Exploratory Study on the Landscape of Inter-smell
Relations in Industrial and Open Source Systems

Aiko Yamashita*, Marco Zanonif, Francesca Arcelli Fontana' and Bartosz Walter?
*Simula Research Laboratory, Mesan AS, Oslo, Norway
Email: aiko@simula.no
TDepartment of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
Email: {marco.zanoni,arcelli} @disco.unimib.it
J:Faculty of Computing, Poznan University of Technology, Poznari, Poland
Email: bartosz.walter@cs.put.poznan.pl

Abstract—Code smells are indicators of issues with source code
that can hinder software evolution. While a great number of
studies have focused on the effects of individual code smells on
maintainability, recent work has shown that code smells that
appear together in the same file (i.e., collocated smells) can
interact with each other, leading to various types of maintenance
issues and/or to intensified negative effects. Moreover, it has been
found that code smell interactions may occur across coupled
files (i.e., coupled smells), with comparable negative effects as
the interaction of same-file, collocated smells. Different inter-
smell relations have been described in previous work, but few
studies have validated them empirically. This study investigates
further the phenomena of inter-smell relations (both collocated
and coupled smell relations), by analyzing one industrial and two
open-source systems. We substantiated the relevance of some
inter-smells previously reported in the literature and extend
further the landscape of known inter-smell relations. We found
that tendencies on inter-smell relations become clearer when
considering coupled smells in addition to collocated smells. A
major finding is that contextual factors such as the domain and
environment may play a major role on the presence, co-presence,
and coupling between smells, which suggests that such variables
should be considered when conducting smell analysis.

Index Terms— code smells; bad smells; inter-smell relations;
smell interaction; dependency analysis; software quality.

I. INTRODUCTION

Code smells are indicators of potentially harmful design
shortcomings that can cause difficulties to developers during
maintenance. These shortcomings can decrease code quality
aspects such as understandability and changeability, and can
lead to the introduction of faults [1]. However, the overall
capacity of code smells for explaining maintenance prob-
lems/effort has been shown to be rather modest (see for
example the work by Sjgberg et al. [2]). While a great number
of studies have focused on the effects of individual code
smells on maintainability, recent work has shown that inter-
smell relations [3] may provide a better insight on potential
maintenance issues. Code smells that appear together in the
same file (i.e., collocated smells) can interact with each other,
causing different types of problems and intensifying them.
Moreover, it has been found that code smell interactions that
occur across coupled files (i.e., coupled smells), can lead to
comparably negative effects as the interaction of same-file,

collocated code smells. Thus, we argue that effects of inter-
smell relations on software maintainability is a topic that
deserves more attention. This position is further supported
by the observation made by Yamashita [4] that in some
large classes, the maintenance problems were not so much
caused by the complexity that followed from the actual size
of the class but rather were a result of interaction effects
between different code smells that appeared together in that
class. Observations in [4] suggest that we should have only a
modest expectation of the explanatory and predictive power of
individual code smells in relation to software maintainability.
We know only of one empirical study (by Abbes et al. [5])
that reports on the interaction effects between two concrete
code smells (i.e., between God Class and God Method).
Yamashita and Moonen [6] reported that interaction effects
do occur among code smells and between code smells and
other design flaws. This implies that the current approach for
code smell analysis (i.e., analyzing individual smells and not
the effect of their combinations) limits greatly the capability
of code smells to explain much of the maintenance problems
caused by design flaws. Another limitation of the current
approaches for code smell analysis is that couplings amongst
files containing code smells are not considered in the analyses.
The findings from [6, 7] suggest that interaction effects
between code smells distributed across coupled files may
have the same consequences from a practical perspective as
interaction effects between code smells collocated in the same
file. “Coupled smells” are currently ignored due to the fact
that code smells are mostly identified and analyzed at the file
level. Consequently, we argue that in order to obtain a better
understanding of the role of code smells on maintainability,
future studies should integrate dependency analysis in their
process as to include coupled smell-interactions.

The innovative aspects of this work are three fold: i) We
involve a combination of both industrial and open source
systems, all of them of considerable size and complexity,
to identify and analyze inter-smell relations, ii) We attempt
to corroborate some of the inter-smell relations described in
previous work, and iii) We incorporate dependency analysis to
investigate coupled smells in addition to the previously studied
collocated smells.

The remainder of this paper is as follows. Section II
presents the theoretical background and related work. Sec-
tion III describes the study design, including the context of
the systems studied, and the types of analysis conducted.
Section IV presents the results of the analysis and Section V
discusses some of the findings in more detail and describes
the threats to the validity of the results. Section VI presents
the conclusion and future work.

II. THEORETICAL BACKGROUND AND RELATED WORK
A. Code smells

‘Code smells’ is a term coined by Fowler and Beck [1]
(i.e., ‘Bad smells in the code’) for describing symptoms
of deeper issues in the code. They informally described
and exemplified 22 different code smells, and related them
back to well-known violations of different programming and
design principles. Unlike code metrics, smells are easier to
interpret for quality assurance/improvement efforts, which
has attracted the attention of researchers and practitioners in
software engineering. However, they do not directly point
to the actual flaw and usually require a certain level of
interpretation and additional analysis to determine if they are
actually problematic or not. Different approaches for detecting
code smells have been proposed and are currently in use.
Although Fowler has emphasized the subjective nature of
code smells (e.g., “no set of metrics rivals informed human
intuition” [1]), research efforts in the last decade have incor-
porated automated means for smell detection. For example,
detection strategies [8] use logical combinations of different
code metrics with different threshold values to identify code
smells (several commercial and open source tools implement
this approach, such as inFusion' and PMD?). Other detection
approaches match different code attributes with refactoring
opportunities (e.g., JDeodorant?), or employ machine-learning
algorithms to discover relations between metrics and code
smells (e.g. Arcelli et al. [9], Khomh et al. [10]). Some
approaches are not based only on the source code, but they
consider code evolution via repository mining, such as the
work by Palomba et al. [11]. Finally, some approaches [12] use
a wider spectrum of data, by incorporating domain-specific
information, and probabilities (i.e., design change propagation
probability matrix, or DCPP matrix) to detect code smells.

