
Optimized Routing for Fat-Tree
Topologies

Bartosz Bogdański

Thesis submitted for the degree of Philosophiae Doctor
Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo
January 2014

© Bartosz Bogda ski, 2014

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1521

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Akademika Publishing.
The thesis is produced by Akademika Publishing merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

To my family

Abstract

In recent years, InfiniBand has become one of the leading interconnects for high-
performance systems. InfiniBand is not only the most popular interconnect used
in the fastest, largest and most expensive supercomputers in the world, but it
has also entered the enterprise market and today it can be found in thousands
of datacenters, in database systems, in financial institutions dealing with high-
frequency trading, and even in web mapping services where picture data is
stitched together to form the map we see in a web browser.

Many of the InfiniBand systems are built using the fat-tree topology. The
fat-tree routing algorithms that are used to distribute the paths in a fat-tree have
been scrutinized in recent years and there were multiple efforts that aimed at
improving the network performance. This thesis, as a collection of six research
papers, contributes to various routing aspects that concern fat-tree routing for
InfiniBand. The research work presented here is strongly influenced by require-
ments of enterprise systems, which are significantly smaller than supercomput-
ers, have space, energy and fixed-cabling limitations and require an integrated
approach that combines multiple components so the system is robust, scalable
and responsive.

Current fat-tree routing algorithms lack several features that are required
by an optimized enterprise system. In Papers I-IV and Paper VI we propose
methods that improve the properties of the fat-tree routing algorithm. The first,
and most important property of an interconnection routing algorithm is perfor-
mance. In Paper I we study the problem of non-optimal routing in topologies
where switch ports are not fully populated with end-nodes and we propose a
solution that alleviates the counter-intuitive performance drop for such fabrics.
Paper II goes further and proposes a cheap alternative to congestion control.
By using multiple virtual lanes, we are able to remove head-of-line blocking and
parking lot problems in fat-tree fabrics, which significantly improves the perfor-
mance when multiple hotspots are present in the network. Paper III focuses on

V

route reachability, which is another major property of a routing algorithm. We
formally prove that full reachability between all devices can be accomplished
in any regular fat-tree without any deadlock concern and we present an algo-
rithm that achieves full reachability between any pair of devices in a fat-tree
fabric. The last routing property we analyze is fault tolerance, which we dis-
cuss in Paper IV and VI. The former paper is a study of four major routing
algorithms where we compare their routing performance on various irregular fat-
trees. In this paper, we also propose and analyze methods to make the discovery
algorithm for the fat-tree routing more fault-tolerant and scalable. Paper VI
presents a multihomed routing algorithm that makes sure that no single point
of failure exists in a fabric for a node that has more than one port.

When InfiniBand was standardized, several major features were missing.
One of such crucial features is the layer-3 routing or IB-IB routing between IB
subnets. Currently, there is very little support for such technology, but the limits
imposed on local addressing space, inability to logically segment fabrics, long
reconfiguration times for large fabrics in case of faults, and, finally, performance
issues when interconnecting large clusters, have rekindled the industry’s interest
into layer-3 routing. In Paper V we examine the layer-3 routing problems in
InfiniBand and we introduce two new routing algorithms for inter-subnet IB
routing. We show that the features provided by the fat-tree topology make it
an excellent choice for the underlying logical backbone of the fabric and the two
routing algorithms reuse the original concepts fat-tree routing is based upon.

VI

Acknowledgements

First and foremost, I wish to express my heartfelt gratitude to my supervisors,
Sven-Arne Reinemo, Tor Skeie, and Olav Lysne who gave me encouragement,
constructive feedback, and guidance through the whole duration of my studies.
Finishing this journey would not be possible without you.

I am also grateful to my friends and colleagues at Simula Research Labora-
tory for making it an attractive place to do research. I am especially indebted to
Wei Lin Guay, Ernst Gunnar Gran and Frank Olaf Sem-Jacobsen, who taught
me so many useful things.

I would also like to thank my colleagues from Oracle Corporation, Bjørn Dag
Johnsen, Line Holen, Lars Paul Huse, Ola Tørudbakken and Jørn Raastad who
supported me during my PhD with their excellent technical skills and motivated
me in difficult moments.

I would not have contemplated this journey if not for my parents, Bożenna
Bogdańska and Bogdan Bogdański, who infused me with a love of science and
creative pursuits. To my parents, thank you.

Finally, I would like to thank my wife, Beata, for her neverending patience,
love and support, and my little son Jan Krzysztof, for his bright and radiant
smile.

VII

Table of Contents

Abstract V

Acknowledgements VII

Table of Contents IX

List of Figures XI

1 Introduction 1
1.1 Context of the Work . 2
1.2 Contributions . 4
1.3 Research Methods . 5

1.3.1 Exploratory Research . 6
1.3.2 Constructive Research . 7
1.3.3 Simulations . 7
1.3.4 Hardware Experiments . 8

1.4 Published works . 8

2 Background 13
2.1 Interconnection Networks . 13

2.1.1 Topologies . 15
2.1.1.1 Shared-Bus Networks 15
2.1.1.2 Direct Networks 17
2.1.1.3 Indirect Networks 17
2.1.1.4 Hybrid Networks 18

2.1.2 Fat-Trees . 19
2.1.2.1 Fat-Tree Variants 20

IX

2.1.2.2 Construction Cost 21
2.1.3 Switching Techniques and Flow Control 22

2.1.3.1 Circuit Switching 23
2.1.3.2 Packet Switching 24
2.1.3.3 Virtual Channels 25

2.1.4 Routing . 26
2.1.4.1 Routing Function 26
2.1.4.2 Taxonomy of Routing Algorithms 27
2.1.4.3 Fat-Tree Routing 28
2.1.4.4 Deadlock . 30

2.2 InfiniBand Architecture . 32
2.2.1 InfiniBand Enterprise Systems 34
2.2.2 Routing in InfiniBand . 35

2.2.2.1 Min-Hop . 36
2.2.2.2 Up*/Down* . 36
2.2.2.3 Dimension Order Routing 37
2.2.2.4 Torus-2QoS . 37
2.2.2.5 LASH . 37
2.2.2.6 DFSSSP . 38

3 Summary of Research Papers 39
3.1 Paper I: Achieving Predictable High Performance in Imbalanced

Fat Trees . 40
3.2 Paper II: vFtree - A Fat-tree Routing Algorithm using Virtual

Lanes to Alleviate Congestion . 41
3.3 Paper III: sFtree: A Fully Connected and Deadlock-Free Switch-

to-Switch Routing Algorithm for Fat-Trees 42
3.4 Paper IV: Discovery and Routing of Degraded Fat-Trees 43
3.5 Paper V: Making the Network Scalable: Inter-subnet Routing in

InfiniBand . 44
3.6 Paper VI: Multi-homed Fat-Tree Routing with InfiniBand 45

4 Conclusions 47
4.1 Future Directions . 47
4.2 Concluding Remarks . 49

Bibliography 51

Published Works 63

X

List of Figures

2.1 The strictly orthogonal direct networks. 16
2.2 Multistage interconnection networks. 18
2.3 XGFT notation cannot be used to describe full CBB [1]. 22
2.4 Virtual channel flow control. 26
2.5 Unidirectional ring with four nodes. 31
2.6 IBA System Area Network. Courtesy of IBTA [p. 89] [2]. 33

XI

Chapter 1

Introduction

The term Super Computing was first used in 19291, however, it was not un-
til the 1960s that real supercomputers were introduced. First supercomputers
consisted of relatively few custom-built processors, but today, massively paral-
lel supercomputers equipped with tens of thousands of commercial off-the-shelf
processors, are a standard. This evolution is best shown by comparing the
performance of the Cray Titan supercomputer, currently one of the fastest su-
percomputers in the world (17.6 PetaFLOPS), with the CDC 6600, the first ma-
chine considered to be a supercomputer (1 MegaFLOP) - the Titan is 1.76∗1010
faster than the CDC 6600. For comparison purposes, this is also the difference
between the land speed of a garden snail (0.017 m/s) and the speed of light in a
vacuum (299 792 458 m/s).

However, it is not only the number and the frequency of the processors that
makes today’s supercomputers so immensely powerful. One of the most impor-
tant aspects of every high-performance system is the interconnect [4], that is,
the network that connects the whole system together. Over the years, various
specialized topologies have been invented, and with this, numerous routing al-
gorithms were designed to forward the traffic within the system in the most
efficient manner.

With the advent of cloud computing and big data, today’s high-performance
systems are facing new complex multi-layered challenges. Routing is only a

1New York World describes the Columbia Difference Tabulator: New statistical machines
with the mental power of 100 skilled mathematicians in solving even highly complex alge-
braic problems were demonstrated yesterday for the first time... in an article entitled: Super
Computing Machines Shown [3].

1

2 CHAPTER 1. INTRODUCTION

small subset of the problem, however, improvement here leads to large gains
system-wide because it may solve scalability, reliability, security and perfor-
mance limitations. Needless to say, successfully addressing these limitations
has always been on the priority lists of several public and private institutions.

The work presented in this thesis, as a collection of research papers [5–
10], aims at contributing to various aspects of the fat-tree routing algorithm
and inter-subnet routing (layer-3 routing) in InfiniBand. The remainder of
this chapter will serve to present a brief description of published works and
applied research methods. Chapter 2 gives a brief description of routing in
InfiniBand while Chapter 3 presents the motivation and summary of each paper.
In Chapter 4, we will discuss future directions and conclude with final remarks.
Lastly, in Appendix A the papers are presented.

1.1 Context of the Work

In this work, we will focus on the fat-tree topology and fat-tree routing algo-
rithms. The fat-tree topology is one of the most common topologies for high
performance computing clusters today, and for clusters based on InfiniBand
(IB) technology the fat-tree is the dominating topology. Not only does this in-
clude high-profile installations from the Top 500 list [11] like Nebulae/Dawning,
TGCC Curie or SuperMUC, but also numerous smaller enterprise IB clusters
like Oracle’s Exadata Database Machine and Exalogic Elastic Cloud systems.

For fat-trees, as with most other network topologies, the routing algorithm
is crucial for efficient use of the underlying topology. The routing algorithm
dictates how to select a path in the network along which to send the traffic. Be-
cause of the rising popularity of the fat-tree topologies in the last decade, there
were many efforts trying to improve the fat-tree routing algorithms. This in-
cludes the current approach that the OpenFabrics Enterprise Distribution [12],
the de facto standard for InfiniBand system software, is based on [13, 14]. De-
spite these numerous efforts, several issues remained unresolved and addressing
them was the driving force behind this work.

The exact behaviour of the InfiniBand fat-tree routing algorithm depends on
the network topology. A single change in the network topology means that the
resulting routing tables will differ with regard to the unmodified topology. This
means that there exist some specific topologies for which the design flaws in the
algorithm can be observed. One of such situations occurs when the number of
compute nodes connected to the tree is reduced. This behaviour is a problem in
situations where the fat-tree is not fully populated with nodes. Such a situation

3 CHAPTER 1. INTRODUCTION

often occurs during cluster construction, for underpopulated clusters ready for
future expansion (a common scenario), and for power saving clusters (green
computing) where end nodes are powered down when not in use. This is also
a common issue in enterprise systems that are limited by the number of rack
units and often cannot utilize all the ports on a densely packed IB switch.

Another related issue is that for fat-tree routing, it is not possible to achieve
all-to-all connectivity between all network nodes. With the general increase in
system management capabilities found in IB switches, the lack of deadlock free
all-to-all communication is a problem because IB diagnostic tools rely on LID
routing and need full connectivity for basic fabric management and monitoring.

Next, the current fat-tree routing algorithm is an oblivious algorithm, that
is, it treats every port in the fabric in the same manner. However, this approach
is inadequate for modern systems where end-nodes are multi-port devices that
are connected to multiple switches for the sake of fault-tolerance. Treating
each port on such nodes independently leads to fault-tolerance issues because
a multi-port node may have a single point of failure despite being redundantly
connected to the fabric.

Finally, many network resources in IB are not utilized to their full extent.
One such example are the Virtual Lanes (VLs). It is a well known fact that
multiple virtual lanes can improve performance in interconnection networks [15,
16], but this knowledge has had little impact on real clusters. This is especially
important for fat-trees that are innately deadlock-free so the VL resources are
not used for anything else than Quality of Service (QoS).

The abovementioned issues give rise to the following research questions
(RQs) that are addressed in this thesis:

• RQ1: How to adapt the fat-tree routing algorithm to modern enterprise
fat-tree topologies?

• RQ2: What network resources can be used to achieve high routing perfor-
mance and full reachability?

Another set of problems concern fault tolerance aspects of fat-tree topologies.
The fat-tree routing is very prone to switch failures. If any failure in the fabric
occurs or if the fabric does not comply with the strict rules that define a pure
fat-tree, the subnet manager fails over to another routing algorithm, which may
be undesirable from the performance point of view. This challenge has led us
to formulate the following research question:

• RQ3: How to make the fat-tree routing more resilient to switch failures?

4 CHAPTER 1. INTRODUCTION

Lastly, the major issue is that the IB specification lacks any detailed descrip-
tion of inter-subnet routing methods. While router devices are well defined, not
addressing subnet management interaction virtually stopped any IB-IB router
development. However, the issue of the limited layer-2 addressing space in IB
led to a renewed interest in IB-IB routers, and, especially for enterprise systems,
the IB-IB router concept is currently gaining momentum. The set of challenges
related to native inter-subnet routing for IB have led us to devise the following
research question:

• RQ4: What are the requirements for the InfiniBand inter-subnet routing
algorithms and how these algorithms can use the local routing information
supplied by intra-subnet routing algorithms?

This dissertation presents and discusses mechanisms aimed at answering
the abovementioned questions. These mechanisms improve the network perfor-
mance, scalability and fault-tolerance. When designing each mechanism, our
main concern was that it should be practical and usable in real scenarios. What
is unique about these improvements is that each of them can work independently
or as a plugin to the unmodified routing algorithm [14]. Combined together,
their feature-base allows to efficiently route enterprise fat-tree-based systems.

1.2 Contributions

In this dissertation, we present a set of routing algorithms that build upon the
original fat-tree routing by Zahavi [14]. The main goal of these algorithms is to
improve the issues encountered when routing modern fat-tree IB systems.

First, we propose four improvements to the intra-subnet fat-tree routing al-
gorithm: Balanced Enhanced Fat-Tree Routing (BEFT) [5], vFtree [6], sFtree [7],
and mFtree [10]. BEFT is a major improvement over the original fat-tree rout-
ing because it solves the problem in which the throughput per node deteriorates
both when the number of nodes in a tree decreases and when the node distribu-
tion among the leaf switches is non-uniform. vFtree is the first routing algorithm
for IB networks that uses VL not for deadlock-avoidance but for performance
increase in case of hot-spots. This solution is not only inexpensive, scalable, and
readily available, but also does not require any additional configuration. sFtree
is an extension to the fat-tree routing that enables full connectivity between any
of the switches in a fat-tree when using IPoIB, which is crucial for fabric man-
agement features such as the Simple Network Management Protocol (SNMP)
for management and monitoring, Secure SHell (SSH) for arbitrary switch access,

5 CHAPTER 1. INTRODUCTION

or generic web-interface access. This extension is also essential for systems that
run the subnet manager on spine switches, so that Local IDentifier (LID) routed
IB packets can be sent from one switch to another. mFtree is the last extension
that makes sure that redundancy is achieved for multi-port end-nodes. Each
improvement can be treated as a separate routing algorithm, but because they
all touch upon a different problem, they can be combined together to deliver
optimal performance when routing fat-tree topologies.

Furthermore, we propose two new routing algorithms for inter-subnet rout-
ing [9]. First, inter-subnet source routing (ISSR) is a generic routing algorithm
that uses the source routing concept to send the packets between two or more
subnets without any a priori knowledge about the target subnet. Second, the
inter-subnet fat-tree routing (ISFR) is a specialized routing algorithm that is
designed to work only on subnets that are fat-trees themselves.

Lastly, we propose a method for discovering the fat-tree fabric that uses
reliable fabric information (switch roles) that are coded into the devices in-
stead of trying to use the best-effort method that uses Global Unique IDentifier
(GUID) lists or leaf switch marking by discovering the Host Channel Adapters
(HCAs) [8]. Using the switch roles, we are able to assign a vendor specific switch
role to each switch in the fabric, so the routing algorithm does not have to con-
duct any discovery when encountering a specific switch. Using the GUID lists
shall yield the same effect, but it requires non-trivial effort to maintain a correct
list following multiple component replacement operations. On the other hand,
switch roles can be saved and restored as part of normal switch configuration
maintenance following component replacements since it is not tied to the actual
hardware instance like hardware GUIDs.

In the same paper, we also suggest a method for improving the fat-tree
routing on degraded fat-trees. Until our proposal, the fat-tree routing was very
strict when it came to fat-tree compliance checks, that is, even a failure of a
single link could make the subnet manager fall back to suboptimal MinHop
routing. This not only had detrimental effect on the performance, but also
made the deadlock occurrence a real possibility. With our proposal, the subnet
manager does not fall back to MinHop routing in case of simple failures, and we
have shown that this leads to much better overall performance.

1.3 Research Methods

In this section, we describe the methodologies and approaches that we applied
when conducting the research. First, the research problem was defined by us-

6 CHAPTER 1. INTRODUCTION

ing exploratory research [17], which was based on code analysis, data analysis
and literature review. Having familiarized ourselves with a problem, construc-
tive research [18] was applied to test theories and propose a final solution to
the problem. It involved designing (constructing) the solution with diagrams,
data-blocks and models, and later creating the pseudocode and prototyping the
solution in a software language. If applicable, at this stage, also the simulation
model was built for testing the solution. Lastly, for the solution to be viable,
data had to be collected, analysed and compared with previous software imple-
mentations. In our case, for all the papers this was done by means of simulations,
however, where applicable, hardware experiments were also conducted.

1.3.1 Exploratory Research

To define, investigate and understand the initial problem a variety of research
methods were used. The most used ones were data analysis and code analysis.
Since most of the research presented in this thesis builds upon existing systems,
it was enough to test the current state-of-the-art to understand its shortcom-
ings by isolating the key relationships between various variables influencing the
behaviour of the system. This allowed us to quickly obtain valid results, which
is essential during initial study. This method was applied to address RQ1, RQ2
and RQ3, which required the system to be understood thoroughly before any
improvements were proposed.

In the context of this thesis, the process of measurement was a critical step
during this initial research phase. Narrow tests were conducted to analyse a
specific feature on a well-defined system and data about its behaviour was col-
lected. Since using a real system would be time consuming and expensive, a
model of each system was built and tested using available network simulation
tools like ibsim or IBMgtSim [19,20]. These tools are intended to allow building
large scale IB systems mainly for troubleshooting purposes by running native
IB management tools on a simulated fabric. Next, the data dumped by the
subnet manager running on such a simulated fabric was analysed against the
code of the routing algorithm to understand the behaviour of the system. This
process was repeated multiple times on different systems, so that patterns could
be established and the problem could be well-defined. Furthermore, literature
review was used as a secondary research method during the initial research
phase. Using the research databases, a background study in the related litera-
ture was conducted, so that similar solutions and approaches could be analysed
for additional input.

7 CHAPTER 1. INTRODUCTION

1.3.2 Constructive Research

The first step in designing and implementing the solution was to present it
using the available software modelling language [21] by means of diagrams,
data-blocks and models. Next, the necessary data structures and algorithms
were established and a high-level pseudocode was written to describe the final
solution. Lastly, the solution was implemented in a software language and
refined multiple times until it was tested on a simulated fabric or on a small
cluster. Such an approach was especially useful to address RQ1, RQ2 and RQ3
where the proposed algorithms required multiple stages of validation.

The refining of the solution was conducted in a similar manner as the initial
data analysis. Data dumped from the network simulator was analysed against
the software code, and, if any discrepancies were found between the desired
result and the actual results, the software code was modified. This was quite
expensive and time consuming, however, it was the main research method ap-
plied in this thesis to develop the solutions, and allowed for easy repetitions of
experiments using different parameters and topologies. In our case, this method
was applied for all research papers apart from Paper V [9]. Using this research
method allowed us to test the solution on large-scale systems comprising of
thousands of nodes, which would not be ordinarily possible due to availability
and security requirements of real systems. Furthermore, by testing our solutions
in such a manner, we made sure that they do not break the system and they
could be later safely introduced into commercial products.

Another research method used to construct the solution was simulation. It
was mostly used for the inter-subnet routing in InfiniBand (RQ4) because there
are no commercially available native IB-IB routers that suited the needs of the
research and, as such, hardware experiments could not be conducted. Simulation
itself required us to first create a model of the simulated object using a network
description language [22] that corresponded with the real-life entity and later
to abstract its function in the software layer. The main simulator tool used for
evaluations was the OMNeT++/OMNEST network simulator [23].

1.3.3 Simulations

Simulation is a research method that abstracts the functions of a real system
using a software model. Such a software model is especially useful for large-
scale evaluation where the size of the system is limited only by the memory of
the machine on which the simulation is run. Since most of our systems were
predictable in a sense that the number of variables influencing the system was

8 CHAPTER 1. INTRODUCTION

known, the simulations were used to evaluate the performance of various routing
algorithms for different scenarios. Simulations also have the additional benefit of
being non-disruptive, so there was no risk in causing downtime to a real system
by failing links or disconnecting devices. In our case, simulations were the most
important tool for evaluating the performance and scalability of our solutions
and were used in each of the research papers as method confirming the viability
of the solution.

1.3.4 Hardware Experiments

Experiments are an expensive research method and due to the size of the systems
analysed in this thesis, they were used only in Paper II [6], Paper III [7] and
Paper VI [10] (all address RQ2 and Paper II and Paper III also address RQ1).
Experiments allow us to dynamically control the system by being able to fine-
tune its every aspect. Even though setting up hardware experiments takes
much longer than setting up a simulation, it is more rewarding in a sense that
obtaining the results for a ten second experiment takes exactly ten seconds while
obtaining the same results from a simulation may take several days.

Because experiments are performed on a real system, extra layers of com-
plexity are added that are not present during simulations. One case can be the
selective resetting (depending on the cable manufacturer) of fibre links when the
switch firmware is upgraded, which may cause unexpected behaviour. Another
case is the very limited management capabilities of older IB switches, which
makes conducting some experiments impossible. Furthermore, a large problem
for IB is that many of the advanced features are embedded into the switch
firmware. This not only means that these features are not available on older
systems, but also that they are usually proprietary and not compatible between
various switch manufactures.

1.4 Published works

The conclusions presented in this thesis are based on results that were published
or accepted for publication.

The results regarding Balanced Enhanced Fat-Tree Routing were published
in [5]. Next, the vFtree work was presented in [6]. Work related to sFtree
routing algorithm was covered in [7]. The switch roles, fat-tree discovery and
routing of degraded fat-trees was published in [8]. Work related to inter-subnet
InfiniBand routing is a result of collaboration with researchers at Departamento

9 CHAPTER 1. INTRODUCTION

de Informática de Sistemas y Computadores (DISCA) at Technical University
of Valencia, Spain and was published in [9]. Lastly, the final paper on mul-
tihomed routing in InfiniBand was accepted to 22nd Euromicro International
Conference on Parallel, Distributed and Network-Based Processing. All paper
titles, including place of publication and authors, are listed below:

Research Papers

Paper I:

Title: Achieving Predictable High Performance in Imbalanced Fat Trees
Authors: Bartosz Bogdański, Frank Olaf Sem-Jacobsen, Sven-Arne Reinemo,
Tor Skeie, Line Holen and Lars Paul Huse
Venue: Proceedings of the 16th IEEE International Conference on Parallel and
Distributed Systems (ICPADS 2010), pages 381–388, IEEE Computer Society,
December 2010, Beijing, China.

Paper II:

Title: vFtree - A Fat-tree Routing Algorithm using Virtual Lanes to Alleviate
Congestion
Authors: Wei Lin Guay, Bartosz Bogdański, Sven-Arne Reinemo, Olav Lysne,
and Tor Skeie
Venue: Proceedings of the 25th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2011), pages 197–208, IEEE Computer Society,
May 2011, Anchorage, USA.

Paper III:

Title: sFtree: A fully connected and deadlock free switch-to-switch routing
algorithm for fat-trees
Authors: Bartosz Bogdański, Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen,
and Ernst Gunnar Gran
Venue: ACM Transactions on Architecture and Code Optimization (ACM
TACO), Volume 8 Issue 4, January 2012, Paris, France.

