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Abstract

Interconnection networks are widely deployed as the communication fabric in
different systems, ranging from internal networks in clusters to the wide area
networks in public clouds. In the event of rerouting due to failure of networking
components, congestion control, and migration of jobs, the underlying network
characteristic of a system must be reconfigured. Due to the fact that the large net-
works in clusters and enterprise environments are becoming too complex to man-
age on an individual system-by-system basis, self-managing and self-configuring
networks are a requirement in future systems. In this thesis, we study dynamic
reconfiguration and our contributions are in three different contexts.

The first contribution is a fault tolerant mechanism that can dynamically re-
configure the characteristic of the interconnection networks when a fault happens.
The main methodology is based on event forwarding in the network manager to
notify the affected nodes with the updated path information. Using this method,
network traffic is not required to be stopped during the reconfiguration, enabling
a fault tolerant mechanism that is transparent to the applications. In addition,
an extension is provided to reduce the management message overheads during
the event forwarding mechanism. The second contribution is a congestion con-
trol mechanism that can reconfigure the route dynamically to alleviate the neg-
ative effects of head-of-line blocking. This methodology provides a framework,
with only using virtual lanes, that can improve the network performance in the
presence of hot-spots. The network manager monitors the network periodically,
detects hot-spots, and reconfigures the network traffic autonomously by isolating
the congested flows from the normal traffic. The third contribution is a method-
ology enabling dynamic reconfiguration of a high-speed networking device, that
is attached to a virtual machine (VM), during live migration. In this method,
the reconfiguration of the underlying hardware managed resources of the high-
speed networking device is performed dynamically when a VM is migrated. The
on-going network operations of the high-speed networking device can be resumed
after the live migration without any manual configuration.
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Chapter 1

Introduction

High Performance Computing (HPC) systems, such as supercomputers and data
centres, are no longer exclusive to the scientific community. Today, these systems
are also demanded by different sectors in the enterprise community such as social
network providers, financial services, retail or manufacturing [86]. All of these
organizations have a common problem; they have collected a large amount of
data which need to be analyzed, e.g. Big Data [70]. However, these datasets
are too large and complex to be processed in a reasonable amount of time by
a relational database [8]. Thus, HPC is being used, together with a software
framework that supports data–intensive applications such as Hadoop [2], as the
mainstream solution for data analytics in enterprise systems.

In the HPC system, the interconnection network, which is the communica-
tion infrastructure that interlinks compute nodes and transports data among
them, is one of the important components that contributes to the overall per-
formance. An interconnection network can be characterized by its topology,
routing algorithms and switching techniques, and each of these characteristics is
application–centric [36]. Therefore, in this thesis we study methodologies for dy-
namic reconfiguration of the interconnection network. In general, a reconfigurable
architecture is an architecture that can alter the functionality and structure of
its components [111]. If the reconfiguration is performed without any manual
effort, and with minimal or no overhead, it is said to be dynamic. As a result,
the term dynamic reconfiguration is defined as the ability to make changes to
its subsystem, without impacting the running applications, while the system is
running [73]. In this thesis, dynamic reconfiguration refers to mechanisms that
can dynamically reconfigure the network charateristics of the interconnection net-
work after identifying the occurrence of an event, such as a fault, a traffic pattern
change or a job migration event.

1
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1.1 Motivation

Ideally, an interconnection network should have the capability to monitor, man-
age and reconfigure the network charateristics and resources without human in-
tervention after the occurance of an event such as topology change, network con-
gestion or job migration. The reconfiguration should also be application trans-
parent and only impose minimum service downtime to the running applications.
However, this is not the case in reality because the reconfiguration is usually
being performed statically [18]. An external component is used to detect the
events in the interconnection network. Subsequently, the running applications
are halted, then a new set of network resources is applied manually before the
running applications are restarted again. Thus, this motivates us to study dy-
namic reconfiguration of the interconnection network. In our opinion, there are
two reasons why dynamic reconfiguration of the interconnection networks is chal-
lenging. First, there is no ideal and general configuration for the interconnection
network that is applicable to all traffic patterns. In this thesis, the term con-
figuration refers to the network topology, the routing algorithm, the switching
technique and the device resources in the interconnection network. Second, sys-
tem virtualization has been introduced to improve the flexibility, utilization, and
productivty of the HPC systems. Virtualization not only adds new features, but
comes at a cost creating additional complexity in managing the configuration of
the interconnection network.

The configuration of an interconnection network

The configuration in a large-scale HPC system needs to be changed frequently
to maintain the connectivity and performance due to the traffic pattern changes,
occurrence faults or job migration. Today, the checkpoint-restart mechanism is
a widely used solution to perform reconfiguration [38]. The checkpoint-restart
mechanism works in such a way that when there is a need to modify the config-
uration, the application can be halted, a new configuration can be implemented
while the network is empty of traffic, and finally the application can be restarted
from the last checkpoint. However, the reconfiguration becomes challenging as
the size of the HPC system increases, in particular in the perspective of large
Petascale systems and future Exascale systems. It is anticipated that Exas-
cale systems will experience various kind of reconfiguration events, especially
faults [18]. If the momentum of the growth in the number of computational
nodes continues, the manual reconfiguration, using checkpoint-restart, will soon
not be agile enough to adapt to the frequency of the network changes [41, 42]. As
soon as the new configuration is applied, the changes in the underlying network
structure requires another new configuration. Therefore we study methodologies
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that can dynamically reconfigure a network configuration after the occurence of
events such as component failure or network congestion. More specifically, we
address the challenges describe in the following research questions:

• Component failure in a large-scale system is inevitable because there are
thousands of operating nodes, and millions in the future. From the inter-
connection network point of view, apart from generating a new deadlock-
free routing structure, a fault tolerant mechanism should reconfigure the
existing connections with the updated network configuration and manage-
ment system. Thus, our first research question is: how can we provide
an application–transparent fault–tolerant mechanism that can dynamically
reconfigure the established connections after a fault happens in the intercon-
nection network?

• Congestion is said to occur in a network when the resource demands ex-
ceed the network resources capacity and packets are blocked due to queu-
ing in the network. In the interconnection network, congestion can happen
due to a traffic pattern change, after component failure, or during job mi-
gration. Today, most of the congestion control mechanisms available are
technology specific. To apply a similiar concept in other technologies, it is
required to add new hardware features. Thus, the second research ques-
tion is: how can we provide a technology–independent congestion control
mechanism that can readjust the network configuration dynamically during
congestion to minimize the negative effect of head-of-line blocking [95] in a
lossless interconnection network?

The configuration of a network device

One key feature of system virtualization is live migration, the capability to move
virtual machines and its corresponding applications and data between physi-
cal servers with minimal service interruption [26]. On the other hand, one
key property of the interconnection network is the capability to carry out high
throughput and low latency communication, such as remote direct memory access
(RDMA) [1], a mechanism to access memory of a remote computing without the
involvement of operation system. Thus, an open challenge is how to preserve the
high throughput and low latency properties of an RDMA device in the virtualized
environment. More specifically:

• The single root IO virtualization (SR-IOV) specification was introduced by
PCI-SIG [4], to provide scalability while preserving the high throughput
and low latency properties of interconnection networks. Each PCI device
exposes multiple virtual devices that can be assigned to multiple virtual ma-
chine [92]. However, SR-IOV has the same drawback as PCI passthrough,
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it complicates live migration. Thus, the third research question is: how
can we provide an application–transparent mechanism that can dynamically
reconfigure the device resources and properties of the RDMA operations as-
sociated with live migration of a VM?

1.2 Research Methods

In addition to the background study on related literature, we apply two research
methods during this work: prototyping and simulation [101]. Prototyping is a
research method that designs, implements, and evaluates the proposed concept
on a real system. On the other hand, simulation is a research method that builds
a software model that can simulate the environment of a system and imitate
different scenarios without having the risk of disrupting a real system. The
following paragraphs briefly explain the reasons why these methods are chosen
and discuss in which scenarios they are well-suited.

Prototyping is an expensive and time-consuming method. Nevertheless, it is
the main research method in this work. One reason is that we need the com-
plete software stack and hardware components in a HPC system to study various
events, such as faults, traffic pattern changes, or virtual machine migration. A
complete system can help us to understand the complete flow of the interaction
between components in a HPC system. E.g, how an exception is being handled
by the application after the generation of a hardware interrupt. However, the de-
sign and implemention of simulation environment modelling of a complete HPC
system, consisting of the software stack, the hardware components and different
applications in a HPC system, from scratch is very time-consuming.

Another reason for not choosing simluation is that the timing of the interac-
tions among hardware and software components, such as how fast an interrupt
is serviced by a service routine, cannot be simulated or controlled accurately. As
a result, prototyping is preferred over simulation in this work. Another reason
is related to the objective of this work. Herein, we need to evaluate the agility
of the dynamic reconfiguration methodologies. For example, multiple faults were
generated back-to-back to evaluate whether the running applications survive af-
ter the reconfiguration. Thus, prototyping, using a real cluster, is more practical
to generate realistic scenarios as well as to determine whether a prototype is
adequate.

The discrete–event simulation model is a well-known method in evaluating
network performance of routing algorithms or in the field of network traffic simu-
lation. A dynamic event, influenced by multiple factors, may not be suitable due
to too many variables that cannot be predicted precisely using a discrete–event
based simulation model. Nevertheless, a discrete–event based simulation model
can be combined with mathematical modeling [64] to assess the scalability of a
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concept that has been evaluated experimentally using a small–scale cluster. Thus,
we have created large-scale HPC systems using the OMNet++ simulator [54, 112]
in order to do proof of concept scalability tests. These tests are according to a
set of initial parameters assumed for the real world system configuration, such as
the number of generated events.

1.3 Thesis Outline

This thesis is organized into two parts: The summary and the research papers.
The summary part of the thesis consists of this chapter and the following chap-
ters: Chapter 2 discusses the background information of this thesis. Section 3
describes the contributions of each research paper included in this thesis. Then,
the second part is a collection of published research papers that contains our
detailed algorithms, designs, implementations and evaluation results.





Chapter 2

Background

In this section, the necessary background knowledge to understand the rest of
the thesis is presented.

2.1 Interconnection Networks

Interconnection networks are used for a variety of purposes, from on-chip connec-
tion between components within computer systems (from I/O devices to proces-
sors and memories), to off-chip connection between thousands of computational
nodes in a multiprocessor system. In this thesis, we only focus on the intercon-
nection networks that connect external computer systems together in the multi-
processor systems such as data centres or supercomputers. The performance of
this type of interconnection networks are highly dependent on the network con-
figuration such as topology, switching technique or routing algorithm [32]. The
following subsections briefly describe each of these properties.

2.1.1 Topologies

A network topology represents the arrangement of the channels and the nodes
in an interconnection network. The selection of a suitable network topology
is important because it is the first step in designing a network. The routing
algorithms and the switching techniques are usually built according to the selected
network topology. Based on a network topology, the interconnection network can
be classified as a shared-medium network, direct network, indirect network, or
hybrid network, which is a combination of any of the classes [32, 36].

A shared-medium network has the least complex topology structure among
the classes. It can be constructed with fairly low cost and supports broadcast

7
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communication by nature. However, the transmission medium is shared among
all the communicating devices where only one device is allowed to use the trans-
mission medium at a time. Two examples of shared-medium networks are the
bus topology and the ring topology.

In a direct network the network topology consists of a set of nodes that are
being connected directly to the neighbouring node via a point-to-point link. A
node can also communicate with a non-neighbouring node by going through one
or more intermediate nodes. Each node consists of a host (or several hosts) and a
switch (or a forwarding unit), which handles the communication messages among
nodes. On the other hand, in an indirect network the communication between two
nodes, where each node is only a host, has to go through a switch. A switch then
can connect via a point-to-point link to another switch, host, or a combination of
host and switch. Although a direct network can easily be converted to an indirect
network by separating the host and the switch in each node and connect these
two components using a point-to-point link, there is a clear distinction between
these two classes of networks [36]. In a direct network, each node consists of both
a switch and a host. Thus, each switch is connected to at least one host. On the
other hand, each node in an indirect network can be a host or a switch. So, each
switch in an indirect network may be connected to zero, one, or more hosts.

In this thesis, we use both direct and indirect networks. Examples of direct
networks include mesh, torus, and high-radix topologies such as flattened but-
terfly [76] and dragonfly [77]. Torus and mesh topologies, used in research paper
I and II [58, 61], are referred as k -ary-n-cubes and k -ary-n-meshes, respectively,
where k represents the number of nodes in each dimension and n represents the
number of dimensions in a network topology. k -ary-n-cubes is a k -ary-n-meshes
with a wrap-around links. Fig. 2.1(a) shows 3-ary-2-mesh, which is a two di-
mensional mesh with three nodes in each dimension. k -ary-n-cube topologies
are also a popular topology in the top500 list installations such as the 3D torus
topology in Oak Ridge National Laboratory’s Titan [80], the 5D torus topology
in Lawrence Livermore National Laboratory’s Sequoia [68], and the 6D torus
topology in Riken’s K computer [9].

In indirect networks, there are a wide range of topologies that have been pro-
posed, ranging from regular topologies to irregular topologies [6, 12, 47, 81, 87].
A regular topology has regular connection patterns between switches, whereas an
irregular topology does not. A regular topology, nevertheless, can turn into an
irregular topology when a component fails. Today, the dominating class of topol-
ogy in indirect network is the multistage interconnection network (MIN) [79].
One of the commonly used MINs is the fat-tree [82] as shown in Fig. 2.1(b). The
Fat-tree, which is the topology used in research paper III and IV [57, 60], is a
layered network topology following the m-port n-tree [66] definition or the k -ary
n-tree [93] definition. Given an m-port n-tree, it has the following characteris-
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(a) (b)

Figure 2.1: Fig. (a) is a 3 -ary 2 -mesh topology. In this topology, S{1..9} represent
switches and H{1..9} represent compute nodes. Fig. (b) is a 2 -stage 648 -port fat-tree
topology with 18 root switches, 36 leave switches and 648 compute nodes.

tic: The tree consists of 2 ∗ (m/2)n processing nodes and (2n − 1) ∗ (m/2)n−1

communication switches. Furthermore, each communication switch has m com-
munication ports. On the other hand, given a k -ary n-tree, k represents half
the number of ports of each switch and n represents the number of levels of the
tree. Thus, a k -ary n-tree has n levels made out of kn−1 switches, each having
arity of k. The compute nodes are usually connected to the leaf switches. A
leaf switch is the switch located at the bottom layer of a fat-tree. Transmission
bandwidth between switches is increased by adding more links in parallel as the
switches are closer to the root switch. The Fat-tree became the topology of choice
due to its inherent deadlock freedom, fault tolerance, and full bisection bandwith
propoperties. It is used in many installations in the Top500 list, including the
NUDT’s TianHe-1A [116], TACC’s Stampede [19] and Leibniz Rechenzentrum’s
SuperMUC [20].

As we have discussed, both direct and indrect network topologies are imple-
mented in the current supercomputers. To be specific, fat-tree topologies and
k-ary-n-cube topologies are the two most popular ones.

2.1.2 Switching

Switching techniques determine how messages are forwarded through the net-
work, herein determining how and when buffers and switch ports are allocated
and released; thereby, determining the timing when packets or packet/message
fragments can be forwarded [36]. A switching technique is also tightly coupled
with flow control and buffer management. Today, there are various types of
switching techniques. Each of these techniques has its own advantages and dis-
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advantages, and the following paragraphs briefly discuss four of these switching
techniques.

In circuit switching, a physical path from the source to the destination must
be reserved before the transmission. The established communication channel
guarantees full bandwidth and remains connected until the session ends. Nev-
ertheless, the major drawback of circuit switching is that all resources must be
reserved before the communication starts. For the whole length of the communi-
cation session between the two communicating nodes, the communication channel
is dedicated and exclusive, and released only when the session terminates. Oth-
erwise, the communication cannot be established if the communication channel is
busy. Another problem with circuit switching is the delay during the connection
setup phase. If only short messages are required to be transmitted, the channel
setup time may take longer than the data transmission time.

Alternatively, another switching technique named packet switching has been
widely used. In packet switching, the message is partitioned into packets. The
first few bytes in a packet contain the routing information. This routing informa-
tion is used by nodes to transmit each packet from the source to the destination.
Store And Forward (SAF) switching is one of the fundamental mechanisms in
packet switching. Before a packet is forwarded to the next node, the packet
is buffered at the intermediate node. Although SAF is easy to implement, the
main drawback is that each node requires the buffer size of at least the size of
a packet. If the packet size increases, the buffer size at each node must also be
increased. Another drawback of this method is that each packet must be com-
pletely buffered at a node before it can be forwarded to the next hop. Thus, the
latency of a packet is proportional to the number of hops between the source and
the destination nodes.

In order to reduce the packet latency of SAF switching, virtual cut-through
(VCT) switching was introduced [75]. Owing to the fact that the first few bytes of
a packet (packet header) usually contains the routing information, the router can
forward the packet once the header is received. Thus, VCT requires each packet
to be split into smaller units named flits. The packet header that contains the
routing information should fit into the first flit and the rest of the packet is further
split into several data flits. If there is no contention of buffer resources, the router
can start forwarding the header flit and the remaining data flits once the routing
information has been made. The flit is not buffered at the output buffer, but
forwarded to the input buffer of the next node. However, if contention happens
and the packet header is blocked because of a busy output channel, VCT behaves
similarly to SAF where the entire packet is buffered at the node. Therefore, even
though the flit may cut through the output buffer of a node, each node must have
the buffer size of a complete packet.

Another alternative switching technique is the wormhole switching [31, 30].
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One similarity between the wormhole switching and VCT is that each packet is
broken into flits. The difference, however, is that the buffer requirement of each
node in the wormhole switching are reduced compared to the buffer requirement
in the VCT switching. In wormhole switching, similar to VCT, the entire packet
is not buffered at a channel if the required output channel is not busy. In a
blocking scenario, on the other hand, the wormhole switching reacts differently
from VCT and SAF. Instead of buffering a complete packet as in VCT and SAF,
the flits of a packet in wormhole switching are occupying several buffers across
several nodes in the network, like a worm. Although this property removes the
dependency between packet size and buffer size, it complicates the design of
deadlock freedom in routing because the blocking resources are distributed across
several nodes.

Regardless of having the message divided into the unit of flit or the unit of
a packet, messages are queued at the input or output buffer of each physical
channel. Therefore, once a buffer is occupied, the physical channel is blocked.
In order to overcome this limitation, virtual channels were introduced. Virtual
channels is a concept that splits a physical channel into several logical or virtual
channels, where each channel has its own buffer and private flow control [31, 29].
To implement this, each physical channel is associated with several small buffers
that each corresponds to a virtual channel, rather than a single deep buffer. As
shown in Fig. 2.2, the physical link is partitioned into several virtual channels,
from V C0 to V Cx, with each virtual channel having its own buffer. Virtual
channels is particularly beneficial with wormhole switching. For instance, in the
absence of virtual channels, the flits of a blocked packet will occupy the buffer
of several physical channels. On the other hand, virtual channels allow packets
to pass a blocked packet by using a separate virtual channel, making use of idle
channel bandwidth. Today, many interconnection network technologies support
virtual channels. For instance, the InfiniBand architecture supports up to 16
virtual channels. Although virtual channels was originally introduced to solve
deadlock and also for quality of Service (QoS) in wormhole switching, it has been
widely used to improve message latency and network throughput. For instance,
virtual channels can be used to avoid the negative phenomenon of Head-of-line
blocking (HOL). This issue will be further discussed in the research paper III [57]
and IV [60].

2.1.3 Routing

The routing algorithm is a function determining the path that any packet should
take when traversing the network. It is tightly coupled with the underlying
network topology and the applied switching technique. In the process of assigning
the path for each source and destination pair, it must also ensure that the network
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Figure 2.2: The virtual channel.

is always deadlock free. Apart from deadlock freedom, a good routing algorithm
should also load balance the traffic across the network paths. The more balanced
the channel load is, the higher the throughput of a network will be. A routing
algorithm can be designed for regular topologies or for irregular topologies. The
routing for regular topologies are heavily depending on the exact structure of the
network topology, and cannot be easily transferred to other regular topologies.
The routing for irregular topologies can support all network topologies. However,
routing restrictions must be imposed to support different structures in various
network topologies.

In general, a routing algorithm can be divided into three main categories: de-
terministic, oblivious and adaptive [32, 36]. The routing function of a determin-
sitic routing can be defined as outputport = R(current, next, inputport), where
current is the current node, next is the next hop (next destination in the fabric),
inputport is the port that has received packet at current node, and outputport is
the port of the next hop. In deterministic routing, all the packets from a given
source (inputport) to a given destination (outputport) always follow the same path.
In non-deterministic routing, on the other hand, a given source to a destination
does not always follow the same path. An oblivious routing algorithm routes
packets without considering the network state. The function of oblivious routing
algorithms can be described as outputsport = R(current, next, inputport), where
outputsport is an array of possible output ports. The selection of the output ports
is determined by the algorithm in the oblivious routing function that is a choice
between locality or load balancing. For example, Valiant’s randomized routing,
an oblivious routing algorithm, balances the load of any traffic pattern. A packet
is first sent to a random node before the packet is directed to its destination.
However, this load balancing comes at an expense of destroying the locality in
the traffic pattern. Even the nearest neighbour traffic gives no better performance
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than the worst-case traffic.
In adaptive routing the network state, such as the status of a link, the input

and output queues for network resources, are used to select the path to deliver
a packet. Because of this, an adaptive routing algorithm is intimately coupled
with the flow-control mechanism. Designing an adaptive routing algorithm is
complex because the routing decision must balance the local load and make sure
it does not result in global imbalance. The routing function of an adaptive
routing is represented by outputsport = R(current, next, inputport, states), where
states consists of states of the inputport or outputsport. As various states can
be taken into consideration, great flexibilities is allowed in constructing paths
through the network. The adaptivity in the routing, nevertheless, is specific to
the interconnect technology. For instance, some technologies may take congestion
control into account, others may not. In theory, adaptive routing should be better
than an oblivious routing algorithm. However, it is not guarantee in practice
because only local information is used.

In this thesis, we only focus on the deterministic routing because InfiniBand,
the interconnection network that we use, currently only supports this type of
routing. The support of adaptive routing in InfiniBand is still in development
when this thesis was carried out. In the following paragraphs, we first discuss the
importance of deadlock freedom in a routing algorithm. Then, we discuss two
deterministic routing algorithms, LASH routing [84, 108] and fat-tree routing [51,
117], that we have used in this thesis.

Deadlock

Deadlock will occur in a network when a group of messages (packets), are unable
to make progress because they are mutually waiting for one another to release
resources, usually buffers or channels [36]. Figure 2.3 illustrates an example of a
deadlock scenario where the network is halted because each FIFO buffer is wait-
ing for an empty slot from other buffers in a circular manner. One simple way to
deal with deadlock is to start dropping packets. However, most interconnection
networks, that are capable of performing high bandwidth and low latency com-
munication, are lossless. Dropping packets is not an option in a lossless network.

A deadlock scenario can be identified by studying the channel dependency
graph (CDG) of the network. A CDG is a graph where the channels in the net-
work are vertices. When a packet holds a channel and requests another channel,
there is a directed edge (dependency) between them. A deadlock may exist in a
network if there is a cycle in the CDG. On the other hand, the network is deadlock
free if there are no cycles in the CDG. It is fundamental to handle the deadlock
problem when designing a routing algorithm in the interconnection network.

There are three strategies for deadlock handing: deadlock prevention, dead-
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Figure 2.3: A deadlock scenario in a FIFO buffer.

lock recovery and deadlock avoidance [36]. To prevent blocked resources that
paralyze the network operations, one of these strategies must be chosen. In
deadlock prevention, resources (channels and buffers) are granted to the packet
by reserving all the required resources throughout the network before starting
the packet transmission. In deadlock recovery, resources are granted to a packet
without any check, therefore, deadlock is possible and some detection and recov-
ery method must be provided. In deadlock avoidance, resources are requested
as the packet advances through the network, but resources are only granted to
a packet if the resulting global state is safe. This can be achieved by imposing
routing restrictions to certain paths for packet forwarding to avoid cyclic depen-
dencies, E.g by using dimension ordered routing in k-ary-n-meshes [115]. Another
approach is to distribute the source and destination pairs over different virtual
channels to break cycles, E.g by using LASH routing [43].

LASH routing

LAyered SHortest path (LASH) routing is a deterministic and topology agnos-
tic routing engine that can guarantee shortest path and deadlock–freedom even
in irregular topologies [84, 108]. The concept of this routing is to attain the
deadlock–freedom by segregating the traffic into different virtual layers using vir-
tual channels. The LASH routing engine consists of two core functions. The first
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function defines the minimal path for each <source, destination> pair. The sec-
ond function, on the other hand, is responsible to assign a virtual layer (VL) to
the <source, destination> pair generated by the first function to ensure deadlock
freedom in the network. In addition, the routing algorithm makes sure that each
virtual layer is deadlock free by ensuring that the channel dependencies stemming
from the <source,destination> pairs of a layer do not generate cycles.

One of the main challenges with the LASH routing algorithm, is that a large
number of VLs are needed to ensure deadlock-free in a large network [108]. If
the network contains less VLs than needed by the LASH routing algorithm, the
remaining <source, destination> pairs can still be routed deadlock free, but not
shortest-path [107]. Another drawback of the LASH routing algorithm is that a
single failure may result in many <source, destination> pair changes in the VL
assignment in a large network.

Fat-tree routing

The fat-tree was first introduced by C. Leiserson in 1985 [82] and has since
become a common topology in HPC. The fat-tree routing algorithm, as presented
by Zahavi et al. [117], consists of two distinct stages: the upward stage in which
the packet is forwarded from the source, and the downward phase when the
packet is forwarded toward the destination. The transition between those two
stages occurs at the least common ancestor, which is a switch that can reach
both the source and the destination through its downward ports. The algorithm
not only ensures deadlock-freedom but every path toward the same destination
converges at the same root node, which causes all packets toward that destination
to follow a single dedicated path in the downward direction [51, 117]. By having
dedicated downward paths for every destination, contention in the downward
stage is effectively removed (moved to the upward stage). Packets for different
destinations have to contend for output ports, is only half of the switches on their
paths. In oversubscribed fat-trees, the downward path is not dedicated and is
shared by several destinations.

2.1.4 Congestion Control

Network congestion occurs when a number of links (or link) are carrying more
packets to a (switch or node) port than it can accommodate. There are usually a
limited number of flows that are the cause of this congestion, while the remaining
flows are the victim flows that suffer because of it. The congestion behavior of
a lossy network is also different than the behavior in a lossless network. In a
lossy network like TCP/IP, congestion causes packet drops, and the congestion
remains isolated in a small region. However, many high-speed interconnection
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networks are designed to be lossless and the congestion could spread to the whole
network [53].

In a lossless interconnection network, the credit-based flow control mecha-
nism [29] is used to prevent a switch from transmitting a packet when the down-
stream switch lacks sufficient buffering to receive it. This property prevents
packet dropping at switches and avoids the well-known congestion collapse sce-
nario of traditional networks [72], but it may cause an undesired effect known
as congestion spreading or tree saturation [33]. Since 1985, it has been know
that hot-spot traffic patterns can cause congestion spreading especially in multi-
stage interconnection networks [94]. Common sources of hot-spot traffic patterns
are virtualization, migration of virtual machine images, checkpoint and restore
mechanisms for fault tolerance, storage and I/O traffic. With virtualization, al-
gorithmic predictability of network traffic patterns is reduced because multiple
virtualized clients reside on the same physical hardware. The network traffic
becomes an overlay of multiple traffic patterns that might lead to unpredicat-
ble hot-spots in the network. When a hot-spot exists in a network, the flows
designated for the hot-spot might reduce the performance for other flows, called
victim flows, not designated to the hot-spot. This is due to the head-of-line
(HOL) blocking phenomena created by the congested hot-spot [95].

To overcome the congestion problem mentioned above, there are two differ-
ent schemes: congestion avoidance and congestion control [72]. A congestion
avoidance mechanism prevents a network from entering the congested state, e.g
the network traffic load is being monitored periodically to avoid congestion at
common network bottlenecks. On the other hand, congestion control is a recov-
ery mechanism where it helps the network to recover from the congested state.
We focus on the congestion control mechanism in this thesis and the following
paragraph explains several existing works in congestion control.

In lossy networks, such as LANs and WANs, congestion has been a widely
studied problem. Therefore, there are multiple established solutions available to-
day to resolve congestion in such networks. The end-to-end TCP congestion con-
trol is based on an implicit detection mechanism. The window control mechanism
is used to detect dropped packets or changes in latency [16, 72, 91]. As dropping
packets is required in the end-to-end TCP congestion control, this scheme cannot
be applied to the lossless networks. An alternative approach to implicit detec-
tion of congestion is the Explicit Congestion Notification (ECN) [45, 100] that
has been deployed in ATM networks [50] and TCP [44, 99]. A similar explicit
congestion notification scheme, is being used in the high-speed lossless networks
such as InfiniBand [53, 55, 56, 71] and Data Center Bridging [69, 102]. The ECN
will throttle the data transfer rate of source nodes according to the rate allocation
algorithm.
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2.2 Fault Tolerance

Fault tolerance is defined as the ability of a system to continue operating, even
with degradation of the network capacity, in the event of one or more failures in
the system component [97]. Although the current-generation hardware compo-
nent is robust enough to handle faults and does not fail very often by itself, it
is imperative that failure can still be anticipated especially in a huge installation
that consists of thousands of components connected via an interconnection net-
work and running with multiple applications, e.g. supercomputers or data centres.
Capello et. al claimed that if the number of cores in the top500 supercomputers
continue to double every 18 months and with a constant failure per socket, the
statistic shows that the mean time between failure (MTBF) will reach 1 hour
between 2013 to 2016 [18]. The MTBF of the Exascale system is predicted to be
worse. As a result, fault tolerance is vital in interconnection networks because it
determines the reliability, availability and dependability of a system as a whole.

Fault tolerance in interconnection networks can be divided into two categories,
static or dynamic fault tolerance [36]. Static fault tolerance is for faults that
are known when the system is started and do not have the constraint of hard
real-time requirement. When a fault happens, static fault tolerance requires the
network to be shutdown. Then, the network is reconfigured, either by generating
new routing tables or replacing the failed hardware. The fail-over mechanism
is handled by the upper-layer applications or operating system by checkpointing
regularly. After the reconfiguration, the applications may be restarted from the
rollback of the last checkpoint. Although this method can handle multiple faults
regardless of the underlying topologies and routing algorithms, its main drawback
is that it is not application–transparent.

Dynamic fault tolerance, on the opposite, is an application–transparent ap-
proach. Once a fault is detected, actions are taken in order to properly handle the
faulty component without shutting down the system. For instance, a source node
that detects a faulty component along a path can use an alternative path, that
does not use the faulty component, to reach a destination. Therefore, the system
keeps working, the network is not emptied, and checkpointing is not required as
part of the fault tolerance mechanism.

2.2.1 Static fault tolerance

Static fault tolerance can be achieved by replacing the faulty component in the
interconnection networks or by designing appropriate fault tolerant routing algo-
rithms [52, 84, 106, 107]. Both approaches can only be implemented while there
is no traffic in the network. Thus, the checkpoint/restart technique, as Elnozahy
et al. presented in [38], is required. Although checkpoint/restart can be used for
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other reasons, such as recovery for applications crashing, in this thesis we only
focus on such usage due to the changes in the interconnect’s configuration, such
as interconnect unavailability due to switch failure, load balancing on an existing
machine, or process migration between machines. There are many approaches
to integrate the checkpoint/restart feature into applications, operating systems,
or message passing interface (MPI) libraries. Since MPI, a de-facto standard for
message passing in HPC systems, controls the interactions between processes,
checkpoint/restart techniques can take advantage of the MPI implementation’s
knowledge of the distributed system’s state to ensure correctness in the check-
point algorithm. Moreover, implementing checkpoint/restart at the MPI libraries
is a better solution than implementing checkpoint/restart at the application level,
because they do not require the application developers to alter their algorithms.
As a result, both openMPI [46] and MVAPICH2 [89] have implemented check-
point/restart fault tolerance. MVAPICH2 demonstrated transparent MPI check-
point/restart functionality over InfiniBand interconnects in [48]. On the other
hand, OpenMPI has an interconnect–agnostic approach that support transparent
checkpoint/restart with different interconnects [67].

Today, the HPC systems have relied primarily on checkpoint/restart tech-
niques. However, future HPC systems, such as exascale systems, are expected to
present a much more challenging fault tolerance environment [78]. Additionally,
recent studies conclude that for these systems, high failure rates coupled with high
checkpoint/restart overheads will render current rollback-recovery approaches in-
feasible. For example, several independent studies have concluded that potential
Exascale systems could spend more than 50% of their time reading and writing
checkpoints [37, 90, 103].

