.076 87.563 264.693
Cubic 66.836 85.510 273.794
Vegas 23.895 33.118 54.037

(a) Goodput [KB/s]

eth1 ppp0 ppp1

Reno 0.076 0.065 0.044
Cubic 0.077 0.084 0.046
Vegas 0.101 0.065 0.044

(b) RTT [s]

eth1 ppp0 ppp1

Reno 23 12 4.5
Cubic 21 13 4.4
Vegas 59 23 15

(c) One-way delay [ms]

eth1 ppp0 ppp1

Reno 1 - -
Cubic 1.6 2.7 1
Vegas 134 18 12

(d) Number of changes
in ssthresh value

Table 5.8: The average values of stream 25% traffic measurements with
limited buffer size.
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(a) eth1 (Reno) (b) eth1 (Cubic) (c) eth1 (Vegas)

(d) ppp0 (Reno) (e) ppp0 (Cubic) (f) ppp0 (Vegas)

(g) ppp1 (Reno) (h) ppp1 (Cubic) (i) ppp1 (Vegas)

Figure 5.10: RTT evolution of eth1, ppp0 and ppp1 in selected experiment
with Unlimited stream 25 traffic
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Chapter 6

Discussion and future works

The aim of this thesis was to observe the impact of different proposed
congestion control algorithms on the Quality of Services over different
Mobile Broadband networks from different types of traffic point of view.
The design of the project which consisted of the design of experiments
and measurement tools along with the results of measurement groups
containing different experiments and analysis of the results have been
presented in the previous chapters. In this chapter the measurement
tool implementation, practical results and analysis will be discussed.
In addition any probable weakness of the measurement methodology,
possible adjustments and possible future works will be discussed as well.

6.1 Implementation overview

In this section we will discuss about the measurement tools and the
methodologies that have been used in order to answer our problem
statements.

6.1.1 Metrics

A set of different variables were considered in the measurements in order
to observe the differences. Hence, we chose three different congestion con-
trol algorithms which use different strategies for avoiding congestion in
the network. To further improve our comparisons we decided to use both
loss-based and delay-based congestion control algorithms. In loss-based al-
gorithms, packet loss in the network is interpreted as a sign of congestion
in the network, while in delay-based algorithms an increase in the RTT of
the sent packets is interpreted as sign of congestion.

TCP Reno and TCP Cubic were used as the two loss-based congestion
control algorithms. Reno is the standardized congestion control algorithm
by IETF and is used as a baseline in researches for comparisons. Cubic
is the default congestion control algorithm for Linux as of kernel version
2.6.26 . Both algorithms are the most widely used algorithms in today’s
Internet according to Table 2.1. In addition, TCP Vegas were used as the

97



CHAPTER 6. DISCUSSION AND FUTURE WORKS

delay-based congestion control algorithm. All three algorithms have their
own characteristics and methodology to how to deal with congestion in the
network.

Different types of traffics were also considered in our experiments in
order to observe the behavior of the stated congestion control algorithms
while they faced with various traffic types. Hence, we proposed three dif-
ferent traffic types as Bulk, Onoff and Stream. In bulk traffic we tried to sim-
ulate the transferring of the large amount of data (i.e, 16 MBytes) in order
to simulate the cases where a file is downloading using FTP or SCP. This
could also referred as long flow traffic in which the sender tries to increase
the sending rate based on the advertised receiving window from receiver
and its own congestion window until the congestion in the network detec-
ted which based on the type of the algorithm the sending window size and
rate will be adjusted. The Onoff traffic could be referred as short flow traffic
in which the sender sends as much data as possible according to its send-
ing window for limited amount of specified time and then it stays idle for
another specific time. The goal for using this traffic was to somehow sim-
ulate the user experience while surfing the web pages, in which the web
page is downloaded from the server (sending period i.e On) and then user
normally tries to read the page for some amount of time (idle period i.e,
off). We set the On period as 1 second and Off period as 5. Normally in this
type of traffic the link will not utilized since the duration of On period is too
small. Finally we conducted another type of traffic as Stream traffic which
could be referred as Application limited traffic. Some traffics such as me-
dia streaming traffic or VoIP traffics use a limited rate of sending traffic over
the network. Therefore we used the method that we used in bulk traffic but
this time with limiting the rate of the sending data from the server by 50%
and 25% of the maximum rate achieved in bulk traffic type to simulate the
Stream traffic.

In order to see the protocol behaviour with and without system settings
limitation, we considered two types of system setting in which the socket’s
write and receive memory set sizes are different. for unlimited buffer size,
we set the maximum send and receive buffer size equal to the amount of
data that were used in bulk traffic (i.e, 16 MB) which comparing to the de-
fault value of the Linux (i.e, 0.5) could be referred as Unlimited. In addition
for limited buffer size we used the Android’s buffer sizes value for HSPA+
connection. Table 4.1 shows the buffer sizes that were used in this thesis.

