Exploratory Study on the Landscape of Inter-smell
Relations in Industrial and Open Source Systems

Aiko Yamashita*, Marco Zanoni', Francesca Arcelli Fontana! and Bartosz Walter
*Simula Research Laboratory, Mesan AS, Oslo, Norway
Email: aiko@simula.no
TDepartment of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
Email: {marco.zanoni,arcelli } @disco.unimib.it
iFaculty of Computing, Poznan University of Technology, Poznarn, Poland
Email: bartosz.walter@cs.put.poznan.pl

Abstract—Code smells are indicators of issues with source code
that can hinder software evolution. While a great number of
studies have focused on the effects of individual code smells on
maintainability, recent work has shown that code smells that
appear together in the same file (i.e., collocated smells) can
interact with each other, leading to various types of maintenance
issues and/or to intensified negative effects. Moreover, it has been
found that code smell interactions may occur across coupled
files (i.e., coupled smells), with comparable negative effects as
the interaction of same-file, collocated smells. Different inter-
smell relations have been described in previous work, but few
studies have validated them empirically. This study investigates
further the phenomena of inter-smell relations (both collocated
and coupled smell relations), by analyzing one industrial and two
open-source systems. We substantiated the relevance of some
inter-smells previously reported in the literature and extend
further the landscape of known inter-smell relations. We found
that tendencies on inter-smell relations become clearer when
considering coupled smells in addition to collocated smells. A
major finding is that contextual factors such as the domain and
environment may play a major role on the presence, co-presence,
and coupling between smells, which suggests that such variables
should be considered when conducting smell analysis.

Index Terms— code smells; bad smells; inter-smell relations;
smell interaction; dependency analysis; software quality.

I. INTRODUCTION

Code smells are indicators of potentially harmful design
shortcomings that can cause difficulties to developers during
maintenance. These shortcomings can decrease code quality
aspects such as understandability and changeability, and can
lead to the introduction of faults [1]. However, the overall
capacity of code smells for explaining maintenance problem-
s/effort has been shown to be rather low (see for example
the work by Sjgberg et al. [2]). While a great number
of studies have focused on the effects of individual code
smells on maintainability, recent work has shown that inter-
smell relations [3] may provide a better insight on potential
maintenance issues. Code smells that appear together in the
same file (i.e., collocated smells) can interact with each other,
causing different types of problems and intensifying them.
Moreover, it has been found that code smell interactions that
occur across coupled files (i.e., coupled smells), can lead to
comparably negative effects as the interaction of same-file,
collocated code smells. Thus, we argue that effects of inter-
smell relations on software maintainability is a topic that
deserves more attention. This position is further supported by

the observation made by Yamashita [4] that in some large
classes, the maintenance problems were not so much caused
by the complexity that followed from the actual size of the
class but rather were a result of interaction effects between
different code smells that appeared together in that class. This
distinction implies that the current approach for code smell
detection and analysis, which is mostly based on analyzing
individual smells and not the effects of smell interactions,
severely limits the capability of code smell analysis to explain
or predict maintenance problems. Observations in [4] suggests
that we should have only a modest expectation of the explana-
tory and predictive power of individual code smells in relation
to software maintainability. We know only of one empirical
study (by Abbes et al. [5]) that reports on the interaction
effects between two concrete code smells (i.e., between God
Class and God Method). Yamashita and Moonen [6] reported
that interaction effects do occur among code smells and
between code smells and other design flaws. This implies that
the current approach for code smell analysis (i.e., analyzing
individual smells and not the effect of their combinations)
limits greatly the capability of code smells to explain much
of the maintenance problems caused by design flaws. Another
limitation of the current approaches for code smell analysis
is that couplings amongst files containing code smells are
not considered in the analyses. The findings from [6, 7]
suggest that interaction effects between code smells distributed
across coupled files may have the same consequences from
a practical perspective as interaction effects between code
smells collocated in the same file. “Coupled smells” are
currently ignored due to the fact that code smells are mostly
identified and analyzed at the file level. Consequently, we
argue that in order to obtain a better understanding of the
role of code smells on maintainability, future studies should
integrate dependency analysis in their process as to include
coupled smell-interactions.

The innovative aspects of this work are three fold: i) We
involve a combination of both industrial and open source
systems, all of them of considerable size and complexity, to
identify and analyze inter-smell relations and ii) We conduct
a study to corroborate some of the relations described by
previous work, and iii) We incorporate dependency analysis to
investigate coupled smells in addition to the previously studied
collocated smells.
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The remainder of this paper is as follows. Section II
presents the theoretical background and related work. Sec-
tion III describes the study design, including the context of
the systems studied, and the types of analysis conducted.
Section IV presents the results of the analysis and Section V
discusses some of the findings in more detail and describes
the threats to the validity of the results. Section VI presents
the conclusion and future work.

II. THEORETICAL BACKGROUND AND RELATED WORK
A. Code smells

‘Code smells’ is a term coined by Fowler and Beck [1]
(i.e., ‘Bad smells in the code’) for describing symptoms
of deeper issues in the code. They informally described
and exemplified 22 different code smells, and related them
back to well-known violations of different programming and
design principles. Unlike code metrics, smells are easier to
interpret for quality assurance/improvement efforts, which
has attracted the attention of researchers and practitioners in
software engineering. However, they do not directly point
to the actual flaw and usually require a certain level of
interpretation and additional analysis to determine if they are
actually problematic or not. Different approaches for detecting
code smells have been proposed and are currently in use.
Although Fowler has emphasized the subjective nature of
code smells (e.g., “no sets of metrics rivals informed human
intuition” [1]), research efforts in the last decade have incor-
porated automated means for smell detection. For example,
detection strategies [8] use logical combinations of different
code metrics with different threshold values to identify code
smells (several commercial and open source tools implement
this approach, such as inFusion' and PMD?). Other detection
approaches match different code attributes with refactoring
opportunities (e.g., JDeodorant?), or employ machine-learning
algorithms to discover relations between metrics and code
smells (e.g. Arcelli et al. [9], Khomh et al. [10]). Some
approaches are not based only on the source code, but they
consider code evolution via repository mining, such as the
work by Palomba et al. [11]. Finally, some approaches [12] use
a wider spectrum of data, by incorporating domain-specific
information, and probabilities (i.e., design change propagation
probability matrix, or DCPP matrix) to detect code smells.

B. Empirical studies on code smells

A systematic literature review reported in [13] indicated
that effort in the Software Engineering research community
has been placed mainly on investigating how to detect code
smells rather than empirically examining their impact on soft-
ware quality characteristics. The review identified only three
empirical studies investigating the impact of code smells on
maintenance [14-16]. In the doctoral thesis by Yamashita [4]
a review on empirical studies on code smells is presented,
with a focus on the empirical effects of code smells on
maintenance. Studies included in this review have indicated

! http://www.intooitus.com/products/infusion 2 http://pmd.sourceforge.net

3 http://www.jdeodorant.com/

that certain individual code smells have deterrent effects as the
introduction of defects [14—19] larger maintenance effort [5,
20-22], and larger and more frequent changes in the code [23—
25]. The review also includes smell dynamics such as smell
evolution and longevity [26-28]. The systematic literature
review by [13], the report by [4], as well as recent work by
Sjgberg et al. [2] and Yamashita [29] suggest that insofar, the
overall capacity of code smell analysis to explain or predict
maintenance problems is rather modest.

C. Inter-smell relations

While most of the previously described work focus on the
impact of individual code smells on different maintenance
outcomes, we focus our attention on relationships among code
smells, and the potential implications that smell interactions
have on maintenance. Pietrzak et al., [3] described several
types of inter-smell relations to support more accurate code
smell detection and to understand better the effects caused by
interactions between smells. These relations were supported
by examples from the Apache Tomcat* code base. Some of
the reported relations are:

o Data Class, Feature Envy, Large Class (Trans. Support)

o Large Class, Feature Envy (Plain Support)

o Data Class, Feature Envy (Plain Support)

o Data Class, Inappropriate Intimacy (Rejection)

o Data Class,Feature Envy, Inappropriate
(Aggregated Support)

o Lazy Class, Large Class (Rejection)

o Parallel Inheritance, Shotgun Surgery (Inclusion)

Intimacy

Previous work on inter-smell relations has mostly been limited
to conceptual or anecdotic descriptions; and very few of
these inter-smell relations have been corroborated empirically.
Mintyla et al., [30] categorized Fowler’s code smells into
six groups based on the correlation analysis: Bloaters, Object
Orientation Abusers, Change Preventers, Dispensables, Encap-
sulators and Couplers. The study confirmed the existence of
several relations, but also questioned other relations suggested
by Fowler. Jancke [31] described different relationships (uses/-
forwards/used by) between different design patterns and code
smells. Moha et al., [32] proposed a taxonomy of smells and
described some relations among design smells, for example:

o Blob and (many) Data Class
« Blob and (Large Class and Low Cohesion)

By inspecting and analyzing source code, Lanza and Mari-
nescu [33] classified twelve smells into 3 categories, called
design disharmonies: Identity, Collaboration, and Classifica-
tion. They asserted that the most of design disharmonies do
not appear in isolation (i.e., some of them cluster together),
and they describe the most common correlations between the
disharmonies, in a type of diagram called correlation web. The
identified correlations among the disharmonies manifested via
<is/has/uses> relations (See Table I).

