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ABSTRACT 

A recent proposed update to TCP congestion control, TCP-

newCWV, has targeted congestion control for rate-limited 

applications. These methods need to be explored in the context of 

rate-adaptive applications, such as DASH. The new method 

enables a client to exploit the persistence of a DASH connection 

and enables the DASH server to rapidly resume transmission of a 

series of video segments using a single TCP connection. Another 

technique, called ‘Pacing’ smoothes DASH bursts when there is 

no TCP ACK clock, and is shown to significantly reduce burst 

loss. These two methods in combination can increase the 

application performance. This paper investigates the effect of 

implementing these techniques on a DASH flow in different 

congestion scenarios and whether the method can promote better 

capacity sharing while minimizing the latency experienced by 

other flows sharing a common network bottleneck. The results 

confirm that newCWV with Pacing provides a benefit as a 

platform for DASH transport.  

Categories and Subject Descriptors 

C.2.2 [Computer-communication Networks]: Network 

protocols-Protocol verification 

General Terms 

Experimentation, measurement, performance  

Keywords 

Congestion window, adaptive streaming, DASH, network 

capacity sharing, pacing. 

1. INTRODUCTION 
The volume of video traffic using the Internet continues to grow, 

with video expected to dominate network traffic in the near future 

[1]. In video transmission there has been a shift from traditional 

RTP/UDP based streaming to HTTP/TCP based streaming, as 

evidenced by related adaptive streaming solutions from Adobe, 

Apple and Microsoft. This migration to HTTP streaming is 

favored for many reasons [2]. 

Recently, MPEG-DASH has been standardized [3]. This targets 

diverse devices such as smartphones, tablets, TV set-top boxes, 

Internet TV and computers to offer multimedia content across a 

range of network capacity. It defines a Media Presentation 

Description (MPD) and video segments, but does not define client 

behavior nor the encoder.  

A DASH client requests video segments using the MPD 

information. Each segment is sent using TCP and comprises a 

series of IP packets. Many clients open a separate TCP connection 

to request each video segment. This process continues until the 

client buffer is filled, when playback starts. Thereafter, video 

segments are only requested once the buffer drains, typically 

waiting until it has reached one-third of full capacity. This cycle 

repeats creating traffic with an ON state (during which a 

connection downloads data), and an OFF state (when the 

connection is idle). 

DASH also permits a persistent mode, in which a single TCP 

connection is used to transfer multiple video segments. This 

alternating active and idle transmission pattern can interact poorly 

with standard TCP transport, causing the congestion window 

(cwnd) [4] to shrink after every idle period and restart each time 

using slow start. This reduces the ability of the DASH server to 

utilise available network capacity [5]. 

DASH quality may be improved by modifying the client or server 

behavior, and this has been an active area of research. The 

difficulty of client-side estimation of network capacity is 

highlighted in [6], where rate selection based on wrong estimates 

lead to variable and low-quality video. The selected video 

services [6] were shown to underestimate network capacity due to 

interactions between HTTP and TCP congestion control. The 

bursts of traffic from HTTP adaptive streaming can also adversely 

impact other network traffic [7] and a client-side scheme has been 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from 

Permissions@acm.org. 

NOSSDAV '14, March 19 - 21 2014, Singapore, Singapore 

Copyright 2014 ACM 978-1-4503-2706-0/14/03…$15.00. 

http://dx.doi.org/10.1145/2578260.2578275 



proposed to mitigate queuing in a network bottleneck. Instability 

of competing adaptive streaming players sharing a bottleneck has 

also been demonstrated [8], where traffic shaping mechanism at 

the server has been proposed. 

This paper therefore evaluates the performance of the newCWV 

update to TCP  [9] when providing transport to a DASH service. 

We show that when DASH uses a combination of newCWV and 

Pacing at the transport layer [10], it is more network-friendly and 

reduced the impact on other sessions that share the bottleneck. 

This can also improve the performance of DASH, by eliminating 

the need for slow start when transmitting each message. 