2.2.2 Dynamic fault tolerance

Dynamic fault tolerance does not require that faults are known a priori. On
the opposite, dynamic fault tolerance mechanisms can tolerate faults occurring
at arbitrary times without having to shut down the entire network during the
reconfiguration of the network. There has been a substantial amount of work
in dynamic fault tolerance that focus on application–transparent fault–tolerance.
Application–transparent fault–tolerance depends on a routing algorithm that can
reroute the network by avoiding the faulty component in the presence of faults.
One of the challenge is to define a generic routing algorithm that can guarantee
deadlock-freedom for all network topologies. As a result, almost every intercon-
nect topology has a corresponding fault tolerant routing algorithm. In a fat tree,
fault tolerance can be achieved by choosing a different root via a different upward
path in the network [105]. The k -ary-n-mesh and the k -ary-n-cube topologies
are more difficult to handle in terms of fault tolerance. Ho and Stockmeyer
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introduced a fault tolerant routing function that sacrifies a certain number of
healthy nodes to perform routing rather than processing. This algorithm needs
no more than two virtual channels and it reduces routing time [63]. Boppana
and Chalasani defined a protocol for deadlock–free rerouting around faulty re-
gions in meshes [15, 21], and Montanana et al. for torus networks [88]. There
is also several works that limit the number of faults. Lysne et al show that a
single link fault can be tolerated when using XY routing in a mesh, simply by
creating a path around a link fault where the first turn is towards the centre of
the mesh [85]. Sem-Jacobsen et al. proposed a solution that is independent of
topology and routing functions, but only can tolerate a single fault [104]. The
main weakness of these approaches for application transparent fault-tolerance is
that they are highly inflexible. They either work for a limited set of topologies,
or for a limited set of fault situations. This led to some efforts on dynamic re-
configuration in routing. The term dynamic reconfiguration mentioned here only
focus on the routing algorithm. On the opposite, the title of this thesis, as ex-
plained in Section 1, refers to the configuration of the interconnection networks.
Dynamic reconfiguration in routing is usually achieved in two ways. Either the
entire network is divided into several virtual networks using virtual channels, al-
lowing one virtual network to be reconfigured while the other virtual networks
are in operation, or only parts of the network are reconfigured, allowing the rest
of the network to remain in operation. Pinkston el al. proposed a double scheme
approach which can support numerous routing algorithms [96]. The idea is to
move from one routing function to another while the system is up and running.
Although it also supports different topologies and any number of faults, the dif-
ficulty of this solution is to ensure deadlock–freedom in the handoff phase from
one to another [35].

2.3 Virtualization

The concept of virtualization was pioneered by IBM in the late 1960s to al-
low IBM mainframes to run multiple applications and processes simultaneously.
The IBM’s hypervisor (CP-67) enabled memory sharing across virtual machines,
providing each user with a private memory space [98]. While its impact was sub-
stantial for mainframe users, it took years before a direct descendant of IBM’s
work came back to life in 1999 when VMware revived the concept and applied it
to the x86 platforms.

In general, virtualization refers to the creation of virtual resources (such as
hardware devices, storage devices, or network resources) that can be shared
among two or more operating systems (OS) and applications that run concur-
rently [17, 23]. One of the key components in virtualization is the Virtual Machine
Monitor (VMM), also known as the hypervisor. The VMM is a software abstrac-
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tion layer that is responsible for managing the execution of guest OS instances
sharing the virtualized hardware resources [109]. A VMM can be categorized
into type I or type II [49]: A type I VMM runs directly on the host hardware,
has exclusive control over the hardware resources, and is the first software to
run after the boot loader. The VMs run in a less privileged mode on top of the
VMM. Well known type I VMMs include the original CP/CMS hypervisor [28],
VMWare ESXi [22], Microsoft Hyper-V [113] and Xen [13]. A type II VMM runs
as a privileged process on top of a conventional operating system and the VMs
run on top of this privileged process. The type II VMM controls and schedules
the access to hardware resources for the VMs. Well known type II VMMs include
the VMware GSX server [114], KVM [62], and VirtualBox [3].

Virtualization has been widely deployed in today’s computer systems, ranging
from embedded systems to HPC, because of its ability to maximize the hardware
utilization. Although virtualization has become a viable technology, it still poses
a lot of challenges [40]. One challenge is the bottleneck in I/O virtualization due
to the performance cost of a software I/O virtualization layer in the VMM [7]. It is
challenging to efficiently virtualize I/O devices because each interaction between
a guest OS and an I/O device needs to undergo costly interception by the VMM
for security isolation and for data multiplexing and demultiplexing. This problem
is particularly acute when virtualizing high-speed networking devices because of
its high rate of packet transmission. As each transmission must be trapped by the
VMM, the overhead of the high frequency of trapping will impact the performance
in the high-speed network. Thus, a lot of research have been carried out in I/O
virtualization to find out the balancing point between efficiency, transparency
and scalability [13, 24, 25].

I/O Virtualization (IOV) was intially introduced to provide availability of I/O
by allowing VMs to access the underlying physical resources. With the increased
number of VMs per host that indirectly increases the number of I/O requests, the
goal of IOV is not only to provide availability, but to improve efficiency, scalability
and transparency of the I/O resources to match the level of performance seen in
modern CPU virtualization. Today, there are four well-known IOV techniques: i)
Emulation, ii) Paravirtualization, iii) PCI pass-through and, iv) Single Root-IOV
(SR-IOV). The benefits and drawbacks of these IOV techniques are summarized
in Table 2.1.

The emulation technique emulates the I/O devices in the VMM and exposes
an emulated device to the guest OSes [7]. This solution has very high trans-
parency because no modification in the OS is required and it works with different
OSes. Moreover, the guest OS can be migrated to another platform easily. The
emulation technique has medium scalability. Even though an emulated device can
be accessed by multiple VMs concurrently, when the number of guests increase
the load on the emulated device and the I/O domain increases proportionally,
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which limits scalability significantly. One major concern with emulation is the
poor efficiency. This is because each I/O operation needs to be intercepted by
the VMM, which degrades the performance of the emulated device.

To overcome the performance bottleneck caused by emulation, paravirtualiza-
tion was therefore introduced [13]. Unlike emulation, paravirtualization requires
modification in the guest OS. Although modifying the guest OS improves the
efficiency of the virtualized I/O, the transparency is sacrificed. The transparency
decreases because each guest OS must be modified to support a paravirtualized
I/O device, which means that a particular OS or distribution may not be readily
available for the solution. In terms of scalability, the paravirtualization technique
is scalable, similar to emulation, where a paravirtualized I/O device can be ac-
cessed by multiple VMs simultaneously. Nevertheless, the I/O performance of a
paravirtualized device is still worse than the native I/O device.

To further improve the efficiency of IOV, PCI pass-through, also known as
direct-assignment, was introduced [7, 83]. PCI pass-through provides exclusive
access to an I/O device for a given guest OS, which yields near to native per-
formance. However, PCI pass-through can only achieve its full potential with
hardware that is equipped with instructions as well as logic for PCI pass-through,
such as interrupt remapping and direct memory access remapping. Both Intel
and AMD has already provided support for PCI pass-through in their processor
architectures [7, 10]. Despite of the high efficiency provided by PCI pass-through,
it does not scale as it can only allocate as many pass-through devices that are
physically present in the platform. Moreover, PCI pass-through sacrifies trans-
parency because the guest OS with a pass-through device cannot support VM
migration in a transparent manner. This is due to the fact that the VMM has
no knowledge of the device state as the device is directly assigned to the guest
OS [74, 118].

In order to address the lack of scalability in PCI pass-through, the SR-IOV
specification was created by the PCI-SIG [92]. With SR-IOV, a PCIe device can
export not only just a number of physical functions, but a set of virtual functions
that share resources on the I/O device. So far, SR-IOV is a scalable technique
that can achieve high efficiency with near to native performance in IOV. The
only drawback with SR-IOV, similar to PCI pass-through, is the transparency of
the I/O virtualization [65]. Although there are many proposals to overcome each
of the transparency challenges in the SR-IOV devices, most of these approaches
focus on Ethernet only [34, 74, 118] and they cannot be applied to high-speed,
lossless interconnection networks such as InfiniBand, Myrinet [14] and RDMA
Ethernet [110]. As a result, we focus on the challenges in live migrating an SR-
IOV high-speed networking devices, in research paper V and VI [59], to achieve
high efficiency, transparency and scalability in the I/O virtualization of high-
speed interconnection networks.
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Technique a) Efficiency b) Transparency c) Scalability
Emulation Low Very high Medium
Paravirtualization Medium Medium High
PCI pass-through High Low Low
Single Root-IOV High Low High

Table 2.1: The comparison between different IOV techniques.

2.4 The InfiniBand Architecture

Among all the available interconnects, InfiniBand (IB) is one of the most popu-
lar interconnects in the TOP500 supercomputer list due to its properties of low
latency and high throughput [5]. The IB Architecture [71] was first standardized
in October 2000, as a merge of the two technologies, Future I/O and Next Gen-
eration I/O. As with most other recent interconnection networks, IB is a serial
point-to-point full-duplex technology. IB networks are referred to as subnets,
where a subnet consists of a set of hosts, with host channel adaptors (HCAs),
interconnected using switches and point-to-point links as illustrated in Fig. 2.4.
The link speed of IB was, initially, specified as 2.5 Gbps with the possibility of
bundling links in 4x or 12x configurations. Today, the supported link speed of
Fourteen data rate (FDR), is specified at 13.64 Gbps. The effective transfer speed
of FDR is 54.54 Gbps and 163.64 Gbps in 4x and 12x configurations, respectively.
Each link can be divided into 16 virtual lanes (VLs). VL0 must be configured as
data traffic and VL15 as the management traffic. Flow control is used to manage
data flows between two point-to-point links and it is handled on a per VL basis.
Each receiving end of a link supplies credits to the sending device on the link to
specify the amount of packets that can be received without loss of data. Data
is not transmitted unless the receiver advertises credits indicating that receive
buffer space is available.

The IB subnet routing can support inter- and intra-subnet routing. Within a
subnet, routing is handled at the link layer using a 16 bit Local identifier (LID),
limited to 48K unicast addresses, assigned by the subnet manager (as explained
in Section 2.4.1). The packets are sent to the device within a subnet by using
the destination LID that is encapsulated in a Local Route Header (LRH) of a
packet. The network layer routing handles the routing between subnets. Packets
that are sent between subnets contain a Global Route Header (GRH). The GRH
contains the 128 bit IPv6 addresses for the source and destination of the packet.
Packets are forwarded between subnets through a router, based on each device’s
64 bit globally unique ID (GUID). The router modifies the LRH with the proper
local address within each subnet. Therefore the last router in the path replaces
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Figure 2.4: The InfiniBand subnet (courtesy of the IB specification). TCA represents
the Target Channel Adapter, whereas HCA represents the Host Channel Adapter.
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Figure 2.5: The conceptual diagram of the IB communication using Queue Pairs.

the LID in the LRH with the LID of the destination port. Today, most of the
popular routing algorithms in IB are determinsitc. E.g. fat-tree, LASH, and
dimension-order-routing (DOR).

IB supports a rich set of transport services in order to provide both remote
direct memory access (RDMA) and traditional send/receive semantics. Indepen-
dent of the transport service used, all IB HCAs communicate using queue pairs
(QPs). A QP is created during the communication setup, and a set of initial at-
tributes such as QP number, HCA port, destination local identifier, queue sizes,
and transport service are supplied. As shown in Fig. 2.5, an HCA can handle
many QPs, where each QP consists of a pair of queues, a send queue (SQ) and
a receive queue (RQ), and there is one such pair present at each end-node par-
ticipating in the communication. The SQ holds work requests to be transferred
to the remote node, while the RQ holds the work request to handle the data
received from the remote node. In addition to the QPs, each HCA has one or
more completion queues (CQs) that are associated with a set of send and receive
queues. The CQ holds completion notifications for the work requests posted to
the send and receive queue. Even though the complexity of the communication
is hidden from the user, the QP state information is kept in the HCA.

IB also provides a congestion control (CC) mechanism [71]. The IB CC mech-
anism is based on an explicit congestion notification, where a switch detecting
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congestion marks packets contributing to the congestion by setting a specific bit
in the packet headers, the Forward Explicit Congestion Notification (FECN) bit.
The packet with the FECN bit set will reach the destination. Then, the destina-
tion registers the FECN bit, and returns a packet to the source with the Backward
Explicit Congestion Notification (BECN) bit set. The source then temporarily
reduces the injection rate to resolve congestion. The exact behaviour of the IB
CC mechanism depends upon the values of a set of CC parameters governed
by a Congestion Control Manager. These parameters determine characteristics
like when switches detect congestion, at what rate the switches will notify des-
tination nodes using the FECN bit, and how much and for how long a source
node contributing to congestion will reduce its injection rate. If these parameters
are set appropriately, the IB CC should enable the network to resolve conges-
tion, avoiding head-of-line blocking, while still utilizing the network resources
efficiently [53].

2.4.1 Subnet Management

An IB subnet requires at least one subnet manager (SM) which is responsible
for initialising and bringing up the subnet, including the configuration of all the
IB ports residing on switches, routers, and HCAs in the subnet. At the time of
initialisation, the SM starts in the discovering state where it does a sweep of the
network in order to discover all switches and hosts. During this phase, it will
also discover any other SMs present and negotiate who should be the master SM.
When this phase is complete, the master SM enters the master state. In this
state, it proceeds with LID assignment, switch configuration, topology discovery,
routing table calculations and deployment, and port configuration. When this is
done, the subnet is up and ready to use.

After the subnet has been configured, the SM is responsible for monitoring
the network for changes (E.g. a link goes down, a device is added, or a link
is removed). If a change is detected during the monitoring process, a message
(trap) is forwarded to the SM and it will reconfigure the network. A major part
of the reconfiguration process (also known as ”heavy sweep”) is the rerouting
of the network which must be performed in order to guarantee full connectivity,
deadlock freedom, and proper load balancing between all source and destination
pairs.

2.4.2 Subnet Administration

The Subnet Administrator (SA) is a subnet database built by the master SM to
store different information about a subnet. Communication with the SA is often
needed by the two end-nodes to establish a QP. This is accomplished by sending a
general service management datagram (MAD). Both sender and receiver require
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information such as source/destination LIDs, service level (SL), MTU, etc. to
establish a QP, and this information can be retrieved from a data structure known
as a path record that is provided by the SA. In order to obtain a path record, the
end-node can use the SubnAdmGet/SubnAdmGetTable operation to perform a
path record query to the SA. Then, the SA will return the requested path records
to the end-node. The term path record is an IB term that has the same meaning
as path information.
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Summary of Research
Papers

This section summarizes the contributions of six research papers in this thesis.
Five papers have been published in peer-reviewed conferences whereas the sixth
paper has been submitted to the IEEE Transactions on Parallel and Distributed
Systems journal. The objective of these research papers is to provide methods for
dynamic reconfiguration in interconnection networks. In particular, we answered
the three research questions mentioned in Section 1.1.

In paper I [61] and II [58] we answered research question one: how can we
provide an application-transparent fault tolerant mechanism that can dynamically
reconfigure the established connections after a fault happens in the interconnec-
tion network? We proposed host side dynamic reconfiguration, a fault tolerant
mechanism that can reconfigure the path information in the established connec-
tions after faults happen. Moreover, this method is application-transparent and
the running applications can continue uninterruptedly during the occurrence of
faults.

Paper III [57] and IV [60] are in the context of congestion control to answer
research question two: how can we provide a technology–independent conges-
tion control mechanism that can readjust the network configuration dynamically
during congestion to minimize the negative effect of head-of-line blocking in a
lossless interconnection network? We proposed vFtree and dFtree, two routing
algorithms that can optimize the network throughput by alleviating the negative
effect of HOL blocking during congestion. Both routing algorithms only require
virtual channels, a common component that is available in most of the intercon-
nect. Thus, these routing algorithms can easily be applied to different network
technologies.

27
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In paper V and VI [59] we study the interoperability of the interconnection
network in a virtualized environment to address research question three: how can
we provide an application–transparent mechanism that can dynamically reconfig-
ure the device resources and properties of the RDMA operations associated with
live migration of a VM? As the outcome of this study, we proposed enhancements
to the software and hardware architecture of an RDMA device. Our proposal al-
lows the resources and properties of an RDMA device, that is directly assigned
to a VM, to be reconfigured dynamically after live migration, while maintaining
high throughput and low latency attributes in the interconnection network.

All the proposed methodologies in this thesis were developed using IB, the
most popular interconnection network in the top 500 supercomputers list [5].
Nonetheless, the concepts are relevant for other technologies such as Myrinet [14],
Virtual Interface Architecture (VIA) [27] and RDMA Ethernet [110]. The fol-
lowing subsections describe the contributions for each paper in detail.

3.1 Paper I: Host Side Dynamic Reconfiguration
with InfiniBand

The characteristics of an interconnection network will change after component
failures, policy changes or job migration. When these events happen, the routing
algorithm is usually robust enough to generate a new routing table that avoids
the faulty component. After generating a new routing table, the network man-
ager, with the global view of the network, has the updated path information
for any source and destination pair. Nevertheless, the host that has started the
communication before the fault might not be aware of these new changes but con-
tinues with an old path information. This might cause an unexpected behaviour
in the network, such as a deadlock. Paper I proposed a dynamic reconfiguration
method to reconstruct the path information at the host. The main method of
the proposal is based on event forwarding in the network manager to notify the
affected nodes with the updated path information. Then, the host reconfigures
the established connections. Using this method, the fault tolerance mechanism
is transparent to the applications and the network traffic is not required to be
stopped.

The prototype of host side dynamic reconfiguration was designed, imple-
mented, and evaluated in a small-scale InfiniBand cluster. With this imple-
mentation, we demonstrated a fault tolerance mechanism in InfiniBand networks
by combining the host side dynamic reconfiguration with the LASH routing al-
gorithm. The LASH routing algorithm is a topology-agnostic routing function
that can ensure deadlock freedom and shortest path routing for every source and
destination pairs, even with irregular topologies. Nevertheless, one missing key
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feature is a method to update the established connection with updated path in-
formation after the network manager has generated a new routing structure [39].
Therefore, the host side dynamic reconfiguration, proposed in this paper, can
be used to reconfigure an established connection (queue pair) with the updated
path information. This solution is in principle able to let applications run unin-
terruptedly on the cluster, as long as the topology is physically connected.

Through measurements on our test-cluster, that is a 3x2 mesh direct network
routed by the LASH routing algorithm, this paper shows that the increased cost
of the proposed method in setup latency is negligible, and that there was only a
minor reduction in throughput during reconfiguration.

3.2 Paper II: A Scalable Method for Signalling
Dynamic Reconfiguration Events in OpenSM

As mentioned in paper I [61], rerouting around faulty components, on-the-fly
policy changes, and migration of jobs, all require reconfiguration of path infor-
mations in the Queue Pairs residing in the hosts of an IB cluster. In addition to a
proper implementation at the host, the subnet manager (SM) needs to implement
a scalable method for signaling reconfiguration events to the hosts. This is due
to the nature of handshaking in the IB event forwarding. Excessive use of event
forwarding might cause a bottleneck in the SM. Thus, this paper proposed and
evaluated three different implementations for signaling dynamic reconfiguration
events with OpenSM. The first approach, named 3-way wildcard handshake, is a
simple 3-way handshaking mechanism that only requires minimum modification
in the SM. One drawback of this approach, however, is that the SM is unable to
identify the changed paths, though it has the updated paths after the fault. This
disadvantage will create unnecessary management message overhead in the sub-
net. The second approach, named repath-only, fully utilize the event-forwarding
mechanisms in IB [71]. In this method, every forwarding event includes an up-
dated path information. This, however, requires a method that can differentiate
between the new and old paths. Therefore, we propose a new mechanism in
the SM called the Path Record Distinguisher (PRD). Although this solution is
straightforward and does not involve any handshaking, its scalability depends on
the total number of path changes. The last signalling method is named the 3-way
hybrid handshake. Due to the fact that the second approach is vulnerable to path
changes, we need a mechanism that forwards the updated path records in-bulk,
without creating any unncessary management message overhead, as in the first
approach. Hence, the third approach is a combination of the first and the sec-
ond signaling methods, where the 3-way handshaking is combined with a PRD
in the SM to minimize unnecessary overhead. This mechanism is particularly
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useful for a routing algorithm that will change multiple path records even with
a single fault, such as the LASH routing algorithm. If that is the case, instead
of sending out a dedicated re-path trap, the path records are sent in bulks via
3-way handshaking.

In our evaluation we demonstrate a scalable solution for signalling host side
reconfiguration events in an IB network based on an example where dynamic
network reconfiguration combined with a topology-agnostic routing function is
used to avoid malfunctioning components. By measurements on our test-cluster
and an analytical study we show that our best proposal reduces reconfiguration
latency by more than 90%, and in certain situations eliminates it completely.
Furthermore, the processing overhead in the SM is shown to be minimal. This
contribution combined with our previous work in [58] is a complete prototype for
host side dynamic reconfiguration in IB.

3.3 Paper III: vFtree - A Fat-tree Routing Algo-
rithm using Virtual Lanes to Alleviate Con-
gestion

One reason for performance degradation in lossless interconnection networks is
congestion. In fact, there are many solutions available today to avoid congestion
in interconnection networks, such as CC mechanisms. Nevertheless, CC usually
requires additional hardware support.

Thus, this paper focuses on a generic solution to optimize the network during
the occurrence of congestion. It has been a well-known fact that multiple virtual
lanes can improve performance in interconnection networks, but this knowledge
has had little impact on real clusters [31, 29]. Therefore, we propose to use
the combination of efficient routing and virtual lanes to alleviation congestion.
The algorithm to assign the virtual lanes is based on statistical probability that
distributes the traffic across a set of virtual lanes. This approach is generic and
can be applied to any technology, but in this paper we are using IB.

Today, a large number of HPC systems using IB are based on fat-tree topolo-
gies [5]. A fat-tree topology does not require virtual lanes to be routed deadlock-
free. If QoS is not enabled, all the remaining virtual lanes are left idle. As a
result, this paper suggested an enhancement to the fat-tree routing algorithm
that utilizes virtual lanes to improve performance when hot-spots are present.
Even though the bisection bandwidth in a fat-tree is constant, hot-spots are still
possible and they will degrade performance for flows not contributing to them,
due to head-of-line blocking. Such a situation may happen when multiple virtu-
alized clients reside on the same physical hardware, where the network becomes
an overlay of multiple traffic patterns. In this case, the network traffic patterns
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Figure 3.1: The basic feedback loop.

are unpredictable and might lead to hot spots in the network. Although conges-
tion can be alleviated through adaptive routing, this method is not yet readily
available in IB and it may not resolve congestion completely [94]. Consequently,
as a first step to remedy this problem, we have implemented an enhanced fat-tree
routing algorithm in OpenSM that distributes traffic across all available virtual
lanes without any manual effort.

We evaluated the performance of the algorithm on a small cluster and did a
large-scale evaluation through simulations. In a congested environment, results
show that we are able to achieve throughput increases up to 38% on a small
cluster and from 221% to 757% depending on the hot-spot scenario for a 648-
port simulated cluster.

3.4 Paper IV: dFtree - A Fat-tree Routing Algo-
rithm using Dynamic Allocation of Virtual
Lanes to Alleviate Congestion in InfiniBand
Networks

As mentioned in paper III [57], end-point hotspots can cause major slowdowns in
interconnection networks due to head-of-line blocking. Therefore, avoiding con-
gestion is important to ensure high network throughput. The vFtree algorithm
that was proposed in paper III [57] uses a combination of efficient routing and
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virtual lanes to alleviate congestion. A drawback with this approach, however,
is that it is based on a probability of static distribution of source-destination
pairs across a set of VLs. The static behaviour of the vFtree algorithm limits
the performance whenever there is a mismatch between the current hot-spot and
the precalculated distribution of source-destination pairs across VLs. An exam-
ple of such scenarios happen when a component failed in an irregular topology.
Therefore, we propose a dynamic approach that can identify and differentiate the
congested flows. This approach is especially important in situations of permanent
congestion, which causes a permanent slowdown. Permanent congestion occurs
when traffic has been moved away from a failed link, when multiple jobs run on
the same system, and compete for network resources, or when a system is not
balanced for the application that runs on it.

The proposed dynamic approach, motivated by the closed loop system in the
control theory [11], is using a feedback loop mechanism as shown in Fig. 3.1. The
concept of this dynamic approach consists of three states: Execution, Monitor
& Analysis, and Reconfiguration. After the network is initialized, it stays in
the execution state. Then, the network manager will periodically monitor and
analyze the network traffic. If congested flows are identified, the reconfiguration
will be performed to optimize the network. Based on this feedback loop, we
provide a mechanism for dynamic allocation of virtual lanes and live optimization
of the distribution of flows between the allocated virtual lanes. The network
traffic are divided into two lanes: the slow lane and the fast lane. If the flows are
destined for an end-point hot-spot, they are placed in the slow lane. On the other
hand, the normal flows are placed in the fast lane. Consequently, the flows in
the fast lane are unaffected by the head-of-line blocking created by the hot-spot
traffic.

We demonstrate the feasibility of this approach using a modified version of
OpenSM with fat-tree routing on a small IB cluster. Our experiments show an
increase in throughput ranging from 150% to 468% compared to the conventional
fat-tree algorithm.

3.5 Paper V: Early Experiences with Live Mi-
gration of SR-IOV enabled InfiniBand

Virtualization is the key to efficient resource utilization and elastic resource al-
location in a HPC systems and cloud computing. From the perspective of net-
work virtualization, especially for high-speed interconnection networks such as IB,
iWARP, VIA or RDMA Ethernet [110], there are two main challenges: First, per-
formance and scalability. Second, the transparency in virtualization. A network
interface should be able to assign to multiple virtual machines (VMs), while pre-
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serving the properties of low latency and high bandwidth in the interconnection
network. Each virtual network interface must provide uninterrupted networking
services to the VM, especially during live migration. Fortunately, the single root
IO virtualization (SR-IOV) specification addresses the performance and scala-
bility issues. With SR-IOV, a PCI Express device can present itself as multiple
virtual devices and each virtual device can be dedicated to a single VM. Each VM
has direct access to the virtual device without the overhead introduced by emula-
tion or paravirtualization. SR-IOV does not, however, address the transparency
issue. SR-IOV does not permit live migration. As a result, the SR-IOV virtual
device must be detached from the VM before migration and this interrupts the
networking service of a VM.

Thus, in this paper we propose a mechanism for transparent live migration
of VMs over high-speed and lossless SR-IOV devices. This mechanism is pro-
totyped and evaluated using Mellanox–based IB hardware and the Xen–based
Oracle Virtual Machine virtualization platform. In this mechanism, we han-
dle: the detachment of an active device, the reallocation of physical resources,
and the reestablishment of the remote connection. With these methods, the un-
derlying hardware managed resources of an SR-IOV IB device are reconfigured
dynamically when a VM is migrated. The on-going networking operations can
be continued, with minimal service downtime during live migration. Through
a detailed breakdown of the different contributors to service downtime, we pin-
point the fraction of the cost of migration that can be mitigated by architectural
changes in future hardware. Based on this insight, we propose a new design of
software and hardware architecture, and argue that, with these changes, the ser-
vice downtime of live migration with IB SR-IOV devices can be further reduced,
as demonstrated with emulated Ethernet devices [34].

3.6 Paper VI: A Scalable Signalling Mechanism
for VM Migration with SR-IOV over Infini-
Band

This paper is a continuation of the work in paper V. As mentioned earlier, sin-
gle root I/O virtualization (SR-IOV) is a promising I/O virtualization approach
for achieving high performance in the virtualization over IB networks. There
are, however, several challenges with Virtual Machine (VM) migration with SR-
IOV over IB [65]. One challenge is related to the hardware address assignment
for each virtual IB device. In IB devices with SR-IOV support, there are two
schemes for the hardware address assignment; static assignment and dynamic
assignment. The static assignment is mainly targeted for the legacy applications
running in VMs that have the requirement of preserving the hardware address
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of its networking interface after VM migration. Thus, static assignment always
preserves the hardware address of a virtual IB device that is attached to a VM.
A drawback, however, using static assignment, is that its communication will be
disconnected after VM migration. On the other hand, the communication can be
resumed after VM migration if dynamic assignment is deployed. Nevertheless,
the hardware address associated with a VM is not preserved after VM migration.
Consequently, a query to the network manager needs to be performed in order
to obtain the path information for the new hardware address. These operations
introduce additional latency in bringing up the IB virtual function (VF). If hot
migration is performed, this delay will increase the total service downtime. In
short, each address assignment scheme has its pros and cons.

This paper focuses on enabling VM migration with static assignment. First,
we point out the problem related to SR-IOV over IB that breaks the network
connections after VM migration, when the static assignment is deployed. The
main reason is the lack of notification from the subnet manager (SM). In order
to resolve this problem, a SM event, that includes the latest path record, must
be triggered after VM migration, to notify the migrated VM peers. Thus, we
extend the repath-only signaling mechanism, that was mentioned in paper II [58],
to maintain the network connectivity after VM migration. The performance
evaluation using an experimental test bed shows that the proposed signaling
mechanism does not increase the service downtime during hot migration. We
also optimize the signaling method, where the same event can only be forwarded
to a physical server once, regardless of the number of hosted VMs, to reduce the
management message overhead from O(n ∗m) to O(n).



Chapter 4

Future Work

Several opportunities for further work can be extended from our contributions
mentioned in section 3. The future works can be categorized into two areas:
dynamic rerouting and transparent live migration with high–speed interconnects.

In the area of dynamic rerouting, one idea is to merge dFtree [60] with the
IB CC mechanism. The IB CC can be used to identify hot-spots and the con-
gestion contributors. This combination can detect the hot-spot flows faster and
it is independent of the performance sweeping interval. Nevertheless, one key
challenge, is to ensure that the mechanism of redirecting the congested flows to
another virtual lane will not break the packet sequencing in a lossless network.

In the area of transparent live migration with high-speed interconnects, im-
proving the interoperability of I/O virtualization with a high–speed interconnect
remains as an open challenge. In a long run, we think that there are two areas
of further work: The hardware design perspective, and the routing perspective.
All high–speed interconnects are based on distinct hardware architectures, that
provides offloading features to increase throughput and to reduce latency. In
the virtualization environment, SR-IOV was introduced by PCI-SIG to achieve
high performance in IO devices. Each VF is an isolated entity, that has its own
memory and PCI configuration registers. However, from the high-speed intercon-
nect perspective, each VF is still sharing the resources of a common offloading
engine. This impedes the interoperability between high–speed interconnects and
virtualization. Thus, a short term goal is to design, implement and evaluate the
hardware architecture that we proposed in paper V.

From the routing perspective, one interesting direction is to study a new
routing algorithm that can rearrange the routing information after VMmigration.
Ideally, the impact of the routing information should only affect the switches of
the migrated VM, and should not generate a new routing table for the entire

35
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subnet. Furthermore, the new routing algorithm must also ensure that the new
arrangement is deadlock free. Another challenge from the routing perspective
is the scalability issue. Due to the fact that each VF is assigned with its own
address, and in a ten-of-thousands node cluster with each node hosts multiple
VMs, the address space might run out. One option to solve this issue is to extend
the address space, but it is not backward compatible with an older hardware.



Bibliography

[1] RFC 5040: A Remote Direct Memory Access Protocol Specification. Tech-
nical report, October 2007.

[2] The Apache Hadoop Software Framework. http://hadoop.apache.org/,
November 2012.

[3] Oracle VirtualBox. http://www.virtualbox.org/, November 2012.

[4] The Peripheral Component Interconnect Special Interest Group (PCI-SIG).
http://www.pcisig.com/, November 2012.

[5] Top 500 supercomputer sites. http://top500.org/, November 2012.

[6] G. A. Abandah and E. S. Davidson. Modeling the communication perfor-
mance of the IBM SP2. In Proceedings of the 10th International Paral-
lel Processing Symposium (IPPS), pages 249–257, Washington, DC, USA,
1996. IEEE Computer Society.

[7] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert. Intel Virtu-
alization Technology for Directed I / O. Intel Technology Journal, 10(03),
2006.

[8] D. Agrawal, S. Das, and A. El Abbadi. Big Data and Cloud Computing:
current state and future opportunities. In Proceedings of the 14th Inter-
national Conference on Extending Database Technology (EDBT/ICDT),
pages 530–533, New York, NY, USA, 2011. ACM.

[9] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6D Mesh/Torus In-
terconnect for Exascale Computers. IEEE Transactions on Computers,
42(11):36–40, November 2009.

37



38 BIBLIOGRAPHY

[10] AMD. AMD I/O Virtualization Technology Specification. Press re-
lease, May 2007. http://www.amd.com/us/press-releases/Pages/

Press_Release_117440.aspx.
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Abstract—Rerouting around faulty components and migration
of jobs both require reconfiguration of data structures in the
Queue Pairs residing in the hosts on an InfiniBand cluster. In this
paper we report an implementation of dynamic reconfiguration
of such host side data-structures. Our implementation preserves
the Queue Pairs, and lets the application run without being inter-
rupted. With this implementation, we demonstrate a complete so-
lution to fault tolerance in an InfiniBand network, where dynamic
network reconfiguration to a topology-agnostic routing function
is used to avoid malfunctioning components. This solution is
in principle able to let applications run uninterruptedly on the
cluster, as long as the topology is physically connected. Through
measurements on our test-cluster we show that the increased cost
of our method in setup latency is negligible, and that there is
only a minor reduction in throughput during reconfiguration.

I. INTRODUCTION

The quest for ever increasing computing power drives the
development of compute clusters to larger and larger scale. At
the time of writing, the biggest InfiniBand installation has over
100K processors, and there are almost twenty sites with more
than 10K processors reported on the Top 500 list [1]. This
has challenged the interconnection networks of the systems
with regards to mean time between component failure. It has
to be an operating assumption for machines of these sizes
that components in the interconnect fail while applications are
running.

Although the importance of fault tolerant interconnection
networks has only recently been acknowledged by industry, it
has been a pet subject for researchers in academia for many
years. The proposed solutions have generally had the aims of
saving the application that was running at the instance of time
when the component failed, and to increase the total uptime
of the system.

One body of work has assumed that there is a checkpointing
mechanism in the application. This means that when there is
a fault-situation, the application can be halted, a new routing
structure that avoids the faulty component can be implemented
in the network while it is empty of traffic, and finally the
application can be restarted from the last checkpoint. In this
category we find [2] where faulty components are avoided

This work is in part financed by Sun Microsystems, Inc.

through indirect routing. A number of routing algorithms that
are not limited to any specific topology, and thereby is able
to handle any topology change resulting from faults are also
motivated from this mode of operation [3][4][5][6].

