
Media Performance Group

Performance benefit of single assignment
languages for parallel execution!

Paul B. Beskow (Cisco), Håkon K. Stensland (iAd Center),!
Håvard Espeland (LABO Mixed Reality),!

Preben Olsen, Carsten Griwodz, Pål Halvorsen  
(Simula Research Lab)!

Media Performance Group

Parallel Processing for Multimedia Workloads

Multimedia workloads
•  deadline-driven
•  cyclic

Multimedia algorithms
•  long-range dependencies
•  high parallelization potential

Media Performance Group

Parallel Processing for Multimedia Workloads

Even intra-module parallelization is not straight-forward

22.5

1

0

8

6

4

57

3

Mode 0 Mode 4

Mode 3
A B C D E F G H

I
J
K
L

M

Media Performance Group

Parallel Processing for Multimedia Workloads
H.264 Encoder - x264 call graph

Media Performance Group

Typical Features of Multimedia Workloads

combination of several algorithms

typically each specified at top level

connected by data transfer

long-range dependencies

directed cyclic graph

Media Performance Group

Changing language concepts takes time

Primarily due to limitations in existing progamming models

14/15 imperative

Media Performance Group

Parallelization of a simple MPEG-like video encoder

Cell Broadband Engine nVIDIA GeForce GPU
SSD limit

Media Performance Group

Design: Virtual Fields

	

	

	

	

	

	

	

	

Applica(on	

Shared	

state	

decr()	
 incr()	

Comparable to C++ multi dimensional arrays
Virtual

–  Can be distributed
–  Can be optimized out during compile or run-time

Write-once semantics
–  Ensures deterministic execution

Aged fields
–  Versioning
–  Retains write-once semantics → Allows iterations (cycles)

Media Performance Group

Design: Kernel
Embeds native C++ code!

–  Can use existing libraries or code bases!
Dependencies expressed on virtual fields!

–  Fetch statements 
→ read from a memory cell!

–  Store statements 
→ write to a memory cell!

a	

21	

60	
 20	
 40	

B	

a:	

	
 	
 	
 age	
 a;	

	
 	
 	
 index	
 x;	

	
 	
 	
 local	
 int	
 i;	

	
 	
 	
 fetch	
 i	
 =	
 data(a)[x];	

	
 	
 	
 %{	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i	
 +=	
 1;	

	
 	
 	
 %}	

	
 	
 	
 store	
 data(a+1)[x];	

b:	

	
 	
 	
 local	
 int	
 i;	

	
 	
 	
 fetch	
 i	
 =	
 data(1)[0];	

data(age=0)	

data(age=1)	

index	
 x=0,	
 age	
 a=0	

index	
 x=0,	
 age	
 a=1	

index	
 x=0,	
 age	
 a=1	

Media Performance Group

Dynamic Dependency DAG

Media Performance Group

Granularity reduction

Media Performance Group

Dependencies

Straightforward implementations apply filters sequentially in
order è SEQ

Per-block, per-pixel, per-region pipelining may benefit from L1
caching; apply forward or backward è BD

Re-use of pixel may call for explicit caching (write-back to
memory) to avoid computation overhead è BD-CACHED

completely different resource requirements. Based our these
observations, it is obvious that the low-level scheduling should
not only depend on the processing pipeline with the dependen-
cies between tasks, but also the specific micro-architecture and
the size of the caches. We discuss why scheduling approaches
such as standard work stealing models do not result in an
optimal performance, and we try to give some insights that a
future scheduler should follow.

II. DESIGN AND IMPLEMENTATION

Inspired by prevalent execution systems such as StreamIT
[16] and Cilk [3], we look at ways to execute data-intensive
streaming media workloads better and examine how different
processing schemes affect performance. We also want to
investigate how these behave on different processors. Because
we are processing continous data streams, we are not able
to exploit task parallelism, e.g., by processing independent
frames of a video in parallel and therefore seek to paral-
lelize within the data domain. A scenario with embarrassingly
parallel workloads, i.e., where every data element can be
processed independently and without synchronization, is video
stream processing. We believe that processing a continous
flow of video frames is a reasonable example for several
embarrassingly parallel data bound workloads.

Our sequential approach is a straight-forward execution
structure in which a number of filters are processed sequen-
tially in a pipeline, each frame is processed independently by
one or more threads by dividing the frame spatially. In each
pipeline stage, the worker threads are created, started, and
eventually joined when finished. This would be the natural
way of structuring the execution of a multithreaded media
pipeline in a standalone application. Such processing pattern
has natural barriers between each stage of the pipeline. For a
execution system such as Cilk [10], Multicore Haskell [15],
Threading Building Blocks [12] and others that use a work
stealing model [2], the pattern of execution is similar to
the sequential approach, but this depends very much on that
way in which work units are assigned to worker threads,
the workloads that are running simultaneously and scheduling
order. Nevertheless, sequential execution is the baseline of our
evaluation since it processes each filter in the pipeline in a
natural order.