4 http://tomcat.apache.org
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TABLE 1
INTER-SMELL RELATIONS DESCRIBED IN [33]

Type Relation
Feature Envy is Intense Coupling
Is Brain Method is Dispersed Coupling

Tradition Breaker is Refused Parent Bequest

Data Class has Shotgun Surgery

God Class has Dispersed Coupling & Intense Coupling
God Class has Brain Method

God Class has Feature Envy

Has Brain Class has Brain Method

Brain Class has Dispersed Coupling & Intense Coupling
Data Class has Shotgun Surgery

Brain Method has Significant Duplication

Tradition Breaker has Significant Duplication

Dispersed Coupling and Intensive Coupling uses Shotgun

Uses Surgery

Feature Envy uses Data Class

Yamashita and Moonen [7] conducted principal component
analysis (PCA) and an observational analysis [6] over four in-
dustrial systems and found that many of the large and complex
classes contained other smells, as an indirect consequence of
size; as for example they found that:

o Classes with God Class can also contain Feature Envy,
Shotgun Surgery, and Interface Segregation Principle
(i.e., ISP see [34]) Violation

o Classes with high Coupling can involve Feature Envy or
ISP Violation or Shotgun Surgery

Moreover, they found that smell interactions occur across
coupled files (i.e., coupled smells), and that those can lead
to comparably negative effects as the interaction of same-file,
collocated code smells.

III. STUDY DESIGN

In our study, we focus on exploring further the phenomena
of inter-smell relations in industrial and open source systems,
and on corroborating some of the relations suggested by
previous work. In addition to the collocated smells analy-
sis, we consider dependencies amongst classes in order to
incorporate coupled smells analysis. The reminder of this
section is as follows: Section III-A describes the systems
analyzed, and Section III-B describes which and how code
smells were detected, how the collocated and coupled smells
were identified, and what type of analysis was conducted.

A. Systems under study

In the study we analyzed two open source systems and one
industrial system. As previous works show [35, 36], negative
consequences stemming from the presence of code smells may
vary depending on different factors. For example, the domain
of the systems is an important factor for determining smell
intensity and its impact on several qualitative software charac-
teristics [36]. To avoid bias related to contextual factors (e.g.,
project owner, development method), we decided to analyze

systems developed in 2 different environments: industrial, and
open source. The choice of specific systems was guided by
the availability of the necessary data.

Sys 1: Ebehandling - A grant application system: Ebe-
handling is a series of modules used by The Norwegian
Research Council (hereafter the NRC) for managing research
grant applications. NRC is responsible for handing out close
to 1,000,000,000 euros in research grants every year. Their
systems process around 6000 applications per year, and they
support the following functional areas: application evaluation,
statistics and reporting, and production of contracts and other
documents. The code base analyzed consists of 11 web
applications (based on a mix of RESTful web interface and
Spring MVC?, and following a Service Oriented Architecture)
and was originally developed by Mesan AS. Currently the
systems consist of 5840 files, from which 5300 are Java,
240 are JavaScript and 300 are Jspx (Java Server Pages).
The size of the Java code analyzed is of 601KLOC. The
11 modules analyzed had undergone 40 major releases and
around 15 patch-releases since the start of the project in 2009.
We analyzed a snapshot of the most recent revision, dated as
for June 5th, 2014.

Sys 2: ElasticSearch - A search/analytics platform: Elas-
ticSearch is a search server based on the Lucene project.
It provides a distributed, multitenant-capable full-text search
engine with a RESTful web interface and schema-free JSON
documents. ElasticSearch is developed in Java and is released
as open source and has undergone 102 minor releases and
22 major releases since early 2010. Some of the active users
of ElasticSearch are: Github, SoundCloud, Deezer, and The
Guardian. The version we analyzed was 1.2.1, which counts
with 2951 Java files and 253 KLOC.

Sys 3: Mahout - A machine-learning library: Apache Ma-
hout is a project of the Apache Software Foundation® project
aiming at producing free implementations of distributed or
otherwise scalable machine learning algorithms focused pri-
marily in the areas of collaborative filtering, clustering and
classification. Many of the implementations use the Apache
Hadoop’platform. Mahout also provides Java libraries for
common math operations (focused on linear algebra and
statistics) and supports primitive Java collections. Mahout
has undergone 10 releases since May 2010, and the version
analyzed (0.7) counts with 99 files, from which 935 are Java
and 12 are Scala. Current size of the system is 92KLOC.
Some of the active users of Mahout include: Yahoo mail,
ResearchGate, Mendeley, AOL, and Foursquare.

B. Detection and analysis of code smells

For the detection of code smells, we employed inFusion,
a commercial successor of iPlasma®, which identifies 24 dif-
ferent code smells based on the detection strategies approach
mentioned in Section II-A. In our study, fifteen code smells

5 http://projects.spring.io/spring-framework/
6 http://www.apache.org/foundation/ 7 http://hadoop.apache.org/
8 http://loose.upt.ro/reengineering/research/iplasma

Simula Research Laboratory, Technical Report (2014-15)



Yamashita et al.,

Exploratory Study on the Landscape of Inter-smell Relations in Industrial and Open Source Systems

God Class

Feature Envy

Fig. 1. Example of Collocated and Coupled Smells

were detected in the systems: Refused Parent Bequest, Dis-
torted Hierarchy, Schizophrenic Class, God Class, Tradition
Breaker, Sibling Duplication, Data Clumps, Blob Operation,
Feature Envy, Shotgun Surgery, Internal Duplication, Message
Chains, External Duplication, Intensive Coupling and Data
Class (the definitions are provided in the appendix section in
[37], and are also available in the help function of inFusion).
The number of detected code smells and the uniformity
of the detection approach w.r.t. previous studies guided the
choice of the tool. In order to investigate potential inter-smell
relations across the systems, we used Principal Component
Analysis (PCA), using orthogonal rotation (varimax). First, we
conducted PCA for collocated smells, and then we repeated
the analysis for coupled smells. We adopted the following
definitions of collocated and coupled smells (see Fig. 1):

e Collocated code smells: Two or more smells are collo-
cated if they are detected in the same class (Fig. 1-A).

o Coupled code smells: Two or more smells are coupled if
they are located in artifacts (classes) that are coupled (i.e.,
they display some type of static dependency (Fig. 1-B).

In this work, we adopted the following definition of a depen-
dency [38]: “... A dependency is when the functioning of one
element A requires the presence of another element B...” We
interpret the above definition as follows:

1) An outgoing dependency from class X to class Y exists
when:
e X inherits from Y (X is a subclass of Y)
o X accesses a field of Y
« X creates a new object of type Y (X instantiates Y)
« X contains a variable or an attribute of type Y
o X calls a method declared in type Y
o X has a method that references Y via return type or
parameter
X implements B (i.e., when Y is an Interface and X
implements the Interface)

2) For each outgoing dependency from X to Y, an incoming
dependency from Y to X exists

The tool we used for the dependency analysis was depFinder’.
We chose the tool due to its capabilities in transforming the
resulting graphs. Once we obtained the components from the
PCA, we examined the degree of agreement across systems
by distinguishing between full-matches (i.e., all variables of a

9 http:/depfinder.sourceforge.net

TABLE II
SUMMARY OF THE PCA CONSIDERING COLLOCATED SMELLS
Ebehandling ElasticSearch Mahout
Variance Explained 60.90% 61.50% 54.60%
Kaiser-Meyer-Olkin 0.48 0.56 0.52
Approx. Chi-Square 2758.95 2250.05 796.66
df 45 105 55
Sig. .000 .000 .000
RefusedParentBequest v v
SchizoClass v v
GodClass v v v
TraditionBreaker v
SiblingDuplication v v v
DataClumps v v v
BlobOperation v v v
FeatureEnvy v v '
ShotgunSurgery v
InternalDuplication v v '
MessageChains v v v
ExternalDuplication v v v
IntensiveCoupling v
DataClass v v v

given component in a system have at least one identical coun-
terpart in another system) and partial-matches (i.e., at least
two variables in common across two or more components in
two or more systems). Subsequently, we examined portions of
the code based on a graphical representation of the identified
inter-smell by using Gephi'?.