10 CHAPTER 1. INTRODUCTION

Paper IV:

Title: Discovery and Routing of Degraded Fat-Trees
Authors: Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo, and
Frank Olaf Sem-Jacobsen
Venue: Proceedings of the 13th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies (PDCAT 2012), pages 689–
694, IEEE Computer Society, December 2012, Beijing, China.

Paper V:

Title: Making the Network Scalable: Inter-subnet Routing in InfiniBand
Authors: Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo and
José Flich
Venue: Proceedings of the Euro-Par 2013 International Conference, pages 685–
698, Springer Berlin Heidelberg, August 2013, Aachen, Germany.

Paper VI:

Title: Multi-homed Fat-Tree Routing with InfiniBand
Authors: Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo
Accepted to: 22nd Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing, IEEE Computer Society, February,
2014, Turin, Italy

Patents

Most of the methods presented in this thesis are patented or patent pending.
The patents are as follows:

• ORACL-05282US1, System and method for using virtual lanes to alleviate
congestion in a fat-tree topology (granted as US20130121149)

• ORACL-05279US1, System and method for providing deadlock free rout-
ing between switches in a fat-tree topology (granted as US20130114620)

• ORACL-05383US0, System and method for supporting sub-subnet in an
InfiniBand (IB) network (granted as US20120307682)

• ORACL-05387US1, System and method for routing traffic between dis-
tinct InfiniBand subnets based on source routing (granted as US20130301645)

11 CHAPTER 1. INTRODUCTION

• ORACL-05387US2, System and method for routing traffic between dis-
tinct InfiniBand subnets based on fat-tree routing (granted as US20130301646)

• ORACL-05418US1, System and method for supporting discovery and rout-
ing degraded fat-trees in a middleware machine environment (non-provisional
patent submitted)

• ORACL-05477US0, System and method for supporting multi-homed fat-
tree routing in a middleware machine environment (provisional patent
submitted)

Chapter 2

Background

This chapter starts with a brief introduction to lossless interconnection networks
contextualized in terms of topologies and routing in Section 2.1. Next, in Sec-
tion 2.2, a comprehensive description of InfiniBand Architecture is presented.

2.1 Interconnection Networks

Interconnection networks were traditionally defined as networks that connect
multiprocessors. However, interconnection networks evolved dramatically in the
last 20 years and nowadays play a crucial role in other areas like storage area
networks (SAN) or high-performance computing (HPC) clusters. The focus of
this thesis is on the routing protocols for InfiniBand interconnection technology.
InfiniBand is commonly used as the networking component in HPC, SAN or
enterprise database deployments that handle very large amounts of data.

Interconnection networks, as all data networks, consist of two basic elements:
network nodes that generate, route and consume the data, and the communica-
tion medium that is used to connect the network nodes to form a data network.
Network nodes include both the hosts and the networking hardware such as
switches or routers. In case of interconnection networks, the hosts generate
and consume (we shall refer to those as source nodes and destination nodes,
respectively) the majority of data while switches and routers forward the traf-
fic through the network from the source node to the destination node. The
communication media used to connect the network nodes to form an intercon-
nection network may include electrical cables or optical cables of varying speeds

13

14 CHAPTER 2. BACKGROUND

and characteristics. In this thesis, we will only consider switched networks with
point-to-point links between the network nodes, and we will not discuss in detail
any shared media networks1.

Even the simplest interconnection network consisting of two interconnected
network nodes forms a network topology. A network topology is the layout or
the organization of the interconnected nodes that describes the structure of the
network. A topology can be either physical when it describes the shape of the
communication medium and placement of the network nodes, or logical, when
it describes the paths that the data takes between the network nodes.

The logical topologies are usually determined by the routing whose goal is
to select the paths (sequences of intermediate nodes and links) for the data
flowing from the source nodes to the destination nodes. Because in most of the
topologies there are many paths that the data can take, there are also many
approaches as how to compute the best path for the data. Based on the approach
the routing algorithm takes to select the path for the data it can be classified
according to multiple criteria [25, p. 140-145]. A good path is the one that has
a minimal number of hops (number of traversed network nodes) and uses the
network resources in a balanced manner [26, p. 13]. In the majority of data
networks, the selection of a routing algorithm is a critical decision that has an
impact on both the network latency and the network throughput [27]. Latency
is the time elapsed between the time a message is generated at the source node
and the time it is delivered to the destination node [25]. Throughput is the
maximum amount of data delivered by the network per unit of time [25].

The data flowing between the network nodes usually forms traffic patterns
that depend on the characteristics of the applications running on the nodes
and their relative contribution to the overall traffic. One of the problems with
selecting an optimal routing algorithm is that the choice varies depending on the
network traffic conditions. For uniform traffic pattern, where the distribution
of destinations is uniform for each contributing source, the performance of some
algorithms may be higher than the performance of others. When traffic is not
uniformly distributed and there are regions of traffic congestion (hotspot areas),
the situation may be reversed [25, p. 199].

Another aspect of interconnection networks that influences their perfor-
mance is the switching technique, which is also tightly related both to flow
control and buffer management. The switching technique defines how packets
flow through a switch or a router from the ingress to the egress port while flow

1Shared media networks are those where a set of nodes is connected to a common medium
like for example the original Ethernet over a shared coaxial cable [24].

15 CHAPTER 2. BACKGROUND

control and buffer management mechanisms determine the packet flow through
a link between two network nodes.

In Section 2.1.1 a more detailed information will be presented about pop-
ular topologies present in today’s interconnection networks. Section 2.1.2 is
devoted to the fat-tree topology, which is the main topology studied in this
thesis. Switching techniques and flow control mechanisms will be discussed in
Section 2.1.3. Finally, a discussion about routing and routing algorithms will
follow in Section 2.1.4.

2.1.1 Topologies

Topologies for interconnection networks can be classified into four major groups:
shared-bus networks, direct networks, indirect networks and hybrid networks [25].
In this thesis, the focus is on indirect networks. The choice of topology is one of
the most important steps when constructing an interconnection network. The
chosen topology combined with the routing algorithm and application’s work-
load determines the traffic distribution in the network.

Ideally, a topology would have no need for routing. This could be achieved
by connecting each node with every other node so a fully-connected topology
(or a full-mesh) is built, however, such a design is cost-prohibitive and very
impractical due to scalability issues that become an issue for larger networks.

First, in a topology consisting of n nodes, one would require n(n−1)
2 bidirectional

cables to connect all nodes in a full-mesh pattern. Second, each node would have
to have enough available ports to connect to all the other nodes. Last, the cables
occupy space and the wiring area in a data center rack is usually very limited.
Because of these reasons, there are many topologies that try to compromise
between the cost of constructing the network and the achieved performance.

2.1.1.1 Shared-Bus Networks

The simplest and the easiest way to connect multiple nodes together is to use a
shared-medium network [28, p. 17]. This network is characterized by all nodes
being connected to a single bus and the communication is broadcast in nature,
that is, all nodes receive the packets injected into the network but only the
destination node interprets them. When two nodes want to transmit at the
same time a collision may occur, so many such networks will have a collision
avoidance scheme in place. An example of such a network is a ring topology.

16 CHAPTER 2. BACKGROUND

src int 2int 1

dst

int 3

(a) 4D hypercube

src

dst

int 1

(b) 2D torus

src

dst

int 1

int 5

int 6

int 4

int 3int 2

(c) 2D mesh

Figure 2.1: The strictly orthogonal direct networks.

17 CHAPTER 2. BACKGROUND

2.1.1.2 Direct Networks

The second group of topologies are the direct networks. The term direct network
refers to topology in which each network node acts as both a switch and a
computing node. There is a large range of different direct networks existing in
current HPC systems. The most popular ones are built according to the k -ary
n-cube definition2 [29]. Such topologies consist of n dimensions with k switching
elements in each dimension. The radix, k, may be different for each dimension.
An example of such topologies: a hypercube, a torus, and a mesh are shown on
Fig. 2.1(a), Fig. 2.1(b), and Fig. 2.1(c), respectively. A mesh can be visualized
as a grid structure, usually in two or three dimensions and a torus is a mesh
with added wraparound links to the edges of the mesh grid, thus, making it
set of interconnected rings. Meshes, hypercubes and tori belong to a family of
topologies referred to as strictly orthogonal. Such topologies are characterized
by having at least one link in every direction, which makes routing simple [25]
because of their regular structure. The dotted lines depicted on Fig. 2.1 mark
the links carrying data traffic from a src node to a dst node through a set of
intermediate (int) nodes when a simple dimension-order routing algorithm is
applied to each topology. Since each node is described by a set of (x, y, z, ...)
coordinates, such an algorithm uses a finite-state machine that nullifies the
offset between the src and the dst nodes in one dimension before routing the
next dimension.

Another example of a newly proposed random graph topology is Jellyfish [30]
in which switches are randomly connected with each other and all nodes are
distributed uniformly among all the switches. Jellyfish allows constructing
arbitrary-size networks and easy expansion of existing networks, however, rout-
ing, cabling and troubleshooting challenges are still not fully resolved.

2.1.1.3 Indirect Networks

The third group of topologies, and the one that will will be the main topic of
this thesis, are the indirect networks. Similarly to the direct networks, there are
many possible varieties of indirect networks. The most popular ones are called
multistage interconnection networks (MINs) where computing nodes are con-
nected to the same switching stage, and traffic between the source and the desti-
nation nodes flows through one or more intermediate switching stages. MINs are
considered to be expensive networks to build, but due to their high capacity, they
are often seen in modern high-performance systems. Examples of MINs include

2Sometimes a mesh topology is referred to as a k -ary n-mesh.

18 CHAPTER 2. BACKGROUND

(a) A butterfly network with 16 nodes and 12
switches.

(b) A fat-tree network with 32 nodes and 24 switches.

Figure 2.2: Multistage interconnection networks.

Clos [31], Beneês [32], Delta [33], butterfly [26, p. 75] (shown on Fig. 2.2(a)),
flattened butterfly [34] and fat-tree [35] (shown on Fig. 2.2(b)) topologies. The
fat-tree topology will be discussed in more detail in Section 2.1.2.

2.1.1.4 Hybrid Networks

The last group of topologies are the hybrid ones. Usually, these are the topolo-
gies that cannot be strictly classified as direct or indirect because they combine
the characteristics of both of these groups. An example of such a topology is the
dragonfly [36]. It is a hierarchical topology which consists of n group topolo-
gies and an inter group topology. The topology inside a single group can be

19 CHAPTER 2. BACKGROUND

any topology3. Each group is connected to all other groups directly using the
inter group topology. Another example of a hybrid topology, that combines the
aspects of shared-medium and direct networks is the hypermesh [37] that can
be described as a ”mesh of buses”, that is, a topology where multiple buses are
connected in multiple dimensions in such a way that each node is connected to
every other node in the same dimension.

The distinction between direct and indirect networks is largely academic
since every direct network can be redrawn into an indirect network by splitting
each node into a separate switching unit and a computing unit [26, p. 47].
However, we can distinguish the direct and indirect networks in another way:
for direct networks every switching unit is associated with computing nodes
whereas in indirect networks only a subset of switches are connected with the
computing nodes.

Many of the topologies mentioned here are used in today’s supercomputers
and enterprise data center systems: fat-tree topologies are used for example in in
Tianhe-2 or SuperMUC supercomputers or in Oracle’s engineered systems [38].
Another example is Fujitsu’s 6D Mesh/Torus that is used in the Japanese K
computer [39] that treats 12 compute nodes connected as a 2x3x2 3D Mesh as
nodes of a 3D Torus.

2.1.2 Fat-Trees

The fat-tree topology is one of the most common topologies for HPC clusters
today, and for clusters based on InfiniBand (IB) technology the fat-tree is the
dominating topology. There are three properties that make fat-trees the topol-
ogy of choice for high performance interconnects: (a) deadlock freedom, the
use of a tree structure makes it possible to route fat-trees without using virtual
channels for deadlock avoidance; (b) inherent fault-tolerance, the existence of
multiple paths between individual source destination pairs makes it easier to
handle network faults; (c) full bisection bandwidth, the network can sustain
full speed communication between the two halves of the network.

Fat-trees are innately fault-tolerant due to path diversity, that is, multiple
paths connecting each source with each destination. Sem-Jacobsen proposed
various mechanisms that improve fault-tolerance in fat-trees [40–46]. The path
diversity of fat-trees was also exploited in multiple works addressing scalable
data center designs [47–51]. The fault-tolerant aspects of the work presented

3The recommendation in [36] is the flattened butterfly.

20 CHAPTER 2. BACKGROUND

in this thesis use and expand the groundwork that was established by Sem-
Jacobsen.

2.1.2.1 Fat-Tree Variants

The fat-tree topology was introduced by Leiserson in [35]. Since then, fat-trees
have been extensively studied beginning with Distributed Random Access Ma-
chines [52, 53] through the seminal paper on the CM-5 supercomputer [54] and
until they have become a common topology in HPC and attracted increasing
attention in commercial data center networks [47, 48, 55]. The fat-tree is a lay-
ered network topology with equal link capacity at every tier4, and is commonly
implemented by building a tree with multiple roots. The fat-trees can be built
using several definitions, of which the most popular are the m-port n-tree def-
inition [56] and the k -ary n-tree definition [57]. The k -ary n-tree definition -
similarly to the k -ary n-cubes and k -ary n-flies [58] - describes a subclass of
regular fat-trees that can be constructed by varying two parameters k and n.
A topology built using this definition will have a recursive structure and will
consist of kn end nodes and nkn−1 2k-port switches. On the other hand, an
m-port n-tree consists of 2(m/2)n end nodes, (2n−1)(m/2)n−1 m-port switches
and has a height of n + 1. Both of these definitions, however, cannot describe
many of the fat-tree topologies that are used in real systems because they are
unable to represent multiple links connecting two switches nor different number
of connections at each level.

GFT and XGFT notations presented by Öhring [59] describe generalized
fat-trees. GFT (h,m,w) describes a fat-tree of height h and consisting of mh

end nodes. Each non-root switch and end node has w parent switches and
each switch has m children. XGFT (h;m1, ...mh;w1, ...wh) extends GFT by
allowing to choose m and w parameters independently for each fat-tree stage,
therefore, varying the number of switches and links between different fat-tree
stages. mL is the number of different nodes at level L − 1 connected to the
nodes at level L and wL is the number of different nodes at level L connected
to nodes at level L − 1. With this notation, most of the simple fat-trees can
be described. Nevertheless, real systems often use multiple parallel connections
between two nodes to preserve the Cross Bisectional Bandwidth (CBB) and
XGFT is unsuitable to describe such systems because it allows only a single
connection between a pair of nodes.

Another fat-tree variant was introduced by Valerio et al. in [60] and it aimed

4This feature applies only to balanced pure fat-trees.

21 CHAPTER 2. BACKGROUND

at maximizing the number of leaf connections in the topology. However, this
variant removed one of the main fat-tree characteristics - multiple paths - and
so an extension alleviating this issue was proposed in [61]. Nevertheless, none
of the above notations could capture all real-life fat-trees, Zahavi [1] proposed
Parallel ports Generalized Fat-Tree (PGFT) and Real-Life Fat-Tree (RLFT)
notations to describe practical fat-tree used in today’s HPC systems.

PGFT (h;m1, ...mh;w1, ...wh; p1, ...ph) is defined similarly to XGFT with the
additional pL parameter, which is the number of parallel links connecting two
nodes at levels L and L − 1. RLFT is a notation that is derived from PGFT
to describe real-life fat-trees. All RLFT have full CBB, which means that the
number of input ports on each node is equal to the number output ports on the
same node: mLwL = mL+1wL+1. Next restriction is that the number of ports
on each switch is a constant value, that is, the same switch model is used at all
levels of the fat-tree. The last restriction is that the end-ports are connected
with a single link to the fat-tree, that is: w1 = p1 = 1. Fig. 2.3 shows an
example of a XGFT(2;4,4;1,2) and PGFT(2;4,4;1,2;1,2) (which is also a RLFT).
We can notice that using XGFT notation it is not possible to represent two links
between a pair of switches and the requirement for full CBB cannot be met.

2.1.2.2 Construction Cost

There were numerous studies that took into account the cost of constructing a
fat-tree and compared it to other network topologies [35, 47, 62, 63]. The gen-
eral agreement is that the cost of constructing a fat-tree can be lowered by
using high-radix switches. It is also well-established that the most cost-effective
topology solutions are meshes and 3D-Tori [64]. The general agreement is that
building fat-trees with CBB yields more performance but at an often prohibitive
cost, therefore, real fat-tree fabrics are very often oversubscribed. By oversub-
scription we mean that the network bandwidth at different fat-tree stages is not
equal. An oversubscription ratio of 2:1 is claimed to reduce the overall cost by
up to 50% depending on the size of the fabric [65]. When a fabric is oversub-
scribed, the input nodes do not achieve the full bandwidth of the fabric, but the
low latency is maintained, which is a desirable trade-off for applications that
require low latency and moderate bandwidth. Despite the high cost, fat-trees
are universal topologies [35], that is, for a given physical volume of hardware, no
other topology will be much better5 than a fat-tree. Even though other topolo-
gies such fat-pyramids [66, 67] or fat-stacks [68] can simulate other topologies

5Leiserson in his seminal work [35] proves that the experienced slowdown is at most poly-
logarithmic for any topology of comparable physical volume that is simulated using a fat-tree.

22 CHAPTER 2. BACKGROUND

1;0 1;1

0;0 0;1 0;2 0;3

(a) XGFT(2;4,4;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

(b) PGFT(2;4,4;1,2;1,2)

Figure 2.3: XGFT notation cannot be used to describe full CBB [1].

with less slowdown, the fat-tree is still the most popular universal network due
to its lower construction cost. Furthermore, by increasing application locality,
the cost of constructing a fat-tree can be optimized by introducing a thin-tree
topology [69], which has reduced bandwidth at upper tree stages.

2.1.3 Switching Techniques and Flow Control

The majority of interconnection networks are labelled as lossless, that is, packet
drops (losses) under normal network conditions are not allowed. The special
conditions that allow packet drops usually occur when: a deadlock-recovery
scheme is in effect (further described in Section 2.1.4.4, a host or link integrity
error, an excessive buffer overrun or a flow control update error happen result-
ing in a corrupted packet. Also, selective packet retransmission and out-of-order

23 CHAPTER 2. BACKGROUND

packet delivery are usually not supported. In a lossless network, if a retrans-
mission is required due to one of the above errors occurring, the missing packet
along with all the subsequent packets is retransmitted by the source node.

Due to these restrictions, lossless networks implement flow control mecha-
nisms that manage the number of packets a link between two nodes can receive
at any time in such a way as to minimize resource conflicts that would otherwise
lead to network errors. The resources that are controlled by the flow control
mechanisms are the buffers that hold the flits (flow control digits - the small-
est unit of information that is recognized by the flow control mechanism), the
bandwidth of channels that transport them and the channel state.

The goal of a flow control strategy is to make sure that the receiving node
always has available buffer space when a packet arrives. In other words, flow
control strategy decides how to allocate the network resources so that the net-
work is efficient. Typically, the channels and the buffers are coupled with each
other. It means that when a particular buffer is allocated to a packet, only
this packet can use the associated channel. This implies that such a packet can
sometimes block other packets that need to use the same channel.

A switching technique, on the other hand, controls how a packet or a flit
internally pass through a node from the node’s ingress port to its egress port.
There are two main families of switching techniques, circuit switching and packet
switching, each of which having its own advantages and disadvantages [70].

2.1.3.1 Circuit Switching

The idea of circuit switching can be traced to the early telecommunication net-
works. During a telephone call, electro-mechanical crossbar switches in the tele-
phone exchanges established and reserved a continuous path between the two
telephone nodes and that path was deallocated only when the telephone call
ended. The procedure is similar in modern data networks where the necessary
resources across the network are allocated before data communication between
the two nodes starts, which means that buffers are not required. Circuit switch-
ing has the advantage of being very simple to implement [70], however, due
to efficiency issues, strict requirements for resource availability, and the delays
caused by the circuit setup phase, this switching technique is not often found
in modern interconnection networks.

24 CHAPTER 2. BACKGROUND

2.1.3.2 Packet Switching

Packet switching was invented by Paul Baran [71] in the 1960s. The fundamental
difference between circuit switching and packet switching is that for packet
switching, all transmitted data is grouped into sized blocks called packets where
each packet is independently forwarded through the network. Such an approach
allows to take independent routing and forwarding decisions in a per hop-by-
hop fashion [70]. Packet switching techniques can be divided into three main
groups: Store-And-Forward (SAF) [28, p. 356], Virtual Cut-Through (VCT) [72]
and wormhole flow control [73, 74].

SAF is a technique where the whole packet is received (stored) before it is
forwarded towards the next node. SAF has the disadvantage of an end-to-end
delay caused by accumulating the whole packet in the node’s memory before it is
forwarded to the next-hop node. This end-to-end delay increases proportionally
with each subsequent hop on the path between the source and the destination
nodes. Another disadvantage of SAF is that it puts an upper limit on the
maximum packet length because each packet must be completely stored in the
available buffer space of a switch. However, SAF is easy to implement and
has the advantage of easily detecting damaged packets through computing and
comparing the cyclic redundancy check (CRC) packet field. SAF was often used
in Ethernet switches, however, in the last few years it lost ground to the more
efficient cut-through switching.

On the other hand, when performing VCT switching, the node does not
wait until the whole packet is received before it starts transmitting it to the
next node. Each data packet contains routing information in the packet header
that allows the intermediate node to select the egress port and start sending the
packet as soon as that information is received and the destination address has
been looked up. This approach allows to reduce the latency since the node does
not wait to receive the whole packet, and is currently used in all the ultra-low
latency technologies like InfiniBand or Data Center Ethernet.

In some congestion scenarios, the VCT switching may still require the packet
to be completely stored in the buffer before acting on it. This occurs when the
selected egress port is busy with transmitting packets coming from other ingress
interfaces. In such a situation, the node needs to buffer the packet on which the
routing decision has already been made, therefore, lowering the performance to
a level similar to SAF. This problem is addressed by the wormhole flow control
that operates similarly to VCT, but allocates buffers not in packet units but in
flit units. This means that one packet can occupy buffers in several nodes as it is
forwarded across the network. In wormhole flow control the buffer space required

25 CHAPTER 2. BACKGROUND

is much smaller than for VCT and it is used much more efficiently. Wormhole
flow control has the disadvantage of complicating the deadlock problem because
a single packet spans across multiple nodes and flits do not contain routing
information, so buffer allocation cannot be restricted [75, 76]. Furthermore, if
no flit buffers are available to hold a flit, wormhole flow control may block a
channel in mid-packet [26].

2.1.3.3 Virtual Channels

The concept of virtual channel6. (VC) flow control was introduced by Dally
in the late eighties [77]. In interconnection networks that use a credit-based
flow control mechanism the main advantage of using VCs is to decouple the
buffer allocation from the channel allocation. Normally, the receiving node
keeps record of the available buffer space for each of its links by decreasing
the credit counter when buffer space is allocated and increasing it when the
buffer space is deallocated. The sending node, on the other hand, records the
amount of credits it is allowed to send. At regular intervals, the receiving node
informs the sending node how many credits it is allowed to send. This is done
to synchronize the credit counters, which may have different values if a packet is
lost due to CRC errors. VCs offer an improvement to flow control mechanisms
by allowing to logically split the link’s physical resources into several virtual
resources. This means that each such virtual link has its own buffer space and
flow control resources.

Fig. 2.4 presents an example of VC credit-based flow-control. VC0 runs out
of credits when it consumes the credit after the first cycle (depicted by a bold
D). It has to wait until a new credit is available, which happens at cycle 9 (the
credit is depicted by a bold C). Other VCs are unaffected by the lack of credits
at VC0. Furthermore, the physical share of the bandwidth that was used by
VC0 is used by VC1 and VC2. Adding a VC to a link does not add physical
bandwidth to that link, but it allows for a more efficient use of the available
resources. It has been demonstrated that VCs improve the overall network
performance [15,78] and, in our case, we also used the concept of VCs to address
RQ2 in Paper II [6]. Furthermore, the concept of VCs makes it possible to build
virtual networks on top of a physical topology. These virtual networks can be
exploited for multiple purposes such as efficient routing, deadlock avoidance,
fault-tolerance and service differentiation.

6In this thesis, we will often use the term virtual lanes (VLs) to describe VCs.

