
Imagining Tests as
Interactions

Sagar Sen
Software Engineering Dept., Simula Research

Laboratory

Wednesday 20 November 13

Outline

• Introduction

• Case 1: Tests that Cover All T-wise Interactions

• Case 2: Finding Service Level Agreements

• Case 3: Interaction Coverage in Data-intensive Systems

• Case 4: Dynamically Adaptive Vision Systems

• Case 5: Model Checking for Test Generation

• Conclusion

Wednesday 20 November 13

Introduction

Software seen as a black-box

Wednesday 20 November 13

Introduction

Variability in inputs

int a
string b

float c

Wednesday 20 November 13

Introduction

Variability in ways to configure them

Wednesday 20 November 13

Introduction

Variability in usage

Often linked to the problem of software aging

Wednesday 20 November 13

Introduction

Variability in environment

Space or Subsea

Wednesday 20 November 13

Introduction

How to test software with so much
 influence of variability?

What does exhaustive testing entail?

Can we reduce the number of tests?

Wednesday 20 November 13

Introduction

What does exhaustive testing entail?

Wednesday 20 November 13

Introduction
18 Exhaustive Test Cases

Wednesday 20 November 13

Introduction
What if the number of factors and their levels increase?

Combinatorial Explosion!

Wednesday 20 November 13

Introduction
What if we cover all pairs of interactions between

features?

Wednesday 20 November 13

Introduction
9 Pairwise Test Cases

Wednesday 20 November 13

Introduction
Pairwise interaction criteria => Great reduction in test

cases

Wednesday 20 November 13

Introduction
Is pairwise and in general t-wise testing good enough?

"'Combinatorial' Approach Squashes Software Bugs Faster, Cheaper" in NIST
Tech Beat, Dec. 12, 2007

Wednesday 20 November 13

Introduction
Variability is your enemy but needs embracing!

Stefano’s bug cannot be to
reproduce by developers.
Are you sure you tried the 64bit
version?

Wednesday 20 November 13

Outline

• Introduction

• Case 1: Variability in Software and T-wise Tests

• Case 2: Finding Service Level Agreements

• Case 3: Interaction Coverage in Data-intensive Systems

• Case 4: Dynamically Adaptive Vision Systems

• Case 5: Model Checking for Test Generation

• Conclusion

Wednesday 20 November 13

A Car Crash

Wednesday 20 November 13

Car Crash Crisis Management Service

Co-ordinate calls to atomic services
1. Ambulance
2. GSM
3. GPS
4. Nursing
5. Public Hospital
6. Doctor
7. Garage Tow Truck
8. Fire
9. Police
10. Authentication system
11. Paramedic
...

Wednesday 20 November 13

Service Level Agreement of Car Crash Crisis Management

What is the
expected response

time?

Wednesday 20 November 13

Large number of possible configurations

Wednesday 20 November 13

QoS (response time) of Atomic Services in the Composite
Service

Soft contract: probability distribution of QoS for
each atomic service

First Aid Material Co-ordinator

Wednesday 20 November 13

A

B
D

E F

MUX

Merge

Composite service QoS for ONE configuration

Composite Service
response time distribution

Wednesday 20 November 13

Feature Model in Car Crash Crisis Management System

Optional Mandatory

Wednesday 20 November 13

C(41,2) = 820 Possible Pairwise Interaction

Ambulance_f, Doctor_s,

Pair1& N/A& N/A&

Pair2& N/A& A&

Pair3&
&

A& N/A&

Pair4&
&

A& A&

Police Fire Dept.

