PDE-constrained optimisation in Hilbert spaces

S.W. Funke and M. Nordass

Simula Research Laboratory

13th August 2014

Overview

- Motivation
- Solving a model optimisation problem
- Optimisation algorithms in Hilbert spaces
- Summary

Treating abnormal cardiac activity: How to find the optimal region to treat atrial fibrillation by ablation?

⁰Sjur Gjerald, Johan Hake and Marie Rognes

Finding the optimal number of placement of tidal stream turbines

⁰OpenTidalFarm

Recovering the initial ocean/atmosphere state

These problems have a common structure

 $\min_{u,m} J(u,m)$

where

- ▶ $J \in (V \times W) \rightarrow \mathbb{R}$ is the objective functional,
- $m \in W$ is a control function,
- $u \in V$ is the solution of the PDE

F(u,m)=0.

Mesh-independent convergence is crucial for large-scale applications

In this talk we use the optimal heating problem as a model problem

$$\min_{u,m} \frac{1}{2} \|u - d\|_{L^{2}(\Omega)}^{2} + \frac{\alpha}{2} \|m\|_{L^{2}(\Omega)}^{2}$$

where

•
$$m \in L^2(\Omega)$$
 is the heating power

• $u \in H_0^1(\Omega)$ is the weak solution to:

$$-\Delta u = m$$

- $d \in L^2(\Omega)$ is the desired temperature profile
- $\alpha \in \mathbb{R}$ is a regularisation parameter

There are two strategies for solving the optimisation problem

There are two strategies for solving the optimisation problem

Step 1: Discretise the model problem

Continuous problem:

$$\min_{\substack{(u,m)\in L^2(\Omega)\times H_0^1(\Omega)}} \frac{1}{2} \|u-d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|m\|_{L^2(\Omega)}^2$$

subject to:
$$-\Delta u = m \text{ in } \Omega$$

Discretised problem:

$$\min_{\substack{(\mathbf{u},\mathbf{m})\in\mathbb{R}^{|\boldsymbol{u}|+|\boldsymbol{m}|}}}\frac{1}{2}\left(\mathbf{u}-\mathbf{d}\right)^{T}M_{\boldsymbol{u}}\left(\mathbf{u}-\mathbf{d}\right)+\frac{\alpha}{2}\mathbf{m}^{T}M_{\boldsymbol{m}}\mathbf{m}$$
subject to:
$$D\mathbf{u}=M\mathbf{m}$$

where M are mass matrices and D is the discrete Laplace operator.

Step 2: Derive and solve the optimality conditions

Form the Lagrangian:

$$\mathcal{L}(\mathbf{u}, \mathbf{m}, \lambda) = \frac{1}{2} (\mathbf{u} - \mathbf{d})^T M_u (\mathbf{u} - \mathbf{d}) + \frac{\alpha}{2} \mathbf{m}^T M_m \mathbf{m} + \lambda^T (D\mathbf{u} - M\mathbf{m})$$

Step 2: Derive and solve the optimality conditions

Form the Lagrangian:

$$\mathcal{L}(\mathbf{u}, \mathbf{m}, \lambda) = \frac{1}{2} (\mathbf{u} - \mathbf{d})^T M_u (\mathbf{u} - \mathbf{d}) + \frac{\alpha}{2} \mathbf{m}^T M_m \mathbf{m} + \lambda^T (D\mathbf{u} - M\mathbf{m})$$

Optimality conditions:

$$\mathcal{L}_{u} = M_{u}(\mathbf{u} - \mathbf{d}) - D^{T} \lambda = 0 \qquad (\text{adjoint PDE})$$
$$\mathcal{L}_{m} = \alpha M_{m} \mathbf{m} - M^{T} \lambda = 0 \qquad (\text{gradient equation})$$
$$\mathcal{L}_{\lambda} = D\mathbf{u} - M\mathbf{m} = 0 \qquad (\text{PDE})$$