26 CHAPTER 2. BACKGROUND

VL0
VL1
VL2

D
D

D
D

D
D

D
D

D
D

D

C
C

C
C

Cycle

Ph
ys

ic
al

 li
nk

In
te

rfa
ce

C = CreditsD = DataVL = Virtual lane/channel

C

R
EC

V

SE
N

DD

Figure 2.4: Virtual channel flow control.

2.1.4 Routing

The goal of a routing is to select a path along a network for packets flowing
from a source node to a destination node. Looking at any network presented
on Fig. 2.1 and Fig. 2.2, one can observe that there are multiple possible paths
between a pair of nodes. The responsibility of a routing algorithm is to select
a path from such a set of possible paths. Routing algorithms differ in many
respects and they can be classified using various metrics such as: the timing
of the routing decision and its location, the number of supported destinations,
implementation (table lookup or finite-state machine), how many alternative
paths are provided and how a specific path is chosen. A good routing algorithm
tries to balance the traffic across multiple links and the more balanced is the
usage of links in the topology, the better is the network throughput.

2.1.4.1 Routing Function

Routing function (or a routing engine) controls how the forwarding table in a
switch or a router is constructed. Routing function can be defined in three
fundamental ways [26, p. 163], but in this thesis, we will only consider two of
them because they directly relate to our research in InfiniBand networks.

The first one is R : N×N → ϕ(C) where N is any node and C is a channel. A
routing function defined in such a way is called an incremental routing function.
Such a function is executed at every node x to which a packet with a destination
y arrives and it returns a set of output channels towards the destination node
y. Formally, the relation is defined as D = R(x, y) where D ⊆ Cxoutput . This

27 CHAPTER 2. BACKGROUND

routing function is most commonly used in TCP/IP and InfiniBand networks.
The second relation is R : C × N → ϕ(C) where N is any node and C

is a channel. It is also an incremental routing function that is executed at
every intermediate node, but instead of taking the current node x as one of the
parameters, it takes an input channel cx. Again, the formal relation returning
a set of channels can be defined in the following manner: D = R(cinputx , y)
where D ⊆ Cxoutput . The set of channels returned by this routing function
provides additional information to the routing algorithm and allows to decouple
the dependencies between the input and the output channels, which is exploited
to avoid deadlocks [26, p. 164]. Furthermore, this relation can be extended
to take into account any kind of routing information into consideration when
choosing the output channel: D = R(z, y) where z ⊆ Nsrcaddr

or z is the set
of nodes traversed so far. Such a routing function is used for the ISSR routing
algorithm – one of the inter-subnet routing algorithms we propose in Paper
V [9].

2.1.4.2 Taxonomy of Routing Algorithms

There exist multiple classifications of routing algorithms [28, 79–85], however,
the most complete one was presented by Duato [25, p. 140]. It extends the
previous work by Gaughan [85] and classifies the algorithms using the following
four principal features.

First, routing algorithms are classified based on the number of destinations
they support. Unicast routing algorithms support packets that have only a
single destination and multicast routing algorithms support packets that can
reach multiple destinations. Examples of unicast routing algorithms for In-
finiBand are fat-tree routing [14], LAyered SHortest path routing (LASH) [86]
or Deadlock-Free Single-Source Shortest Path (DFSSSP) routing [87]. There
are various multicast routing algorithms with each differing as to how build
the delivery tree - the collection of nodes and links that the multicast packets
traverse, however, the most popular is the Protocol Independent Multicast -
Sparse Mode [88] protocol. In this thesis, we will only consider unicast routing
algorithms.

Second, the path for the packet can be computed in a centralized manner
during the network configuration (as it happens in most InfiniBand systems) or
it can be computed in a distributed manner by network devices that use network
or link state information to find the next-hop router (as it happens in most IP
networks). Another technique is to calculate the path when injecting the packet
at the source, which is called source routing. All of these can be combined into

28 CHAPTER 2. BACKGROUND

a scheme that is called multiphase routing.
Third, routing algorithms can use a pre-calculated routing tables (table

lookup) or run a finite-state machine in software or hardware that calculates
the output port for each packet. Route computation can use the policy-based
routing concepts where control lists are applied to the packet’s header. If the
header fields match the specified criteria, the output port from the router is
obtained.

Last, if a routing algorithm always provides the same single path across the
network between a particular source and a particular destination the routing
algorithm is called deterministic7. However, if a routing algorithm allows to
select different paths based on the current or historical network conditions, we
call such an algorithm to be adaptive. Adaptive routing algorithms can be
further classified based on the progressiveness, minimality and the number of
paths they return towards a specific destination. In this thesis, adaptive routing
algorithms will not be considered.

2.1.4.3 Fat-Tree Routing

For fat-trees, as for most other network topologies, the routing algorithm is
essential in order to exploit the available network resources. In fat-trees, the
routing consists of two distinct phases: the upward phase in which the packet
is forwarded from a source in the direction of one of the root switches, and the
downward phase when the packet is forwarded downwards to the destination.
The transition between these two phases occurs at the lowest common ancestor,
which is a switch that can reach both the source and the destination through
its downward ports. Such an implementation ensures deadlock freedom.

The popularity of fat-trees led to many efforts trying to improve their routing
performance. This includes the current approach that the OpenFabrics Enter-
prise Distribution [12], the de facto standard for InfiniBand system software, is
based on [13, 14], and other proposals that did not gain widespread popularity,
such as RANDOM algorithm [89] or MLID routing scheme [56]. Valiant’s algo-
rithm [90] could be used to route messages in a fat-tree by randomly choosing
a top switch [53], which would result in a good average load, but could im-
mediately create an imbalance if many end nodes choose the same switch [26].
All these proposals, however, have several limitations when it comes to flexi-
bility and scalability. One problem is the static routing used by IB technology
that limits the exploitation of the path diversity in fat-trees as pointed out

7In fact, deterministic routing algorithms are a special case of oblivious routing algorithms
that route packets without considering the state of the network.

29 CHAPTER 2. BACKGROUND

by Hoefler et al. in [91]. Another problem with the current routing are its
shortcomings when routing oversubscribed fat-trees as addressed by Rodriguez
et al. in [92]. Next, due to multiple links connecting each source with each
destination, a good routing algorithm would exploit this feature by distributing
traffic between all sources and all destinations over all possible links. By keep-
ing the packet size minimal, the distribution would be optimal. An algorithm
based on such an idea was proposed by Yuan et al. [93]. The authors show that
their algorithm outperforms any single-path routing algorithm for any uniform
or cluster traffic pattern. However, such an algorithm is not used in today’s
systems due to out-of-order delivery, the need for packet reordering and packet
fragmentation. Furthermore, even though the link load is balanced perfectly,
other practical issues related to buffering and congestion, such as head-of-line
blocking and hotspots, are not taken into account. Any hotspot traffic pattern
would break the basic assumptions of the non-blocking network and by com-
pletely distributing all traffic to all destinations over the entire network would
lead to severe congestion since most of the buffer queues would be filled up with
hotspot-destined traffic [94].

Despite these improvements, the fat-tree routing algorithm was not mature
enough to be used in enterprise systems. Also, other proposals to utilize the
fat-tree topology, such as the one to use it in Ethernet-based data centers [47]
did not gain widespread usage so far.

OFED enhances the fat-tree routing by ensuring that every path to a given
destination converges towards the same root node in the fat-tree, causing all
packets with the same destination to follow a single path in the downward
phase. The inspiration for this path distribution was [56], where the authors
present the m-port n-tree definition and the associated MLID routing algorithm
which performs a good distribution of the initial paths. Another implementation
of a similar routing/balancing algorithm is given in [13]. In a fat-tree that is
not oversubscribed, this allows for a dedicated downward path towards every
destination that does not share traffic with any other destination. Gomez et
al. [13] show that this path distribution gives very good performance for uniform
traffic patterns. By having dedicated downward paths for every destination,
contention in the downward phase is effectively removed (moved to the upward
phase), so that packets for different destinations have to contend for output
ports in only half of the switches on their paths.

The implementation presented in [14] also ensures that every path towards
the same destination converges at the same root (top) switch such that all pack-
ets toward that destination follow a single dedicated path in the downward di-
rection. By having a dedicated downward path for every destination, contention

30 CHAPTER 2. BACKGROUND

in the downward phase is effectively removed (moved to the upward stage), so
that packets for different destinations have to contend for output ports in only
half of the switches on their path. In oversubscribed fat-trees, the downward
path is not dedicated and is shared by several destinations.

The fabric discovery complexity for the IB implementation of the fat-tree
routing algorithm is given by O(m+ n) where m is the number of edges (links)
and n is the number of vertices (nodes). The routing complexity is O(k · n),
where k is the number of end nodes and n is the number of switches.

2.1.4.4 Deadlock

A deadlock, by analogy, is a situation similar to a traffic gridlock. Cars (packets)
are waiting for the traffic lanes (links) to be freed so they can proceed, however,
the cars that are supposed to free the lanes cannot progress because other cars
are blocking other lanes. Similar situation occurs in lossless interconnection
networks where flow control mechanisms enforcing lossless communication pre-
vent packets from moving forward until enough buffer space becomes available
on the receiving end of a channel. If a sequence of packets waiting for channels
forms a cycle then the network is in a deadlocked state and will remain in that
state until deadlock recovery is initiated.

Because deadlock is a catastrophic event for the whole network and its per-
formance, there are mechanisms whose goal is to prevent, avoid and recover
from a deadlock [95]. Deadlock prevention is a technique that for each packet
transmission reserves all the required resources before starting the transmis-
sion. Because this technique may be inefficient and impractical in distributed
systems where the accurate knowledge about the network state and resource
availability is limited, it is rarely used today. Deadlock avoidance technique
only allows granting a resource to a packet when the resulting global system
state is safe. Deadlocks can be also avoided by properly routing the fabric in
such a way that a deadlock cycle is never formed as has been shown in Paper
III [7], which addresses RQ1 and RQ2. A deadlock recovery technique grants
resources to packets without any verification, however, a deadlock detection
mechanism must be present to detect a deadlock in the first place and then a
deadlock resolution mechanism is required that usually deallocates the blocked
network resources (breaking the cycle) and re-establishes normal network op-
erations. Deadlock recovery technique is applied when deadlocks are rare and
their influence on the network can be tolerated [25, p. 85].

From the system-wide perspective of an interconnection network, deadlock
freedom is a crucial requirement. The necessary condition for a deadlock to

31 CHAPTER 2. BACKGROUND

N N

NN

c

cc

c

0 1

3 2

0

2

13

Figure 2.5: Unidirectional ring with four nodes.

happen is the creation of a cyclic channel dependency [25, 77]. Formally, a
channel dependency8 is defined in Definition 2.1.1 and Definition 2.1.2:

Definition 2.1.1. A channel dependency between channel ci and channel cj
occurs when a packet holding channel ci requests the use of channel cj.

Definition 2.1.2. A channel dependency graph G = (V,E) is a directed graph
where the vertices V are the channels of the network N , and the edges E are the
pairs of channels (ci , cj) such that there exists a (channel) dependency from ci
to cj.

Using the ring network from Fig. 2.5 that consists of four nodes Ni where
i = 0, 1, 2, 3 and a unidirectional channel that connects a pair of adjacent nodes
a simple deadlock scenario can be presented. If a packet p0→2 is sent from node
N0 to node N2, a packet p1→3 is sent from node N1 to node N3, a packet p2→0

is sent from node N2 to node N0, and a packet p3→1 is sent from node N3

to node N1 a cyclic channel dependency forms in which packet p0→2 reserves
channel c0 and requests channel c1, packet p1→3 reserves channel c1 and requests
channel c2, packet p2→0 reserves channel c2 and requests channel c3, and, finally,
packet p3→1 reserves channel c3 and requests channel c0. In such a configuration
and for such a routing scheme the network will deadlock because each packet

8A cyclic channel dependency is a cycle of channel dependencies.

32 CHAPTER 2. BACKGROUND

reserves a channel and waits for a channel that is reserved by another packet.
The following theorem states the sufficient condition for deadlock freedom of a
routing function [25]:

Theorem 2.1.3. A deterministic routing function R for network N is deadlock
free if and only if there are no cycles in the channel dependency graph G.

In case of the network presented in Fig. 2.5 removing the cycles can be
achieved by introducing VCs and logically dividing each physical link into two
virtual links. Next, the routing function has to be modified so that packets
processed by node Ni that are destined to node Nj use the output channel c0i
if i > j, else use channel c1i. If i == j, the packet is consumed9.

2.2 InfiniBand Architecture

The InfiniBand Architecture (IBA) was first standardized in October 2000 [2],
as a combination of two older technologies called Future I/O and Next Gener-
ation I/O. As with most other recent interconnection networks, InfiniBand is a
serial point-to-point full-duplex technology. It is scalable beyond ten-thousand
nodes with multiple CPU cores per node and efficient utilization of host side
processing resources. The current trend is that IB is replacing proprietary or
lower performance solutions in the high performance computing domain, where
high bandwidth and low latency are the key requirements.

The de facto system software for IB is an open-source software stack devel-
oped by the OpenFabrics Alliance called OpenFabrics Enterprise Distribution
(OFED) [12], which is available for GNU/Linux, Microsoft Windows, Solaris
and BSD systems.

InfiniBand networks are referred to as subnets, where a subnet consists of a
set of channel adapters interconnected using switches, routers and point-to-point
links. An IB fabric consists of one or more subnets, which can be interconnected
together using routers. A simple IB fabric is presented on Fig. 2.6. Channel
adapters are intelligent network interface cards that consume and generate IB
packets. They are used by computation and I/O hosts to attach them to the
fabric. Switches and routers relay IB packets from one link to another. Channel
adapters switches and routers within a subnet are addressed using local iden-
tifiers (LIDs) and a single subnet is limited to 48k LIDs (nodes, switches and
local router ports). A LID is a 16 bit value where the first 49151 values are

9This example was presented in [25] and [96].

33 CHAPTER 2. BACKGROUND

Figure 2.6: IBA System Area Network. Courtesy of IBTA [p. 89] [2].

reserved for unicast addresses and the rest is reserved for multicast. LIDs are
local addresses valid only within a subnet, but each IB device also has a 64-bit
global unique identifier (GUID) burned into its non-volatile memory. A GUID is
used to form a GID - an IB layer-3 address. A GID is created by concatenating
a 64-bit subnet ID with the 64-bit GUID to form an IPv6-like 128-bit address
and such GID addresses are used by IB-IB routers to send packets between IB
subnets.

An IB subnet requires one or more subnet managers (SM), which are respon-
sible for initializing and bringing up the network, including the configuration
of all the switches, routers, host channel adapters (HCAs) and target channel
adapters (TCAs) in the subnet. At the time of initialization the SM starts in
the discovering state where it does a heavy sweep of the network in order to
discover all switches, routers and hosts. When this phase is complete the SM
enters the master state. In this state, it proceeds with LID assignment, switch

34 CHAPTER 2. BACKGROUND

configuration, routing table calculations, and port configuration. If successful, it
signals that the subnet is up, and then all devices consider the subnet ready for
use. After the subnet has been configured, the SM is responsible for monitoring
the network for changes.

During normal operation the SM performs periodic light sweeps of the net-
work to check for topology changes. If a change is discovered during a light
sweep or if a message (trap) signalling a network change is received by the SM,
it will reconfigure the network according to the changes discovered. The recon-
figuration includes the steps used during initialization. Whenever the network
changes (e.g. a link goes down, a device is added or a link is removed) the SM
must reconfigure the network accordingly.

2.2.1 InfiniBand Enterprise Systems

In a series of white papers [97], Mellanox Technologies, one of the largest IB
hardware manufacturers, has argued that today’s data centers need an agile and
intelligent infrastructure that can be only delivered by IB. HPC applications
aim to make many nodes function like a single computer. IB is an excellent
choice for this objective as has been demonstrated by the growing number of
IB systems in the Top500 list [11]. However, enterprise systems tend to have
other requirements: BigData, heavily virtualized data centers, cloud computing
or scale-out web applications. The growing role of IB in enterprise data centers
means that IB is able satisfy these demands [98].

Enterprise systems pose a number of challenges to the subnet manager and
the routing algorithm. First, in HPC systems, the traffic pattern can be pre-
dicted at the time of job scheduling, but data center networks run multiple ap-
plications simultaneously, making the traffic pattern impossible to predict [99].
Second, compute nodes have different roles so large traffic imbalances may be
created in the network, which means that the routing algorithm has to distin-
guish between different types of nodes. Third, heavily virtualized networks with
flat addressing (where each virtual machine has a layer-2 address) will quickly
exhaust LID address space, so address reuse is a highly beneficial feature. Next,
studies have demonstrated that utilization of data networks is low [100], so the
always-on cabling unnecessarily adds to the power bill. IB adapters consume
extremely low power of less than 0.1 watt per gigabit, and IB switches less than
0.03 watts per gigabit, which is less than even IEEE 802.3az Energy Efficient-
Ethernet [101] and largest data center operators such as Google have already
endorsed IB for its energy savings [99]. However, it is still highly advantageous
to deliver high performance for power saving clusters where end nodes are pow-

35 CHAPTER 2. BACKGROUND

ered down when not in use and to support fast rerouting on network changes.

2.2.2 Routing in InfiniBand

A major part of the SM’s responsibility are the routing table calculations. Rout-
ing of the network must be performed in order to guarantee full connectivity,
deadlock freedom, and proper load balancing between all source and destination
pairs. Routing tables must be calculated at network initialization time and this
process must be repeated whenever the topology changes in order to update the
routing tables and ensure optimal performance.

The InfiniBand Architecture (IBA) specification clearly distinguishes [2,
p. 225] between routing and forwarding. Forwarding (another term used in
the IBA specification is switching) is defined as the process of moving a packet
from one link to another within a subnet. Routing, on the other hand, is the
process of moving a packet from one subnet to another and is accomplished us-
ing routers. These definitions match the well-established terms used in TCP/IP
networking.

In the scientific community that works with interconnection networks the
distinction between routing and switching is not that evident and those terms
are often used interchangeably. The similar lack of distinction is also visible
in OFED where the term routing is used to describe algorithms that forward
packets within a single subnet. This thesis follows this naming scheme. By
a routing algorithm we mean an algorithm that controls the selection of the
path for a packet regardless whether the packet is forwarded within a subnet
or routed between subnets. Furthermore, the distinction between those two
terms is only of concern when addressing RQ4. Paper V [9], which answers this
question, discusses both the intra-subnet routing (forwarding) and inter-subnet
routing (routing between subnets).

Currently, IB switches support only Linear Forwarding Tables (LFTs) which
map from DLIDs to egress switch ports. For LFTs the value of the DLID is
implicit to the position of the entry in the table. Another possibility is to
use Random Forwarding Tables (RFTs) which are conceptually the same as
Content-Addressable Memory (CAM), however, RFTs are not yet supported
in the existing hardware. For RFT each entry consists of a DLID/LMC (LID
Control Mask) pair and the egress port associated with them. LMC is used to
specify a range of DLIDs from DLID to DLID + 2LMC − 1. Such a LMC-based
scheme was used for MLID fat-tree routing [56], however, it was not implemented
in the Open Subnet Manager (OpenSM), the SM available in OFED.

36 CHAPTER 2. BACKGROUND

The only routing function supported by today’s IB hardware is the incre-
mental routing function of a form R : N × N → ϕ(C) where N is a node and
C is a channel. The manner of calculation of the routing function is centralized
because all processing is done by the SM. The routing function uses a table-
lookup mechanism to assign an egress port to each packet. In this thesis, all
discussed routing algorithms are deterministic because adaptive routing algo-
rithms for IB are not yet widely available, are mostly proprietary and are also
not well-understood.

OFED stack includes OpenSM, which contains a set of routing algorithms
described below10.

2.2.2.1 Min-Hop

MinHop is the default fallback routing algorithm for the OpenSM, and, as the
name suggests, it finds minimal paths among all nodes. Furthermore, MinHop
tries to balance the number of routes per link at the local switch. Using MinHop
routing often leads to credit loops, which may deadlock the fabric [102].

The MinHop routing comprises of two steps. First, the algorithm calculates
the hop distance between each port and each LID using a relaxation algorithm
and stores it in a MinHop matrix. A relaxation algorithm, as it traverses through
the network, at each step tries to find a shorter path between two nodes than
the one it already knows. Second, the algorithm visits each switch and decides
which output port should be used to reach a particular LID. This is the balancing
step where each port has a counter counting the number of target LIDs routed
through it. When there are multiple ports through which a particular LID can
be reached, the one with the smaller counter value is selected.

The complexity of MinHop is given by O(n2) where n is the number of nodes.

2.2.2.2 Up*/Down*

Up*/Down* [103] (UPDN) is also based on minimum hops to each node, but
the paths are constrained by ranking rules. To compute the routing tables,
a breadth-first search (BFS) algorithm is run on the graph representing the
network. The algorithm, which starts its run on a root node, constructs a
spanning tree and marks the links on each node with either up or down labels.
The up links are closer to the root of the spanning tree than the down links.

10Refer to the OpenSM documentation for a detailed description of each routing algorithm.
Fat-Tree routing as a whole is covered separately in Section 2.1.4.3.

37 CHAPTER 2. BACKGROUND

Up*/Down* defines that a legal route is the one that never uses an up link
after it has used a down link. Such a restriction guarantees that there will never
be a deadlock in the network.

2.2.2.3 Dimension Order Routing

Dimension Order Routing (DOR) is a deadlock-free implementation of the Min-
Hop routing algorithm for meshes and hypercubes. DOR does not perform the
balancing step (apart from a situation when there are multiple links between the
same two switches). Instead of the MinHop’s balancing step, DOR chooses from
among the available shortest paths based on an ordering of dimensions. DOR
routing requires proper cabling across the whole fabric so mesh or hypercube
dimension representation is consistent.

DOR builds the paths starting at the destination and continues towards the
source using the lowest dimension (port) from all the available paths at each
step. For hypercubes, the cabling requirement is that the same port is used
throughout the fabric to represent the hypercube dimension and that port must
match on both sides of the link. For meshes, the dimension should use the same
pair of ports consistently.

2.2.2.4 Torus-2QoS

Torus-2QoS is a routing algorithm designed for large-scale 2D/3D tori fabrics.
This algorithm, originally developed at Sandia National Laboratories to route
the Red Sky supercomputer [104], is based on DOR and avoids deadlocks that
normally occur on DOR-routed tori by using SLs to create a virtual fabric along
each torus plane.

Torus-2QoS algorithm has many advanced features such as resiliency to fail-
ures and application-transparent self-healing. Furthermore, the remaining SL
bits can be used for quality of service, which allows different traffic types to be
assigned with their own dedicated network resources.

2.2.2.5 LASH

LAyered SHortest Path (LASH) [86, 105, 106] is a deterministic shortest path
routing algorithm for irregular networks. All packets are routed using the mini-
mal path, and the algorithm achieves deadlock freedom by finding and breaking
cycles by using virtual lanes. LASH routing comprises of three distinct phases.

First, the shortest paths are found between all pairs of sources and desti-
nations. Second, for each route LASH assigns Service Levels (SLs), which will

38 CHAPTER 2. BACKGROUND

be later mapped to VLs. A route can only be assigned to a particular SL if
the presence of that route on that SL will not cause a deadlock within that
layer. Once a route is found whose addition to a layer would cause a deadlock,
a new layer is started and the assignment is continued. Third, the balancing
step is performed. It is more likely that first layers will contain more routes
than the latter ones, so the number of paths per layer is averaged by moving
them between the layers.

The disadvantage of LASH is that it does not balance the traffic well, which
is especially evident in fat-tree fabrics. The algorithm aims at avoiding the
deadlock by using the lowest possible number of VLs. Assuming no turn re-
strictions, the only deadlock-free logical topology within a physical fat-tree is a
single-rooted tree, however, it also has the lowest performance due to the lowest
path diversity.

The computing complexity for LASH is O(n3) where n is the number of
nodes, which makes the algorithm unusable for very large fabrics.

2.2.2.6 DFSSSP

Deadlock-Free Single-Source-Shortest-Path routing (DFSSSP) [87] is an efficient
oblivious routing for arbitrary topologies developed by Domke et al. It uses
virtual lanes to guarantee deadlock freedom and, in comparison to LASH, aims
at not limiting the number of possible paths during the routing process. It
also uses improved heuristics to reduce the number of used virtual lanes in
comparison to LASH.

The problem with DFSSSP was that for switch-to-switch traffic it assumed
deadlock freedom, and did not break any cycles that occurred for switch-to-node
and switch-to-switch pairs11. The computing complexity for the offline DFSSSP
is O(n2 · log(n)) where n is the number of nodes [87].

11This bug was fixed in a recent patch, but was an issue when Paper III and Paper IV were
researched.