B. Empirical studies on code smells

A systematic literature review reported in [13] indicated
that effort in the Software Engineering research community
has been placed mainly on investigating how to detect code
smells rather than empirically examining their impact on soft-
ware quality characteristics. The review identified only three
empirical studies investigating the impact of code smells on
maintenance [14-16]. In the doctoral thesis by Yamashita [4]
a review on empirical studies on code smells is presented,
with a focus on the empirical effects of code smells on
maintenance. Studies included in this review have indicated

! http://www.intooitus.com/products/infusion 2 http://pmd.sourceforge.net

3 http://www.jdeodorant.com/

that certain individual code smells have deterrent effects as the
introduction of defects [14—19] larger maintenance effort [5,
20-22], and larger and more frequent changes in the code [23—
25]. The review also includes smell dynamics such as smell
evolution and longevity [26-28]. The systematic literature
review by [13], the report by [4], as well as recent work by
Sjgberg et al. [2] and Yamashita [29] suggest that insofar, the
overall capacity of code smell analysis to explain or predict
maintenance problems is rather modest.

C. Inter-smell relations

While most of the previously described work focus on the
impact of individual code smells on different maintenance
outcomes, we focus our attention on relationships among code
smells, and the potential implications that smell interactions
have on maintenance. Pietrzak and Walter [3] described sev-
eral types of inter-smell relations to support more accurate
code smell detection and to understand better the effects
caused by interactions between smells. These relations were
supported by examples from the Apache Tomcat* code base.
Some of the reported relations are:

o Data Class, Feature Envy, Large Class (Trans. Support)

o Large Class, Feature Envy (Plain Support)

o Data Class, Feature Envy (Plain Support)

o Data Class, Inappropriate Intimacy (Rejection)

e Data Class, Feature Envy, Inappropriate Intimacy
(Aggregated Support)

o Lazy Class, Large Class (Rejection)

o Parallel Inheritance, Shotgun Surgery (Inclusion)

Previous work on inter-smell relations has mostly been limited
to conceptual or anecdotic descriptions; and very few of
these inter-smell relations have been corroborated empirically.
Mintyla et al., [30] categorized Fowler’s code smells into
six groups based on the correlation analysis: Bloaters, Object
Orientation Abusers, Change Preventers, Dispensables, Encap-
sulators and Couplers. The study confirmed the existence of
several relations, but also questioned other relations suggested
by Fowler. Jancke [31] described different relationships (uses/-
forwards/used by) between different design patterns and code
smells. Moha et al., [32] proposed a taxonomy of smells and
described some relations among design smells, for example:

o Blob and (many) Data Class
« Blob and (Large Class and Low Cohesion)

By inspecting and analyzing source code, Lanza and Mari-
nescu [33] classified twelve smells into 3 categories, called
design disharmonies: Identity, Collaboration, and Classifica-
tion. They asserted that the most of design disharmonies do
not appear in isolation (i.e., some of them cluster together),
and they describe the most common correlations between the
disharmonies, in a type of diagram called correlation web. The
identified correlations among the disharmonies manifested via
<is/has/uses> relations (See Table I).

4 http://tomcat.apache.org

TABLE 1
INTER-SMELL RELATIONS DESCRIBED IN [33]

Type Relation
Feature Envy is Intense Coupling
Is Brain Method is Dispersed Coupling

Tradition Breaker is Refused Parent Bequest

Data Class has Shotgun Surgery

God Class has Dispersed Coupling & Intense Coupling
God Class has Brain Method

God Class has Feature Envy

Has Brain Class has Brain Method

Brain Class has Dispersed Coupling & Intense Coupling
Data Class has Shotgun Surgery

Brain Method has Significant Duplication

Tradition Breaker has Significant Duplication

Dispersed Coupling and Intensive Coupling uses Shotgun

Uses Surgery

Feature Envy uses Data Class

Yamashita and Moonen [7] conducted principal component
analysis (PCA) and an observational analysis [6] over four
industrial systems and found that many of the large and com-
plex classes contained other smells, as an indirect consequence
of size; as for example they found that:

o Classes with God Class can also contain Feature Envy,
Shotgun Surgery, and Interface Segregation Principle
(i.e., ISP see [34]) Violation

o Classes with high Coupling can involve Feature Envy or
ISP Violation or Shotgun Surgery

Moreover, they found that smell interactions occur across
coupled files (i.e., coupled smells), and that those can lead
to comparably negative effects as the interaction of same-file,
collocated code smells.

III. STUDY DESIGN

In our study, we focus on exploring further the phenomena
of inter-smell relations in industrial and open source systems,
and on corroborating some of the relations suggested by
previous work. In addition to the collocated smells analy-
sis, we consider dependencies amongst classes in order to
incorporate coupled smells analysis. The reminder of this
section is as follows: Section III-A describes the systems
analyzed, and Section III-B describes which and how code
smells were detected, how the collocated and coupled smells
were identified, and what type of analysis was conducted.

A. Systems under study

In the study we analyzed one industrial system and two
open source systems. As previous works show [35, 36], nega-
tive consequences stemming from the presence of code smells
may vary depending on different factors. For example, the
domain of the systems is an important factor for determining
smell intensity and its impact on several qualitative software
characteristics [36]. To avoid bias related to contextual factors

(e.g., project owner, development method), we decided to ana-
lyze systems developed in 2 different environments: industrial,
and open source. The choice of specific systems was guided
by the availability of the necessary data.

System 1: Ebehandling - A grant application system: Ebe-
handling is a series of modules used by The Norwegian
Research Council (hereafter the NRC) for managing research
grant applications. NRC is responsible for handing out close
to 1,000,000,000 euros in research grants every year. Their
systems process around 6000 applications per year, and they
support the following functional areas: application evaluation,
statistics and reporting, and production of contracts and other
documents. The code base analyzed consists of 11 web
applications (based on a mix of RESTful web interface and
Spring MVC?, and following a Service Oriented Architecture)
and was originally developed by Mesan AS®. Currently the
systems consist of 5840 files, from which 5300 are Java,
240 are JavaScript and 300 are Jspx (Java Server Pages).
The size of the Java code analyzed is of 601KLOC. The
11 modules analyzed had undergone 40 major releases and
around 15 patch-releases since the start of the project in 2009.
We analyzed a snapshot of the most recent revision, dated as
for June 5th, 2014.