Step 2: Derive and solve the optimality conditions

Form the Lagrangian:

$$\mathcal{L}(\mathbf{u}, \mathbf{m}, \lambda) = \frac{1}{2} (\mathbf{u} - \mathbf{d})^T M_u (\mathbf{u} - \mathbf{d}) + \frac{\alpha}{2} \mathbf{m}^T M_m \mathbf{m} + \lambda^T (D\mathbf{u} - M\mathbf{m})$$

Optimality conditions in matrix form:

$$\begin{bmatrix} M_u & 0 & D^T \\ 0 & \alpha M_m & -M^T \\ D & -M & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{m} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{d} \\ 0 \\ 0 \end{bmatrix} \quad (\text{gradient condition}) \\ (\text{state PDE}) \end{bmatrix}$$

Solve with MINRES and a carefully chosen preconditioner.

$$\min_{\mathbf{u}, \mathbf{m} \in \mathbb{R}^{|\boldsymbol{u}|+|\boldsymbol{m}|}} \frac{1}{2} (\mathbf{u} - \mathbf{d})^T M_u (\mathbf{u} - \mathbf{d}) + \frac{\alpha}{2} \mathbf{m}^T M_m \mathbf{m}$$
subject to:

 $D\mathbf{u} = M\mathbf{m}$

$$\min_{\mathbf{m}\in\mathbb{R}^{|m|}}\underbrace{\frac{1}{2}\left(D^{-1}M\mathbf{m}-\mathbf{d}\right)^{T}M_{u}\left(D^{-1}M\mathbf{m}-\mathbf{d}\right)+\frac{\alpha}{2}\mathbf{m}^{T}M_{m}\mathbf{m}}_{:=J(\mathbf{m})}$$

$$\min_{\mathbf{m}\in\mathbb{R}^{|m|}}\underbrace{\frac{1}{2}\left(D^{-1}M\mathbf{m}-\mathbf{d}\right)^{T}M_{u}\left(D^{-1}M\mathbf{m}-\mathbf{d}\right)+\frac{\alpha}{2}\mathbf{m}^{T}M_{m}\mathbf{m}}_{:=J(\mathbf{m})}$$

Optimality condition:

$$dJ(\mathbf{m}) = 0$$

$$\min_{\mathbf{m}\in\mathbb{R}^{|m|}}\underbrace{\frac{1}{2}\left(D^{-1}M\mathbf{m}-\mathbf{d}\right)^{T}M_{u}\left(D^{-1}M\mathbf{m}-\mathbf{d}\right)+\frac{\alpha}{2}\mathbf{m}^{T}M_{m}\mathbf{m}}_{:=J(\mathbf{m})}$$

Optimality condition:

$$dJ(\mathbf{m}) = 0$$

The reduced approach performs a block Gauss-Seidel like iteration on the optimality system

Full-space approach:

$$\begin{array}{ccc} (2) & \begin{bmatrix} M_u & 0 & D^T \\ 0 & \alpha M_m & -M^T \\ D & -M & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{m} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{d} \\ 0 \\ 0 \end{bmatrix} & (\text{adjoint PDE}) \\ (\text{gradient condition}) \\ (\text{state PDE}) \end{array}$$

Reduced approach:

$$\boldsymbol{m}^0 \xrightarrow[\text{state PDE}]{(1)} \boldsymbol{\mu}^0 \xrightarrow[\text{adjoint PDE}]{(2)} \lambda^0 \xrightarrow[\text{optimisation step}]{(3)} \boldsymbol{m}^1 \to \cdots$$

FEniCS/dolfin-adjoint allows to automated most steps of the optimisation

As a numerical experiment we solve the model problem on three meshes and with two solvers

- Solvers: Limited memory BFGS and Newton-CG.
- Meshes:

- Stopping criteria: $\|\mathrm{d}J\|_{L^2} < 10^{-7}$.
- Regularisation parameter: $\alpha = 10^{-6}$.
- Desired temperature: $d = \left[\frac{1}{2\pi^2} + 2\alpha\pi^2\right] \sin(\pi x) \sin(\pi y)$.

BFGS yields mesh dependent iteration numbers

 Algorithm: TAO limited memory BFGS, initial Hessian approximation based on the Broyden approximation.