The techniques described and implemented in this paper do
not assume any checkpointing mechanism. Rather, it aims at
reacting so fast that the applications running on the cluster
can continue uninterrupted. We call such methods applica-
tion transparent. Application transparency has also been the
assumption in most of the academic work in the field. An
example is Boppana and Chalasani who defined a protocol for
deadlock free rerouting around faulty regions in meshes [7][8],
another is the proposal by Montañana et al. for torus net-
works [9]. Other examples focus on fault tolerance in variants
of multistage networks [10], a topic that has become the focus
of a renewed interest in the context of Ethernet-based data
centre networks [11][12][13]. A solution that is independent
of topology and routing functions is described in [14].

The main weakness of the above approaches for application
transparent fault-tolerance is that they are highly inflexible.
They either work for a limited set of topologies, or for a
limited set of fault situations. This led to some efforts on
dynamic reconfiguration, where the idea is to move from one
routing function to another while the system is up and running
[15][16][17][18][19]. The difficulty has been to do this in a
way that does not create deadlocks in the transition phase [20].

Industrial installations of large computers have so far mainly
resorted to the checkpoint/restart approach. This is, however,
only a viable solution as long as the mean time between fail-
ures is high enough for the application to be expected to make
significant progress - at least to the next checkpoint - before
the next fault occurs. Due to the size of recent installations,
we have seen some implementations of application-preserving
fault tolerance mechanisms in InfiniBand clusters [21][22].

In designing solutions for application transparent fault tol-
erance, there are two fundamental decisions that have to be
made. One is whether the change of routing paths should
be triggered in the network interface cards, or in the net-
work switches. Another fundamental question is whether the
alternative paths should be set up a priori, or whether a
network manager should be involved in finding new paths

2010 IEEE International Conference on Cluster Computing

978-0-7695-4220-1/10 $26.00 © 2010 IEEE
DOI 10.1109/CLUSTER.2010.21

126



once the fault has been discovered. In [21] Vishnu et al
reports an implementation that uses an InfiniBand feature
called Automatic Path Migration. When a network interface
card detects loss of connection, it automatically swaps to a
backup path that can still be connected. This backup path is set
up a-priori by using a duplicate set of addresses. The drawback
of this approach is that it is not always possible to define two
disjoint paths between every two points in the network. This
problem is particularly severe for implementations based on

-ary -cubes, like the recent Red Sky installation in Sandia
National Lab [23], but it is also true for oversubscribed fat-
trees [22].

In this paper we report a reconfiguration implementation
that is based on a network (subnet) manager, that dynamically
reroutes the network. Furthermore it is based on changing
routing tables in the switches. In order to efficiently route
the topology containing the fault, we use a topology agnostic
routing algorithm called LASH in the experiments [24]. Our
method is, however, independent of topology and routing
algorithm. Combined with a topology agnostic routing algo-
rithm, the method can in principle sustain connectivity of all
connections, and thereby keep applications alive, as long as
the topology is physically connected.

We provide details of the implementation of the method in
an InfiniBand cluster. The fault detection, and the reconfigu-
ration of the routing algorithm in the network is done through
mechanisms in OpenSM. Leveraging this, we develop novel
mechanisms at the host side, to allow the application to migrate
its connections from the old routing structure to the new one.
Furthermore we present measurements that demonstrate the
performance of the method, as well as the deadlock problem
that results from rerouting in a path set up a-priori.

The paper is structured as follows: In section II we give
some background of the InfiniBand technology, before we
give some details on the implementation of the reconfiguration
method in section III. Thereafter we present the setup of the
experiments on an InfiniBand cluster in section IV and the
results and analysis in section V. Finally we conclude in
section VI.

II. THE INFINIBAND ARCHITECTURE

The InfiniBand Architecture was first standardised in Oc-
tober 2000 [25], as a merge of two older technologies called
Future I/O and Next Generation I/O. As with most other recent
interconnection networks, InfiniBand (IB) is a serial point-
to-point full-duplex technology. It is scalable beyond ten-
thousand nodes with multiple CPU cores per node and efficient
utilisation of host side processing resources. The current
trend is that IB is replacing proprietary or low-performance
solutions in the high performance computing domain, where
high bandwidth and low latency are key requirements. The IB
specification is an evolving standard that was last updated in
2007. Our proposal is in part based on features added in the
latest version of the standard. The following sections give a
brief overview of the relevant management and communication
properties in IB.

A. Subnet Management

InfiniBand networks are referred to as subnets, where a
subnet consists of a set of hosts interconnected using switches
and point to point links. A single subnet is scalable to more
than ten-thousand nodes and two or more subnets can be
interconnected using an IB router. Hosts and switches within
a subnet are addressed using local identifiers (LIDs). The LID
is a 16 bit value where the first 48151 values are reserved for
unicast addresses and the rest is reserved for multicast.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initialising and bringing up the net-
work, including the configuration of all the switches, routers
and host channel adaptors (HCAs) in the subnet. At the
time of initialisation the SM starts in the discovering state
where it does a heavy sweep of the network in order to
discover all switches and hosts. During this phase it will also
discover any other SMs present and negotiate who should
be the master SM. When this phase is complete the SM
enters the master state. In this state it proceeds with LID
assignment, switch configuration, routing table calculations,
and port configuration. If successful it enters the subnet up
state and the subnet is ready for use.

During normal operation the SM performs periodic light
sweeps of the network to check for topology changes. If a
change is discovered during a light sweep or if a message
(trap) signalling a network change is received by the SM
it will reconfigure the network according to the changes
discovered. The reconfiguration includes the steps used during
initialisation. Whenever the network changes (e.g. a link goes
down, a device is added, or a link is removed) the SM must
reconfigure the network accordingly. A major part of the
reconfiguration process is the rerouting of the network which
must be performed in order to guarantee full connectivity,
deadlock freedom, and proper load balancing between all
source and destination pairs.

B. Transport Services and Queue Pairs

InfiniBand supports a rich set of transport services in order
to provide both Remote Direct Memory Access (RDMA) and
traditional Send/Receive semantics. The available transport
services are Reliable Connection (RC), Unreliable Connection,
Reliable Datagram, Unreliable Datagram, and Raw Datagram.
The reliable services guarantee in order delivery, correctness,
and acknowledgements. All our results in this paper are based
on the RC service, but is valid for the other services as well.
For more details about the various services please refer to the
IB specification [25].

The available transport services support various transport
functions. For a RC the most common are the RDMA
Read/Write and the Send/Receive operations. The RDMA
Read/Write operation allows a node to Read/Write the virtual
address space of a remote note without involving the host
CPU. The Send/Receive operations is much like Channel I/O
where data can be sent to a remote host, but it is up to the
receiver to handle the data properly. In our experiments we
have used the Send/Receive operations over a RC.
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Independent of the transport service used all InfiniBand
HCAs communicate using Queue Pairs (QPs). A QP is created
during the communication setup, and a set of initial attributes
such as QP number, HCA port, destination LID, queue sizes,
and transport service are supplied. When communication is
over the QP is destroyed. An HCA can handle many QPs,
each QP consists of a pair of queues, a Send Queue (SQ) and
a Receive Queue (RQ), and there is one such pair present at
each end-node participating in the communication. The send
queue holds work requests to be transferred to the remote
node, while the receive queue holds information on what to
do with the data received from the remote node.

In addition to the QPs each HCA has one or more Com-
pletion Queues (CQs) that are associated to a set of send and
receive queues. The CQ holds completion notifications for the
work requests posted to the send and receive queue.

C. Traps, Notices, and Event Forwarding

In InfiniBand the SM is responsible for monitoring the
network for changes. This is done using Subnet Management
Agents (SMAs) that are present in every switch and every
HCA. The SMAs communicate any changes, e.g. new con-
nections, disconnections, and port state changes, to the SM
using traps and notices. A trap is a message sent to alert
about a certain event, and it contains a notice attribute with the
details about the event. Different traps are defined for different
events, e.g. the port state changed trap (trap number 128) is
sent from a switch to the SM whenever there is a change in
the port state on one of the switch ports. I.e. a port has been
connected or disconnected. If the SM receives trap number
128 with a notice indicating that a switch port has lost the
connection to an end-node, the SM will generate an out of
service trap (trap number 65) which indicates that the given
end-node is unavailable. This trap is sent from the SM to all
end-nodes that has subscribed to this trap.

In order to reduce unnecessary distribution of traps IB
applies an event forwarding mechanism where end-nodes are
required to explicitly subscribe to the traps they want to be
informed about. E.g. the trap in the previous example would
only be sent if the end-node had subscribed to trap number
65.

III. RECONFIGURATION METHOD

Our application transparent reconfiguration method consists
of a network reconfiguration phase, a signalling phase, and
a host reconfiguration phase as illustrated in Figure 1. After
the SM has initialised and brought up the subnet, hosts will
subscribe for any events that they would like to be notified
about and the subnet will enter normal operation. If a change
occurs in the network this is discovered by the SM and
triggers the network reconfiguration phase. When the network
configuration is complete and new routing tables have been
distributed, it enters the signalling phase where the repath trap
is forwarded to the hosts that are subscribing to this event.
At the host, the reception of the repath trap triggers the host
reconfiguration phase.

Host Subnet Manager Switch

Event subscription

Event forwarded to the SM

Network reconfiguration

Event forwarded to the host

Host reconfiguration

Port status changed

Subnet discovery

Host registered for event

and Initialisation

Fig. 1. A sequence diagram showing the interaction between the host and
the SM relevant for reconfiguration.

Our proposal is based on the established methods for
detecting and signalling network changes in IB, but we have
added support for the necessary traps and notices required for
our reconfiguration method. In the following section we give
more details about each phase and its implementation.

A. Network Reconfiguration

Before a host can be reconfigured two things must hap-
pen, the change must be detected and the network must be
reconfigured. Only when we have a new valid configuration
for the network is it possible to reconfigure the hosts. We
will not address the network reconfiguration in this paper, but
our implementation is based on the existing reconfiguration
mechanism in OpenSM.

During normal operation OpenSM performs periodic light
sweeps of the network to check for topology changes as
described in section II-A. If a change is discovered either
during a light sweep or through the reception of trap 128
(port state changed) or trap 144 (change capability mask)
a network reconfiguration is triggered. A major part of the
reconfiguration process is the rerouting of the network which
must be performed in order to guarantee full connectivity,
deadlock freedom, and proper load balancing between all
source and destination pairs. When the network reconfigura-
tion is complete OpenSM enters the signalling phase described
in the next section.

The current implementation in OpenSM is very coarse in
the way that it can only tell when rerouting is started and when
it is finished. OpenSM does not maintain information about
what paths have been changed. The current functionality is,
however, adequate to demonstrate the concept of host side
dynamic reconfiguration.

B. Signalling

When OpenSM has reconfigured the network the hosts must
be notified about the changes, but this is not supported by the
current version of OpenSM. Our proposed way of doing this
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Fig. 2. The flow chart of the host reconfiguration.

follows the general trapping concept in IB, using traps, notices,
and event forwarding as described in section II-C. The basic
idea is that OpenSM will generate an unpath trap whenever it
invalidates a path and generate a repath trap when the path is
recreated. This requires that the end nodes subscribe to these
traps at network initialisation time.

Owing to the current implementation of OpenSM lacking
functionality for identifing individual path changes, our im-
plementation is further reduced to only sending the repath
trap whenever the SM has completed a rerouting phase. I.e.
the repath trap tells the hosts that the network has been
reconfigured and the host should check if it needs to update
any of its QPs.

For the actual implementation we have used the repath trap,
introduced in the 1.2.1 release of the IB specification, to signal
the nodes. Support for generating and subscribing to this trap
has been added to OpenSM and to the IB stack at the host.

C. Host Reconfiguration

For host side dynamic reconfiguration the QP and the
address handle is the host-side entity that must be reconfigured
whenever the subnet configuration changes. The series of
events that is part of the host reconfiguration process is
illustrated in Figure 2.

Whenever the host receives a repath trap it knows that
the network is reconfigured and will query the SM for the
updated path record. When the host receives the updated path
record it must cycle through all its active QPs and compare
the updated path record with the current path properties. If
there are any differences the QP must be reconfigured. There
are many QP attributes that can be changed during host
reconfiguration such as link width, maximum transfer unit,
and service level. What attributes to update depends on the
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Fig. 3. The QP state diagram.

properties of the routing algorithm and on the usage scenario,
in our prototype we will update the service level assigned to
a given source,destination pair by the routing algorithm in
order to avoid deadlock after rerouting. But it could be used
to update any QP attributes.

For the actual implementation we have added trap handling
code for the repath trap and a mechanism to keep track of
the active QPs within a HCA. In our proposal, all active QPs
are stored in a linked list when they are created and removed
from this list when they are destroyed.

When it comes to the actual reconfiguration of the QP path
information (remote address vector) there are several ways
to achieve this with various limitations and impact on upper
layer protocols. How we are allowed to do this in a compliant
manner is limited by the QP state diagram show in Figure 3.
In addition to the transitions shown all states are allowed to
move directly to the reset state.

1) Reset Queue Pair: When a QP is created it goes through
the RESET-INIT-RTR-RTS state sequence show in Figure 3.
It is only when the QP has reached the RTS state that it is
considered fully operational, and it cannot be changed when
in this state (except when using APM as discussed later). If
an error occurs the QP is moved to the SQE or ERROR state
and communication is disrupted. Considering this, one obvious
way to reconfigure the QP would be to recreate the QP, i.e.
repeat the full reset cycle RESET-INIT-RTR-RTS which can
be done at any time by doing the RTS-RESET transition. This
approach has two drawbacks: First, all existing QPs need to
be stored before the QP enters the RESET state. Only then
can the remote address vector of a QP be updated. Second,
when a QP is moved to the RESET state the SQ and CQ will
be cleared and loss of data might happen. As this loss is not
handled by the QP it is up to the upper layer protocols to
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handle it. Thus, it is not possible to perform an application
transparent host reconfiguration using this approach.

2) Send Queue Drain: A second alternative is to move the
QP into the SQD state, with the assumption that the remaining
elements in the SQ are able to be executed successfully before
the state transition. Then, when in the SQD state, the host
can be reconfigured with the updated path information before
returning to the RTS state (see Figure 3). This approach
has two drawbacks: First, this mechanism only works if the
transition from RTS to SQD is a success, i.e. that we are
able to drain the SQ. The SQD may not succeed if there are
outstanding operations and the current path is not operational,
hence this would not be a generic solution in the first place
and would need a mode to avoid the QP going to the full error
state when unsuccessful. Second, the SQD state is currently
not supported by the Mellanox ConnectX firmware, so this is
not a viable solution with current hardware.

3) Automatic Path Migration: A third alternative, and the
one that we have used in this paper, is to use the automatic path
migration (APM) mechanism provided by IB. Automatic path
migration will automatically switch from a primary path to an
alternative path when a fault happens without destroying the
established connection. It is designed to support fast switching
to a precalculated backup path in the case of failure. For
dynamic host reconfiguration we will use APM purely as a
mechanism to switch the remote address vector manually, i.e.
we will not use a precalculated path but reconfigure a path
based on network reconfiguration.

The APM state diagram in shown in Figure 4 and it must
be seen in relation to the QP state diagram in Figure 3. For
our proposal the most important property is that when the QP
is in the RTS state it is also allowed to be in any of the APM
states. I.e. the QP can make any of the transitions in the APM
state diagram without disrupting the connection. This makes
it possible to modify the QP while in the RTS state.

In order to modify the QP we first make a manual transition
from the MIGRATED to the REARMED state (Figure 4).
Then the address vector of the alternative path is updated
with the new path information. Finally, the alternative path
is switched over to become the primary path and the QP
state is manually switched back to the MIGRATED state
(REARMED-ARMED-MIGRATED). With this approach we

H6 H5 H4

H1 H2 H3

S1 S2 S3

S6 S5 S4

Fig. 5. The test-bed with a 3x2 mesh that is reduced to a 6 node ring when
the link between switch S2 and S5 fails.

are able to dynamically reconfigure the host in an application
transparent manner without disrupting the connection.

IV. EXPERIMENT SETUP

In this section, we present the hardware and software used
in our test bed and we describe the network configuration and
the imitated fault that is used in our test case.

A. Experimental Test Bed

Our test bed consists of six nodes and six switches. Each
node consists of a Sun Fire X2200 M2 server [26] that has
a dual port Mellanox ConnectX DDR HCA with an 8x PCIe
1.1 interface, one dual core AMD Opteron 2210 CPU, and
2GB of RAM. The switches consist of four 24-port Infiniscale-
III [27] switches and two 36-port Infiniscale-IV [28] switches
that is used to construct the topology illustrated in Figure 5. All
the hosts are installed with Ubuntu Linux 8.04 x86 64 kernel
version 2.6.24-24-generic and a modified version of OFED
1.4.1 that contains the dynamic reconfiguration prototype.
Some changes have been made to Perftest [29] in order to
support regular bandwidth reporting and continuously sending
traffic at full link capacity. The modified Perftest is used to
generate the ping pong traffic pattern shown in Table I. A
minor modification to the MVAPICH2 [30] library has been
made as well, where we commented out their APM handler
as it conflicts with our implementation.

B. Network Configuration

With respect to -ary -cube topologies, it is very difficult
to predict and predefine an alternative path for every fault.
We have therefore selected a simple 3x2 mesh together with
the LASH routing algorithm in our experiment to study this
scenario.

The LASH [24] routing algorithm is a topology agnostic
routing engine that is available in OpenSM. It uses virtual
lanes as deadlock avoidance mechanism and a one-to-one
mapping between the service level and virtual lane. For
each source, destination pair, LASH assigns the shortest
path together with a service level to be used that guarantee
deadlock freedom. The LASH routing engine is responsible
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Fig. 6. The observed latency of ib create qp with and without the
reconfiguration code.

for generating a deadlock free routing table whenever there is
a change in the subnet. However, the number of virtual lanes
required for deadlock avoidance may vary after the rerouting
since the required number of virtual lanes depends on the
underlying topology.

Using regular APM it is possible to predefine a deadlock
free alternative path for the link between S1 and S6 or S3 and
S4 (Figure 5), but a backup for the path between S2 and S5, is
hard to define in advance because the subnet has turned into
a ring topology that requires two virtual lanes for deadlock
avoidance. Neither the route through S1-S6 nor S3-S4 with
VL 0 only are valid as the shortest path alternative because
both will form a cyclic channel dependency. This problem will
increase in complexity when the topology size and number of
faults increase.

C. Imitated Fault

The majority of faults in an IB subnet is caused by resource
failures such as a link or switch malfunction. In our experi-
ments we have imitated link faults by manually disconnecting
the link using ibportstate. When a fault happens, the worst
case effect of rerouting without host reconfiguration is the
occurrence of a deadlock in the subnet due to the use of old
paths. The deadlock happens because packets are unable to
make progress since they are mutually waiting for the release
of resources, such as buffers and channels. Without host
side reconfiguration, terminating and restarting the running
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Fig. 7. The observed latency for trap 64 and trap 68 with and without the
reconfiguration code.

application is the only solution to update the QP and break
the cyclic dependencies.

V. PERFORMANCE EVALUATION

We have carried out three types of experiments to evaluate
the performance of our host side dynamic reconfiguration
implementation. First, we use a set of micro benchmarks to
measure the impact our implementation has on the latency
introduced during the setup phase and the trap handling phase.
Second, we study the application transparency of our solution
using synthetic traffic patterns by comparing the results from
our proposed solution and the conventional implementation.
Third, we analyse the application level impact of our solution
using the HPC Challenge (HPCC) benchmark [31] and NAS
Parallel Benchmark [32].

A. Queue Pair Setup Latency

With this micro benchmark we measure the additional
latency that has been introduced during the ib create qp. In
our implementation all the active queue pairs are stored in a
linked list when it is created and removed from the linked list
when it is destroyed. To simulate a large clusters where there
might be many active QPs at each host we have designed
a test to create an increasing number of QPs and calculate
the time consumed. The results are presented in Figure 6 and
shows that our implementation has no measurable impact on
the initialisation time.

B. Reconfiguration Latency

In Figure 7 we compare the total latency between the simple
in service trap handler and repath trap handler. The latency
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measurements are based on time stamp dumps added in the
kernel and it is only based on one QP per HCA.

For the repath trap we show both a scenario where recon-
figuration is unnecessary and a scenario where reconfiguration
is required. There are two reasons why the repath trap handler
is so time consuming compared to the in service trap handler:
First, the repath trap handler has to retrieve all the active QPs
within a HCA. Second, it must query all the QPs to determine
whether it must be reconfigured. The in service trap handler,
however, only have to update the service state of the newly
connected node when an in service trap is received.

Figure 8 shows the repath trap handling broken down into
the different functions that contribute to the latency of the
reconfiguration process. It shows that the majority of time is
spent in the ib query qp function and on APM state migration.
The ib query qp retrieves all the relevant info from the active
queue pairs that are in the RTS state, which consists of all the
data structures required for APM state transitions. The APM
state migration occurs in the HCA firmware so the details
about what happens there is not available.

In total a majority of the reconfiguration time is spent
on the interaction between HCA firmware and hardware (e.g
ib query qp function and APM state transitions). With only
one QP this time consumption is negligible, but with many
active QPs this might be a scalability problem.

C. Synthetic Traffic

In this experiment we measure the impact that host recon-
figuration has on network performance. The experiment also
demonstrate the application transparency of our solution and
the negative effect of deadlock on network performance.

The experiment was performed by running the traffic pattern
given in Table I between the hosts in the 3x2 mesh topology
given in Figure 5. While the communication is active, the
link between S2 and S5 in Figure 5 is disconnected manually

to imitate a link failure. This causes the topology to change
from a 3x2 mesh into a ring. When this happens, the switches
will detect the failed link and trigger a port state changed
trap that is sent to the SM. In response to this trap the
SM performs a network reconfiguration. When the SM has
completed the reconfiguration new deadlock free routing tables
have been distributed to all the switches. A major change
between the old and new routing tables is that the number
of virtual lanes required for deadlock avoidance has increased
from 1 to 2. Unfortunately, the QP connections that was
established before the rerouting will not be aware of these
changes and continue to use only virtual lane 0. If dynamic
host reconfiguration is not enabled this will eventually lead to
deadlock and a reduction of throughput to less than 1% of the
available bandwidth as shown in the purple plot in Figure 9.
If dynamic reconfiguration is enabled the loss of throughput
is avoided as show in the blue in Figure 9. This shows that
our proposal is able to reconfigure the host in an application
transparent manner and with a limited loss of throughput.
From the figure we observe that during reconfiguration there
is a brief dip in throughput, but the hosts are quickly able to
regain most of their bandwidth. They are not able to regain
all throughput because now there is one less link active and
less physical bandwidth in the network. The difference in
bandwidth between the two topologies equals the difference
between the orange and green plot in Figure 9. The orange
line shows the bandwidth achieved for the 3x2 mesh using a
single virtual lane, while the green line represents the total
throughput in a ring topology with two virtual lanes.

D. Application Traffic

In the previous section, we presented the results from
measurement based on the synthetic predefined traffic patterns.
In this section we repeat the experiment with traffic generated
by the HPCC b eff benchmark with 12 processes. Even though
the fault is still synthetically created by disconnecting the
link manually, it resembles the network environment that the
application would experience during a fault.

The results from the HPCC b eff benchmark are shown
in Table II. The second column contains the results for a run
without faults and without any reconfiguration happening. The
third column contains the results for a run with one fault (link
fails between S2 and S5 in Figure 5) and one consecutive re-
configuration, and the fourth column contains the results for a
run with two faults (link fails between S2 and S5, and between
S3 and S4 in Figure 5) and two consecutive reconfigurations.
If the benchmark is run without reconfiguration active the
benchmark will not complete once the first fault happens due
to deadlock as demonstrated in the previous section. From the
results it is not the numbers themselves that are interesting,
but the fact that with our host side dynamic reconfiguration the
QPs always survive the reconfiguration even with the deadlock
scenario. Moreover, it demonstrates that the reconfiguration is
application transparent.

We have also performed some quick measurements with
the NAS Parallel Benchmark to study the overhead of our
reconfiguration mechanism with one fault. The results of the
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NAS Parallel Benchmark, IS, class B with 8 and 16 processes
respectively and EP, class B with 12 processes are shown in
Table III. The results show that the execution time increases
by 79% with IS, Class B with 8 processes and by 36% with
IS, Class B with 16 processes. However, with EP, Class B, 12
processes, the execution time overhead is just barely 0.57%
compared with the original execution time. Hence, the results
demonstrate that for an application running for a reasonably
long period of time, the overhead caused by our host side
reconfiguration is almost negligible. In the future, we plan to
have a more thorough evaluation and performance analysis of
our solution using the NAS Parallel Benchmark.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel method for host
side dynamic reconfiguration for IB. Our proposed fault tol-
erance mechanism dynamically reconfigures the host side QP
attributes on active connections based on feedback from the
SM. We have evaluated a prototype of this mechanism on a
small IB cluster and it is evident from our experiments with
synthetic and application traffic that our approach is entirely
transparent from the upper layer protocols. Furthermore, the
hosts are able to retain network performance and deadlocks
are avoided.

Future work includes studying this method in larger clusters
in order to better evaluate performance and scalability. One

133



Network latency and throughput a) Without faults b) With one fault c) With two faults
Min Ping Pong Lat. (ms) 0.001331 0.001431 0.001371
Avg Ping Pong Lat. (ms) 0.002119 0.002184 0.002273
Max Ping Pong Lat. (ms) 0.002454 0.002503 0.002742
Naturally Ordered Ring Lat. (ms) 0.002214 0.002384 0.002503
Randomly Ordered Ring Lat. (ms) 0.002309 0.002440 0.002514
Min Ping Pong BW (MB/s) 871.046 870.142 876.232
Avg Ping Pong BW (MB/s) 1522.620 1522.301 1522.655
Max Ping Pong BW (MB/s) 1591.162 1591.766 1591.162
Naturally Ordered Ring BW (MB/s) 455.061734 462.909141 476.388614
Randomly Ordered Ring BW (MB/s) 537.962774 555.397093 424.144639

TABLE II
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH ZERO, ONE AND TWO FAULTS/RECONFIGURATIONS.

Execution time of selected tests in NPB a) Normal b) One fault w/ reconf.
IS, Class B, 8 processes (s) 1.36 2.44
IS, Class B, 16 processes (s) 6.435 8.798
EP, Class B, 12 processes (s) 25.803 25.95

TABLE III
RESULTS FROM THE SELECTED NAS PARALLEL BENCHMARK TEST SUITE, WITH NORMAL AND ONE FAULT WITH RECONFIGURATION.

possible issue we foresee is the scalability problem when the
subnet size grows and the number of active QPs increase,
this will increase the latency of the host reconfiguration. In
the current implementation the reconfiguration is based on
the topology changes. However, a topology change does not
necessarily mean path information change. Thus, we would
like to further improve the granularity in which the SM
reports network changes and in the way the routing algorithms
reroutes the network in case of changes. We believe that this
will improve the speed of the network reconfiguration in the
SM, reduce the frequency of the event signalling, and reduce
the time spent looking for unnecessary reconfiguration at the
host side.

In the long term, we plan to further extend our work to
support the capability of job migration where QPs can be
dynamically reconfigured and moved between hosts without
having to tear down and restart the running application. This
is applicable and beneficial during clusters maintenance and
for network virtualisation in large data centres.
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Abstract—Rerouting around faulty components, on-the-fly
policy changes, and migration of jobs all require reconfigu-
ration of data structures in the Queue Pairs residing in the
hosts on an InfiniBand cluster. In addition to a proper imple-
mentation at the host, the subnet manager needs to implement
a scalable method for signaling reconfiguration events to the
hosts. In this paper we propose and evaluate three different
implementations for signalling dynamic reconfiguration events
with OpenSM. Through our evaluation we demonstrate a
scalable solution for signalling host-side reconfiguration events
in an InfiniBand network based on an example where dynamic
network reconfiguration combined with a topology-agnostic
routing function is used to avoid malfunctioning components.

Through measurements on our test-cluster and an analytical
study we show that our best proposal reduces reconfiguration
latency by more than 90% and in certain situations eliminates it
completely. Furthermore, the processing overhead in the subnet
manager is shown to be minimal.

I. INTRODUCTION

The interconnection network plays a critical role in the
next generation of super computers, clusters and data cen-
tres. Major efforts are put into improving classical perfor-
mance metrics such as latency and bandwidth, and more
recently evolved metrics for utilisation and power efficiency.
Furthermore, the importance of fault tolerant interconnection
networks has been acknowledged by industry when moving
towards exascale systems.
Fault tolerance has been a research topic in academia

for many years. The proposed solutions have generally had
the aims of saving the application that was running at the
instance of time when the component failed, and to increase
the total uptime of the system. One body of work has
assumed that there is a checkpointing mechanism in the
application. This means that when there is a fault-situation,
the application can be halted, a new routing structure that
avoids the faulty component can be implemented in the net-
work while it is empty of traffic, and finally the application
can be restarted from the last checkpoint. In this category
we find [1] where faulty components are avoided through
indirect routing. A number of routing algorithms that are
not limited to any specific topology, and thereby is able to
handle any topology change resulting from faults are also
motivated from this mode of operation [2][3][4][5].
Other techniques do not assume any checkpointing mech-

anism, rather, they aim at reacting so fast that the appli-

cations running on the cluster can continue uninterrupted.
We call such methods application transparent. Application
transparency has also been the assumption in most of the
academic work in this field. An example is Boppana and
Chalasani who defined a protocol for deadlock free rerouting
around faulty regions in meshes [6][7] while another is the
proposal by Montañana et al. for torus networks [8]. Other
examples focus on fault tolerance in variants of multistage
networks [9], a topic that has become the focus of a
renewed interest in the context of Ethernet-based data centre
networks [10][11][12].
The main weakness of the above approaches for appli-

cation transparent fault-tolerance is that they are highly
inflexible. They either work for a limited set of topologies, or
for a limited set of fault situations. This led to some efforts
on dynamic reconfiguration, where the idea is to move from
one routing function to another while the system is up and
running [13][14][15][16][17]. The difficulty has been to do
this in a way that does not create deadlocks in the transition
phase [18].
Industrial installations of large computers have so far

mainly resorted to the checkpoint/restart approach. This is,
however, only a viable solution as long as the mean time
between failures is high enough for the application to be
expected to make significant progress - at least to the next
checkpoint - before the next fault occurs. Due to the size of
recent installations, we have seen some implementations of
application-preserving fault tolerance mechanisms in Infini-
Band clusters [19][20].
In [21] we proposed a host-side dynamic reconfigura-

tion method for InfiniBand that is based on a network
(subnet) manager, that dynamically reroutes the network.
Furthermore it is based on changing routing tables in the
switches and is independent of topology and routing algo-
rithm. Combined with a topology agnostic routing algorithm,
the method can in principle sustain connectivity of all
connections, and thereby keep applications alive, as long
as the topology is physically connected. Unfortunately, the
solution was not practical due to the amount of messages
generated by the subnet manager during reconfiguration.
In this paper we extend our previous work [21] with a

scalable method for signalling reconfiguration events. When
defining a scalable mechanism, there are two fundamental
decisions that we need to make. The first is whether the
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event updates should be delivered in-bulk or one-by-one. The
second is whether the mechanism to filter the event updates
should be part of the subnet manager or offloaded to the
hosts. In order to investigate this, we propose, implement,
and evaluate three different event signalling mechanisms. In
order to efficiently route the topology containing the fault,
we use a topology agnostic routing algorithm called LASH
in the experiments [2]. Our concept is, however, independent
of topology and routing algorithm. Through measurements
in our InfiniBand cluster and analytical studies we show that
our best candidate reduces reconfiguration latency by more
than 90% and in certain situations eliminates it completely.
Furthermore, the processing overhead in the subnet manager
is shown to be minimal.
The rest of this paper is organised as follows: We intro-

duce the InfiniBand Architecture in Section II followed by
a detailed motivation of our work in Section III. The three
different signalling methods and algorithms are described
in Section IV. Then, we describe the experimental setup
in Section V followed by the performance analysis of the
experimental and analytical studies in Section VI. Finally,
we conclude in Section VII.

II. THE INFINIBAND ARCHITECTURE

The InfiniBand (IB) architecture is a serial point-to-point
technology that was first standardised in October 2000 [22]
as a merge of two older technologies called Future I/O and
Next Generation I/O. Due to its low latency, high bandwidth,
and efficient utilization of host-side processing resources, it
has been gaining acceptance within the High Performance
Computing (HPC) community as a solution to build large
and scalable computer clusters [23].
The de facto system software for IB is OFED which is

developed by dedicated professionals and maintained by the
OpenFabrics Alliance [24]. OFED is open source and is
available for both GNU/Linux and Microsoft Windows. The
improved signalling methods that we have proposed in this
paper were implemented and evaluated in a development
version of OpenSM, a subnet manager which is bundled
together with OFED.

A. Subnet Management

IB networks are referred to as subnets, where a subnet
consists of a set of hosts interconnected using switches and
point-to-point links. A single subnet is scalable to more
than ten-thousand nodes and two or more subnets can be
interconnected using an IB router. The hosts and switches
within a subnet are addressed using local identifiers (LIDs)
and a single subnet is limited to 48151 unicast addresses.
An IB subnet requires at least one subnet manager (SM)

which is responsible for initialising and bringing up the sub-
net, including the configuration of all the IB ports residing
on switches, routers and host channel adapters (HCAs) in
the subnet. At the time of initialisation, the SM starts in the

discovering state where it does a sweep of the network in
order to discover all switches and hosts. During this phase, it
will also discover any other SMs present and negotiate who
should be the master SM. When this phase is complete, the
SM enters the master state. In this state, it proceeds with LID
assignment, switch configuration, routing table calculations
and deployment, and port configuration. At this point the
subnet is up and ready to use.
After the subnet has been configured, the SM is responsi-

ble for monitoring the network for changes (e.g. a link goes
down, a device is added, or a link is removed). If a change
is detected during the monitoring process, a message (trap)
is forwarded to the SM and it will reconfigure the network.
A major part of the reconfiguration process (also known
as ”heavy sweep”) is the rerouting of the network which
must be performed in order to guarantee full connectivity,
deadlock freedom, and proper load balancing between all
source and destination pairs.