As an alternative execution structure, we propose using
backward dependencies (BD) to execute workloads. This
approach only considers the last stage of the pipeline for a
spatial division among threads and such avoids the barriers
between each pipeline stage. Furthermore, for each pixel in the
output frame, the filter backtracks dependencies and acquires
the necessary pixel(s) from the previous filters. This is done
recursively and does not require intermediate pixels to be
stored to memory. Figure 1 illustrates dependencies between
three frames connected by two filters. The pixels in frame
2 are generated when needed by filter B using filter A. The
BD approach has the advantage of only computing the pixels
that are needed by subsequent filters. The drawback, however,
is that intermediate data must be re-computed if they are

Figure 1. Backward dependencies (BD) example for two filters processing
frames in a pipeline. The arrows indicate which pixels are required from the
previous frame to generate the current pixel. Only one pixel’s dependencies
per frame are illustrated, other pixels have similar dependencies.

accessed multiple times because intermediate results are not
stored. These re-computations can be mitigated by using the
intermediate frames as buffer caches between filters, although
the overhead of managing and checking this buffer cache can
be large, which we see later in the paper.

The different approaches incur varying cache access pat-
terns. Depending on memory access patterns, execution struc-
ture and chosen CPU microarchitecture, we expect the perfor-
mance to change. The sequential approach accesses the buffers
within a filter in sequential order, and the prefetch unit is thus
able to predict the access pattern. A drawback of this approach
is that data moved between filters do not necessarily reside in
the cache of the core using the data last. First, this includes
data whose cache line has been evicted and written back to a
cache level with increased access time or memory. This may
happen because the data size processed by a filter is larger
than the amount of cache available, forcing write-back. Other
reasons include context switches and shared caches. Second,
output from a previous filter may not have been generated on
the same core as the one that accesses the data, resulting in
accesses to dirty cache lines on other cores. Given the spatial
division of a frame within a filter, this sounds easy to avoid,
but an area of input to a filter may result in output to a different
spatial area, which the processor’s prefetcher may not be able
to predict. Thus, re-using the same core for the same part of
a frame for multiple filters in a pipeline only increases cache
locality for filters whose source pixels map spatially to the
destination pixels.

To increase cache locality between filters, we also evaluate
the BD approach, where data is accessed in the order needed
to satisfy dependencies for the next filter in the pipeline. This
ensures that pixels are accessed in a manner where data in
between filters are likely to reside in the core’s cache. That is
to say, if the access pattern is not random, one can expect BD
execution to always access spatially close memory addresses.

III. EXPERIMENTAL SETUP

To evaluate the approaches and find which performs best
in a low-level scheduler, we built an experimental framework
supporting the proposed execution structures and wrote a set
of image processing filters as a case study working on real-
world data. The filters were arranged in different pipelines to
induce behaviour differences that can impact performance.

All experiments measure exclusively computation time, i.e.,
the wall clock time of the parallel execution, excluding I/O
and setup time. We use this instead of CPU time to further
measurements on how good performance is actually possible,

Media Performance Group

Pipeline by architecture

Microarchitecture CPU Cores
(SMT)

Private
Cache

Shared
Cache

Nehalem Intel
i5-750

4 64 kB L1
256 kB L2

8 MB L3

Sandy Bridge Intel
i7-2600

4 (8) 64 kB L1,
256 kB L2

8 MB L3

Sandy Bridge-E Intel
i7-3930K

6 (12) 64 kB L1,
256 kB L2

12 MB L3

Bulldozer AMD FX
8192

8 (4x2) 64 kB L11,
2 MB L21

8 MB L3

1 Shared between two modules each having a separate integer unit while
sharing an FPU.

Table I
MICROARCHITECTURES USED IN EXPERIMENTS.

since having used only half of the CPU time available does not
mean that only half of the CPU’s resources are utilized (cache,
memory bandwidth, etc.). Also, by not counting I/O time, we
remove a constant factor present in all execution structures,
which we believe better captures the results of this study. Each
experiment is run 30 times, and the reported computation time
is the average All filters use 32-bit float computations, and
overhead during execution, such as removing function calls in
the inner-loop and redundant calculations, has been removed.
Our data set for experiments consists of the two standard video
test sequences foreman and tractor [18]. The former has a
352x288 pixel (CIF, 4:2:0) resolution with 300 frames of YUV
data, the latter has 1920x1080 pixels (HD, 4:2:0) with 690
frames of YUV data.

The experiments have been performed on a set of modern
microarchitectures as listed in table I. The CPUs have 4 to
8 cores, and have rather different cache hierarchies: While
the Nehalem has an L3 cache shared by all cores, operates
at a different clock frequency than the cores and is called
the uncore, the Sandy Bridge(-E) has a slice of the L3 cache
assigned to each core and accesses the other parts using a
ring interconnect running at core speed. Our specimen of the
Bulldozer architecture consists of four modules, each of which
containing two cores. On each module, L1 and L2 are shared
between the two cores with separate integer units but a single
shared FPU. We expected that these very different microarchi-
tectures found and used in modern computing would produce
very different program behaviour, and we have investigated
how media workloads should be structured for execution on
each of them to achieve the best performance.