Chapter 3

Summary of Research
Papers

This chapter presents the six research papers that were written as a part of
this thesis. The contributions from each paper are summarized in the rele-
vant abstract. Each of the research papers tackles a research problem listed in
Chapter 1.1. Four of the papers were published at peer-reviewed international
conferences, one paper was published in the ACM TACO journal, and the last
paper was accepted to the 22nd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing.

Paper I [5] studies the problem of non-optimal routing in topologies where
switch ports are not fully populated with end nodes and we propose a solution
that alleviates the counter-intuitive performance drop for such fabrics.

In Paper II [6] we study and propose a cheap alternative to congestion con-
trol. By using multiple virtual lanes, we are able to remove head-of-line blocking
and parking lot problems in fat-tree fabrics, which significantly improves the
network performance for hotspot traffic patterns.

Paper III [7] focuses on ease-of-management and availability concepts. By
making sure that each device in the fat-tree fabric is reachable in a deadlock-free
manner, it became possible to run the subnet manager on the spine switches.
Moreover, IB diagnostic tools relying on full connectivity for basic fabric man-
agement and monitoring could be run from any network node. Lastly, IP over
IB also achieved full reachability, which was required by non-InfiniBand aware
management and monitoring protocols like SNMP or SSH.

39

40 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

In the first three papers, we address RQ1: How should the InfiniBand fat-
tree routing be extended to support modern enterprise systems? and RQ2: What
network resources can be used to achieve high routing performance and full reach-
ability?.

Paper IV [8] and Paper VI [10] both treat the topic of fault-tolerance in fat-
trees. The former paper proposes extensions to the fat-tree routing algorithm
to make it less prone to failure for non-standard topologies, and the latter paper
presents a new routing logic that introduces a new level of fault-tolerance by
making sure that the path to the same node that has two different ports never
contains a single point of failure. Both Paper IV and Paper VI address RQ3:
How to make the fat-tree routing more resilient to switch failures? and Paper
VI also addresses RQ1: How should the InfiniBand fat-tree routing be extended
to support modern enterprise systems?.

Lastly, in Paper V [9], we focus on inter-subnet routing. Very little ac-
tual work was done for native IB-IB routing and most of it concerned disaster
recovery. To the best of our knowledge, we present the first two advanced
inter-subnet routing algorithms for InfiniBand. Having separate subnets in-
creases fabric scalability and allows the reuse of layer-2 addresses, which may
be beneficial for heavily virtualized systems. This papers provides a unified so-
lution for designing and routing a multi-subnet IB fabric. This paper addresses
RQ4: What are the requirements for the InfiniBand inter-subnet routing algo-
rithms and how these algorithms can use the local routing information supplied
by intra-subnet routing algorithms?.

3.1 Paper I: Achieving Predictable High Perfor-
mance in Imbalanced Fat Trees

In this paper, we studied a performance issue often encountered during cluster
construction, for underpopulated clusters ready for future expansion (a common
scenario), for power saving clusters where end nodes are powered down when
not in use and also in enterprise systems that are limited by the number of rack
units and often cannot utilize all the ports on a densely packed IB switch.

The problem is that the classic fat-tree routing algorithm designed by Za-
havi [14] behaves counter-intuitively when the number of end nodes in a tree
decreases. Decreasing the number of end nodes in a fat-tree while keeping the
number of connections between the switches constant should decrease link con-
tention when routing packets in the upward direction, however, due to flaws

41 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

in Zahavi’s algorithm, that contention is not only not decreased, but also the
downward paths from the spine switches are no longer dedicated and are shared
between multiple destinations. The severity of the problem depends on the
distribution of the end nodes and the size of the tree.

To address this problem, we present an extension to the fat-tree routing al-
gorithm that completely removes this problem. First, we study the behaviour
of the classic fat-tree routing algorithm to identify its weaknesses and extend
it by adding a balancing step that makes the performance independent of the
number and the distribution of the end nodes. The problem with Zahavi’s im-
plementation are the dummy end nodes that are introduced to ensure a correct
distribution of the downward paths in the network with respect to an all-to-
all shift communication pattern. While this leads to an apparently balanced
network, it may lead to skew in the balance of the upward paths.

The methodology that was applied to solve this problem was to look beyond
the local routing information, that is, investigate the loads of downward channels
on switches at higher tiers than the one that is currently being processed and
perform an additional balancing step that distributed the paths evenly across
the switches.

By using a fixed set of synthetic traffic patterns combined with HPCC Bench-
mark [107] simulations, we show that our extensions improve performance by
up to 30% depending on topology size and node distribution. Furthermore, the
simulations demonstrate that our algorithm allows to achieve a high predictable
throughput irrespective of the node distribution and the node number.

3.2 Paper II: vFtree - A Fat-tree Routing Algo-
rithm using Virtual Lanes to Alleviate Con-
gestion

In this paper, we continued the work on improving the performance of the
fat-tree routing algorithm. The problem we addressed was related to network
congestion occurring due to hotspots.

Even though the bisection bandwidth in a fat-tree is constant, hotspots are
still possible and they will degrade performance for flows not contributing to
them due to head-of-line blocking and parking lot problem. Such a situation
may be alleviated through adaptive routing or congestion control, however, these
methods are not yet readily available in IB technology, are often proprietary and
are not well understood [108,109].

42 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

It is a well known fact [15, 77] that multiple virtual lanes can improve per-
formance in interconnection networks, but this knowledge has had little impact
on real clusters. Currently, a large number of clusters using InfiniBand is based
on fat-tree topologies that can be routed deadlock-free using only one virtual
lane. Consequently, all the remaining virtual lanes are left unused.

To remedy this problem, we have implemented an enhanced fat-tree algo-
rithm in OpenSM that distributes traffic across all available virtual lanes with-
out any configuration needed. Our algorithm works on top of the classic fat-tree
routing [14] and distributes all destinations sharing the same upward link across
different virtual lanes. This means that if one of the destinations is the contrib-
utor to an endpoint hotspot, other destination flows sharing the same upward
port will not affected by head-of-line blocking because they use a different virtual
lane with its own buffering resources.

We evaluated the performance of the algorithm on a small cluster and did a
large-scale evaluation through simulations. We demonstrated that by extending
the fat-tree routing with VLs, we are able to dramatically improve the network
performance in presence of hotspots. We achieved improvements from 38%
for small hardware topologies to 757% for large-scale simulated clusters when
compared with the conventional fat-tree routing.

3.3 Paper III: sFtree: A Fully Connected and
Deadlock-Free Switch-to-Switch Routing Al-
gorithm for Fat-Trees

In this paper, we studied the problem of full reachability in fat-trees. It is a
well known fact that existing fat-tree routing algorithms fully exploit the path
diversity of a fat-tree topology in the context of end node traffic, but very
little research was done into the switch-to-switch traffic. In fact, the switch-to-
switch communication has been ignored for a long time because the switches
themselves lacked the necessary intelligence to be able to support advanced
system management techniques, and originated very little traffic.

In recent years, with the general increase in system management capabilities
found in modern InfiniBand switches, the lack of deadlock-free switch-to-switch
communication became a problem for fat-tree based IB installations because
management traffic might cause routing deadlocks that bring the whole system
down. This lack of deadlock-free communication affects all system management
and diagnostic tools using LID routing.

43 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

In this paper we present, to the best of our knowledge, the first fat-tree
routing algorithm that supports deadlock-free and fully connected switch-to-
switch routing. Our approach retains all the performance characteristics of the
algorithm presented by Zahavi [14] and it is evaluated on a working prototype
tested on commercially available IB technology. Furthermore, our sFtree al-
gorithm fully supports all types of single and multi-core fat-trees commonly
encountered in commercial systems.

Our solution to the deadlock-free switch-to-switch routing is based on a
concept of a subtree. In this paper, we propose a binary tree called subtree
whose root is one of the leaf switches and whose leaves are all the spines in
the topology. Such a subtree allows us to localize all the normally prohibited
down/up turns in a fabric to a single deadlock-free tree. Accommodating all
the prohibited turns in a subtree is deadlock-free, which is formally proven in
the paper, and it permits full connectivity between all switches if a subtree root
is chosen properly.

We evaluate the performance of the sFtree algorithm experimentally on a
small cluster and we do a large-scale evaluation through simulations. The re-
sults confirm that the sFtree routing algorithm is deadlock-free and show that
the impact of switch-to-switch management traffic on the end-node traffic is
negligible.

3.4 Paper IV: Discovery and Routing of Degraded
Fat-Trees

In this paper, we studied the fault-resilience of the fat-tree routing algorithm
and compared the performance achieved by the fat-tree routing with three other
major algorithms available in OpenSM when routing a severely degraded topolo-
gies.

The main contribution of this paper is the extension of the fat-tree algo-
rithm that liberalizes the restrictions imposed on the fat-tree discovery and
routing of degraded fabrics. First, we liberalized topology validation to make
fat-tree routing more versatile. Second, we proposed a switch tagging mecha-
nism through vendor SMP attributes that can be queried via vendor specific
SMPs and are used to configure the switches with specific fabric roles, which
decouples topology discovery from actual routing.

The enhancements presented in this paper allowed us to solve the flipping
switch anomaly that occurs for leaf switches that have no end nodes connected.

44 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

Without our fixes, such a leaf switch will be treated as a switch that is located
2 levels higher than it really is because the routing algorithm loses the sense of
directions that connect to such a switch.

We compared four non-proprietary routing algorithms running on a degraded
3-stage 648-port fat-tree. By using a fixed set of synthetic traffic patterns com-
bined with HPCC Benchmark [107] simulations, we showed that the fat-tree
routing is still the preferred algorithm even if the number of failures is very
large. We also demonstrated that even though the fat-tree routing is the most
susceptible (with largest performance drops) algorithm to device and link fail-
ures, it still delivers the highest performance even in extreme cases for non-trivial
traffic patterns.

3.5 Paper V: Making the Network Scalable: Inter-
subnet Routing in InfiniBand

In this paper, we examine and solve the routing problems that occur when using
native IB-IB routers, and we introduce and analyse two new routing algorithms
for inter-subnet IB routing: inter-subnet source routing (ISSR) and inter-subnet
fat-tree routing (ISFR).

As InfiniBand-based clusters grow in size and complexity, the need arises
to segment the network into manageable sections. Up until now, InfiniBand
routers were not used extensively and little research was done to accommo-
date them. However, the limits imposed on local addressing space, inability
to logically segment the fabrics, long reconfiguration times for large fabrics in
case of faults, and, finally, performance issues when interconnecting large clus-
ters, have rekindled the industry’s interest into IB-IB routers. In the context
of supercomputing the path to improved network scalability does not necessar-
ily lie in subnetting, and a single subnet approach is the preferred solution for
HPC applications, for cloud computing, data warehousing, enterprise systems,
in case of hybrid topologies (for seamless interconnection), or in heavily virtu-
alized systems there is a need to partition the network into self-contained and
independently administered domains.

Our algorithms are implemented in SM and require additional support from
router’s firmware. Namely, ISSR is a deterministic oblivious routing algorithm
that uses a simple hashing mechanism to generate the output port for each
source-destination pair. ISFR goes a step further and requires that the router
delivers input to its local SM as to how configure the local intra-subnet routing.

45 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

This input is based on the intra-subnet routing tables in the remote subnet.
Through simulations, we show that both ISSR and ISFR clearly outperform

current implementation of the inter-subnet routing available in OpenSM. By
varying the number of subnets and the percentage of traffic that is sent between
the subnets, we are able to observe that for congested traffic patterns, ISSR
obtains slightly higher performance than ISFR, but when the number of subnets
increases, ISFR delivers almost equal performance.

By laying the groundwork for layer-3 routing, we show that native IB-IB
routers can make the network scalable, and that designing efficient routing al-
gorithms is the first step towards that goal. Future work includes solving the
deadlock problem in multi-subnet environment.

3.6 Paper VI: Multi-homed Fat-Tree Routing
with InfiniBand

In this paper, we studied the fault-resilience of the fat-tree routing algorithm
for multi-homed end nodes. We discovered that even though an end node may
have two ports connected to the same fabric, there still exists a single point
of failure and we decided to solve this problem by proposing our own fat-tree
routing algorithm - mFtree.

One of the missing properties of the fat-tree routing algorithm is that there is
no guarantee that each port on a multi-homed node is routed through redundant
spines, even if these ports are connected to redundant leaves. As a consequence,
in case of a spine failure, there is a small window where the node is unreachable
until the subnet manager has rerouted to another spine.

The current fat-tree routing is oblivious whether ports belong to the same
node or not. This makes the routing depend on the cabling and may be very
misleading to the fabric administrator, especially when recabling is not possible
due to a fixed cable length as often happens in enterprise IB systems. Further-
more, this requires the fabric designers to connect the end-nodes in such a way
that will make the fat-tree routing algorithm route them through independent
paths. Whereas this is a simple task for very small fabrics, when a fabric grows,
it quickly becomes infeasible. Additionally, the scheme will break in case of any
failure as usually the first thing that the maintenance does when a cable or a
port does not work, is to reconnect the cable to another port, which changes
the routing.

In this paper, we presented the new mFtree routing algorithm. By means

46 CHAPTER 3. SUMMARY OF RESEARCH PAPERS

of simulations, showed that it may improve the network performance compared
to the current OpenSM fat-tree routing by up to 52.6% depending on the traf-
fic pattern. Most importantly, however, mFtree routing algorithm gives much
better redundancy than classic fat-tree routing, which means that multi-homed
nodes will suffer no downtime in case of switch failures.

Chapter 4

Conclusions

This chapter presents suggestions for future research and concludes the thesis.
This thesis set out to explore optimized fat-tree routing for enterprise systems.
We started by pointing out weaknesses in the current fat-tree routing algorithm,
and we continued with providing multiple enhancements to it that solved crucial
problems encountered in InfiniBand systems. Nonetheless, even a larger set of
more interesting challenges lie ahead and deserve further study. These challenges
are briefly presented below.

4.1 Future Directions

There were many vital research topics that were not covered in this thesis. One
of such topics becomes evident when routing modern database systems. Such
a system is constructed using cell storage nodes that generate the majority of
the traffic and database server nodes that are the traffic consumers whose role
is to process the data received from the storage nodes. Because a traffic pattern
for such a system is easy to predict, a routing algorithm treating each node
obliviously will not offer the maximum performance. Therefore, further work
needs to be done to extend the current routing so it automatically detects the
node type and properly balances the paths in the network. Such intelligent
routing could be accomplished by using proprietary vendor attributes similarly
to the solution presented in Paper IV [8]. However, the challenging aspect of

47

48 CHAPTER 4. CONCLUSIONS

such a solution is to maintain fault-tolerance in active-passive systems1 such as
the ones described in Paper VI [10].

Next, as mentioned in Paper V [9], there exists the issue of generalized
deadlock-free inter-subnet routing. Even though our current solution supports
many different regular fabrics in a deadlock-free manner by interconnecting
them using a fat-tree backbone, real scalability could be achieved by support-
ing transition subnets, that is, subnets which interconnect other subnets and
deadlock-free inter-subnet all-to-all switch-to-switch routing algorithms based
on the concept described in Paper III [7]. Furthermore, in our work we only
allow fat-tree subnet topologies, however, it is essential for other popular inter-
connection topologies to be supported as subnets as well.

Another area that requires attention is evaluating the hardware design al-
ternatives for native IB-IB routers. Paper V [9] covers only the area of unicast
routing algorithms. However, other valid research topics include inter-subnet
multicast routing, optimizing the hardware cost of content-addressable memory
required for GUID to LID mappings, inter-subnet state coordination through a
super subnet manager, long-haul link support or encoding local state informa-
tion in the subnet prefix.

Lastly, increased virtualization poses additional challenges to the routing
algorithm. Assuming that subnetting IB networks will allow a flat addressing
space for virtual machines, frequent virtual machine migrations may lead to
frequent and unnecessary network reconfigurations negatively influencing the
performance of the subnet manager. By sacrificing the number of virtual ma-
chines to be limited to 128 at each leaf switch, LID Mask Control (LMC) could
be used to make a migration within a leaf switch transparent to all the other
nodes by only reconfiguring the routing table at the switch where the migration
takes place. This could be later extended to support more advanced scenarios
such as transparently migrating a router port and all inter-subnet paths associ-
ated with it from one router to another in such a way that no reconfiguration
occurs.

1In such systems, a two port node has one port active and other port passive (standby).
This occurs due to 8x PCI Express 2.0 limitations for Quad Data Rate (QDR) and 8x PCI
Express 3.0 limitations for Enhanced Data Rate (EDR). EDR is currently the fastest IB
standard.

49 CHAPTER 4. CONCLUSIONS

4.2 Concluding Remarks

In this thesis, we have considered three major challenges that are encountered
when routing enterprise systems: performance, scalability and fault-tolerance.
To this end, we have presented six research papers in which we discussed and
evaluated a number of routing enhancements for the fat-tree routing. We showed
that by improving the routing algorithm we obtain large gains system-wide
because we solve scalability issues as showed in Paper III and V, reliability as
presented in Papers IV and VI, and performance limitations as demonstrated
in Papers I and II.

The contributions to this thesis are a set of five extended routing algorithms
that build upon the original fat-tree routing by Zahavi [14]. Another large
contribution is, to the best of our knowledge, the first two advanced inter-
subnet routing algorithms for IB. The usability of these solutions can be best
illustrated by the fact that the algorithms described in Paper III, Paper IV and
Paper VI are already implemented in all InfiniBand systems manufactured by
Oracle Corporation. Still, given the strict requirements for enterprise systems
whose performance depends upon finely tuned parameters, we believe that there
is a large set of improvements that this thesis does not discuss.

Bibliography

[1] Eitan Zahavi. D-Mod-K Routing Providing Non-Blocking Traffic for Shift
Permutations on Real Life Fat Trees. http://www.technion.ac.il/

~ezahavi/, September 2010.

[2] InfiniBandTMArchitecture Specification, November 2007.

[3] Charles Eames, Ray Eames, and International Business Machines Cor-
poration. A Computer Perspective: Background to the Computer Age.
Harvard University Press, 1973.

[4] Ahmad Chadi Aljundi, Jean-Luc Dekeyser, Tahar Kechadi, and Isaac Sch-
erson. A Study of an Evaluation Methodology for Unbuffered Multistage
Interconnection Networks. In Proceedings of the 17th International Par-
allel and Distributed Processing Symposium, pages 8 pp.–, 2003.

[5] Bartosz Bogdański, Frank Olaf Sem-Jacobsen, Sven-Arne Reinemo, Tor
Skeie, Line Holen, and Lars Paul Huse. Achieving Predictable High Per-
formance in Imbalanced Fat Trees. In Proceedings of the 16th IEEE Inter-
national Conference on Parallel and Distributed Systems, pages 381–388.
IEEE Computer Society, 2010.

[6] Wei Lin Guay, Bartosz Bogdański, Sven-Arne Reinemo, Olav Lysne, and
Tor Skeie. vFtree - A Fat-Tree Routing Algorithm Using Virtual Lanes
to Alleviate Congestion. In Proceedings of the 25th International Parallel
and Distributed Processing Symposium, pages 197–208. IEEE Computer
Society, 2011.

[7] Bartosz Bogdański, Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, and
Ernst Gunnar Gran. sFtree: A Fully Connected and Deadlock Free

51

52 BIBLIOGRAPHY

Switch-to-Switch Routing Algorithm for Fat-Trees. ACM Transactions
on Architecture and Code Optimization, 8(4), January 2012.

[8] Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo, and
Frank Olaf Sem-Jacobsen. Discovery and Routing of Degraded Fat-Trees.
In Proceedings of the 13th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, pages 689–694. IEEE
Computer Society, December 2012.

[9] Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo, and José
Flich. Making the Network Scalable: Inter-subnet Routing in InfiniBand.
In Proceedings of the 19th International Euro-Par Conference on Parallel
Processing, volume 8097 of Lecture Notes in Computer Science, pages
685–698. Springer Berlin Heidelberg, 2013.

[10] Bartosz Bogdański, Bjørn Dag Johnsen, and Sven-Arne Reinemo. Multi-
homed Fat-Tree Routing with InfiniBand. In Accepted to Euromicro In-
ternational Conference on Parallel, Distributed, and Network-Based Pro-
cessing, Euromicro PDP 2014. IEEE Computer Society Press, February
2014.

[11] Top 500 supercomputer sites. http://top500.org/, November 2013. Re-
trieved November 21, 2013.

[12] The OpenFabrics Alliance. http://openfabrics.org/. Retrieved July
31, 2013.

[13] Crisṕın Gómez, Francisco Gilabert, Maria Gómez, Pedro López, and José
Duato. Deterministic versus Adaptive Routing in Fat-Trees. In Proceed-
ings of the 21st International Parallel and Distributed Processing Sympo-
sium, pages 1–8, March 2007.

[14] Eitan Zahavi, Gregory Johnson, Darren Kerbyson, and Michael Lang.
Optimized InfiniBandTMFat-Tree Routing for Shift All-to-All Communi-
cation Patterns. Concurrency and Computation: Practice and Experience,
22(2):217–231, February 2010.

[15] William Dally. Virtual-Channel Flow Control. IEEE Transactions on
Parallel and Distributed Systems, 3(2):194–205, March 1992.

[16] José Flich, Pedro López, José Carlos Sancho, Antonio Robles, and José
Duato. Improving InfiniBand Routing through Multiple Virtual Networks.

53 BIBLIOGRAPHY

In Proceedings of the 4th International Symposium on High Performance
Computing, volume 2327 of Lecture Notes in Computer Science, pages
49–63. Springer Berlin Heidelberg, January 2002.

[17] Robert Stebbins. Exploratory Research in the Social Sciences. Qualitative
Research Methods. SAGE Publications, 2001.

[18] Gordana Dodig Crnkovic. Constructive Research and Info-computational
Knowledge Generation. In Model-Based Reasoning in Science and Tech-
nology, volume 314 of Studies in Computational Intelligence, pages 359–
380. Springer Berlin Heidelberg, 2010.

[19] Voltaire infiniband fabric simulator - ibsim. https://github.com/

jgunthorpe/ibsim, October 2011. Retrieved August 5, 2013.

[20] Infiniband fabric management utilitie - ibutils. http://www.

openfabrics.org/, April 2013. Retrieved August 5, 2013.

[21] UML Resource Page. http://www.uml.org/, August 2013. Retrieved
August 5, 2013.

[22] Andras Varga. Parameterized Topologies for Simulation Programs. In
WMC’98: Western Multiconference on Simulation, CNDS’98: Commu-
nication Networks and Distributed Systems, 1998.

[23] Ernst Gunnar Gran and Sven-Arne Reinemo. InfiniBand Congestion Con-
trol, Modelling and validation. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques, 2011.

[24] Charles Spurgeon. Ethernet: The Definitive Guide. O’Reilly and Asso-
ciates, Inc., 2000.

[25] José Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-
works: An Engineering Approach. Morgan Kaufmann Publishers Inc.,
2003.

[26] William Dally and Brian Towles. Principles and Practices of Interconnec-
tion Networks. Morgan Kaufmann Publishers Inc., 2003.

[27] Sven-Arne Reinemo. Quality of Service in Interconnection Networks. PhD
thesis, University of Oslo, September 2007.

54 BIBLIOGRAPHY

[28] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional
Technical Reference, 5th edition, October 2010.

[29] William Dally. Performance Analysis of k-ary n-cube Interconnection Net-
works. IEEE Transactions on Computers, 39(6):775–785, June 1990.

[30] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jel-
lyfish: Networking Data Centers Randomly. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation,
pages 17–17. USENIX Association, 2012.

[31] Charles Clos. A Study of Non-blocking Switching Networks. Bell Systems
Technical Journal, 32:406–424, 1953.

[32] Václav Beneš. Mathematical Theory of Connecting Networks and Tele-
phone Traffic. Mathematics in science and engineering : a series of mono-
graphs and textbooks. Academic Press, 1965.

[33] J.H. Patel. Performance of Processor-Memory Interconnections for Mul-
tiprocessors. IEEE Transactions on Computers, C-30(10):771–780, 1981.

[34] John Kim, William Dally, and Dennis Abts. Flattened Butterfly: A Cost-
Efficient Topology for High-Radix Networks. In Proceedings of the 34th
Annual International Symposium on Computer Architecture, pages 126–
137. ACM, 2007.

[35] Charles Leiserson. Fat-trees: Universal Networks for Hardware-Efficient
Supercomputing. IEEE Transactions on Computers, C-34(10):892–901,
1985.

