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3 rue du Maréchal Joffre - 44000 Nantes
e-mail: jean-marie.mottu@univ-nantes.fr
INRIA Rennes - Bretagne Atlantique / IRISA, Université Rennes 1,
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Abstract Testing a model transformation requires input test
models which effectively cover the input domain of the trans-
formation. In order to reduce testing costs and increase error-
revealing power of test models, it is necessary to automate
the generation of these models using systematic criteria.This
automation faces two key challenges: (1) accurate specifica-
tion of the transformation’s input domain (2) automatic gen-
eration of test models in the input domain based on effec-
tive coverage criteria. This paper presents a global approach
that addresses these challenges. Typically the input domain
defines a possibly infinite set of models specified using vari-
ous sources of knowledge: the input metamodel of the trans-
formation, static semantic constraints on this metamodel and
pre-conditions that further constrain the input domain for a
particular transformation. We use our tool PRAMANA to au-
tomatically generate a finite number of test models in the
input domain using coverage criteria based on partitioning
properties of the input metamodel. Testing the transforma-
tion with these models often reveals that some test models
are not executable by the transformation although they satisfy
the constraints of the input domain specification. This gives
way to incremental refinement of the input domain specifi-
cation using newly constructed pre-conditions until all gen-
erated test models are executable by the transformation. In
our experiments, we validate the proposed approach with mu-
tation analysis to empirically evaluate error-revealing power
of the test models we generate using PRAMANA. The em-
pirical evaluation uses the representative transformation of
simplified UML class diagram models to RDBMS models.
The evaluation is based on 3200 automatically generated test
models. We demonstrate that partitioning strategies gives mu-
tation scores of up to 93% vs. 72% in the case of unguided
generation.

1 Introduction

Model transformations are core Model Driven Engineering
(MDE) components that automate important steps in soft-
ware development such as refinement of an input model, re-
factoring to improve maintainability or readability of the in-
put model, aspect weaving into models, exogenous/endoge-
nous transformations of models, and the classical generation
of code from models. Although there is wide spread devel-
opment of model transformations in academia and industry.
However, there is mild progress in techniques to test trans-
formations [1]. In this paper, we address the problem of test-
ing model transformations using automatically generated test
models. Our approach is applicable to a diverse set of trans-
formation languages such as those based on graph rewriting
[2], imperative execution (Kermeta [3]), and rule-based trans-
formation (ATL [4]).

Testing a model transformation requires a set of test mod-
els in the input domain of a model transformation. The auto-
matic synthesis/generation of such test models that can reveal
bugs in a transformation is the subject of this paper.

The automatic generation of test models selects test mod-
els from the set of all input models. This set of input models
is precisely specified by the input domain of a model trans-
formation. Typically, this input domain specification relies on
knowledge from various sources: (1) the input metamodel of
the transformation (2) invariants/constraints on the static se-
mantics of the input metamodel (3) pre-condition contracts
for a particular transformation. We call the cumulative set of
these sources of knowledge the input domain model. The in-
put domain model specifies potentially an infinite set of input
models. Therefore, we need to go a step further and define ef-
fective strategies, such as coverage criteria [5], that can help
automatically select a finite number of test models in the in-
finite set.

In this paper, we build on previous work [6] to automat-
ically generate test models using the tool PRAMANA (previ-
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ously known as CARTIER) within the input domain of a trans-
formation. Executing the model transformation with these test
models often results in some test models being rejected by
the transformation. Although these test models conform to
the initial specification of the input domain model, they are
rejected by the transformation. This may happen when the
transformation runs into an infinite cyclic loop while navi-
gating an input model. At this point there are two possibil-
ities: (a) Modifying a model transformation’s specification
and consequently its implementation to handle such an input
model (b) Creating a pre-condition that avoids input mod-
els with a certain pattern such as a loop. This is a dilemma
about whether to correct a model transformation to make it
robust or improve the pre-condition to handle unforeseen in-
puts. The choice of one approach or the other depends on how
we would like to interprets the specification. In this paper, we
consider taking step (b) to identify the true input domain of a
model transformation conforming to a specification. Our first
contribution in the paper is as follows:

Incremental Pre-condition Improvement: We automat-
ically generate test models using PRAMANA to first iden-
tify test models outside the unknown true input domain of a
model transformation. We systematically compose new pre-
conditions using information extracted from a malicious pat-
tern in the generated test models. We improve the current set
of pre-conditions of the model transformation. We use the
new specification of the input domain model to generate test
models and improve the set of pre-conditions. We continue
the process until no new pre-condition is required and all gen-
erated test models can be executed by the transformation. The
output of the process is the precise model of the true input
domain of a model transformation. Pre-condition improve-
ment is an approach adapted to black-box transformations
where we have no access to the implementation. It also re-
veals the unforeseen requirements in case we want to evolve
a model transformation. Therefore, a pre-condition may be
converted to a new model transformation feature. We see pre-
condition improvement as either a means to protect the model
transformation or to extract requirements in the form of con-
straints/rules for the evolution of the transformation.

Once, we have a precise input domain model the conse-
quent next step is to generate new test models. This time to
detect bugs in a transformation. This brings us to the second
contribution of the paper:

Automatic Generation and Evaluation of Test Models:
We first use PRAMANA to generate sets of test models for dif-
ferent strategies in the precise input domain of a model trans-
formation. In this paper, we generate test models that satisfy
coverage criteria [5]. Second, we use mutation analysis [7]
[8] for model transformations as technique to evaluate if these
test sets can indeed reveal bugs. Mutation analysis consists of
artificially injecting model transformation specific bugs into
a model transformation giving a set of mutant model trans-
formations with exactly one bug in each mutant. We execute
each of these mutants with a set of generated test models for
a given strategy. A difference in output between the origi-
nal transformation and a mutant transformation reveals that

an error was detected for the same input test model. Conse-
quently, the number of such errors detected by a set of test
model refers to the mutation score of the test set. This num-
ber of errors detected corresponds to the mutation score of a
test set which is the metric we use to compare test generation
strategies. Mutation analysis is done mainly to evaluate the
effectiveness of our coverage criteria to generate test models
that detect bugs. However, mutation analysis is not used in
practice for testing. We use mutation analysis to gain confi-
dence that test models generated with PRAMANA can detect
bugs for the representative transformation. Based on our mu-
tation analysis results we encourage generation of test models
using our coverage criteria in new scenarios involving arbi-
trary input domains and transformations.

We demonstrate incremental pre-condition improvement
and empirically evaluate automatic test model generation for
the representative model transformation of Unified Modelling
Language Class Diagram (UMLCD) to Relational Database
Management Systems (RDBMS) models called class2rdbms.
We discover nine new pre-conditions for the class2rdbms.
Using mutation analysis we demonstrate that our input do-
main coverage strategies, previously presented in [5], can se-
lect test models with considerably higher bug detection abili-
ties (93%) compared to unguided selection (72%) in the input
domain.. These results are based on 3200 generated test mod-
els and several hours of computation on a 10 machine grid
of high-end servers. The large difference in mutation scores
between coverage strategies and unguided selection can be
attributed to the fact that coverage strategies enforce several
aspects on test models that unguided selection fails to do. For
instance, coverage strategies enforce injection of inheritance
in the UMLCD test models. Unguided strategies do not en-
force such a requirement. Several mutants are killed due to
test models containing inheritance.