System 2: ElasticSearch - A search/analytics platform:
ElasticSearch is a search server based on the Lucene project.
It provides a distributed, multitenant-capable full-text search
engine with a RESTful web interface and schema-free JSON
documents. ElasticSearch is developed in Java and is released
as open source and has undergone 102 minor releases and
22 major releases since early 2010. Some of the active users
of ElasticSearch are: Github, SoundCloud, Deezer, and The
Guardian. The version we analyzed was 1.2.1, which counts
with 2951 Java files and 253 KLOC.

System 3: Mahout - A machine-learning library: Apache
Mahout is a project of the Apache Software Foundation’
project aiming at producing free implementations of dis-
tributed or otherwise scalable machine learning algorithms
focused primarily in the areas of collaborative filtering, clus-
tering and classification. Many of the implementations use the
Apache Hadoop®platform. Mahout also provides Java libraries
for common math operations (focused on linear algebra and
statistics) and supports primitive Java collections. Mahout
has undergone 10 releases since May 2010, and the version
analyzed (0.7) counts with 99 files, from which 935 are Java
and 12 are Scala. Current size of the system is 92KLOC.
Some of the active users of Mahout include: Yahoo mail,
ResearchGate, Mendeley, AOL, and Foursquare.

B. Detection and analysis of code smells

For the detection of code smells, we employed inFusion,
a commercial successor of iPlasma®, which identifies 24 dif-
ferent code smells based on the detection strategies approach

5 http://projects.spring.io/spring-framework/ 6 http://www.mesan.no
7 http://www.apache.org/foundation/ 8 http://hadoop.apache.org/
9 http:/loose.upt.ro/reengineering/research/iplasma

God Class

Feature Envy

Fig. 1. Example of Collocated (a) and Coupled (b) Smells

mentioned in Section II-A. In our study, fifteen code smells
were detected in the systems: Refused Parent Bequest, Dis-
torted Hierarchy, Schizophrenic Class, God Class, Tradition
Breaker, Sibling Duplication, Data Clumps, Blob Operation,
Feature Envy, Shotgun Surgery, Internal Duplication, Message
Chains, External Duplication, Intensive Coupling and Data
Class. The description of the smells as well as the detection
rules are provided in the appendix section in [37], and are
also available in the help function of inFusion. The hability
to detect a large set of code smells and the uniformity of the
detection approach w.r.t. previous studies guided the choice
of the tool.

In order to investigate potential inter-smell relations across
the systems, we used Principal Component Analysis (PCA),
using orthogonal rotation (varimax). First, we conducted PCA
for collocated smells, and then we repeated the analysis
for coupled smells. We adopted the following definitions of
collocated and coupled smells (see Fig. 1):

e Collocated code smells: Two or more smells are collo-
cated if they are detected in the same class (Fig. 1-a).

o Coupled code smells: Two or more smells are coupled if
they are located in artifacts (classes) that are coupled (i.e.,
they display some type of static dependency (Fig. 1-b).

In this work, we adopted the following definition of a depen-
dency [38]: “... A dependency is when the functioning of one
element A requires the presence of another element B...” We
interpret the above definition as follows:

1) An outgoing dependency from class X to class Y exists
when:

X inherits from Y (X is a subclass of Y)

o X accesses a field of Y

« X creates a new object of type Y (X instantiates Y)
« X contains a variable or an attribute of type Y

¢ X calls a method declared in type Y

o X has a method that references Y via return type or
parameter

X implements B (i.e., when Y is an Interface and X
implements the Interface)

2) For each outgoing dependency from X to Y, an incoming
dependency from Y to X exists

The tool we used for the dependency analysis was
depFinder'®. We chose the tool due to its capabilities in
transforming the resulting graphs. Once we obtained the com-
ponents from the PCA, we examined the degree of agreement

10" http://depfinder.sourceforge.net

TABLE II
SUMMARY OF THE PCA CONSIDERING COLLOCATED SMELLS

Ebehandling ElasticSearch Mahout
Variance Explained 60.90% 61.50% 54.60%
Kaiser-Meyer-Olkin 0.48 0.56 0.52
Approx. Chi-Square 2758.95 2250.05 796.66
df 45 105 55
Sig. ~.000 ~.000 ~.000
RefusedParentBequest v v
SchizoClass v v
GodClass v v v
TraditionBreaker v
SiblingDuplication v v v
DataClumps v v v
BlobOperation v v v
FeatureEnvy v v v
ShotgunSurgery v
InternalDuplication v v v
MessageChains v v v
ExternalDuplication v v v
IntensiveCoupling v
DataClass v v v

across systems by distinguishing between full-matches (i.e.,
all variables of a given component in a system have at
least one identical counterpart in another system) and partial-
matches (i.e., at least two variables in common across two
or more components in two or more systems). Subsequently,
we examined portions of the code based on a graphical
representation of the identified inter-smell by using Gephi'!.

IV. RESULTS
A. PCA with collocated smells

Table II displays for the PCA on each of the systems:
the smells included in the analysis, the percentage of the
variance explained by the factors extracted, and the sample
adequacy measures (i.e., Kaiser-Meyer-Olkin, and Bartlett’s
test of Sphericity). Some code smells were excluded since
they were not detected in some systems.

Field [39] recommends a KMO higher than 0.5 for an
acceptable sample, which is the case for all the systems except
for Ebehandling (0.48). The Bartlett’s test of Sphericity is
significant for all systems (p < .001), indicating that the
correlations between the items are sufficiently large for a satis-
factory application of PCA. Despite the KMO for Ebehandling
being slightly lower than what is recommended, we decided
to maintain it, given that the Bartlett’s test result was signif-
icant for all systems. For Ebehandling, five components had
eigenvalues over Kaiser’s criterion of 1 and in combination
explained 60.9% of the variance. As for ElasticSearch, eight
factors where identified, explaining 61.5% of the variance.
Finally, for Mahout, five components explaining 54.6% of the
variance were extracted. Due to space restrictions, the factor
loadings after the rotation for each of the systems are available
in a technical report [37].