The remainder of this paper is structured as follows: Section 2 

describes the relevant features of DASH and TCP. The 

experimental setup is explained in Section 3. The results are 

provided in Sections 4 and 5. Finally, conclusions and future 

work are given in Section 6. 

2. BACKGROUND 
DASH operates above the TCP transport service. A DASH client 

may decide whether to set-up a new TCP connection (3-way TCP 

handshake) or re-use an already existing connection while 

requesting a video segment. 

2.1 DASH Persistence 
A non-persistent TCP connection uses slow-start to probe for 

capacity at the start of each individual video segment. A DASH 

session that can reuse a previous TCP connection to deliver new 

video segments is termed persistent. Persistence requires that a 

server maintains the connection state for each client and has the 

disadvantage that it could result in open but unused connections if 

a client pauses or silently leaves a session.  

Persistence also has merits. A DASH client can use persistence to 

avoid the overhead of opening a new connection [11], and in so-

doing can build better picture of the network capacity available 

for download. 

While the current TCP standard supports applications that use 

persistent connections, such as DASH, it requires each persistent 

connection to Slow Start after an idle period [4] from the TCP 

Initial Window (IW). This network behavior resembles that of a 

series of separate connections when persistence is not used. It can 

improve traffic sharing a congested network path.  

2.2 Cross-layer Interaction 
TCP and HTTP have different objectives and approaches for 

adapting video segment download to available network capacity.  

On the one hand, TCP at the Transport Layer primarily seeks to 

act as a good network citizen by reducing its transmission rate in 

the face of impending congestion, and (slowly) probing for new 

capacity each time the application needs to send more than it has 

sent previously. This sensing of capacity occurs each time the 

TCP sender receives an ACK, i.e. each network path Round Trip 

Time (RTT).  

On the other hand, a DASH client works at the Application Layer 

seeking to choose a download video segment size that optimizes 

the quality of the video within a time bounded by the receiver 

buffer size. The clients typically adjust the download by 

measuring the download time of each segment, responding much 

more slowly than TCP – but with the advantage that it can 

actually adjust the size of each segment based on current 

conditions. These two feedback loops interact with each other to 

determine the traffic characteristics. 

2.3 TCP newCWV 
The Standard TCP behavior is to collapse the cwnd for 

connections that have been idle for a period longer than TCP 

Retransmission Time Out (RTO). Standard TCP also continues 

to grow the cwnd every time an ACK is received for rate limited 

connections. As the cwnd grows, it no longer relates to the 

application sending rate and becomes "invalid". 

Congestion Window Validation, CWV [12] was an experimental 

sender-side method proposed by the IETF to regulate the rate of 

TCP applications that send bursts of data. It proposed to restrict 

the cwnd from unnecessary growth or collapse depending on the 

current sending rate. It used the FlightSize, i.e. the amount of 

outstanding data not yet acknowledged, to determine if cwnd was 

valid. The FlightSize reflects the utilized path capacity at the 

moment a loss is detected; but it does not reflect the path 

capacity during normal transfer if the application is rate-limited. 

However, experience showed that CWV reduced the cwnd too 

conservatively for many rate-limited applications [5]. CWV has 

seen limited deployment in Linux, but is often not used by 

interactive bursty applications. 

A growth in the use of bursty network applications has renewed 

interest in congestion window validation. It has been shown the 

motives of CWV were good, but that the proposed experimental 

method had a number of issues.  newCWV has therefore been 

proposed at the IETF [9] to address the shortcomings in CWV 

and permit a more efficient use of the available capacity for rate-

limited applications.  

The new method does not attempt to differentiate idle from rate-

limited application behavior and provides a new way to 

determine if an application is rate-limited. This introduces 

pipeACK as a measure of the amount of acknowledged data 

recently exchanged over the network path. It also specifies the 

Validated phase, which is when the following condition holds for 

a TCP sender: 

         
 

 
                        (1) 

In newCWV, the cwnd is allowed to grow only if either the sender 

is in the validated phase or the cwnd has been fully utilised. This 

results in cwnd being frozen when a sender has sent less than half 

the current cwnd. The cwnd is kept at this value for the duration of 

the non-validated period, after which it is halved to prevent 

senders preserving a large unused value indefinitely. 