The paper is organized as follows. In Section 2 we present
the transformation testing problem and the running case study.
In Section 3, we present foundational ideas used in PRA-
MANA. In Section 4, we describe the PRAMANA methodol-
ogy for incremental pre-condition improvement and the em-
pirical approach for automatic test model generation. In Sec-
tion 5, we present the experimental setup for test model gen-
eration using different strategies and discuss the results of
mutation analysis. In Section 6 we present related work. We
conclude in Section 7.

2 Problem Description

We present the problem of testing model transformations. A
model transformation MT (I,O) is a program applied on a set
of input models I to produce a set of output models O as
illustrated in Figure 1. The set of all input models is speci-
fied by a metamodel MMI (For example, simplified UMLCD
in Figure 2). The set of all output models is specified by
metamodel MMO. The pre-condition of the model transfor-
mation pre(MT ) further constrains the input domain. A post-
condition post(MT ) constrains the model transformation to



Generating Non-isomorphic Models to Test Model Transformations 3

Fig. 1 A Model Transformation

producing a subset of all possible output models. The model
transformation is developed based on a set of textual specifi-
cation of requirements MTRequirements.

Automatic model generation for testing involves finding
valid input models we call test models from the set of all in-
put models I. Test models must satisfy constraints that in-
crease the trust in the quality of these models as test data and
thus should increase their capabilities to detect bugs in the
model transformation MT (I,O). Bugs may also exist in the
input metamodel and its invariants MMI or the transforma-
tion pre-condition pre(MT ). However, in this paper we only
focus on generating input models that can detect bugs in a
transformation. In the process, we also generate input models
that cannot be processed by a transformation (as they were
unforeseen in MTRequirements) which are then used to specify
new pre-conditions.

2.1 Transformation Case Study

Our case study is the transformation from simplified UML
Class Diagram models to RDBMS models called class2rdbms.
In this section we briefly describe class2rdbms and discuss
why it is a representative transformation to validate test model
generation strategies.

In testing we need input models that conform to the input
metamodel MMI and transformation pre-condition pre(MT ).
Therefore, we only discuss the MMI and pre(MT ) for class2rdbms
and avoid discussion of the model transformation output do-
main. In Figure 2, we present the simplified UMLCD input
metamodel for class2rdbms. The concepts and relationships
in the input metamodel are stored as an Ecore model [9] (Fig-
ure 2 (a)). The invariants on the simplified UMLCD Ecore
model, expressed in Object Constraint Language (OCL) [10],
are shown in Figure 2 (b). The Ecore model and the invari-
ants together represent the input domain for class2rdbms.
The OCL and Ecore are industry standards used to develop
metamodels and specify different invariants on them. OCL is
not a domain-specific language to specify invariants. How-
ever, it is designed to formally encode natural language re-
quirements specifications independent of its domain.

The input metamodel MMI gives an initial specification
of the input domain. However, the model transformation itself
has a pre-condition pre(MT ) that test models need to satisfy
to be correctly processed. Constraints in the pre-condition for
class2rdbms include: (a) All Class objects must have at least
one primary Property object (b) The type of an Property ob-
ject can be a Class C, but finally the transitive closure of
the type of Property objects of Class C must end with type

PrimitiveDataType. In our case we approximate this recursive
closure constraint by stating that Property object can be of
type Class up to a depth of 3 and the 4th time it should have
a type PrimitiveDataType. This is a finitization operation to
avoid navigation in an infinite loop. (c) A Class object can-
not have an Association and an Property object of the same
name (d) There are no cycles between non-persistent Class
objects.

We choose class2rdbms as our representative case study
to validate input selection strategies. It serves as a sufficient
case study for several reasons. The transformation is the bench-
mark proposed in the MTIP workshop at the MoDELS 2005
conference [11] to experiment and validate model transfor-
mation language features. The input domain metamodel of
simplified UMLCD covers all major metamodelling concepts
such as inheritance, composition, finite and infinite multiplic-
ities. The constraints on the simplified UMLCD metamodel
contain both first-order and higher-order constraints. There
also exists a constraint to test transitive closure properties
on the input model such as there must be no cyclic inher-
itance. The class2rdbms exercises most major model trans-
formation operators such as navigation, creation, and filter-
ing (described in more detail in [8]) enabling us to test es-
sential model transformation features. Among the limitations
the simplified UMLCD metamodel does not contain Integer
and Float attributes. There are also no inter-metamodel refer-
ences and arbitrary containments in the simple metamodel.

Model generation is relatively fast but performing mu-
tation analysis is extremely time consuming. Therefore, we
perform mutation analysis on class2rdbms to qualify trans-
formation and metamodel independent strategies for model
synthesis. If these strategies prove to be useful in the case of
class2rdbms then we recommend the use of these strategies
to guide model synthesis in the input domain of other model
transformations as an initial test generation step. For instance,
in our experiments, we see that generation of a 15 class sim-
plified UMLCD models takes about 20 seconds and mutation
analysis of a set of 20 such models takes about 3 hours on a
multi-core high-end server. Generating thousands of models
for different transformations takes about 0.25% of the time
while performing mutation analysis takes most of the time.

3 Foundations

This section presents foundational ideas used by the method-
ology for automatic test model generation and empirical eval-
uation presented in Section 4. First, we present the modelling
and model transformation language Kermeta in Section 3.1.
We use Kermeta to implement all model transformations in
the paper. We briefly describe PRAMANA for automatic test
model generation in Section 3.2. Effective test model genera-
tion in this paper is guided by coverage criteria based testing
strategies. These testing strategies are described in Section
3.3. Finally, the bug detecting effectiveness of test models
generated using different testing strategies is done by muta-
tion analysis. Mutation analysis for model transformations is
described in Section 3.4.
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Ecore Meta-model  

name: String

Classifier

name: String

Association

is_primary: Boolean
name: String

Attribute

is_persistent: Boolean

Class

PrimitiveDataType

ClassModel

type

1

classifier

*

dest1 src1

association
*

parent
0..1

1..* attrs

(a)

OCL Invariants
context Class  

 inv noCyclicInheritance: 
  not self.allParents()->includes(self) 

 inv uniqueAttributesName: 
  self.attrs->forAll(att1, att2 | 
   att1.name=att2.name implies att1=att2) 

context ClassModel  

 inv uniqueClassifierNames: 
  self.classifier->forAll(c1, c2 | 
   c1.name=c2.name implies c1=c2) 

 inv uniqueClassAssociationSourceName : 
  self.association->forAll(ass1, ass2 | 
   ass1.name=ass2.name implies  
   (ass1=ass2 or ass1.src != ass2.src)) 

(b)

Fig. 2 (a) Class Diagram Subset of UML Ecore Meta-model (b) OCL constraints on the Ecore metamodel

3.1 Kermeta

Kermeta is a language for specifying metamodels, models,
and model transformations that are compliant to the Meta Ob-
ject Facility (MOF) standard [12]. The object-oriented meta-
language MOF supports the definition of metamodels in terms
of object-oriented structures (packages, classes, properties,
and operations). It also provides model-specific constructions
such as containments and associations between classes. Ker-
meta extends the MOF with an imperative action language
for specifying constraints and operational semantics for meta-
models [13]. Kermeta is built on top of EMF within the ECLIPSE
development environment. The action language of Kermeta
provides mechanisms for dynamic binding, reflection, and
exception handling. It also includes classical control struc-
tures such as blocks, conditionals, and loops.