Three Mobile Broadband providers of Norway with different 3G tech-
nologies were used as our networks. One with 3G-CDMA2000 1xEV-DO
Rev.A technology mentioned as eth1 in this report with theoretical data
rate of 9.3 Mbit/s in downlink and 3.1 Mbit/s in uplink. The other two net-
works were both using 3G-UMTS with HSPA+ mentioned as ppp0 and ppp1
with theoretical data rate of up to 21.6 Mbit/s in downlink and 5.8 Mbit/s
in uplink. However, the ppp0 data subscription is limited to 3Mbit/s in
downlink as stated in our subscription. Additionally we only conducted
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our studies based on downlink and not uplink.

The QoS metrics which we were interested in this study were Goodput,
RTT and One-way delay (i.e, application delay).

6.1.2 Experiments

Having the metrics and variables , we designed our experiments by
grouping them based on the type of traffics with limited and unlimited
buffer sizes as sub group of each traffic. In each group, one congestion
control algorithm were set at the server which is the sender in our
study and the measurement will executed, this pattern repeated until the
measurements are done with one congestion control for all three networks.
After that the next congestion control were used in the networks and so on.
Therefore each measurement group consists of 9 experiments.

6.1.3 Measurement tools

In order to observe the behavior of each connection and extract the
connection parameters, a set of tools were created which consisted of two
scripts. One were executed at client and the other one at the server. The
server script set the congestion control and the buffer size and captures
the packets while listening to the incoming socket connection from the
client. Also the client script capture the transferred packets and initiates
the connection to server. Based on the traffic type, the server generates the
traffic to transmit to the client. The outcome of the measurement scripts
were 4 files in which two of them are trace files both from the packet
capturing of server and client and one Goodput file which client script
creates based on the amount of data it receives at each time through the
socket which could be interpreted as Goodput values since it shows the
data that application has received without any protocol overhead and etc.

6.1.4 Collected data

In total, 72 individual experiments have been proposed in this thesis.
However, each experiment were repeated several times in order to take the
distribution of the QoS values. The mean of QoS values from each repeated
experiment were recorded in files along with the experiment name. Hence,
all 72 experiments represent a distribution of sampling means for Goodput,
RTT and One-way delay from repeated experiments. These files were used
for plotting the results of each measurement group.

6.2 Results and Analysis overview

The results of the experiments were evaluated in two different ways. In
one way, we tried to compare the impact of different congestion control
algorithms on QoS over each individual network. In the other way, we
evaluated the impact of each TCP connection with individual congestion
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control algorithm while running over different networks. In the first
way of analysis, by looking at the boxplots and tables based on an
individual network in different congestion control algorithms some results
and behaviors arised our attention as following.

• In almost all traffic types in all networks, Vegas has the lowest
Goodput rate comparing to other congestion control algorithms.
However, in eth1 (3G-CDMA2000 network) with Onoff traffic with
both limited and unlimited buffer sizes, Vegas has the higher
Goodput than Reno and Cubic.

• Since Vegas is a delay-based congestion control algorithm and as the
nature of its mechanism, it tries to minimize the RTT (i.e, delay) in
the network. Interestingly it has the highest One-way delay (i.e,
application delay) value in all networks among other congestion
controls for almost all kind of traffics.

6.3 Future Works

In this Section, the the future works that could not be done in this project
due to the time limit and the potential possible projects based on the results
of this thesis are explained.

6.3.1 Finding traffic manipulation by providers

Our study showed that the loss based congestion controls such as Reno,
face with sharp decrease in CWND size whenever that a packet loss ocuurs
in the network. However, it is possible that some providers implement
some Active Queue Management (AQM) system which could randomly
drop some packets in the routers which are exist in the path. As a result,
the senders which are using Reno as congestion control will mistakenly
think that there is a congestion in the network and as a result they decrease
the CWND and the throughput degradation is the consequence.
However, lots of measurements and analysis is needed in order to find and
prove this scenario, which was out of this thesis scope.

6.3.2 Bufferbloats

Our results showed that one of our used networks (ppp1) is equipped with
large amount of buffer. However, more experiments and measurement
were needed in order to be able to fully understand the behaviour of each
congestion control in this large buffers known as bufferbloats.

6.3.3 Multipath congestion control

The results of this project could be used for improvements in multi-path
transport, e,g. for scheduling of data onto paths as well as for multi-
path congestion control particularly for CMT-SCTP [36] and MPTCP [30]
protocols.
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6.4 Potential weaknesses and improvement adjust-
ments

In this section the potential weaknesses of the methodology which have
been proposed in this thesis along with possible modifications for better
accuracy will be described.

6.4.1 Repetition of experiments

As we described earlier, the measurement procedure in this thesis con-
sisted of 72 individual experiments with different characteristics. However,
in order to have reliable sampling distribution of these experiments, each
of them should get measured for reasonable number of times (more than
30 is desirable). In addition there should be considerable amount of time
between each experiment which were going to take place on each network
in order to have the results of the experiments independent than each other
and avoid the caching or buffering the route and other metrics in the under-
lying routers in the path. Therefore, each measurement group consisting of
9 experiments were executed only two times per working days. One in the
beginning of working hours and the other in the evenings at the end of
working hours.