Uniform refinement

Refinement level	0	1	2	3			
BFGS iterations	14	12	3	4			
Random refineme	nt						
Refinement level	0	1	2	3	4	5	6
BFGS iterations	14	52	77	69	74	68	81
Centric refinement	t						
Refinement level	0	1	2	3	4	5	6
BFGS iterations	11	39	58	79	80	128	132

Newton-CG yields mesh-dependent CG iterations

Optimisation algorithm: TAO line-search Newton-CG

Uniform refinement

Refinement level	0	1	2	3
Newton iterations	1	1	1	1

Random refinement

Refinement level	0	1	2	3	4	5	6
Newton iterations	1	1	1	1	1	1	1

Centric refinement

Refinement level	0	1	2	3	4	5	6
Newton iterations	1	1	1	1	1	1	1

Newton-CG yields mesh-dependent CG iterations

Optimisation algorithm: TAO line-search Newton-CG

Uniform refinement

Refinement level	0	1	2	3			
Newton iterations	1	1	1	1			
CG iterations	13	13	8	3			
Random refinemen	t						
Refinement level	0	1	2	3	4	5	6
Newton iterations	1	1	1	1	1	1	1
CG iterations	13	21	25	30	36	41	49
Centric refinement							
Refinement level	0	1	2	3	4	5	6
Newton iterations	1	1	1	1	1	1	1

	•	•	•	•	•	•	
CG iterations	13	28	38	55	65	95	131

The textbook steepest descent algorithm

$$i \leftarrow 0$$
while $|dJ(m^i)| < \text{tol:}$

$$m^{i+1} \leftarrow m^i - \gamma dJ(m^i)$$

$$i \leftarrow i+1$$

The textbook steepest descent algorithm

$$\begin{split} i &\leftarrow 0 \\ \text{while } |dJ(m^i)| < \text{tol:} \\ m^{i+1} &\leftarrow m^i - \gamma dJ(m^i) \\ i &\leftarrow i+1 \end{split}$$

But:

- $m^i \in W$
- $\blacktriangleright J: W \to \mathbb{R}$

 $\blacktriangleright \ dJ(m^i): W \to \mathbb{R} \in W^*$

Steepest descent algorithm in Hilbert space setting

$$\begin{split} i &\leftarrow 0 \\ \text{while } \| dJ(m^i) \|_{W^*} < \text{tol:} \\ m^{i+1} &\leftarrow m^i - \gamma \nabla dJ(m^i) \\ i &\leftarrow i+1 \end{split}$$

• $m^i \in W$

 $\blacktriangleright J: W \to \mathbb{R}$

•
$$dJ(m^i): W \to \mathbb{R} \in W^*$$

•
$$\nabla J(m^i) \in W$$

With Riesz isomoprohism $R: W^* \to W$ the gradient is defined as $\nabla J(m) = R(dJ(m))$, i.e.

$$\langle dJ(m), \delta m \rangle_{W^*, W} = (\nabla f(m), \delta m)_W$$

Gradient and derivative operator are, and should be treated as different objects

Moola is a new Python library that implements optimisation algorithms in Hilbert spaces

Moola treats vectors in primal and dual space as different objects

```
from fenics import *
from moola import DolfinDualVector
```

```
mesh = UnitSquareMesh(2, 2)
W = FunctionSpace(mesh, "CG", 1)
f = Function(W)
```

```
dJ = DolfinDualVector(f, inner_product="H1")
gradient = dJ.primal()  # Apply Riesz map
```

dJ.apply(gradient) # OK gradient + dJ # Error

The BFGS algorithm in Hilbert setting

$$\begin{split} i &\leftarrow 0 \\ \text{while } |dJ(m^i)| < \text{tol:} \\ d^i &\leftarrow -B_i^{-1} dJ(m^i) \\ m^{i+1} &\leftarrow m^i - \gamma d^i \\ i &\leftarrow i+1 \end{split}$$

with

$$s_i = m^{i+1} - m^i \in W$$

$$y_i = dJ(m^{i+1}) - dJ(m^i) \in W^*$$

and the inverse Hessian approximation $H_{i+1}: W^* \to W$

$$B_{i+1}^{-1}(x) = \left(\mathrm{id} - \frac{y_i(\mathrm{id})}{y_i(s_i)} s \right) \left[B^{-1} \left(x - \frac{x(s_i)}{y_i(s_i)} y_i \right) \right] - \frac{x(s_i)}{y_i(s_i)} s_i$$