3.2 PRAMANA: A Tool for Automatic Model Generation

We use the tool PRAMANA previously introduced (with the
name CARTIER) in our paper [6] to automatically generate
test models. PRAMANA transforms the input domain specifi-
cation of a model transformation to a common constraint lan-
guage ALLOY. Solving the ALLOY model gives zero or more
models in the input domain of a transformation. PRAMANA
first transforms a model transformation’s input metamodel
expressed in the Eclipse Modelling Framework [9] format
called Ecore using the transformation rules presented in [6] to
ALLOY. Basically, classes in the input metamodel are trans-
formed to ALLOY signatures and implicit constraints such as
inheritance, opposite properties, and multiplicity constraints
are transformed to ALLOY facts.

Second, PRAMANA also addresses the issue of transform-
ing invariants and pre-conditions on metamodels expressed
in the industry standard Object Constraint Language (OCL)
to ALLOY. The automatic transformation of OCL to ALLOY
presents a number of challenges that are discussed in [14].

We do not claim that all OCL constraints can be manually/au-
tomatically transformed to ALLOY for our approach to be
applicable in the most general case. The reason being that
OCL and ALLOY were designed with different goals. OCL
is used mainly to query a model and check if certain invari-
ants are satisfied. ALLOY facts and predicates on the other
hand enforce constraints on a model. This is in contrast with
the side-effect free OCL. The core of ALLOY is declarative
and is based on first-order relational logic with quantifiers
while OCL includes higher-order logic and has imperative
constructs to call operations and messages making some parts
of OCL more expressive. In our case study, we have been suc-
cessful in transforming all meta-constraints on the UMLCD
metamodel to ALLOY from their original OCL specifications.
Nevertheless, we are aware of OCL’s status as a current in-
dustrial standard and thus provide an automatic mapping to
complement our approach.

Previous work exists in mapping OCL to ALLOY. The tool
UML2Alloy [15] takes as input UML class models with OCL
constraints. The authors present a set of mappings between
OCL collection operations and their ALLOY equivalents. Here
we present our version of such transformation derived from
[15] and written in Kermeta.

The context of an OCL constraint (which is what defines
the value of the self constraint) determines the place of the
constraint within the generated ALLOY model. It is added
as an appended fact. The mappings in Table 1 (taken in part
from [15]) show the automatic transformation rules applied
in PRAMANA.

However, some classes of OCL invariants cannot be au-
tomatically transformed to ALLOY using the simple rules in
Table 1. For example, consider the invariant for no cyclic in-
heritance in Figure 2(b) [16]. The constraint is specified as
the fact in Listing 1. This is an example in which the richness
of the ALLOY language overcomes OCL - it is not possible to
specify this constraint in OCL without using recursive queries
since there is no transitive closure operator.

f a c t n o C y c l i c I n h e r i t a n c e
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{
no c : C l a s s | c i n c . ˆ p a r e n t

}

Listing 1 ALLOY Fact for No Cyclic Inheritance

The generated ALLOY model for the UMLCD metamodel
using PRAMANA is given in Appendix A. This ALLOY model
describes the input domain of the transformation.

3.3 Test Selection Strategies

Effective strategies to guide automatic model generation are
required to select test models that detect bugs in a model
transformation. We define a strategy as a process that gen-
erates ALLOY predicates which are constraints added to the
ALLOY model synthesized by PRAMANA as described in Sec-
tion 4. This combined ALLOY model is solved and the solu-
tions are transformed to model instances of the input meta-
model that satisfy the predicate. We present the following
strategies to guide model generation:

– Random/Unguided Strategy: The basic form of model
generation is unguided where only the ALLOY model ob-
tained from the metamodel and transformation is used to

Table 1 Mappings from OCL to ALLOY

Let v be a variable, col a collection, expr an expression, be an
expression that returns a boolean value, o an expression that
returns an object, T a type, propertyCallExpr an expression in-
voking a property on an object
OCL Expression Type ALLOY Abstract Syntax Type
context T inv expr sig T{. . .}{expr}
col → f orAll(v : T | be) all v : T | be
col → f orAll(v : col | be) all v : col | be
expr1andexpr2 expr1 && expr2
expr1orexpr2 expr1 || expr2
not be !be
col → size() #col
col → includes(o : T ) o in col
col → excludes(o : T ) o !in col
col1 → includesAll(col2) col2 in col1
col1 → excludesAll(col2) col2 !in col1
col → including(o : T ) col + o
col → excluding(o : T ) col − o
col → isEmpty() no col
col → notEmpty() some col
expr.propertyCallExpr expr.propertyCallExpr
i f be then expr1 else expr2 be ⇒ expr1 else expr2
expr.oclIsUnde f ined #expr = 0
expr → oclIsKindO f (o : T ) expr in o
col1 → union(col2) col1+col2
col1 → intersection(col2) col1 & col2
col1 → product(col2) col1 → col2
col → sum() sum col
col1 →
symmetricDi f f erence(col2)

(col1+col2)− (col1&col2)

col → select(be) v : col | be
col →
isUnique(propertyCallExpr)

no dis j v1, v2 : col |
v1.propertyCallExpr =
v2.propertyCallExpr

generate models. No extra knowledge is supplied to the
solver in order to generate models. The strategy yields an
empty ALLOY predicate as shown in Listing 2.

pred random { }

Listing 2 Empty ALLOY Predicate

– Input-domain Partition based Strategies: We guide gen-
eration of models using test criteria to combine partitions
on domains of all properties of a metamodel (cardinality
of references or domain of primitive types for attributes).
A partition of a set of elements is a collection of n ranges
A1,..., An such that A1, ..., An do not overlap and the union
of all subsets forms the initial set. These subsets are called
ranges. We use partitions of the input domain since the
number of models in the domain are infinitely many. Us-
ing partitions of the properties of a metamodel we define
two coverage criteria that are based on different strategies
for combining partitions of properties. Each criterion de-
fines a set of model fragments for an input metamodel.
These fragments are transformed to predicates on meta-
model properties by PRAMANA. For a set of test models
to cover the input domain at least one model in the set
must cover each of these model fragments. We generate
model fragment predicates using the following coverage
criteria to combine partitions (cartesian product of parti-
tions):
– AllRanges Criteria: AllRanges specifies that each range

in the partition of each property must be covered by
at least one test model.

– AllPartitions Criteria: AllPartitions specifies that the
whole partition of each property must be covered by
at least one test model.

The notion of coverage criteria to generate model frag-
ments was initially proposed in our paper [5]. The accom-
panying tool called Meta-model Coverage Checker (MMCC)
[5] generates model fragments using different test criteria tak-
ing any metamodel as input. Then, the tool automatically com-
putes the coverage of a set of test models according to the
generated model fragments. If some fragments are not cov-
ered, then the set of test models should be improved in order
to reach a better coverage.