IV. RESULTS
A. PCA with collocated smells

Table XI displays the percentage of the variance explained
by the factors extracted, the sample adequacy measures
(Kaiser-Meyer-Olkin, and Bartlett’s test of Sphericity) for the
PCA for each of the systems, and the smells included in
the analysis. Some code smells were excluded since they
were not detected in some systems. Field [39] recommends
a KMO higher than 0.5 for an acceptable sample, which is
the case for all the systems except for Ebehandling (0.48).
The Bartlett’s test of Sphericity is significant for all systems
(p < .001), indicating that the correlations between the items
are sufficiently large for a satisfactory application of PCA.
Despite the KMO for Ebehandling being slightly lower than
what recommended, we decided to maintain it, given that
the Bartlett’s test result was significant for all systems. For
Ebehandling, five components had eigenvalues over Kaiser’s
criterion of 1 and in combination explained 60.9% of the
variance. As for ElasticSearch, eight factors where identified,
explaining 61.5% of the variance. Finally, for Mahout, five
components explaining 54.6% of the variance were extracted.
Due to space restrictions, the factor loadings after the rotation
for each of the systems are available in a technical report [37].

Fig. 2 displays the resulting components, which shows one
common, collocated inter-smell relation across the systems
Ebehandling (component 1) and ElasticSearch (component
2): God Class + Feature Envy + Intensive Coupling. This

10" http://www.gephi.org
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Ebehandling

SiblingDuplication

1 InternalDuplication 3
MessageChains

ExternalDuplication

— o)

IntensiveCoupling

2 | FeatureEnwv: 4| DataClump K
GodClass 4 DataClass™ 5 | BlobOperation

Mahout

GodClass

. 3 | BlobOperation 5| DataClass
1| ExternalDuplication InternalDuplication
FeatureEnvy

SiblingDuplication
2 | DataClumps 4 E:;t:jreedgna:;entBequest
SchizoClass v
ElasticSearch
4 GodClass 4 | ExternalDuplication
FeatureEnvy BlobOperation
IntensiveCoupling

BlobClass 5 | MessageChains
2 | TraditionBreaker
SchizoClass & | RefusedParentBequest

DataClumps

3 InternalDuplication
SiblingDuplication
7 | ShotgunSurgery 8| DataClass

Fig. 2. Components identified for collocated smells

liL

further supports the inter-relation of plain support that was
suggested by Walter and Pietrzak [3] (i.e., Large Class and
Feature Envy), and partially confirms the work by Moha et
al., [32] (i.e., Large Class and Low Cohesion). It also confirms
the relation supported by Lanza and Marinescu [33], who
assert that God Classes often display Dispersed Coupling
and Intensive Coupling, that God Classes display Feature
Envy, and that Feature Envious methods display Intensive
Coupling. These observations are also consistent with the
finding by Yamashita and Moonen [7], who observed that
God Classes often display Feature Envy, Shotgun Surgery,
and ISP Violation (this last design flaw is similar to Dispersed
Coupling). In Ebehandling, component 4 contained Data Class
is marked with double asterisk (**), since it displayed a
negative loading. This indicates that whenever Data Clump is
present, Data Class is not present in that file. This observation
is quite interesting given that in [7], Data Class and Data
Clump were found together in the same component, both
with positive loadings. In the other two systems analysed,
Data Class appears in its own component, and the negative
loading in Ebehandling suggests also that this smell appears
alone. Additionally, we could observe some tendencies with
respect to smells related to duplication: They tend to cluster
in the same files, and often together with smells associated to
size and complexity (e.g., Blob Operation, Schizo Class, God
Class). See for example components 1, 2 and 3 in Mahout,
and component 4 in ElasticSearch.

B. PCA with coupled smells

Table 3 shows the sample adequacy measures. For each of
the smells, three dimensions of variables exist: File, In and
Out. ‘File’ indicates that a given smell was found in the file.
‘In’ means that the file had an incoming dependency from

TABLE III
SUMMARY OF THE PCA CONSIDERING COUPLED SMELLS
Ebehandling ElasticSearch Mahout
Variance Explained 61.76% 56.01% 61.64%
Kaiser-Meyer-Olkin 0.57 0.72 0.62
Approx. Chi-Square 23256.05 32755.89 11152.26
df 496 990 496
Sig. .000 .000 .000
file in out | file in out | file in | out
BlobClass v v v
RefusedParentBequest v v v v v v
SchizoClass v v v v v v
GodClass v v ' ' v v v v
TraditionBreaker v v v
SiblingDuplication v v v v v v | v v
DataClumps v v v v v v v v
BlobOperation v v v v v v v v v
FeatureEnvy v v v v v v v v
ShotgunSurgery v v v
InternalDuplication ' ' v v v v | v v
MessageChains v v v v v v v v
ExternalDuplication v v v v v v | Vv v
IntensiveCoupling v v v v v
DataClass v v v v v v v v

a file that contained a given smell. ‘Out’ means that the file
depends on another file that displays a given smell. All KMO
measures indicate that the sample is adequate and Barlett’s
test of Sphericity is significant. Therefore we can conclude
that the sample is good.

Fig. 3-5 display the components identified through PCA.
The variables with the prefix ‘in_’ indicate that there was an
incoming dependency from a file that contained a given smell.
For example, in Fig. 3, the component 1 would indicate that a
file containing Data Class would have incoming dependencies
from files that contain Feature Envy, God Class, Data Class
or Message Chains.

In Fig. 3-5, the components displaying a full-match are
marked in green and the components displaying a partial-
match are marked in yellow, where the matching smells are
marked in bold. The components that have smells related to
duplication (clones) are marked in purple with a light font.
In addition, redundant components (i.e. all elements of a
component constitute the same smell, but some are marked as
‘in_’ or ‘out_’) are marked with dashed edges. One consistent
inter-smell relation across Ebehandling and ElasticSearch was:
Feature Envy and Data Class (See component 9 in Fig. 3
and component 10 in Fig. 4). This supports the description
of transitive support by Walter and Pietrzak, and partially
supports work by Moha et al., w.r.t. Blob and (many) Data
Classes. Lanza and Marinescu also have discussed that Feature
Envy uses Data Classes. Yamashita and Moonen also observed
that Feature Envy and Large classes use Data Classes. In addi-
tion, we could observe some partial matches identified across
systems (‘O’ for patterns involving outgoing dependencies,
‘T for patterns involving incoming dependencies), as shown
in Table IV.

Some redundant components (i.e. a file with a given smell
that has incoming and/or outgoing dependencies to files con-
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taining the exact same smell) were identified for the following

smells:

in_FeatureEnvy
in_GodClass
in_SchizoClass
in_IntensiveCoupling
in_BlobOperation
in_DataClumps

out_IntensiveCoupling
out_BlobOperation
out_ShotgunSurgery

ElasticSearch

out_DataClass
8 | out_FeatureEnvy

BlobClass

9 | TraditionBreaker

BlobOperation

InternalDuplication
LN siblingDuplication

in_MessageChains

in_SiblingDuplication
3 in_InternalDuplication

in_DataClass

in_BlobClass

nBreaker

DataClumps
out_DataClumps
out_GodClass

1 out_ExternalDuplication }
11 §in_ExternalDuplication y

1 ExternalDuplication )

semmmmccccccccccccan N
]

1 out_RefusedParentBequest

12 1in_RefusedParentBequest ]

out_FeatureEnvy
13 | out_MessageChains

out_SiblingDuplication
14 | MessageChains

out_TraditionBreaker
out_InternalDuplication
out_BlobClass
out_SchizoClass

GodClass
FeatureEnvy
IntensiveCoupling

~

I

15 | SchizoClass

16 | RefusedParentBequest

17 | ShotgunSurgery

Fig. 4. Components identified in ElasticSearch

« Data Clumps (Component 8 in Ebehandling)

« External Duplication (Component 11 in ElasticSearch)

« Sibling Duplication (Component 7 in Mahout)
« Blob Operation (Component 3 in Ebehandling)

« Intensive Coupling (Component 10 in Ebehandling)

o Message Chains (Component 4 in Mahout)