B. Queue Pairs

For InfiniBand, all HCAs communicate using Queue Pairs
(QPs). A QP is created during the communication setup,
and a set of initial attributes such as QP number, HCA
port, destination LID, queue sizes, and transport service
are supplied. When the communication is over, the QP is
destroyed. An HCA can handle many QPs, each QP consists
of a pair of queues, a Send Queue (SQ) and a Receive Queue
(RQ), and there is one such pair present at each end-node
that is participating in the communication. The send queue
holds work requests to be transferred to the remote node,
while the receive queue holds information on what to do
with the data received from the remote node.
In addition to the QPs, each HCA has one or more

Completion Queues (CQs) that are associated with a set
of send and receive queues. The CQ holds completion
notifications for the work requests posted to the send and
receive queue.

C. Subnet Administration

The Subnet Administrator (SA) is a subnet database built
by the master SM to store different information about a
subnet. The communication with the SA is often needed
by the end-node to establish a QP, and this is accomplished
by sending a general service management datagram (MAD)
through QP1. Both sender and receiver require information
such as source/destination LIDs, service level (SL), MTU,
etc. to establish a QP and this information can be retrieved
from a data structure known as a path record that is provided
by the SA. In order to obtain a path record, the end-node
can use the SubnAdmGet/SubnAdmGetTable operation to
perform a path record query to the SA. Then, the SA will
return the requested path records to the end-node.
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Figure 1. The 3x2 mesh topology with LASH routing. The arrows of the
drawing indicate the direction of communication between the source and
the destination node.

D. Traps, Notices, and Event Forwarding

In InfiniBand, the SM is responsible for monitoring the
network for changes. This is done using Subnet Management
Agents (SMAs) that are present in every switch and every
HCA. The SMAs communicate any changes, e.g. new con-
nections, disconnections, and port state changes, to the SM
using traps and notices. A trap is a message sent to alert
end-nodes about a certain event, and it contains a notice
attribute with the details about the event. Different traps are
defined for different events, e.g. the port state changed trap
(trap number 128) is sent from a switch to the SM whenever
there is a change in the port state on one of the switch ports.
I.e. a port has been connected or disconnected. If the SM
receives trap number 128 with a notice indicating that a
switch port has lost the connection to an end-node, the SM
will reconfigure the subnet. In addition, the SM will generate
an out of service trap (trap number 65) which indicates that
the given end-node is unavailable. This trap is redirected
from the SM to the SA in order to forward it out to all
end-nodes that have subscribed to this trap.
In order to reduce the unnecessary distribution of traps,

IB applies an event forwarding mechanism where end-nodes
are required to explicitly subscribe to the traps they want to
be informed about. E.g. the trap in the previous example
would only be forwarded out by the SA if the end-node had
subscribed to trap number 65.

III. MOTIVATION

Our main goal in this paper is to find a scalable method
for signalling reconfiguration events based on our earlier
experience in [21]. The scalability that we are focusing on
in this paper is the time domain rather than the space domain.
In order to investigate this, we propose, implement, and
evaluate three different event signalling mechanisms and we
apply these mechanisms to the LASH algorithm in a fault
tolerance context. Our concept is, however, independent of
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1 2 3

456

Figure 2. The ring topology with LASH routing. The dotted lines represent
communication over VL1 and the solid lines represent VL0.
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Figure 3. The routing of 3x2 mesh with LASH routing after link failure
(red line in between of SW-2 and SW-5) without host-side reconfiguration.

topology and routing algorithm. Moreover, it can be further
extended to cover host-side reconfiguration for virtualisation,
QoS, traffic aware routing, etc.
For InfiniBand, the LASH routing algorithm [2] is one

of the deterministic and topology-agnostic routing engines
that is offered by OpenSM. It uses virtual lanes (VLs) as
a deadlock avoidance mechanism. Each virtual lane has a
direct one-to-one mapping with the service levels (SLs).
The applications used with the LASH routing algorithm are
required to perform a path record query to get the path SL
for each QP. Otherwise, the default SL will be used and a
deadlock might happen. A major challenge with the LASH
routing algorithm is that it requires host-side reconfiguration
support in order to be able to handle failure, because after
a failure the assigend SL for a given path might change.
Host-side reconfiguration, as explained in [21], is used to
update the path record attribute on a QP whenever a fault
happens. In order to illustrate this problem, we use three
simple scenarios as shown in Fig. 1, 2 and 3 where each of
them uses the following synthetic communication pattern:1-
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3, 2-4, 3-5, 4-6, 5-1 and 6-2. Fig. 1 shows the first scenario
with the routing of a 3x2 mesh using the LASH routing
algorithm. It only requires a single VL to avoid deadlock
while maintaining shortest-path routing in the subnet. Fig. 2
shows the second scenario where 2 VLs are needed in order
to have deadlock-free and shortest-path routing in a 6-node
ring. Fig. 3 shows the last scenario where a 3x2 mesh has
changed into a 6-node ring after the link between SW-2
and SW-5 has failed. The initial path record query that
is performed by the application are based on a 3x2 mesh
where each node only uses VL0. After the link failure, the
SM is aware that the topology has changed into a 6-node
ring and triggers LASH to regenerate a new routing table.
After rerouting, LASH will require 2 VLs to avoid deadlock
but there is no mechanism available to notify the nodes to
modify their existing QPs with the updated SL. Therefore,
all nodes continue to send packets on VL0, and eventually
each of them ends up waiting for credits, which leads to
deadlock.
In our previous work [21], we proposed and implemented

a host-side dynamic reconfiguration mechanism that fixes
the above mentioned issue. It is part of the host stack and
dynamically reconfigures the QPs whenever the topology
changes based on feedback from the SM. Moreover, the
implementation preserves the QPs without interrupting the
running applications. However, one issue with the previous
solution is that it was not scalable. An increase in the
number of switches and hosts, and the number of active
QPs, lead to a huge increase in the host reconfiguration
latency. This has been identified to be due to a simple
signalling method in the SM where the reconfiguration is
based on topology changes, but a topology change does not
necessarily reflect path record changes. In this paper, we
propose and evaluate three signalling methods with the aim
of reducing the reconfiguration latency.

IV. SIGNALLING METHOD

In this section, we propose three different signalling
methods that are implemented in OpenSM and notify the
host stack about network events. These events will help the
host stack to decide whether it is required to reconfigure the
path SLs in any of its existing QPs.
Fig. 4 shows the first approach named 3-way wildcard

handshake, a simple 3-way handshaking mechanism that
only requires minimum modification to the SM. This is the
solution that was used in our previous work. As illustrated
in fig 4, there are 3 sequential steps in this approach.
Firstly, the SM forwards out a re-path trap to notify the
host that there is a change in the subnet topology. Sec-
ondly, the host constructs a message to query the SA for
the latest path records. Finally, the SM returns the path
records in-bulk using the Reliable Multi-Packet Transaction
Protocol(RMPP) [22]. One of the major drawbacks of this
approach is that the SM is unable to identify the updated

paths when the subnet has changed. This disadvantage will
cause the SM to always trigger the re-path trap for all hosts
when a fault happens and creates unnecessary overhead on
the host stack if no updates are necessary.

Algorithm 1 Trigger re-path trap with path record
1: if never been routed == TRUE then
2: for swsrc = 0 to max switches do
3: for swdst = 0 to max switches do
4: OLD VL[swsrc][swdst] = VL[swsrc][swdst]
5: end for
6: end for
7: else
8: for swsrc = 0 to max switches do
9: for swdst = 0 to max switches do
10: if swsrc != swdst AND OLD VL[swsrc][swdst]

!= VL[swsrc][swdst] then
11: construct repath trap(swsrc, swdst)
12: trigger(repath trap)
13: OLD VL[swsrc][swdst] = V L[swsrc][swdst]
14: end if
15: end for
16: end for
17: end if

Fig. 5 shows the second approach named repath-only
where we have fully utilised the features of the re-path mech-
anism [22]. This is different from the first approach where a
re-path trap is only used as a method to notify the host stack
whenever there is a change in the subnet topology. In this
method, every re-path trap includes an updated path record.
This requires a method that can differentiate between the
new and the old paths. Therefore, we have developed a new
algorithm (Algo. 1) as the path record distinguisher (PRD)
to identify the path changes and to trigger a re-path trap
with an updated path record. The never been routed flag
determines whether the OLD VL array has been assigned
with values. If they are assigned, the algorithm compares the
path changes between the OLD VL array and the VL array.
If the path record for a source/destination address pair has
changed, the algorithm constructs a dedicated re-path trap
which includes an updated path record and forwards it to
the affected source and destination pair. Then, it updates the
OLD VL array accordingly. This solution is straightforward
and does not involve any handshaking, but its scalability
depends on the total number of path record changes, m.
Fig. 6 shows the third signalling method that we have

proposed named 3-way hybrid handshake. Due to the fact
that the second approach is vulnerable to path changes, we
need a mechanism that forwards the updated path records
in-bulk. Hence, the third approach is a combination of
the first and the second signalling methods where the 3-
way handshaking is combined with a PRD in the SM to
minimise unnecessary overhead. The algorithm is separated
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Algorithm 2 Identify path record changes
1: if never been routed == TRUE then
2: for swsrc = 0 to max switches do
3: for swdst = 0 to max switches do
4: OLD VL[swsrc][swdst] = VL[swsrc][swdst]
5: end for
6: end for
7: else
8: for swsrc = 0 to max switches do
9: for swdst = 0 to max switches do
10: if swsrc != swdst AND OLD VL[swsrc][swdst]

!= VL[swsrc][swdst] then
11: increment(path changes)
12: OLD VL[swsrc][swdst] = V L[swsrc][swdst]
13: end if
14: end for
15: end for
16: end if

Algorithm 3 Trigger wildcard re-path trap
1: if path changes > 0 then
2: trigger wildcard(repath trap)
3: clear(path changes)
4: end if

into 2 parts as illustrated in Algo. 2 and Algo. 3. Instead
of sending out a dedicated re-path trap as is done by the
second approach, it compares all the path record changes
for every source/destination address pair and increments the
path changes variable if there is a difference. Subsequently,
the path changes variable that is assigned in Algo. 2 is used
as a flag in Algo. 3 to determine whether a wildcard re-path
trap will be forwarded to every host. Afterwards, each host
requests the updated path records and reconfigures the QPs
accordingly.

Host

SM

1. Repath Trap

2.SA Query

3. Path records

Figure 4. The 3-way wildcard handshake approach.

Host

SM

m * Repath Trap

Diff

Figure 5. The repath-only approach, the ”diff” represents the PRD in the
SM that is used to identify the differences between an old and new path.

Host

SM

1. Repath Trap

2.SA Query

3. Path records

Diff

Figure 6. The 3-way hybrid handshake approach, the ”diff” represents the
PRD in the SM that is used to identify the differences between an old and
new path.

V. EXPERIMENT SETUP

Our test bed consists of six nodes and six switches. Each
node is a Sun Fire X2200 M2 server that has a dual port Mel-
lanox ConnectX DDR HCA with an 8x PCIe 1.1 interface,
one dual core AMD Opteron 2210 CPU, and 2GB of RAM.
The switches are four 24-port Infiniscale-III DDR switches
and two 36-port Infiniscale-IV QDR switches which we
used to construct the topologies illustrated in Fig. 1 and
Fig. 2. Each host has Ubuntu Linux 8.04 x86 64 installed
with kernel version 2.6.24-24-generic and a modified version
of OFED 1.4.1 that contains the dynamic reconfiguration
prototype. The subnet is managed by a modified version
of OpenSM 3.2.5 that contains the proposed signalling
methods.

VI. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements on
an experimental cluster and an analysis of scalability. For the
cluster measurements, we use latency as our main metric to
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(a) Host stack reconfiguration latency.

fault one fault two

La
te

nc
y 

(m
s)

0
50

0
10

00
15

00

3−way wildcard handshake
repath−only mechanism
3−way hybrid handshake

(b) OpenSM rerouting time.

Figure 7. OpenSM and host stack reconfiguration latency for two different faults.

compare the performance of our three signalling methods.
For the mathematical analysis, we use total management
message overhead and latency as the metrics to measure
the scalability of each solution.

A. Experimental Results

We have carried out two different experiments to evaluate
our signalling methods. Both experiments were performed
using Integer Sort (IS), one of the application kernels in the
NAS Parallel Benchmarks Suite [25]. The measured host
stack latency was captured using kernel debug messages.
1) First Experiment: A synthetic fault is generated to

emulate a link failure in the subnet while the IS benchmark is
running. This experiment is repeated with 2 different faults.
Fault one (link between SW-4 and SW-5 in Fig. 1) is a fault
that will not cause path record changes. The same VLs are
required to maintain a deadlock-free subnet as before the
fault happened. Fault two (link between SW-2 and SW-5 in
Fig. 1) is a fault that will generate a new set of path records
because an additional VL is required to ensure that the
subnet is deadlock-free. The main purpose of this experiment
is to compare the latency added to the host stack during the
host-side reconfiguration, and the total rerouting time in the
SM for each of our signalling methods.
For fault one, Fig. 7a shows that the 3-way wildcard hand-

shake requires approximately 780ms on each host to perform
the reconfiguration. This is because there is no mechanism
available in the SM to distinguish any path record changes.
Consequently, a re-path trap is always triggered once there is
a topology change. From a host stack perspective, it always
queries the SA in order to obtain the latest path records and
compares them with the existing path records in the active
QPs list once a re-path trap is received. These operations are
time-consuming and add unnecessary latency if there are no
changes in the path records. For the other methods, neither
the repath-only approach nor the 3-way hybrid handshake

approach requires any cycles in the host stack when fault
one happens. This is because the PRD in the SM knows
that there are no changes in term of path records and will
not trigger a re-path trap. Fig. 7b also illustrates that a simple
PRD embedded in the SM does not increase the rerouting
time of OpenSM.

For fault two, Fig. 7a also shows that the 3-way wildcard
handshake still has the highest latency at around 930ms due
to the unavailability of the PRD. When the link between
SW-2 and SW-5 failed as shown in Fig. 3, both switches
generate a port state changed trap (refer to section II-D) to
notify the SM that the status of one of the ports has changed.
As a result, the SM performs a ”heavy sweep” twice and
therefore two continuous re-path traps are forwarded to the
host. The data from the kernel debug messages show that
the interval between the first and the second re-path trap
contributes the highest latency. This is because the second
re-path trap can only be triggered after the SM performed the
second ”heavy sweep”. With the PRD, the SM knows that
the second port state changed trap does not modify any path
records and will not trigger a re-path trap. So, both repath-
only and 3-way hybrid handshake are only taking around
20ms for the reconfiguration process.

In summary, the simple PRD that is available in both the
repath-only and the 3-way hybrid handshake has completely
removed the host stack latency of the 3-way wildcard
handshake in a 3x2 mesh topology for fault one and reduces
the host stack latency by 97.87% for fault two.
2) Second Experiment: The objective of this experiment

is to assess the scalability of these signalling methods with
an increased number of active QPs. We have only used fault
two to emulate a link failure and it was repeated with 8,
16, 32, and 64 processes, because more processes means a
higher number of QPs.

Fig. 8 shows that the 3-way wildcard handshake only
requires an additional 70ms, whereas the 3-way hybrid
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Figure 8. Host stack reconfiguration latency for IS class B using 8, 16,
32 and 64 processes.

handshake requires an additional 130ms when we increase
the number of processes from 8 to 64. The repath-only
mechanism requires an additional 490ms. Even though both
the repath-only approach and the 3-way hybrid handshake
have equivalent host reconfiguration latency with 8 and 16
processes, the host reconfiguration latency of the repath-
only mechanism increases faster, starting from 32 processes.
With 64 processes, the repath-only mechanism requires
approximately 500ms, whereas the 3-way hybrid handshake
only requires 150ms for the host reconfiguration. This shows
that the latency of the repath-only approach increases non-
linearly with the number of active QPs. Furthermore, this
implies that the repath-only approach does not scale with the
number of active QPs. This is caused by the fact that the
repath-only mechanism can only include a single updated
path record in a re-path trap but there are usually more
than a single path record change when a fault happens.
Consequently, the host needs to compare each path record
encapsulated in a re-path trap with its active QPs and this
comparison process is repeated for all the received re-path
traps.

The 3-way wildcard handshake approach is scaling well
when we increase the number of processes, but its initial
latency with 8 processes is much higher than the other two
approaches. As a result, its total host reconfiguration latency
with 64 processes is double the latency of the repath-only
approach and approximately seven times higher than the 3-
way hybrid handshake. To conclude the second experiment,
the 3-way hybrid handshake is the best approach because it
scales well with a higher number of active QPs and have
the lowest host reconfiguration latency with 64 processes.

Table I
TABLE OF NOTATION

Symbol Meaning
n Number of switches in the subnet
m Number of path record changes
ohd3way−ideal Total message overhead of the ideal 3-way

handshake mechanism
msgrepath Message size of a re-path trap
msgsa query Message size of a SA query
msggmp Total message size of a general service

management packet
ohdwc Total message overhead of the 3-way wildcard

handshake mechanism
ohdrepath Total message overhead of the repath-only

mechanism
ohd3way−hyb Total message overhead of the 3-way hybrid

handshake mechanism
msgpr Message size of a path record
msgrmpp Message size of a collection of path records

in RMPP
latwc Latency for the 3-way wildcarded handshake

mechanism
latrepath Latency for the repath-only mechanism
lat3way−hyb Latency for 3-way hybrid handshake mechanism
pr/n Average path record changes per node
t1 Time required to construct a SA query message
t2 Waiting time for getting the updated path records
t3 Time required for ib query qp
t4 Time required for APM mechanism
t5 Waiting time before receiving the 2nd re-path trap

B. Scalability

In this section, we have derived nine equations to analyse
the scalability of our proposed signalling methods. The no-
tations used in this paper are shown in table 1. Furthermore,
we have also made an assumption that each switch has only
one node connected to it and there are n−1 established QPs
in each node, where n represents the number of switches.
Before the host attempts to reconfigure the active QPs,

the host must be notified that there is a change in the subnet
topology. This is performed by the re-path trap. Once the
host has been notified by the re-path trap, the host must
initiate a SA query message to obtain the latest path records.
Then, the SA returns the path records to the requesting host.
Therefore, the total management message overhead (MMO)
that is created by an ideal 3-way handshake mechanism in
a subnet can be represented by eq. 1 below. Where both
msgrepath trap andmsgsa query are equivalent to amsggmp

message that is 256 bytes in size, whereas the msgrmpp

message is a RMPP management packet.

ohd3way−ideal = msgrepath trap ∗ n +msgsa query ∗ n
+msgrmpp ∗ n

(1)

The msgrmpp message contains two msggmp messages
and multiple data messages that will encapsulate the re-
quested path records. The first msggmp is for the RMPP
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initialisation while the second msggmp is for the acknowl-
edgement after all the path records have been received. Eq. 2
represents the msgrmpp message where the msgpr message
is a path record data structure with 64 bytes each (or 1/4 of
the msggmp message).

msgrmpp = n ∗msgpr + 2 ∗msggmp

= n ∗msggmp/4 + 2 ∗msggmp

(2)

As a result, the total MMO of an ideal 3-way handshake
becomes:

ohd3way−ideal = (4n+ n2/4) ∗msggmp (3)

For the 3-way hybrid handshake, the total MMO is similar
to the ideal 3-way handshake approach. This is because the
PRD in the SM can identify the path record changes before
initiating a re-path trap. Therefore, the equation for the 3-
way hybrid handshake becomes:

ohd3way−hyb = ohd3way−ideal

= (4n+ n2/4) ∗msggmp

(4)

The total MMO of the 3-way wildcard handshake is twice
of the ideal 3-way handshake, because it always receives two
re-path traps back-to-back after a single fault. Eq. 5 defines
the total MMO of the 3-way wildcard handshake:

ohdwc = 2 ∗ ohd3way−ideal

= 2 ∗ (4n+ n2/4) ∗msggmp

(5)

For the repath-only mechanism, the host does not query
the SM for the latest path records as the updated path record
is already encapsulated in the re-path trap. Thus, the total
MMO of this approach can be represented by eq. 6 where
m is the total number of path record changes.

ohdrepath = msgrepath trap ∗m
= msggmp ∗m

(6)

Eq. 7 defines the latency for the 3-way wildcard hand-
shake. Firstly, it requires t1 to construct a SA query message.
Secondly, it spends t2 to wait for the updated path records
from the SA. Thirdly, it spends t3 to query all the active
QPs, (n − 1). Finally, it spends t4 to reconfigure the QPs
accordingly if they need to be updated. Due to the fact that
the SM cannot identify the path record changes, the second
re-path trap is triggered and this requires t5, before it repeats
the first two steps of the 3-way handshaking process again.

latwc = 2[t1 + t2 + (n− 1) ∗ t3] + (pr/n) ∗ t4 + t5 (7)

The representation of the latency for the 3-way hybrid
handshake is similar to latwc where t1 and t2 are required

in order to obtain the latest path records. However, with the
PRD in the SM, the second re-path trap can be avoided and
t5 is not required. So the equation for the 3-way hybrid
handshake latency becomes:

lat3way−hyb = t1 + t2 + (n− 1) ∗ t3 + (pr/n) ∗ t4 (8)

Eq. 9 represents the latency of the repath-only approach
where the querying of all the active QPs, (n−1) is repeated
by a host depending on (pr/n), which is the average number
of path changes per host. It also clearly illustrates that a
higher number for (n−1) or (pr/n) will increase the repath-
only latency.

latrepath = (n− 1) ∗ t3 ∗ (pr/n) + (pr/n) ∗ t4 (9)

Based on the above equations, we can determine the
scalability in terms of the total MMO and reconfiguration
latency for each proposal. Other than the variable n, which
is the number of switches within a subnet, the rest of the
variables of the equations are based on measurements from
our InfiniBand cluster or the IbMgtSim [26] simulator. The
t1, t2, t3, t4 and t5 are captured from kernel debug messages
in the cluster. The pr, which is the total path record changes,
is collected from a simple test case that is created using
IbMgtSim to simulate a link failure in different N x M mesh
topologies. The result of this test case is shown in Fig. 9.
The most important observation is that a single fault in a
subnet with more than 144 switches results in many path
record changes when using LASH. E.g. for a subnet with
400 switches, a total of 79798 path records have changed
after a single fault.
The plot in Fig. 10 shows the total MMO for each method.

The total MMO for both repath-only and 3-way wildcard
handshake have a comparable trend where they increase
tremendously after 144 switches. Both approaches require 20
Mbytes of MMO for a single fault in a 400 switches subnet.
On the contrary, the 3-way hybrid handshake only requires
half the message at approximately 10 Mbytes. Even though
the repath-only approach does not require handshaking, the
overhead of the high frequency of re-path traps is larger
than the overhead in the 3-way handshaking. Consequently,
the repath-only mechanism has a higher MMO during the
host reconfiguration. The MMO for the 3-way wildcard
handshake is always higher than the MMO for the 3-
way hybrid handshake due to the absence of the PRD. It
always triggers two continuous re-path traps with a single
fault, therefore, generates unnecessary management message
overhead.
In terms of latency, Fig.11 shows the host reconfiguration

latency for the three signalling methods based on eq. 7, 8
and 9. Both the 3-way handshake mechanisms scale well as
there are only a minor increment in latency when the subnet
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Figure 9. Number of path record changes for LASH routing as a function
of network size (single fault).

size increases from 6 to 400 switches. The repath-only
mechanism starts with a very low latency, but it increases
tremendously and goes beyond the total latency of the 3-way
wildcard handshake after 100 switches. The major factor is
that the updated path records are not delivered to the host
in-bulk but they are enclosed one at a time in a single re-path
trap. Consequently, a combination of a high number of QPs
and high frequency of re-path traps in a large-scale cluster
have amplified the latency of the repath-only mechanism.
Fig. 11 shows that a single fault in a subnet with 400
switches needs 9s to reconfigure the QPs on each host when
the repath-only mechanism is used. For the same subnet the
3-way wildcard handshake and the 3-way hybrid handshake
only needs 1.12s and 0.15s, respectively.
To summarise, the latency and the management message

overhead results from Fig. 10 and 11, respectively, shows a
similar observation to our experimental results. It has clearly
shown that the 3-way hybrid handshake is the best among
these three signalling methods. It also needs to be mentioned
that the repath-only mechanism is highly dependent on the
total path record changes where both results in Fig. 10 and
11 have a trend similar to the total path record changes in
Fig. 9.

VII. CONCLUSION AND FUTURE WORK

Rerouting around faulty components, on-the-fly policy
changes, and migration of jobs all require reconfiguration of
data structures in the Queue Pairs residing in the hosts on an
InfiniBand cluster. A part of this problem is related to how
to signal reconfiguration events from the subnet manager to
the hosts. In this paper we have proposed three methods
for signalling such reconfiguration events using a subnet
manager.
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Figure 10. Total management message overhead as a function of network
size during reconfiguration.
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Figure 11. Host stack latency as a function of network size during
reconfiguration.

Through measurements on our InfiniBand cluster and an
analytical study, we show that our best proposal reduces
reconfiguration latency by more than 90% and in certain
situations eliminates it completely compared to previous
efforts. Furthermore, the processing overhead at the subnet
manager is minimal.

This contribution combined with our previous work
in [21] is a complete prototype for host-side dynamic recon-
figuration in InfiniBand. So far we have demonstrated this in
the context of dynamic rerouting with faults. In the future,
we plan to combine this with virtualisation, live migration,
and traffic aware routing.
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Abstract—It is a well known fact that multiple virtual lanes
can improve performance in interconnection networks, but this
knowledge has had little impact on real clusters. Currently, a
large number of clusters using InfiniBand is based on fat-tree
topologies that can be routed deadlock-free using only one
virtual lane. Consequently, all the remaining virtual lanes are
left unused.

In this paper we suggest an enhancement to the fat-tree algo-
rithm that utilizes virtual lanes to improve performance when
hot-spots are present. Even though the bisection bandwidth in
a fat-tree is constant, hot-spots are still possible and they will
degrade performance for flows not contributing to them due
to head-of-line blocking. Such a situation may be alleviated
through adaptive routing or congestion control, however, these
methods are not yet readily available in InfiniBand technology.
To remedy this problem, we have implemented an enhanced
fat-tree algorithm in OpenSM that distributes traffic across
all available virtual lanes without any configuration needed.
We evaluated the performance of the algorithm on a small
cluster and did a large-scale evaluation through simulations.
In a congested environment, results show that we are able to
achieve throughput increases up to 38% on a small cluster and
from 221% to 757% depending on the hot-spot scenario for a
648-port simulated cluster.

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today, and for
clusters based on InfiniBand (IB) technology the fat-tree is
the dominating topology. This includes large installations
such as the Roadrunner, Ranger, and JuRoPa [1]. There are
three properties that make fat-trees the topology of choice for
high performance interconnects: deadlock freedom, the use
of a tree structure makes it possible to route fat-trees without
using virtual lanes for deadlock avoidance; inherent fault-
tolerance, the existence of multiple paths between individual
source destination pairs makes it easier to handle network
faults; full bisection bandwidth, the network can sustain
full speed communication between the two halves of the
network.
For fat-trees, as with most other topologies, the routing

algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts trying to improve the routing performance.
This includes the current approach that the OpenFabrics
Enterprise Distribution (OFED) [2], the de facto standard for

IB system software, is based on [3], [4]. These proposals,
however, have several limitations when it comes to flexibility
and scalability. One problem is the static routing used by IB
technology that limits the exploitation of the path diversity
in fat-trees as pointed out by Hoefler et al. in [5]. Another
problem with the current routing are its shortcomings when
routing oversubscribed fat-trees as addressed by Rodriguez
et al. in [6]. A third problem is that performance is reduced
when the number of compute nodes connected to the tree
is reduced as addressed by Bogdanski et al. in [7]. And
finally we have the problem of reducing the negative impact
of congestion due to head-of-line blocking (HOL) [8]. This
is not a routing problem per se as this should be handled
by a congestion control mechanism, e.g. the mechanism
found in IB [9], [10]. This mechanism, however, has its
own set of challenges; one being that it is not generally
available for existing IB hardware, another being that it is
not yet understood how to configure congestion control for
large networks [11]. Therefore, it is important to minimize
the problem by other means. We suggest to do this using
a combination of efficient routing and virtual lanes in an
implementation that can be directly applied to IB or other
technologies supporting multiple virtual channels.
Virtual lanes (or channels) were first introduced by Dally

in the late eighties [12]. The intention at the time was
to alleviate the restriction on routing flexibility that was
imposed by deadlock considerations. In 1992 he published
an analysis on the effect that virtual channels could have on
network performance [13]. In spite of his positive findings,
the usage of virtual channels has been confined to flexible
routing and service differentiation, both in academia and in
the industry. This is partly due to the fact that the analysis in
the 1992 paper was based on assumptions that were not true
for real technologies - in particular that a source was free to
decide virtual lanes at the packet level, and not at the stream
level. More recent works have addressed the congestion issue
in several other ways. A recent proposal by Rodriguez et
al. [14] also addresses this from a routing perspective, but
in an application-specific manner and without using virtual
lanes. Another approach using a combination of multipath
routing and bandwidth estimation was proposed by Vishnu
et al. in [15], but this is significantly more complex to
implement than our proposal. A third proposal by Escudero-
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Sahuquillo et al. [16] uses multiple queues at the input ports
in the switches to avoid HOL, but this is not compatible with
any existing network technology and requires new hardware
to be built.
In this paper, we present the first results that indicate the

gain of adding virtual lanes on a real commercial technology.
These results deviate from Dally’s in two respects. Firstly,
they indicate that the performance gain is significantly bigger
than he reported. Secondly,
that most of the gain can be realized by only 2 VLs,

making it an obvious, readily available and potent improve-
ment for all existing InfiniBand clusters. To be specific, we
analyze the performance of the fat-tree routing algorithm in
OpenSM in a hot-spot scenario and suggest a new routing
algorithm, vFtree, that improves performance when hot-
spots are present by using virtual lanes. Through a prototype
implementation in OpenSM we demonstrate, using a small
cluster, how virtual lanes can be used to achieve the same
effect as IB congestion control. Then we generalize this
into a new fat-tree routing algorithm that we evaluate for
performance on a small cluster and for performance and
scalability through simulations.
The rest of this paper is organized as follows: we intro-

duce the InfiniBand Architecture in Section II followed by a
description of fat-tree topologies and routing in Section III
and a motivation for our proposal in Section IV. The
algorithm is described in Section V. Then we describe the
experimental setup in Section VI followed by the perfor-
mance analysis of the experimental and simulated results in
Section VII. Finally, we conclude in Section VIII.

II. THE INFINIBAND ARCHITECTURE

InfiniBand is a serial point-to-point full-duplex technol-
ogy, and the InfiniBand Architecture was first standardized
in October 2000 [9]. Due to efficient utilization of host side
processing resources, IB is scalable beyond ten thousand
nodes with each having multiple CPU cores. The current
trend is that IB is replacing proprietary or low-performance
solutions in the high performance computing domain [1],
where high bandwidth and low latency are the key require-
ments.
The de facto system software for IB is OFED devel-

oped by dedicated professionals and maintained by the
OpenFabrics Alliance [2]. OFED is open source and is
available for both GNU/Linux and Microsoft Windows. The
improved vFtree algorithm that we propose in this paper
was implemented and evaluated in a development version
of OpenSM, which is a subnet manager distributed together
with OFED.

A. Subnet Management

InfiniBand networks are referred to as subnets, where
a subnet consists of a set of hosts interconnected using
switches and point-to-point links. An IB fabric constitutes of

one or more subnets, which can be interconnected together
using routers. Hosts and switches within a subnet are ad-
dressed using local identifiers (LIDs) and a single subnet is
limited to 48151 LIDs.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initializing and bringing up the
network, including the configuration of all the IB ports
residing on switches, routers and host channel adapters
(HCAs) in the subnet. At the time of initialization the SM
starts in the discovering state where it does a sweep of the
network in order to discover all switches and hosts. During
this phase it will also discover any other SMs present and
negotiate who should be the master SM. When this phase
is complete the SM enters the master state. In this state, it
proceeds with LID assignment, switch configuration, routing
table calculations and deployment, and port configuration. At
this point the subnet is up and ready for use. After the subnet
has been configured, the SM is responsible for monitoring
the network for changes.

A major part of the SMs responsibility are routing table
calculations. Routing of the network aims at obtaining full
connectivity, deadlock freedom, and proper load balancing
between all source and destination pairs. Routing tables must
be calculated at network initialization time and this process
must be repeated whenever the topology changes in order to
update the routing tables and ensure optimal performance.

B. Virtual Lanes

InfiniBand is a lossless networking technology, where
flow-control is performed per virtual lane (VL) [13]. The
concept of virtual lanes is shown in Fig. 1. VLs are logical
channels on the same physical link, but with separate buffer-
ing, flow-control, and congestion management resources.
Fig. 2 shows an example of per VL credit-based flow-control
where VL 0 runs out of credits after cycle 1 (depicted by a
bold D) and is unable to transmit until credit arrives in cycle
9 (depicted by a bold C). As the other lanes have sufficient
credit, they are unaffected and are able to use the slot that
VL 0 would otherwise use. Transmission resumes for VL 0
when credit arrives.

The concept of virtual lanes makes it possible to build
virtual networks on top of a physical topology. These
virtual networks, or layers, can be used for various purposes
such as efficient routing, deadlock avoidance, fault-tolerance
and service differentiation. Our proposal exploits VLs for
improved routing and network performance.