In this paper, we use the model fragments generated by
MMCC for the UMLCD Ecore model (Figure 2). We use the
criteria AllRanges and AllPartitions. For example, in Table 2,
mfAllRanges1 and mfAllRanges2 are model fragments gener-
ated by PRAMANA using MMCC [5] for the name property
of a classifier object. The mfAllRanges1 states that there must
be at least one classifier object with an empty name while
mfAllRanges2 states that there must be at least one classifier
object with a non-empty name. These values for name are the
ranges for the property. The model fragments chosen using
AllRanges mfAllRanges1 and mfAllRanges2 define two par-
titions partition1 and partition2. The model fragment mfAll-
Partitions1 chosen using AllPartitions defines both partition1
and partition2.
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These model fragments are transformed to ALLOY pred-
icates by PRAMANA. For instance, model fragment mfAll-
Ranges7 is transformed to the predicate in Listing 3.
pred mfAllRanges7
{

some c : C l a s s | # c . a t t r s =1
}

Listing 3 ALLOY Predicate for mfAllRanges7

As mentioned in our previous paper [5] if a test set con-
tains models where all model fragments are contained in at
least one model then we say that the input domain is com-
pletely covered. However, these model fragments are gener-
ated considering only the concepts and relationships in the
Ecore model and they do not take into account the constraints
on the Ecore model. Therefore, not all model fragments are
consistent with the input metamodel because the generated
models that contain these model fragments do not satisfy the
constraints on the metamodel. PRAMANA invokes the ALLOY
Analyzer [17] to automatically check if a model containing a
model fragment and satisfying the input domain can be syn-
thesized for a general scope of number of objects. This al-
lows us to detect inconsistent model fragments. For example,
the following predicate, mfAllRanges7a, is the ALLOY rep-
resentation of a model fragment specifying that some Class
object does not have any Property object. PRAMANA calls
the ALLOY API to execute the run statement for the predicate
mfAllRanges7a along with the base ALLOY model to create a
model that contains up to 30 objects per class/concept/signa-
ture (see Listing 4).

Table 2 Consistent Model Fragments Generated using AllRanges
and AllPartitions Strategies

Model-Fragment Description
mfAllRanges1 A Classifier c | c.name =“”
mfAllRanges2 A Classifier c | c.name! =“”
mfAllRanges3 A Class c | c.is persistent = True
mfAllRanges4 A Class c | c.is persistent = False
mfAllRanges5 A Class c | #c.parent = 0
mfAllRanges6 A Class c | #c.parent = 1
mfAllRanges7 A Class c | #c.attrs = 1
mfAllRanges8 A Class c | #c.attrs > 1
mfAllRanges9 An Attribute a | a.is primary = True
mfAllRanges10 An Attribute a | a.name =“”
mfAllRanges11 An Attribute a | a.name! =“”
mfAllRanges12 An Attribute a | #a.type = 1
mfAllRanges13 An Association as | as.name =“”
mfAllRanges14 An Association as | #as.src = 1
mfAllRanges15 An Association as | #as.dest = 1
mfAllPartitions1 Classifiers c1,c2 | c1.name =“” and

c2.name! =“”
mfAllPartitions2 Classes c1,c2 | c1.is persistent = True and

c2.is persistent = False
mfAllPartitions3 Classes c1,c2 | #c1.parent = 0 and

#c2.parent = 1
mfAllPartitions4 Propertys a1,a2 | a1.is primary = True

and a2.is primary = False
mfAllPartitions5 Associations as1,as2 | as1.name =“” and

as2.name! =“”

pred mf Al l R an g es7 a
{

some c : C l a s s | # c . a t t r s = 0
}

run mf Al l R an g es7 a f o r 30

Listing 4 ALLOY Predicate and Run Command

The ALLOY analyzer yields a no solution to the run state-
ment indicating that the model fragment is not consistent with
the input domain specification. This is because no model can
be created with this model fragment that also satisfies an in-
put domain constraint that states that every Class must have
at least one Property object as shown in Listing 5.

s i g C l a s s e x t e n d s C l a s s i f i e r
{ . . .

a t t r s : some A t t r i b u t e
. . .

}

Listing 5 Example ALLOY Signature

In Listing 5, some indicates 1..*. However, if a model
solution can be found using ALLOY we call it a consistent
model fragment. MMCC generates a total of 15 consistent
model fragments using AllRanges and 5 model fragments us-
ing the AllPartitions strategy, as shown in Table 2.

3.4 Qualifying Models: Mutation Analysis for Model
Transformation Testing

We generate sets of test models using different strategies and
qualify these sets via mutation analysis [7]. Mutation analysis
involves creating a set of faulty versions or mutants of a pro-
gram. A test set must distinguish the program output from all
the output of its mutants. In practice, faults are modelled as
a set of mutation operators where each operator represents a
class of faults. A mutation operator is applied to the program
under test to create each mutant. A mutant is killed when at
least one test model detects the pre-injected fault. It is de-
tected when program output and mutant output are different.
A test set is relatively adequate if it kills all mutants of the
original program. A mutation score is associated to the test
set to measure its effectiveness in terms of percentage of the
killed/revealed mutants.

We use the mutation analysis operators for model trans-
formations presented in our previous work [8]. These muta-
tion operators are based on three abstract operations linked to
the basic treatments in a model transformation: the navigation
of the models through the relations between the classes, the
filtering of collections of objects, the creation and the mod-
ification of the elements of the output model. Using this ba-
sis we define several mutation operators that inject faults in
model transformations:

Relation to the same class change (RSCC): The navi-
gation of one association toward a class is replaced with the
navigation of another association to the same class.

Relation to another class change (ROCC): The navi-
gation of an association toward a class is replaced with the
navigation of another association to another class.
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Relation sequence modification with deletion (RSMD):
This operator removes the last step off from a navigation
which successively navigates several relations.

Relation sequence modification with addition (RSMA):
This operator does the opposite of RSMD, adding the navi-
gation of a relation to an existing navigation.

Collection filtering change with perturbation (CFCP):
The filtering criterion, which could be on a property or the
type of the classes filtered, is disturbed.

Collection filtering change with deletion (CFCD): This
operator deletes a filter on a collection; the mutant operation
returns the collection it was supposed to filter.

Collection filtering change with addition (CFCA): This
operator does the opposite of CFCD. It uses a collection and
processes an additional filtering on it.

Class compatible creation replacement (CCCR): The
creation of an object is replaced by the creation of an instance
of another class of the same inheritance tree.

Classes association creation deletion (CACD): This op-
erator deletes the creation of an association between two in-
stances.

Classes association creation addition (CACA): This op-
erator adds a useless creation of a relation between two in-
stances.

Using these operators, we produced two hundred mutants
from the class2rdbms model transformation with the reparti-
tion indicated in Table 3.

In general, not all mutants injected become faults as some
of them are equivalent and can never be detected. The con-
trolled experiments presented in this paper uses mutants pre-
sented in our previous work [8]. We have clearly identified
faults and equivalent mutants to study the effect of our gener-
ated test models.