[36] John Kim, William Dally, Steve Scott, and Dennis Abts. Cost-Efficient
Dragonfly Topology for Large-Scale Systems. IEEE Micro, 29(1):33–40,
2009.

[37] Ted H. Szymanski. ”Hypermeshes”: Optical Intercomnnection Network
for Parallel Computing. Journal of Parallel and Distributed Computing,
26(1):1–23, 1995.

[38] Oracle engineered systems. http://www.oracle.com/us/products/

engineered-systems/index.html, 2013. Retrieved September 19, 2013.

55 BIBLIOGRAPHY

[39] Yuuichirou Ajima, Shinji Sumimoto, and Toshiyuki Shimizu. Tofu: A 6D
Mesh/Torus Interconnect for Exascale Computers. Computer, 42(11):36–
40, 2009.

[40] Frank Olaf Sem-Jacobsen, Tor Skeie, Olav Lysne, and José Duato. Dy-
namic Fault Tolerance in Fat Trees. IEEE Transactions on Computers,
60(4):508–525, 2011.

[41] Frank Olaf Sem-Jacobsen and Olav Lysne. Fault Tolerance with Shortest
Paths in Regular and Irregular Networks. In Proceedings of the 22nd Inter-
national Parallel and Distributed Processing Symposium. IEEE Computer
Society, April 2008.

[42] Frank Olaf Sem-Jacobsen, Tor Skeie, Olav Lysne, Ola Tørudbakken,
Eivind Rongved, and Bjørn Dag Johnsen. Siamese-Twin: A Dynami-
cally Fault-Tolerant Fat Tree. In Proceedings of the 19th International
Parallel and Distributed Processing Symposium. IEEE Computer Society,
2005.

[43] Frank Olaf Sem-Jacobsen, Tor Skeie, and Olav Lysne. A Dynamic Fault-
tolerant Routing Algorithm for Fat-trees. In Proceedings of the 11th In-
ternational Conference on Parallel and Distributed Processing Techniques
and Applications, pages 318–324. CSREA Press, June 2005.

[44] Frank Olaf Sem-Jacobsen, Tor Skeie, Olav Lysne, and José Duato. Dy-
namic Fault Tolerance with Misrouting in Fat Trees. In Proceedings of the
35th International Conference on Parallel Processing, pages 33–45. IEEE
Computer Society, August 2006.

[45] Frank Olaf Sem-Jacobsen, Olav Lysne, and Tor Skeie. Combining Source
Routing and Dynamic Fault Tolerance. In Proceedings of the 18th In-
ternational Symposium on Computer Architecture and High Performance
Computing, pages 151–158. IEEE Computer Society, October 2006.

[46] Frank Olaf Sem-Jacobsen, Åshild Grønstad Solheim, Olav Lysne, Tor
Skeie, and Thomas Sødring. Efficient and Contention-Free Virtualisation
of Fat-Trees. In Proceedings of the 25th International Parallel and Dis-
tributed Processing Symposium, pages 754–760. IEEE Computer Society,
May 2011.

[47] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scal-
able, Commodity Data Center Network Architecture. In Proceedings of the

56 BIBLIOGRAPHY

ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM,
pages 63–74. ACM, 2008.

[48] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson
Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and
Amin Vahdat. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM, pages 39–50. ACM, 2009.

[49] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. Towards a Next Generation Data Center Architecture:
Scalability and Commoditization. In Proceedings of the ACM Workshop
on Programmable Routers for Extensible Services of Tomorrow, pages 57–
62. ACM, 2008.

[50] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter.
PAST: Scalable Ethernet for Data Centers. In Proceedings of the 8th
international conference on Emerging networking experiments and tech-
nologies, pages 49–60. ACM, 2012.

[51] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. VL2: A Scalable and Flexible Data Center Network.
In Proceedings of the ACM SIGCOMM 2009 Conference on Data Com-
munication, SIGCOMM, pages 51–62. ACM, 2009.

[52] Charles Leiserson and Bruce Maggs. Communication-Efficient Parallel
Algorithms for Distributed Random-access Machines. Algorithmica, 3(1-
4):53–77, 1988.

[53] Tom Leighton, Bruce Maggs, and Satish Rao. Universal Packet Routing
Algorithms. In 29th Annual Symposium on Foundations of Computer
Science, pages 256–269, 1988.

[54] Charles Leiserson, Zahiand Abuhamdeh, David Douglas, Carl Feynman,
Mahesh Ganmukhi, Jeffrey Hill, Daniel Hillis, Bradley Kuszmaul, Mar-
garet St. Pierre, David Wells, Monica Wong-chan, Shaw-wen Yang, and
Robert Zak. The Network Architecture of the Connection Machine CM-5.
Journal of Parallel and Distributed Computing, pages 272–285, 1992.

[55] Nathan Farrington, Erik Rubow, and Amin Vahdat. Data Center Switch
Architecture in the Age of Merchant Silicon. In Proceedings of the 17th
IEEE Symposium on High-Performance Interconnects, August 2009.

57 BIBLIOGRAPHY

[56] Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang. A Multiple LID
Routing Scheme for Fat-Tree-based InfiniBand Networks. In Proceedings
of the 18th International Parallel and Distributed Processing Symposium,
pages 11–, 2004.

[57] Fabrizio Petrini and Marco Vanneschi. k-ary n-trees: High Performance
Networks for Massively Parallel Architectures. In Proceedings of the 11th
International Parallel Processing Symposium, pages 87–93, 1997.

[58] Frank Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.

[59] Sabine Öhring, Maximilian Ibel, Sajal Das, and Mohan Kumar. On Gen-
eralized Fat Trees. In Proceedings of 9th International Parallel Processing
Symposium, pages 37–44, 1995.

[60] Marcos Valerio, Louise Moser, and Michael Melliar-Smith. Recursively
Scalable Fat-Trees as Interconnection Networks. In IEEE 13th Annual
International Phoenix Conference on Computers and Communications,
pages 40–, 1994.

[61] Marcos Valerio, Louise Moser, and Michael Melliar-Smith. Fault-Tolerant
Orthogonal Fat-Trees as Interconnection Networks. In Proceedings of the
1st International Conference on Algorithms and Architectures for Parallel
Processing, volume 2, pages 749–754 vol.2, April 1995.

[62] Cyriel Minkenberg, Ronald Luijten, and Germán Rodŕıguez. On the Opti-
mum Switch Radix in Fat Tree Networks. In High Performance Switching
and Routing (HPSR), 2011 IEEE 12th International Conference on, pages
44–51, 2011.

[63] Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, and Tor Skeie. Fat-trees
and Dragonflies - A Perspective on Topologies. Contributed talk at
the HPC Advisory Council Switzerland Workshop, Lugano, Switzerland.,
March 2012.

[64] Gilad Shainer. Networks: Topologies - How to Design? Contributed talk
at the HPC Advisory Council Switzerland Workshop, Lugano, Switzer-
land., March 2011.

[65] HPC Fabric Analysis - Designed for Reduced Costs and Improved Per-
formance. http://www.qlogic.com/OEMPartnerships/HP/Documents/

hpc/wp_4AA2-3765ENW.pdf, July 2010. Retrieved November 08, 2013.

58 BIBLIOGRAPHY

[66] Ronald Greenberg. The Fat-Pyramid: A Robust Network for Parallel
Computation. In Advanced Research in VLSI: Proceedings of the Sixth
MIT Conference, pages 195–213. MIT Press, 1990.

[67] Ronald Greenberg. The Fat-Pyramid and Universal Parallel Computation
Independent of Wire Delay. IEEE Transactions on Computers, 43:1358–
1364, 1994.

[68] Kevin Chen and Edwin Sha. The Fat-stack and Universal Routing in
Interconnection Networks. Journal of Parallel and Distributed Computing,
66(5):705–715, May 2006.

[69] Javier Navaridas, Jose Miguel-Alonso, Francisco Javier Ridruejo, and
Wolfgang Denzel. Reducing Complexity in Tree-Like Computer Inter-
connection Networks. Parallel Computing, 36(2-3):71–85, February 2010.

[70] Randy Bush and David Meyer. Some Internet Architectural Guidelines
and Philosophy. RFC 3439, December 2002.

[71] Paul Baran. On Distributed Communications. August 1964.

[72] Parviz Kermani and Leonard Kleinrock. Virtual Cut-Through: A New
Computer Communication Switching Technique. Computer Networks,
3:267–286, 1979.

[73] William Dally and Charles Seitz. Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks. IEEE Transactions on Computers,
C-36(5):547–553, 1987.

[74] Seitz Charles et al. Wormhole Chip Project Report, 1985.

[75] José Duato. A New theory of Deadlock-Free Adaptive Routing in Worm-
hole Networks. IEEE Transactions on Parallel and Distributed Systems,
4(12):1320–1331, 1993.

[76] José Duato. A Necessary and Sufficient Condition for Deadlock-Free
Adaptive Routing in Wormhole Networks. IEEE Transactions on Par-
allel and Distributed Systems, 6(10):1055–1067, 1995.

[77] William Dally and Charles Seitz. Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks. IEEE Transactions on Computers,
36(5):547–553, May 1987.

59 BIBLIOGRAPHY

[78] Wei Lin Guay, Sven-Arne Reinemo, Olav Lysne, and Tor Skeie. dFtree: A
Fat-Tree Routing Algorithm Using Dynamic Allocation of Virtual Lanes
to Alleviate Congestion in InfiniBand Networks. In Proceedings of the 1st
International Workshop on Network-Aware Data Management, NDM ’11,
pages 1–10. ACM, 2011.

[79] Mischa Schwartz and Thomas Stern. Routing Techniques Used in Com-
puter Communication Networks. IEEE Transactions on Communications,
28(4):539–552, 1980.

[80] Paul Bell and Kamal Jabbour. Review of Point-to-Point Network Routing
Algorithms. IEEE Communications Magazine, 24(1):34–38, 1986.

[81] Harry Rudin. On Routing and Delta Routing: A Taxonomy and Perfor-
mance Comparison of Techniques for Packet-Switched Networks. IEEE
Transactions on Communications, 24(1):43–59, 1976.

[82] Wai Sum Lai. Packet forwarding. IEEE Communications Magazine,
26(7):8–17, 1988.

[83] Narsingh Deo and Chi-Yin Pang. Shortest-path Algorithms: Taxonomy
and Annotation. Networks, 14(2):275–323, 1984.

[84] Mischa Schwartz and Thomas Stern. Routing Protocols. Applications of
Communications Theory. Springer US, 1982.

[85] Patrick Gaughan and Sudhakar Yalamanchili. Adaptive Routing Protocols
for Hypercube Interconnection Networks. Computer, 26(5):12–23, May
1993.

[86] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. Layered Shortest Path
(LASH) Routing in Irregular System Area Networks. In Proceedings of the
16th International of the Parallel and Distributed Processing Symposium,
pages 8 pp–, 2002.

[87] Jens Domke, Torsten Hoefler, and Wolfgang Nagel. Deadlock-Free Obliv-
ious Routing for Arbitrary Topologies. In Proceedings of the 25th IEEE
International Parallel and Distributed Processing Symposium, pages 613–
624. IEEE Computer Society, May 2011.

[88] Bill Fenner, Mark Handley, Hugh Holbrook, and Isidor Kouvelas. Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification

60 BIBLIOGRAPHY

(Revised). RFC 4601 (Proposed Standard), August 2006. Updated by
RFCs 5059, 5796, 6226.

[89] Ronald Greenberg and Charles Leiserson. Randomized Routing on Fat-
Trees. In Advances in Computing Research, pages 345–374. JAI Press,
1996.

[90] Leslie Valiant and Gordon Brebner. Universal Schemes for Parallel Com-
munication. In Proceedings of the 13th Annual ACM Symposium on The-
ory of Computing, STOC ’81, pages 263–277. ACM, 1981.

[91] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Multistage
Switches are not Crossbars: Effects of Static Routing in High-Performance
Networks. In Proceedings of the IEEE International Conference on Cluster
Computing, pages 116–125, September 2008.

[92] Germán Rodŕıguez, Cyriel Minkenberg, Ramón Beivide, Ronald Luijten,
Jesús Labarta, and Mateo Valero. Oblivious Routing Schemes in Extended
Generalized Fat Tree Networks. In Proceedings of the IEEE International
Conference on Cluster Computing, pages 1–8, 2009.

[93] Xin Yuan, Wickus Nienaber, Zhenhai Duan, and Rami Melhem. Obliv-
ious Routing for Fat-tree Based System Area Networks with Uncertain
Traffic Demands. In Proceedings of the 2007 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS, pages 337–348. ACM, 2007.

[94] Frank Olaf Sem-Jacobsen. Towards a Unified Interconnect Architecture:
Combining Dynamic Fault Tolerance with Quality of Service, Community
Separation, and Power Saving. PhD thesis, University of Oslo, August
2008.

[95] Mukesh Singhal. Deadlock Detection in Distributed Systems. Computer,
22(11):37–48, 1989.

[96] William Dally and Charles Seitz. The Torus Routing Chip. Journal of
Distributed Computing, 1(3):187–196, 1986.

[97] Mellanox Technologies. InfiniBand White Papers. http://www.

mellanox.com/page/white_papers. Retrieved November 21, 2013.

[98] Taneja Group. InfiniBand’s Data Centers March. https://cw.

infinibandta.org/document/dl/7269, July 2012.

61 BIBLIOGRAPHY

[99] Dennis Abts, Michael Marty, Philip Wells, Peter Klausler, and Hong Liu.
Energy Proportional Datacenter Networks. In Proceedings of the 37th
Annual International Symposium on Computer Architecture, pages 338–
347. ACM, 2010.

[100] Andrew Odlyzko. Data Networks Are Mostly Empty and for Good Reason.
IT Professional, 1(2):67–69, March 1999.

[101] IEEE P802.3az. http://grouper.ieee.org/groups/802/3/az, 2010.

[102] Wei Lin Guay, Sven-Arne Reinemo, Olav Lysne, Tor Skeie, Bjørn Dag
Johnsen, and Line Holen. Host Side Dynamic Reconfiguration with In-
finiBand. In IEEE International Conference on Cluster Computing, pages
126–135. IEEE Computer Society, September 2010.

[103] Michael Schroeder, Andrew Birrell, Michael Burrows, Hal Murray,
Roger Needham, Thomas Rodeheffer, Edwin Satterthwaite, and Charles
Thacker. Autonet: A High-Speed, Self-Configuring Local Area Network
Using Point-to-point Links. IEEE Journal on Selected Areas in Commu-
nications, 9(8):1318–1335, 1991.

[104] Marcus Epperson, John Naegle, Jim Schutt, Matthew Bohnsack, Steve
Monk, Mahesh Rajan, and Doug Doerfler. HPC Top 10 InfiniBand Ma-
chine... A 3D Torus InfiniBand Interconnect on Red Sky. Contributed
talk to OpenFabrics International Workshop, March 2010.

[105] Åshild Grønstad Solheim, Olav Lysne, Tor Skeie, Thomas Sødring, and
Ingebjørg Theiss. Routing for the ASI Fabric Manager. IEEE Communi-
cations Magazine, 44(7):39–44, 2006.

[106] Olav Lysne, Tor Skeie, Sven-Arne Reinemo, and Ingebjørg Theiss. Lay-
ered Routing in Irregular Networks. IEEE Transactions on Parallel and
Distributed Systems, 17(1):51–65, 2006.

[107] HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/, 2013. Re-
trieved October 25, 2013.

[108] Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo, Tor Skeie, Olav
Lysne, Lars Paul Huse, and Gilad Shainer. First Experiences with Con-
gestion Control in InfiniBand Hardware. In Proceedings of the 24th In-
ternational Parallel and Distributed Processing Symposium, pages 1–12,
2010.

62 BIBLIOGRAPHY

[109] Ernst Gunnar Gran, Sven-Arne Reinemo, Olav Lysne, Tor Skeie, Eitan
Zahavi, and Gilad Shainer. Exploring the Scope of the InfiniBand Conges-
tion Control Mechanism. In Proceedings of the 26th IEEE International
Parallel and Distributed Processing Symposium, pages 1131–1143. IEEE
Computer Society, 2012.

Published Works

63

Paper I

Achieving Predictable High Performance

in Imbalanced Fat Trees

Bartosz Bogdański, Frank Olaf Sem-Jacobsen, Sven-Arne
Reinemo, Tor Skeie, Line Holen, Lars Paul Huse

Achieving Predictable High Performance in Imbalanced Fat Trees

Bartosz Bogdanski∗, Frank Olaf Sem-Jacobsen∗, Sven-Arne Reinemo∗, Tor Skeie∗, Line Holen†, Lars Paul Huse†
∗Simula Research Laboratory

P.O. Box 134,
NO-1325, Lysaker, Norway

E-mail:{bartoszb, frankose, svenar, tskeie}@simula.no
†Oracle Corporation, Oslo, Norway

E-mail: {Line.Holen, Lars.Paul.Huse}@oracle.com

Abstract—The fat-tree topology has become a popular choice
for InfiniBand fabrics due to its inherent deadlock freedom,
fault-tolerance and full bisection bandwidth. InfiniBand is
used by more than 40% of the systems on the latest Top
500 list, and many of these systems are based on a fat-
tree topology. However, the current InfiniBand fat-tree routing
algorithm suffers from flaws that reduce its scalability and
flexibility. Counter-intuitively, the achievable throughput per
node deteriorates both when the number of nodes in a tree
decreases or when the node distribution among leaves is
nonuniform.

In this paper, we identify the weaknesses of the current
enhanced fat-tree routing algorithm in OpenFabrics Enterprise
Distribution and we propose extensions to it that alleviate
all performance problems related to node distribution. The
new algorithm is implemented in OpenSM for real world
evaluation and for future contribution to the OpenFabrics
community. We demonstrate that our solution allows to achieve
a predictable high throughput regardless of the number of
nodes and their distribution. Furthermore, the simulations
show that our extensions improve throughput up to 30%
depending on topology size and node distribution.

Keywords-routing; fat-trees; interconnection networks; In-
finiBand;

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today, and for
clusters based on InfiniBand (IB) technology the fat-tree is
the dominating topology. This includes large installations
such as LANL Roadrunner, TACC Ranger, and FZJ-JSC
JuRoPA [1]. There are three properties that make fat-trees
the topology of choice for high performance interconnects:
deadlock-free routing, the use of a tree structure makes it
possible to route fat-trees without special considerations for
deadlock avoidance; inherent fault-tolerance, the existence of
multiple paths between individual source-destination pairs
makes it easier to handle network faults; full bisection
bandwidth, a balanced fat-tree can sustain full speed com-
munication between the two halves of the network.
The InfiniBand Architecture was first standardized in

2000 [2], as a combination of two older technologies called
Future I/O and Next Generation I/O. As with most other
recent interconnection networks, IB is a serial point-to-point

full-duplex technology. Due to efficient utilization of host
side processing resources it is scalable beyond ten-thousand
nodes each with multiple CPU cores. The current trend
is that IB is replacing proprietary or lower performance
solutions in the high performance computing domain [1],
where high bandwidth and low latency are the key re-
quirements. For fat-trees, as with most other topologies, the
routing algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts trying to improve their routing performance.
This includes the current approach that the OpenFabrics
Enterprise Distribution (OFED) [3], the de facto standard
for IB system software, is based on [4], [5].
Nevertheless, the proposals to improve the routing perfor-

mance have several limitations when it comes to flexibility
and scalability. One problem is the static routing used by IB
technology that limits the exploitation of the path diversity
in fat-trees as pointed out by Hoefler et al. in [6]. Another
problem with the current routing are its shortcomings when
routing oversubscribed fat-trees as addressed by Rodriguez
et al. in [7]. A third problem, and the one that we are
addressing in this paper, is that performance is reduced
when the number of compute nodes connected to the tree
is reduced. For large fabrics where the leaf switches are not
fully-populated with end nodes the throughput per node is
lower than for the case when the leaf switches are fully-
populated. This means that keeping the switching capacity
constant while reducing the number of nodes in the network
leads to reduced performance (less throughput per node).
This counter-intuitive behavior is a problem in situations
where the fat-tree is not fully populated. Such a situation
often occurs during cluster construction, for underpopulated
clusters ready for future expansion (a common scenario),
and for power saving clusters where end nodes are powered
down when not in use. The severity of the problem depends
on the distribution of the end nodes and the size of the tree.
In this paper, we analyze the performance of the fat-tree

routing algorithm for IB with various partially populated
trees and with various distributions of the end nodes. We
show through simulations how the performance of the cur-
rent algorithm is reduced when the number of end nodes

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPADS.2010.94

381

is reduced, and how various distributions of the end nodes
further affect network throughput. We then extend the algo-
rithm by adding a balancing step that makes the performance
independent of the number and distribution of the end nodes.
The rest of this paper is organized as follows: we intro-

duce the fat-tree routing and our optimizations in Section II.
We describe the experimental setup in Section III followed
by the experimental analysis in Section IV. Finally, we
conclude in Section V.

II. FAT-TREE ROUTING

The fat-tree is an efficient interconnect topology that is
well-suited for general purpose high-performance comput-
ing. It was first introduced by C. Leiserson in 1985 [8], and
gained a large installation base among the current Top 500
supercomputers [1]. A balanced fat-tree is a tree topology
where the link capacity at every tier is the same. This is
commonly implemented by building a tree with multiple
roots, often following the m-port n-tree definition [9]. In
general, fat-tree routing consists of an upward phase from
the source of a packet, and a downward phase towards the
destination. The transition from the upward phase to the
downward phase occurs in the least common ancestor, a
switch which reaches both the source and the destination
through different downward links. This algorithm ensures
deadlock-free connectivity between all source-destination
pairs, but it does not guarantee any sort of balancing of
network traffic. Exactly how the different paths are dis-
tributed in the network is subject to specific implementations
of the algorithm. In this section we discuss the fat-tree
routing algorithm implementation found in OFED. One
of the packages distributed with OFED is OpenSM, the
subnet manager (SM) for IB subnets. An IB subnet requires
one or more subnet managers, which are responsible for
initializing and bringing up the network. A major part of the
SMs responsibility are routing table calculations. Routing of
the network aims at obtaining full connectivity, deadlock
freedom, and proper load balancing between all source
and destination pairs. Routing tables must be calculated at
network initialization time and this process must be repeated
whenever the topology changes in order to update the routing
tables and ensure optimal performance.
OFED enhances the fat-tree routing by ensuring that every

path to a given destination converges towards the same
root node in the fat-tree, causing all packets with the same
destination to follow a single path in the downward phase.
The inspiration for this path distribution was [9], where the
authors present the m-port n-tree definition and an associated
multipath routing algorithm which performs a good distribu-
tion of the initial paths. Another implementation of a similar
routing/balancing algorithm is given in [4]. In a fat-tree that
is not oversubscribed, this allows for a dedicated downward
path towards every destination that does not share traffic with
any other destination. Gomez et al. [4] show that this path

5,61,2,3,4

0

1

(n) 2 3 41 5 2 6

Figure 1: With the current algorithm the selection of the root switch depends
on the node distribution which might result in poorly balanced paths.

7,8,9,10,11,12 7,8,9 10,11,12

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Several rack switches show preference for the same upward leaf
switch, resulting in a poorly balanced routing algorithm.

distribution gives very good performance for uniform traffic
patterns. By having dedicated downward paths for every
destination, contention in the downward phase is effectively
removed (moved to the upward phase), so that packets for
different destinations have to contend for output ports in
only half of the switches on their paths.
Specifically, such balancing is implemented in OpenSM

3.3.5, the SM distributed with OFED 1.5.1, by setting up the
path in the reverse direction, from the destination towards
the source. In the reverse downward direction from the
destination d (at tier n, see Fig. 1) connected to switch s
at tier n−1 towards the root (at tier 0), the algorithm will
always choose the switch s at tier n−1 which is connected
to d at tier n and has the lowest number of destinations with
the connecting link as output. Then, the upward port from
s (connected to switches at tier n−2) which has the lowest
load of downward paths is chosen, etc.
None of the routing algorithms we described consider

the effect of the number and the distribution of the end
nodes, and they implicitly assume that the network is fully-
populated by end nodes in terms of balancing. It became
evident from a number of real systems that prompted this
study that the number and the distribution of the end nodes
have a significant impact on the performance of the system,
and, moreover, this results from the manner in which the
routing algorithm was implemented. In the next section,
we explain why having a dedicated downward path is not
sufficient to achieve good performance, and describe how
this causes performance degradation.