The VL architecture in IB consists of four mechanisms:
service levels, virtual lanes, virtual lane weighting, and
virtual lane priorities. A service level (SL) is a 4-bit field
in the packet header that denotes what type of service a
packet shall receive as it travels toward its destination. This
is supplemented by up to sixteen virtual lanes. A minimum
of two VLs must be supported: VL 0 as the default data
lane and VL 15 as the subnet management traffic lane. By
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Figure 2. Virtual lane flow control in InfiniBand.

default, the sixteen SLs are mapped to the corresponding VL
by the SL number, i.e. SLi is mapped to V Li. If a direct
SL to VL mapping is not possible, the SL will be degraded
according to a SL to VL mapping table. In the worst case
only one data VL is supported and all SLs will be mapped
to VL 0. In current IB hardware it is common to support
nine VLs: one for management and eight for data.
Each VL can be configured with a weight and a priority,

where the weight is the proportion of link bandwidth a given
VL is allowed to use and the priority is either high or low.
Our contribution in this paper will not make use of the
weight and priority features in IB, we will use a direct SL to
VL mapping and equal priority for all VLs. For more details
about the weight and priority mechanisms consult [9], [17].

III. FAT-TREES

The fat-tree topology was introduced by C. Leiserson in
1985 [18], and has since then become a common topology in
high performance computing (HPC). The fat-tree is a layered
network topology with link capacity equal at every tier (ap-
plies for balanced fat-trees), and is commonly implemented
by building a tree with multiple roots, often following the m-
port n-tree definition [19] or the k-ary n-tree definition [20].
With the introduction of IB the fat-tree became the

topology of choice due to its inherent deadlock freedom,
fault tolerance, and full bisection bandwidth properties. It
is used in many of the IB installations in the Top500 List,
including supercomputers such as Los Alamos National Lab-
oratory’s Roadrunner, Texas Advanced Computing Center’s
Ranger, and Forschungszentrum Juelich’s JuRoPa [1]. The
Roadrunner differs from the two other examples in that it
uses an oversubscribed fat-tree [21]. By carefully designing
an oversubscribed fabric the implementation costs of an HPC
cluster can be significantly reduced with only a limited loss
in the overall application performance [22].
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Figure 3. A simple congestion control experiment.

For fat-trees, as for most other network topologies, the
routing algorithm is essential in order to exploit the available
network resources. In fat-trees the routing algorithm consists
of two distinct stages: the upward stage in which the packet
is forwarded from the source, and the downward phase
when the packet is forwarded toward the destination. The
transition between those two stages occurs at the least
common ancestor, which is a switch that can reach both
the source and the destination through its downward ports.
The algorithm ensures deadlock-freedom, and the IB im-
plementation available in OpenSM also ensures that every
path toward the same destination converges at the same root
node, which causes all packets toward that destination to
follow a single dedicated path in the downward direction [4].
By having dedicated downward paths for every destination,
contention in the downward stage is effectively removed
(moved to the upward stage), so that packets for different
destinations have to contend for output ports in only half
of the switches on their paths. In oversubscribed fat-trees,
the downward path is not dedicated and is shared by several
destinations.

Since the fat-tree routing algorithm only requires a single
VL, the remaining virtual lanes are available for other
purposes such as quality of service or for reducing the
negative impact of congestion induced by the head-of-line
blocking as we will do in this paper.

IV. MOTIVATION

Algorithmic predictability of network traffic patterns is
reduced with the introduction of virtualization and many-
cores systems. When multiple virtualized clients reside on
the same physical hardware, the network traffic becomes an
overlay of multiple traffic patterns that might lead to hot-
spots in the network. A hot-spot occurs if multiple flows are
destined toward a single endpoint. Common sources for hot-
spots include complex traffic patterns due to virtualization,
migration of virtual machine images, checkpoint and restore
mechanisms for fault tolerance, and storage and I/O traffic.

When a hot-spot exists in a network, the flows designated
for the hot-spot might reduce the performance for other
flows, called victim flows, not designated to the hot-spot.
This is due to the head-of-line (HOL) blocking phenomena
created by the congested hot-spot [8]. One way to avoid
this problem is to use a congestion control mechanism such
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as the one recently specified and implemented for IB [9].
This mechanism was evaluated in hardware and shown to
be working by Gran et al. [11], however this solution is
not yet generally available. Furthermore, the selection of the
appropriate CC parameters highly depends on the topology,
is poorly understood, and incorrect parameters might lead
to performance degradation.
It is a well known fact that using virtual lanes is one

of the ways to alleviate network congestion [12], [13]. To
demonstrate this as a plausible solution to alleviate conges-
tion, we performed three simple hardware experiments on
the topology presented in Fig. 3. In all the three experiments
we used the following synthetic communication pattern: 1-
5, 2-6, 8-6 and 7-6 which creates a hot-spot on endpoint
6. In Fig. 5a we show the per flow throughput for the
first experiment where we observe that the victim flow
(1-5) is affected by the congestion to the same degree
as the flows contributing to congestion, even though the
flow is not destined to the congested endpoint. This is
caused by two main reasons. Firstly, the victim flow (1-5)
is sharing the 32 Gb/s (effective bandwidth) link with the
contributors to the congestion. Secondly, the HOL blocking
reduced its bandwidth to the same share of switch-to-switch
link bandwidth as the contributor, which is approximately
4.5 Gb/s. In Fig. 5b we present the result from the second
experiment where the IB congestion control mechanism was
turned on and configured using the parameters given by
Gran et al. [11]. Now we observe that the victim flow is
not deteriorated by HOL blocking and it manages to get
about 13 Gb/s independent of other traffic flows.
However, some oscillations occur among the flows due to

the fact that the congestion control mechanism is dynami-
cally adjusting the injection rate of the senders. In Fig. 5c
we show the result of the third experiment where the victim
flow (1-5) was manually assigned to a separate virtual lane.
The measured result is similar to the experiment with IB
CC turned on. In fact, the total network throughput shown in
Fig. 6 is slightly better because we do not see the oscillations
of IB CC mechanism. However, the traffic patterns used in
this scenario are artificial and the victim flow is known in
advance. Since we are unable to adapt to the congestion with
this approach, we must rely on the statistical probability of
improvements occurring when we distribute the traffic across
a set of virtual lanes.

V. DESIGN OF CONGESTION AVOIDANCE MECHANISM

BASED ON ROUTING

In this section, we propose a generic and simple routing-
based congestion avoidance mechanism, which may eas-
ily be applied to high-performance network technologies
supporting VLs. Our proposed routing algorithm uses the
available virtual lanes to reduce the hot-spot problem by
distributing source destination pairs across all available
VLs. The approach is generic and can be applied to any

(a) A hot-spot scenario in a non-oversubscribed fat-
tree.

(b) A hot-spot scenario in a oversubscribed fat-tree.

Figure 4. Experiment scenarios for the hardware testbed.

topology, but in this paper we focus on fat-trees because
their regular structure makes it straightforward to distribute
the destinations across VLs and they do not require VLs to
be routed deadlock-free.

A. vFtree - Fat-tree Routing using Virtual Lanes

Routing in IB is a table lookup algorithm where each
switch holds a forwarding table containing a linear list of
LIDs (destination addresses) and the corresponding output
ports. Our proposed algorithm is an extension of the current
fat-tree routing algorithm that is available in OpenSM 3.2.5.
The main feature of the new algorithm is to isolate the
possible endpoint congestion flows by distributing source-
destination pairs across virtual lanes. Our simple experi-
ments in Section IV showed that virtual lanes can be used as
a mechanism to alleviate endpoint congestion if the victim
flow is identified. Unfortunately, as we have no reliable way
of identifying victim flows, we propose to evenly distribute
all source-destination pairs that share the same link in the
upward direction across the available VLs.
The current fat-tree routing algorithm proposed by Zahavi

et al. [4] is already optimized to avoid the contention for shift
all-to-all communication traffic patterns. In a fully populated
and non-oversubscribed fat-tree, this algorithm is equalizing
the load on each port and always selects a different upwards
link for destinations located on the same leaf switch. For
example, in Fig. 4a destination 3 is reached from leaf switch
A using link 1, while destination 4 is reached using link 2. It
means that the destinations sharing the same upstream link
are always located on different leaf switches.
Our algorithm works on top of this and distributes all
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Figure 5. Per flow throughput comparison for IB CC experiment on Fig. 3.
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Figure 6. The total network throughput for experiment in Fig. 3.

destinations sharing the same upstream link across different
virtual lanes. In detail, this means that from switch A we
reach destination 3 using link 1 and VL 0, while destination
5 also uses link 1, but has VL 1 assigned. Consequently, if
one of the designated destinations is the contributor to an
endpoint hot-spot, the other destination flow (victim flow)
sharing the same upstream port is not affected by HOL
blocking because it uses a different virtual lane with its own
buffering resources.
Ideally, the number of VLs required by our algorithm

depends on the number of destinations that share the same
upstream link, which is equivalent to the N − 1 where N is
the number of leaf switches. The N − 1 virtual lanes cover
all the traffic routed to destinations connected to other leaf
switch except those destinations that are connected to the
same leaf switch as the traffic source. In the implementation,
however, the number of virtual lanes required is higher due
to a requirement in the IB specification. The specification
and the current implementation requires that the VL used
from A to B is symmetric, which means that the communi-
cation from A to B and from B to A must be able to use
the same VL.
The core functionality of the vFtree routing is divided into

two algorithms as presented in Algo. 1 and Algo. 2. The
former one distributes leaf < swsrc, swdst > pairs across
the available virtual lanes.
The outer for loop iterates through all the source leaf

switches and the inner for loop iterates through all the
destination leaf switches. In the inner for loop we check
whether a VL has been assigned to a < swsrc, swdst > pair,
and, if not, we assign a VL accordingly. The requirement
is that the VL assigned to a < swsrc, swdst > must be the
same as the VL assigned to < swdst, swsrc > pair. The
first if...else block starting at line 2 determines the initial vl
value used for the inner for loop so the overlapping of VLs
is minimized. The maxvl variable is an input argument for
OpenSM that provides flexibility to the cluster administrator
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who may wish to reserve some VLs for quality of service
(QoS).

When a connection (Queue Pair) is being established in
IB, the source node will query the path record and then
Algo. 2 is executed. The arguments passed to this function
are the source and destination addresses. Using these values,
the source node obtains the VL from the array generated in
Algo. 1 to be used for communication with the destination
node.

Algorithm 1 Assign Virtual Lanes
Require: Routing table has been generated.
Ensure: Symmetrical VL for every <src, dst> pair.
1: for swsrc = 0 to max leaf switches do
2: if odd(swsrc × 2/maxvl) then
3: vl = ((swsrc × 2) % maxvl) + 1
4: else
5: vl = (swsrc × 2) % maxvl

6: end if
7: for swdst = 0 to max leaf switches do
8: if swdst > swsrc then
9: if VL[swsrc][swdst].set = FALSE then
10: VL[swsrc][swdst].vl = vl
11: VL[swsrc][swdst].set = TRUE
12: end if
13: if VL[swdst][swsrc].set = FALSE then
14: VL[swdst][swsrc].vl = vl
15: VL[swdst][swsrc].set = TRUE
16: end if
17: vl = incr(vl) % maxvl

18: else if swdst == swsrc then
19: VL[swdst][swsrc].vl = 0
20: VL[swdst][swsrc].set = TRUE
21: end if
22: end for
23: end for

However, in OFED one major difference between vFtree
and the conventional fat-tree routing is that for an application
to acquire the correct SL in a topology routed using vFtree,
a communication manager (CM) needs to be queried. The
reason for that is only the CM can return the SL that was
set up by the SM, and this SL implies which VL should be
used. Otherwise, the default VL would be used, which is
VL 0.

Algorithm 2 Get Virtual Lanes (LIDsrc,LIDdst)
1: dstid = get leaf switch id(LIDdst)
2: srcid = get leaf switch id(LIDsrc)
3: return VL[srcid][dstid]

B. Limitations

The main limitation of our approach is related to the
number of VLs used. The IB specification defines 16 VLs,
however, the actual implementation in today’s hardware
is limited to 8 VLs. This is insufficient to cover all the
possibilities of endpoint congestion in a large-scale cluster
which requires N − 1 VLs where N is the number of
leaf switches. But as our results in Section VII show, large
improvements are still possible with only two VLs. Another
limitation is related to the use of VLs for other purposes
such as QoS. QoS can be used together with vFtree routing,
but then the number of SLs is reduced from 8 to 4 because
for each SL two VLs are consumed by vFtree routing. For
topologies other than fat-tree, which might use VLs for
deadlock-free routing, the number of available SLs may be
further reduced.

Furthermore, the assumption made for the vFtree algo-
rithm is that the end node distribution is uniform. This is
because the current version of the fat-tree routing algorithm
has limitations when it comes to properly balancing the paths
when the end node distribution is nonuniform as mentioned
in [7].

VI. EXPERIMENT SETUP

To evaluate our proposal we have used a combination of
simulations and measurements on a small IB cluster. In the
following subsections, we present the hardware and software
configuration used in our experiments.

A. Experimental Test Bed

Our test bed consists of twelve nodes and four switches.
Each node is a Sun Fire X2200 M2 server that has a dual
port Mellanox ConnectX DDR HCA with an 8x PCIe 1.1
interface, one dual core AMD Opteron 2210 CPU, and
2GB of RAM. The switches are two 24-port Infiniscale-III
DDR switches and two 36-port Infiniscale-IV QDR switches
which we used to construct the topologies illustrated in
Fig. 3 and Fig. 4. All the hosts have Ubuntu Linux 8.04
x86 64 installed with kernel version 2.6.24-24-generic and
the subnet is managed by a modified version of OpenSM
3.2.5 that contains the implementation of the vFtree routing
algorithm. Our Perftest [23] was also modified to support
regular bandwidth reporting and continuous sending of traf-
fic at full link capacity. The modified Perftest is used to
generate the hot-spots shown in Fig. 4a and Fig. 4b.

B. Simulation Test Bed

To perform large-scale evaluations and verify the scala-
bility of our proposal, we developed an InfiniBand model
for the OMNeT++ simulator. The model contains an im-
plementation of HCAs and switches with routing tables
and virtual lanes. The network topology and the routing
tables were generated using OpenSM and converted into
OMNeT++ readable format in order to simulate real-world
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systems. In the simulator, every source-destination pair has
a VL assigned according to Algo. 1.
The simulations were performed on a 648-port fat-tree

topology, which is the largest possible 2-stage fat-tree topol-
ogy that can be constructed using 36-port switch elements.
When fully populated this topology consists of 18 root
switches and 36 leaf switches. Additionally, we performed
the simulations of a 648-port topology that had an oversub-
scription ratio of 2:1. This was achieved by removing half
of the root switches from the topology (9 switches). We
chose a 648-port fabric because it is a common configuration
used by switch vendors in their own 648-port systems [24],
[25], [26]. Additionally, such switches are often connected
together to form larger installations like JuRoPa. For the
simulations we used a nonuniform traffic pattern, where 5%
of all packets generated by a computing node was sent to
a predefined hot-spot and the rest of the traffic was sent
to a randomly chosen node. Additionally, we used multiple
localized hot-spots by partitioning the network into three or
nine segments, which corresponded to the physical features
of the 648-port switch built in such a way that four leaf
switch elements are placed on a single modular card.
Each simulation run was repeated eight times with differ-

ent seeds and the average of all simulation runs was taken.
The packet size was 2 kB for every simulation. Furthermore,
we have tuned the simulator to the hardware so we could
observe the same trends when performing the data analysis.
The results obtained through simulations exhibited the same
trends as the results obtained from the IB hardware, with
a maximum difference of 12% between the hardware and
simulations.

VII. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements
on an experimental cluster and simulations of large-scale
topologies. For the cluster measurements we use the per flow
throughput and the total network throughput as our main
metrics to compare the performance of our proposed vFtree
algorithm and the existing fat-tree algorithm. Additionally
we use the results from the HPCC benchmark on certain
scenarios to show how the algorithm impacts application
traffic. For the simulations we use the achieved average
throughput per end node as the metric for measuring the
performance of the vFtree algorithm on the simulated 648-
port topology. In both experimental cluster and simulations,
all traffic flows are started at the same time and they are
based on transport layer of the IB stack.

A. Experimental results

We carried out two different experiments on two different
configurations which are a non-oversubscribed fat-tree as
shown in Fig. 4a and 2:1 oversubscribed fat-tree as shown
in Fig. 4b. In the first experiment for the first configuration,
a collection of synthetic traffic patterns ({1-5, 2-3, 3-5, 4-1,
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Figure 7. Total network throughput using 1 to 3 VLs for the non-
oversubscribed fat-tree and 1 to 4 VLs for the oversubscribed one (Fig. 4).

6-5}) was selected to generate a hot-spot. In Fig. 4a node 5
is the hot-spot and the nodes 1, 3 and 6 are the contributors
to the hot-spot. The flows 2-3 and 4-1 represent the victim
flows. The purpose of the first experiment is to illustrate
the negative impact the HOL blocking has on the victim
flows. Additionally, it also shows how the vFtree routing
algorithm avoids the negative effects of endpoint congestion.
In the second experiment, we replaced the victim flows with
the HPC challenge benchmark [27]. Our HPCC benchmark
b eff test suite was modified to generate 5000 random
traffic patterns in order to obtain a more accurate result for
randomly ordered ring bandwidth test. Even though the con-
gested flows are still synthetically generated, this scenario
resembles the network environment that an application could
experience during congestion.

On the second configuration, shown in Fig. 4b, we re-
peated both of the experiments. A collection of synthetic
traffic patterns {1-9, 6-9, 8-11, 10-9} was used for the first
experiment. In this case, the hot-spot was at node 9 and
the contributors were the nodes 1, 6 and 10. The flow 8-11
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Figure 8. Per flow throughput for the fat-tree in Fig. 4a using 1 to 3 VLs.

represents the victim flow.
The first experiment (synthetic traffic) is described in

Sections VII-A1 for non-oversubscribed fat-tree and VII-A2
for the oversubscribed one, and the second experiment
(HPCC benchmark) is described in Section VII-A3 for both
fat-tree topologies.
1) Non-oversubscribed fat-tree: Fig. 8 shows the per flow

throughput of the first experiment when using 1 to 3 VLs.
Fig. 8a shows the per flow throughput for the conventional
fat-tree routing algorithm using one VL. The congestion
towards node 5 blocks the traffic on physical link 1 and
3, and makes flows 4-1 and 2-3 victim flows. For these
flows the throughput is less than half of the bandwidth that
is available in the network, but due to the HOL blocking
the bandwidth of flow 2-3 is reduced to the bandwidth that
the congested flow 1-5 achieves across link 1. For the same
reason flow 4-1 is reduced to the bandwidth of the congested
flow 3-5. Furthermore, we also observe that, owing to the
parking lot problem [28], flow 6-5 gets a higher share of the
bandwidth toward destination 5 than flow 1-5 and 3-5.
If we manually assign the victim flows to a different

VL, the situation improves as shown in Fig. 8b. The victim
flows are able to avoid the HOL blocking, giving each of
them an effective throughput of approximately 7 Gb/s, which
corresponds to the actual available bandwidth in the network.
The parking lot problem, however, is still present and we can
see unfairness among the flows toward the endpoint hot-spot.
Fig. 8c shows the results of the repeated experiment with

3 VLs where both the HOL blocking of the victim flows
and the parking lot problem toward the congested endpoint
are solved. The reason for that is that the vFtree algorithm
placed the routes for the victim flows in their own separate
VLs, which solves the HOL blocking. Additionally, it placed
the flows 1-5 and 3-5 on different VLs making the link
arbitration between the sources 1,3, and 6 fair at switch C.
To summarize, we showed that the vFtree algorithm

reduced both the HOL blocking and the parking lot problem
when applied to fat-tree networks. The overall increase
in total network throughput is approximately 38% when
compared to the original fat-tree routing algorithm as shown
in Fig. 7a.
2) 2:1 Oversubscribed network: In an oversubscribed

network, the victim flows may suffer from HOL blocking
in two different ways.
The first case is similar to the non-oversubscribed network

where the performance reduction of the victim flow is due to
a shared upstream link with the contributors to congestion.
In the second case, the victim flow shares both the

upstream and the downstream link toward the hot-spot with
the contributors, even though the victim flow is eventually
routed to a different destination. In this section, we focus on
the latter case because for the former case the results will
be similar to the non-oversubscribed network scenario from
Section VII-A1.
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Figure 9. Per flow throughput for the fat-tree in Fig. 4b using 1 to 4 VLs.

Fig. 9a shows the per flow throughput for the conven-
tional fat-tree routing algorithm where the congestion in the
network (Fig. 4b) blocked the victim flow (8-11). Among
the congested flows, flow 6-9 obtains the lowest bandwidth
because it also shares the upstream/downstream path with
the victim flow. As a result, this also affects the victim
flow (8-11) because it receives the same bandwidth across
link 5 as flow 6-9 due to the HOL blocking, approximately
2.1 Gb/s.
If we manually assign the victim flow to a different VL,

the situation improves as Fig. 9b shows. The results show
that the victim flow (8-11) is able to avoid the HOL blocking
and obtains approximately 7.5 Gb/s, the actual effective
bandwidth that is available for this flow. As previously,
unfairness exists among the contributing flows (1-9, 6-9 and
10-9) due to the parking lot problem.
As shown in Fig. 9d, the parking lot problem is resolved

with 4 VLs where each of the contributors of the congestion
manages to obtain 1/3 of the effective link bandwidth at

approximately 4.5 Gb/s. Another observation is that the
victim flow is getting a slightly lower bandwidth. This is due
to the fact that the victim flow shares the downstream link
with the rest of the congestion contributors. With a separate
VL for each congestion contributor, flows 1-9 and 6-9 have
an increased link bandwidth and, consequently, reduce the
victim flow’s bandwidth as shown in Fig. 9d.

In an oversubscribed fat-tree, utilizing more virtual lanes
does not necessarily mean increasing the performance for
certain types of traffic patterns. As shown in Fig. 7b, the
total network bandwidth is higher with only 2 VLs when
compared to the bandwidth obtained with 4 VLs. This is
because with separate VL for each congestion contributor,
the parking lot problem is resolved but the share of the link
bandwidth given to the victim flow is reduced. Furthermore,
if we would like to consider both cases of victim flow
occurrence, it would require more VLs. Thus, in order to
make our algorithm more predictable, we have decided to
support only the first case of the victim flow as discussed in
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Table I
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH CONVENTIONAL FAT-TREE ROUTING AND VFTREE.

Network latency and throughput a) conventional Ftree b) vFtree c) Improvement
Min Ping Pong Lat. (ms) 0.002116 0.002116 0.0%
Avg Ping Pong Lat. (ms) 0.022898 0.013477 41.14%
Max Ping Pong Lat. (ms) 0.050500 0.043005 14.84%
Naturally Ordered Ring Lat. (ms) 0.021791 0.014591 33.04%
Randomly Ordered Ring Lat. (ms) 0.024262 0.015826 34.77%
Min Ping Pong BW (MB/s) 94.868 345.993 264.71%
Avg Ping Pong BW (MB/s) 573.993 830.909 44.75%
Max Ping Pong BW (MB/s) 1593.127 1594.338 0.07%
Naturally Ordered Ring BW (MB/s) 388.969246 454.236253 16.78%
Randomly Ordered Ring BW (MB/s) 331.847978 438.604531 32.17%

Table II
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH CONVENTIONAL FAT-TREE ROUTING AND VFTREE IN AN OVERSUBSCRIBED NETWORK.

Network latency and throughput a) conventional Ftree b) vFtree c) Improvement
Min Ping Pong Lat. (ms) 0.002176 0.002176 0.0%
Avg Ping Pong Lat. (ms) 0.015350 0.009491 38.17%
Max Ping Pong Lat. (ms) 0.050634 0.043496 14.10%
Naturally Ordered Ring Lat. (ms) 0.021601 0.015616 27.70%
Randomly Ordered Ring Lat. (ms) 0.023509 0.016893 28.14%
Min Ping Pong BW (MB/s) 126.135 342.553 171.58%
Avg Ping Pong BW (MB/s) 825.874 1031.098 24.85%
Max Ping Pong BW (MB/s) 1594.186 1594.338 0.01%
Naturally Ordered Ring BW (MB/s) 369.021995 436.588321 18.31%
Randomly Ordered Ring BW (MB/s) 254.737276 355.412454 39.52%

earlier in this section. Nevertheless, we still manage to get
about 20% improvement with vFtree routing algorithm that
uses 3 VLs when compare with conventional fat-tree routing
as illustrated in Fig. 7b. The reason behind this is that the
parking lot problem is solved when each of the contributors
to the hot-spot has a fair share of link bandwidth, but HOL
blocking for the victim flow is not avoided. As observed on
Fig. 9c, each of the flows (including the victim flow) obtains
approximately 4.5 Gb/s of effective link bandwidth.
3) HPC challenge Benchmark: The second experiment is

a combination of the I/O traffic generated by Perftest [23]
and the application traffic generated by the HPCC bench-
mark [27]. The endpoint hot-spot is created using Perftest
by running the traffic pattern presented in Fig. 4a for the
non-oversubscribed configuration and in Fig. 4b for the
2:1 oversubscribed configuration). Simultaneously, we are
running the HPCC benchmark in order to study the impact of
congestion on the traffic generated by the HPCC benchmark.
Table I shows the comparison of the HPCC b eff results

between the conventional fat-tree routing and our vFtree
routing algorithm in the presence of congestion in a non-
oversubscribed network. The most interesting observation
is that the randomly ordered ring bandwidth increased by
32.1% with our vFtree routing algorithm which uses only 3
VLs. We can see the improvement for all the latency and
bandwidth tests, which is expected, as they correspond to
the synthetic traffic patterns experiment that was carried out
in the previous section. The results for the oversubscribed
network are presented in Table II and the same trends are
visible as for the non-oversubscribed network. We also man-
aged to achieve an improvement in most of the latency and
bandwidth tests when using our vFtree routing algorithm.
These results clearly illustrate the performance gain with

our vFtree routing algorithm from the application traffic
pattern’s point of view.

B. Simulation results

An important question is how well the presented algorithm
scales. Specifically, the purpose of the simulations was to
show that the same trends exist when the number of nodes is
large and the network topology corresponds to real systems.
We performed the simulations on a 648-port switch without
oversubscription and with 2:1 oversubscription.

1) Non-oversubscribed network: For a single hot-spot
scenario, node 1 connected to switch 1 on modular card
1 (see Section VI-B for modular card definition) was the
hot spot, and all the other nodes in the fabric were the
contributors to the hot-spot. In case of three hot-spots, nodes
1 (modular card 1, switch 1), 217 (modular card 4, switch
1), and 433 (modular card 7, switch 1) were the hot-spots
and the contributors were the nodes connected to modular
cards 1-3 for node 1, modular cards 4-6 for node 217, and
modular cards 7-9 for node 433. For a nine hot-spot scenario,
the hot-spots were nodes 1, 73, 145, 217, 289, 361, 433,
505 and 577 connected to switch 1 at each modular card,
and the contributors for each hot-spot were all the the other
nodes connected to the same modular card as the hot-spot.
In each scenario, the contributors sent 5% of their overall
traffic to the hot-spot and 95% of other traffic to any other
randomly chosen node in the fabric (it could also be any of
the predefined hot-spots).
For the case presented on Fig. 10a, we observe that a

single hot-spot dramatically decreases the average through-
put per node because of the large number of victim flows.
If more hot-spots are added, but the contributor traffic
is localized (i.e. less victim flows), we observe that the
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(b) Simulation results for 648-port switch with 2:1 oversubscription.

Figure 10. Simulation results for 648-port switch.

throughput per node increases. The most important obser-
vation is the fact that every additional VL for data also
reduces the number of victim flows, therefore increasing
the network performance. The largest relative increase in
the performance is obtained when adding a second VL. The
relative improvement when compared with 1 VL is: 459%
for 2 VLs, 676% for 4 VLs, 744% for 6 VLs and 757%
for 8 VLs. The improvements when hot-spots are localized
are smaller because of the fewer victim flows, which is
best illustrated by the example from nine hot-spots case
when comparing 1 VL to 8 VLs scenarios where we see an
improvement of 221%. It also needs to be mentioned that the
difference in average throughput per node between 6 VLs
and 8 VLs is in a range of 400 Mb/s, so every additional VL
provides a smaller throughput increase. Furthermore, it has
to be noted that due to the randomness of the traffic there
may exist more hot-spots in the network, and these hot-spots
are not necessarily localized, which would explain the drops
in average throughput per node for 2 VL scenario (yellow
bars).

2) Oversubscribed network: Fig. 10b shows the results
of a similar experiment performed on a 648-port network
with 2:1 oversubscription. For every scenario, the hot-spots
were chosen in the exact same manner as for the non-
oversubscribed network and the same traffic patterns were
used. We observe that the average throughput per node is
generally halved when compared to the previous experiment
with a non-oversubscribed topology. This is caused by the
fact that the downward paths in the tree are shared by two
destinations. The improvements when using 8 VLs compared
to 1 VL are 503%, 270% and 90% for one, three or nine
hot-spots respectively. Even though the result for nine hot-
spots with 6 VLs was better (97% gain when compared
with 1 VL) than with 8 VLs, we may assume this was a
result of the randomness of the traffic as described in the
previous section. This shows that the presented algorithm

also reduced the number of the victim flows in an oversub-
scribed tree scenario, which makes it usable not only for
small topologies, but also for real-world fabric examples.
To summarize, the large differences between the hardware

results and the simulation results can be attributed to the
fact that the simulated topologies are much larger in size
than the hardware topologies we were able to construct. In
the hardware the 38% improvement is visible for only two
contributors sending to a single hot-spot. In the simulation,
the worst case is if 5% of all 648 nodes are sending to a
single hot-spot (plus any of the 95% of other nodes with a
probability of 1/648). It means we may safely assume that
at any point in time at least 32 nodes are the contributors
to the hot-spot. Therefore, every additional VL improves
the network performance by reducing the number of victim
flows, and because there are so many contributors and many
more victim flows, the improvement is much larger for large-
scale scenarios than for smaller topologies.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that by extending the fat-
tree routing with VLs, we are able to dramatically improve
the network performance in presence of hot-spots. Our solu-
tion is not only inexpensive, scalable, and readily available,
but also does not require any additional configuration. By
implementing the vFtree algorithm in OpenSM, we have
shown that it can be used with the current state-of-the-art
technology, and that the achieved improvements vary from
38% for small hardware topologies to 757% for large-scale
simulated clusters when compared with the conventional fat-
tree routing. Furthermore, the ideas from our proposal can
be ported to other types of routing algorithms and similar
improvements would be expected. Moreover, the solution is
not restricted to InfiniBand technology only, and the concept
can be applied to any other interconnects that support VLs.
In future, we plan to expand this solution to be able
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to dynamically reconfigure the balancing of the network
in case of faults, and to contribute our modifications to
OpenFabrics community. Looking further ahead, we will
also propose extensions to better support oversubscribed fat-
trees by distributing the VLs in the downward direction.
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ABSTRACT
End-point hotspots can cause major slowdowns in intercon-
nection networks due to head-of-line blocking and conges-
tion. Therefore, avoiding congestion is important to ensure
high performance for the network traffic. It is especially
important in situations where permanent congestion, which
results in permanent slowdown, can occur. Permanent con-
gestion occurs when traffic has been moved away from a
failed link, when multiple jobs run on the same system, and
compete for network resources, or when a system is not bal-
anced for the application that runs on it.

In this paper we suggest a mechanism for dynamic alloca-
tion of virtual lanes and live optimization of the distribution
of flows between the allocated virtual lanes. The purpose is
to alleviate the negative effect of permanent congestion by
separating network flows into slow lane and fast lane traffic.
Flows destined for a end-point hot-spot is placed in the slow
lane and all other flows are placed in the fast lane. Con-
sequently, the flows in the fast lane are unaffected by the
head-of-line blocking created by the hot-spot traffic.

We demonstrate the feasibility of this approach using a
modified version of OFED and OpenSM with fat-tree rout-
ing on a small InfiniBand cluster. Our experiments show
an increase in throughput ranging from 150% to 468% com-
pared to the conventional fat-tree algorithm in OFED.

Categories and Subject Descriptors
D.4.4 [OPERATING SYSTEMS]: Communications Man-
agement—Network communication; C.2.5 [COMPUTER-
COMMUNICATION NETWORKS]: Local and Wide-
Area Networks—High-speed

General Terms
Design,Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NDM’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1132-8/11/11 ...$10.00.

Keywords
Dynamic Reconfiguration, High Speed Interconnects, Infini-
Band, Fat-tree, Performance Manager, Congestion Control

1. INTRODUCTION
For fat-trees, as with most other topologies, the routing

algorithm is crucial for efficient use of the underlying topol-
ogy. The popularity of fat-trees in the last decade has led
to many efforts trying to improve the routing performance
in fat-trees. This includes the current approach that the
OpenFabrics Enterprise Distribution [2], the de facto stan-
dard for InfiniBand (IB) system software, is based on [7, 20].
These proposals, however, have several limitations when it
comes to flexibility and scalability. One problem is the static
routing used by IB technology that limits the exploitation
of the path diversity in fat-trees as pointed out by Hoefler et
al. in [13]. Another problem with the current routing is its
shortcomings when routing oversubscribed fat-trees as ad-
dressed by Rodriguez et al. in [18]. A third problem is that
performance is reduced when the number of compute nodes
connected to the tree is reduced as addressed by Bogdanski
et al. in [4]. And finally we have the problem of reducing
the negative impact of congestion due to head-of-line (HOL)
blocking [16]. This is not a routing problem per se as this
should be handled by a congestion control mechanism, e.g.
the mechanism found in IB [14, 15]. This mechanism, how-
ever, has its own set of challenges; one being that it is not
supported by all IB hardware, another being that it is not
yet understood how to configure congestion control for large
networks [8]. Therefore, it is important to minimize the
problem by other means. A recent proposal by Rodriguez
et al. [17] addresses the congestion issue from a routing per-
spective, but in an application-specific manner and without
using virtual lanes (VLs). Another approach using a combi-
nation of multipath routing and bandwidth estimation was
proposed by Vishnu et al. in [19], but this is significantly
more complex to implement than our proposal. A third pro-
posal by Escudero-Sahuquillo et al. [6] uses multiple queues
at the input ports in the switches to avoid HOL blocking,
but this is not compatible with any existing network tech-
nology and requires new hardware to be built. In [10] we
suggested the vFtree algorithm that uses a combination of
efficient routing and virtual lanes to alleviate congestion. A
problem with this approach, however, is that it is based on
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a static distribution of source-destination pairs across a set
of VLs. The static behaviour of the vFtree algorithm lim-
its the performance whenever there is a mismatch between
the current hot-spot and the precalculated distribution of
source-destination pairs across VLs.