« Refused Parent Bequest (Component 12 in ElasticSearch)
This observation suggests that files displaying any of these

in_FeatureEnvy
in_GodClass
1 |in_DataClass
in_MessageChains
DataClass

in_MessageChains
in_SiblingDuplication
in_ExternalDuplication

BlobOperation \
3 jout_BlobOperation H

in_BlobOperation |
\, s

Ebehandling

out_SiblingDuplication
7 | SiblingDuplication

MessageChains

R, -
1 DataClumps
g ! out_DataClumps

out_DataClass

9 | FeatureEnvy

out_FeatureEnvy
out_MessageChains
out_GodClass

InternalDupli
Bl ExternalDuplication

out_InternalDuplication
Gl out_ExternalDuplication

| I

IntensiveCoupling

in_InternalDuplication
out_SchizoClass

in_SchizoClass
in_InternalDuplication

1
12
13

Fig. 3. Components identified in Ebehandling

Mahout

in_RefusedParentBequest
in_FeatureEnvy 7 : SiblingDuplication
1 |in_SiblingDuplication
out_FeatureEnvy
in_DataClumps

1in_SiblingDuplication

GodClass

ol
8 | RefusedParentBequest

in_DataClumps
in_InternalDuplication
Pl in_BlobOperation
in_GodClass
in_ExternalDuplication

GodClass
g |FeatureEnvy
InternalDuplication

out_DataClass

10 | FeatureEnvy

I— ------------- ~
} MessageChains \
4 1out_MessageChains |
LR ———

in_GodClass
in_DataClass

5 |in_MessageChains
in_SchizoClass

BlobOperation

11 | InternalDu on
SchizoClass

12 | out_FeatureEnvy
DataClass

13 | out_ExternalDuplication

DataClumps
6 | out_DataClumps
out_RefusedParentBequest

Fig. 5. Components identified in Mahout

smells may have a tendency to be coupled with other files
with the same smells. This can be useful for achieving higher
confidence that a given smell is actually present (e.g., Walter’s
multi-method approach [40]), or as baseline for estimating the
harmfulness level of a smell. If a smell is related to many other
smells, this information could be used to prioritize the inspec-
tion of artifacts with that specific smell before other ones.
For example, if the Brain Method smell co-occurs with the
Dispersed Coupling smell and the same Brain Method smell
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TABLE IV
INTER-SMELL PATTERNS CONSIDERING COUPLED SMELLS
Name System (Component) | Smells
Ebehandling (8) Data Clumps
Pattern O-1: | Mahout (6) Data Clumps in outgoing
ElasticSearch (5) dependencies
. Message Chains
Pattern O-2: Ebehandling (7) Sibling Duplication in out-
ElasticSearch (14) going dependencies
Feature Envy in outgoing
: dependencies
Pattern O-3: g?;lzﬁcns(ﬂgcgh(‘(? 3) Message Chain in outgoing
dependencies
) Sibling Duplication
Pattern O-4: | Eoehandling (7) Sibling Duplication in out-
Mahout (7) going dependencies
God Class in incoming de-
pendencies
. Data Class in incoming de-
Pattern I-1: ﬁf:}?;;d?;g M pendencies
Message Chain in incom-
ing dependencies
God Class in incoming de-
: endencies
Pattern I-2: g?;slz?crls(g;?fh(}i) Igeature Envy in incoming
dependencies
God Class in incoming de-
| Mahout (5) pendencies
Pattern I-3: ElasticSearch (1) Schizo Class in incoming
dependencies
Message Chain in incom-
: ing dependencies
Pattern I-4: E?;chnsﬂ;?fh(g) Si%lingp Duplication in in-
coming dependencies

TABLE V
INTER-SMELL PATTERNS AFTER EQUATING COUPLED SMELLS TO
COLLOCATED SMELLS

Name System (Component) | Smells
Ebehandling (9) Data Class
Pattern 1: | Mahout (10) Feature Envy
ElasticSearch (8)

' | Ebehandling (7) Sibling Duplication
Pattern 2: ElasticSearch (14) Message Chains
Pattern 3: Mahout (5) God Class

attern 5: | ElasticSearch (1) Schizo Class

Ebehandling (1) God Class
Pattern 4: chanding Data Class
Mahout (5) Message Chains
P 5 Mahout (9) God Class
attern 5: | plasticSearch (@) Feature Envy
.| Ebehandling (4) Feature Envy
Pattern 6: ElasticSearch (13) Message Chains
Pe 7. Ebehandling (5) Internal Duplication
attern 72| ahout 2) External Duplication

co-occurs often with the Message Chain smell, one could
consider deeming that specific Brain Method as of ‘higher
risk’ for causing maintenance problems. Assuming from a
practical perspective, that coupled smells have the same effect
as collocated smells (that means, by equating in_<smell> and
out_<smell> to <smell>), we could identify the following
inter-smell relations, where Patterns 1 and 2 are full-matches
and the rest are partial-matches (See Table V).

Although there are some modest tendencies across the

systems, the topography on the smells across the FLOSS and
the industrial systems seems to have its own idiosyncrasy.
This further reinforces our view that domain information
is extremely important to interpret code metrics for quality
purposes. We believe further work should be directed towards
better understanding how contextual factors influence the
presence and topography of smells in a system.

V. DISCUSSION

In this section, we first analyze some of the extracted pat-
terns in more detail, providing and discussing some examples
that were identified via code inspection. Secondly, we discuss
the threats to validity of the work.

A. Inspection of inter-smells in the code

We consider some examples of classes presenting the inter-
smell patterns we have reported. The first pattern we con-
sider is Pattern O-1 (Data Clumps, out_DataClumps). In this
pattern, a class with a smell has an outgoing dependency to
another class which also has a smell. In this regards, Pattern O-
2 and Pattern O-4 are similar (Pattern O-3 is different because
it involves a class without a smell that have dependencies on
a class or classes with smells). We chose to report Pattern
O-1 because the analyzed systems contained a large number
of Data Clumps instances.

In Mahout, most classes involved in this pattern are
connected to the AbstractJob class. This class serves
as superclass for Mahout Hadoop jobs, and defines three
prepareJob methods with many parameters, all of them de-
tected as Data Clumps. Each algorithm supporting this proto-
col for specifying jobs has its own subclass of AbstractJob
and has Data Clumps too. AbstractJob redirects its pre-
pareJob methods to the HadoopUtil class, which exposes the
same methods with almost the same signature. In this case, the
lack of encapsulation of the configuration parameters of a job
is propagated to every subclass implementing a job creation
protocol.

In Elasticsearch, class Aggregator defines a large con-
structor, containing Data Clumps. This class has many sub-
classes, and each subclass re-exposes the same creation pro-
tocol. Also in this case, the Data Clumps smell is propagated
to subclasses. Another artifact containing Data Clumps is
the FieldMapper interface. It consists of a wide interface
with two methods deemed as Data Clumps. Thus, every
implementation of this interface contains at least one Data
Clumps. Interestingly, only few abstract classes implement
the Data Clumps methods. Most of the Data Clumps in the
system stem from constructors defined in super classes, and
are propagated to subclasses.

In Ebehandling, the relation among Data Clumps is differ-
ent. In the two open source systems, most classes displaying
this pattern were all connected together in a rather large clus-
ter. In this particular system, only few classes were detected
as Data Clumps. Many of them are disconnected from other
Data Clumps, or only constituted pairs of connected artifacts.
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We also wanted to generate a visual aid to guide the code
review, thus derived a classification for the classes involved
in this pattern, and represented them in Fig. 6. The figure
contains three graphs, one for each of the analyzed systems.
The graphs represent the classes displaying this particular
inter-relation, with the following convention:

« Nodes represent classes, and edges represent dependen-
cies between classes;

e Dark green (matching) nodes are the classes matching
the pattern, i.e., the “Data Clumps” part of the pattern;

o Light green (context) nodes are classes matching the
“out_DataClumps” part of the pattern;

o Cyan (contributor) nodes are Data Clumps which are not
connected to other Data Clumps, i.e., they do not match
the pattern;

o Red (dependency) nodes are classes with a dependency
from/to green nodes;

o The size of the nodes is proportional to the number of
outbound dependencies of the respective class;

« The reported edges are the dependencies among classes
having Data Clumps, and their dependencies.

When a node belongs to many categories, the following
descending priority order is applied to choose the color of the
node: matching, context, contributor, dependency. As a final
note, the dependency nodes for ElasticSearch (on the right of
the figure) have not been reported, because they are too many
to allow reading the graph.