Fig. 2 displays the resulting components, which shows one
common, collocated inter-smell relation between the systems

T http://www.gephi.org

Ebehandling

SiblingDuplication
MessageChains

5 | BlobOperation

Mahout

1 InternalDuplication 3
ExternalDuplication

— o)

GodClass
FeatureEnvy 4 DataCIumE‘
IntensiveCoupling DataClass

N

l

GodClass
ExternalDuplication
FeatureEnvy

BlobOperation 5| DataClass

InternalDuplication

|

SiblingDuplication
2 | DataClumps 4 E:;t:jreedgna:;entBequest
SchizoClass v
ElasticSearch
4 GodClass 4 | ExternalDuplication
FeatureEnvy BlobOperation
IntensiveCoupling

BlobClass 5 | MessageChains
2 | TraditionBreaker
SchizoClass & | RefusedParentBequest

DataClumps

3 InternalDuplication
SiblingDuplication
7 | ShotgunSurgery 8| DataClass

Fig. 2. Components identified for collocated smells

liL

Ebehandling (Component 2) and ElasticSearch (Component
1): God Class, Feature Envy, and Intensive Coupling. This
further supports the inter-relation of plain support that was
suggested by Walter and Pietrzak [3] (i.e., Large Class and
Feature Envy), and partially confirms the work by Moha et
al. [32] (i.e., Large Class and Low Cohesion). It also confirms
the relation supported by Lanza and Marinescu [33], who
asserted that God Classes often display Dispersed Coupling
and Intensive Coupling, that God Classes display Feature
Envy, and that Feature Envious methods display Intensive
Coupling. Our observations are also consistent with the find-
ing by Yamashita and Moonen [7], who observed that God
Classes often display Feature Envy, Shotgun Surgery, and ISP
Violation (this last design flaw is similar in its definition to
Dispersed Coupling).

In Ebehandling, Component 4 containing Data Class is
marked with double asterisk (**), since it displayed a negative
loading. This indicates that whenever Data Clump is present,
Data Class is not present in that class. This observation
is quite interesting given that in [7], Data Class and Data
Clump were found together in the same component, both with
positive loadings. We suspect that this dissonance could be
due to differences in the detection approach between Borland
Together (the tool used in [7]) and inFusion. In the other two
systems, Data Class appears in its own component (therefore
not shown in Fig. 2), and the negative loading in Ebehandling
suggests also that this smell appears alone.

Additionally, we could observe some tendencies with re-
spect to duplication-related smells: They tend to cluster to-
gether with smells associated to size and complexity (e.g.,
Blob Operation, Schizo Class, God Class). See for example
components 1, 2 and 3 in Mahout, and component 4 in
ElasticSearch.

B. PCA with coupled smells

Table III shows the results from the PCA involving coupled
smells. For each of the smells, three dimensions of variables
exist: Class, In and Out. ‘Class’ indicates that a given smell
was found in the class. ‘In’ means that the class had an
incoming dependency from a class that contained a given
smell. ‘Out’ means that the class depends on another class
that displays a given smell. All KMO measures indicate that
the sample is adequate and Barlett’s test of Sphericity is
significant. Therefore we can conclude that the sample is good.

Fig. 3-4 display the components identified through PCA.
The variables with the prefix ‘in_’ indicate that there was
an incoming dependency from a class that contained a given
smell. For example, in Fig. 3, the component 1 would indicate
that a class containing Data Class would have incoming
dependencies from classes that contain Feature Envy, God
Class, Data Class or Message Chains.

In Fig. 3-4, the components displaying a full-match are
marked in green and the components displaying a partial-
match are marked in yellow, where the matching smells are
marked in bold. The components that have smells related to
duplication (clones) are marked in purple with a light font.
In addition, redundant components (i.e., all elements of a
component constitute the same smell, but some are marked
as ‘in_’ or ‘out_’) are marked with dashed edges.

One consistent inter-smell relation across Ebehandling and
ElasticSearch was: Feature Envy and Data Class (See Com-
ponent 9 in Fig. 3 and Component 10 in Fig. 5). This
supports the description of transitive support by Walter and
Pietrzak, and partially supports work by Moha et al., w.r.t.
Blob and (many) Data Classes. Lanza and Marinescu also have
discussed that Feature Envy uses Data Classes. Yamashita and
Moonen also observed that Feature Envy and Large classes

TABLE III
SUMMARY OF THE PCA CONSIDERING COUPLED SMELLS
Ebehandling ElasticSearch Mahout
Variance Explained 61.76% 56.01% 61.64%
Kaiser-Meyer-Olkin 0.57 0.72 0.62
Approx. Chi-Square 23256.05 32755.89 11152.26
df 496 990 496
Sig. ~.000 ~.000 2.000
class in | out | class in | out | class in | out
BlobClass v v v
RefusedParentBequest v v | Vv v v v
SchizoClass v v v v v v
GodClass v v v v v v v v
TraditionBreaker v v v
SiblingDuplication v | Vv v v | v v | v v
DataClumps v v v v v ' v v
BlobOperation v v v v v v v v v
FeatureEnvy v | v v v | v v v v
ShotgunSurgery v v | v
InternalDuplication v v v v v v v v
MessageChains v v v v v v v v
ExternalDuplication v | Vv v v | v v v v
IntensiveCoupling v v v v '
DataClass v v v v v v v v

in_FeatureEnvy
in_GodClass
in_DataClass
in_MessageChains
DataClass

in_MessageChains
in_SiblingDuplication
in_ExternalDuplication

R i~

Ebehandling

out_SiblingDuplication
7 | SiblingDuplication
MessageChains

pmmmmmm———————— -
{ DataClumps
g !out DataClumps

out_DataClass
9 | FeatureEnvy

in_FeatureEnvy
in_GodClass
in_SchizoClass
in_IntensiveCoupling
in_BlobOperation
in_DataClumps

out_IntensiveCoupling
out_BlobOperation
out_ShotgunSurgery

in_MessageChains
in_SiblingDuplication
in_InternalDuplication
in_DataClass

ElasticSearch

out_DataClass
8 | out_FeatureEnvy

BlobClass
9 | TraditionBreaker
BlobOperation

InternalDuplication
LN siblingDuplication

S
1 out_ExternalDuplication
11 §in_ExternalDuplication
1 ExternalDuplication

\
BlobOperation] ym==mossmesomooos
out_BlobOperation {out_IntensiveCoupling !
in_BlobOperation | 10 yin_IntensiveCoupling
\, J

IntensiveCoupling
11 lin_InternalDuplication
12 | out_SchizoClass
in_SchizoClass
13 |in_InternalDup

out_FeatureEnvy
out_MessageChains
out_GodClass

InternalDuplicatiol
BNl ExternalDuplication

out_InternalDuplication
B out_ExternalDuplication

Fig. 3. Components identified in Ebehandling

use Data Classes. In addition, we could observe some partial
matches identified across systems (‘O’ for patterns involving
outgoing dependencies, ‘I’ for patterns involving incoming
dependencies), as shown in Table IV.