We have developed a set of image processing filters for
evaluating the execution structures. The filters are all data-
intensive, but vary in terms of the number of input pixels
needed to produce a single output pixel. The filters are later
combined in various configurations referred to as pipelines. A
short summary of the filters and their dependencies is given
in table II.

The filters are combined in various configurations into
pipelines (as in figure 1). The tested pipelines are listed in
table III. The pipelines combine the filters in manners that
induce different amounts of work per pixel, as seen in the
table. For some filters, not all intermediate data are used by
later filters and are unnecessary to produce the final output.

Blur convolves the source frame with a Gaussian kernel to remove pixel
noise.
Sobel X and Y are two filters that also convolve the input frame, but
these filters apply the Sobel operator used in edge detection.
Sobel Magnitude calculates the approximate gradient magnitude using
the results from Sobel X and Sobel Y.
Threshold unset every pixel value in a frame below or above a specified
threshold.
Undistort removes barrel distortion in frames captured with wide-angle
lenses. Uses bilinear interpolation to create a smooth end result.
Crop removes 20% of the source frame’s height and width, e.g., a frame
with a 1920x1080 resolution would be reduced to 1536x864.
Rotation rotates the source frame by a specified number of degrees.
Bilinear interpolation is used to interpolate subpixel coordinates.
Discrete discretizes the source frame by reducing the number of color
representations.
Binary creates a binary (two-colored) frame from the source. Every source
pixel that is different from or above zero is set, and every source pixel
that equals zero or less is unset.

Table II
IMAGE PROCESSING FILTERS USED.

Pipeline Filter Seq BD BD-CACHED
A Blur 9.00 162.00 9.03

Sobel X 9.00 9.00 9.00
Sobel Y 9.00 9.00 9.00
Sobel Magnitude 2.00 2.00 2.00
Threshold 1.00 1.00 1.00

B Undistort 4.00 10.24 2.57
Rotate 6◦ 3.78 2.56 2.56
Crop 1.00 1.00 1.00

C Undistort 4.00 8.15 2.04
Rotate 60◦ 2.59 2.04 2.04
Crop 1.00 1.00 1.00

D Discrete 1.00 1.00 1.00
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

E Threshold 1.00 3.19 0.80
Binary 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19

F Threshold 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19
Binary 1.00 1.00 1.00

G Rotate 30◦ 3.19 3.19 3.19
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

Table III
EVALUATED PIPELINES AND THE AVERAGE NUMBER OF OPERATIONS
PERFORMED PER PIXEL WITH DIFFERENT EXECUTION STRUCTURES.

The BD approach will not produce these, e.g., a crop filter as
seen in pipeline B will not require earlier filters to produce
unused data. Another aspect that we expect to influence the
results is cache prefetching. This means that by having filters
that emit data in a different spatial position relative to its input,
e.g. the rotation filter, we expect the prefetcher to contend
fetching the relevant data.

IV. SCALABILITY

The pipelines are embarrassingly parallel, i.e., no locking
is needed and they should therefore scale linearly with the
number of cores used. For example, using four cores is
expected to yield a 4x execution speedup. The threads created

operations per pixel
Blur convolves the source frame with a Gaussian kernel to
remove pixel noise.

Sobel X and Y are two filters that also convolve the input frame,
but these filters apply the Sobel operator used in edge detection.

Sobel Magnitude calculates the approximate gradient magnitude
using the results from Sobel X and Sobel Y.

Threshold unset every pixel value in a frame below or above a
specified threshold.

Undistort removes barrel distortion in frames captured with
wide-angle lenses. Uses bilinear interpolation to create a smooth
end result.

Crop removes 20% of the source frame’s height and width, e.g.,
a frame with a 1920x1080 resolution would be reduced to
1536x864.

Rotation rotates the source frame by a specified number of
degrees. Bilinear interpolation is used to interpolate subpixel
coordinates.

Discrete discretizes the source frame by reducing the number of
color representations.

Binary creates a binary (two-colored) frame from the source.
Every source pixel that is different from or above zero is set, and
every source pixel that equals zero or less is unset.

Media Performance Group

5.755.25

5.70 6.10

Nehalem

Sandy Bridge-E

Sandy Bridge

Bulldozer

Pipeline by architecture

Media Performance Group

Compiler support

Track dependencies through LLVM to code generation

Merge kernel instances

•  during code generation
•  e.g. subsequent one-to-one relationships are merged, but limit loop unrolling

•  add code generation from intermediate representation at load time
(compiler-rt)
•  partially generated IR

•  adapt loop size to thread pool size

Run-time instantiation

•  think of petri-nets to control instantiation

•  but petri-net nodes are compile-time objects: decentralized, fast access

Media Performance Group

merging with p-thread run-time vs. TBB & OpenMP

Media Performance Group

p-thread run-time vs. TBB & OpenMP: all merging

Media Performance Group

Thank you!!

Paul B. Beskow (Cisco), Håkon K. Stensland (iAd Center),!
Håvard Espeland (LABO Mixed Reality),!

Preben Olsen, Carsten Griwodz, Pål Halvorsen  
(Simula Research Lab)!