Several observations can be made based on the code in-
spection and Fig. 6. First, the amount of Data Clumps is very
different in the two open source projects and the industrial one.
In the industrial system, data encapsulation was taken more
into consideration, while the open source systems display a
more liberal tendency in those regards. Second, in the open
source systems Data Clumps are highly interconnected, while
in the industrial system, the opposite occurs. This can be
observed in Fig. 6-a, where Mahout appears as one big cluster
whiles Ebehandling (Fig. 6-b) displays several disconnected
‘islands’. While this can be a consequence of the total number
of Data Clumps identified (i.e., the presence of more instances
would increase the chances of finding more interconnected
instances), it also suggests that in the industrial system, this
smell would be less of a risk, as it can be handled (when
necessary) by working on small groups of isolated classes.
Third, in the two open source systems where the amount of
Data Clumps is highest, the main cause of this seems to be
the definition of an abstract method or constructor, and its
implementation or repetition into all its subclasses. This kind
of propagation can be problematic, because if changes are
required in the abstract constructor/method, the corresponding
Data Clumps must be corrected in all subclasses. In Elastic-
search, classes containing numerous attributes implemented
wide interfaces and defined very wide constructors (detected
also as Data Clumps). In this way, Data Clumps propagate
through apparently unrelated dependencies.

The second pattern we consider is Pattern I-2 (in_GodClass,
in_FeatureEnvy). This pattern is very different from the pre-
vious one because it suggests that given a class A, if a God
Class depends on it, a Feature Envy would depend on class
A as well. Similar patterns are Pattern I-1, Pattern I-3, and
Pattern I-4. We chose this pattern over others because the
relationship among these two smells is well known. Fig. 7
displays the graphs generated for analyzing this pattern. The
convention followed for this particular graph differs to the
previous one in the following aspects:

e Dark green (matching) nodes are classes having God
Classes and Feature Envies in their ingoing dependencies;

o Light green (context) nodes are classes with God Class
and/or Feature Envy that depend on matching classes;

o Cyan (contributor) nodes are classes with either God
Class or Feature Envy, but not dependent on matching
classes;

o No red (dependency) nodes are represented in this graph,
because their amount does not allow the comprehension
of the graph.

In Mahout (Fig. 7-b), classes matching the pattern are all
connected in a single group. Many classes of this group
depend on the Vector and Matrix interfaces and their
specializations. Mahout comprises a collection of data mining
algorithms, and some of these algorithms depend on a wide
variety of abstractions. For example, the HnmTrainer class
is a God Class and also contains Feature Envious methods.
This class alone depends on seven different interfaces, all
of them constituting a kind of abstraction, as the previously
described Vector and Mat rix. Other ten classes, classified
as God Class or containing Feature Envy, depend on overall
14 classes matching this pattern. Only one class (with Feature
Envy) was not involved in this pattern, i.e., it did not depend
on any class connected also to a God Class. Other God Classes
or Feature Envy methods in the system were connected to the
basic set of abstraction or utilities described previously.

In Elasticsearch (Fig. 7-c), most classes matching the
pattern are connected in a single large group, others in smaller
groups, and only three classes that were affected by Feature
Envy or God Class did not display any relations. The single
large group (similar to the case of Mahout) comprised a set
of general-purpose classes and utility classes. Some of these
are: ElasticsearchIllegalArgumentException,
Settings, and Nullable.

The situation in Ebehandling (Fig. 7-a) is slightly differ-
ent. There are more isolated Feature Envies/God Classes.
Two groups of classes were identified: one large and one
small (there is an additional group of classes in cyan that
were not considered since they displayed no coupling). The
large group displays low cohesiveness, and is divided into
three more cohesive subgroups. A first subgroup has to
do with DAO (Data Access Object pattern) management
classes, and two other classes: ModelToDaoConverter
and DaoToModelConverter. Both classes constitute God

Simula Research Laboratory, Technical Report (2014-15)



Yamashita et al.,

Exploratory Study on the Landscape of Inter-smell Relations in Industrial and Open Source Systems

o?

Fig. 6.

Classes, contain Feature Envy methods and use most of
the classes matching this pattern. In the second subgroup,
the class AdresselisteIntegrasjonServiceImpl is
both God Class and Feature Envy, and depends on many
classes. In the third group, class Soknad (God Class) and
class SoknadServiceImpl (Feature Envy) depend on the
same set of classes. A particularity is that all subgroups
depend on one single class DatoHjelper. Finally, in the
small group, seven God Classes and Feature Envy methods
depend on a set of 14 other classes.

The results from Ebehandling where discussed with
one of the software engineers who had worked on
the system. In particular he mentioned that the classes
AdresselisteIntegrasjonServiceImpl, Soknad
and SoknadServiceImpl have been problematic from a
maintenance perspective, but that DatoHjelper was not
deemed problematic, as it consists of a class with only
static methods (thus cannot be instantiated). He noted that
the practice of having one ‘utility’ class containing general
purpose methods that can be used by different modules is
not rare in these kind of medium-sized information systems.
This was also observed in the case of Elasticsearch. These
observations warn us against including static classes (like
DatoHjelper), since they could add noise in the smell

Pattern O-1 graphs for Mahout (a), Ebehandling (b), and ElasticSearch (c)

analysis. This problem can potentially be handled by using
filters calibrated to a given context or domain. Filters could
help reducing the noise and support better interpretation of
code smell-based analysis.

In all the reported examples, many heavily used classes
(abstractions, utilities, etc.) matched this pattern, because
smelly classes use them. However, many more other non-
smelly classes also used the same classes, and this could
complicate the interpretation of this pattern. Given the fact
that this pattern is recurrent in all the analyzed systems, our
interpretation is that this pattern is rooted in a rather typical
relation between (collocated) God Class and Feature Envy
methods, which was amplified (and thus, captured in the PCA)
by the wide dependency set implied by those two smells.
However, it is clear that in the open source systems almost all
God Classes and Feature Envy methods depend on the same
set of classes, with very little exception. We belive that within
the open source context, this pattern can potentially be used
as an indicator on the level of importance/criticality of the
classes used by these two code smells.

B. Threats to Validity

We consider threats to the validity of our study from three
perspectives:
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Fig. 7. Pattern I-2 graphs for Ebehandling (a), Mahout (b), and ElasticSearch (c)

1) Construct Validity: The code smells were automatically
identified by inFusion to avoid subjective bias. The choice for
the detection approach (e.g., threshold values) used by the tool
could be a threat to validity. The variations in the detection
strategies across different tools might lead to variations in the
set of identified smells and consequently, any potential inter-
smell relations.

2) Internal Validity: When analyzing the coupled smells
(inter-smell relations across coupled classes), we represented
the code smells in the dependencies of each class as a single
set, i.e., for each class we expressed if a given smell was
present or not in any of its dependencies. This representation
does not take into account the number of classes a given class
is coupled to, nor the number of couplings between each pair
of classes. Consequently, some information is lost (e.g., the
spread/intensity of the coupling). The patterns inferred from
our representation can suffer from a bias (underrepresentation
or overrepresentation) given that such information was not
considered in the analysis.

3) External Validity: A threat to the external validity of
this study is the number of analyzed systems. Although our
study confirms some of the previous work on inter-smells, a
clear difference in the distribution and interaction of smells

could be observed between the open source systems and the
industrial one. This further reinforces our view that domain
information is extremely important to interpret code metrics
for quality purposes. We believe further work should be
directed towards better understanding how contextual factors
influence the presence and topography of code smells in a
system.

VI. CONCLUSION AND FUTURE WORK

This paper reports on an empirical study that explores
further inter-smell relations in two open source systems and
one industrial system, all of them with considerable size and
development history. Our study confirms some of the previous
conjectures and empirical work on inter-smell relations, and
constitutes the first study considering dependencies for ana-
lyzing inter-smells. Our results provide: 1) empirical evidence
to guide the focus on some of the previously known inter-
smells, and 2) an outline on emergent inter-smell relations that
can be investigated further as to assess if they can constitute
more accurate indicators of maintainability issues. Further-
more, results from the PCA and the code inspection revealed
idiosyncratic differences between the two open source and the
industrial system, suggesting that contextual factors may play
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a major role on the landscape of inter-smells. Future work will
consist of investigating whether explanatory models (i.e., for
explaining defect incidence) considering inter-smells perform
better than models only considering individual code smells.
We plan to build a logistic regression model using as depen-
dent variable the presence of defects in a software artifact. We
plan to create a model only considering individual effects of
code smells, and then a model considering interaction effects
(between collocated and coupled smells), and we will compare
the performance (fit) between the initial (individually-based)
and the second (interaction-based) models.
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APPENDIX

A.l. Definition and Detection Strategy of Analyzed Code
Smells (extracted from InFusion)

Refused Parent Bequest: Refused Parent Bequest is a design
flaw affecting subclasses in an inheritance hierarchy. The
relation between a parent class and its children is intended
to be an intimate one, more special than the collaboration
between two unrelated classes. This special collaboration is
based on a category of members (methods and data) especially
designated by the base class to be used by its descendants,
namely the protected members. But if a child class refuses to
use this special bequest prepared by its parent, then this is a
sign that something is wrong within that inheritance relation.
Extending base classes without looking at what they have to
offer introduces duplication and leads to class interfaces that
become incoherent and non-cohesive.