2.4 TCP Pacing 
Since the DASH service transfers video segments greater than a 

single network packet, it can potentially result in bursts of 

network traffic after each request. These burst of activity can 

adversely impact any flow that shares a common bottleneck with 

the DASH flow, inducing queuing latency and increasing the 

probability of packet loss.  

In normal (bulk) transmission the TCP sender rate is controlled 

by the arrival of TCP ACKs, in effect each arriving ACK 

identifies that a packet has been successfully sent along the 

network path, and hence triggers transmission of new data 

(known as “ACK Clocking”). This clocking effect does not occur 

in the non validated phase, since the sender is not cwnd-limited. 

Hence, newCWV modifies TCP sender behavior in the non-

validated phase to control the maximum traffic burst allowed to 

be sent to the network. 

   



Spreading the packet transmissions over a period of time is 

usually referred to as “Pacing” [10]. The most appropriate method 

to implement Pacing depends on the design of the TCP/IP stack, 

speed of interface and whether hardware support is used (such as 

TCP Segmentation Offload, TSO [13]).  

Limiting the burstiness of a flow using Pacing results in smaller 

network queues (less congestion), reduces buffering 

requirements and also reduces latency experienced by flows [10, 

14]. We show that Pacing with newCWV reduces significantly 

packet losses when used with DASH and that this improves 

capacity sharing and therefore the performance of other flows. 

However, some authors have indicated potential instability 

problems if Pacing were to be widely deployed [15, 16]. 

3. EXPERIMENTAL SETUP 
The common configurations for the set of experiments are 
described in this Section, including the test bed and traffic 
generating tools for cross traffic.  
Clients and servers used the Linux operating system (kernel 

version >3.0). The web server was installed with the standard 

Apache web server [17]. For traffic control, the Linux traffic 

netem [18] tool was used to form a bottleneck router to emulate a 

1 Mbps link with a propagation delay of 200 ms.  A token bucket 

filter set the rate of the router with a drop-tail policy and a queue 

size of 30KB.  
The experiments used a default configuration of TCP New Reno. 

This was compared with a TCP New Reno implementing the 

newCWV kernel module. During the experiments with Pacing, 

pacing was enabled in conjunction with newCWV. Several 

different mechanisms can be used to implement Pacing. We used 

the version of TCP Pacing that was included in Linux kernel 

3.12, enabled by using Fair Queuing scheduling [19]. Our test 

bed verification and [23] confirm that the applied technique 

actually spreads out the bursts over a period of RTT. 

 
 

Figure 1. Experimental setup for a single flow. 

 

 

 

Figure 2. cwnd with newCWV for DASH-JS and VLC; 

DASH-JS encounters more losses compared to VLC player. 

3.1 Video Content 
The DASH web server hosted a video dataset using video from 

Big Buck Bunny [20] at a video resolution of 480x360, where each 

video segment was 2 seconds. The encoded bit rates at this 

resolution were 200, 250, 300, 400, 500, 600 and 700kbps. This 

DASH dataset was used for all experiments. 

3.2 DASH Client 
The DASH client used DASH-JS [21] running with a Google 

Chrome and a VideoLAN Clinet (VLC) media player [22] client. 

DASH-JS maintains a 30 seconds buffer for the video segments.  

The client download algorithm was as follows: Initial video 

segments were continuously requested until the buffer was full. 

Each time the buffer emptied by one-third, more video segments 

were requested to refill the buffer. 

The VLC player implements a DASH client with persistent 

behavior. Since VLC version 2.1.0 did not play back the video 

smoothly, we modified its buffer policy to match that of DASH-

JS [21]. Both DASH-JS and VLC were used for single flow 

experiments, whereas only VLC was used for the scenarios with 

multiple flows. 

4. TRAFFIC CHARACTERIZATION WITH 

A SINGLE DASH FLOW 
This section presents experiments with a single DASH client to 

characterize the behavior of using newCWV. The results are 

provided for both the DASH-JS and the VLC clients. The 

experiments used the test bed depicted in Figure 1 with a 

bottleneck of 1 Mbps.  