A. Balancing Issues

There are two fat-tree configurations that we find in
current systems. The first is a regular fat-tree where the
end nodes are connected directly to the leaf switches of
the tree. The second consists of one or more fat-trees with

382

an extra tier of rack switches at the bottom, connected to
all of the fat-trees. Both these configurations experience
issues with poor balancing of the network traffic in the
case where the leaves/rack switches are not fully-populated
with end nodes, both with an uniform and nonuniform node
distribution. In the following paragraphs we explain why this
imbalance occurs, before we outline in the next sections
how we modified the algorithm to tolerate arbitrary end
node connection patterns without a significant performance
degradation.
The main concept behind the routing algorithms we

described is that every destination has a dedicated downward
path from a specific root in the fat-tree. For fully-populated
topologies this is sufficient. However, as the connectivity
pattern of the end nodes becomes more irregular, a specific
artifact of the algorithm becomes evident. In addition to
minimizing contention, it is also important to spread the
traffic evenly throughout the network. This aspect was not
sufficiently considered in the work presented in the previous
section. For the interested reader, note also that algorithm 4,
and the solution for the missing compute nodes in section
3.2 in [5] are insufficient for completely balancing the fat-
tree. Namely, the problem are the dummy end nodes that are
introduced to ensure a correct distribution of the downward
paths in the network with respect to an all-to-all shift
communication pattern. While this leads to an apparently
balanced network, it may lead to skew in the balance of the
upward paths.
We first consider the case for a regular fat-tree network

where the end nodes are connected directly to the leaves
of the fat-tree. The original condition that every destination
should have a unique path from a root in the topology to
the destination, which is not shared by any path to any other
destination, is valid regardless of the manner in which end
nodes are connected to the network. Any imbalance must
therefore lie in the manner in which the root nodes for these
paths are selected.
Consider two end nodes that are connected to different

leaf switches such that their least common ancestors are at
the root tier of the topology. Since the algorithm only checks
the load of the path coming from the switch above when
constructing the downward path, it is entirely possible that
the downward path to these two destinations will originate
from the same root switch. Consequently, given 24 end
nodes in a fat-tree consisting of 24-port switches, connected
such that the least common ancestors of every possible
pair is at the root tier of the fat-tree (this is possible with
up to and including 24 nodes), a legal outcome of the
algorithm is that one single root tier switch is the origin
of the downward path to all 24 destinations (the actual
outcome will depend on the sequence in which the possible
output ports are evaluated). As even more end nodes are
added to the topology, traffic towards these 24 destinations
will be heavily aggregated towards the single root switch,

Figure 3: Our proposed approach of balancing without rack switches by
considering the number of downward paths routed through the switches at
the stage above (circled), in addition to the number of paths on each of the
downward links (bold).

thus yielding much lower performance than if each of the
24 destinations was routed through different root switches.
It is thus not sufficient to only consider the load of the
downward links from the stage above when choosing the
downward path in the routing algorithm. An example of this
is presented in Fig. 1.
The second case which may cause an imbalance in the

amount of traffic that is transmitted through the different
root switches (or network switches in general) is when
there is an additional layer of switches (called in general
"rack switches") between the end nodes and the fat-tree
topology. For the topologies considered in this paper, the
rack switches have multiple connections to the fat-tree
topology (topologies), allowing traffic from a given source
to enter the fat-tree topology through one of several possible
leaf switches (see Fig. 2). Which of the possible paths
are actually chosen is somewhat arbitrary in the current
algorithm, it is the path that first reaches the rack switches as
the routing algorithm traverses all possible paths. This will,
in most cases, cause traffic from the rack switches to favor
certain leaf switches in the fat-tree, causing the paths from
the switches to be overloaded, while underutilizing other
alternative paths. Similar to the first case, it is clear that
simply considering the load of a single link is insufficient
to achieve a well-balanced fat-tree routing function.

B. Balancing Solutions

Both problems outlined in the previous section can be
solved to a large extent by the same mechanism, namely
considering the load of downward channels and switches
at higher tiers than the one directly above. Ideally, the
complete load of all possible downward paths from the root
tier to the current switch should be considered, which would
guarantee the ideal balance with regards to the number of
communicating pairs that share each link (see Fig. 3). How-
ever, this would give the routing algorithm an exponential
complexity, and the evaluations we present below indicate
that considering only the downward paths in the directly
connected links and the total number of downward paths in
the switches to which they are connected at the tier above (as
opposed to only the directly connected links in the original
algorithm) is sufficient to achieve very good balance.

383

For the first imbalance case this is sufficient to greatly
improve the performance of the routing algorithm for topolo-
gies that do not include rack switches. However, for the
second case we must add an additional mechanism to ensure
good balancing. For a regular fat-tree, every leaf switch will
only have a single path to the chosen root switch for a given
destination. The rack switches, however, will have multiple.
Therefore, a complete solution to the second case involves
correctly choosing which fat-tree leaf switch to forward
traffic to for a given destination. This requires a two-step
algorithm. First, we must go through all the leaf switches
that are part of the possible path to a given destination from
a given rack switch and determine whether one of these
already carries traffic from another rack switch towards the
given destination. If such a leaf switch is found, choose
it as the next hop from the rack switch to the destination.
If such a switch is not found, choose the leaf switch that
already forwards traffic from rack switches (or directly
connected end nodes) to the lowest number of destinations.
Aggregating all traffic for a single destination as early as
possible as done with this algorithm will decrease network
contention, and thus increase performance in addition to
improving the balance of source-destination pairs for the
individual links.

III. EXPERIMENT SETUP

To validate our claims in this paper and perform large-
scale evaluations, we used an IB model for the OMNeT++
simulator. The model contains an implementation of HCAs
and switches with routing tables. The topology and routing
tables are generated using OpenSM and converted into
OMNeT++ readable format in order to simulate real-world
systems. For our simulations we used the following two
traffic patterns for performance analysis:
1) uniform traffic pattern: for all topologies we are send-

ing series of 2 kB IB packets and the network load varies
from 0% to 100%. The link speed was set to SDR (1GB/s)
for all the simulations. For each message each source is
choosing the destination randomly from a list of all possible
destinations.
2) ping pong traffic pattern: which was used to run the

HPC Challenge Benchmark tests in the simulator. For the
bandwidth tests we used a message size of 1954 kB and
the network load was set constant at 100%. The bandwidth
tests were performed on 31 ring patterns: one natural-
ordered ring and 30 random-ordered rings from which the
minimum, maximum and average results were taken. For
this measurement, each node sends a message to its left
neighbor in the ring and receives a message from its right
neighbor. Next, it sends a message back to its right neighbor
and receives a return message from its left neighbor.

A. Topologies

The simulations were run on five different fat-tree topolo-
gies modeled after real systems. In particular, we have used

commercially available switch designs with 648 ports with
and without additional rack switches and a switch design
with 3456 ports. A 648-port switch is the largest possible
2-stage fat-tree switch that can be constructed using 36-
port switch elements and a 3456-port switch is the largest
possible 3-stage fat-tree switch that can be constructed using
24-port switch elements. To construct the former, 54 36-
port switch elements are needed (18 roots and 36 leaves)
and to construct the latter, 720 24-port switch elements
are required (144 roots, 288 intermediate switches and 288
leaves). By "rack switches" we mean external switches
that are connected to the leaves in the chassis and they
usually have multiple upward connections to different leaves.
Computing nodes are connected to these switches, where
applicable.
Moreover, we have connected multiple 648-port switches

and 3456-port switches to simulate supercomputer systems
similar to JuRoPA [10] and Ranger [11]. These super-
computers are constructed using multiple fat-trees that are
interlinked through rack switches. Consequently, the Ju-
RoPA topology consists of eight 648-port switches with
additional cross-linked rack switches (explained in the next
section) and the Ranger topology is built from two 3456-
port switches with an additional switching stage consisting
of rack switches at the bottom tier. The 648-port systems are
currently a popular product and many vendors offer their
own systems [12]–[14] while a 3456-port switch is only
available from Oracle/Sun [15].
The exact node distribution and the total number of

nodes for each topology is presented in Table I. By a node
distribution of X:Y we mean that X nodes are connected to
the even leaf switches and Y nodes are connected to the odd
ones. For topologies with cross-linked rack switches, such a
notation implies that X nodes in total are connected to the
first two cross-linked rack switches, and Y nodes in total are
connected to the next two.

IV. PERFORMANCE EVALUATION

Network performance depends on the physical topology,
the chosen routing algorithm and the applied traffic pattern.
To properly understand the influence of these factors, we
have performed numerous simulations on different network
topologies with various node distributions using the most
recent version of the routing algorithm available for IB,
the enhanced fat-tree (EFT) algorithm, and the balanced
enhanced fat-tree (BEFT) algorithm proposed in this paper.
We use the achieved average throughput per end node
relative to the link capacity as the metric for measuring
performance and comparing the two algorithms.

A. Uniform Traffic

This traffic pattern is likely to cause light congestion in
the fabric because the destinations are chosen randomly by
each source (i.e. two or more sources may send traffic to a

384

Table I: Node distribution for the simulated topologies.
Even leaf switches Odd leaf switches Total no. of nodes

9 9 324
11 7 324
13 5 324
17 1 324
18 18 648

(a) 648-port switch

Even leaf switches Odd leaf switches Total no. of nodes
6 6 1728
7 5 1728
9 3 1728
11 1 1728
12 12 3456

(b) 3456-port switch

Even rack switches Odd rack switches Total no. of nodes
12 12 324
22 1 321
24 24 648

(c) 648-port switch with cross-linked rack switches

Even rack switches Odd rack switches Total no. of nodes
12 12 2592
23 1 2592
24 24 5184

(d) JuRoPA-like supercomputer

Load (% of capacity)

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Sparsely populated and balanced 9:9 (324 nodes) − BEFT
Sparsely populated and balanced 9:9 (324 nodes) − EFT
Sparsely populated and imbalanced 11:7 (324 nodes) − BEFT
Sparsely populated and imbalanced 11:7 (324 nodes) − EFT
Sparsely populated and imbalanced 13:5 (324 nodes) − BEFT
Sparsely populated and imbalanced 13:5 (324 nodes) − EFT
Sparsely populated and imbalanced 17:1 (324 nodes) − BEFT
Sparsely populated and imbalanced 17:1 (324 nodes) − EFT
Fully−populated 18:18 (648 nodes) − BEFT
Fully−populated 18:18 (648 nodes) − EFT

Figure 4: Simulation results for 648-port topologies.

Load (% of capacity)

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Sparsely populated and balanced 12:12 (324 nodes) − BEFT
Sparsely populated and balanced 12:12 (324 nodes) − EFT
Sparsely populated and imbalanced 22:1 (321 nodes) − BEFT
Sparsely populated and imbalanced 22:1 (321 nodes) − EFT
Fully−populated 24:24 (648 nodes) − BEFT
Fully−populated 24:24 (648 nodes) − EFT

Figure 5: Simulation results for 648-port topologies with rack switches.

single destination). In the following section we discuss the
performance results for each of the five topologies we have
studied.
1) 648-port fat-tree: We have routed and performed sim-

ulations for the configurations listed in Table Ia. Fig. 4 shows
the results for all configurations. The main results are that for
all configurations the BEFT algorithm outperforms the EFT
algorithm and the best case for the EFT algorithm equals
to the worst case for the BEFT algorithm. This happens for
the fully-populated configuration where balancing is not an
issue (Table Ia row five). Going into more detail, we observe
that, in the case of a skewed node distribution, the EFT
algorithm fails to choose the root switches in a balanced
manner, and consequently there is a drop in throughput.
This is especially visible in case of a node distribution of
17:1, where the average throughput per node for the BEFT
algorithm is over 90% compared to approximately 65% for
the EFT algorithm. Furthermore, the experiment shows that
with uniformly distributed end nodes (9:9), the difference
between the BEFT and EFT algorithm is approximately 5%
in favor of the BEFT algorithm.
2) 648-port fat-tree with cross-linked rack switches: In

this configuration we treat two cross-linked rack switches as
one large rack switch when connecting the nodes (e.g. a 22:1
node distribution means that 22 nodes are connected to first
two cross-linked rack switches and only 1 node is connected
to the other two cross-linked rack switches). Moreover, we
used a design available from Oracle/Sun [16] where in each
cross-linked rack switch, two switch elements share four
upward leaf switches and each of the rack switches uses
a three-port port group to connect to a single upward leaf
switch.
With this configuration the observed differences between

the two algorithms are at most 6%, always in favor of our
BEFT algorithm (see Fig. 5). The explanation is that multiple
connections to the upward switches and the use of cross-
links reduce the contention on the upward ports of the rack
switches. Path distribution across the root switches is more
balanced, therefore there is only a small performance drop
with the EFT algorithm.
3) 3456-port fat-tree: The simulation results, shown on

Fig. 6, confirm the existence of the same balancing issues
as in the case of 648-port switch. Even if the nodes are
uniformly distributed (6:6), the difference in the average
throughput per node is visible with 95.42% achieved by
BEFT and 89.85% obtained by EFT algorithm. By further
increasing the node skew, we observe that the throughput
for fabrics routed using EFT decreases dramatically. This is
not the case for BEFT which maintains a generally constant
throughput regardless of the node distribution.
4) JuRoPA-like topology: JuRoPA supercomputer is a fat-

tree built from eight 648-port switches. These eight separate
switches are interlinked at the bottom tier using cross-linked
rack switches, so all-to-all connectivity is possible. The

385

Load (% of capacity)

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Sparsely populated and balanced 6:6 (1728 nodes) − BEFT
Sparsely populated and balanced 6:6 (1728 nodes) − EFT
Sparsely populated and imbalanced 7:5 (1728 nodes) − BEFT
Sparsely populated and imbalanced 7:5 (1728 nodes) − EFT
Sparsely populated and imbalanced 9:3 (1728 nodes) − BEFT
Sparsely populated and imbalanced 9:3 (1728 nodes) − EFT
Sparsely populated and imbalanced 11:1 (1728 nodes) − BEFT
Sparsely populated and imbalanced 11:1 (1728 nodes) − EFT
Fully−populated 12:12 (3456 nodes) − BEFT
Fully−populated 12:12 (3456 nodes) − EFT

Figure 6: Simulation results for 3456-port topologies.

results presented on Fig. 7 confirm that the introduction
of cross-linked rack switches reduces the balancing issues
for EFT. Nevertheless, by introducing a large enough skew
(23:1), the balancing issues become evident and the differ-
ence in achieved throughput is 5%. Moreover, for every node
distribution apart from the fully-populated state (Table Id
row three), the throughput in a fabric routed by BEFT was
at least a few percent larger than in the case of EFT. While
the above numbers show that BEFT provides better path
balancing than EFT, the important practical observation from
the point of view of such a supercomputer as JuRoPA is
that the proper choice of a routing algorithm may boost
applications’ performance.
5) Ranger-like fat-tree: Ranger, a dual-tree topology, is

built from two 3456-port switches interlinked with rack
switches at the bottom tier. We performed the simulations for
the same node distributions as listed in Table Ib, however,
we are not presenting the graph due to space limitations.
We observed that, in this case, the differences between both
algorithms are minimal (in a range of 1-2%), but still in
favor of BEFT for every performed experiment apart from
the fully-populated scenario (Table Ib, row five), in which
the results were identical. This shows that BEFT balances
the paths through the roots better than EFT.

B. HPC Challenge Benchmark

The implementation of this traffic pattern follows the
freely available algorithm for performing the HPCC tests on
real clusters [17]. Table II lists the bandwidth tests results for
a 648-port switch and a 648-port switch with cross-linked
rack switches. For fat-trees, all the natural-ordered ring
bandwidth results will be the same (no contention). How-
ever, when we compare the average or minimum bandwidths
for random-ordered rings for any topology (apart from the
fully-populated one for 648-port switch), we observe that by
using BEFT, we gain a relative improvement in bandwidth
ranging from 3.63% to 22.31% for 648-port switch and from

Load (% of capacity)

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Sparsely populated and balanced 12:12 (2592 nodes) − BEFT
Sparsely populated and balanced 12:12 (2592 nodes) − EFT
Sparsely populated and imbalanced 23:1 (2592 nodes) − BEFT
Sparsely populated and imbalanced 23:1 (2592 nodes) − EFT
Fully−populated 24:24 (5184 nodes) − BEFT
Fully−populated 24:24 (5184 nodes) − EFT

Figure 7: Simulation results for the JuRoPA-like topology.

Table II: The HPC Challenge Benchmark results.
Measurement BEFT (MB/s) EFT (MB/s) Improvement

648-port fat-tree with 9:9 node distribution
NOR BW1 1523.43 1523.43 -
ROR BW MIN2 284.06 251.29 13%
ROR BW MAX2 1523.73 1523.73 -
ROR BW AVG2 962.87 787.24 22.3%

648-port fat-tree with 17:1 node distribution
NOR BW AVG 1523.55 1523.55 -
ROR BW MIN 255.96 225.74 13.4%
ROR BW MAX 1523.73 1523.73 -
ROR BW AVG 829.28 800.20 3.6%

648-port fat-tree with 18:18 node distribution
NOR BW 1523.56 1523.56 -
ROR BW MIN 176.10 176.10 -
ROR BW MAX 1523.75 1523.75 -
ROR BW AVG 769.90 769.89 -

(a) 648-port fat-tree switch

Measurement BEFT (MB/s) EFT (MB/s) Improvement
648-port fat-tree (racks cross-linked) with 12:12 node distribution

NOR BW 1523.36 1523.36 -
ROR BW MIN 390.14 267.34 45.9%
ROR BW MAX 1522.92 1399.33 8.8%
ROR BW AVG 855.61 784.89 9%
648-port fat-tree (racks cross-linked) with 22:1 node distribution

NOR BW AVG 1523.43 1523.43 -
ROR BW MIN 363.92 231.79 57%
ROR BW MAX 1523.73 1523.73 -
ROR BW AVG 798.39 724.98 10.1%

648-port fat-tree (racks cross-linked) 24:24 node distribution
NOR BW 1523.50 1523.50 -
ROR BW MIN 267.81 170.68 56.9%
ROR BW MAX 1523.73 1523.73 -
ROR BW AVG 676.56 656.22 3.1%

(b) 648-port fat-tree switch with additional rack switches
1 Natural-ordered ring bandwidth;
2 Random-ordered ring bandwidth (minimum, maximum and average);

3.1% to 57% for 648-port switch with cross-linked rack
switches. An interesting observation is the fact that even
for a fully-populated 648-port switch with cross-linked rack
switches there is a noticeable performance gain when using
BEFT, which is explained by the fact that the LID-to-output
port mapping for EFT is different than for BEFT, and that
the particular traffic patterns caused more congestion.

386

Table III: Routing execution time for different topologies in seconds.
Topology BEFT EFT
648-port fat-tree switch (s) 0.03 0.02
648-port fat-tree with rack switches (s) 0.54 0.07
3456-port fat-tree switch (s) 1.89 4.71
JuRoPA-like supercomputer (s) 46.02 9.52
Ranger-like supercomputer (s) 145.3 36.72

Number of nodes

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 50 100 200 300 342 400 500 600 648

0
10

20
30

40
50

60
70

80
90

10
0

BEFT (Even switches are populated up to 18:1 ratio − case 1)
BEFT (Even switches are populated up to 17:1 ratio − case 2)
EFT (Even switches are populated up to 18:1 ratio − case 1)
EFT (Even switches are populated up to 17:1 ratio − case 2)

Figure 8: Relationship between the node distribution (increasing imbalance)
and the achieved throughput for an 648-port network topology.

C. Node number vs. throughput

An important question is how the achieved throughput
is related to the number of nodes in a particular topology.
Specifically, the purpose of the experiment presented in this
section was not only to gain an overall comparison of both
algorithms but also to determine what is the predictability
of the achieved throughput for each of the algorithms at
full (100%) load under uniform traffic when the number of
nodes varies. The simulations were carried out for two fat-
tree topologies: a 648-port fat-tree switch and a 3456-port
switch.
Furthermore, to properly understand the influence of the

dummy nodes (described in Section II-A and Section 3.2
of [5]), we chose two border case node distributions for
each fat-tree topology. For the 648-port fat-tree, the number
of nodes was increased from 36 (1 node per each leaf switch)
up to 324 (17 nodes per even leaf switches and 1 per odd
ones). Next, we introduced the two border cases: first, we
added one more node to all even leaf switches (18:1) to fully

Number of nodes

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 400 800 1200 1600 1800 2000 2400 2800 3200 3456

0
10

20
30

40
50

60
70

80
90

10
0

BEFT (Even switches are populated up to 12:1 ratio − case 1)
BEFT (Even switches are populated up to 11:1 ratio − case 2)
EFT (Even switches are populated up to 12:1 ratio − case 1)
EFT (Even switches are populated up to 11:1 ratio − case 2)

Figure 9: Relationship between the node distribution (increasing imbalance)
and the achieved throughput for an 3456-port network topology.

populate them and then we started increasing the number
of nodes on odd leaf switches until we reached a fully-
populated network (18:2, 18:3,...,18:18); second, at 17:1
node distribution, we started adding nodes on the odd leaf
switches (17:2, 17:3,..., 17:18), and, ultimately, we added
the final missing nodes on even leaf switches, again reaching
the fully-populated state (18:18). The results are presented
on Fig. 8 and a more detailed analysis shows that even with
a ratio of 5:1, the achieved throughput in a fabric routed by
EFT declines to 70% of capacity and reaches a minimum
of 64.9% for 13:1 ratio. Moreover, as visible in the second
border case, when no leaf switches are fully-populated with
nodes (i.e. no leaf has 18 nodes attached), and the node
distribution becomes less skewed, the throughput increases
gradually, but it is still much lower than for BEFT. The
dummy nodes activate properly only when the fabric reaches
18:1 ratio, meaning that at least some of the switches have
to be fully-populated. This behavior is marked by the large
vertical jump from 65% to over 90% throughput on Fig. 8.
However, the dummy nodes do not function correctly unless
at least one of the switches reaches a fully-populated state
(shown by the second border case), or, as shown on Fig. 9,
not function at all in case of a more complex topology. The
important observation is that, regardless of the number of
nodes and their distribution, BEFT achieves a predictable
high throughput at a level of 90% of capacity. Additionally,
in case we do not have fully-populated switches in the
network (second border case), the throughput is slightly
higher because the paths are balanced between all of the
root switches and a smaller number of nodes makes the
contention at the root level smaller.
Fig. 9 shows the results of a similar experiment performed

on a 3456-port fat-tree topology. Again, we introduce two
border cases. Having started adding the nodes at a ratio of
1:1 (288 nodes), we introduced the first case at a ratio 11:1
(1728 nodes) when we fully populated the even leaf switches
with 12 nodes (12:1) and started populating the odd leaf
switches (12:2, 12:3,...12:12) until reaching a distribution of
12:12. Next, we introduced the second case where we did
not populate any of the switches fully until the very last steps
(11:2, 11:3..., 11:11, 11:12, 12:12). Note that even at a ratio
of 1:1, EFT does not choose the root switches in a balanced
manner as the achieved throughput is lower than for BEFT.
Moreover, at a ratio of 7:1 for EFT, the achieved throughput
is lower than 70% and the minimum is achieved at 12:1
ratio (64.3%). However, the most striking feature is the fact
that dummy nodes do not activate when 12:1 distribution is
reached. This is explained by the greater complexity of the
3456-port fabric and the lack of scalability of the dummy
node implementation. A noticeable aspect of BEFT is that
the throughput suddenly drops by 4.8% when 12:1 ratio
is reached. This is a general artifact in the fat-tree routing
algorithm, which assigns the upward output ports on a switch
in a sequential manner, and, for some node distributions, it is

387

impossible to have a perfectly equal balance on every single
port. Even though this artifact influences BEFT’s throughput,
we observe that it is much more stable and predictable than
EFT irrespective of the node distribution and the achieved
throughput for BEFT is always in the range between 88.5
and 96.2%.