4 Methodology

We outline the methodology for test generation using PRA-
MANA and empirical evaluation of the generated test models
via mutation analysis in Figure 3. The methodology uses the
foundational ideas we present in Section 3 into a workflow.

Concisely, the test model generation workflow follows
the steps:
Step 1: PRAMANA transforms input metamodel MMin, its
invariants Iin, the transformation pre-condition pre(MT ) of
transformation MT and test strategy T to an ALLOY model
(details in Sections 3.2, 3.3). PRAMANA solves the ALLOY
model to generate instances that are in the input domain of
MT .
Step 2: We try to execute all test models generated by PRA-
MANA as input to MT .
Step 3: If all test models are not executable in Step 2, then
we incrementally create new pre-conditions for MT called
pre(MT )′. These pre-conditions are created from rejected test
models. We describe incremental pre-condition improvement
in Section 4.1. We go to Step 1. Step 1 is executed using the
a new source of constraints coming from pre(MT )′.

Step 4: If all test models are executable in Step 2, we per-
form mutation analysis using the generated test models with
respect to the model transformation MT . Mutation analysis is
described in Section 3.4.

4.1 Incremental Pre-condition Improvement

The execution of a transformation helps us discover new pre-
condition constraints pre(MT )′ for the transformation MT .
In this sub-section we present the approach to systematically
create new pre-conditions.
Step 1: We execute the model transformation MT with a test
model t. Step 2: The test model t is rejected by the model
transformation and the transformation terminates. The rejec-
tion of a test model is often indicated by the raising of an
exception by the transformation language. Some of the key
sources for such rejections are:

1. Insufficient memory while creating modelling elements.
2. Infinite Loop while navigating a test model. For instance,

this situation occurs when input models are navigated through
a series of associations that can create loop structure in
the transformation class2rdbms. These loops structures
can navigation through diverse concepts such as inheri-
tance trees, associations, and type of attributes. The Ker-
meta interpreter throws an StackOverflowError exception
when it detects such a problem.

3. Transformation of an input model to an output model
not in output domain. For instance, output models that
do not satisfy the output meta-model specification and the
post-condition post(MT ). In our case study, the trans-
formation class2rdbms can produce ill-formed RDBMS
models. A typical example is when a table contains sev-
eral columns with same name. We detect these inconsis-
tencies by checking if output models conform to the out-
put meta-model (Ecore model of the meta-model with in-
variants) and satisfy post-conditions of the model trans-
formation. The Figure 4 illustrates this detection. It rep-
resents an excerpt (bottom part) of an output model pro-
duced by the original transformation of a generated (ex-
cerpt on the top part).

Step 3: We isolate inconsistent output models and correspond-
ing test models. We then use a traceability mechanism and
tool such as in [18] to restrain the analysis of these mod-
els on excerpts such as the one illustrated in Figure 4. Class
named A is transformed into one table because it is persis-
tent. It redefined an association of the Class B. Two asso-
ciations with the same name asso1 point to classes with the
same attribute/property att1. Respecting the specification, the
original transformations produces a table with two columns
named asso1 att1. This does not conform to the RDBMS meta-
model and it is detected by our tool. Construction of such
models can be prevented by generating objects with different
names.
Step 4: We solve this inconsistency by creating a new pre-
condition constraint that protects the transformation from ex-
ecuting such models. We also regenerate new models that
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Table 3 Repartition of the class2rdbms mutants depending on the mutation operator applied

Mutation Operator CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total
Number of Mutants 19 18 38 11 9 72 12 12 9 200

Input 
metamodel

MM_in

Invariants on 
metamodel

I_in

Step 1: Automatic Test 
Model Generation 

with Pramana

Test 
Strategy T

Step 3: Incremental Pre-
condition Improvement

New Pre-conditions
pre(MT)'

Step 2: All Test 
Models 

Executable?

NO

Step 4: Mutation Analysis

Mutation Score

YES

Pre-
conditions
pre(MT)

Fig. 3 Methodology for Automatic Test Generation and Mutation Analysis

satisfy the new pre-condition constraints. For instance, the
faulty model excerpt in Figure 4 can help us produce a new
pre-condition that states:

In the classes of an inheritance tree, two associations with
the same name can’t point to classes that have (or their par-
ent) attributes with same names.

Several new pre-conditions were discovered for the class2rdbms
case study. We enlist nine newly discovered ALLOY facts in
Appendix C apart from the initial set of pre-condition con-
straints as shown in Appendix B. These ALLOY facts can be
easily expressed in OCL to improve the pre-condition specifi-
cation of class2rdbms. The conditions may even be applica-
ble to commercial implementations of class2rdbms.

5 Experiments

5.1 Experimental Setup and Execution

We use the methodology in Section 4 to compare coverage
based test generation with unguided/random test model gen-
eration.

Coverage based test strategies as previously introduced in
Section 3.3 consist of two test criteria AllRanges and AllPar-
titions. These test criteria generate model fragments from an
effective input meta-model. A test set satisfying AllRanges
must contain test models that contain all consistent model
fragments from the AllRanges criteria. Similarly, a test set
satisfying AllPartitions must contain all consistent model frag-
ments generated from the AllPartitions criteria.

We generate sets of test models based on factorial exper-
imental design [19]. We consider the exact number of objects
for each class in the effective input meta-model as factors for
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Fig. 4 Model Excerpt for Pre-condition Improvement

experimental design. A factor level is the exact number of ob-
jects of a given class in a test model. These factors help study
the effect of number of different types of objects on the muta-
tion score. For instance, we can ask questions such as whether
a large number of Association objects have a correlation with
the mutation score? The large of number Association objects
also indicates a highly connected UML class diagram test
model. We decide these factor levels by simple experimen-
tation such as verifying if models can be generated in reason-
able amount of time given that we need to generate thousands
of test models in a few hours. We also want to cover a com-
bination of a large number of varying factor levels. We have
8 different factor levels for the different classes in the UML
class diagram effective input meta-model as shown in Table
4. Other factors that may affect but are not considered for test
model generation are the use different SAT solvers such as
SAT4J, MiniSAT, or ZChaff, maximum time to solve, t-wise
interaction between model fragments.

The AllRanges criteria on the UMLCD meta-model gives
15 consistent model fragments (see Table 2). We have 150
models in a set, where 10 non-isomorphic models satisfies
each different model fragment. We generate 10 non-isomorphic
models to verify that mutation scores do not drastically change
within each solution. We synthesize 8 sets of 150 models us-
ing different levels for factors as shown in Table 4 (see rows
1,2,3,4,5,6). The total number of models in these 8 sets is
1200.

The AllPartitions criteria gives 5 consistent model frag-
ments. We have 50 test models in a set, where 10 non-isomorphic
test models satisfies a different model fragment. We synthe-
size 8 sets of 50 models using factor levels shown in Table
4. The levels for factors for AllRanges and AllPartitions are
the same. Total number of models in the 8 sets is 400. The

Table 4 Factors and their Levels for Test Sets

Factors S1 S2 S3 S4 S5 S6 S7 S8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 15 15 5 15 5 15
#Association 5 15 5 15 5 5 15 15
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Inte-
ger

5 5 5 5 5 5 5 5

#Models/Set
AllRanges

15 15 15 15 15 15 15 15

#Models/Set
Unguided

15 15 15 15 15 15 15 15

#Models/Set
AllPartitions

5 5 5 5 5 5 5

#Models/Set
Unguided

5 5 5 5 5 5 5

selection of these factors at the moment is not based on a
problem-independent strategy.