To rectify this we now propose the dFtree algorithm where
the allocation of VLs is performed dynamically during net-
work operation using an optimisation feedback cycle (Fig.
1). We introduce a performance manager [14] that monitors
the network using hardware port counters to detect conges-
tion and optimises the current VL allocation by classifying
flows as either slow lane (contributors to congestion) or fast
lane (victims of congestion). Then the optimisation is ap-
plied using the host side dynamic reconfigration method we
proposed in [12]. The effect being that all flows contributing
to congestion are migrated to a separate VL (slow lane) in
order to avoid the negative impact of head-of-line blocking
on the flows not contributing to congestion (victim flows).
Compared to the vFtree approach we avoid the bottleneck
of static allocation of VLs and we reduce the number of
VLs required to two. Compared to normal IB congestion
control [8] we remove the need for source throttling of the
contributors. Furthermore, the current available IB conges-
tion control (CC) parameters cause oscillations among all
the flows because IB CC is dynamically adjusting the in-
jection rate of the senders. As a result, this solution might
not be suitable for congestion problem of a more persistent
nature because the oscillations that can reduce the over-
all network throughput. In our previous work [12], we are
able to obtain a better overall network throughput in cer-
tain congestion scenarios by avoiding the oscillations. Such
persistent congestion problems occur when traffic has been
moved away from a failed link, when multiple jobs run on the
same system, and compete for network resources, or when
a system is not balanced for the application that runs on
it. Our approach handles persistent congestion problems by
first detecting them, and thereafter dynamically redistribut-
ing the VL resources so as to obtain a balance that will be
impossible to achieve statically at system start-up. The rest
of this paper is organized as follows: we introduce the Infini-
Band Architecture in Section 2 followed by the dFtree design
and implementation in Section 3. Then we describe the ex-
perimental setup in Section 4 followed by the performance
analysis in Section 5. Finally, we conclude in Section 6.

2. THE INFINIBAND ARCHITECTURE
InfiniBand is a serial point-to-point full-duplex technol-

ogy, that was first standardized in October 2000 [14]. The
current trend is that IB is replacing proprietary or low-
performance solutions in the high performance computing
domain [3], where high bandwidth and low latency are the
key requirements.

The de facto system software for IB is Open Fabrics En-
terprise Distribution(OFED) developed by dedicated profes-
sionals and maintained by the OpenFabrics Alliance. OFED
is open source and is available for both GNU/Linux and Mi-
crosoft Windows. The dFtree algorithm that we propose in
this paper was implemented and evaluated in a development
version of OpenSM, which is the subnet manager (SM) dis-
tributed together with OFED.

2.1 The Subnet Manager
InfiniBand networks are referred to as subnets, where a

Dynamic Reconfiguration Mechanism

Optimiser

Subnet Manager

Executer

Performance Manager

Monitor

Channel Adapter

PMA

Switch

PMA

Host Side

Figure 1: The performance optimisation feedback
cycle.

subnet consists of a set of hosts interconnected using switches
and point-to-point links. An IB fabric is constituted by one
or more subnets, which can be interconnected together using
routers. Hosts and switches within a subnet are addressed
using local identifiers (LIDs) and a single subnet is limited
to 48k LIDs.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initializing and bringing up the net-
work, including the configuration of all the IB ports residing
on switches, routers and host channel adapters (HCAs) and
keeping the subnet operation in the subnet. A major part
of the SMs responsibility is routing table calculations and
deployment. Routing of the network aims at obtaining full
connectivity, deadlock freedom, and load balancing between
all source and destination pairs. Routing tables must be cal-
culated at network initialization time and this process must
be repeated whenever the topology changes in order to up-
date the routing tables and ensure optimal performance.

2.2 The Performance Manager
Performance management is one of the general manage-

ment services provided by IB to retrieve performance statis-
tics and error information from IB components. Each IB
device is required to implement a performance management
agent (PMA) and a minimum set of performance monitoring
and error monitoring registers. In addition, the IB specifica-
tion also defines a set of optional attributes permitting the
monitoring of vendor specific and additional performance
and error counters.

The task of the performance manager (PM) [14] is to re-
trieve performance and error-related information from these
registers. The information is retrieved by issuing a perfor-
mance management datagram (MAD) to the PMA of a given
device. The PMA then executes the retrieval and returns
the result to the PM. As a result, the PM can use this in-
formation to detect incipient failures and based on this in-
formation, the PM can advise the SM about recommended
or required path changes and performance optimisations.

3. THE DFTREE DESIGN AND IMPLEMEN-
TATION

In this section, we present the design and implementation
of the dFtree algorithm. The algorithm is generic and can
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Figure 2: A simple congestion control experiment
that illustrates how to use xmtwait performance
counter to identify an endpoint hot-spot and its con-
tributors.

be applied to any topology and routing algorithm, but in
this paper we focus on fat-trees because of the simplicity
they provide with respect to freedom from deadlock.

3.1 Overview
Performance tuning is the main activity associated with

performance management where tuning consists of finding
and eliminating bottlenecks. Hence, we are using the PM
as one of the key components to enable dynamic allocation
of virtual lanes to alleviate network congestion. Fig. 1 sum-
marises the optimisation feedback cycle that consists of the
SM, the PM and our modified host stack with the host side
dynamic reconfiguration capability [12, 11]. In a subnet, the
SM periodically sweeps the subnet to discover changes and
maintain a fully connected subnet. Similarly, the PM pe-
riodically collects information from every component in the
subnet in order to analyse the network performance. After
the analysis, the PM forwards the relevant information to
our modified host stack that reconfigures the virtual lanes
in order to improve network performance.

3.2 Design
Head-of-Line blocking during traffic peaks or ”hot-spot”

traffic patterns is one reason for performance degradation
in interconnection networks [16]. Common sources for hot-
spots include complex traffic patterns due to virtualisation,
migration of virtual machine images, checkpoint and restore
mechanisms for fault tolerance, and storage and I/O traffic.

One way to avoid this problem is to use a congestion con-
trol (CC) mechanism such as the one recently specified and
implemented in IB. This mechanism was evaluated in hard-
ware and shown to be working by Gran et al. in [8], however,
IB CC is not always available, e.g due to a mixture of old and
new equipments in large clusters and this is often the case
that will exist for years. In [10], we suggested an enhance-
ment to the routing algorithm in OpenSM [20] that utilises
multiple virtual lanes to improve performance during the
existence of hot-spots. The virtual lanes are assigned stati-
cally during the routing table generation and can avoid the
negative impact of the victim flows. However, the assump-
tion is that the topology is a balanced, fully populated and
fault-free fat-tree. In order to overcome the shortcomings
in our previous work [10], we need a mechanism to identify
the hot-spot flows and assign the virtual lanes dynamically.

Table 1: Notation
Counters Meaning
XmitWait The number of ticks when the port is

selected had data to transmit but no data
was sent during the entire tick because
of insufficient credits or because of lack
of arbitration. A tick is the IBA hardware
sampling clock interval.

XmitData The total number of data in double words
transmitted on all VLs.

Interval The number of seconds between each
performance sweep.

Thus, we are using two standard IB performance counters
(Table 1) as the metrics to identify endpoint hot-spots and
their contributors dynamically during network operation. In
addition, we have derived three equations to calculate the
normalised port congestion and the port utilisation that are
based on the above mentioned performance counters.

Eq. 1 below defines the normalised port congestion as
the number of XmtWaits per second. An oversubscribed
endnode with a high Congestionport value is either a con-
tributor to the congestion or a victim flow. E.g the contrib-
utors at endnode 1,2,4 and the victim at endnode 7 in Fig. 2
have a high value for Congestionport. On the other hand,
an endnode that has a high Congestionport value for its re-
mote switch port indicates that it is an endpoint hot-spot.
E.g the switch port that is connected to node 6 in Fig. 2 has
a high value for Congestionport.

Congestionport = �XmitWait/Interval (1)

Eq. 2 measures the sender port bandwidth for each port.
This formula is derived from the XmtData performance
counter that represents the number of bytes transmitted be-
tween the performance sweeps. We multiply XmtData by 4
in Eq. 2 because the XmtData counter is measured in the
unit of 32-bit words.

Bandwidthport = �XmitData ∗ 4/Interval (2)

Eq. 3 defines the port utilisation as the ratio between the
actual bandwidth, Bandwidthport and the maximum sup-
ported link bandwidth.

Utilisationport = Bandwidthport/Max Bandwidthport

(3)

These three equations are used in Algo. 1 to identify hot-
spot flows as discussed in section 3.3.

3.3 Implementation
The dFtree implementation consists of two algorithms.

Algo. 1 is used to identify the hot-spot flows, whereas Algo. 2
is used to reassign a hot-spot flow to a virtual lane classified
as ’slow lane’.

Algo. 1 is executed after every iteration of the performance
sweep. The algorithm checks if the remote switch port of an
endnode has a Congestionport value exceeding the threshold,
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if this is true the conclusion is that the endnode is a hot-
spot and the remote switch port is marked as a hotspotport.
After discovering an endpoint hot-spot, Algo. 1 triggers the
forwarding a repath to all potential contributors. This trap
encapsulates the LID, hotspotLID, of the congested node.

The threshold value for Congestionport that is use to de-
termine congestion is 100000 XmtWait ticks per second.
The XmtWait counter is calculated on a per port basis,
so the threshold value to determine congestion is applica-
ble even if the network size increases.

In order to identify a potential contributor, we depend
on both Eq. 1 and 3. An endnode where Congestionport

exceeds the threshold indicates that it is either a hot-spot
contributor or a victim flow, whereas Utilisationport is used
to differentiate between a fair share link and a congested
link. E.g if node A and node B are sending simultaneously
toward node C. Even though both node A and B have a
Congestionport value that exceeds the threshold, they re-
ceive a fair share of the link bandwidth toward node C. Thus,
our algorithm will only mark an endnode as a potential con-
tributor for hotspotLID and forward a repath trap if the
Congestionport value is above the threshold and Utilisationport

is less than 50%. In addition, if a new flow is directed to an
existing hotspotport, the new flow will still be moved to the
’slow lane’. On the opposite, if an endnode is no longer a
hot-spot, all flows that are directed to that endnode will be
moved back to a virtual lane classified as ’fast lane’. When a
repath trap is received by a potential contributor, Algo. 2 is
executed. The host will retrieve all the active QPs and com-
pare them with the DLID in the repath trap. If a matching
DLID is found in one of the QPs, the QP is reconfigured
to use a ’slow lane’. Initially, all QPs are initalised using a
’fast lane’.

3.4 Limitations
In general, running OpenSM with the PM enabled adds

an overhead because the PM periodically queries the perfor-
mance counters in each component within the subnet. These
queries, however, have minimal impact on data traffic as long
as OpenSM is running on a dedicated node.

Another concern is that the detection of the hot-spot flows
depends on the interval of the performance sweeps. If a hot-
spot appeared just after iteration n, the hot-spot detection
and the ’slow lane’ assignment can only be performed at
iteration n+ 1, i.e. t seconds later.

4. EXPERIMENT SETUP
To evaluate our proposal we have used both simulations

and measurements on a small IB cluster. In the following
subsections, we present the hardware and software configu-
ration used in our experiments.

4.1 Experimental Test Bed
Our test bed consists of twelve nodes and four switches.

Each node is a Sun Fire X2200 M2 server that has a dual
port Mellanox ConnectX DDR HCA with an 8x PCIe 1.1
interface, one dual core AMD Opteron 2210 CPU, and 2GB
of RAM. The switches are one 24-port Infiniscale-III DDR
switches and three 36-port Infiniscale-IV QDR switches which
we used to construct the topologies illustrated in Fig. 3. All
the hosts have CentOS 5.3 installed with a customised IB
host stack and the subnet is managed by a modified version
of OpenSM 3.3.5 that includes the PM. The Perftest tool

Algorithm 1 Detect endpoint hot-spot and its contributors

Ensure: Subnet is up and running and PM is constantly
sweeping

1: for swsrc = 0 to swmax do
2: for portsw = 0 to portmax do
3: if remote port(portsw) == HCA then
4: if congestionport > Threshold then
5: if portsw �= hot-spot then
6: Mark portsw as hotspotport
7: end if
8: Encapsulate hotspotLIDin a repath trap
9: Encapsulate slow lane as SLrepath trap

10: for hcasrc = 0 to hcamax do
11: if congestionport > Threshold then
12: if hca �= hotspotLID contributor then
13: if Utilisationport < 0.5 then
14: Mark hca as hotspotLID contributor
15: Forward repath trap to HCA
16: end if
17: end if
18: end if
19: end for
20: else if congestionport < Threshold then
21: if portsw == hot-spot then
22: Clear portsw as hotspotport
23: Encapsulate hotspotLID in a unpath trap
24: Encapsulate fast lane as SLrepath trap

25: for hcasrc = 0 to hcamax do
26: if hca is hotspotLID contributor then
27: Clear hca as hotspotLID

28: Forward unpath trap to HCA
29: end if
30: end for
31: end if
32: end if
33: end if
34: end for
35: end for

Algorithm 2 Reconfigure QP to slow/fast lane

Ensure: Host receives repath trap
1: for QPi = 0 to QPmax do
2: if DLIDQP == DLIDrepath trap then
3: Reconfigure SLQP according to SLrepath trap

4: end if
5: end for

4
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(b) A hot-spot scenario in an over-subscribed fat-tree topology.
In order to illustrate that network bandwidth is not a prob-
lem, link 1-6 are QDR links whereas the links between the leaf
switches and the end nodes are DDR links.

Figure 3: Experiment scenarios for the hardware
testbed. The solid lines represent the hot-spot flows
and the dotted lines represent the victim flows. The
numbers stated in the leaf switch A,B,C and root
switch represent the routing table.

was also modified to support regular bandwidth reporting
and continuous sending of traffic at full link capacity. The
modified Perftest is used to generate the hot-spots shown in
Fig. 3a and Fig. 3b.

4.2 Simulation Test Bed
To perform large-scale evaluations and verify the scalabil-

ity of our proposal, we developed an InfiniBand model for
the OMNeT++ simulator [9]. The simulations were per-
formed on a 648-port fat-tree topology as shown in Fig. 4
with a nonuniform traffic pattern, where 5% of all packets
generated by a compute node was sent to a predefined hot-
spot and the rest of the traffic was sent to a randomly chosen
node. Additionally, we used multiple localised hot-spots by
partitioning the 648-port switched network into one, three
or nine segments as described in section 5.4.

5. PERFORMANCE EVALUATION
Our performance evaluation consists of measurements on

an experimental cluster and simulations of large-scale topolo-
gies. For the cluster measurements we use the per flow
throughput and the worst case throughput during congestion
as the main metrics to compare the performance between

the dFtree algorithm and the existing fat-tree algorithm.
Additionally, we use the results from the HPCC benchmark
to show how the algorithm impacts application traffic. For
the simulations we use the achieved average throughput per
end node as the metric for measuring the performance of the
dFtree algorithm on the simulated 648-port topology.

5.1 Synthetic Traffic Patterns - Non oversub-
scribed fat-tree

We carried out two different experiments on a non over-
subscribed fat-tree as shown in Fig. 3a. For both experi-
ments, a collection of synthetic traffic flows ({1-5, 3-5, 6-5})
is used to generate a hot-spot as shown in Fig. 3a. Node 5
is the hot-spot, nodes 1, 3 and 6 are the contributors to the
hot-spot.

5.1.1 Experiment I
In this experiment, the victim flow (2-3) is started first

and then the contributors ({1-5, 3-5, 6-5}) are added after
13s. This experiment illustrates the negative impact of HOL
blocking on the victim flow. It also shows how our dFtree
algorithm avoids it.

Fig. 5 shows the per flow throughput with and without the
dFtree algorithm. In Fig. 5a, the victim (2-3) is running at
12.9 Gbps before the congested flows are introduced. Start-
ing from 13s, the congestion towards node 5 blocks the traffic
on link 1 and 3. Consequently, the bandwidth of flow 2-3 is
reduced to 3 Gbps, the same bandwidth that the congested
flow 1-5 achieved across link 1 due to the HOL blocking.
Fig. 5b shows the per flow throughput with the dFtree al-
gorithm. Now, the victim flow achieves a throughput of
7.5 Gbps and it is not affected by the congestion. We have
also summarised the worst case per flow throughput with
and without the dFtree algorithm during the congestion in
Fig. 6. With dFtree, the victim flow has improved approx-
imately 150% from 3 Gbps to 7.5 Gbps without impacting
the contributors.

The reason that the dFtree algorithm can avoid HOL
blocking is that the PM detects that node 5 is the hot-spot
when the congested flows are introduced. After the analysis,
a repath trap that encapsulates node 5 as a hot-spot LID is
forwarded to the source node of the contributors and the vic-
tim flows. When a sender (hot-spot contributor or a victim
flow) receives the repath trap, it retrieves all the active QPs
and compares the destination LID with the repath trap LID.
If a QP has a matching destination LID it will be reconfig-
ured to the ’slow lane’. As you can see from Fig. 5b, there is
a slight glitch for flow 1-5, 3-5 and 6-5 between 14s and 16s
because the QPs are reconfiguring to the ’slow lane’. After
the reconfiguration, the victim flow regains its throughput
to 7.5 Gbps because the dFtree algorithm placed the con-
gested flows in a separated VL (’slow lane’ ) that resolves
the HOL blocking.

Another observation is that flow 6-5 has a higher share of
the bandwidth at 6.8 Gbps toward the hot-spot than flow
1-5 and 3-5 because of the parking lot problem [5]. In order
to resolve the parking lot problem, we would need to use
additional VLs.

5.1.2 Experiment II
In this experiment, the victim flow is now flow 2-4. It

has to share the upstream link with flow 1-5, one of the
contributors, if a fault happens on link 1 or 2. Thus, in this
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Figure 4: A 648-port switch fat-tree topology.
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Figure 5: Experiment I using scenario in Fig. 3a.
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Figure 6: Per flow worst case bandwidth during con-
gestion in Experiment I.

experiment all flows are started at the same time, but after
13s we disconnect link 2 to emulate a link failure.

Fig. 7 shows the per flow throughput with and without
the dFtree algorithm in a faulty link scenario. Fig 7a shows
that the victim flow 2-4 achieves its maximum bandwidth
at 12.9 Gbps in the presence of congested flows (before 13s).
The victim (flow 2-4) is not impacted by the congested flows
because it uses link 2 whereas flow 1-5, one of the contrib-
utors, uses link 1 as the upstream link. After 13s, a fault
happens at link 2 that triggers the SM to generate a new
set of routing tables that causes both flow 1-5 and flow 2-4
to share the same upstream link. Consequently, without the
dFtree algorithm the throughput of flow 2-4 drops to 3 Gbps
due to the HOL blocking caused by the congested flow 1-5.
On the other hand, with the dFtree algorithm as shown in
Fig. 7b, flow 2-4 instantly regains its link bandwidth at 7.5
Gbps after the link failure because the congested flows were
separated from the normal traffic flow and placed into the
’slow lane’ before the fault happened. The dip that causes
the throughput drop at 13s is due to OpenSM rerouting
the network after the fault happened. Furthermore, there
is also a glitch in each of the congested flows (flow 1-5, 3-5
and 6-5) in between 3-5s because the host is reconfiguring
the hot-spot contributors QP to the ’slow lane’.

In summary, Fig. 8 shows that the dFtree algorithm achieves
approximately a 150% improvement in throughput from 3
Gbps to 7.5 Gbps for the victim flow worst case throughput
without affecting the congested flows after the fault hap-
pened.

5.2 Synthetic Traffic Patterns - 2:1 oversub-
scribed fat-tree

We have also carried out two different experiments on a
2:1 oversubscribed fat-tree as shown in Fig. 3b. In an over-
subscribed fat-tree, the downward path is not dedicated to a
single destination, but it is shared by several destinations.
The term 2:1 means that a downward path is shared by
two destinations. Furthermore, in order to show that lack
of network bandwidth is not the cause of the problem when
fat-trees are oversubscribed, we used quad data rate (QDR)
for link 1 to 6 in Fig. 3b (the links connecting switch A, B,
and C with the upper root switch).

In a 2:1 oversubscribed fat-tree, there are two situations
where the victim flows may suffer from HOL blocking be-
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Figure 7: Experiment II with a faulty link using
scenario in Fig. 3a.
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Figure 8: Per flow worst case bandwidth during con-
gestion in Experiment II.

cause the links are oversubscribed. The first case is similar to
section 5.1.1 where the performance reduction is due to the
upstream link being shared with the congestion contributors.
The second case is when both the upstream and downstream
links are shared as discussed in section 5.2.2. For both ex-
periments, we use the synthetic traffic flows {1-9, 5-9, 10-9}
to evaluate the negative impact of HOL blocking in the 2:1
oversubscribed fat-tree.The hot-spot is at node 9, and node
1, 5 and 10 are the contributors. The victim flow is started
first and the contributors are added after 13s.

5.2.1 Experiment III
This experiment is similar to the Experiment I except that

it is performed on a 2:1 oversubscribed fat-tree. Flow 2-7
is selected as the victim flow. Fig. 9a shows the per flow
throughput without the dFtree algorithm where the victim
(flow 2-7) drops from 12.9 Gbps to 3.4 Gbps. On the oppo-
site, as shown in Fig. 9b, the dFtree algorithm managed to
recover the throughput for the victim flow 2-7 to 12.9 Gbps
during congestion.

However, the recovery takes approximately 2s because the
hot-spot happens right after the performance sweeping and
it needs to wait for the next sweep to detect and reallocate
the hot-spot flows to the ’slow lane’.

Fig. 10 shows the comparison of the per flow worst case
bandwidth during the congestion with and without the dFtree
algorithm. It is obviously illustrated in Fig. 10 that the vic-
tim flow worst case throughput with the dFtree algorithm
has improved approximately 278% from 3.4 Gbps to 12.9
Gbps compared to not using the dFtree algorithm.

5.2.2 Experiment IV
In this experiment, we change the victim to flow 2-11.

This flow is selected because it shares the same upstream
and downstream link with the congested flow 1-9.

Without the dFtree algorithm, as shown in Fig. 11a, both
victim flow 2-11 and congested flow 1-9 have a throughput
of approximately 2.2 Gbps because they share both the up-
stream (link 1) and downstream link (link 5) during the
congestion after 13s. The victim flow 2-11 suffers severely
by the HOL blocking even though it is not communicating
with the hot-spot. Moreover, link 1 and 5 are QDR links
where victim flow should be able to achieve a bandwidth of
12.9 Gbps.

With dFtree, the victim flow (2-11) recovers to 12.9 Gbps
after the congested flows are reassigned to the ’slow lanes’.
Furthermore, both congested flows 1-9 and 5-9 are trans-
mitting at 3.4 Gbps because flow 2-11 is no longer sharing
resources with the congested flow 1-9 after the ’slow lane’
assignment.

To summarise, the dFtree algorithm reduces the negative
effect of HOL blocking when applied to an oversubscribed
fat-tree. Fig. 12 shows that dFtree increases 468% from 2.2
Gbps to 12.9 Gbps for the victim flow in the worst case
scenario during the congestion.

5.3 HPC Challenge Benchmark (HPCC)
In this experiment, we replaced the victim flows with the

HPC challenge benchmark b eff test suite [1]. The endpoint
hot-spot is created using Perftest by running the traffic pat-
tern presented in Fig. 3a for the non-oversubscribed topology
and in Fig. 3b for the 2:1 oversubscribed topology. Simul-
taneously, we are running the HPCC benchmark in order
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Figure 9: Experiment III using scenario in Fig. 3b.
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Figure 11: Experiment IV using scenario in Fig. 3b.
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to study the impact of congestion on the traffic generated
by the HPCC benchmark. Even though the congested flows
are still synthetically generated, this scenario resembles the
network environment that an application could experience
during congestion.

Table 2 shows the comparison of the HPCC b eff results
with and without the dFtree algorithm in the presence of
congestion in a non-oversubscribed network. The most inter-
esting observation is that the randomly ordered ring band-
width increased by 49.34% with dFtree using only 2 VLs.
We can see the improvement for all the latency and band-
width tests, which is expected, as they correspond to the
synthetic traffic patterns experiment that was carried out
in the previous section. The results for the oversubscribed
network are presented in Table 3 and the same trends are
visible as for the non-oversubscribed network. These results
clearly illustrate the performance gain with dFtree from the
application traffic pattern’s point of view.

5.4 Simulation Results
The main purpose of the simulation study is to show that

the dFtree algorithm scales, and that the trends correspond
to our cluster experiments. Another purpose of the simu-
lation is to show that if the congested flows are separated
from the normal traffic flows in a large network, this would
increase the network performance by avoiding the negative
impact of HOL blocking. We performed the simulation on
a fully populated 648-port fat-tree as shown in Fig. 4 with
1, 3 and 9 hot-spots.

In our simulator, we modified the packet generator to al-
ways allocate a different VL (’slow lane’ ) for the packets
that are directed to the hot-spot. As a result, the simulator
isolates the hot-spot flows from the regular flows and reduce
the possibilities of HOL blocking. Our simulation shows the
best case results because it does not simulate the additional
management overhead in a real cluster required to identify
hot-spots and to migrate congested flows to a different vir-
tual lane.

For a single hot-spot scenario, node 1 was the hot spot,
and all the other nodes in the subnet were the contributors to
this hot-spot. In case of three hot-spots, nodes 1 , 217, and
433 were the hot-spots and the contributors were the node
group 1-216, 217-432, and 433-648 respectively. For a nine
hot-spot scenario, the hot-spots were nodes 1, 73, 145, 217,
289, 361, 433, 505 and 577 whereas the contributors con-
sists of node group 1-72, 73-144, 145-216, 217-288, 289-360,
361-432, 433-504, 505-576 and 577-648 respectively. For the
abovementioned scenarios, the contributors sent 5% of their
traffic to the hot-spot and remaining 95% to a randomly
chosen node in the subnet.

In Fig. 13, we observe that a single hot-spot dramati-
cally decreases the average throughput per node because
of the large number of victim flows. There are a least 32
nodes (5%) contributing to the same hot-spot at any point
in time. If more hot-spots are added, the contributor traffic
is localised. Consequently, the impact on victim flows are re-
duced and the throughput per node increases. For the same
reason, the relative improvement of the dFtree algorithm is
reduced when the number of hot-spots increases. The rela-
tive improvement with the dFtree algorithm is 480.25% for
1 hot-spot, 345.32% for 3 hot-spots, and 169.17% for 9 hot-
spots. If the number of hot-spots are increased in the same
trend until it reaches 36 hot-spots, the improvement will be
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Figure 13: Simulation results for 648-switch.

minimal. This is due to the fact that the hot-spots are be-
coming increasingly more localised until each leaf switch has
a hot-spot. Thus, the traffic pattern naturally splits the con-
gested flows from the uncongested flows and increase overall
network performance.

6. CONCLUSION AND FUTURE WORK
In this paper, we demonstrated the basic concept of dy-

namic networking in InfinBand by combining the perfor-
mance manager and the subnet manager. By applying this
concept to several congestion scenarios in a fat-tree topology,
we are able to improve the performance using only 2 VLs,
a fast lane for normal flows and a slow lane for congested
flows. During the congestion, the performance manager is
responsible for identifying the hot-spot flows and our host
side dynamic reconfiguration mechanism is used to dynami-
cally reassign flows into a seperate VL (slow lane). Our im-
plementation in OpenSM achieved a 52.60% improvement in
throughput on a cluster experiment and 480.25% improve-
ment in a large-scale simulated environment when compared
with the conventional fat-tree routing.

In the future, we plan to merge this work with the In-
finiBand congestion control mechanism that uses the for-
ward explicit congestion notification (FECN) to determine
the hot-spot and backward explicit congestion notification
(BECN) to identify its contributors. This combination can
detect the hot-spot flows faster and it is independent of the
performance sweeping interval. Furthermore, we can also
remove the need for source throttling of the contributors in
the IB congestion control mechanism.
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1. Introduction

Cloud computing provides the illusion of an infinite number of computing
and storage resources without the need to worry about their over- or under-
subscription of resources [1]. This is enabled by virtualization, which plays
an essential role in modern data centres, providing elastic resource allocation,
efficient resource utilization, and elastic scalability.

Virtualization has been rapidly adopted by the industry during the last
decade and is now used in all sorts of computing devices, from laptops to
desktops to enterprise servers. The initial reluctance to adopt virtualiza-
tion had its roots in poor performance for CPU, memory and I/O resources.
The performance for CPU and memory resources has, however, improved
significantly [2, 3] and is now in such an advanced state that even the
high performance computing community is interested in exploiting virtual-
ization [4, 5, 6]. The final performance bottleneck for virtualization is the vir-
tualization of I/O resources. Recent progress has improved the performance
of I/O virtualization (IOV) through the introduction of direct assignment [7]
and single root I/O virtualization (SR-IOV) [8]. Direct assignment allows a
virtual machine (VM) to bypass the VM monitor (VMM) and directly access
the device hardware, which gives close to native performance [9, 10, 11, 12].
Unfortunately, it has one major drawback: its lack of scalability. Only one
VM can be attached to a device at a time; thus multiple VMs require multi-
ple physical devices. This is expensive with regards to the number of devices
and internal bandwidth. To rectify this situation, SR-IOV was developed
to allow multiple VMs to share a single device by presenting a single physi-
cal interface as multiple virtual interfaces. Recent experience with SR-IOV
devices has shown that they are able to provide high–performance I/O in
virtualized environments [13, 14, 15].

A key feature provided by virtualization is the live migration of VMs, that
is, moving running VMs from one machine to another without disrupting the
applications running on them [16, 17, 18]. Live migration is a powerful tool
that extends the management of VMs from a single physical host to an entire
cluster. It provides for the flexible provisioning of resources and increased
efficiency through on–demand server consolidation, improved load balancing,
and simpler maintenance. Live migration has been demonstrated for both
IOV with emulation over Ethernet [16] and IOV with direct assignment over
InfiniBand (IB) [17, 18]. Compared to conventional Ethernet devices or mi-
gration based on emulation, high–performance and lossless technologies such
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as IB have more resources managed by the network interface hardware, which
makes live migration more complex.

In this paper we propose a design for the transparent live migration of
VMs over high-speed and lossless SR-IOV devices. This design is proto-
typed and evaluated using Mellanox–based IB hardware and the Xen-based
Oracle Virtual Machine virtualization platform. We describe the implemen-
tation and measure the service downtime of an application during migration.
Through a detailed breakdown of the different contributors to service down-
time, we pinpoint the fraction of the cost of migration that can be mitigated
by architectural changes in future hardware. Based on this insight, we pro-
pose a new design and argue that, with these changes, the service downtime
of live migration with IB SR-IOV devices can be reduced to less than a
second, as demonstrated with conventional Ethernet SR-IOV devices [19].

This paper is organized as follows: Section 2 describes the necessary
background on IOV and related technologies. Related works are discussed in
Section 3. This is followed by a description of the challenges of live migrating
a VM over an SR-IOV–enabled IB device in Section 4. Then, Section 5
proposes a design addressing the challenges presented in Section 4 using
the current SR-IOV and IB architecture. Section 6 presents a performance
evaluation based on measurements from our design prototype. Section 7
discusses the remaining challenges and proposes an architecture for providing
seamless live migration over IB. Finally, Section 8 concludes the paper.

2. Background

This section gives an overview of virtualization, IOV technologies, and
the IB architecture.

2.1. Virtual Machine Monitors

A VMM, also known as a hypervisor, is a software abstraction layer that
allows multiple VMs, that is, operating system instances, to run concurrently
on a physical host. A VMM can be categorized into type I and type II [20]:
A type I VMM runs directly on the host hardware, has exclusive control over
the hardware resources, and is the first software to run after the boot loader.
The VMs run in a less privileged mode on top of the VMM. Well–known type
I VMMs include the original CP/CMS hypervisor, VMware ESXi, Microsoft
Hyper-V, and Xen. A type II VMM runs as a privileged process on top of a
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conventional operating system and the VMs run on top of this privileged pro-
cess. The type II VMM controls and schedules access to hardware resources
for the VMs. Well–known type II VMMs include VMware GSX server, KVM,
and VirtualBox. In this paper we use the Oracle Virtual Machine 3.0, which
is a type I VMM built on Xen.

2.2. I/O Virtualization

I/O Virtualization (IOV) was introduced to allow VMs to access the
underlying physical I/O resources. With the adoption of virtualization came
an increase in the number of VMs per server, which has made I/O a major
bottleneck. This is due to two reasons: First, the available I/O resources at
the physical level has not scaled with the number of cores. This problem is
being addressed by the introduction of new versions of PCI Express (PCIe)
that increase internal system bandwidth and new versions of IB and Ethernet
that increase external network bandwidth. Second, a physical server handling
multiple VMs must support the I/O requests from all these VMs and, due
to the initially low I/O performance of even a single VM, this significantly
reduces I/O performance. In practice, the combination of storage traffic and
inter-server communication imposes an increased load that can overwhelm
the I/O resources of a single server, leading to backlogs and idle processors
waiting for data.

With the increase in the number of I/O requests, the goal of IOV is not
only to provide availability, but to improve the performance, scalability, and
flexibility of the I/O resources to match the level of performance seen in CPU
virtualization. The following sections describe the recent progress made in
IOV, the concepts applied, and the benefits and drawbacks of the existing
approaches.

