
Performance Evaluation of Congestion Window Validation
for DASH Transport

Sajid Nazir
School of Engineering
University of Aberdeen

AB24 3UE, Aberdeen, UK

sajid.nazir@abdn.ac.uk

Matthew Broadbent

School of Computing and
Communications

Lancaster University
LA1 4WA, Lancaster, UK

m.broadbent@lancaster.ac.uk

Ziaul Hossain
School of Engineering
University of Aberdeen

AB24 3UE, Aberdeen, UK

ziaul.hossain@abdn.ac.uk

Andreas Petlund

Department of Informatics
Postboks 1080 Blindern

University of Oslo
0316 Oslo, Norway

apetlund@ifi.uio.no

Raffaello Secchi
School of Engineering
University of Aberdeen

AB24 3UE, Aberdeen, UK

raffaello@erg.abdn.ac.uk

Gorry Fairhurst

School of Engineering
University of Aberdeen

AB24 3UE, Aberdeen, UK

gorry@erg.abdn.ac.uk

ABSTRACT

A recent proposed update to TCP congestion control, TCP-

newCWV, has targeted congestion control for rate-limited

applications. These methods need to be explored in the context of

rate-adaptive applications, such as DASH. The new method

enables a client to exploit the persistence of a DASH connection

and enables the DASH server to rapidly resume transmission of a

series of video segments using a single TCP connection. Another

technique, called ‘Pacing’ smoothes DASH bursts when there is

no TCP ACK clock, and is shown to significantly reduce burst

loss. These two methods in combination can increase the

application performance. This paper investigates the effect of

implementing these techniques on a DASH flow in different

congestion scenarios and whether the method can promote better

capacity sharing while minimizing the latency experienced by

other flows sharing a common network bottleneck. The results

confirm that newCWV with Pacing provides a benefit as a

platform for DASH transport.

Categories and Subject Descriptors

C.2.2 [Computer-communication Networks]: Network

protocols-Protocol verification

General Terms

Experimentation, measurement, performance

Keywords

Congestion window, adaptive streaming, DASH, network

capacity sharing, pacing.

1. INTRODUCTION
The volume of video traffic using the Internet continues to grow,

with video expected to dominate network traffic in the near future

[1]. In video transmission there has been a shift from traditional

RTP/UDP based streaming to HTTP/TCP based streaming, as

evidenced by related adaptive streaming solutions from Adobe,

Apple and Microsoft. This migration to HTTP streaming is

favored for many reasons [2].

Recently, MPEG-DASH has been standardized [3]. This targets

diverse devices such as smartphones, tablets, TV set-top boxes,

Internet TV and computers to offer multimedia content across a

range of network capacity. It defines a Media Presentation

Description (MPD) and video segments, but does not define client

behavior nor the encoder.

A DASH client requests video segments using the MPD

information. Each segment is sent using TCP and comprises a

series of IP packets. Many clients open a separate TCP connection

to request each video segment. This process continues until the

client buffer is filled, when playback starts. Thereafter, video

segments are only requested once the buffer drains, typically

waiting until it has reached one-third of full capacity. This cycle

repeats creating traffic with an ON state (during which a

connection downloads data), and an OFF state (when the

connection is idle).

DASH also permits a persistent mode, in which a single TCP

connection is used to transfer multiple video segments. This

alternating active and idle transmission pattern can interact poorly

with standard TCP transport, causing the congestion window

(cwnd) [4] to shrink after every idle period and restart each time

using slow start. This reduces the ability of the DASH server to

utilise available network capacity [5].

DASH quality may be improved by modifying the client or server

behavior, and this has been an active area of research. The

difficulty of client-side estimation of network capacity is

highlighted in [6], where rate selection based on wrong estimates

lead to variable and low-quality video. The selected video

services [6] were shown to underestimate network capacity due to

interactions between HTTP and TCP congestion control. The

bursts of traffic from HTTP adaptive streaming can also adversely

impact other network traffic [7] and a client-side scheme has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

NOSSDAV '14, March 19 - 21 2014, Singapore, Singapore

Copyright 2014 ACM 978-1-4503-2706-0/14/03…$15.00.

http://dx.doi.org/10.1145/2578260.2578275

proposed to mitigate queuing in a network bottleneck. Instability

of competing adaptive streaming players sharing a bottleneck has

also been demonstrated [8], where traffic shaping mechanism at

the server has been proposed.