We compare test sets generated using AllRanges and All-
Partitions with unguided test sets. For each test set of cov-
erage based strategies we generate an equal number of ran-
dom/unguided models as a reference to qualify the efficiency
of different strategies. Precisely, we have 8 sets of 150 un-
guided test models to compare with AllRanges and 8 sets of
50 unguided test models to compare with AllPartitions. We
use the factor levels in Table 4.

To summarize, we generate a total of 3200 models using
an Intel(R) CoreT M 2 Duo processor with 4GB of RAM. We
perform mutation analysis of these sets to obtain mutation
scores on a grid of 10 Intel Celeron 440 high-end computers.
The computation time for generating 3200 models was about
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Table 5 Mutation Scores in Percentage for All Test Model Sets

Set 1 2 3 4 5 6 7 8
Unguided 150 models/set in 8 sets 68.56 69.9 68.04 70.1 70.1 68.55 69 70.1
AllRanges 150 models/set in 8 sets 88.14 92.26 81.44 85 91.23 80.4 91.23 88.14
Unguided 50 models/set in 8 sets 70.1 62.17 68.04 70.1 65.46 68.04 69.94 70.1
AllPartitions 50 models/set in 8 sets 90.72 93.3 84.53 87.62 87.62 82.98 92.78 88.66

3 hours and mutation analysis took about 1 week. We discuss
the results of mutation analysis in the following section.

5.2 Results and Discussion

Mutation scores for AllRanges test sets are shown in Table 5
(row 2). Mutation scores for test sets obtained using AllParti-
tions are shown in Table 5 (row 4). We discuss the effects of
the influencing factors on the mutation score:

– The number of Class objects and Association objects has
a strong correlation with the mutation score. There is an
increase in mutation score with the level of these factors.
This is true for sets from unguided and model fragments
based strategies. For instance, the lowest mutation score
using AllRanges is 80.41 %. This corresponds to set 1
where the factor levels are 1,5,5,25,4,5 (see Column for
set 1 in Table 4) and highest mutation scores are 91,24
and 92,27% where the factor levels are 1,15,5,25,4,5 and
1,5,15,25,4,5 respectively (see Columns for set 3 and set
7 in Table 4).

– We observe that AllPartitions test sets containing only 50
models/set gives a score of maximum 93.3%. The All-
Partitions strategy demonstrates that knowledge from two
different partitions satisfied by one test model greatly im-
proves bug detecting efficiency. This also opens a new
research direction to explore: Finding strategies to com-
bine model fragments to guide generation of smaller sets
of complex test models with better bug detecting effec-
tiveness.

We compare unguided test sets with model fragment guided
sets in the box-whisker diagram shown in Figure 5. The box
whisker diagram is useful to visualize groups of numerical
data such as mutation scores for test sets. Each box in the
diagram is divided into lower quartile (25%), median, upper
quartile (75% and above), and largest observation and con-
tains statistically significant values. A box may also indicate
which observations, if any, might be considered outliers or
whiskers. In the box whisker diagram of Figure 5 we shown 4
boxes with whiskers for unguided sets and sets for AllRanges
and AllPartitions. The X-axis of this plot represents the strat-
egy used to select sets of test models and the Y-axis represents
the mutation score for the sets.

We make the following observations from the box-whisker
diagram:

– Both the boxes of AllRanges and AllPartitions represent
mutation scores higher than corresponding unguided sets.

– The high median mutation scores for strategies AllRanges
88.14% and AllPartitions 88.14% indicate that both these
strategies return consistently good test sets.

– The small size of the box for AllPartitions compared to the
AllRanges box indicates its relative convergence to good
sets of test models.

– The small set of 50 models using AllPartitions gives mu-
tations scores equal or greater than 150 models/set using
AllRanges. This implies that it is a more efficient strategy
for test model selection. The main consequence is a re-
duced effort to write corresponding test oracles [20] with
50 models compared to 150 models.

– Despite the generation of multiple solutions (10 solutions
for each model fragment or an empty fragment for un-
guided generation) for each strategy we see a consistent
behaviour in the mutation scores. There is no large differ-
ence in the mutation scores especially for unguided gener-
ation. The median is 69% and the mutation scores range
between 68% and 70%. The AllRanges and AllPartitions
vary a little more in their mutation scores due to a larger
coverage of the effective input meta-model.
The freely and automatically obtained knowledge from

the input meta-model using the MMCC algorithm shows that
AllRanges and AllPartitions are successful strategies to guide
test generation. They have higher mutation scores with the
same sources of knowledge used to generate unguided test
sets. A manual analysis of the test models reveals that injec-
tion of inheritance via the parent relation in model fragments
results in higher mutation scores. Most unguided models do
not contain inheritance relationships as it is not imposed by
the meta-model.

What about the 7% of the mutants that remain alive given
that the highest mutation score is 93.3%? We note by an anal-
ysis of the live mutants that they are the same for both All-
Ranges and AllPartitions. There remain 19 live mutants in
a total of 200 injected mutants (with 6 equivalent mutants).
In the median case both AllRanges and AllPartitions strat-
egy give a mutation score of 88.14%. The live mutants in the
median case are mutants not killed due to fewer objects in
models.

To consistently achieve a higher mutation score we need
more CPU speed, memory and parallelization to efficiently
generate larger test models and perform mutation analysis on
them. This extension of our work has not be been explored
in the paper. It is important for us to remark that some live
mutants can only be killed with more information about the
model transformation such as those derived from its require-
ments specification. For instance, one of the remaining live
mutant requires a test model with a class containing several
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Fig. 5 Box-whisker Diagram to Compare Automatic Model Generation Strategies

primitive type attributes such that at least one is a primary at-
tribute. A test model that satisfies such a requirement requires
the combination of model fragments imposing the need for
several attributes in a class A, attributes of class A must have
primitive types, at least one primary attribute in the class A,
and at least one non-primary attribute in the class A. This
requirement can either be specified by manually creating a
combination of fragments or by developing a better general
test strategy to combine multiple model fragments. In another
situation, we observe that not all model fragments are consis-
tent with the input domain and hence they do not really cover
the entire meta-model. Therefore, we miss killing some mu-
tants. This information could help improve partitioning and
combination strategies to generate better test sets.

6 Related Work

We explore three main areas of related work : test criteria,
automatic test generation, and qualification of strategies.

The first area we explore is work on test criteria in the
context of model transformations in MDE. Random genera-
tion and input domain partitioning based test criteria are two
widely studied and compared strategies in software engineer-
ing (non MDE) [21] [22] [23]. To extend such test criteria to
MDE we have presented in [5] input domain partitioning of
input meta-models in the form of model fragments. However,
there exists no experimental or theoretical study to qualify the
approach proposed in [5].