The resulting code is relatively compact

```
from dolfin import *
from dolfin_adjoint import *
import moola
```

```
mesh = UnitSquareMesh(64, 64)
V = FunctionSpace(mesh, "CG", 1)
W = FunctionSpace(mesh, "CG", 1)
```

```
m = Function(W, name='Control')
u = Function(V, name='State')
v = TestFunction(V)
```

```
# Define weak problem
F = (inner(grad(u), grad(v)) - m*v)*dx
bc = DirichletBC(V, 0.0, "on_boundary")
solve(F == 0, u, bc)
```

```
# Define regularisation parameter
alpha = Constant(1e-6)
```

```
# Define desired temperature profile
x = SpatialCoordinate(mesh)
d = (1/(2*pi**2) + 2*alpha*pi**2)*sin(pi*x[0])*sin(pi*x[1])
```

```
control = SteadyParameter(m)
J = Functional((0.5*inner(u-d, u-d))*dx + alpha/2*m**2*dx)
rf = ReducedFunctional(J, control)
```

```
# Set up moola problem and solve optimisation
problem = rf.moola_problem()
m_moola = moola.DolfinPrimalVector(m, inner_product="L2")
solver = moola.BFGS(problem, m_moola)
sol = solver.solve()
```

Hilbert space based BFGS yields mesh independent iterations

- Algorithm: Moola, limited memory BFGS algorithm, identity as initial Hessian, history length: 20
- ► L² inner product.

Uniform refinement

Refinement level	0	1	2	3
BFGS iterations	16	20	20	20

Random refinement

Refinement level	0	1	2	3	4	5	6
BFGS iterations	18	18	18	20	21	20	20

Centric refinement

Refinement level	0	1	2	3	4	5	6
BFGS iterations	20	19	20	20	19	19	19

Hilbert space based Newton-CG yields mesh independent Newton and CG iterations

- Algorithm: Moola, Newton-CG
- ► L² inner product.

Uniform refinement

Refinement level	0	1	2	3			
Newton iterations	2	2	2	2			
CG iterations	20	24	27	28			
Random refinemer	nt						
Refinement level	0	1	2	3	4	5	6
Newton iterations	2	2	2	2	2	2	2
CG iterations	20	19	26	23	25	25	29
Centric refinement							
Refinement level	0	1	2	3	4	5	6
Newton iterations	2	2	2	2	2	2	2
CG iterations	24	24	26	27	27	27	27

The choice of inner product is crucial to obtain mesh independent convergence

Optimisation algorithm: Moola, limited memory BFGS

Random refinement

 $\begin{array}{c|cccc} H1 \ regularisation, L2 \ inner \ product \ in \ Moola\\ Refinement \ level & 0 & 1 & 2 & 3 & 4 & 5 & 6\\ BFGS \ iterations & 31 & 38 & 64 & 118 & > 200 & > 200 \end{array}$

H1 regularisation, H1 inner product in MoolaRefinement level0123456

BFGS iterations 5 5 5 5 5 6 4

A more advanced example

Consider Navier-Stokes flow around a cylinder driven by a pressure difference at the left and right boundaries:

The choice of inner product is crucial to obtain mesh independent convergence

- Optimisation algorithm: Moola, Newton-CG
- Stopping criteria: $\| dJ \|_{L^2} < 10^{-4}$.
- Regularisation parameter: $\alpha = 10^{-4}$.

Refinement

Refinement level	0	1	2	3	4
Newton iterations	6	5	5	5	5
CG iterations	11	10	10	10	10

Conclusions

- It is important to keep in mind that we solve instances of infinite dimensional problems.
- Mesh-independence convergence is obtained by respecting the inner product of the underlying function spaces.
- Alternatively the optimisation algorithm in Euclidian norm may be preconditioned with a Riesz-preconditioner.
- The choice of inner product is important to achieve mesh-independent convergence.