Detection rule — The detection rule for this design flaw looks
for classes that either do not use or specialize inherited mem-
bers, or, in the case of C++, classes that use “implementation
inheritance” (i.e. private or protected inheritance).

r
1 Child class is not
1 too small and simple

Refused Parent
Bequest

Parent provides more
than a few protected
members

NOPRTM + NOPRTA >
Low
—

Child uses only litlle of
parent's bequest

BUR < ONE THIRD
e
—_—

Overriding methods
are rare in child

jm == ——— ~
Child class I
| ignores bequest :

hY
Ir Child class is derived 1
| using private or protected
| inheritance (C++ only)
b

1
]

Functional complexity
above average

AMW = AVERAGE
e ——
—_—————

Class complexity not ————
lower than average

WOC = AVERAGE
——————/
—_——

Class size is above
average

NOM = AVERAGE
—_

1
: too small and
1 simple

Fig. 8. Refused Parent Detection Strategy

Metrics used — AMW, BOVR, BUR, NOM, NOPRTM, WOC

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Lanza06] Michele

Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice. Springer, 2006. [Martin07] Robert C. Martin. Agile
Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2007.

Distorted Hierarchy: A Distorted Hierarchy is an inheritance
hierarchy that is unusually narrow and deep. This design flaw
is inspired by one of Arthur Riel’s heuristics, which says that
“in practice, inheritance hierarchies should be no deeper than
an average person can keep in his or her short-term memory.
A popular value for this depth is six”. Having an inheritance
hierarchy that is too deep may cause maintainers “to get
lost” in the hierarchy making the system in general harder
to maintain. The presence of a Distorted Hierarchy not only
has a negative influence on the complexity of the code, but
also it is a sign of a potential encapsulation problem, in the
sense that encapsulation occurs at a too fine-grained level.

Detection rule — The detection rule employs several metrics
that measure the depth and width of an inheritance hierarchy.
The rule is applied to a class, and checks the hierarchy which
originates from that class.

- ™
Class is the root of a very deep hierarchy,
as there are classes that have a DIT value

( MAX(DIT) > MANY )

J

Class is the root of a narrow hierarchy,
as none of the classes in the hierarchy —
has more than a few subclasses ——

( MAX{NOCHLD) <= FEW ] ) [

“
Depth of the hierarchy is not justified,
as subclasses barely extend the
interface

(AVERAGE (PNAS) < ONE-QUARTER )

Distorted

Fig. 9. Distorted Hierarchy Detection Strategy

Metrics used — DIT, NOCHLD, PNAS

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996.

Schizophrenic Class: In object oriented design, a class
should not capture more than one key abstraction. Key abstrac-
tions are defined as the main entities within a domain model,
and often show up as nouns within requirements specifications
[Riel96]. A key entity is an abstraction that stands on its own
in the abstract model that results from modeling activities. A
“schizophrenic class” is a class that captures two or more key
abstractions. It negatively affects the ability to understand and
change in isolation the individual abstractions that it captures.

Detection rule — The detection rule looks for classes that have
a very low cohesion, and define large interfaces that are used
by disjoint groups of clients.

Metrics used — NOPUBM, TCC

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Martin07] Robert
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: External client operations, that call methods
| from the interface of the class, can be

I grouped in disjoint clusters
\

Schizophrenic
Class has a very large public interface Class
i.e., many public methods

[ MOPUBM = VERY HIGH

Fig. 10. Schizophrenic Class Detection Strategy

C. Martin. Agile Software Development: Principles, Patterns,
and Practices. Prentice Hall, 2007.

God Class: A “god class” is a class that manipulates data
that belongs to other classes in the system. It is a clear case of
braking the encapsulation of the foreign data providers. The
“god class” tends to concentrate functionality from several
unrelated classes, while at the same time increasing coupling
in the system. The god class itself is probably not very
cohesive and because of its size and inherent complexity it
will have a clear negative impact on the maintainability of
the system.

Detection rule — The detection rule employs coupling, co-
hesion and complexity metrics in order to filter out those
complex, non-cohesive classes that access data from more than
a few unrelated providers.

Capsule {module/class) uses
directly data from more than a
tew other unrelated capsules

[ CFFD =FEW ]

[ Functional complexity of the capsule
(module / class) is very high

WOC z VERY HIGH

Capsule (module/class)
cohesion is low

TCC < ONE THIRD

Fig. 11. God Class Detection Strategy

.

Metrics used — CPFD, TCC, WOC

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Lanza06] Michele Lanza and Radu
Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.

Tradition Breaker: This design flaw takes its name from
the principle that the interface of a class (i.e., the services
that it provides to the rest of the system) should increase in
an evolutionary fashion, and not deny the interface defined by
the base classes. This means that a derived class should not
break the inherited “tradition”, by denying any services (public
methods) defined by the base classes. How can a derived
class deny a service? In C++ this can be done two ways: (1)

Class is overriding methods
with void (NOP) implementation

Tradition
[ Breaker

Class is derived using "private”
or "protected” inheritance

Fig. 12. Tradition Breaker Detection Strategy

by replacing the inherited implementation with a NOP (No-
OPeration, empty) method body; (2) by using “private” or
“protected” inheritance, which means that the derived class is
reducing the visibility of the services “published” by the base
classes. In other words, it changes (more exactly cuts a part
of) the contract that the base classes have defined. This is a
sign that something is wrong either with the definition of the
child’s class interface or with its classification relation.

Detection rule — The detection rule for “tradition breaker”
filters out those subclasses that do one of the two things
described above (method “NOP-ing” and/or use a non-public
inheritance).

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Lanza06] Michele
Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice. Springer, 2006.

Sibling Duplication: Sibling Duplication means duplication
between siblings in an inheritance hierarchy. Code duplication
harms the uniqueness of entities within a system. Two or
more siblings that define a similar functionality make it much
harder to locate errors because the assumption “only class X
implements this, therefore the error can be found there” does
not hold anymore. Thus, the presence of code duplication has
(at least) a double negative impact on the quality of a system:
(1) the bloating of the system and (2) the co-evolution of
clones (the clones do not all evolve the same way) which also
implies the cloning of errors.

Sibling Duplication

At least two methods from sibling !
classes (same class hierarchy)

Fig. 13. Sibling Duplication Detection Strategy

Detection rule — The detection of code duplication plays an
essential role in the assessment and improvement of a design.
But detected clones might not be relevant if they are too small
or if they are analyzed in isolation. In this context, the goal
of this detection rule is to capture those portions of code that
contain a significant amount of duplication.

The detection rules is based on the following metrics:

« LB (Line Bias), measuring the distance between two con-

secutive exact clones, i.e., the number of non-matching
lines of code between two exact clones.
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e SDC (Size of Duplication Chain), measuring the total
size of a duplication chain in terms of lines of code. A
duplication chain may contain one or more exactly cloned
fragments, potentially interrupted by small fragments of
non-identical code. The size of the duplication chain is
the most relevant metric, because it measures the area of
code that contains code duplication.

o SEC (Size of Exact Clone), measuring the size of a clone
in terms of lines of code. The size of a clone is relevant,
because in most of the cases our interest in a piece of
duplicated code is proportional to its size.

Metrics used — LB, LOC (indirectly), SDC, SEC

Literature references — [Brown98] W.J. Brown, R.C. Malveau,
W.H. Brown, HW. McCormick, and T.J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley and Sons, 1998. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [HuntO0] Andrew Hunt and David
Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison Wesley, 2000.

Data Clumps: Data Clumps is a design flaw inspired
by Fowler. They represent groups of data that appear to-
gether over and over again, as parameters that are passed
to operations throughout the system. Data clumps are good
candidates to become objects (in the case of object oriented
code) and structure types (in the case of procedural code).
They represent cases of bad/lacking encapsulation and have a
negative contribution on the ease of maintaining those parts
of the system that use the data clumps.

Detection rule — Data clumps are detected by looking for du-
plicate sets of formal parameter identifiers of a significant size,
in methods that tend to have a high number of parameters.

Operation has many formal
parameters

NOPAR »= HIGH I

I

I There are many other operations with
I the same Vector of ldentical Formal
| Parameters Identifiers (VIFPI)

|
|
Underutilized
3 kND
|
The Vector of Identical Formal

I
|

Parameters Identifiers (VIFPI) has Il—
|

significantly many elements

Fig. 14. Data Clumps Detection Strategy

Metrics used — NOPAR

Literature references — [Fowler99] Martin Fowler. Refactor-
ing. Improving the Design of Existing Code. Addison- Wesley,
1999.