Wednesday 20 November 13

Constraint Solving to Generate Configurations Covering T-wise

Feature Diagram
FD

Health Emergency
System

Transport HospitalAdmit

Ambulance

Ambulance

Legend

Mandatory

Optional

XOR

Feature

Service

Asset

Ambulance

Documents

HealthRecords

InsuranceCompany

Discharge Billing

Treatment

HealthRecords

HealthRecords

InsuranceCompany

InsuranceCompany

AdmitRoom

SpecialRoom

Ward

SpecialRoom

SpecialRoom

Ward

Ward

Pharmacy

Doctor

Testing

Catering

Pharmacy

Pharmacy

Doctor

Doctor

Testing

Testing

Catering

Catering

f

s

s

f

s

f

s

f
f

s

f

s

f

s

f

s

f
s T"wise'Strategy'

T (Eg. T=2 implies
pairwise)'
'

1.#FD2Alloy#

2.#Genera0on#of#Alloy#Predicates#
for#Tuples#(pairs#for#T=2)#

Alloy Model

3.#Detec0on#of#Consistent#
Tuples#(w.r.t#FD)#

4.#Generate#Configura0ons#
covering#valid#pairs#

(Divide#and#Compose)#

We	
 discover	
 only	
 15	
 configurations	
 covering	
 all	
 valid	
 pairs	
 in	
 the	
 820	
 feature	

interaction	
 pairs

Wednesday 20 November 13

Variability in QoS (response time)

Wednesday 20 November 13

Coverage of Pairwise vs. All Configurations

Wednesday 20 November 13

Outline

• Introduction

• Case 1: Tests that Cover All T-wise Interactions

• Case 2: Finding Service Level Agreements

• Case 3: Interaction Coverage in Data-intensive Systems

• Case 4: Dynamically Adaptive Vision Systems

• Case 5: Model Checking for Test Generation

• Conclusion

Wednesday 20 November 13

•  8000 to 30,000 declarations/day,
potentially adhering to about 200,000
customs rules

•  Customs rules typically accept/return
declarations based on information in the
declaration

•  Towards a corruption-free and efficient
information society

The Heart of Norway’s E-governance: TVINN

Wednesday 20 November 13

9

Behind the Scenes: Testing at Toll

Live Data

Wednesday 20 November 13

9

Behind the Scenes: Testing at Toll

Live Data

MA

Whisky

FU

RUM

Lets test if the
data can test alcohol

related rules?

Wednesday 20 November 13

Trillions of possible ways they interact! Only about 200,000 rules used in
practice.

What are the rules tested by my live data?

Customs business rules are a combination of
10,000 Item Codes, 88 Country Groups, 934 Tax Types, 5 Declaration Categories

Wednesday 20 November 13

Text

Whisky
 Vodka
 Rum
 Beer

Database Name

Tables

Fields

Field Values

Modelling Data Interactions

Wednesday 20 November 13

Extracted Graph from Database Schema

Database Schema at Toll

Graph of the Schema

Interacting Table 1

Interacting Table 2

Wednesday 20 November 13

Extracted Graph from Database Schema

Database Schema at Toll

Graph of the Schema

Interacting Table 1

Interacting Table 2

<- Create a spanning
tree (transformed to

an SQL query)

Wednesday 20 November 13

Query Generation and Interaction Coverage Analysis

Wednesday 20 November 13

Real Industrial Example: ACME Chemicals
Database schema

Data Interaction Model

Wednesday 20 November 13

Real Industrial Example: ACME Chemicals

Wednesday 20 November 13

Real Industrial Example: ACME Chemicals
Create a spanning tree
(transformed to an SQL

query)

Wednesday 20 November 13

Query Generation and Interaction Coverage Analysis

Wednesday 20 November 13

Outline

• Introduction

• Case 1: Tests that Cover All T-wise Interactions

• Case 2: Finding Service Level Agreements

• Case 3: Interaction Coverage in Data-intensive Systems

• Case 4: Dynamically Adaptive Vision Systems

• Case 5: Model Checking for Test Generation

• Conclusion

Wednesday 20 November 13

Case 4 : Girgit, A dynamically adaptive vision system

Wednesday 20 November 13

Case 4 : Girgit, A dynamically adaptive vision system

Adapta&on)from)Intrusion)Detec&on)to)Face)Detec&on)

Wednesday 20 November 13

Case 4 : Girgit, A dynamically adaptive vision system

Modelling Vision System Variability

Wednesday 20 November 13

Case 4 : Girgit, A dynamically adaptive vision system

Modelling a Test Sequence in Time
Wednesday 20 November 13

Case 4 : Girgit, A dynamically adaptive vision system

Adapta&on)Time)for)30)Reconfigura&ons))
between)8)possible)configura&ons)