Experimental qualification of the test strategies require
techniques for automatic model generation. Model genera-
tion is more general and complex than generating integers,

floats, strings, lists, or other standard data structures such as
dealt with in the Korat tool of Chandra et al. [24]. Korat is
faster than ALLOY in generating data structures such as bi-
nary trees, lists, and heap arrays from the Java Collections
Framework but it does not consider the general case of mod-
els which are arbitrarily constrained graphs of objects. The
constraints on models makes model generation a different
problem than generating test suites for context-free grammar-
based software [25] which do not contain domain-specific
constraints.

Test models are complex graphs that must conform to an
input meta-model specification, a transformation pre-condition
and additional knowledge such as model fragments to help
detect bugs. In [26] the authors present an automated gen-
eration technique for models that conform only to the class
diagram of a meta-model specification. A similar method-
ology using graph transformation rules is presented in [27].
Generated models in both these approaches do not satisfy the
constraints on the meta-model. In [28] we present a method
to generate models given partial models by transforming the
meta-model and partial model to a Constraint Logic Program-
ming (CLP). We solve the resulting CLP to give model(s) that
conform to the input domain. However, the approach does
not add new objects to the model. We assume that the num-
ber and types of models in the partial model is sufficient for
obtaining complete models. The constraints in this system are
limited to first-order horn clause logic. In [6] we have intro-
duce a tool CARTIER based on the constraint solving system
ALLOY to resolve the issue of generating models such that
constraints over both objects and properties are satisfied si-
multaneously. In this paper we use CARTIER to systemati-
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cally generate several hundred models driven by knowledge/-
constraints of model fragments [5]. Statistically relevant test
model sets are generated from a factorial experimental design
[19] [29].

The qualification of a set of test models can be based on
several criteria such as code and rule coverage for white box
testing, satisfaction of post-condition or mutation analysis for
black/grey box testing. In this paper we are interested in ob-
taining the relative adequacy of a test set using mutation anal-
ysis [7]. In previous work [8] we extend mutation analysis to
MDE by developing mutation operators for model transfor-
mation languages. We qualify our approach using a repre-
sentative transformation UMLCD models to RDBMS models
called class2rdbms implemented in the transformation lan-
guage Kermeta [3]. This transformation [11] was proposed
in the MTIP Workshop in MoDeLs 2005 as a comprehensive
and representative case study to evaluate model transforma-
tion languages.

7 Conclusion

Testing model transformations presents the challenging prob-
lem of developing approaches to automatically generate ef-
fective test models. In this paper we present PRAMANA, a
tool to generate models conforming in the input domain of
a transformation and guided by different coverage criteria.
First, PRAMANA helps us precisely specify the input domain
of a model transformation incremental pre-condition improve-
ment. Second, we use PRAMANA to generate sets of test mod-
els that compare coverage and unguided strategies for model
generation. All test sets using these strategies detect faults
given by their mutation scores. The comparison of coverage
strategies with unguided generation taught us that both strate-
gies AllPartitions and AllRanges look very promising. Cover-
age strategies give a maximum mutation score of 93% com-
pared to a maximum mutation score of 70% in the case of
unguided test sets. We observe that mutation scores do not
vary drastically despite the generation of multiple solutions
for the same test strategy. We conclude from our experiments
that the AllPartitions strategy is a promising strategy to con-
sistently generate a small test of test models with a good mu-
tation score. However, to improve effectiveness of test sets
we might require effort from the test designer to obtain test
model knowledge/test strategy that take the internal model
transformation design requirements into account. The exper-
iments in this paper were performed based on the mutation
analysis of class2rdbms written in the language Kermeta. In
future, we intend to develop mutation analysis tools for var-
ious mature model transformation languages. The automatic
mutation analysis tool will help us perform experiments us-
ing a number of transformation case studies. Applying our
approach to large input metamodels such as the UML is a
challenge in scaling our approach. We intend to leverage our
recently developed technique called metamodel pruning [30]
to extract a small subset of large metamodel such as UML
which is conducive to constraint solving in PRAMANA and
consequently model generation for large input metamodels.

A ALLOY Model Synthesized by CARTIER

module tmp /UMLCD
open u t i l / b o o l ean as Bool

s i g Model
{

c l a s s i f i e r : s e t C l a s s i f i e r ,
a s s o c i a t i o n : s e t A s s o c i a t i o n

}

a b s t r a c t s i g C l a s s i f i e r
{

name : I n t
}

s i g P r i m i t i v e D a t a T y p e e x t e n d s C l a s s i f i e r
{ }

s i g C l a s s e x t e n d s C l a s s i f i e r
{

i s p e r s i s t e n t : one Bool ,
p a r e n t : l o ne C l ass ,
a t t r s : some A t t r i b u t e

}

s i g A s s o c i a t i o n

{
name : I n t ,
d e s t : one C l ass ,
s r c : one C l a s s

}

s i g A t t r i b u t e
{

name : I n t ,
i s p r i m a r y : Bool ,
t y p e : one C l a s s i f i e r

}

/ / Meta−model c o n s t r a i n t s

/ ∗ Th ere must be No C y c l i c I n h e r i t a n c e i n an UMLCD∗ /

f a c t n o C y c l i c I n h e r i t a n c e
{

no c : C l a s s | c i n c . ˆ p a r e n t
}

/ ∗ Al l t h e a t t r i b u t e s i n a C l a s s must have u n i q u e a t t r i b u t e names ∗ /

f a c t u n i q u e A t t r i b u t e N a m e s
{

a l l c : C l a s s | a l l a1 : c . a t t r s , a2 : c . a t t r s | a1 . name = a2 . name i m p l i e s a1=a2
}

/ ∗ An a t t r i b u t e o b j e c t can be c o n t a i n e d by o n l y one c l a s s ∗ /

f a c t a t t r i b u t e C o n t a i n m e n t
{

a l l c1 : C l ass , c2 : C l a s s | a l l a1 : c1 . a t t r s , a2 : c2 . a t t r s | a1 = a2 i m p l i e s c1=
c2

}

/ ∗ Th ere i s e x a c t l y one Model o b j e c t ∗ /

f a c t oneModel
{

# Model=1
}

/ ∗ Al l C l a s s i f i e r o b j e c t s a r e c o n t a i n e d i n a Model ∗ /

f a c t c l a s s i f i e r C o n t a i n m e n t
{

a l l c : C l a s s i f i e r | c i n Model . c l a s s i f i e r
}

/ ∗ Al l A s s o c i a t i o n o b j e c t s a r e c o n t a i n e d i n a Model ∗ /

f a c t a s s o c i a t i o n C o n t a i n m e n t
{
a l l a : A s s o c i a t i o n | a i n Model . a s s o c i a t i o n
}

/ ∗A C l a s s i f i e r must have a u n i q u e name i n t h e C l a s s Diagram ∗ /

f a c t u n i q u e C l a s s i f i e r N a m e
{

a l l c1 : C l a s s i f i e r , c2 : C l a s s i f i e r | c1 . name = c2 . name i m p l i e s c1=c2
}

/ ∗An a s s o c i a t i o n s have t h e same name e i t h e r t h e y a r e t h e same a s s o c i a t i o n o r t h e y
have d i f f e r e n t s o u r c e s ∗ /

f a c t uniqeNameAssocSrc
{

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n |
a1 . name = a2 . name i m p l i e s ( a1 = a2 or a1 . s r c != a2 . s r c )