Some redundant components (i.e., a class with a given
smell that has incoming and/or outgoing dependencies to
classes containing the exact same smell) were identified for
the following smells:

in_RefusedParentBequest
in_FeatureEnvy
in_SiblingDuplication
out_FeatureEnvy
in_DataClumps

in_DataClumps
in_InternalDuplication
in_BlobOperation
in_GodClass
in_ExternalDuplication

in_GodClass
in_DataClass
in_MessageChains
in_SchizoClass

DataClumps
out_DataClumps
out_RefusedParentBequest

Mahout
o T T T TR
y out_SiblingDuplication
1 SiblingDuplication |
1in_SiblingDuplication |

N

emeeeeeceeeeead
out_GodClass
8 | RefusedParentBequest

GodClass
9 | FeatureEnvy
InternalDuplication

out_DataClass

10 | FeatureEnvy

BlobOperation
11 | InternalDu n

SchizoClass
Ol eatureEnvy

12
DataClass
13 out_ExternalDuplication

Fig. 4. Components identified in Mahout

smmcemccccccccccccan

N
1 out_RefusedParentBequest ;

12 1in_RefusedParentBequest |

out_FeatureEnvy
13 | out_MessageChains

out_SiblingDuplication
14 | MessageChains

in_BlobClass
nBreaker

IS

DataClumps
out_DataClumps
out_GodClass

out_TraditionBreaker
out_InternalDuplication
out_BlobClass
out_SchizoClass

15 | SchizoClass

16 | RefusedParentBequest

GodClass

FeatureEnvy
IntensiveCoupling 17 | ShotgunSurgery

N

I

Fig. 5. Components identified in ElasticSearch

o Data Clumps (Component § in Ebehandling)

o External Duplication (Component 11 in ElasticSearch)
« Sibling Duplication (Component 7 in Mahout)

o Blob Operation (Component 3 in Ebehandling)

« Intensive Coupling (Component 10 in Ebehandling)

e Message Chains (Component 4 in Mahout)

« Refused Parent Bequest (Component 12 in ElasticSearch)

This observation suggests that classes displaying any of these
smells may have a tendency to be coupled with other classes
with the same smells. This can be useful for achieving higher
confidence that a given smell is actually present (e.g., Walter
and Pietrzak’s multi-method approach [40]), or as baseline for
estimating the harmfulness level of a smell.

Assuming from a practical perspective, that coupled smells
have the same effect as collocated smells (that means, by
equating in_<smell> and out_<smell> to <smell>), we
could identify the inter-smell relations shown in Table V,
where Patterns 1 and 2 are full-matches and the rest are
partial-matches. From the patterns in Table V, we comment
on two of them, which combine collocated and coupled smells
in different ways. Pattern 1 (Data Class, Feature Envy) was
already reported in [3], and our analysis strengthens this obser-
vation. Examples of it can be found in all systems considered
(Component 9 in Ebehandling, Component 8 in Elasticsearch,
and Component 10 in Mahout), and in most cases they are
exemplified by out_DataClass and FeatureEnvy setting (only
Elasticsearch uses Feature Envy as an outgoing dependency).
Classes that are diagnosed with Feature Envy reference exter-
nal data stored in coupled classes, which is often their sole
responsibility. Furthermore, interesting conclusions can be

TABLE IV
INTER-SMELL PATTERNS CONSIDERING COUPLED SMELLS
Name System (Component) | Smells
Ebehandling (8) Data Clumps
Pattern O-1: | Mahout (6) Data Clumps in outgoing
ElasticSearch (5) dependencies
. Message Chains
Pattern O-2: Ebehandling (7) Sibling Duplication in out-
ElasticSearch (14) going dependencies
Feature Envy in outgoing
: dependencies
Pattern O-3: g?;lz?cns(ﬂgcgh(‘(? 3) Message Chain in outgoing
dependencies
) Sibling Duplication
Pattern O-4: | Eoehandling (7) Sibling Duplication in out-
Mahout (7) going dependencies
God Class in incoming de-
pendencies
. Data Class in incoming de-
Pattern I-1: ﬁf:l?;;dz;g M pendencies
Message Chain in incom-
ing dependencies
God Class in incoming de-
: endencies
Pattern I-2: g?;slz?crls(g;?fh(;i) Igeature Envy in incoming
dependencies
God Class in incoming de-
| Mahout (5) pendencies
Pattern I-3: ElasticSearch (1) Schizo Class in incoming
dependencies
Message Chain in incom-
: ing dependencies
Pattern I-4: E?;lzfcnsﬂ;?fh(g) Si%lingp Duplication in in-
coming dependencies

drawn also from the Pattern 7 (Internal Duplication, External
Duplication). This pattern is manifested either as a collocation
of the smells (Component 5 in Ebehandling, see Fig. 3), or
an incoming coupling (Component 2 in Mahout, see Fig. 4),
or an outgoing coupling (Component 6 in Ebehandling, see
Fig. 3). These relations are relatively weak when analyzed
individually, but the resulting combined pattern is strong
enough to attract attention at relations between duplication-
based smells. If in practice, the effects of coupled and col-
located smells are similar, by analysing them simultaneously
we can achieve a better and more thorough insight into the
interactions betweens code smells.

V. DISCUSSION

In this section, we first analyze some of the extracted pat-
terns in more detail, providing and discussing some examples
that were identified via code inspection. Secondly, we discuss
the threats to validity of the work.

A. Inspection of inter-smells in the code

We consider some examples of classes presenting the inter-
smell patterns we have reported. The first pattern we con-
sider is Pattern O-1 (Data Clumps, out_DataClumps). In this
pattern, a class with a smell has an outgoing dependency to
another class which also has a smell. In this regards, Pattern O-
2 and Pattern O-4 are similar (Pattern O-3 is different because
it involves a class without a smell that have dependencies on

a class or classes with smells). We chose to report Pattern
O-1 because the analyzed systems contained a large number
of Data Clumps instances.