Both clients enabled persistent downloads and it was observed 

that this significantly reduced the number of TCP sessions used. 

In total, the DASH-JS client opened only eight to twelve 

connections in series to the DASH server.  The VLC client used 

four persistent TCP connections. Both strategies for opening 

connections are consistent with the DASH specifications and 

provide examples of traffic with different characteristics. 

 

 

 

Figure 3. cwnd for VLC with newCWV and TCP NewReno; 

with newCWV (blue solid line) the cwnd is frozen during idle 

periods (horizontal lines). Using TCP NewReno the cwnd was 

reset after each idle period.  
 



 

 

Figure 4. The effect of Pacing on a persistent TCP connection 

with a VLC client; newCWV without pacing (blue dashed 

line) has larger peaks than with pacing (red solid line) 

confirming the spread of packet bursts over time. 

 

Figure 2 plots the TCP cwnd for a typical TCP connection using 

DASH-JS and VLC. The TCP sender grows the cwnd until it 

detects a congestion event (e.g. loss due to router buffer 

overflow). In general the cwnd for the VLC client remained 

higher compared to that for the DASH-JS client, due to the 

difference in segment request patterns (these are under the control 

of the DASH client). 

Figure 3 compares the dynamics of cwnd in NewReno and 

newCWV with VLC for one of the four TCP connections that was 

used for 160s of the total video playtime (~600s). The subsequent 

connections also had the similar pattern. The cwnd in newCWV  

  

 

 

 

Figure 5. Packet loss at the bottleneck comparing 

NewReno, newCWV, and newCWV-pacing in a DASH 

server; newCWV with pacing experienced less loss than 

the other TCP variants. 

 

 

 

Figure 6. Experimental setup for multiple flows. 

 

maintains a high value for a longer time compared to NewReno 

and reset only in the case of congestion. The NewReno sender 

collapses the cwnd almost twice as frequently as newCWV due to 

both congestion and cwnd reduction after a short idle period. 

Because using newCWV, the cwnd is preserved during a rate-

limited period, this allows the sender to transmit cwnd packets 

when the application changes the rate to transmit faster. If the 

cwnd is large, sending faster could lead to a burst of packets, and 

this could in turn result in increased loss. Pacing may therefore 

need to be introduced at the sender to address this burstiness. 

Figure 4 shows the amount of data per second sent by the DASH 

server for newCWV and newCWV with pacing using the VLC 

player. Pacing results in a smoother flow with less variance from 

the average rate. This in turn results in fewer packet losses. 

Figure 5 compares the number of packets lost in each one second 

period for NewReno, newCWV, and newCWV-pacing using 

VLC client. newCWV resulted in higher rates of loss because it 

allowed larger bursts to be sent. However, combining newCWV 

with pacing was shown to significantly reduce the rate of loss 

(Some residual packet loss is needed by TCP as congestion 

feedback when traffic exceeds the capacity being shared, and 

therefore loss cannot be entirely avoided). 

 

 

 
 
Figure 7. Share of the network bottleneck between NewReno 
FTP and newCWV-pacing-DASH. 

 

 



 

 

 

Figure 8. Packet loss comparing NewReno, newCWV, and 

newCWV-pacing. 

 

5. PATH SHARING WITH MULTIPLE 

FLOWS 
This section presents a series of experiments to determine the 

effect of using newCWV with DASH when the DASH traffic co-

exists with other types of traffic, and therefore needs to share the 

capacity of the network bottleneck. 

The test bed shown in Figure 6 was used to introduce cross-traffic 

sharing the network bottleneck. The cross-traffic was generated 

by two clients and two servers. Client2 was used to generate FTP 

cross-traffic competing with the DASH flow from Server1 to 

Client1. The shared bottleneck was configured at 1Mbps. As 

expected, the DASH flow experienced more congestion in this 

multi-flow scenario than in the previous single flow experiment. 

A VLC DASH client was used with persistence enabled, as 

described in Section 3.2. The TCP bulk cross traffic (FTP 

transfer) was started some time (1 min) after the start of DASH 

flow. The FTP traffic used TCP NewReno. 