2.2.1. Emulation

Virtualization through emulation is an IOV technique in which a physical
I/O device is emulated through software [7]. The VMM, as shown in Fig. 1a,
is responsible for the emulation and must expose an emulated device that
can be discovered and that can perform data transfers on behalf of the VMs.
The emulated device can be used by existing drivers and it is straightfor-
ward to support decoupling and multiplexing. Furthermore, the emulation
mechanism can support different operating systems without any changes in
the VMM and can easily support VM migration, since the emulated device
in the VM is decoupled from the physical device on a given host.
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(a) (b)

Figure 1: (a) Emulation versus paravirtualization. (b) Direct assignment versus SR-IOV.

The major drawback with emulation is the lack of performance and scal-
ability. Performance is reduced because the multiplexed interaction between
the VMs and the emulated device needs to be trapped by the VMM, which
then performs the operation on the physical device and copies the data back
to the emulated device. The multiple layers of interaction, especially in inter-
rupt handling, are expensive. As a result, the VMs increase the load on the
emulated device and the I/O domain increases proportionally, which limits
scalability significantly.

2.2.2. Paravirtualization

To reduce the performance bottleneck caused by emulation, Barham et
al. suggested the use of paravirtualization [21]. Paravirtualization is an IOV
technique that presents an abstract interface to the VM that is similar but
not identical to the underlying hardware (Fig. 1a). The purpose of this ab-
straction layer is to reduce the overhead of the interaction between the VMs
and the VMM. For example, rather than provide a virtual networking device,
the VMM provides an abstract networking device together with an applica-
tion programming interface where a callback function handles interrupts from
a physical device instead of the traditional interrupt mechanism. Then the
device driver in the VM is altered to call the application programming inter-
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face to perform read and write operations. The paravirtualized device driver
is split into two parts: the backend driver that resides in the VMM and
the frontend driver that resides in the VM. Paravirtualization decreases the
number of interactions between the VMs and the VMM compared to device
emulation and allows for more efficient multiplexing. Paravirtualization also
maintains the decoupling between the paravirtualized device and the physical
device on a given host.

Even though paravirtualization improves performance compared to device
emulation, its performance overhead is still substantial compared to native
I/O access. In addition to the performance and multiplexing overhead, an-
other drawback is that both the device driver and the operation system kernel
in the VM must be modified to support the new abstractions required for
paravirtualization.

2.2.3. Direct Assignment

To further reduce the I/O overhead present in paravirtualization Intel
proposed direct assignment, also known as device passthrough [7, 9]. As
shown in Fig. 1b, direct assignment provides exclusive access to a device for
a given VM, which yields near native performance. It outperforms emulation
and paravirtualization because it allows the VM to communicate with a
device without the overhead of going through the VMM. But it requires
hardware support to reach its full potential in improving performance. At
the time of this writing, major processor vendors have equipped their high-
end processors with instructions and logic to support direct assignment. This
includes interrupt virtualization, address translation, and protection tables
for direct memory access [22]. Interrupt virtualization allows the efficient
delivery of virtual interrupts to a VM, while the I/O memory management
unit (IOMMU) protects the memory assigned to a VM from being accessed
by other VMs.

The drawbacks of direct assignment are that it does not support multi-
plexing or decoupling. Multiple VMs cannot have multiplexed access to a
single physical device so the number of VMs can only scale by allocating as
many passthrough devices as are physically present in the machine. Further-
more, live migration is complicated by the lack of decoupling. This is due to
the fact that the device is directly assigned to a VM and the VMM has no
knowledge of the device state [17].
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2.2.4. Single Root IO Virtualization

The SR-IOV specification was created to address the lack of scalability
with direct assignment [8]. This specification extends the PCIe specification
with the means to allow direct access to a single physical device from multi-
ple VMs while maintaining close to native performance. Currently SR-IOV
capable network devices are available for both Ethernet and IB devices.

As depicted in Fig. 1b, SR-IOV allows a single PCIe device to expose
multiple virtual devices so the physical device can be shared among multiple
VMs by allocating one virtual device to each VM. Each SR-IOV device has at
least one physical function (PF) and one or more associated virtual functions
(VFs). A PF is a normal PCIe function controlled by the VMM, whereas a
VF is a light-weight PCIe function. Each VF has its own memory address
and is assigned a unique request ID that enables the IOMMU to differentiate
between the traffic streams from different VFs. The IOMMU also provides
memory and interrupt translations between the PF and the VFs.

The use of an SR-IOV device yields close to native performance and
improved scalability, as shown by [15]. But it shares the drawback of not
able to live migrate and, for the same reasons, with direct assignment.

2.3. Live Migration

Live migration is one of the key features of virtualization [16]. It makes
it possible to migrate a running VM, together with the applications, from
one physical host to another with minimal downtime and transparent to the
running applications. Thus, it is possible to dynamically relocate VMs in
response to system management needs such as on-demand server consolida-
tion, hardware and software maintenance, system failure, and data centre
scale-out requirements.

A key requirement for live migration is a fast and flexible network ar-
chitecture. The network must be fast to quickly migrate a VM and it must
be flexible to quickly reestablish the network connection when the VM is
restarted in its new location. From the IOV point of view, migrating an
emulated or paravirtualized device only requires that an identical physical
device be present at the destination host. The device configuration is main-
tained on the destination host since the migrated VM contains the internal
state of the emulated device. Live migration is more difficult for SR-IOV and
direct assignment devices because the dependency between the VM and the
physical device at the source host cannot be easily maintained or recreated
at the destination host. We elaborate on these challenges in Section 4.
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Figure 2: Conceptual diagram of IB communication using QPs.

2.4. The IB Architecture

The IB architecture [23] is a serial point-to-point full-duplex network
technology that was first standardized in October 2000 as a merger of the two
technologies Future I/O and Next Generation I/O. An IB network is referred
to as a subnet, where the subnet consists of a set of hosts interconnected using
switches and point-to-point links. An IB subnet requires at least one subnet
manager, which is responsible for initializing and bringing up the network,
including the configuration and address assignment for all the switches and
host channel adaptors (HCAs) in the subnet. Switches and HCAs within
a subnet are addressed using local identifiers (LIDs) and a single subnet is
limited to 49,151 unicast LIDs.

To provide both remote direct memory access (RDMA) and traditional
send/receive semantics, IB supports a rich set of transport services. Inde-
pendent of the transport service used, all IB HCAs communicate using queue
pairs (QPs), as shown in Fig. 2. A QP is created by the communication man-
ager during the communication setup and supplies a set of initial attributes
such as the QP number (QPN), HCA port, destination LID, queue sizes, and
transport service. An HCA can contain many QPs and at least one QP is
present at each end node in the communication. A QP consists of a send
queue (SQ) and a receive queue (RQ). The SQ holds work requests to be
transferred to the remote node, while the RQ holds information on where to
direct the incoming data. In addition to the QPs, each HCA has one or more
completion queues associated with a set of SQs and RQs. The completion
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Figure 3: The shared port model of the SR-IOV implementation for IB.

queue holds completion notifications for the work requests posted to the SQ
and RQ. Although the complexities of the communication are hidden from
the user, the QP state information is stored in the HCA.

The implementation for SR-IOV IB is based on a shared port model, as
shown in Fig. 3. This design is used in Mellanox ConnectX hardware. In
the shared port model all the VFs share a single LID and a single QP name-
space, and only a single HCA port is discoverable by the network. The single
QP name-space complicates migration because the QP attributes cannot be
easily reused. This is discussed further in Section 4.

3. Related Work

Several efforts to enable live migration over IB devices have been proposed
by reusing the solutions used in Ethernet devices. One approach is to create
a paravirtualized device driver that hides the complexity of IB from the
guest VMs. Ali et al. from Mellanox proposed an Ethernet service over
IPoIB (eIPoIB) [24], which is a paravirtualized driver for IPoIB device. The
eIPoIB implementation is a shim layer that performs translation between
an IPoIB header and an Ethernet header in the PF driver. The IPoIB is
an ULP protocol that provides IP services over IB fabric and the failover
mechanism can depend on TCP for retransmitting loss packets. In this way,
an IPoIB device can be provisioned as a network device for guest VMs,
similar to the conventional ethernet devices. Another approach is vRDMA,
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which is a project proposed by VMware [25]. This approach creates an
RDMA paravirtualized device in the privileged domain, which is based on
the IB verbs. Both eIPoIB and vRDMA allow migration because the VMM
is aware of the device state. Nevertheless, these approaches sacrify the high
throughput and low latency properties of IB in order to achieve transparent
migration.

Efforts to enable live migration over SR-IOV devices have been limited
to conventional Ethernet devices. Due to the architectural differences be-
tween Ethernet and IB, these efforts are not applicable to IB. Zhai et al. [26]
proposed an approach that combines the PCI hot plug mechanism with the
Linux bonding driver. This solution is a workaround for the requirement
of migrating the internal state of an SR-IOV device by quiescing the device
before migration. The VF is detached when the migration starts and then
reattached after the migration is finished. During the migration the bonding
driver maintains network connectivity using a secondary device. A general
limitation of this approach is that it depends on a secondary network interface
residing in the privileged domain. Another limitation specific to IB is that
the bonding driver does not support IB native operations such as RDMA.
Although IB can be bound by using upper layer protocols such as IPoIB or
EoIB in combination with the Linux bonding driver, using these upper layer
protocols (ULPs) significantly reduces overall network performance due to
the overhead of multiple protocol stacks. Another proposal is the network
plugin architecture (NPIA) [27]. This architecture creates a shell in the kernel
of the running VMs, which is used to plug or unplug an abstract hardware
device during run time. The NPIA can also use a software interface as a
backup device, but this requires a complete rewrite of the network drivers.
This has prevented NPIA from being widely employed. Kadav et al. [28]
proposed using a shadow driver to monitor, capture, and reset the state of
the device driver for the proper migration of direct assignment devices. In
a manner similar to that of Zhai et al. [26], this approach hot unplugs the
device before migration and hot plugs the device after migration. It then
uses the shadow driver to recover the device state after migration. The con-
cept of a shadow driver, however, does not scale in an IB context because the
state of each QP must be monitored and captured, which can amount to tens
of thousands of QPs. The ReNIC proposed by Dong et al. [19] suggests an
extension to the SR-IOV specification where the internal VF state is cloned
and migrated as part of the VM migration. That treatment of the subject,
however, was limited to conventional Ethernet devices. In IB, the migration
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of a VF must include its internal state and the internal state of the QP. This
is discussed in Section 4.2.

Apart from the abovementioned efforts in enabling live migration with
SR-IOV Ethernet, several previous works that focus on process migration are
also relevant to our effort in enabling live migration with SR-IOV IB [29, 30].
Although process migration differs from VMmigration, in principle, both face
the same problem. Before migration, the resources of active processes must
be released. Then a new set of resources must be reallocated after migration
is completed.

4. Challenges

The challenge of live migrating an SR-IOV enabled IB device is that the
hardware architecture for both SR-IOV and IB must be considered. For SR-
IOV devices, the internal device state of a VF must be migrated along with
the VM. For IB devices, the active QPs must be recreated at the destination
server after VMmigration. In addition, the architecture of the SR-IOV model
for IB, as shown in Fig. 3, must also be considered. Currently, the available
SR-IOV enabled IB is based on the shared port model and none of the ap-
proaches mentioned in Section 3 can be directly applied to it. The key to a
proper solution for IB requires the correct handling of active QP resources
and correct reallocation of these resources after migration. Otherwise, the
IB communication will be broken, as shown in Fig. 4. To summarize, to
migrate an IB VF we have to handle the i) detachment of an active device,
the ii) reallocation of physical resources, and the iii) reestablishment of the
remote connection. In the remainder of this section, we discuss in detail each
of these challenges.

4.1. Detachment of an Active Device

As part of the migration process, the VM being migrated must be de-
tached from the device it is directly assigned to and it must be reattached
to a new device at its destination. If we use the PCI hot plug mechanism
suggested by [26] to quiesce the IB device by detaching the VF before live
migration, migration of the internal state of the VF is not required. But
any attempt to detach an IB VF with active QPs that have ongoing data
transfers will fail. The reason is that the process memory of an active QP
is pinned to physical memory for the duration of the transfer to reduce data
movement operations in the host (e.g.,Fig. 4 shows that the application can
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(a) Before VM migration. (b) After VM migration.

Figure 4: IB operations are performed between VMa and VMb, hosted by host A and host
B, respectively, as shown in Fig. 4a. After VMa is migrated to host C, the communication
is broken due to the three reasons cited in Fig. 4b. First, V Fa1 and QPa1 are not being
detached from VMa(label 1 in Fig. 4b). Second, the QPNa1 opaque pointer cached by
the application in VMa has become an invalid pointer. This is because VMa is no longer
associated with V Fa1 or QPa1 (label 2 in Fig. 4b). Third, the established IB connection
between the applications in VMa and VMb based on QPNa1 and QPNb1, respectively,
is disconnected because QPNa1 is no longer valid (label 3 in Fig. 4b).
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access the HCA directly). Therefore, it is not possible to detach an IB VF
with active data transfers using the PCI hot plug mechanism.

The main problem is that there is no transparent mechanism yet to mi-
grate a VF from one physical server to another. Thus, an active VF must
be detached before migration. In this case, there must be an interaction be-
tween the user process and the kernel about the attempt to detach the VF.
This can be fixed by defining an interface between the user space and the
kernel space that allows ongoing data transfers to be paused until migration
is complete. Only then can we properly support the live migration of RDMA
devices.

4.2. Reallocation of Physical Resources

All IB connections are composed of QPs and each QP is managed in hard-
ware by the HCA. The QP attributes consist of various resources that can
be generalized into location–dependent resources and connection state infor-
mation. Both types of resources can only be accessed by software through
an opaque pointer (e.g., the QPNa1 used by the application, as depicted
in Fig. 4), which becomes an obstacle when we try to migrate QPs between
different physical hosts.

4.2.1. Location–Dependent Resources

A QP contains the following location-dependent resources: the LID and
the QPN associated with the HCA where the QP was created. In addition,
the remote key (RKey) and local key (LKey) are indirectly dependent on a
QP because these keys are associated with the physical memory registered
for a QP. These QP–associated resources are explained in detail as follows.

1. The LID is the address that is assigned to an HCA by the subnet
manager. With the current implementation of SR-IOV, based on the
shared port model, all the VFs on one HCA share a single LID with
its PF. As a result, it is not feasible to change the LID assigned to a
VF during migration because this will affect all the VFs on the same
HCA.

2. The QPN is the identifier that represents a QP but it is only unique
within an HCA. Thus, the same QPN can refer to another QP in an-
other HCA. As a result, improper handling of a QPN after migration
can end up in a conflict of QPNs.
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Figure 5: The QP state diagram.

3. The LKey and RKey are associated with a memory region registered
by a QP. These keys are created by the HCA upon creation of the
QP, are only unique within the HCA, and are used to authorize access
to local and remote memory regions, respectively. After migration,
even though the same memory regions are allocated, a new LKey and
RKey are generated by the HCA upon creation of a new QP in the
new location. Therefore, the previous RKey presented to the peer QP
becomes invalid and must be updated after migration.

4.2.2. Connection State Information

In addition to location–dependent resources, we also have to migrate the
connection state of the IB connection. The connection state includes the QP
state and the SQ and RQ states. When a QP is created, it goes through
the reset (RESET), -initialized(INIT), -ready-to-receive(RTR), and -ready-
to-send(RTS) state transitions, as show in Fig. 5. The migration of a QP
includes the migration of any outstanding packets residing in the SQ of the
old QP. When a QP has been migrated to its destination server it must be
transitioned back to the RTS state before communication can be resumed.
A QP is only considered fully operational when it has reached the RTS state.
Unfortunately, the IB specification does not define states for suspending and
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resuming a QP before and after migration, which complicates the migration
process due to ongoing communication and the necessity of avoiding out-of-
order packets and dropped packets.

4.3. Reestablishment of the Remote Connection

While IB supports both reliable and non-reliable transport services, this
work focuses on the former. When a QP is created, it is not associated with
any other QPs and must be connected to a remote QP through a connection
establishment process to transfer data. The communication manager uses an
out-of-band channel to establish a connection between two QPs, exchanging
QP attributes, and transitions both QPs into the RTS state. If migration
occurs when both QPs are in the RTS state, the QP to be moved is destroyed
and an event is sent to the remote QP to disconnect its connection. The
challenge is to recreate an identical QP at the destination and to reestablish
the connection with the remote QP after the migration is complete.

5. Design and Implementation

Two different strategies enable live migration of SR-IOV devices over
IB: the non-transparent approach and the transparent approach. The non-
transparent approach assumes that the complexity of the low-level device
drivers is a black box. Reconfiguration of the underlying network structures
during live migration is handled by the ULP. The selected ULP must be
robust enough to handle the challenges mentioned in Section 4, such as the
reallocation of physical resources and reestablishment of a remote connec-
tion. The Oracle Reliable Datagram Socket (RDS) or IP over IB (IPoIB) are
the examples of ULP that fulfils these requirements. As a result, it can be
combined with the hot plug mechanism to migrate a VM independent of the
underlying network technology[IPoIBref][rdsref]. Performance might suffer,
however, and the non-transparent approach is not a generic solution because
the application depends on a dedicated ULP that increases the overhead of
data movement to support migration. Thus, we propose a transparent ap-
proach to provide a generic solution that supports the IB transport services.

Our transparent design leverages the hot plug mechanism by detaching
the VF to quiesce the device. Then, motivated by previous work on pro-
cess migration [29, 30], we release the hardware managed resources of the
active QPs before the migration starts and reallocate them after the migra-
tion is complete. Since the VM migration consists of three separate stages,

15



we named our transparent design the three-stage migration process. In the
following sections, we discuss the design choices, the details of our implemen-
tation, and how our design addresses the challenges described in Section 4.

5.1. Detachment of an Active Device

Recall from Section 4.1 that an IB VF with active QPs and ongoing data
transfers will fail to be detached using the hot plug mechanism. However,
if the user process that owns the QP can be temporarily suspended, then
the VF will become quiescent and it can be detached after the kernel device
driver instances are. Therefore, we propose a method that provides interac-
tion between the user processes and the drivers in the kernel. This method
includes the following steps after the VMM decides to migrate a given VM:
i) The VMM notifies the kernel in a given VM about the migration, ii) the
kernel initiates the device detachment process and requests that all user pro-
cesses with active QPs suspend operation, iii) the user processes suspend
their QPs, which is discovered by the kernel through polling on the device
driver, and iv) the kernel completes the detachment of the device and the
migration process proceeds.

For the kernel to know about the QPs in use by a given process, we intro-
duce a process–QP mapping table (MT) as shown in Fig. 6a. The table maps
between the process identification (PID) and the QPN. It is implemented as
a kernel module in the privileged domain that tracks the association between
the PID and the QPN. As shown in Algorithm 1, the PID is registered in the
mapping table when a QP is created and the PID is unregistered when the
QP is destroyed. If the table contains a matching PID when the privileged
domain attempts to detach a VF, the process registered to the QP using the
VF is notified. When this notification is received by the process with the
given PID, the callback function, implemented in the user library, releases
the pinned memory. As a result, the PCI drivers can be unloaded success-
fully and the VF can be detached from the VM. To prevent any send/receive
events during migration, the user process is suspended until it receives the
resume event signal.

5.2. Reallocation of Physical Resources

When a VM is migrated to another physical server, the physical resources
used by the QPs in the VM must be reallocated. Recall from Section 4.2 that
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(a) The QPN–PID MT that resides in
the VM kernel.

(b) The user space QPN MT that maps
the QPN to the QP context through
the linked list.

Figure 6: The Mapping Table (MT) implementation.

Algorithm 1 Registration of the PID–QPN mapping.

1: if ib module loaded then
2: if ib create qp(pid from user, qpn) then
3: reg to pid qpn t(pid from user, qpn)
4: else if ib destroy qp(pid from user, qpn) then
5: unreg from pid qpn t(pid from user, qpn)
6: end if
7: else if unloading ib module then
8: if pid qpn t not empty() then
9: notify user callback func(pid from user)

10: end if
11: end if
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each QP contains location–dependent resources and a connection state man-
aged by the HCA hardware. The user application accesses these resources
through an opaque pointer that references the physical resources.

5.2.1. Location–Dependent Resources

The location-dependent resources in a QP consist of the LID, the QPN,
the RKey and the LKey. These resources must be recreated at the destina-
tion server and, to ensure application transparency, remapped so they are
reachable through the opaque pointer that is cached in the user application.

The complexity lies in how to remap these resources. The most efficient
approach is to offload the remapping mechanism to the hardware, but hard-
ware offloading requires modifications to the existing hardware and software
architecture, as discussed further in Section 7. As an alternative approach
compatible with today’s hardware architecture, we propose placing the MT
in the user space library. By putting it here, we avoid any conflicts between
QPNs that might have occurred if this had been handled by the kernel. The
MT is per process, which reduces the size of each table and minimizes the
time to search and retrieve the updated QP attributes. Furthermore, in-
stead of using one mapping table for each attribute, we create a linked list of
pointers to the new QP attributes, as shown in Fig. 6b. The QPN is used as
the key to retrieve the updated QP attributes (QPN, LID, RKey, and LKey)
after a new IB VF is attached to the migrated VM.

5.2.2. Connection State Information

The IB specification does not define the states for suspending and resum-
ing a QP, as shown in Fig 5. However, three approaches can be used when
migrating a QP.

1. A full cycle reset can be carried out at any time by triggering the RTS–
RESET transition, but this resets the QP attributes and clears the SQs,
RQs, and completion queues. This means that the QP attributes and
any data in the queues are lost.

2. The automatic path migration mechanism provided by IB can automat-
ically switch a QP to a predefined secondary path without destroying
the established connection. This only works, however, if the predefined
path is located within the same HCA. Therefore, it is not useful for
reconfiguring QPs across physical hosts.

18



3. The SQ drain (SQD) state is the only state, as shown in Fig. 5, that
allows a QP transition to and from the RTS state. In other words,
it is the only way to modify the QP attributes after the QP is in the
RTS state. A QP can only be transition into the SQD state after the
remaining elements in the SQ have been successfully executed.

From a comparison of these three approaches, it is clear that the SQD
state is the only one suitable for reconfiguring QP attributes without losing
connection state information. The SQD state requires that all the outstand-
ing operations in the SQ be sent before the transition from the RTS state to
the SQD state is allowed. Thus, the SQD state ensures that all the outstand-
ing send operations are completed before a QP can be temporarily suspended.
With this approach the QP is in a deterministic state where no in-flight pack-
ets exist and it can be safely suspended and migrated. Nevertheless, in our
prototype we have to emulate the SQD state in software because it is not
currently supported by the HCAs used in this experiment.

5.3. Reestablishment of a Remote Connection

To migrate a VM with an IB VF, the communication manager must be
tolerant of the device detachment event. The communication manager closes
the connection upon device removal and restarts the connection once a new
device is reattached. The current communication manager implementation,
however, is intolerant of the device removal event. It will disconnect the con-
nection and destroy both QPs after a VF has been detached. Therefore, we
implement the reconnection mechanism in the user space library in our proto-
type. Before the VF is detached, the migrating VM saves the QP attributes
and the out-of-band connection address to reestablish a new connection with
the same remote QP later.

During migration, the remote QP must be prevented from continuing to
send data to the migrating VM. Hence, the migrating VM forwards a suspend
message to notify the remote QP about the migration. After the remote QP
receives the message, it must complete all the outstanding operations in the
SQ. Then the remote QP is then transitions into the RESET state and waits
for a new event to resume the communication.

5.4. Summary of the Three-Stage Migration

In this section, we summarize the design of the three-stage migration
process. For ease of explanation, we use a migration scenario as illustrated
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(a) Before VM migration. (b) After VM migration.

Figure 7: The IB operations are performed between VMa and VMb, that is, hosted by
host A and host B, respectively. With our prototype, which has added the user space
QPN MT and the QPN–PID MT, the communication can be resumed, even after VMa is
migrated to host C. Before migration, as shown in Fig. 7a, the QPN–PID MT informs the
application that has an active QP to quiesce the IB operations. Then the opaque pointer,
QPNa1, is stored in the user space QPN MT. Finally, V Fa1 can be detached from VMa.
After migration, as shown in Fig. 7b, V Fc1 is attached to VMa. Then the new opaque
pointer, QPNc1, is added to the user space QPN MT. Finally, the IB operations can be
resumed, although each operation is intercepted by the user space MT to map QPNc1 to
QPNa1.
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(a) The suspend stage. (b) The resume stage.

Figure 8: The suspend and resume stage during three-stage migration process.

in Fig. 7. Initially, vma and vmb are running ib rdma bw, one of the IB
performance tests bundled with OpenFabrics Distribution (OFED), with vma

as a client and vmb as a server, as shown in Fig. 7a, and vmc is left idle.
While the communication between vma and vmb is ongoing, we initiate the
three–stage migration process.

First, the privileged domain of host A initiates the detachment of
an active device. This process triggers the suspend stage summarized
in Fig. 8a. Here, the kernel IB module verifies that the PID exists in the
QPN–PID MT, as shown in Fig. 7a, and signals a suspend event (step 1 in
Fig. 8a) to quiesce the send operations in vma. A similar suspend event is
forwarded, using the reliable service, to quiesce the send operation in vmb,
which is the peer of the migrating VM (step 2 in Fig. 8a). Quiescing the
IB operations is an important step for the reallocation of physical resources
because the QP can be maintained in a deterministic state where no out-
standing send operations need to be resent after migration. As soon as the
QP attributes and the out-of-band connection address are saved, the pinned
memory is released. After the pinned memory is released (step 3 in Fig. 8a),
the VF is successfully detached from vma and the user process remains in
the suspend state until it receives a resume event signal. Then the privileged
domain of host A migrates vma to host C.

After vma is migrated to host C, the attachment of a new VF to vma

will trigger the resume stage. This also initiates the reallocation of physical
resources. As shown in step 1 in Fig. 8b, a resume event is signalled to notify
the user process of vma to create a new QP and its associated resources.
Then the cached QP opaque pointer, QPNa1, is associated with the physical
resources of the new QP (QPc1) via the MT shown in Fig. 7b (step 2 in
Fig. 8b).
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Finally, the reestablishment of a remote connection is executed by
exchanging QP attributes between QPs (step 3 in Fig. 8b) and transferring
both QPs into the RTS state. After that, the communication can be resumed.
If RDMA operations are performed, an MT that remaps the RKey of the
peer QP is needed. At this point the application can continue to use the
cached QP attributes, but all operations are intercepted by the user library
to retrieve the correct QP attributes from the user space QPN MT, as shown
in Fig. 7b.

5.5. Late–detach Migration

Another improvement that we have made in the migration process, named
as late–detach migration, is to reduce the service downtime during migration.
Without using the Linux bonding driver, any SR-IOV device, including Eth-
ernet, is expected to have service downtime on the order of seconds during
VM migration [28]. This is related to the steps involved in today’s virtu-
alization model. First, the migration is initiated by the privileged domain
to detach the VF. Next, the actual task of VM migration is executed to
synchronize the dirty pages (memory) between the source (host A) and the
destination (host C, the new location for vma). Finally, a new VF is reat-
tached to vma at host C. However, the IB device is detached before the
migration starts, which increases service downtime.

Ideally, if the service downtime of live migration is less than the timeout
of reliable connection in IB, then the remote QP in vmb does not have to be
quiescent. The retry mechanism will retransmit any undelivered messages
after migration, which can be used to avoid the remote QP transitions into
the error state. This idea is similar to the transmission control protocol
(TCP) timeout that is widely deployed in TCP/IP networks to perform VM
migration. Hence, to minimize service downtime, the IB network outage
should take place at the start of the stop-and-copy stage, the stage where
the VM is suspended. Therefore, we propose performing the VM migration
without detaching the VF from the migrating source, which allows the IB
device to be operational until the start of the stop-and-copy stage. One
assumption that we made in this improvement is that all the physical hosts
in the subnet have a similar hardware specification. E.g All hosts have an
IB HCA that supports SR-IOV.
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6. Performance Evaluation

In this section, we present results from three different experiments. In the
first experiment, we compare our proposed solution with the existing solu-
tions, eIPoIB and SR-IOV IPoIB.In the second experiment, we demonstrated
a high–availability scenario using live migration. In the third experiment, we
show that live migration can be used to improve network throughput by load
balancing VMs.

6.1. Experimental Setup

Our test bed consists of three hosts A, B, and C, connected by an IB
switch. Each host is an Oracle Sun Fire X4170M2 server installed with Or-
acle VM Server (OVS) 3.0. Moreover, each host has a dual port Mellanox
ConnectX2 QDR HCA that supports SR-IOV. Each VM is configured with
two virtual CPUs, one IB VF, and 512MB of memory. The benchmark
applications are IB performance test (perftest) and netperf [31]. Perftest
consists of a collection of tests, that are bundled with the OpenFabrics En-
terprise Distribution (OFED), written over IB uverbs intended to use as a
performance micro-benchmark. In our experiment, we use ib rdma bw, one
of the benchmarks in perftest, to stream data between VMs using RDMA
write transactions. For the eIPoIB and IPoIB experiments we used netperf
to stream data using TCP. The average page dirty rate during the pre-copy
stage for these applications are approximately 500Mbps for each iteration.

6.2. Experiment I

In this experiment, as illusrated in Fig. 9a, we establish a point-to-point
communication between 2 VMs (VMa on host A and VM1 on host B).
Then, we migrate VMa to host C while the communication is still on–going.
As we are comparing our three–stage migration process with the existing
approaches, this experiment was carried out with: a system equipped with
our three-stage migration process; a system with eIPoIB; and a system with
SR-IOV IPoIB. Both SR-IOV IPoIB and eIPoIB depend on the recovery
mechanism in the TCP/IP stack. We cannot use vRDMA as it is still work in
progress, whereas RDS is an ULP that operates above IPoIB. The evaluation
consists of the service downtime, the network throughput, and CPU utilization
of these three systems.
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(a) Experiment I
testbed. The red line
is the data flow.

(b) Experiment II
testbed. The blue,
green and red lines
are the data flows.

(c) Experiment III
testbed. The red line
is the victim flow
whereas the blue and
green lines are the
congested flows.

Figure 9: The experimental testbed.
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6.2.1. Service Downtime

The service downtime is the network downtime during live migration, and
is a key metric to evaluate the transparency of an IOV approach. Fig. 10
shows that the service downtime using eIPoIB, is approximately 3 s. The
service downtime is higher than a conventional paravirtualized Ethernet due
to the additional steps required for IB address resolution. Even though the
eIPoIB shim layer translates the IPoIB header into the Ethernet header (and
vice versa), the underlying L2 address (LID) is still required to be updated
after migration.

Fig. 11 and Fig. 12 show the service downtime when using SR-IOV de-
vices with late-detach migration The service downtime using IPoIB and our
three–stage migration process is approximately 5 s and 3 s, respectively. SR-
IOV IPoIB has a higher service donwtime because it relies on the TCP/IP
stack to perform address resolution. During migration, the IPoIB connec-
tions are destroyed when the VF is detached. Then, new IPoIB connections
are reestablished again after the address resolution. On the opposite, our
approach has a lower service downtime compared to SR-IOV IPoIB, because
the reestablishment of the connection happens at the IB verb layer. We
present a detailed timing breakdown in Fig. 13 to explain the events happen
during migration.

The first improvement, as shown in Fig. 13, is the implementation of late–
detach migration. By delaying the detach of a VF has reduced the service
downtime by 3 s or 60%, from the pre-migration stage until the iterative
pre-copy stage. After multiple iterations of the pre-copy stage, the VF is
detached at the start of the stop-and-copy stage before VMa is suspended.
Even though the total migration time is approximately 4.7 s, the IB de-
vice downtime is only 1.9 s because the interval between the pci-detach and
pci-attach events is reduced as illustrated in Fig. 13. Finally, a new VF is
reattached at the destination host (host C) before VMa is resumed. Nev-
ertheless, when a new VF is reattached to the VM, an additional 0.7 s is
needed for reconfiguration. The reconfiguration process includes recreating
the hardware–dependent resources and reestablishing the connection with
the remote QP. As a result, the network connectivity loss experienced by the
user application is approximately 3 s as shown in Fig. 12 and 13.

6.2.2. Network Throughput

Fig. 10, 11 and 12 show that the operating network throughput for a VM
using eIPoIB, SR-IOV IPoIB and, SR-IOV IB is approximately 9800 Mbps,
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Figure 10: Network throughput and CPU utilization for Paravirtualized IPoIB (eIPoIB).
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Figure 11: Network throughput and CPU utilization for SR-IOV IPoIB.
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Figure 12: Network throughput and CPU utilization for SR-IOV IB (three–stage migration
process).
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Figure 13: A detailed timing breakdown for each event during the migration.
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11000 Mbps, and 25000 Mbps, respectively. If IB operates with IP or any
other ULP, the performance suffers due to the overhead in the ULP. On the
other hand, the RDMA operation using SR-IOV IB can achieve near to native
performance. There is, however, a small dip in the network throughput after
5 s (Fig. 12) because partial of the network bandwidth is allocated by the
migration tool to transfer the dirty pages during the pre-copy stage. Both
eIPoIB and SR-IOV IPoIB do not observed the performance drop during
pre-copy stage because the entire IB link bandwidth has not been utilized.

6.2.3. CPU utilization

The CPU utilization measurement was carried out at the source of the
migrating host. Fig. 10 shows that the CPU utilization during data transmis-
sion for eIPoIB is approximately 300%. On the opposite, Fig 11 and 12 show
that the CPU utilization during data transmission for both SR-IOV IPoIB
and SR-IOV IB with RDMA operations are at approximately 150%. These
results illustrate that eIPoIB, a paravirtualization IOV, consumes more CPU
time than SR-IOV. One reason is that the split driver model (front-end and
back-end driver) is consuming CPU time at the privileged domain during
normal data transfer. The CPU utilization during live migration for three
IOV approaches are the same, which can consume as high as 600%.