This paper therefore evaluates the performance of the newCWV

update to TCP [9] when providing transport to a DASH service.

We show that when DASH uses a combination of newCWV and

Pacing at the transport layer [10], it is more network-friendly and

reduced the impact on other sessions that share the bottleneck.

This can also improve the performance of DASH, by eliminating

the need for slow start when transmitting each message.

The remainder of this paper is structured as follows: Section 2

describes the relevant features of DASH and TCP. The

experimental setup is explained in Section 3. The results are

provided in Sections 4 and 5. Finally, conclusions and future

work are given in Section 6.

2. BACKGROUND
DASH operates above the TCP transport service. A DASH client

may decide whether to set-up a new TCP connection (3-way TCP

handshake) or re-use an already existing connection while

requesting a video segment.

2.1 DASH Persistence
A non-persistent TCP connection uses slow-start to probe for

capacity at the start of each individual video segment. A DASH

session that can reuse a previous TCP connection to deliver new

video segments is termed persistent. Persistence requires that a

server maintains the connection state for each client and has the

disadvantage that it could result in open but unused connections if

a client pauses or silently leaves a session.

Persistence also has merits. A DASH client can use persistence to

avoid the overhead of opening a new connection [11], and in so-

doing can build better picture of the network capacity available

for download.

While the current TCP standard supports applications that use

persistent connections, such as DASH, it requires each persistent

connection to Slow Start after an idle period [4] from the TCP

Initial Window (IW). This network behavior resembles that of a

series of separate connections when persistence is not used. It can

improve traffic sharing a congested network path.

2.2 Cross-layer Interaction
TCP and HTTP have different objectives and approaches for

adapting video segment download to available network capacity.

On the one hand, TCP at the Transport Layer primarily seeks to

act as a good network citizen by reducing its transmission rate in

the face of impending congestion, and (slowly) probing for new

capacity each time the application needs to send more than it has

sent previously. This sensing of capacity occurs each time the

TCP sender receives an ACK, i.e. each network path Round Trip

Time (RTT).

On the other hand, a DASH client works at the Application Layer

seeking to choose a download video segment size that optimizes

the quality of the video within a time bounded by the receiver

buffer size. The clients typically adjust the download by

measuring the download time of each segment, responding much

more slowly than TCP – but with the advantage that it can

actually adjust the size of each segment based on current

conditions. These two feedback loops interact with each other to

determine the traffic characteristics.

2.3 TCP newCWV
The Standard TCP behavior is to collapse the cwnd for

connections that have been idle for a period longer than TCP

Retransmission Time Out (RTO). Standard TCP also continues

to grow the cwnd every time an ACK is received for rate limited

connections. As the cwnd grows, it no longer relates to the

application sending rate and becomes "invalid".

Congestion Window Validation, CWV [12] was an experimental

sender-side method proposed by the IETF to regulate the rate of

TCP applications that send bursts of data. It proposed to restrict

the cwnd from unnecessary growth or collapse depending on the

current sending rate. It used the FlightSize, i.e. the amount of

outstanding data not yet acknowledged, to determine if cwnd was

valid. The FlightSize reflects the utilized path capacity at the

moment a loss is detected; but it does not reflect the path

capacity during normal transfer if the application is rate-limited.

However, experience showed that CWV reduced the cwnd too

conservatively for many rate-limited applications [5]. CWV has

seen limited deployment in Linux, but is often not used by

interactive bursty applications.

A growth in the use of bursty network applications has renewed

interest in congestion window validation. It has been shown the

motives of CWV were good, but that the proposed experimental

method had a number of issues. newCWV has therefore been

proposed at the IETF [9] to address the shortcomings in CWV

and permit a more efficient use of the available capacity for rate-

limited applications.