Figure 7 shows the fraction of bottleneck capacity used by DASH 

and FTP. At the start, only the DASH flow was present and was 

able to consume the whole capacity available along the network 

path. When the FTP flow started, the DASH client adapted its rate 

to share the available capacity with this other flow. The aggregate 

of the two flows almost equals the capacity of the bottleneck. 

When the DASH flow was stopped after 400s, the FTP flow 

increased its rate to around 90% of the bottleneck capacity. 

Figure 8 presents the amount of losses over a one second period 

for the DASH flows with different algorithms. The occurrence of 

congestion was less and more controlled when newCWV was 

used and pacing was enabled. Fewer losses resulted in the DASH 

flow achieving a more stable behavior and adapting to a more 

predictable rate resulting in smoother playback of the video 

segments. 

The DASH network traffic characteristics depend on the choice of 

the underlying transport protocol. With different congestion 

control algorithms, the server’s response to congestion and the  

 

 

 

Figure  9. Throughput for NewReno FTP competing with the 
different DASH clients. 
 

 

pattern of packets injected into the network are quite different. As 

a result, the cross-traffic sharing the bottleneck experiences 

different pathologies. The throughput achieved by the FTP 

application was affected by these choices.  

Figure 9 presents the Empirical Cumulative Distributive Function 

(ECDF) curve showing the FTP rate over a 1 second interval for 

newCWV-pacing and NewReno. The curve shows a gap of 

around 0.25Mbps (250 Kbps), which means DASH with 

newCWV consumes more capacity than NewReno with DASH. 

The rest of the bottleneck capacity was available for use by the 

FTP application. 

In the case of congestion following a non-validated period, 

newCWV tended to allow a higher cwnd than allowed by 

NewReno. This behavior ensures the cwnd is larger, benefiting 

bursty traffic, such as traffic from a DASH server.  Therefore, in a 

congested path (1Mbps scenario), a sender using newCWV could 

potentially be more aggressive than Standard TCP. This behavior 

therefore needed to be explored to see if this effect is detrimental 

to other network traffic.  

The observation was that the FTP performance was not 

significantly impacted when sharing with a DASH flow using 

newCWV, (importantly we did not observe any cases where 

newCWV caused the DASH flow to starve the competing flows 

preventing them from making progress when sharing with DASH 

traffic). Both types of flow were shown to co-exist and share the 

bottleneck for the entire duration. Similar results (not shown) 

were obtained for DASH with a competing HTTP flow. 

Our results support incorporating newCWV as a standard feature, 

and that this sender-side change to the TCP stack can effectively 

replace the experimental approach advocated by TCP CWV.  The 

experiments showed that fewer losses were observed when the 

packets entering the network are paced by the TCP sender at 

cwnd/RTT. Thus combining newCWV with pacing provides 

better network capacity sharing. 



6. CONCLUSIONS AND FUTURE WORK 
This paper has explored the use of two new TCP mechanisms in 

combination with widely used DASH clients. newCWV was 

evaluated with a persistent transport connection. TCP pacing was 

introduced to spread the transmission of TCP segments allowed 

by the cwnd across the duration of the estimated RTT, avoiding 

sending many segments contiguously at line-rate. 

The experiments compared the behavior of NewReno, newCWV 

and newCWV with Pacing considering both single and multiple 

flow cases. The results show that newCWV with pacing results in 

an improved performance compared to TCP NewReno. Also, 

MPEG-DASH traffic was more stable and caused less loss. 

newCWV did not adversely affect other competing flows. 

Importantly, the proposed changes to the TCP transport are only 

required at the HTTP server hosting the DASH content. The client 

application did not need to be aware of the changes to the TCP 

stack at the server to gain these benefits. Hence, this proposed 

change has a low deployment cost. 

This paper summarises some interesting preliminary findings. In 

future, the proposed techniques will be evaluated with other 

commercial DASH clients through more rigorous experiments. 

We suggest that it would also be interesting to evaluate the 

fairness of the new techniques for DASH running with a set of 

other applications (like HTTP and other DASH flows etc).   
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