Blob Operation: A Blob Operation is a very large and
complex operation, which tends to centralize too much of the
functionality of a class or module. Such an operation usually

Operation is
excessively large

((Loc > HiGH (cagsue) /12 )
L )

- ~
Operation has many
conditional branches

( cveLos=ricH )

" )

Method has deep nesting L

— AND Blob Operation
(( MaxNESTING >= DEEP ) i

Method uses many
variables

MOAY »= HIGH I

- ~
Many comment lines inside
the cperation body

L[ LOCOMM >= FEW ]J

Fig. 15. Blob Operation Detection Strategy

starts normal and grows over time until it gets out of control,
becoming hard to read and maintain.

Detection rule — Blob Operation are detected using a combi-
nation of size and complexity metrics, as show below.

Metrics used — CYCLO, LOC, LOCOMM, MAXNESTING,
NOAV

Literature references — [Brown98] W.J. Brown, R.C. Malveau,
W.H. Brown, HW. McCormick, and T.J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley and Sons, 1998. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Lanza06] Michele Lanza and Radu
Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.

Feature Envy: Classes and modules are mechanisms for
keeping together data and the operations that process that data.
The Feature Envy design flaw refers to functions or methods
that seem more interested in the data of other capsules than the
data of those in which they reside. These “envious operations”
access either directly or via accessor methods (in the object
oriented world) a lot of data that belong to other capsules.
This situation is a string indication that the affected method
was probably misplaced and that it should be moved to the
capsule that defines the “envied data”.

Detection rule — The detection rule closely follows that of
Lanza06, by looking for operations that access many data from
a few foreign capsules.

Metrics used — ATFD, FDP, LDA

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Lanza06] Michele Lanza and Radu
Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.
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"
Operaticn uses directly more than a
few data (attributes/global variables)

from other capsules (classes/modules) [

ATFD = FEW

( Operation uses far more data

{attributes / global variables) of other
capsules (classes/modules) than its own AND
) J

[ LDA < ONE THIRD

.

The used "foreign” data (attributes /
global variables) belong to very few
other classes -

[ FDP = FEW ]

. »

Fig. 16. Feature Envy Detection Strategy

Shotgun Surgery: Shotgun Surgery is a design flaw affecting
an operation, whose change implies many changes to a lot
of different operations in various classes or modules. This
particular flaw tackles the issue of strong afferent (incoming)
coupling and it regards not only the coupling strength but also
the coupling dispersion. It refers to operations having signif-
icant reasons to change (high level of efferent coupling) and
whose changes are likely to have a huge impact on the system.
These operations are also known as “bottleneck operations”
as they are both called by many operations dispersed over
many places in the system, and at the same time they depend
on many other operations. If a change occurs in such an
operation myriads of other methods and functions in various
places might need to change as well. As a result, it is easy to
miss a required change, thus causing maintenance problems.

Detection rule — The detection rule for Shotgun Surgery uses
a combination of coupling, size and complexity metrics, as
shown below.

Metrics used — CYCLO, ICDO, ICIO, LOC, MAXNESTING,
OCDO, OCIO

Operation Is called by too many
other cperations

( 1c105=2" sMemcap )

Incoming calls are dispersed over
many capsules (medules, classes)

L ( IGO0 > SMemCap )

m Shotgun Surgery

v

i ™
Operation is strongly coupled with many
operations, from many capsules, and is
very complex

LY J

Operation is
wery lang

LOC = VERY HIGH
—

Operation has many
conditional branches

CYCLO == MANY
—
—_—

Operation has significant

nesting
MAXNESTING = SHALLOW

Operation calls many othar
‘operations

OCIO == SMemCap

AND oparations. from many capsules. and is

Operation is strongly coupled with many
wvery complax

Fig. 17. Shotgun Surgery Detection Strategy

Literature references — [Fowler99] Martin Fowler. Refactor-
ing. Improving the Design of Existing Code. Addison- Wesley,
1999. [Lanza06] Michele Lanza and Radu Marinescu. Object-
Oriented Metrics in Practice. Springer, 2006.

Internal Duplication: Internal Duplication means duplica-
tion between portions of the same class or module. Code
duplication harms the uniqueness of entities within a system.
For example, an operation that offers a certain functionality
should be solely responsible for that functionality. If duplica-
tion appears, it becomes much harder to locate errors because
the assumption “only operation X implements this, therefore
the error can be found there” does not hold anymore. Thus, the
presence of code duplication has (at least) a double negative
impact on the quality of a capsule: (1) the bloating of the class
or module and (2) the co-evolution of clones (the clones do
not all evolve the same way) which also implies the cloning
of errors.

Detection rule — The detection of code duplication plays an
essential role in the assessment and improvement of a design.
But detected clones might not be relevant if they are too small
or if they are analyzed in isolation. In this context, the goal
of this detection rule is to capture those portions of code
that contain a significant amount of duplication. The detection
rules is based on the following metrics:

« LB (Line Bias), measuring the distance between two con-
secutive exact clones, i.e., the number of non-matching
lines of code between two exact clones.

e SDC (Size of Duplication Chain), measuring the total
size of a duplication chain in terms of lines of code. A
duplication chain may contain one or more exactly cloned
fragments, potentially interrupted by small fragments of
non-identical code. The size of the duplication chain is
the most relevant metric, because it measures the area of
code that contains code duplication.

o SEC (Size of Exact Clone), measuring the size of a clone
in terms of lines of code. The size of a clone is relevant,
because in most of the cases our interest in a piece of
duplicated code is proportional to its size.

Metrics used — LB, LOC (indirectly), SDC, SEC

Literature references — [Brown98] W.J. Brown, R.C. Malveau,
W.H. Brown, HW. McCormick, and T.J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley and Sons, 1998. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.

Internal Duplication

i At lgast two operations from the !
| same capsule (module or class)
I shares the same significant

! duplication 1
Wil gl .

Fig. 18. Internal Duplication Detection Strategy
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Addison- Wesley, 1999. [HuntO0] Andrew Hunt and David
Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison Wesley, 2000.

Message Chains: This design flaw corresponds to the situa-
tion in which a method calls many data exposer methods that
belong to other classes (i.e. including also accessor methods,
but not limited to these, as data exposers can be also static
methods, that return an object that is part of that class). The
typical way in which this design flaw manifests itself is when
a client asks one object for another object, which the client
then asks for yet another object, which the client then asks for
yet another object, and so on. You may see these as a long
line of getter-like methods, or as a sequence of temporary
variables. Navigating this way means the client is coupled to
the structure of the navigation. Any change to the intermediate
relationships causes the client to have to change.

Detection rule — The detection rule looks for methods that
call a significant number of data exposer methods that belong
to more than a few classes. Additionally, the detection rule
checks if the return types of the various data exposer methods
can be connected in a “chain” of navigation, which is typical
for cases where the “Law of Demeter” is violated. The longer
this navigational chain the more significant the problem is.

Metrics used — OCIO, ODD

Literature references — [Brown98] W.J. Brown, R.C. Malveau,
W.H. Brown, HW. McCormick, and T.J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley and Sons, 1998. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Lanza06] Michele Lanza and Radu
Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.

External Duplication: External Duplication means dupli-
cation between unrelated capsules of the system. Code du-
plication harms the uniqueness of entities within a system.
For example, a class that offers a certain functionality should
be solely responsible for that functionality. If duplication
appears, it becomes much harder to locate errors because the
assumption “only class X implements this, therefore the error
can be found there” does not hold anymore. Thus, the presence
of code duplication has (at least) a double negative impact on
the quality of a system: (1) the bloating of the system and (2)
the co-evolution of clones (the clones do not all evolve the
same way) which also implies the cloning of errors.

Detection rule — The detection of code duplication plays an
essential role in the assessment and improvement of a design.
But detected clones might not be relevant if they are too small
or if they are analyzed in isolation. In this context, the goal
of this detection rule is to capture those portions of code
that contain a significant amount of duplication. The detection
rules is based on the following metrics:
« LB (Line Bias), measuring the distance between two con-
secutive exact clones, i.e., the number of non-matching

1 Significant Duplication

1 1

T T T T T T AND External Duplication
1 At least two operations from !

| unrelated capsules (module or class) 1

Fig. 19. External Duplication Detection Strategy

lines of code between two exact clones.

e SDC (Size of Duplication Chain), measuring the total
size of a duplication chain in terms of lines of code. A
duplication chain may contain one or more exactly cloned
fragments, potentially interrupted by small fragments of
non-identical code. The size of the duplication chain is
the most relevant metric, because it measures the area of
code that contains code duplication.

o SEC (Size of Exact Clone), measuring the size of a clone
in terms of lines of code. The size of a clone is relevant,
because in most of the cases our interest in a piece of
duplicated code is proportional to its size.