The new method does not attempt to differentiate idle from rate-

limited application behavior and provides a new way to

determine if an application is rate-limited. This introduces

pipeACK as a measure of the amount of acknowledged data

recently exchanged over the network path. It also specifies the

Validated phase, which is when the following condition holds for

a TCP sender:

 (1)

In newCWV, the cwnd is allowed to grow only if either the sender

is in the validated phase or the cwnd has been fully utilised. This

results in cwnd being frozen when a sender has sent less than half

the current cwnd. The cwnd is kept at this value for the duration of

the non-validated period, after which it is halved to prevent

senders preserving a large unused value indefinitely.

2.4 TCP Pacing
Since the DASH service transfers video segments greater than a

single network packet, it can potentially result in bursts of

network traffic after each request. These burst of activity can

adversely impact any flow that shares a common bottleneck with

the DASH flow, inducing queuing latency and increasing the

probability of packet loss.

In normal (bulk) transmission the TCP sender rate is controlled

by the arrival of TCP ACKs, in effect each arriving ACK

identifies that a packet has been successfully sent along the

network path, and hence triggers transmission of new data

(known as “ACK Clocking”). This clocking effect does not occur

in the non validated phase, since the sender is not cwnd-limited.

Hence, newCWV modifies TCP sender behavior in the non-

validated phase to control the maximum traffic burst allowed to

be sent to the network.

Spreading the packet transmissions over a period of time is

usually referred to as “Pacing” [10]. The most appropriate method

to implement Pacing depends on the design of the TCP/IP stack,

speed of interface and whether hardware support is used (such as

TCP Segmentation Offload, TSO [13]).

Limiting the burstiness of a flow using Pacing results in smaller

network queues (less congestion), reduces buffering

requirements and also reduces latency experienced by flows [10,

14]. We show that Pacing with newCWV reduces significantly

packet losses when used with DASH and that this improves

capacity sharing and therefore the performance of other flows.

However, some authors have indicated potential instability

problems if Pacing were to be widely deployed [15, 16].

3. EXPERIMENTAL SETUP
The common configurations for the set of experiments are
described in this Section, including the test bed and traffic
generating tools for cross traffic.
Clients and servers used the Linux operating system (kernel

version >3.0). The web server was installed with the standard

Apache web server [17]. For traffic control, the Linux traffic

netem [18] tool was used to form a bottleneck router to emulate a

1 Mbps link with a propagation delay of 200 ms. A token bucket

filter set the rate of the router with a drop-tail policy and a queue

size of 30KB.
The experiments used a default configuration of TCP New Reno.

This was compared with a TCP New Reno implementing the

newCWV kernel module. During the experiments with Pacing,

pacing was enabled in conjunction with newCWV. Several

different mechanisms can be used to implement Pacing. We used

the version of TCP Pacing that was included in Linux kernel

3.12, enabled by using Fair Queuing scheduling [19]. Our test

bed verification and [23] confirm that the applied technique

actually spreads out the bursts over a period of RTT.

Figure 1. Experimental setup for a single flow.

Figure 2. cwnd with newCWV for DASH-JS and VLC;

DASH-JS encounters more losses compared to VLC player.

3.1 Video Content
The DASH web server hosted a video dataset using video from

Big Buck Bunny [20] at a video resolution of 480x360, where each

video segment was 2 seconds. The encoded bit rates at this

resolution were 200, 250, 300, 400, 500, 600 and 700kbps. This

DASH dataset was used for all experiments.

3.2 DASH Client
The DASH client used DASH-JS [21] running with a Google

Chrome and a VideoLAN Clinet (VLC) media player [22] client.

DASH-JS maintains a 30 seconds buffer for the video segments.

The client download algorithm was as follows: Initial video

segments were continuously requested until the buffer was full.

Each time the buffer emptied by one-third, more video segments

were requested to refill the buffer.

The VLC player implements a DASH client with persistent

behavior. Since VLC version 2.1.0 did not play back the video

smoothly, we modified its buffer policy to match that of DASH-

JS [21]. Both DASH-JS and VLC were used for single flow

experiments, whereas only VLC was used for the scenarios with

multiple flows.

4. TRAFFIC CHARACTERIZATION WITH

A SINGLE DASH FLOW
This section presents experiments with a single DASH client to

characterize the behavior of using newCWV. The results are

provided for both the DASH-JS and the VLC clients. The

experiments used the test bed depicted in Figure 1 with a

bottleneck of 1 Mbps.