In Mahout, most classes involved in this pattern are
connected to the AbstractJob class. This class serves
as superclass for Mahout Hadoop jobs, and defines three
prepareJob methods with many parameters, all of them de-
tected as Data Clumps. Each algorithm supporting this proto-
col for specifying jobs has its own subclass of AbstractJob
and has Data Clumps too. AbstractJob redirects its pre-
pareJob methods to the HadoopUtil class, which exposes the
same methods with almost the same signature. In this case, the
lack of encapsulation of the configuration parameters of a job
is propagated to every subclass implementing a job creation.

In Elasticsearch, class Aggregator defines a large con-
structor, containing Data Clumps. This class has many sub-
classes, and each subclass re-exposes the same creation pro-
tocol. Also in this case, the Data Clumps smell is propagated
to subclasses. Another artifact containing Data Clumps is
the FieldMapper interface. It consists of a wide interface
with two methods deemed as Data Clumps. Thus, every
implementation of this interface contains at least one Data
Clumps. Interestingly, only few abstract classes implement
the Data Clumps methods. Most of the Data Clumps in the
system stem from constructors defined in super classes, and
are propagated to subclasses.

In Ebehandling, the relation among Data Clumps is differ-
ent. In the two open source systems, most classes displaying
this pattern were all connected together in a rather large clus-
ter. In this particular system, only few classes were detected
as Data Clumps. Many of them are disconnected from other
Data Clumps, or only constituted pairs of connected artifacts.

We also wanted to generate a visual aid to guide the code
review, thus derived a classification for the classes involved
in this pattern, and represented them in Fig. 6. The figure
contains three graphs, one for each of the analyzed systems.

TABLE V
INTER-SMELL PATTERNS AFTER EQUATING COUPLED SMELLS TO
COLLOCATED SMELLS

Name System (Component) | Smells
Ebehandling (9) Data Class
.| Mahout (10) Feature Envy
Pattern 1:
A | ElasticSearch (8)
| Ebehandling (7) Sibling Duplication
Pattern 2: ElasticSearch (14) Message Chains
| Mahout (5) God Class
Pattern 3: | EjasticSearch [€)) Schizo Class
God Class
.| Ebehandling (1) Data Class
Patt 4:
attern Mahout (5) Message Chains
| Mahout (9) God Class
Pattern 5: ElasticSearch (7) Feature Envy
| Ebehandling (4) Feature Envy
Pattern 6: ElasticSearch (13) Message Chains
) Ebehandling (5) Internal Duplication
Pattern 7| Mahout 2) External Duplication

The graphs represent the classes displaying this particular
inter-relation, with the following convention:

« Nodes represent classes, and edges represent dependen-
cies between classes;

o Dark green (matching) nodes are the classes matching
the pattern, i.e., the “Data Clumps” part of the pattern;

o Light green (context) nodes are classes matching the
“out_DataClumps” part of the pattern;

o Cyan (contributor) nodes are Data Clumps which are not
connected to other Data Clumps, i.e., they do not match
the pattern;

o Red (dependency) nodes are classes with a dependency
from/to green nodes;

o The size of the nodes is proportional to the number of
outbound dependencies of the respective class;

o The reported edges are the dependencies among classes
having Data Clumps, and their dependencies.

When a node belongs to many categories, the following
descending priority order is applied to choose the color of
the node: matching, context, contributor, dependency. As a
final note, the dependency nodes for ElasticSearch have not
been reported, because they are too many to be readable.

Several observations can be made based on the code in-
spection and the graphical representation in Fig. 6. First, the
amount of Data Clumps is very different in the two open
source projects and the industrial one. In the industrial system,
data encapsulation was taken more into consideration, while
the open source systems display a more liberal tendency
in those regards. Second, in the open source systems Data
Clumps are highly interconnected, while in the industrial
system, the opposite occurs. This can be observed in Fig. 6-a,
where Mahout appears as one big cluster whiles Ebehandling
(Fig. 6-b) displays several disconnected ‘islands’. While this
can be a consequence of the total number of Data Clumps
identified (i.e., the presence of more instances would increase
the chances of finding more interconnected instances), it also
suggests that in the industrial system, this smell would be
less of a risk, as it can be handled (when necessary) by
working on small groups of isolated classes. Third, in the
two open source systems where the amount of Data Clumps
is highest, the main cause of this seems to be the definition of
an abstract method or constructor, and its implementation or
repetition into all its subclasses. This kind of propagation can
be problematic, because if changes are required in the abstract
constructor/method, the corresponding Data Clumps must be
corrected in all subclasses. In Elasticsearch, classes containing
numerous attributes implemented wide interfaces and defined
very wide constructors (detected also as Data Clumps). In such
a design approach, Data Clumps would propagate through
apparently unrelated dependencies.

The second pattern we consider is Pattern I-2 (in_GodClass,
in_FeatureEnvy). This pattern is very different from the pre-
vious one because it suggests that given a class ‘A’, if a God
Class depends on it, a Feature Envy would depend on class

‘A’ as well. Similar patterns are Pattern I-1, Pattern 1-3, and
Pattern I-4. We chose this pattern over others because the
relationship amongst these two smells is well known. Fig. 7
displays the graphs generated for analyzing this pattern. The
convention followed for this particular graph differs to the
previous one in the following aspects:

e Dark green (matching) nodes are classes having God
Classes and Feature Envious methods in their incoming
dependencies;

o Light green (context) nodes are classes with God Class
and/or Feature Envy that depend on matching classes;

e Cyan (contributor) nodes are classes with either God
Class or Feature Envy, but not coupled to matching
classes;

e No red (dependency) nodes are represented in this graph,
because their amount does not allow the comprehension
of the graph.

In Mahout (Fig. 7-b), classes matching the pattern are all
connected in a single group. Many classes of this group
depend on the Vector and Matrix interfaces and their
specializations. Mahout comprises a collection of data mining
algorithms, and some of these algorithms depend on a wide
variety of abstractions. For example, the HnmTrainer class
is a God Class and also contains Feature Envious methods.
This class alone depends on seven different interfaces, all of
them constituting some kind of abstraction, as the previously
described Vector and Mat rix. Other ten classes, classified
as God Class or containing Feature Envy, depend on overall
14 classes matching this pattern. Only one class (with Feature
Envy) was not involved in this pattern, i.e., it did not depend
on any class connected also to a God Class. Other God Classes
or Feature Envy methods in the system were connected to the
basic set of abstraction or utilities described previously.