}

Listing 6 ALLOY Model for UML Class Diagram
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B Initial Set of Pre-conditions

/ ∗ I n i t i a l Model T r a n s f o r m a t i o n Pre−c o n d i t i o n s ∗ /

f a c t a t l e a s t O n e P r i m a r y A t t r i b u t e
{

a l l c : C l a s s | one a : c . a t t r s | a . i s p r i m a r y = True
}

f a c t n o 4 C y c l i c C l a s s A t t r i b u t e
{

a l l a : A t t r i b u t e | a . t y p e i n C l a s s i m p l i e s a l l a1 : a . t y p e . a t t r s | a1 . t y p e i n
C l a s s i m p l i e s a l l a2 : a . t y p e . a t t r s | a2 . t y p e i n C l a s s i m p l i e s a l l a3 : a . t y p e .

a t t r s | a3 . t y p e
i n C l a s s i m p l i e s a l l a4 : a . t y p e . a t t r s | a4 . t y p e i n P r i m i t i v e D a t a T y p e

}

f a c t n o At t r i b u t eAn d Asso ci a t ion Hav eSameName
{

a l l c : C l a s s , a s s o c : A s s o c i a t i o n |
a l l a : c . a t t r s | ( a s s o c . s r c = c ) i m p l i e s a . name != a s s o c . name

}

f a c t n o 1 C y c l e N o n P e r s i s t e n t
{
a l l a : A s s o c i a t i o n | ( a . d e s t = a . s r c ) i m p l i e s a . s r c . i s p e r s i s t e n t = True
}

f a c t n o 2 C y c l e N o n P e r s i s t e n t
{

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n |
( a1 . d e s t = a2 . s r c and a2 . d e s t = a1 . s r c ) i m p l i e s
a1 . s r c . i s p e r s i s t e n t = True or a2 . s r c . i s p e r s i s t e n t =True

}

Listing 7 Initial pre-conditions as ALLOY facts

C Discovered Set of Pre-conditions

/ / D i sco v ered Model T r a n s f o r m a t i o n pre−c o n d i t i o n c o n s t r a i n t s

/ ∗ 1 . At a d ep t h o f 4 t h e t y p e o f an a t t r i b u t e h as t o be p r i m i t i v e and c a n n o t be
a c l a s s t y p e ∗ /

f a c t n o 4 C y c l i c C l a s s A t t r i b u t e{
a l l a : A t t r i b u t e | a . t y p e i n C l a s s => a l l a1 : a . t y p e . a t t r s | a1 . t y p e i n
C l a s s => a l l a2 : a . t y p e . a t t r s | a2 . t y p e i n C l a s s => a l l
a3 : a . t y p e . a t t r s | a3 . t y p e i n C l a s s => a l l a4 : a . t y p e . a t t r s | a4 . t y p e
i n P r i m i t i v e D a t a T y p e }

/ ∗ 2 . A C l a s s c a n n o t have an a s s o c i a t i o n and an a t t r i b u t e o f t h e same name ∗ /

f a c t noAtt r ibAndAssocSameName{
a l l c : C l ass , a s s o c : A s s o c i a t i o n | a l l a : c . a t t r s | ( a s s o c . s r c == c ) => a . name

!= a s s o c . name
}

/ ∗ 3 . No c y c l e s b e t ween non−p e r s i s t e n t c l a s s e s ∗ /

f a c t n o 1 C y c l e N o n P e r s i s t e n t
{

a l l a : A s s o c i a t i o n | ( a . d e s t == a . s r c ) => a . d e s t . i s p e r s i s t e n t = True
}

f a c t n o 2 C y c l e N o n P e r s i s t e n t
{

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n | ( a1 . d e s t == a2 . s r c and a2 . d e s t ==a1 .
s r c ) => a1 . s r c . i s p e r s i s t e n t = True or a2 . s r c . i s p e r s i s t e n t =True

}

/ ∗ 4 . A p e r s i s t e n t c l a s s can ’ t have an a s s o c i a t i o n t o one o f i t s p a r e n t ∗ /

f a c t a s s o c P e r s i s t e n t C l a s s
{

a l l a : A s s o c i a t i o n | a . s r c . i s p e r s i s t e n t =True i m p l i e s a . d e s t n o t i n a . s r c . ˆ
p a r e n t

}

/ ∗ 5 . Unique a s s o c i a t i o n names i n a c l a s s h i e r a r c h y ∗ /

f a c t u n i q u eAsso cNam es I n I n He r i t a n c e Tr e e
{

a l l c : C l a s s |
a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n |
( a1 . s r c i n c and a2 . s r c i n c . ˆ p a r e n t and a1 != a2 ) i m p l i e s ( a1 . name != a2 . name )

}

/ ∗ 6 . A c l a s s can ’ t be t h e t y p e o f one o f i t s a t t r i b u t e s ( amoung a l l i t s
a t t r i b u t e s ∗ /

f a c t c l a s s C a n t T y p e O f A l l o f I t s A t t r i b u t e
{

a l l c : C l a s s | a l l a : ( c . a t t r s +c . ˆ p a r e n t . a t t r s ) | a . t y p e != c
}

/ ∗ 7 . A C l a s s A which i n h e r i t s from a p e r s i s t e n t c l a s s B can ’ t have an o u t g o i n g
a s s o c i a t i o n wi t h t h e same name

t h a t one a s s o c i a t i o n o f t h a t p e r s i s t e n t c l a s s B ∗ /

f a c t c l ass In h er i t sOu t g o i n g No t Same Na m eA ss o c
{

a l l A: C l a s s | a l l B :A . ˆ p a r e n t | B . i s p e r s i s t e n t == True i m p l i e s ( no a1 :
A s s o c i a t i o n , a2 : A s s o c i a t i o n |

( a1 . s r c = A and a2 . s r c =B and a1 . name=a2 . name ) )
}

/ ∗ 8 . A c l a s s A which i n h e r i t s from a p e r s i s t e n t c l a s s B can ’ t have an a t t r i b u t e
wi t h t h e same name

t h a t one a t t r i b u t e o f t h a t p e r s i s t e n t c l a s s B ∗ /

f a c t c l a s s I n h e r i t s O u t g o i n g N o t S a m e N a m e A t t r i b
{

a l l A: C l a s s | a l l B :A . ˆ p a r e n t | B . i s p e r s i s t e n t == True i m p l i e s ( no a1 : A . a t t r s
, a2 :B . a t t r s |

( a1 . name=a2 . name ) )
}

/ ∗ 9 . No a s s o c i a t i o n b et ween two c l a s s e s o f an i n h e r i t a n c e t r e e ∗ /

f a c t n o Asso cB et ween C l a ss In H i er a r c h y
{

a l l a : A s s o c i a t i o n | a l l c : C l a s s | ( a . s r c =c i m p l i e s a . d e s t n o t i n c . ˆ p a r e n t )
and ( a . d e s t =c i m p l i e s a . s r c n o t i n c . ˆ p a r e n t )

}

Listing 8 Discovered pre-conditions as ALLOY facts
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