Both clients enabled persistent downloads and it was observed

that this significantly reduced the number of TCP sessions used.

In total, the DASH-JS client opened only eight to twelve

connections in series to the DASH server. The VLC client used

four persistent TCP connections. Both strategies for opening

connections are consistent with the DASH specifications and

provide examples of traffic with different characteristics.

Figure 3. cwnd for VLC with newCWV and TCP NewReno;

with newCWV (blue solid line) the cwnd is frozen during idle

periods (horizontal lines). Using TCP NewReno the cwnd was

reset after each idle period.

Figure 4. The effect of Pacing on a persistent TCP connection

with a VLC client; newCWV without pacing (blue dashed

line) has larger peaks than with pacing (red solid line)

confirming the spread of packet bursts over time.

Figure 2 plots the TCP cwnd for a typical TCP connection using

DASH-JS and VLC. The TCP sender grows the cwnd until it

detects a congestion event (e.g. loss due to router buffer

overflow). In general the cwnd for the VLC client remained

higher compared to that for the DASH-JS client, due to the

difference in segment request patterns (these are under the control

of the DASH client).

Figure 3 compares the dynamics of cwnd in NewReno and

newCWV with VLC for one of the four TCP connections that was

used for 160s of the total video playtime (~600s). The subsequent

connections also had the similar pattern. The cwnd in newCWV

Figure 5. Packet loss at the bottleneck comparing

NewReno, newCWV, and newCWV-pacing in a DASH

server; newCWV with pacing experienced less loss than

the other TCP variants.

Figure 6. Experimental setup for multiple flows.

maintains a high value for a longer time compared to NewReno

and reset only in the case of congestion. The NewReno sender

collapses the cwnd almost twice as frequently as newCWV due to

both congestion and cwnd reduction after a short idle period.

Because using newCWV, the cwnd is preserved during a rate-

limited period, this allows the sender to transmit cwnd packets

when the application changes the rate to transmit faster. If the

cwnd is large, sending faster could lead to a burst of packets, and

this could in turn result in increased loss. Pacing may therefore

need to be introduced at the sender to address this burstiness.

Figure 4 shows the amount of data per second sent by the DASH

server for newCWV and newCWV with pacing using the VLC

player. Pacing results in a smoother flow with less variance from

the average rate. This in turn results in fewer packet losses.

Figure 5 compares the number of packets lost in each one second

period for NewReno, newCWV, and newCWV-pacing using

VLC client. newCWV resulted in higher rates of loss because it

allowed larger bursts to be sent. However, combining newCWV

with pacing was shown to significantly reduce the rate of loss

(Some residual packet loss is needed by TCP as congestion

feedback when traffic exceeds the capacity being shared, and

therefore loss cannot be entirely avoided).

Figure 7. Share of the network bottleneck between NewReno
FTP and newCWV-pacing-DASH.

Figure 8. Packet loss comparing NewReno, newCWV, and

newCWV-pacing.

5. PATH SHARING WITH MULTIPLE

FLOWS
This section presents a series of experiments to determine the

effect of using newCWV with DASH when the DASH traffic co-

exists with other types of traffic, and therefore needs to share the

capacity of the network bottleneck.

The test bed shown in Figure 6 was used to introduce cross-traffic

sharing the network bottleneck. The cross-traffic was generated

by two clients and two servers. Client2 was used to generate FTP

cross-traffic competing with the DASH flow from Server1 to

Client1. The shared bottleneck was configured at 1Mbps. As

expected, the DASH flow experienced more congestion in this

multi-flow scenario than in the previous single flow experiment.

A VLC DASH client was used with persistence enabled, as

described in Section 3.2. The TCP bulk cross traffic (FTP

transfer) was started some time (1 min) after the start of DASH

flow. The FTP traffic used TCP NewReno.

Figure 7 shows the fraction of bottleneck capacity used by DASH

and FTP. At the start, only the DASH flow was present and was

able to consume the whole capacity available along the network

path. When the FTP flow started, the DASH client adapted its rate

to share the available capacity with this other flow. The aggregate

of the two flows almost equals the capacity of the bottleneck.