In Elasticsearch (Fig. 7-c), most classes matching the
pattern are connected in a single large group, others
in smaller groups, and only three classes that were
affected by Feature Envy or God Class did not display
any relations. The single large group comprised a set of
general-purpose classes and utility classes. Some of these
are: ElasticsearchIllegalArgumentException,
Settings, and Nullable.

The situation in Ebehandling (Fig. 7-a) is slightly different.
There are more isolated Feature Envious methods and God
Classes. Two groups of classes were identified: one large and
one small (there is an additional group of classes in cyan
that were not considered since they displayed no coupling).
The large group displays low cohesiveness, and is divided
into three more cohesive subgroups. A first subgroup has
to do with DAO (Data Access Object) management classes,
and two other classes: ModelToDaoConverter and
DaoToModelConverter. These two classes both consti-
tute God Classes, contain Feature Envy methods and use most
of the classes matching this pattern. In the second subgroup,
the class AdresselisteIntegrasjonServicelImpl is

o?

Fig. 6. Pattern O-1 graphs for Mahout (a), Ebehandling (b), and ElasticSearch (c)

both God Class and Feature Envy, and depends on many
classes. In the third group, class Soknad (God Class) and
class SoknadServiceImpl (Feature Envy) depend on the
same set of classes. A particularity is that all subgroups
depend on one single class DatoHjelper. Finally, in the
small group, seven God Classes and Feature Envy methods
depend on a set of 14 other classes.

The results from Ebehandling where discussed with
one of the software engineers who had worked on
the system. In particular he mentioned that the classes
AdresselistelIntegrasjonServiceImpl, Soknad
and SoknadServiceImpl have been problematic from a
maintenance perspective, but that DatoHjelper was not
deemed problematic, as it consists of a class with only
static methods (thus cannot be instantiated). He noted that
the practice of having one ‘utility’ class containing general
purpose methods that can be used by different modules is
not rare in these kind of medium-sized information systems.
This was also observed in the case of Elasticsearch. These
observations warn us against including static classes (like
DatoHjelper), since they could add noise in the smell
analysis. This problem can potentially be handled by using
filters calibrated to a given context or domain. Filters could
help reducing the noise and support better interpretation of

code smell-based analysis. In all the reported examples, many
heavily used classes (abstractions, utilities, etc.) matched this
pattern, because smelly classes use them. However, many
more other non-smelly classes also used the same set of
classes, and this could complicate the interpretation of this
pattern. Given the fact that this pattern is recurrent in all
the analyzed systems, our interpretation is that this pattern
is rooted in a rather typical relationship between (collocated)
God Class and Feature Envy, which was amplified (and thus,
captured in the PCA) by the wide dependency set implied by
these two smells. However, it is clear that in the open source
systems almost all God Classes and Feature Envy methods
depend on the same set of classes, with very little exception.
Within the open source context, this pattern can potentially be
used as an indicator on the level of importance/criticality of
the classes used by these two smells.

B. Threats to Validity

We consider threats to the validity of our study from three
perspectives:

1) Construct Validity: The code smells were automatically
identified by inFusion to avoid subjective bias. The choice for
the detection approach (e.g., threshold values) used by the tool
could be a threat to validity. The variations in the detection

Fig. 7. Pattern I-2 graphs for Ebehandling (a), Mahout (b), and ElasticSearch (c)

strategies across different tools might lead to variations in the
set of identified smells and consequently, any potential inter-
smell relations.

2) Internal Validity: When analyzing the coupled smells
(inter-smell relations across coupled classes), we represented
the code smells in the dependencies of each class as a single
set, i.e., for each class we expressed if a given smell was
present or not in any of its dependencies. This representation
does not take into account the number of classes a given class
is coupled to, nor the number of couplings between each pair
of classes. Consequently, some information is lost (e.g., the
spread/intensity of the coupling). The patterns inferred from
our representation can suffer from a bias (underrepresentation
or overrepresentation) given that such information was not
considered in the analysis.

3) External Validity: A threat to the external validity of
this study is the number of analyzed systems. Although our
study confirms some of the previous work on inter-smells, a
clear difference in the distribution and interaction of smells
could be observed between the open source systems and the
industrial one. This further reinforces our view that domain
information is extremely important to interpret code metrics
for quality purposes. We believe further work should be

directed towards better understanding how contextual factors
influence the presence and topography of smells in a system.

VI. CONCLUSION AND FUTURE WORK

This paper reports on an empirical study that explores
further inter-smell relations in two open source systems and
one industrial system, all of them with considerable size and
development history. Our study confirms some of the previous
conjectures and empirical work on inter-smell relations, and
constitutes the first study considering dependencies for ana-
lyzing inter-smells. Our results provide: 1) empirical evidence
to guide the focus on some of the previously known inter-
smells, and 2) an outline on emergent inter-smell relations that
can be investigated further as to assess if they can constitute
more accurate indicators of maintainability issues. Further-
more, results from the PCA and the code inspection revealed
idiosyncratic differences between the two open source and the
industrial system, suggesting that contextual factors may play
a major role on the landscape of inter-smells. Future work will
consist of investigating whether explanatory models (i.e., for
explaining defect incidence) considering inter-smells perform
better than models only considering individual code smells.
We plan to build a logistic regression model using as depen-

dent variable the presence of defects in a software artifact. We
plan to create a model only considering individual effects of
code smells, and then a model considering interaction effects
(between collocated and coupled smells), and we will compare
the performance (fit) between the initial (individual-based) and
the second (interaction-based) models.

Acknowledgments: The authors thank Intooitus for providing
the license for inFusion, and @ystein Skadsem for his support
during the data collection and for insightful discussions.

REFERENCES

[11 M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the Effect of Code Smells on Maintenance Effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144-1156,
2013.

[3] B. Pietrzak and B. Walter, “Leveraging Code Smell Detection with Inter-
smell relations,” in Extreme Programming and Agile Processes in Softw.
Eng. (XP). Springer Berlin / Heidelberg, 2006, pp. 75-84.

[4] A. Yamashita, “Assessing the Capability of Code Smells to Support
Software Maintainability Assessments: Empirical Inquiry and Method-
ological Approach,” Doctoral Thesis, University of Oslo, 2012.