Average)10)mu)secs) Average)2)micro)secs)

A new dimension of variability: time

Wednesday 20 November 13

Outline

• Introduction

• Case 1: Tests that Cover All T-wise Interactions

• Case 2: Finding Service Level Agreements

• Case 3: Interaction Coverage in Data-intensive Systems

• Case 4: Dynamically Adaptive Vision Systems

• Case 5: Model Checking for Test Generation

• Conclusion

Wednesday 20 November 13

Test cases

Set of (input,output) pairs which we don’t often have

Wednesday 20 November 13

What we have?

Software system coded by developers (white-box)

Wednesday 20 November 13

If we can represent a system as a formal model

Formal model in Alloy

1.#FD2Alloy#

2.#Genera0on#of#Alloy#Predicates#
for#Tuples#(pairs#for#T=2)#

Alloy Model

Alloy is a lightweight formal method that represents
system models as a set of relations and can generate

examples and counterexamples via SAT solving

Wednesday 20 November 13

For example Alloy is a lightweight formal method

module modelCheck
open util/boolean as Bool
one sig System
{
input: one Bool,
feature1: one Bool,
feature2: one Bool,
feature3: one Bool,
output : one Bool
}
fact SystemComputation
{
output = input & feature1 + feature2 & feature3
}

A fact about a boolean computation in the system

Wednesday 20 November 13

Configuring the features of a system and example
generation

module modelCheck
open util/boolean as Bool
one sig System
{
input: one Bool,
feature1: one Bool,
feature2: one Bool,
feature3: one Bool,
output : one Bool
}
fact SystemComputation
{
output = input & feature1 + feature2 & feature3
}
pred configuration1_example
{
System.feature1=False and System.feature2=False
and System.feature3=False
}
run configuration1_example for 1

Wednesday 20 November 13

Generated Instances and Derivation of Test Cases

(input = true, output=false)

Test Case 1 Test Case 2

(input = false, output=false)

Scenarios where the system configuration always
holds

Wednesday 20 November 13

Configuring the features of a system and
counterexample generation

module modelCheck
open util/boolean as Bool
one sig System
{
input: one Bool,
feature1: one Bool,
feature2: one Bool,
feature3: one Bool,
output : one Bool
}
fact SystemComputation
{
output = input & feature1 + feature2 & feature3
}
assert configuration1_counterExample
{
System.feature1=False and System.feature2=False
and System.feature3=False
}
check configuration1_counterExample for 1

Wednesday 20 November 13

Generated Counterexamples and Derivation of Test
Cases

(input = false, output=true)
Test Case 1 Test Case 2

(input = false, output=false)

Scenarios where the configuration does not hold

Test Case 3

(input = true, output=true)

Wednesday 20 November 13

Overall Process

Generate T-wise
configurations of System

Variability Model of
System

System Model
Model Checker

(Alloy)

Counter Example
Generation

Example
Generation

Extract Input/
Output from

Instance

Test Cases

Unlikely configs
of system state

Likely configs
of system state

Software
System

Wednesday 20 November 13

Outline

• Introduction

• Case 1: Tests that Cover All T-wise Interactions

• Case 2: Finding Service Level Agreements

• Case 3: Interaction Coverage in Data-intensive Systems

• Case 4: Dynamically Adaptive Vision Systems

• Case 5: Model Checking for Test Generation

• Conclusion

Wednesday 20 November 13

Conclusion
• Combinatorial interaction testing greatly reduces the number of

configurations

• Effective coverage of the software configuration space (Car Crisis
Management)

• Interaction coverage is effective in data-intensive systems (Toll
Customs)

• One can also imagine interaction coverage between configurations in
a sequence to discover faults in QoS (Self-adaptive vision system)

• System configurations covering T-wise interactions combined with
model checking can help automatically generate test cases

Wednesday 20 November 13

Thank you.

Wednesday 20 November 13