When the DASH flow was stopped after 400s, the FTP flow

increased its rate to around 90% of the bottleneck capacity.

Figure 8 presents the amount of losses over a one second period

for the DASH flows with different algorithms. The occurrence of

congestion was less and more controlled when newCWV was

used and pacing was enabled. Fewer losses resulted in the DASH

flow achieving a more stable behavior and adapting to a more

predictable rate resulting in smoother playback of the video

segments.

The DASH network traffic characteristics depend on the choice of

the underlying transport protocol. With different congestion

control algorithms, the server’s response to congestion and the

Figure 9. Throughput for NewReno FTP competing with the
different DASH clients.

pattern of packets injected into the network are quite different. As

a result, the cross-traffic sharing the bottleneck experiences

different pathologies. The throughput achieved by the FTP

application was affected by these choices.

Figure 9 presents the Empirical Cumulative Distributive Function

(ECDF) curve showing the FTP rate over a 1 second interval for

newCWV-pacing and NewReno. The curve shows a gap of

around 0.25Mbps (250 Kbps), which means DASH with

newCWV consumes more capacity than NewReno with DASH.

The rest of the bottleneck capacity was available for use by the

FTP application.

In the case of congestion following a non-validated period,

newCWV tended to allow a higher cwnd than allowed by

NewReno. This behavior ensures the cwnd is larger, benefiting

bursty traffic, such as traffic from a DASH server. Therefore, in a

congested path (1Mbps scenario), a sender using newCWV could

potentially be more aggressive than Standard TCP. This behavior

therefore needed to be explored to see if this effect is detrimental

to other network traffic.

The observation was that the FTP performance was not

significantly impacted when sharing with a DASH flow using

newCWV, (importantly we did not observe any cases where

newCWV caused the DASH flow to starve the competing flows

preventing them from making progress when sharing with DASH

traffic). Both types of flow were shown to co-exist and share the

bottleneck for the entire duration. Similar results (not shown)

were obtained for DASH with a competing HTTP flow.

Our results support incorporating newCWV as a standard feature,

and that this sender-side change to the TCP stack can effectively

replace the experimental approach advocated by TCP CWV. The

experiments showed that fewer losses were observed when the

packets entering the network are paced by the TCP sender at

cwnd/RTT. Thus combining newCWV with pacing provides

better network capacity sharing.

6. CONCLUSIONS AND FUTURE WORK
This paper has explored the use of two new TCP mechanisms in

combination with widely used DASH clients. newCWV was

evaluated with a persistent transport connection. TCP pacing was

introduced to spread the transmission of TCP segments allowed

by the cwnd across the duration of the estimated RTT, avoiding

sending many segments contiguously at line-rate.

The experiments compared the behavior of NewReno, newCWV

and newCWV with Pacing considering both single and multiple

flow cases. The results show that newCWV with pacing results in

an improved performance compared to TCP NewReno. Also,

MPEG-DASH traffic was more stable and caused less loss.

newCWV did not adversely affect other competing flows.

Importantly, the proposed changes to the TCP transport are only

required at the HTTP server hosting the DASH content. The client

application did not need to be aware of the changes to the TCP

stack at the server to gain these benefits. Hence, this proposed

change has a low deployment cost.

This paper summarises some interesting preliminary findings. In

future, the proposed techniques will be evaluated with other

commercial DASH clients through more rigorous experiments.

We suggest that it would also be interesting to evaluate the

fairness of the new techniques for DASH running with a set of

other applications (like HTTP and other DASH flows etc).

7. ACKNOWLEDGEMENTS
This research was supported by the RCUK Digital Economy

programme to the dot.rural Digital Economy Hub; award

reference: EP/G066051/1; the EU FP7 OFELIA project (FP7-

ICT-258365), the EU FP7 STEER project (FP7-ICT-318343) the

NERC EVOp (NE-I002200-1) project and the RITE project (ICT-

317700).

8. REFERENCES
[1] Cisco Systems. Cisco visual networking index: Forecast and

methodology, 2012-2017. White Paper, May 2013.