D. Execution time

The execution time of the fat-tree routing algorithm
depends on the overall size of the network and is mainly
influenced by the number of computing nodes and switches
in the network. Because BEFT chooses the next hop switch
in a more sophisticated manner, its execution time is gener-
ally greater than that of EFT. However, this is only true
for networks for which the special routing in leaves is
executed (described in Section II-B), which is not necessary
for simpler networks like 648-port or 3456-port fat-tree
switches. To decrease the execution time on these topolo-
gies, we introduced a command line parameter −Z (off
by default), which, when supplied to the routing engine,
executes the time-consuming logic allowing the algorithm to
properly balance the paths for complex topologies. Table III
shows the execution time of both algorithms for a set of
the fully populated topologies considered in this paper. For
less complex topologies, like 648-port or 3456-port fat-trees,
special leaf routing is not necessary, so BEFT execution time
is comparable to or faster than for EFT because the leaf
balancing does not need to be invoked. For more complex
topologies (e.g. 648-port switch with cross-linked racks,
JuRoPA-like or Ranger-like) there is a trade-off between
a longer routing time and better balancing (thus, better
performance).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we identified a flaw in the existing fat-
tree routing algorithm for IB networks, where the achievable
throughput per node deteriorates both when the number of
nodes in a tree decreases and when the node distribution
among the leaf switches is nonuniform. With this insight,
we proposed an extension to the existing algorithm that
alleviates all performance problems related to node distribu-
tion. To evaluate the algorithm, we simulated several fat-tree
topologies based on common switching products and real
installations. Simulation results show that our extensions im-
prove performance by 30% depending on topology size and
node distribution. Furthermore, the simulations demonstrate
that BEFT allows to achieve a high predictable throughput
irrespective of the node distribution and the node number.
In the future, we plan to expand this work to also

cover fat-trees with nonuniform distribution of switches,
and to contribute our changes to OpenFabrics community.
Looking further ahead, we will also look into extensions
that will reduce the amount of network congestion by using
nonproprietary and widely available techniques.

ACKNOWLEDGMENTS

This work is in part financed by Oracle Corporation.

REFERENCES

[1] “Top 500 supercomputer sites,” http://top500.org/, June
2010.

[2] Infiniband architecture specification, 1st ed., Infini-
Band Trade Association, November 2007.

[3] “The OpenFabrics Alliance,” http://openfabrics.org/.
[4] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and

J. Duato, “Deterministic versus Adaptive Routing in
Fat-Trees,” in Workshop on Communication Architec-
ture on Clusters, IPDPS, 2007.

[5] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang,
“Optimized Infiniband fat-tree routing for shift all-
to-all communication patterns,” in Concurrency and
Computation: Practice and Experience, 2009.

[6] T. Hoefler, T. Schneider, and A. Lumsdaine, “Mul-
tistage switches are not crossbars: Effects of static
routing in high-performance networks,” in IEEE Inter-
national Conference on Cluster Computing, 2008.

[7] G. Rodriguez, C. Minkenberg, R. Beivide, and R. P.
Luijten, “Oblivious Routing Schemes in Extended Gen-
eralized Fat Tree Networks,” IEEE International Con-
ference on Cluster Computing and Workshops, 2009.

[8] C. E. Leiserson, “Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transac-
tions on Computers, 1985.

[9] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A Multiple
LID Routing Scheme for Fat-Tree-Based Infiniband
Networks,” Proceedings of IEEE International Parallel
and Distributed Processing Symposiums, 2004.

[10] “Julich Supercomputing Centre,” http://www.
fz-juelich.de/jsc/juropa/configuration/.

[11] “Texas Advanced Computing Center,” http://www.tacc.
utexas.edu/.

[12] “IS5600 - 648-port InfiniBand Chassis Switch,”
Mellanox Technologies, http://www.mellanox.com/
related-docs/prod_ib_switch_systems/IS5600.pdf.

[13] “Sun Datacenter InfiniBand Switch 648,” http://www.
oracle.com/us/products/servers-storage/networking/
infiniband/034537.htm.

[14] “Voltaire QDR InfiniBand Grid Director 4700,” http://
www.voltaire.com/Products/InfiniBand/Grid_Director_
Switches/Voltaire_Grid_Director_4700.

[15] “Sun Datacenter Switch 3456,” http://www.oracle.com/
us/products/servers-storage/networking/infiniband/
031556.htm.

[16] “Sun Blade 6048 InfiniBand QDR Switched NEM,”
http://www.oracle.com/us/products/servers-storage/
servers/blades/031095.htm.

[17] “HPC Challenge Benchmark,” http://icl.cs.utk.edu/
hpcc/.

388

Paper II

vFtree - A Fat-tree Routing Algorithm

using Virtual Lanes to Alleviate

Congestion

Wei Lin Guay, Bartosz Bogdański, Sven-Arne Reinemo, Olav
Lysne, Tor Skeie

vFtree - A Fat-tree Routing Algorithm using Virtual Lanes to Alleviate Congestion

Wei Lin Guay, Bartosz Bogdanski, Sven-Arne Reinemo, Olav Lysne, Tor Skeie
Simula Research Laboratory

P.O. Box 134,
NO-1325, Lysaker, Norway

E-mail:{weilin, bartoszb, svenar, olavly, tskeie}@simula.no

Abstract—It is a well known fact that multiple virtual lanes
can improve performance in interconnection networks, but this
knowledge has had little impact on real clusters. Currently, a
large number of clusters using InfiniBand is based on fat-tree
topologies that can be routed deadlock-free using only one
virtual lane. Consequently, all the remaining virtual lanes are
left unused.

In this paper we suggest an enhancement to the fat-tree algo-
rithm that utilizes virtual lanes to improve performance when
hot-spots are present. Even though the bisection bandwidth in
a fat-tree is constant, hot-spots are still possible and they will
degrade performance for flows not contributing to them due
to head-of-line blocking. Such a situation may be alleviated
through adaptive routing or congestion control, however, these
methods are not yet readily available in InfiniBand technology.
To remedy this problem, we have implemented an enhanced
fat-tree algorithm in OpenSM that distributes traffic across
all available virtual lanes without any configuration needed.
We evaluated the performance of the algorithm on a small
cluster and did a large-scale evaluation through simulations.
In a congested environment, results show that we are able to
achieve throughput increases up to 38% on a small cluster and
from 221% to 757% depending on the hot-spot scenario for a
648-port simulated cluster.

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today, and for
clusters based on InfiniBand (IB) technology the fat-tree is
the dominating topology. This includes large installations
such as the Roadrunner, Ranger, and JuRoPa [1]. There are
three properties that make fat-trees the topology of choice for
high performance interconnects: deadlock freedom, the use
of a tree structure makes it possible to route fat-trees without
using virtual lanes for deadlock avoidance; inherent fault-
tolerance, the existence of multiple paths between individual
source destination pairs makes it easier to handle network
faults; full bisection bandwidth, the network can sustain
full speed communication between the two halves of the
network.
For fat-trees, as with most other topologies, the routing

algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts trying to improve the routing performance.
This includes the current approach that the OpenFabrics
Enterprise Distribution (OFED) [2], the de facto standard for

IB system software, is based on [3], [4]. These proposals,
however, have several limitations when it comes to flexibility
and scalability. One problem is the static routing used by IB
technology that limits the exploitation of the path diversity
in fat-trees as pointed out by Hoefler et al. in [5]. Another
problem with the current routing are its shortcomings when
routing oversubscribed fat-trees as addressed by Rodriguez
et al. in [6]. A third problem is that performance is reduced
when the number of compute nodes connected to the tree
is reduced as addressed by Bogdanski et al. in [7]. And
finally we have the problem of reducing the negative impact
of congestion due to head-of-line blocking (HOL) [8]. This
is not a routing problem per se as this should be handled
by a congestion control mechanism, e.g. the mechanism
found in IB [9], [10]. This mechanism, however, has its
own set of challenges; one being that it is not generally
available for existing IB hardware, another being that it is
not yet understood how to configure congestion control for
large networks [11]. Therefore, it is important to minimize
the problem by other means. We suggest to do this using
a combination of efficient routing and virtual lanes in an
implementation that can be directly applied to IB or other
technologies supporting multiple virtual channels.
Virtual lanes (or channels) were first introduced by Dally

in the late eighties [12]. The intention at the time was
to alleviate the restriction on routing flexibility that was
imposed by deadlock considerations. In 1992 he published
an analysis on the effect that virtual channels could have on
network performance [13]. In spite of his positive findings,
the usage of virtual channels has been confined to flexible
routing and service differentiation, both in academia and in
the industry. This is partly due to the fact that the analysis in
the 1992 paper was based on assumptions that were not true
for real technologies - in particular that a source was free to
decide virtual lanes at the packet level, and not at the stream
level. More recent works have addressed the congestion issue
in several other ways. A recent proposal by Rodriguez et
al. [14] also addresses this from a routing perspective, but
in an application-specific manner and without using virtual
lanes. Another approach using a combination of multipath
routing and bandwidth estimation was proposed by Vishnu
et al. in [15], but this is significantly more complex to
implement than our proposal. A third proposal by Escudero-

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE
DOI 10.1109/IPDPS.2011.28

197

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE
DOI 10.1109/IPDPS.2011.28

197

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE
DOI 10.1109/IPDPS.2011.28

197

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE
DOI 10.1109/IPDPS.2011.28

197

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE
DOI 10.1109/IPDPS.2011.28

197

Sahuquillo et al. [16] uses multiple queues at the input ports
in the switches to avoid HOL, but this is not compatible with
any existing network technology and requires new hardware
to be built.
In this paper, we present the first results that indicate the

gain of adding virtual lanes on a real commercial technology.
These results deviate from Dally’s in two respects. Firstly,
they indicate that the performance gain is significantly bigger
than he reported. Secondly,
that most of the gain can be realized by only 2 VLs,

making it an obvious, readily available and potent improve-
ment for all existing InfiniBand clusters. To be specific, we
analyze the performance of the fat-tree routing algorithm in
OpenSM in a hot-spot scenario and suggest a new routing
algorithm, vFtree, that improves performance when hot-
spots are present by using virtual lanes. Through a prototype
implementation in OpenSM we demonstrate, using a small
cluster, how virtual lanes can be used to achieve the same
effect as IB congestion control. Then we generalize this
into a new fat-tree routing algorithm that we evaluate for
performance on a small cluster and for performance and
scalability through simulations.
The rest of this paper is organized as follows: we intro-

duce the InfiniBand Architecture in Section II followed by a
description of fat-tree topologies and routing in Section III
and a motivation for our proposal in Section IV. The
algorithm is described in Section V. Then we describe the
experimental setup in Section VI followed by the perfor-
mance analysis of the experimental and simulated results in
Section VII. Finally, we conclude in Section VIII.

II. THE INFINIBAND ARCHITECTURE

InfiniBand is a serial point-to-point full-duplex technol-
ogy, and the InfiniBand Architecture was first standardized
in October 2000 [9]. Due to efficient utilization of host side
processing resources, IB is scalable beyond ten thousand
nodes with each having multiple CPU cores. The current
trend is that IB is replacing proprietary or low-performance
solutions in the high performance computing domain [1],
where high bandwidth and low latency are the key require-
ments.
The de facto system software for IB is OFED devel-

oped by dedicated professionals and maintained by the
OpenFabrics Alliance [2]. OFED is open source and is
available for both GNU/Linux and Microsoft Windows. The
improved vFtree algorithm that we propose in this paper
was implemented and evaluated in a development version
of OpenSM, which is a subnet manager distributed together
with OFED.

A. Subnet Management

InfiniBand networks are referred to as subnets, where
a subnet consists of a set of hosts interconnected using
switches and point-to-point links. An IB fabric constitutes of

one or more subnets, which can be interconnected together
using routers. Hosts and switches within a subnet are ad-
dressed using local identifiers (LIDs) and a single subnet is
limited to 48151 LIDs.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initializing and bringing up the
network, including the configuration of all the IB ports
residing on switches, routers and host channel adapters
(HCAs) in the subnet. At the time of initialization the SM
starts in the discovering state where it does a sweep of the
network in order to discover all switches and hosts. During
this phase it will also discover any other SMs present and
negotiate who should be the master SM. When this phase
is complete the SM enters the master state. In this state, it
proceeds with LID assignment, switch configuration, routing
table calculations and deployment, and port configuration. At
this point the subnet is up and ready for use. After the subnet
has been configured, the SM is responsible for monitoring
the network for changes.

A major part of the SMs responsibility are routing table
calculations. Routing of the network aims at obtaining full
connectivity, deadlock freedom, and proper load balancing
between all source and destination pairs. Routing tables must
be calculated at network initialization time and this process
must be repeated whenever the topology changes in order to
update the routing tables and ensure optimal performance.

B. Virtual Lanes

InfiniBand is a lossless networking technology, where
flow-control is performed per virtual lane (VL) [13]. The
concept of virtual lanes is shown in Fig. 1. VLs are logical
channels on the same physical link, but with separate buffer-
ing, flow-control, and congestion management resources.
Fig. 2 shows an example of per VL credit-based flow-control
where VL 0 runs out of credits after cycle 1 (depicted by a
bold D) and is unable to transmit until credit arrives in cycle
9 (depicted by a bold C). As the other lanes have sufficient
credit, they are unaffected and are able to use the slot that
VL 0 would otherwise use. Transmission resumes for VL 0
when credit arrives.

The concept of virtual lanes makes it possible to build
virtual networks on top of a physical topology. These
virtual networks, or layers, can be used for various purposes
such as efficient routing, deadlock avoidance, fault-tolerance
and service differentiation. Our proposal exploits VLs for
improved routing and network performance.

The VL architecture in IB consists of four mechanisms:
service levels, virtual lanes, virtual lane weighting, and
virtual lane priorities. A service level (SL) is a 4-bit field
in the packet header that denotes what type of service a
packet shall receive as it travels toward its destination. This
is supplemented by up to sixteen virtual lanes. A minimum
of two VLs must be supported: VL 0 as the default data
lane and VL 15 as the subnet management traffic lane. By

198198198198198

LC

LC LC

in
p

u
t

q
u

eu
es

V
ir

tu
al

 c
h

an
n

el
s

V
ir

tu
al

 c
h

an
n

el
s

o
u

tp
u

t
q

u
eu

es

C
R

O
S

S
B

A
R

arbitration
and

Routing

in
p

u
t

ch
an

n
el

s
P

h
ys

ic
al

P
h

ys
ic

al
o

u
tp

u
t

ch
an

n
el

s

LC

VC = Virtual channel controllerLC = Link controller

VC

VC

Figure 1. The canonical virtual channel architecture.

VL0
VL1
VL2

D
D

D
D

D
D

D
D

D
D

D

C
C

C
C

Cycle

Ph
ys

ic
al

 li
nk

In
te

rfa
ce

C = CreditsD = DataVL = Virtual lane/channel

C

R
EC

V

SE
N

DD

Figure 2. Virtual lane flow control in InfiniBand.

default, the sixteen SLs are mapped to the corresponding VL
by the SL number, i.e. SLi is mapped to V Li. If a direct
SL to VL mapping is not possible, the SL will be degraded
according to a SL to VL mapping table. In the worst case
only one data VL is supported and all SLs will be mapped
to VL 0. In current IB hardware it is common to support
nine VLs: one for management and eight for data.
Each VL can be configured with a weight and a priority,

where the weight is the proportion of link bandwidth a given
VL is allowed to use and the priority is either high or low.
Our contribution in this paper will not make use of the
weight and priority features in IB, we will use a direct SL to
VL mapping and equal priority for all VLs. For more details
about the weight and priority mechanisms consult [9], [17].

III. FAT-TREES

The fat-tree topology was introduced by C. Leiserson in
1985 [18], and has since then become a common topology in
high performance computing (HPC). The fat-tree is a layered
network topology with link capacity equal at every tier (ap-
plies for balanced fat-trees), and is commonly implemented
by building a tree with multiple roots, often following the m-
port n-tree definition [19] or the k-ary n-tree definition [20].
With the introduction of IB the fat-tree became the

topology of choice due to its inherent deadlock freedom,
fault tolerance, and full bisection bandwidth properties. It
is used in many of the IB installations in the Top500 List,
including supercomputers such as Los Alamos National Lab-
oratory’s Roadrunner, Texas Advanced Computing Center’s
Ranger, and Forschungszentrum Juelich’s JuRoPa [1]. The
Roadrunner differs from the two other examples in that it
uses an oversubscribed fat-tree [21]. By carefully designing
an oversubscribed fabric the implementation costs of an HPC
cluster can be significantly reduced with only a limited loss
in the overall application performance [22].

5

6

7

8

1

2

3

4
40 Gbps

20 Gbps

Figure 3. A simple congestion control experiment.

For fat-trees, as for most other network topologies, the
routing algorithm is essential in order to exploit the available
network resources. In fat-trees the routing algorithm consists
of two distinct stages: the upward stage in which the packet
is forwarded from the source, and the downward phase
when the packet is forwarded toward the destination. The
transition between those two stages occurs at the least
common ancestor, which is a switch that can reach both
the source and the destination through its downward ports.
The algorithm ensures deadlock-freedom, and the IB im-
plementation available in OpenSM also ensures that every
path toward the same destination converges at the same root
node, which causes all packets toward that destination to
follow a single dedicated path in the downward direction [4].
By having dedicated downward paths for every destination,
contention in the downward stage is effectively removed
(moved to the upward stage), so that packets for different
destinations have to contend for output ports in only half
of the switches on their paths. In oversubscribed fat-trees,
the downward path is not dedicated and is shared by several
destinations.

Since the fat-tree routing algorithm only requires a single
VL, the remaining virtual lanes are available for other
purposes such as quality of service or for reducing the
negative impact of congestion induced by the head-of-line
blocking as we will do in this paper.

IV. MOTIVATION

Algorithmic predictability of network traffic patterns is
reduced with the introduction of virtualization and many-
cores systems. When multiple virtualized clients reside on
the same physical hardware, the network traffic becomes an
overlay of multiple traffic patterns that might lead to hot-
spots in the network. A hot-spot occurs if multiple flows are
destined toward a single endpoint. Common sources for hot-
spots include complex traffic patterns due to virtualization,
migration of virtual machine images, checkpoint and restore
mechanisms for fault tolerance, and storage and I/O traffic.

When a hot-spot exists in a network, the flows designated
for the hot-spot might reduce the performance for other
flows, called victim flows, not designated to the hot-spot.
This is due to the head-of-line (HOL) blocking phenomena
created by the congested hot-spot [8]. One way to avoid
this problem is to use a congestion control mechanism such

199199199199199

as the one recently specified and implemented for IB [9].
This mechanism was evaluated in hardware and shown to
be working by Gran et al. [11], however this solution is
not yet generally available. Furthermore, the selection of the
appropriate CC parameters highly depends on the topology,
is poorly understood, and incorrect parameters might lead
to performance degradation.
It is a well known fact that using virtual lanes is one

of the ways to alleviate network congestion [12], [13]. To
demonstrate this as a plausible solution to alleviate conges-
tion, we performed three simple hardware experiments on
the topology presented in Fig. 3. In all the three experiments
we used the following synthetic communication pattern: 1-
5, 2-6, 8-6 and 7-6 which creates a hot-spot on endpoint
6. In Fig. 5a we show the per flow throughput for the
first experiment where we observe that the victim flow
(1-5) is affected by the congestion to the same degree
as the flows contributing to congestion, even though the
flow is not destined to the congested endpoint. This is
caused by two main reasons. Firstly, the victim flow (1-5)
is sharing the 32 Gb/s (effective bandwidth) link with the
contributors to the congestion. Secondly, the HOL blocking
reduced its bandwidth to the same share of switch-to-switch
link bandwidth as the contributor, which is approximately
4.5 Gb/s. In Fig. 5b we present the result from the second
experiment where the IB congestion control mechanism was
turned on and configured using the parameters given by
Gran et al. [11]. Now we observe that the victim flow is
not deteriorated by HOL blocking and it manages to get
about 13 Gb/s independent of other traffic flows.
However, some oscillations occur among the flows due to

the fact that the congestion control mechanism is dynami-
cally adjusting the injection rate of the senders. In Fig. 5c
we show the result of the third experiment where the victim
flow (1-5) was manually assigned to a separate virtual lane.
The measured result is similar to the experiment with IB
CC turned on. In fact, the total network throughput shown in
Fig. 6 is slightly better because we do not see the oscillations
of IB CC mechanism. However, the traffic patterns used in
this scenario are artificial and the victim flow is known in
advance. Since we are unable to adapt to the congestion with
this approach, we must rely on the statistical probability of
improvements occurring when we distribute the traffic across
a set of virtual lanes.

V. DESIGN OF CONGESTION AVOIDANCE MECHANISM

BASED ON ROUTING

In this section, we propose a generic and simple routing-
based congestion avoidance mechanism, which may eas-
ily be applied to high-performance network technologies
supporting VLs. Our proposed routing algorithm uses the
available virtual lanes to reduce the hot-spot problem by
distributing source destination pairs across all available
VLs. The approach is generic and can be applied to any

(a) A hot-spot scenario in a non-oversubscribed fat-
tree.

(b) A hot-spot scenario in a oversubscribed fat-tree.

Figure 4. Experiment scenarios for the hardware testbed.

topology, but in this paper we focus on fat-trees because
their regular structure makes it straightforward to distribute
the destinations across VLs and they do not require VLs to
be routed deadlock-free.

A. vFtree - Fat-tree Routing using Virtual Lanes

Routing in IB is a table lookup algorithm where each
switch holds a forwarding table containing a linear list of
LIDs (destination addresses) and the corresponding output
ports. Our proposed algorithm is an extension of the current
fat-tree routing algorithm that is available in OpenSM 3.2.5.
The main feature of the new algorithm is to isolate the
possible endpoint congestion flows by distributing source-
destination pairs across virtual lanes. Our simple experi-
ments in Section IV showed that virtual lanes can be used as
a mechanism to alleviate endpoint congestion if the victim
flow is identified. Unfortunately, as we have no reliable way
of identifying victim flows, we propose to evenly distribute
all source-destination pairs that share the same link in the
upward direction across the available VLs.
The current fat-tree routing algorithm proposed by Zahavi

et al. [4] is already optimized to avoid the contention for shift
all-to-all communication traffic patterns. In a fully populated
and non-oversubscribed fat-tree, this algorithm is equalizing
the load on each port and always selects a different upwards
link for destinations located on the same leaf switch. For
example, in Fig. 4a destination 3 is reached from leaf switch
A using link 1, while destination 4 is reached using link 2. It
means that the destinations sharing the same upstream link
are always located on different leaf switches.
Our algorithm works on top of this and distributes all

200200200200200

time (s)

B
an

dw
id

th
 (

M
b/

s)

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−5(victim)

8−6
2−6
7−6

(a) IB CC off (1 VL) for the scenario in Fig. 3.

time (s)

B
an

dw
id

th
 (

M
b/

s)

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−5(victim)

8−6
2−6
7−6

(b) IB CC on for the scenario in Fig. 3.

time (s)

B
an

dw
id

th
 (

M
b/

s)

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−5(victim)

8−6
2−6
7−6

(c) IB CC off (2 VLs) for the scenario in Fig. 3.

Figure 5. Per flow throughput comparison for IB CC experiment on Fig. 3.

time (s)

B
an

dw
id

th
 (

M
b/

s)

20000

25000

30000

35000

0 5 10 15 20 25 30 35

flow
CC off
CC On

CC off & 2 VLs

Figure 6. The total network throughput for experiment in Fig. 3.

destinations sharing the same upstream link across different
virtual lanes. In detail, this means that from switch A we
reach destination 3 using link 1 and VL 0, while destination
5 also uses link 1, but has VL 1 assigned. Consequently, if
one of the designated destinations is the contributor to an
endpoint hot-spot, the other destination flow (victim flow)
sharing the same upstream port is not affected by HOL
blocking because it uses a different virtual lane with its own
buffering resources.
Ideally, the number of VLs required by our algorithm

depends on the number of destinations that share the same
upstream link, which is equivalent to the N − 1 where N is
the number of leaf switches. The N − 1 virtual lanes cover
all the traffic routed to destinations connected to other leaf
switch except those destinations that are connected to the
same leaf switch as the traffic source. In the implementation,
however, the number of virtual lanes required is higher due
to a requirement in the IB specification. The specification
and the current implementation requires that the VL used
from A to B is symmetric, which means that the communi-
cation from A to B and from B to A must be able to use
the same VL.
The core functionality of the vFtree routing is divided into

two algorithms as presented in Algo. 1 and Algo. 2. The
former one distributes leaf < swsrc, swdst > pairs across
the available virtual lanes.
The outer for loop iterates through all the source leaf

switches and the inner for loop iterates through all the
destination leaf switches. In the inner for loop we check
whether a VL has been assigned to a < swsrc, swdst > pair,
and, if not, we assign a VL accordingly. The requirement
is that the VL assigned to a < swsrc, swdst > must be the
same as the VL assigned to < swdst, swsrc > pair. The
first if...else block starting at line 2 determines the initial vl
value used for the inner for loop so the overlapping of VLs
is minimized. The maxvl variable is an input argument for
OpenSM that provides flexibility to the cluster administrator

201201201201201

who may wish to reserve some VLs for quality of service
(QoS).