[5] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An Empirical
Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, on
Program Comprehension,” in /5th European Conf. Softw. Maintenance
and ReEng. 1EEE, 2011, pp. 181-190.

[6] A. Yamashita and L. Moonen, “To what extent can maintenance
problems be predicted by code smell detection? An empirical study,”
Information and Software Technology, vol. 55, no. 12, pp. 2223-2242,
2013.

[7]1 A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in 2013 35th
Int’l Conf. Softw. Eng. 1EEE, 2013, pp. 682-691.

[8] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9:1-9:13, 2012.

[9] F. Arcelli Fontana, M. Zanoni, A. Marino, and M. V. Mantyla, “Code
Smell Detection: Towards a Machine Learning-Based Approach,” in
2013 IEEE Int’l Conf. Softw. Maintenance. 1EEE, 2013, pp. 396-399.

[10] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “BDTEX:
A GQM-based Bayesian approach for the detection of antipatterns,”
Journal of Systems and Software, vol. 84, no. 4, pp. 559-572, 2011.

[11] E. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 2013 28th IEEE/ACM Int’l Conf. Automated
Softw. Eng. 1EEE, 2013, pp. 268-278.

[12] A. A. Rao and K. N. Reddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in Int’l
MultiConf. Engineers and Computer Scientists, 2008, pp. 1001-1007.

[13] M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells: a review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, pp. 179-202, 2011.

[14] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Soft-
ware quality analysis by code clones in industrial legacy software,” in
IEEE Symposium on Softw. Metrics, 2002, pp. 87-94.

[15] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
Journal of Systems and Software, vol. 80, no. 7, pp. 1120-1128, 2007.

[16] C. Kapser and M. Godfrey, “‘Cloning Considered Harmful’ Considered
Harmful,” in Working Conf. Reverse Eng., ser. WCRE *06. Washington,
DC, USA: IEEE, 2006, pp. 19-28.

[17] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Int’l Conf. Softw. Eng., 2009, pp. 485-495.

[18] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the Impact of Design
Flaws on Software Defects,” in Int’l Conf. Quality Softw., 2010, pp.
23-31.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

F. Rahman, C. Bird, and P. Devanbu, “Clones: what is that smell?”
Empirical Software Engineering, vol. 17, no. 4-5, pp. 503-530, 2011.
I. Deligiannis, M. Shepperd, M. Roumeliotis, and I. Stamelos, “An
empirical investigation of an object-oriented design heuristic for main-
tainability,” Journal of Systems and Software, vol. 65, no. 2, pp. 127—
139, 2003.

I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shep-
perd, “A controlled experiment investigation of an object-oriented
design heuristic for maintainability,” Journal of Systems and Software,
vol. 72, no. 2, pp. 129-143, 2004.

A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in IEEE Int’l Conf. Softw. Maintenance, 2008, pp. 227—
236.

F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Exploratory Study
of the Impact of Code Smells on Software Change-proneness,” in
Working Conf. Reverse Eng. 1EEE, 2009, pp. 75-84.

M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical
study of code clone genealogies,” in Joint 10th European Software
Engineering Conference (ESEC) and 13th ACM SIGSOFT Symposium
on the Foundations of Softw. Eng. (FSE-13), 2005, pp. 187-196.

S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and
impact of code smells: A case study of two open source systems,” in 3rd
Int’l Symposium on Empirical Softw. Eng. and Measurement (ESEM).
IEEE, 2009, pp. 390-400.

A. Chatzigeorgiou and A. Manakos, “Investigating the Evolution of Bad
Smells in Object-Oriented Code,” in 2010 Seventh Int’l Conf. the Quality
of Information and Communications Technology. IEEE, 2010, pp. 106—
115.

R. Peters and A. Zaidman, “Evaluating the Lifespan of Code Smells
using Software Repository Mining,” in 2012 16th European Conf. Softw.
Maintenance and ReEng. 1EEE, 2012, pp. 411-416.

N. Gode and J. Harder, “Oops! . . . I changed it again,” in Proceeding
of the 5th Int’l Ws. Softw. clones - IWSC ’11. New York, New York,
USA: ACM Press, 2011, p. 14.

A. Yamashita, “Assessing the capability of code smells to explain
maintenance problems: an empirical study combining quantitative and
qualitative data,” Empirical Software Engineering, vol. 19, no. 4, pp.
1111-1143, 2013.

M. V. Mintyld, J. Vanhanen, and C. Lassenius, “A taxonomy and an
initial empirical study of bad smells in code,” in IEEE Int’l Conf. Softw.
Maintenance, 2003, pp. 381-384.

S. Jancke, “Smell Detection in Context,” Diplomarbeit, Rheinische
Friedrich-Wilhelms-Universitit Bonn, 2010.

N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A Method for the Specification and Detection of Code and Design
Smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20-36, 2010.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer Publishing Company, Inc., 2005.
R. C. Martin, Agile Software Development, Principles, Patterns and
Practice. Prentice Hall, 2002.

Y. Guo, C. Seaman, N. Zazworka, and F. Shull, “Domain-specific
tailoring of code smells,” in Proceedings of the 32nd ACM/IEEE Int’l
Conf. Softw. Eng. - ICSE 10, vol. 2. New York, New York, USA:
ACM Press, 2010, p. 167.

M. V. Mintyld and C. Lassenius, “Subjective evaluation of software
evolvability using code smells: An empirical study,” Empirical Software
Engineering, vol. 11, no. 3, pp. 395431, 2006.

A. Yamashita, B. Walter, F. Arcelli, and M. Zanoni, “Exploring the
landscape of inter-smell relations in industrial and open source systems.
Technical Report. No. 2014-15,” Simula Research Laboratory, Oslo,
Tech. Rep., 2014.

W. Stevens and G. Myers, “Structured Design,” IBM Systems Journal,
vol. 13, no. 2, pp. 115-139, 1974.

A. Field and J. Miles, Discovering Statistics Using SAS. SAGE, 2011.
B. Walter and B. Pietrzak, “Multi-criteria Detection of Bad Smells
in Code with UTA Method,” in Extreme Programming and Agile
Processes in Softw. Eng. (XP), ser. Lecture Notes in Computer Sci-
ence, H. Baumeister, M. Marchesi, and M. Holcombe, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, vol. 3556, pp. 154-161.