[2] T. Stokhammer. 2011. Dynamic adaptive streaming over http

stds and design principles. ACM SIGMM Conference on

Multimedia Systems (MMSys), February 2011.

[3] International Standard Organization (ISO). Information

technology. Dynamic adaptive streaming over HTTP

(DASH). ISO-IEC 23009-1, 2012.

[4] V. Paxson M. Allman and E. Blanton. 2009. TCP congestion

control. IETF RFC 5681 Standards Track, 9 2009.

[5] A. Sathiaseelan, R. Secchi, G. Fairhurst, and I. Biswas. 2012.

Enhancing TCP performance to support variable-rate traffic.

ACM CoNext Capacity Sharing Workshop, Nice France,

2012.

[6] T. Huang et al. 2012. Confused, timid, and unstable: Picking

a video streaming rate is hard, in ACM conference on

Internet Measurement, pages 225-238, 2012.

[7] A. Mansy, B. V. Steeg, and M. Ammar. 2013. SABRE: A

client based technique for mitigating the buffer bloat effect

of adaptive video flows. ACM Multimedia System

Conference, New York (USA), 2013.

[8] A. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A.

Begen.2013. Server-based traffic shaping for stabilizing

oscillating adaptive streaming players. ACM Workshop on

Network and Operating System Support for Digital Audio

and Video (NOSSDAV), New York (USA), 2013.

[9] G. Fairhurst, A. Sathiaseelan, and R. Secchi. Updating TCP

to support rate-limited traffic. Technical report, IETF Work-

In-Progress, Internet draft, 2013. draft-ietf-newcwv-03.txt.

[10] D. Wei, P. Cao, and S. Low. 2006. TCP Pacing revisited.

IEEE INFOCOM, 2006.

[11] R. Fielding et al. Hypertext transfer protocol http/1.1. IETF

RFC 2068 Standard Track, 1999.

[12] M. Handley, J. Padhye, and S. Floyd. 2000. TCP congestion

window validation. IETF RFC 2861, 6 2000.

[13] A. Menon and W. Zwaenepoel. 2008. Optimizing tcp receive

performance. ATC'08 USENIX 2008 Annual Technical

Conference, pages 85-98, Boston (US), 6 2008.

[14] K. Kobayashi. 2006. Transmission timer approach for rate-

based pacing TCP with hardware support. PFLDnet, 2 2006.

[15] A. Aggarwal, S. Savage, and T. Anderson. 2000.

Understanding the performance of TCP pacing. IEEE

INFOCOM, pages 1157-1165, 2000.

[16] D. Wischik. 2006. Buffer sizing theory for bursty TCP flows.

In International Zurich Seminar on Communications, pages

98-101, 2006.

[17] Apache Software Foundation. Apache http server project.

http://httpd.apache.org/

[18] Linux Foundation. Network emulator.

http://www.linuxfoundation.org/collaborate/workgroups/net

working/netem

[19] Jonathan Corbet. 2013. TSO sizing and the FQ scheduler,

August 28, 2013. http://lwn.net/Articles/564978/

[20] C. Timmerer S. Lederer, C. Muller. 2012. Dynamic adaptive

streaming over http dataset. ACM Multimedia System

Conference (MMSys), pages 22-24, Chapel Hill (USA), 2

2012.

[21] ITEC. Dash-js a javascript and webm-based dash library for

google chrome. http://www-itec.uni-klu.ac.at/dash/?p=792

[22] VideoLAN Organization. VLC media player.

http://www.videolan.org/index.html

[23] Y. Chung, “Recent advancements in Linux TCP congestion

control”, IETF 88 Vancouver, November 2013.

http://www.ietf.org/proceedings/88/slides/slides-88-iccrg-

6.pdf

	1. INTRODUCTION
	2. BACKGROUND
	2.1 DASH Persistence
	2.2 Cross-layer Interaction
	2.3 TCP newCWV
	2.4 TCP Pacing

	3. EXPERIMENTAL SETUP
	3.1 Video Content
	3.2 DASH Client

	4. TRAFFIC CHARACTERIZATION WITH A SINGLE DASH FLOW
	5. PATH SHARING WITH MULTIPLE FLOWS
	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