Additionally, the Mobile Broadband subscriptions have limited and ex-
pensive monthly data plan. which means that there is a quota for the
amount of sent/received data in each month. Therefore, although hav-
ing more than two measurements per day is logically none sense due to
the same results that it will provide, it would be even costly and expensive
because of the quota and monthly subscription.

In order to tackle this problem and having as much repeated experi-
ments as possible, a longer period of measurements is required. In the
other words, if we run the measurements during 4 to 5 months, then the
results would be accurate enough to be heavily relied on.

6.4.2 One-way delay measurement

As we described earlier on page 4.1.2, the correct way of measuring the
One-way delay is by using the timestamp option in TCP header enabled by
the sender for each packet in which the server prints the epoch time of the
moment that the segment is being transferred. Thus, the receiver can find
the exact amount of time by comparing the captured packets times with the
timestamp printed in the header of the packets. However, both sender and
receiver in this method should be accurately synced by using NTP protocol
for instance. But since the One-way delay value is usually few milliseconds
and the NTP accuracy is not better than 10 or 20 ms for WAN networks and
is closely dependent on the machine’s hardware and CPU clock specifica-
tion, some other workaround were needed by using GPS devices which is
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described in [4].

However, due to the limitation and lack of time the method proposed in
[4] could no get implemented in our project. Hence we decided to measure
the differences of each two timestamps in the Goodput file. this difference
shows the amount of time that took for the application to receive the next
segment from transport layer. This could also gives us the information
about the delay which were cause by loss or reordering of the packets in
transport layer.

One-way delay values from NetPerfMeter

As we described in previous section, we used the difference of each two
timestamps from the Goodput file which was the output file of the client
measurement script. However, we used NetPerfMeter for generating cus-
tomized traffics i.e, Onoff and Stream. Since we couldn’t have access to the
socket which being used by NetPerfMeter in order to extract the Goodput
values, therefore, we used the vector files which NetPerfMeter generated.
As shown in 4.1.2, this file summarizes all the amount of data that has been
sent from the server to the client in each 1 second interval. Hence if we
were going to use the differences between these timestamp values, all the
One way delay results would have a constant value equal to 1.

The only workaround that we could implement in the short amount of
time that we had, was to use the client trace files and filter them in a way
to show the timestamp of each received segment in epoch format. Then
by taking the differences between these timestamps we measured the One-
way delay values same as Bulk traffic.
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Conclusion

In this thesis, we studied the TCP Reno, TCP Cubic and TCP Vegas
congestion control algorithms and their impact on QoS characteristics over
operational 3G-UMTS and 3G-CDMA2000 1xEV-DO Rev.A networks in
Oslo, Norway. We showed that the same TCP connection (i.e, with one
congestion control, system settings and etc.) have different impacts on
the Quality of Services parameters in each network even if the underlying
technology of the networks are same.
Our results could be categorized based on the traffic types as following:

• Bulk traffic:

Our results show that, TCP Cubic achieves the highest Goodput in
both 3G-UMTS and 3G-CDMA2000 networks regardless of buffer
sizes. Also TCP Vegas has the least Goodput in all networks. Our
results also show that the networks with higher loss will have less
delay in Reno, hence will have better Goodput comparing to the
networks which have fewer loss and higher delay. However, in loss
based algorithms if a network has no loss and high delay, then the
Goodput also will be higher. It can be depicted that the networks
with higher delay and less Goodput have higher application delay
too.

• Onoff traffic:

In onoff traffic, the networks with higher delay and more loss acheive
the least Goodput and highest One-way delay in Reno and Cubic
However, in Onoff traffic the 3G-CDMA 2000 network acquires
the highest Goodput while uses Vegas as its congestion control
while both 3G-UMTS networks have highest Goodput with Reno as
congestion control.
Reno achieves the highest goodput in both 3G-UMTS network.
However, the 3G-CDMA2000 network gains the highest Goddput in
Vegas. In terms of delay, all the networks have highest delay while
they use Cubic. As the other types of traffics, TCP Vegas has the
highest One-way delay for all networks.

• Stream traffic: In Stream traffic, the networks with higher loss, gain
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the higher delay and One-way delay. In addition Reno has the highest
delay for each network.
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Appendix

All scripts which measured the data in this thesis , as well as piloting scripts
have been uploaded in the repository which can be get from following
links.

8.1 Appendix 1: On/Off traffic

on/off traffic (http://bit.ly/1j5Wdav)

8.2 Appendix 2: Bulk traffic

Bulk traffic (http://bit.ly/1lLYc6G)

8.3 Appendix 3: Stream traffic

Stream traffics (http://bit.ly/R5Ex80)

8.4 Appendix 4: Plot Scripts

plot scripts (http://bit.ly/1vBfmLa)
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