Metrics used — LB, LOC (indirectly), SDC, SEC

Literature references — [Brown98] W.J. Brown, R.C. Malveau,
W.H. Brown, HW. McCormick, and T.J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley and Sons, 1998. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Hunt00] Andrew Hunt and David
Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison Wesley, 2000.

Intensive Coupling: Intensive Coupling if a design flaw
that affects operations, which are tied to too many other
operations in the system, whereby these provider operations
are dispersed only into one or a few capsules. An operation
which is intensively coupled to operations from a handful of
other capsules is strongly bound to those capsules. Oftentimes,
intensive coupling points to a more subtle problem (i.e.
the capsules providing the many operations invoked by the
intensely coupled operation do not provide a service at the
appropraite abstraction level. Consequently, understanding the
relation between the two sides becomes more difficult.

Detection rule — The detection strategy is based on two main
conditions that must be fulfilled simultaneously: the operation
must invoke many operations from few foreign capsules and
its MAXNESTING metric must be low.

Metrics used — DR, MAXNESTING, OCIO

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Lanza06] Michele Lanza and Radu
Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.
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]
Operation calls too many cperations
from few unrelatad capsules

Method has few nested
conditionals

[ MAXNESTING == SHALLOW ]

Operation calls tco many
operations

QCI0 »= SMemCap

Calls are dispersed In a few
capsules (modules, classes)

L

DR < HALF

operations from few and 1
unrelated capsules )'

Operation calls more than a
tew methods

L

,

Calls are dispersed In very
few capsules

I DA <A QUARTER

Fig. 20. Intensive Coupling Detection Strategy

Data Class: Data Classes are “dumb” data holders, without
complex functionality, but which are usually heavily relied
upon by other classes in the system. The lack of functionally
relevant methods may indicate that related data and behavior
are not kept in one place: this is a sign of a non-object-
oriented design. Data classes are the manifestation of a
lacking encapsulation of data, and of a poor data-functionality
proximity. By allowing other modules or classes to access their
internal data, data classes contribute to a brittle, and harder to
maintain design.

Detection rule — Data Classes are detected by searching
for “lightweight” classes, i.e., classes which provide almost
no functionality through their interfaces, but define many
accessors (get/set methods) or declare many public attributes.

Metrics used — CW, NOACCM, NOPUBA, WOC

Interface of class reveals data
rather than offering services

CW < OME THIRD I

]
Class reveals many attributes and is
not complex 1

Data Class

Class has more than a few
public data

NOPUBA + NOACCM = FEW
——/

Complexity of class is not high

WOC < HIGH
J

Class has many public data

NOPUBA + NOACCM = MANY l

Complexity of class is not very
high

WOC < VERY HIGH

Ll -~
| Class reveals many |
L attributes and is not |
1 complex I

Fig. 21. Data Class Detection Strategy

Literature references — [Riel96] A.J. Riel. Object-Oriented
Design Heuristics. Addison-Wesley, 1996. [Fowler99] Martin
Fowler. Refactoring. Improving the Design of Existing Code.
Addison- Wesley, 1999. [Lanza06] Michele Lanza and Radu
Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.

A.2. Factor loadings for the Principal Component Analysis

TABLE VI
COLLOCATED FACTOR LOADINGS AFTER ROTATION (EBEHANDLING)

Ebehandling
Rotated Component Matrix
Component
1 2 3 4 5

InternalDuplication | ,910
ExternalDuplication | ,889
IntensiveCoupling ,714
FeatureEnvy ,642
GodClass ,478
SiblingDuplication ,706
MessageChains ,673
DataClumps ,812
DataClass -,563
BlobOperation ,941

TABLE VII

COLLOCATED FACTOR LOADINGS AFTER ROTATION (MAHOUT)

Mahout
Rotated Component Matrix
Component
1 2 3 4 5
GodClass ,796
ExternalDuplication ,514
SiblingDuplication ,743
DataClumps ,689
SchizoClass ,484
BlobOperation ,773
InternalDuplication ,728
RefusedParentBequest ,682
FeatureEnvy ,462 ,625
DataClass ,879
MessageChains
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COUPLED FACTOR LOADINGS AFTER ROTATION (EBEHANDLING)

TABLE VIII
COLLOCATED FACTOR LOADINGS AFTER ROTATION (ELASTICSEARCH)
ElasticSearch
Rotated Component Matrix
Component
1 2 3 4 5 6 7 8
GodClass ,728
FeatureEnvy ,698
IntensiveCoupling ,481
BlobClass ,716
TraditionBreaker ,641
SchizoClass ,411
InternalDuplication ,763
SiblingDuplication ,685
ExternalDuplication ,843
BlobOperation ,486
MessageChains ,873
RefusedParentBequest ,791
DataClumps ,547
ShotgunSurgery ,938
DataClass ,852
TABLE IX

Ebehandling
Rotated Component Matrix

Component

3 4 5 6

8

10

11

12

13

in_FeatureEnvy
in_GodClass
in_DataClass
in_MessageChains
DataClass
in_ExternalDuplication
in_SiblingDuplication
BlobOperation
out_BlobOperation
in_BlobOperation
out_GodClass
out_MessageChains
out_FeatureEnvy
InternalDuplication
ExternalDuplication
out_lInternalDuplication
out_ExternalDuplication
SiblingDuplication
out_SiblingDuplication
MessageChains
DataClumps
out_DataClumps
in_DataClumps
out_DataClass
FeatureEnvy
out_lIntensiveCoupling
in_IntensiveCoupling
IntensiveCoupling
in_InternalDuplication
GodClass
out_SchizoClass
in_SchizoClass

741
,644
,620
,535
,400

,445

,904
,876

,929
,914
,501
,856
,830
,529
,912
,888
,864
,856

,727
,650
,511

,798
,686
,460

,736
,665

,779
,457

,732
,429

,903

-425

,820
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COUPLED FACTOR LOADINGS AFTER ROTATION (MAHOUT)

TABLE X

Mahout
Rotated Component Matrix

Component

2 3 4 5 6 7

8

10

11

12

13

in_RefusedParentBequest
in_FeatureEnvy
in_SiblingDuplication
out_FeatureEnvy
in_DataClumps
in_InternalDuplication
in_BlobOperation
in_GodClass
in_ExternalDuplication
out_BlobOperation
out_InternalDuplication
MessageChains
out_MessageChains
in_MessageChains
in_SchizoClass
in_DataClass
out_DataClumps
out_RefusedParentBequest
DataClumps
out_SiblingDuplication
SiblingDuplication
out_GodClass
RefusedParentBequest
GodClass
ExternalDuplication
out_DataClass
FeatureEnvy
BlobOperation
InternalDuplication
SchizoClass

DataClass
out_ExternalDuplication

,700
,678
,569
,492
,453

422

,442
,796
,682
,478 ,456
,468
,938
,935
,898
,894
,713
,633
,432
717
,612
,600
,710
,690

777
,597

,796

,454

,401

,773
,492

,783
,683

413

742

,745
,612
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TABLE XI
COUPLED FACTOR LOADINGS AFTER ROTATION (ELASTICSEARCH)

ElasticSearch
Rotated Component Matrix
Component
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
in_FeatureEnvy ,703
in_IntensiveCoupling ,665
in_BlobOperation ,663
in_SchizoClass ,600
in_GodClass ,573
in_DataClumps ,424
out_IntensiveCoupling ,874
out_BlobOperation ,869
out_ShotgunSurgery ,518
in_SiblingDuplication ,676
in_MessageChains ,658
in_InternalDuplication ,512
in_DataClass ,486
in_BlobClass ,764
in_TraditionBreaker ,711
in_ShotgunSurgery
out_DataClumps ,685
DataClumps ,644
out_GodClass ,611
out_TraditionBreaker ,689
out_InternalDuplication ,618
out_BlobClass ,528
out_SchizoClass ,439
GodClass ,713
FeatureEnvy ,603
IntensiveCoupling ,541
out_DataClass ,661
out_FeatureEnvy ,499 ,454
BlobClass ,735
TraditionBreaker ,588
BlobOperation ,478
InternalDuplication ,716
SiblingDuplication ,687
out_ExternalDuplication ,697
in_ExternalDuplication ,533
ExternalDuplication ,480
out_RefusedParentBequest ,808
in_RefusedParentBequest ,644
out_MessageChains ,652
MessageChains ,683
out_SiblingDuplication ,495
SchizoClass ,709
DataClass
RefusedParentBequest ,687
ShotgunSurgery ,889
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