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Parallel Processing for Multimedia Workloads

Multimedia workloads

* deadline-driven

e cyclic

Multimedia algorithms

* long-range dependencies

* high parallelization potential
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Parallel Processing for Multimedia \Workloads

Even intra-module parallelization is not straight-forward
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Parallel Processing for Multimedia Workloads
H.264 Encoder - x264 call graph
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Typical Features of Multimedia Workloads

combination of several algorithms
typically each specified at top level
connected by data transfer
long-range dependencies
directed cyclic graph
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Changing language concepts takes time
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Parallelization of a simple MPEG-like video encoder
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Design: Virtual Fields

Comparable to C++ multi dimensional arrays
Virtual
— (an be distributed
— (Can be optimized out during compile or run-time
Write-once semantics
— Ensures deterministic execution
Aged fields
— Versioning
— Retains write-once semantics — Allows iterations [cycles)
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Design: Kernel

Embeds native C++ code
— Can use existing libraries or code bases

Dependencies expressed on virtual fields a:
— Fefch statements age a;
— read from a memory cell index x:
— Store statements local int i;
— write to a memory cell fetch i = data(a)[x];
%{
i +=1;
data(age=0) 20 40 60 %}
store data(a+1)[x];

index x=0, age a=0

index x=0, age a=1 b:

local int i;
fetch i =data(1)[0];

index x=0

data(age=1) 21
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Dynamic Dependency DAG

Age=0 Age=1

Initialization, with full data and task parallelization Full data and task parallelization
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Granularity reduction

Age=2 Age=3 Age=4 Age=n

Decrease data parallelization Decrease task parallelization Decrease data and task parallelization
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Dependencies

Straightforward implementations apply filters sequentially in

order = SEQ

Per-block, per-pixel, per-region pipelining may benefit from L
caching; apply forward or backward = BD

K .,

Filter A}

Frame 1

__iFilter B

Frame 3

Re-use of pixel may call for explicit caching [write-back to
memory] to avoid computation overhead = BD-CACHED
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Pipeline by architecture

Blur convolves the source frame with a Gaussian kernel to
remove pixel noise.

Sobel X and Y are two filters that also convolve the input frame,
but these filters apply the Sobel operator used in edge detection.

Sobel Magnitude calculates the approximate gradient magnitude
using the results from Sobel X and Sobel Y.

Threshold unset every pixel value in a frame below or above a
specified threshold.

Undistort removes barrel distortion in frames captured with
wide-angle lenses. Uses bilinear interpolation to create a smooth
end result.

Crop removes 20% of the source frame’s height and width, e.g.,
a frame with a 1920x1080 resolution would be reduced to
1536x864.

Rotation rotates the source frame by a specified number of
degrees. Bilinear interpolation is used to interpolate subpixel
coordinates.

Discrete discretizes the source frame by reducing the number of
color representations.

Binary creates a binary (two-colored] frame from the source.
Every source pixel that is different from or above zero is set, and
every source pixel that equals zero or less is unset.

operations per pixel

|

|

Pipeline Filter Seq BD BD-CACHED
A Blur 9.00 162.00 9.03
Sobel X 9.00 9.00 9.00
Sobel Y 9.00 9.00 9.00
Sobel Magnitude 2.00 2.00 2.00
Threshold 1.00 1.00 1.00
B Undistort 4.00 10.24 2.57
Rotate 6° 3.78 2.56 2.56
Crop 1.00 1.00 1.00
C Undistort 4.00 8.15 2.04
Rotate 60° 2.59 2.04 2.04
Crop 1.00 1.00 1.00
D Discrete 1.00 1.00 1.00
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00
E Threshold 1.00 3.19 0.80
Binary 1.00 3.19 0.80
Rotate 30° 3.19 3.19 3.19
F Threshold 1.00 3.19 0.80
Rotate 30° 3.19 3.19 3.19
Binary 1.00 1.00 1.00
G Rotate 30° 3.19 3.19 3.19
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00
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Pipeline by architecture

Rel. To Single-threaded Seq.
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Rel. To Single-threaded Seq.

W Seq (1 Core) [ BD (1 Core)

[l Seq (4 Cores) [I] BD (4 Cores)
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Rel. To Single-threaded Seq.

’ W Seq (1 Core) [ BD (1 Core) [l Seq (8 Cores) [] BD (8 Cores)
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Compiler support

Track dependencies through LLVM to code generation

Merge kernel instances

* during code generation
* e.g. subsequent one-to-one relationships are merged, but limit loop unrolling

e add code generation from intermediate representation at load time
([compiler-rt)
* partially generated IR
* adapt loop size to thread pool size

Run-time instantiation
* think of petri-nets to control instantiation
* but petri-net nodes are compile-time objects: decentralized, fast access
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merging with p-thread run-time vs. TBB & OpenMP

Overhead Naive Implementation
7 T T T T
yuv-rgb-loss-lincoln-omp
yuv-rgb-loss-lincoln-tbb ==

Slowdown Compared to pthread
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p-thread run-time vs. TBB & OpenMP: all merging

Overhead Dependency Implementation

T T T T
yuv-rgb-loss-lincoln-omp
yuv-rgb-loss-lincoln-tbb =

Slowdown Compared to pthread
=
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Thank you!
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