6.2.4. Summary

In this section, we summarize the results for experiment I. The eIPoIB
paravirtualized IOV approach, has low service downtime (3 s) but high CPU
utilization (300%) and low network throughput (9800 Mbps). The SR-IOV
IPoIB approach has high service downtime (5 s), but low CPU utilization
(150%) and low network throughput (11000 Mbps). Our solution, the three-
stage migration process, has low service downtime (3 s), low CPU utilization
(150%) and high network throughput (25000 Mbps). The network through-
put is almost double of the network throughput using eIPoIB or SR-IOV
IPoIB. In short, our three-stage migration has the best balancing point be-
tween efficiency, transparency and scalability among the three systems.

6.3. Experiment II

In this experiment, we emulated a high-availability scenario using our 3–
host cluster, as illustrated in Fig. 9b. Three VMs (VM1, VM2, and VM3)
were instantiated at host B, and one VM at host A (VMa). We create three
RDMA connections using ib rdma bw between VMa and VM1, VM2, and
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Figure 14: Per flow network throughput for experiment II in Fig. 9b.

VM3, as shown in Fig. 9b. We can only perform this experiment using our
proposed solution, the three–stage migration process, because both eIPoib
and SR-IOV IPoIB do not support RDMA write. Even though RDS support
RDMA, it does not work with applications that are written using IB verbs
API.

As shown in Fig. 14, each flow is getting a fair share of the link band-
width at 8200 Mbps. While the data transmissions were still on-going, the
management software detected that host A has a faulty component and host
A can breakdown at any time. Thus, the management software instructed
host A to migrate VMa to its high–availabity redudant host, host C. With
our three-stage migration process, the established RDMA connections do not
required to be halted. Even though there is a 3 s service downtime during
migration, the RDMA connections resume without human intervention to
re-establish these connections.

6.4. Experiment III

In this experiment, we demonstrated a load–balancing scenario in a con-
gested network. As illustrated in Fig. 9c, we instantiated five VMs: three
VMs (VMa, VM2 ,and VM3) at host B, one VM at host A (VM5) and
last one at host C (VM4). There are three unidirection RDMA connections;
VMa is communicating with VM5. VM2 and VM3 are communicating with
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Figure 15: Per flow network throughput for experiment III in Fig. 9c.

VM4 simulataneously. This synthetic traffic pattern created a bottleneck at
the link between the IB switch and host B.

As shown in Fig. 15, each flow is getting approximately 10000 Mbps. Even
though there is only one connection between VMa and VM5, it obtains the
same throughput as flow VM2–VM4 due to the head-of-line blocking. To
load–balance the network, we migrate VMa to host C. After the service
downtime, flow VMa–VM5 achieve the full link bandwidth at 25000 Mbps,
whereas the two flows (VM2–VM4 and VM3–VM5) obtain higher through-
put, as illustrated in Fig. 15. To identify a congested flow in the IB network,
we can use dynamic rerouting approach that we proposed in [32] or the IB
congestion control mechanism.

7. Future Work

As explained in Section 6, we have demonstrated an application trans-
parent mechanism that can live migrate an IB VF. In near future, we plan to
further reduce the service downtime,because it is still higher than the retry
timeout of a reliable connection in IB. Consequently, both QPs (the migrated
QP and the peer of the migrated QP) must be quiesced via handshaking, as
mentioned in Section 6, impeding a more transparent migration. Another
motivation for minimal service downtime is the benefit of a generic solution
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Figure 16: The virtual switch SR-IOV model for IB.

that supports live migration. In the long run, we believe that SR-IOV is
an ideal approach for IOV. From the PCIe point of view, each VF is an iso-
lated entity that has its own memory and a set of PCI configuration registers.
However, from the IB architecture perspective, each VF is not an IB endpoint
because the QP namespace is still shared among all the VFs. The sharing
of the QP namespace among all VFs complicates the VM migration because
the QP attributes cannot be reused. For instance, the identifier used to dif-
ferentiate each QP, the QPN, must be reassigned after migration because
the same QPN may already be assigned to a different QP. If an IB HCA can
differentiate each VF as a virtual endpoint that has its own resource pool
for the QP, then the QP attributes, such as the QPN, can be reused after
migration.

We think that virtual switch model is a better SR-IOV model. As illus-
trated in Fig. 16, the HCA integrates a virtual IB switch to isolate each VF
as a virtual endpoint, or vHCA. Each vHCA has its own QP namespace and
is also discoverable by the network manager. The QP namespace isolation
provides a better model, in terms of protection and flexibility, because each
VF is restricted to access the QP resources within its partition, which ex-
tends the protection and isolation properties of VMs for the I/O operations.
Moreover, no remapping table, as shown in Fig. 7, is needed because the QP
attributes, such as the QPN and LID, can be reused after the migration.

Another feature that IB should have is a new suspend state to quiesce a
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Figure 17: The proposed QP state diagram with the suspend state.

QP during migration, as shown in Fig. 17. The suspend state is driven by
a software–initiated request or through an event request. During migration,
the software interface transitions the migrating QP from the RTS state to the
suspend state. When a QP enters the suspend state, it must complete any
previously initiated message transmission and flush any remaining messages
in the SQ without processing them. The hardware must also ensure that
the remaining messages are cached by the user process buffer before flushing
them. In the suspend state, any new message can be enqueued in both the
SQ and the RQ, but remain posted without being processed until the QP is
activated again.

8. Conclusion

Migrating a VM is different in conventional Ethernet network devices than
in high-speed lossless networks such as IB. This is because they are based
on distinct hardware architectures. The high–speed networking architecture

32



offers an efficient protocol stack. However, this requires additional complex
offloading functionality in the hardware device, which makes VM migration
less virtualization friendly compared to conventional network devices.

In this paper we have demonstrated the first design and implementation
of live migration with SR-IOV IB. First, we described the challenges with
respect to the live migration of SR-IOV enabled IB devices. Subsequently,
we described a detailed implementation and measured the service downtime
of an application during migration. The performance evaluataion shown that
our prototype achieved near to native IB performance, low cpu utilization
and low service downtime. Finally, we identified and debated the fraction
of the cost of migration that can be mitigated by architectural changes in
future hardware. With these changes, we argue that the service downtime of
live migration with IB enabled SR-IOV devices (or similar high–performance
lossless technologies) can be reduced to the millisecond range demonstrated
with emulated Ethernet devices.
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Abstract—Single Root I/O Virtualization (SR-IOV) is a
promising I/O virtualization approach for achieving high per-
formance in the virtualization over InfiniBand (IB) network.
One challenge is related to the hardware address assignment
for each virtual IB device. There are two schemes for the
hardware address assignment; static assignment and dynamic
assignment. Static assignment always preserves the hardware
address of a virtual IB device that is attached to a VM, but
the dynamic assignment does not. A drawback, however, using
static assignment is that its communication will be disconnected
after VM migration.

In this paper, we point out the problem related to SR-
IOV over IB that breaks the network connections after VM
migration when the static assignment is deployed. Then, we
propose a signalling mechanism that can maintain the network
connectivity after VM migration. The performance evaluation
using an experimental test bed shows that the proposed
signalling mechanism does not increase the service downtime
during hot migration. We also optimize the signalling method,
where the same event can only be forwarded to a physical
server once regardless of the hosted VMs, to reduce the
management message overhead from O(n ∗m) to O(n).

I. INTRODUCTION

Today, one of the leveraging technologies that driving
cloud computing is virtualization. It plays a critical role in
cloud infrastructure, in resource allocation and management,
efficient resource utilization, and elastic scalability.
Nevertheless, due to the intensive storage operations and

IO communications, the virtualization of I/O resources has
became a major performance bottleneck. Recent progress
has improved the performance of I/O virtualization (IOV) by
the introduction of Direct assigned I/O (DIO)[1] and Single
Root I/O Virtualization (SR-IOV) [2]. Direct assigned I/O
allows a VM to bypass the virtual machine monitor (VMM)
and directly access the network hardware, which gives close
to native performance [3], [4], [5], [6]. Unfortunately, it
has one major drawback, and that is the lack of scalability.
Only one VM can be attached to a device at a time, thus
multiple VMs require multiple physical devices. This is
expensive with regards to the number of devices and the
internal bandwidth. To rectify this, SR-IOV was developed,
which allows multiple VMs to share a single device because
a single physical interface is presented as multiple virtual
interfaces. Recent experience with SR-IOV has shown that
such devices are able to provide high performance I/O in a
virtualized environment [7], [8], [9].
A key feature provided by virtualization is VM migration

[10], [11], [12]. VM migration is a powerful tool that

extends the management of VMs from a single physical
host to an entire cluster. Furthermore, it provides flexible
provisioning of resources for improved load balancing, sim-
pler maintenance, and increased efficiency. This leads to
reduced downtime for the applications and services running
on the VMs, and reduced power consumption during periods
of low activity. VM migration has been demonstrated for
both I/O virtualization with emulation over Ethernet [10]
and I/O virtualization with DIO over InfiniBand [11], [12].
Compared to conventional Ethernet devices and migration
based on emulation, high performance and lossless tech-
nologies like InfiniBand have more resources managed by
hardware, making the necessary flexibility required from SR-
IOV harder to realize.
One of the challenges in VM migration with SR-IOV over

InfiniBand (IB) is the hardware address assignment for each
virtual IB device, also known as the virtual function (VF).
There are two schemes for the hardware address assignment;
static assignment and dynamic assignment. In static assign-
ment, the hardware address of a VF is always associated with
a VM. On the opposite, in dynamic assignment the hardware
address of a VF is always changed after VM migration. The
drawback of static assignment is that the IB communication
will be disconnected after VM migration. This is due to
the architectural differences between SR-IOV over IB and
the native IB. In the SR-IOV over IB the mapping between
hardware address and the path information changes after VM
migration, but not in the native IB. If the static assignment is
used in the SR-IOV over IB, the hardware address mapping
is not updated at the peer of the migrated VM that breaks the
communication. So, in this paper we propose and implement
a signalling mechanism to notify the migrated VM peer
to update the hardware address mapping that allows the
IB communication to be resumed after VM migration. Our
experimental results also shows that the latency of the
proposed signalling mechanism is negligible. Moreover, we
restrict the signalling mechanism to only signal a same event
to a physical server once regardless of the hosted VMs, in
order to reduce the management message overhead.
This paper is organized as follows: Section II gives the

necessary background on IOV and related technologies. Sec-
tion III describes two hardware address assignment models.
In Section IV, we discuss the signalling mechanism. In
Section V, we present the experimental test bed and in
Section VI, we evaluate the performance of the signalling
mechanism using our test bed. Furthermore, we also use
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mathematical analysis to analyze the management message
overhead of the signalling mechanism. Lastly, we conclude
and summarize in Section VII.

II. BACKGROUND

In this section we give a brief description of IOV, the
SR-IOV architecture, VM migration and IB architecture.

A. I/O Virtualization

IOV was introduced to provide availability of I/O by
allowing VMs to access the underlying physical resources.
Along with the wide adoption of virtualization came an
increase in the number of VMs per server, which has made
I/O a major bottleneck. This is due to two reasons: First,
the available I/O resources at the physical level has not
scaled with the number of cores. This is slowly being
addressed with the introduction of faster version of PCI-
express (PCIe) [13] and increased network speed. Second, a
physical server handles multiple VMs must support the I/O
requests from all these VMs, and due to the initial low I/O
performance of even a single VM, this significantly reduces
I/O performance. In practice, the combination of storage
traffic and inter-server communication impose an increased
load that may overwhelm the I/O resources of a single server,
leading to backlogs and idle processors as they are waiting
for data.
With the increase in number of I/O requests, the goal

of IOV is not only to provide availability, but to improve
performance, scalability and flexibility of the (virtualized)
I/O resources to match the level of performance seen in the
modern CPU virtualization. In the following subsection, we
describe SR-IOV, the latest virtualization technique that can
provide a scalable and high-performance IO virtualization.
1) Single Root IO Virtualization: To address the lack of

scalability with direct assignment, the SR-IOV specification
was created [2]. This specification extends the PCIe spec-
ification with the means to allow direct access to a single
physical device from multiple VMs while maintaining near
to native performance. Therefore, SR-IOV is expected to
fully replace direct assignment as the IOV mechanism of
choice in the near future. SR-IOV capable network devices
are currently available for both Ethernet and InfiniBand
devices.
SR-IOV allows a PCIe device to expose multiple virtual

devices that can be shared among multiple VMs by allo-
cating one virtual device to each VM. Each SR-IOV device
has at least one physical function (PF) and one or more
associated virtual functions (VF). A PF is a normal PCIe
function controlled by the VMM, whereas a VF is a light-
weight PCIe function. Each VF has its own memory address
and is assigned a unique requester ID that enables IOMMU
to differentiate between the traffic streams to different VFs.
The IOMMU also provides memory and interrupt transla-
tions between the PF and the VFs.
The use of an SR-IOV capable device yields near to native

performance and improved scalability as shown in [14]. The
major drawback, however, is that SR-IOV is incompatible
with hot migration and checkpoint/restart mechanisms as is
also the case with direct assignment.

B. Virtual Machine Migration

VM migration, which is the ability to move a VM from
one physical server to another under the management of
VMM, is a virtualization feature that is increasingly uti-
lized in today’s enterprise environment. VM migration can
provide system management needs such as hardware and
software maintenance, and the data center scale-out require-
ments. There are two different schemes of VM migration :
cold migration and hot migration.
1) Cold Migration: Cold migration is the traditional way

to migrate a VM. The VM is shutdown and then restarted at
the destination server. When the cold migration is initiated,
the VM stops the running application and copies the page
table (VM’s memory) to the destination server. The total
migration time is reduced because the page tables are not
being modified during the cold migration. Nevertheless, the
application uptime is not maintained because the VM is
halted during the cold migration.
2) Hot Migration: Hot migration is to migrate a running

VM from one physical server to another server while main-
taining the running application uptime [10]. When the hot
migration is initiated, the VM is not suspended instantly
but the dirty pages (memory) are iteratively synchronized
between the source and destination server. After the iterative
copy phase, the VM is only suspended with a minimal
downtime. The hot migration focuses on increasing the
uptime of the VM, but the iterative copy phase that depends
on the dirtied rate of page table has increased the total
migration time.

C. The InfiniBand Architecture

The InfiniBand Architecture [15] was first standardized
in October 2000, as a merge of the two technologies Future
I/O and Next Generation I/O. As with most other recent
interconnection networks, InfiniBand (IB) is a serial point-
to-point full-duplex technology. InfiniBand networks are
referred to as subnets, where a subnet consists of a set
of hosts interconnected using switches and point-to-point
links. An IB subnet requires at least one subnet manager
(SM), which is responsible for initializing and bringing up
the network, including the configuration of all the switches,
routers and host channel adaptors (HCAs) in the subnet.
There are two SR-IOV models suggested for IB [16]:

The shared port model which is used in the Mellanox
ConnectX2 (CX2) hardware; And the virtual switch model.
The latter model has several properties that simplifies IOV,
but it requires more complex hardware. In the shared port
model, all the VFs share a single port address and a single
Queue Pair (QP) name space, and only the physical HCA
port is discoverable by the network. In the virtual switch
model each VF is a virtual HCA that contains a unique port
address and a unique QP name space, and each virtual HCA
is discoverable by the network.

III. THE HARDWARE ADDRESS ASSIGNMENT MODELS

Each physical IB device is assigned with two addresses:
Local IDentity (LID) and Global Unique IDentity (GUID).
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Both LID and GUID are the attributes in the path informa-
tion. The LID is used to route IB packets within a subnet.
On the other hand, The GUID is the hardware address that
uniquely represents a physical IB device. The 64-bit GUID
is combined with the local subnet prefix (64-bit) to form the
Global Identifier (GID). The 128-bit GID is used to route
IB packets between IB subnets.
In the current implementation of SR-IOV for IB, that

is based on the shared port model, each VF shares the
Local IDentity (LID) with the PF but has its own virtual
GUID (vGUID). A virtual GUID is the hardware address
that uniquely represents a VF. The vGUID is also referring
as hardware address in this paper and both terms are used
interchangeable.
In the following subsections, we explain two different

hardware address assignment models that can be used to
assign vGUID for each VF: dynamic assignment and static
assignment.

A. Dynamic Assignment

This model is very similar to how addresses are assigned
in the native IB. Along with assigning the LID and GUID for
the PF, the SM is also responsible for assigning the vGUID
for each VF. During the subnet initialization, the PF queries
the SM for the vGUIDs allocated to it’s VFs. Then, the
SM generates the vGUIDs and responds to the requesting
PF. After the PF receives the vGUIDs, they are stored in the
GUID adminstration index table of dom0. Each VF is always
associated with an appointed index as shown in Fig. 1.
Nevertheless, the relation between an assigned VF and a
VM is not constant. After VM migration, a new VF from
the destination server is assigned to the VM. Consequently,
the vGUID changes because it is obtained from the GUID
adminstration index table in the destination server. E.g, at
host A, vma is assigned with VF index 1 that has the vGUID
value of 0xAAAA (as shown in Fig. 1a), but the vGUID
changes to 0x11EE after vma is migrated to host B (as
shown in Fig. 1b).
This model is simple and uses the SM to assign the

addresses for both the VF and the PF, but the vGUID
associated with a VM is not preserved after VM migration.
Consequently, a Subnet Administration (SA) query needs
to be performed after VM migration in order to obtain
the path information for the new vGUID. These operations
introduce additional latency in bringing up the IB VF. If
hot migration is performed, this delay will increase the total
service downtime.

B. Static Assignment

The static assignment is mainly targeted for the legacy
application running in VM that has the requirement of
preserving the hardware address of its networking interface
after VM migration. In SR-IOV implementation for IB,
the vGUID represents the hardware address of a virtual
function (networking interface). Thus, the objective of static
assignment is to preserve the vGUID that is assigned to a
VM regardless of location. Compared to dynamic assign-
ment, this implementation is more complex because it is

(a) (b)

Figure 1. The dynamic assignment.

different from the native IB address assignment. In order
to have a static vGUID throughout the VM life cycle, the
implementation can be based on the SM or on a combination
of the SM and the privileged domain (dom0). Due to the
excessive management messages generated when only using
the SM to maintain a static vGUID, the latter approach
combining the SM and dom0 is a preferred solution. When
a VM is instantiated, it is assigned with a vGUID that is
kept as part of the VM configuration. The vGUID can be
assigned by an external management software or the SM.
When a VF is assigned to a VM, dom0 reads the vGUID
from the VM configuration and writes the vGUID to the
GUID administration index table. This event will also trigger
a management message to update the SM with the latest
vGUID to LID mapping. After VM migration, this model
preserves the vGUID that is associated with the attached VF
of a VM. E.g, at host A, vma has vGUID with the value
of 0x1063 (as shown in Fig. 2a). After vma is migrated to
host B, the vGUID remains the same (as shown in Fig. 2b).
Although this model maintains the static vGUID for the

assigned VF of a VM even if the VM is migrated to
another physical host, this model is incompatible with VM
migration. After VM migration, the peer of the migrated VM
is not aware of the change in the LID to vGUID mapping.
The peer continues to communicate with the migrated VM
using its outdated cached path information. As a result, the
peer fails to reach the migrated VM. This problem will
be discussed in detail in section IV-A. In short, the static
assignment must have a mechanism to notify the migrated
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(a) (b)

Figure 2. The static assignment.

VM peers with the updated path information after VM
migration.

IV. SIGNALLING METHOD

In order to preserve the IB connection after VM migration
when static assignment is deployed, we must implement a
method to notify migrated VM peers to update their cached
path information. In this section, first we identify and discuss
the problem in the SR-IOV architecture that breaks the
IB connection in subsection IV-A. Then, we propose an
extension of our previous work [17], [18] to use as the
signalling method to notify the migrated VM peers with
an updated path information. The implementation of this
signalling method is explained in Section IV-B.

A. What is the Problem?

In the native environment, a GUID to LID pair will
not change unless the master SM changes. If master SM
changes, the SM will also be accompanied with a client re-
register event, that will refresh the cached path information.
Nevertheless, the similar assumption, that a GUID to LID
pair will not change, cannot be applied to the SR-IOV over
IB environment.
In the dynamic assignment, the destination host will

assign a new vGUID and LID to the migrated VM. Thus,
both vGUID and LID will change after VM migration.
In this case, a new path record query must be performed
to update the cached path information in the peer of the
migrated VM. Although this additional step is making the

VM migration less transparent, the communication with the
peer of the migrated VM can still be resumed.
In the static assignment, on the other hand, where only

the LID will change after VM migration. This is because
the vGUID remains the same but a new VF, from the
destination server, that has a different LID is attached to the
migrated VM. Although the SM and the migrated VM have
the updated LID to vGUID pair, the peers of the migrated
VM are not being notified. Due to the cached LID to vGUID
pair in the migrated peers that was established earlier has
became invalid, the migrated VM peers fail to reach the
migrated VM or vice versa. In summary, the root of this
problem is the lack of notification from the SM. In order to
resolve this problem, a SM event, that has the latest vGUID
to LID pair, must be triggered after VM migration to notify
the migrated VM peers.

B. Implementation

Fig. 3 shows that the signalling method consists of two
phases: The event registration phase and the event forward-
ing phase. In the event registration phase, each physical
server must register its physical port GUID for the repath
trap notification [15]. The physical server is acknowledged
after the physical port GUID is registered successfully in the
SM.
The event forwarding phase is performed when the VM

migration happens. The SM must detect the changes in the
LID-vGUID mapping and signals a repath trap, that has
the latest LID-vGUID mapping, to all registered servers. In
order to avoid triggering the repath trap during a new VM
creation or a VM reboot event (the VM is shutdown and
restarted at the same server), Alg. 1 is used in the SM to
identify the changes in the LID to vGUID mapping. When

Algorithm 1 Trigger re-path trap with path record

1: if delete guid(path rec.guid) then
2: add to repath trap table(path rec)
3: else if set guid(path rec.guid) then
4: if ret rec=find path rec from repath trap table

(path rec.guid) then
5: if ret rec.dlid != path rec.dlid then
6: construct repath notice(ret rec)
7: signal repath trap(notice)
8: end if
9: remove from repath trap table(path rec)
10: end if
11: end if

a vGUID is deleted from the SM due to VM shutdown
or VM migration, the path information will be added to
the repath trap table. The repath trap table is a temporary
storage that is used to differentiate between the VM creation
event and the VM migration event.
If a vGUID is already existed in the repath trap table

when it is added to the SM, the associated path information
is compared with the entry in the repath trap table. If LID is
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Figure 3. The Signalling mechanism.

different, this indicates that a VM migration has happened.
This newly added vGUID and its associated path information
is encapsulated in the repath trap. Then, the repath trap is
signalled to all registered servers. After that, the vGUID
entry in the repath trap table is removed.
In order to avoid creating a bottleneck in the SM, we

propose to use the dom0’s GUID, or the physical port GUID,
for event subscription instead of the vGUID. Then, dom0
is also responsible to broadcast the received notice to its
hosted VMs. Alg. 2 shows the implementation in dom0 to
forward the received repath trap notice to the active VMs.
By only using the physical port GUID for event subscription,
the generated management message (MMO) can be reduced.
The evaluation of the MMO will be discussed in detail in
section VI-C.

Algorithm 2 forward the repath notice to VMs

1: if is repath trap notice(notice) then
2: for i = 0 to max supported V Fs do
3: if guid cache[i] �= NULL then
4: ib send to slave(notice)
5: end if
6: end for
7: end if

When the notice, that is forwarded by the dom0, is
received by each VM, Alg. 3 will be executed to reconfigure
the cached path information. The VM will extract its cached
path information and compare them with the encapsulated
path record in the repath trap. If there is a matched vGUID
entry but with a different LID, the cached path information
in the drivers will be updated.

V. EXPERIMENTAL SETUP

Our test bed consists of three hosts: host A, B and C
that are connected through IB using an IB switch. Fur-
thermore, host A and B are also connected using the 10-
Gigabit Ethernet (10GE). Each host is an Oracle Sun Fire

Algorithm 3 Reconfigure the cached path record

1: if received repath trap notice(notice) then
2: rec = get SAagent cache(notice.path rec.gid)
3: if rec.dlid �= notice.path rec.dlid then
4: update SAagent cache(notice.path rec)
5: end if
6: end if

SW

Host A Host B

VMa
VMbVMa

Figure 4. The scenario of experiment I. The solid line represents the flow
before VM migration whereas the dotted line represents the flow after VM
migration.

X4170M2 server that is installed with Oracle VM Server
(OVS) 3.0. Moreover, each host is also equipped with two
PCI-express devices that have the SR-IOV capabilities, a
dual port Mellanox ConnectX2 QDR host channel adapter
(HCA) and a dual port Intel 82599EB 10 Gigabit-Ethernet
network interface card (NIC). Each VM is instantiated with
two vCPUs, 1GB memory and either an IB VF or a 10GE
VF. In our experiment, we use iperf, a TCP/IP socket based
application, to generate the TCP traffic. So, the IP over IB
(IPoIB) protocol is used in order to run iperf with IB.

VI. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements on
an experimental test bed and an analysis of scalability. In
the test bed measurement, we use total service downtime
during hot migration as our main metrics to measure the ad-
ditional latency that is introduced by the proposed signalling
mechanism. For the mathematical analysis, we use total
management message overhead as the metrics to evaluate
the scalability of the signalling mechanism.

A. Experiment I

In this experiment, a TCP connection is established be-
tween vma and vmb. vma is hosted by host A and vmb is
hosted by host B as illustrated in Fig. 4. Then, vma is mi-
grated from host A to host B at 21s. This experiment is also
carried out with two configurations. In the first configuration,
we are using IPoIB whereas the second configuration with
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Figure 5. The service downtime of VM migration using IB VF and 10GbE
VF.

10GbE. 10GbE is used in this experiment as the baseline
result.
Due to the fact that the signalling mechanism will be

triggered during VM migration, this experiment measures
the additional latency that is introduced by the signalling
mechanism during hot migration. We are not using IPoIB
with the dynamic assignment addressing scheme as the
baseline result even though it works with hot migration.
This is because it must query the SA for the updated path
information after VM migration. This additional step might
increase the total service downtime. As a result, we are using
the 10GE VF as the baseline result to identify the latency of
the signalling mechanism. Another point worth mentioning
here is that the service downtime with a SR-IOV VF (includ-
ing 10GE) is expected to be in the magnitude of seconds, if
hot migration is performed without the bonding driver [19].
This is because VM migration cannot be performed if a
SR-IOV VF is still attached to the VM. Consequently, the
SR-IOV VF must be detached from the VM and re-attached
again after the VM migration is completed. As a result, the
service downtime has increased from miliseconds range for
the live migration operation to the magnitude of seconds due
to the detachment and attachment of the SR-IOV VF.
Fig. 5 shows the service downtime during hot migration

using a 10GE VF and an IB VF. Without the bonding
driver, the service downtime is approximately 4s regardless
of which VF is used. Even though with IB VF the signalling
mechanism is triggered to maintain the IPoIB connectivity,
it does not increase the total service downtime. Thus, we can
conclude that the proposed signalling mechanism has a neg-
ligible latency that does not increase the service downtime.
On the opposite, without the signalling mechanism to notify
the peer of the migrated VM, the IPoIB communication will
be disconnected after VM migration.
Another observation from Fig. 5 that we like to point

out is the network throughput. The network throughput of

SW

Host A Host B Host C

VMa VMbVMd VMcVMd

Figure 6. The scenario of experiment II. The solid lines represent the flows
before VM migration whereas the dotted line represents the flow after VM
migration.

IPoIB and 10GbE are approximately 8Gbps and 8.3Gbps,
respectively. Although Fig. 5 shows that the throughput of
10GbE is slightly higher than IPoIB, the collected result
shown in Fig. 5 is only based on a single run. The network
throughput for both IPoIB and 10GE (with single connec-
tion) are usually fluctuated within the range of 7.5Gbps to
8.5Gbps, which matches what we have obtained in Fig. 5.
Another reason is the overhead in the IPoIB software

stack, where the obtained network throughput is much lower
than the IB native throughput of QDR at 32Gbps. With
a single IPoIB connection runs in a VM, the throughput
is approximately 8Gbps. If multiple IPoIB connections run
in several VMs simultaneously, the aggregated throughput
with IPoIB can reach 19Gbps. This is similar to the IPoIB
performance on a physical (non-virtualized) configuration
which is limited by PCIe Gen2. In the combination of
new Intel x86 Romley platform and a new Mellanox CX3
HCA that both have PCIe gen3, a higher throughput can be
demonstrated. The performance of IPoIB is CPU bound due
to the TCP termination at the TCP server.
The IPoIB performance of a VM is limited to approxi-

mately 8Gbps because Xen does not support direct interrupt
injection into a guest even though the x86 architecture, VT-
d [1], does [20], [21].

B. Experiment II

In this experiment, vma and vmd are hosted by host
A, vmb is hosted by host B, and vmc is hosted by host
C. The communication consists of three individual flows
between vma and vmb and a flow between vmd and vmc as
illustrated in Fig. 6. All the communications are established
using IPoIB. At 17s, vmd is migrated from host A to host C.
Even though the signalling event is broadcasted to all hosts
during VM migration, this experiment shows that normal
data flows will not be affected by the proposed signalling
mechanism.
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Figure 7. The per flow throughput in experiment II.

Fig. 7 shows the per flow throughput before and after
VM migration. Before migration, each flow obtains approx-
imately 4.75Gbps. When vmd is migrated to host C at 17s,
there is a 4s of service outage in the communication between
vmd and vmc. On the other hand, the remaining three flows
between vma and vmb are instantly getting a higher share of
the physical link bandwidth at 6.2Gbps. After migration, the
communication between vmc and vmd is localized at host
C. Consequently, the throughput of this flow is increased to
approximately 8Gbps as shown in Fig. 7.
In this experiment, although vma and vmb received the

signalling event when vmd was migrated to host C at 17s,
these communication flows were not impacted by the sig-
nalling event. On the opposite, these flows achieved a higher
throughput at 17s because the communication between vmc

and vmd was no longer using the physical link between
host A and the IB switch. This link was only dedicated
to three individual flows between vma and vmb. Another
important observation from this experiment is to emphasis
that the aggregated throughput (per server) with IPoIB can
reach approximately 19Gbps.

C. Scalability

Even though the proposed signalling mechanism is an
architecturally correct approach, without a proper handling
or excessive use of the event forwarding might cause a
bottleneck in the SM. This is due to the nature of hand-
shaking in the IB event forwarding. In this section, we use
the mathematical analysis to analyze the total management
message overhead of the signalling mechanism.
Before a VM can receive the notice, it must register itself

for the event notification from the SM/SA. In a virtualized
environment, there are n physical servers and each server
is hosting m VMs. If the event subscription is registered
according to a VM’s vGUID, the management message

Table I
TABLE OF NOTATION

Symbol Meaning
n Number of physical server.
m Number of hosted virtual

machine.
msgrepath Message size of a

re-path trap.
msggmp Total message size of a

general service management
packet.

msgregister Total message size of
an event subscription.

msgACK Total message size of a SA
acknowledgement.

ohdstartup Total message overhead of the
startup phase of event
registration.

ohdstartup opt Total message overhead of the
startup phase of event
registration with optimization.

ohdevent forwarding Total message overhead
during event forwarding.

ohdevent forwarding opt Total message overhead
during event forwarding
with optimization.

ohdLB Total message overhead in the
load balancing scenario.

ohdHA Total message overhead in the
high availability scenario.

overhead (MMO) that will be generated during the startup
phase is derived by Eq. 1.

ohdstartup = n ∗m ∗msgregister + n ∗m ∗msgACK

= 2 ∗ n ∗m ∗msggmp

(1)

Each VM, that consists of m number of them that are
hosted by n physical servers, will send a msgregister to
register for an event notification. In return, the SM/SA will
respond with a msgACK . The MMO is bounded to both the
number of VMs, m, and the number of physical servers, n.
On the opposite, our signalling mechanism is using dom0
for event subscription where only the physical port GUID
is registered in the SM. In this case, the MMO during the
startup phase is only depending on the physical servers, n,
as derived in Eq. 2.

ohdstartup opt = n ∗msgregister + n ∗msgACK

= 2n ∗msggmp
(2)
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Now we look at the MMO during the event forwarding. If
the event forwarding is based on a VM’s vGUID, the MMO
can be derived by Eq. 3. Due to the fact that all active VMs
must be notified, the physical server that hosted multiple
VMs will receive multiple redundant notices.

ohdevent forwarding = n ∗m ∗msgrepath

= n ∗m ∗msggmp
(3)

In our proposed signalling mechanism, only the dom0
receives the notice. It is responsible to broadcast the received
notice to its hosted VMs. The MMO of our signalling
mechanism can be derived in Eq. 4. Regardless of hosted
VMs,m, a similar event will only be forwarded to a physical
server once.

ohdevent forwarding opt = n ∗msgrepath

= n ∗msggmp
(4)

In summary, the abovementioned mathematical equations
show that our signalling mechanism, that is based on dom0,
has improved the scalability by reducing the management
message overhead from O(n ∗m) to O(n).

VII. CONCLUSION AND FUTURE WORK

SR-IOV is a promising I/O virtualization approach for
achieving high performance in the virtualization over IB.
One challenge is related to the hardware address assignment
for each VF. If the hardware address that is associated with
a VM must be preserved throughout a VM life cycle, the
communication fails to resume after VM migration.
In this paper, we have identified the problem related

to SR-IOV that breaks the network connection after VM
migration when the association between the hardware ad-
dress and a VM must be preserved. Then, we proposed
and implemented a signalling mechanism that maintains the
network connectivity after VM migration. We have evaluated
the performance on a small test bed and it is evident from
our results that the latency of the signalling mechanism
is negligible in a small scale cluster. Moreover, we also
optimize the signalling method, where a same event can
only be forwarded to a physical server once regardless of the
hosted VMs, to reduce the management message overhead.
Future work includes studying this method in large clus-

ters in order to better evaluate the performance and scal-
ability. We also plan to reduce the total service downtime
during VM migration by applying the concept of the Linux
bonding driver in IB.
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