When a connection (Queue Pair) is being established in
IB, the source node will query the path record and then
Algo. 2 is executed. The arguments passed to this function
are the source and destination addresses. Using these values,
the source node obtains the VL from the array generated in
Algo. 1 to be used for communication with the destination
node.

Algorithm 1 Assign Virtual Lanes
Require: Routing table has been generated.
Ensure: Symmetrical VL for every <src, dst> pair.
1: for swsrc = 0 to max leaf switches do
2: if odd(swsrc × 2/maxvl) then
3: vl = ((swsrc × 2) % maxvl) + 1
4: else
5: vl = (swsrc × 2) % maxvl

6: end if
7: for swdst = 0 to max leaf switches do
8: if swdst > swsrc then
9: if VL[swsrc][swdst].set = FALSE then
10: VL[swsrc][swdst].vl = vl
11: VL[swsrc][swdst].set = TRUE
12: end if
13: if VL[swdst][swsrc].set = FALSE then
14: VL[swdst][swsrc].vl = vl
15: VL[swdst][swsrc].set = TRUE
16: end if
17: vl = incr(vl) % maxvl

18: else if swdst == swsrc then
19: VL[swdst][swsrc].vl = 0
20: VL[swdst][swsrc].set = TRUE
21: end if
22: end for
23: end for

However, in OFED one major difference between vFtree
and the conventional fat-tree routing is that for an application
to acquire the correct SL in a topology routed using vFtree,
a communication manager (CM) needs to be queried. The
reason for that is only the CM can return the SL that was
set up by the SM, and this SL implies which VL should be
used. Otherwise, the default VL would be used, which is
VL 0.

Algorithm 2 Get Virtual Lanes (LIDsrc,LIDdst)
1: dstid = get leaf switch id(LIDdst)
2: srcid = get leaf switch id(LIDsrc)
3: return VL[srcid][dstid]

B. Limitations

The main limitation of our approach is related to the
number of VLs used. The IB specification defines 16 VLs,
however, the actual implementation in today’s hardware
is limited to 8 VLs. This is insufficient to cover all the
possibilities of endpoint congestion in a large-scale cluster
which requires N − 1 VLs where N is the number of
leaf switches. But as our results in Section VII show, large
improvements are still possible with only two VLs. Another
limitation is related to the use of VLs for other purposes
such as QoS. QoS can be used together with vFtree routing,
but then the number of SLs is reduced from 8 to 4 because
for each SL two VLs are consumed by vFtree routing. For
topologies other than fat-tree, which might use VLs for
deadlock-free routing, the number of available SLs may be
further reduced.

Furthermore, the assumption made for the vFtree algo-
rithm is that the end node distribution is uniform. This is
because the current version of the fat-tree routing algorithm
has limitations when it comes to properly balancing the paths
when the end node distribution is nonuniform as mentioned
in [7].

VI. EXPERIMENT SETUP

To evaluate our proposal we have used a combination of
simulations and measurements on a small IB cluster. In the
following subsections, we present the hardware and software
configuration used in our experiments.

A. Experimental Test Bed

Our test bed consists of twelve nodes and four switches.
Each node is a Sun Fire X2200 M2 server that has a dual
port Mellanox ConnectX DDR HCA with an 8x PCIe 1.1
interface, one dual core AMD Opteron 2210 CPU, and
2GB of RAM. The switches are two 24-port Infiniscale-III
DDR switches and two 36-port Infiniscale-IV QDR switches
which we used to construct the topologies illustrated in
Fig. 3 and Fig. 4. All the hosts have Ubuntu Linux 8.04
x86 64 installed with kernel version 2.6.24-24-generic and
the subnet is managed by a modified version of OpenSM
3.2.5 that contains the implementation of the vFtree routing
algorithm. Our Perftest [23] was also modified to support
regular bandwidth reporting and continuous sending of traf-
fic at full link capacity. The modified Perftest is used to
generate the hot-spots shown in Fig. 4a and Fig. 4b.

B. Simulation Test Bed

To perform large-scale evaluations and verify the scala-
bility of our proposal, we developed an InfiniBand model
for the OMNeT++ simulator. The model contains an im-
plementation of HCAs and switches with routing tables
and virtual lanes. The network topology and the routing
tables were generated using OpenSM and converted into
OMNeT++ readable format in order to simulate real-world

202202202202202

systems. In the simulator, every source-destination pair has
a VL assigned according to Algo. 1.
The simulations were performed on a 648-port fat-tree

topology, which is the largest possible 2-stage fat-tree topol-
ogy that can be constructed using 36-port switch elements.
When fully populated this topology consists of 18 root
switches and 36 leaf switches. Additionally, we performed
the simulations of a 648-port topology that had an oversub-
scription ratio of 2:1. This was achieved by removing half
of the root switches from the topology (9 switches). We
chose a 648-port fabric because it is a common configuration
used by switch vendors in their own 648-port systems [24],
[25], [26]. Additionally, such switches are often connected
together to form larger installations like JuRoPa. For the
simulations we used a nonuniform traffic pattern, where 5%
of all packets generated by a computing node was sent to
a predefined hot-spot and the rest of the traffic was sent
to a randomly chosen node. Additionally, we used multiple
localized hot-spots by partitioning the network into three or
nine segments, which corresponded to the physical features
of the 648-port switch built in such a way that four leaf
switch elements are placed on a single modular card.
Each simulation run was repeated eight times with differ-

ent seeds and the average of all simulation runs was taken.
The packet size was 2 kB for every simulation. Furthermore,
we have tuned the simulator to the hardware so we could
observe the same trends when performing the data analysis.
The results obtained through simulations exhibited the same
trends as the results obtained from the IB hardware, with
a maximum difference of 12% between the hardware and
simulations.

VII. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements
on an experimental cluster and simulations of large-scale
topologies. For the cluster measurements we use the per flow
throughput and the total network throughput as our main
metrics to compare the performance of our proposed vFtree
algorithm and the existing fat-tree algorithm. Additionally
we use the results from the HPCC benchmark on certain
scenarios to show how the algorithm impacts application
traffic. For the simulations we use the achieved average
throughput per end node as the metric for measuring the
performance of the vFtree algorithm on the simulated 648-
port topology. In both experimental cluster and simulations,
all traffic flows are started at the same time and they are
based on transport layer of the IB stack.

A. Experimental results

We carried out two different experiments on two different
configurations which are a non-oversubscribed fat-tree as
shown in Fig. 4a and 2:1 oversubscribed fat-tree as shown
in Fig. 4b. In the first experiment for the first configuration,
a collection of synthetic traffic patterns ({1-5, 2-3, 3-5, 4-1,

time (s)

B
an

dw
id

th
 (

M
b/

s)

25000

30000

35000

40000

0 5 10 15 20 25 30 35

flow
conv. fat tree

fat tree(2 VLs)
vftree(3 VLs)

(a) 1:1 fat-tree.

time (s)

B
an

dw
id

th
 (

M
b/

s)

20000

25000

30000

35000

0 5 10 15 20 25 30 35

flow
conv. fat tree

fat tree(2 VLs)
vftree(3 VLs)

fat tree(4 VLs)

(b) 2:1 oversubscribed fat-tree.

Figure 7. Total network throughput using 1 to 3 VLs for the non-
oversubscribed fat-tree and 1 to 4 VLs for the oversubscribed one (Fig. 4).

6-5}) was selected to generate a hot-spot. In Fig. 4a node 5
is the hot-spot and the nodes 1, 3 and 6 are the contributors
to the hot-spot. The flows 2-3 and 4-1 represent the victim
flows. The purpose of the first experiment is to illustrate
the negative impact the HOL blocking has on the victim
flows. Additionally, it also shows how the vFtree routing
algorithm avoids the negative effects of endpoint congestion.
In the second experiment, we replaced the victim flows with
the HPC challenge benchmark [27]. Our HPCC benchmark
b eff test suite was modified to generate 5000 random
traffic patterns in order to obtain a more accurate result for
randomly ordered ring bandwidth test. Even though the con-
gested flows are still synthetically generated, this scenario
resembles the network environment that an application could
experience during congestion.

On the second configuration, shown in Fig. 4b, we re-
peated both of the experiments. A collection of synthetic
traffic patterns {1-9, 6-9, 8-11, 10-9} was used for the first
experiment. In this case, the hot-spot was at node 9 and
the contributors were the nodes 1, 6 and 10. The flow 8-11

203203203203203

time (s)

B
an

dw
id

th
 (

M
b/

s)

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−5
6−5
3−5

4−1(victim)
2−3(victim)

(a) 1 VL.

time (s)

B
an

dw
id

th
 (

M
b/

s)

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−5
6−5
3−5

4−1(victim)
2−3(victim)

(b) 2 VLs.

time (s)

B
an

dw
id

th
 (

M
b/

s)

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−5
6−5
3−5

4−1(victim)
2−3(victim)

(c) 3 VLs.
Figure 8. Per flow throughput for the fat-tree in Fig. 4a using 1 to 3 VLs.

represents the victim flow.
The first experiment (synthetic traffic) is described in

Sections VII-A1 for non-oversubscribed fat-tree and VII-A2
for the oversubscribed one, and the second experiment
(HPCC benchmark) is described in Section VII-A3 for both
fat-tree topologies.
1) Non-oversubscribed fat-tree: Fig. 8 shows the per flow

throughput of the first experiment when using 1 to 3 VLs.
Fig. 8a shows the per flow throughput for the conventional
fat-tree routing algorithm using one VL. The congestion
towards node 5 blocks the traffic on physical link 1 and
3, and makes flows 4-1 and 2-3 victim flows. For these
flows the throughput is less than half of the bandwidth that
is available in the network, but due to the HOL blocking
the bandwidth of flow 2-3 is reduced to the bandwidth that
the congested flow 1-5 achieves across link 1. For the same
reason flow 4-1 is reduced to the bandwidth of the congested
flow 3-5. Furthermore, we also observe that, owing to the
parking lot problem [28], flow 6-5 gets a higher share of the
bandwidth toward destination 5 than flow 1-5 and 3-5.
If we manually assign the victim flows to a different

VL, the situation improves as shown in Fig. 8b. The victim
flows are able to avoid the HOL blocking, giving each of
them an effective throughput of approximately 7 Gb/s, which
corresponds to the actual available bandwidth in the network.
The parking lot problem, however, is still present and we can
see unfairness among the flows toward the endpoint hot-spot.
Fig. 8c shows the results of the repeated experiment with

3 VLs where both the HOL blocking of the victim flows
and the parking lot problem toward the congested endpoint
are solved. The reason for that is that the vFtree algorithm
placed the routes for the victim flows in their own separate
VLs, which solves the HOL blocking. Additionally, it placed
the flows 1-5 and 3-5 on different VLs making the link
arbitration between the sources 1,3, and 6 fair at switch C.
To summarize, we showed that the vFtree algorithm

reduced both the HOL blocking and the parking lot problem
when applied to fat-tree networks. The overall increase
in total network throughput is approximately 38% when
compared to the original fat-tree routing algorithm as shown
in Fig. 7a.
2) 2:1 Oversubscribed network: In an oversubscribed

network, the victim flows may suffer from HOL blocking
in two different ways.
The first case is similar to the non-oversubscribed network

where the performance reduction of the victim flow is due to
a shared upstream link with the contributors to congestion.
In the second case, the victim flow shares both the

upstream and the downstream link toward the hot-spot with
the contributors, even though the victim flow is eventually
routed to a different destination. In this section, we focus on
the latter case because for the former case the results will
be similar to the non-oversubscribed network scenario from
Section VII-A1.

204204204204204

time (s)

B
an

dw
id

th
 (

M
b/

s)

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−9
6−9

8−11(victim)
10−9

(a) 1 VL.
time (s)

B
an

dw
id

th
 (

M
b/

s)

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−9
6−9

8−11(victim)
10−9

(b) 2 VLs.

time (s)

B
an

dw
id

th
 (

M
b/

s)

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−9
6−9

8−11(victim)
10−9

(c) 3 VLs.
time (s)

B
an

dw
id

th
 (

M
b/

s)

6000

8000

10000

12000

0 5 10 15 20 25 30 35

flow
1−9
6−9

8−11(victim)
10−9

(d) 4 VLs.
Figure 9. Per flow throughput for the fat-tree in Fig. 4b using 1 to 4 VLs.

Fig. 9a shows the per flow throughput for the conven-
tional fat-tree routing algorithm where the congestion in the
network (Fig. 4b) blocked the victim flow (8-11). Among
the congested flows, flow 6-9 obtains the lowest bandwidth
because it also shares the upstream/downstream path with
the victim flow. As a result, this also affects the victim
flow (8-11) because it receives the same bandwidth across
link 5 as flow 6-9 due to the HOL blocking, approximately
2.1 Gb/s.
If we manually assign the victim flow to a different VL,

the situation improves as Fig. 9b shows. The results show
that the victim flow (8-11) is able to avoid the HOL blocking
and obtains approximately 7.5 Gb/s, the actual effective
bandwidth that is available for this flow. As previously,
unfairness exists among the contributing flows (1-9, 6-9 and
10-9) due to the parking lot problem.
As shown in Fig. 9d, the parking lot problem is resolved

with 4 VLs where each of the contributors of the congestion
manages to obtain 1/3 of the effective link bandwidth at

approximately 4.5 Gb/s. Another observation is that the
victim flow is getting a slightly lower bandwidth. This is due
to the fact that the victim flow shares the downstream link
with the rest of the congestion contributors. With a separate
VL for each congestion contributor, flows 1-9 and 6-9 have
an increased link bandwidth and, consequently, reduce the
victim flow’s bandwidth as shown in Fig. 9d.

In an oversubscribed fat-tree, utilizing more virtual lanes
does not necessarily mean increasing the performance for
certain types of traffic patterns. As shown in Fig. 7b, the
total network bandwidth is higher with only 2 VLs when
compared to the bandwidth obtained with 4 VLs. This is
because with separate VL for each congestion contributor,
the parking lot problem is resolved but the share of the link
bandwidth given to the victim flow is reduced. Furthermore,
if we would like to consider both cases of victim flow
occurrence, it would require more VLs. Thus, in order to
make our algorithm more predictable, we have decided to
support only the first case of the victim flow as discussed in

205205205205205

Table I
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH CONVENTIONAL FAT-TREE ROUTING AND VFTREE.

Network latency and throughput a) conventional Ftree b) vFtree c) Improvement
Min Ping Pong Lat. (ms) 0.002116 0.002116 0.0%
Avg Ping Pong Lat. (ms) 0.022898 0.013477 41.14%
Max Ping Pong Lat. (ms) 0.050500 0.043005 14.84%
Naturally Ordered Ring Lat. (ms) 0.021791 0.014591 33.04%
Randomly Ordered Ring Lat. (ms) 0.024262 0.015826 34.77%
Min Ping Pong BW (MB/s) 94.868 345.993 264.71%
Avg Ping Pong BW (MB/s) 573.993 830.909 44.75%
Max Ping Pong BW (MB/s) 1593.127 1594.338 0.07%
Naturally Ordered Ring BW (MB/s) 388.969246 454.236253 16.78%
Randomly Ordered Ring BW (MB/s) 331.847978 438.604531 32.17%

Table II
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH CONVENTIONAL FAT-TREE ROUTING AND VFTREE IN AN OVERSUBSCRIBED NETWORK.

Network latency and throughput a) conventional Ftree b) vFtree c) Improvement
Min Ping Pong Lat. (ms) 0.002176 0.002176 0.0%
Avg Ping Pong Lat. (ms) 0.015350 0.009491 38.17%
Max Ping Pong Lat. (ms) 0.050634 0.043496 14.10%
Naturally Ordered Ring Lat. (ms) 0.021601 0.015616 27.70%
Randomly Ordered Ring Lat. (ms) 0.023509 0.016893 28.14%
Min Ping Pong BW (MB/s) 126.135 342.553 171.58%
Avg Ping Pong BW (MB/s) 825.874 1031.098 24.85%
Max Ping Pong BW (MB/s) 1594.186 1594.338 0.01%
Naturally Ordered Ring BW (MB/s) 369.021995 436.588321 18.31%
Randomly Ordered Ring BW (MB/s) 254.737276 355.412454 39.52%

earlier in this section. Nevertheless, we still manage to get
about 20% improvement with vFtree routing algorithm that
uses 3 VLs when compare with conventional fat-tree routing
as illustrated in Fig. 7b. The reason behind this is that the
parking lot problem is solved when each of the contributors
to the hot-spot has a fair share of link bandwidth, but HOL
blocking for the victim flow is not avoided. As observed on
Fig. 9c, each of the flows (including the victim flow) obtains
approximately 4.5 Gb/s of effective link bandwidth.
3) HPC challenge Benchmark: The second experiment is

a combination of the I/O traffic generated by Perftest [23]
and the application traffic generated by the HPCC bench-
mark [27]. The endpoint hot-spot is created using Perftest
by running the traffic pattern presented in Fig. 4a for the
non-oversubscribed configuration and in Fig. 4b for the
2:1 oversubscribed configuration). Simultaneously, we are
running the HPCC benchmark in order to study the impact of
congestion on the traffic generated by the HPCC benchmark.
Table I shows the comparison of the HPCC b eff results

between the conventional fat-tree routing and our vFtree
routing algorithm in the presence of congestion in a non-
oversubscribed network. The most interesting observation
is that the randomly ordered ring bandwidth increased by
32.1% with our vFtree routing algorithm which uses only 3
VLs. We can see the improvement for all the latency and
bandwidth tests, which is expected, as they correspond to
the synthetic traffic patterns experiment that was carried out
in the previous section. The results for the oversubscribed
network are presented in Table II and the same trends are
visible as for the non-oversubscribed network. We also man-
aged to achieve an improvement in most of the latency and
bandwidth tests when using our vFtree routing algorithm.
These results clearly illustrate the performance gain with

our vFtree routing algorithm from the application traffic
pattern’s point of view.

B. Simulation results

An important question is how well the presented algorithm
scales. Specifically, the purpose of the simulations was to
show that the same trends exist when the number of nodes is
large and the network topology corresponds to real systems.
We performed the simulations on a 648-port switch without
oversubscription and with 2:1 oversubscription.

1) Non-oversubscribed network: For a single hot-spot
scenario, node 1 connected to switch 1 on modular card
1 (see Section VI-B for modular card definition) was the
hot spot, and all the other nodes in the fabric were the
contributors to the hot-spot. In case of three hot-spots, nodes
1 (modular card 1, switch 1), 217 (modular card 4, switch
1), and 433 (modular card 7, switch 1) were the hot-spots
and the contributors were the nodes connected to modular
cards 1-3 for node 1, modular cards 4-6 for node 217, and
modular cards 7-9 for node 433. For a nine hot-spot scenario,
the hot-spots were nodes 1, 73, 145, 217, 289, 361, 433,
505 and 577 connected to switch 1 at each modular card,
and the contributors for each hot-spot were all the the other
nodes connected to the same modular card as the hot-spot.
In each scenario, the contributors sent 5% of their overall
traffic to the hot-spot and 95% of other traffic to any other
randomly chosen node in the fabric (it could also be any of
the predefined hot-spots).
For the case presented on Fig. 10a, we observe that a

single hot-spot dramatically decreases the average through-
put per node because of the large number of victim flows.
If more hot-spots are added, but the contributor traffic
is localized (i.e. less victim flows), we observe that the

206206206206206

1 hot spot 3 hot spots 9 hot spots

T
hr

ou
gh

pu
t (

M
b/

s)

0
40

00
80

00
12

00
0

16
00

0

1 VL
2 VLs
4 VLs
6 VLs
8 VLs

(a) Simulation results for 648-port switch with no oversubscription.

1 hot spot 3 hot spots 9 hot spots

T
hr

ou
gh

pu
t (

M
b/

s)

0
40

00
80

00
12

00
0

16
00

0

1 VL
2 VLs
4 VLs
6 VLs
8 VLs

(b) Simulation results for 648-port switch with 2:1 oversubscription.

Figure 10. Simulation results for 648-port switch.

throughput per node increases. The most important obser-
vation is the fact that every additional VL for data also
reduces the number of victim flows, therefore increasing
the network performance. The largest relative increase in
the performance is obtained when adding a second VL. The
relative improvement when compared with 1 VL is: 459%
for 2 VLs, 676% for 4 VLs, 744% for 6 VLs and 757%
for 8 VLs. The improvements when hot-spots are localized
are smaller because of the fewer victim flows, which is
best illustrated by the example from nine hot-spots case
when comparing 1 VL to 8 VLs scenarios where we see an
improvement of 221%. It also needs to be mentioned that the
difference in average throughput per node between 6 VLs
and 8 VLs is in a range of 400 Mb/s, so every additional VL
provides a smaller throughput increase. Furthermore, it has
to be noted that due to the randomness of the traffic there
may exist more hot-spots in the network, and these hot-spots
are not necessarily localized, which would explain the drops
in average throughput per node for 2 VL scenario (yellow
bars).

2) Oversubscribed network: Fig. 10b shows the results
of a similar experiment performed on a 648-port network
with 2:1 oversubscription. For every scenario, the hot-spots
were chosen in the exact same manner as for the non-
oversubscribed network and the same traffic patterns were
used. We observe that the average throughput per node is
generally halved when compared to the previous experiment
with a non-oversubscribed topology. This is caused by the
fact that the downward paths in the tree are shared by two
destinations. The improvements when using 8 VLs compared
to 1 VL are 503%, 270% and 90% for one, three or nine
hot-spots respectively. Even though the result for nine hot-
spots with 6 VLs was better (97% gain when compared
with 1 VL) than with 8 VLs, we may assume this was a
result of the randomness of the traffic as described in the
previous section. This shows that the presented algorithm

also reduced the number of the victim flows in an oversub-
scribed tree scenario, which makes it usable not only for
small topologies, but also for real-world fabric examples.
To summarize, the large differences between the hardware

results and the simulation results can be attributed to the
fact that the simulated topologies are much larger in size
than the hardware topologies we were able to construct. In
the hardware the 38% improvement is visible for only two
contributors sending to a single hot-spot. In the simulation,
the worst case is if 5% of all 648 nodes are sending to a
single hot-spot (plus any of the 95% of other nodes with a
probability of 1/648). It means we may safely assume that
at any point in time at least 32 nodes are the contributors
to the hot-spot. Therefore, every additional VL improves
the network performance by reducing the number of victim
flows, and because there are so many contributors and many
more victim flows, the improvement is much larger for large-
scale scenarios than for smaller topologies.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that by extending the fat-
tree routing with VLs, we are able to dramatically improve
the network performance in presence of hot-spots. Our solu-
tion is not only inexpensive, scalable, and readily available,
but also does not require any additional configuration. By
implementing the vFtree algorithm in OpenSM, we have
shown that it can be used with the current state-of-the-art
technology, and that the achieved improvements vary from
38% for small hardware topologies to 757% for large-scale
simulated clusters when compared with the conventional fat-
tree routing. Furthermore, the ideas from our proposal can
be ported to other types of routing algorithms and similar
improvements would be expected. Moreover, the solution is
not restricted to InfiniBand technology only, and the concept
can be applied to any other interconnects that support VLs.
In future, we plan to expand this solution to be able

207207207207207

to dynamically reconfigure the balancing of the network
in case of faults, and to contribute our modifications to
OpenFabrics community. Looking further ahead, we will
also propose extensions to better support oversubscribed fat-
trees by distributing the VLs in the downward direction.

REFERENCES

[1] “Top 500 supercomputer sites,” http://www.top500.org/, Jun.
2010.

[2] “The OpenFabrics Alliance,” http://openfabrics.org/, Sep.
2010.

[3] C. Gómez et al., “Deterministic versus Adaptive Routing
in Fat-Trees,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium. IEEE
CS, 2007. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.96.5710

[4] E. Zahavi et al., “Optimized InfiniBand TM fat-tree routing
for shift all-to-all communication patterns,” Concurrency
and Computation: Practice and Experience, vol. 22,
no. 2, pp. 217–231, 2009. [Online]. Available: http:
//www3.interscience.wiley.com/journal/122677542/abstract

[5] T. Hoefler et al., “Multistage switches are not crossbars:
Effects of static routing in high-performance networks,” in
Cluster Computing, 2008 IEEE International Conference on,
2008, pp. 116–125.

[6] G. Rodriguez et al., “Oblivious Routing Schemes in Extended
Generalized Fat Tree Networks,” IEEE International Confer-
ence on Cluster Computing and Workshops, 2009. CLUSTER
’09., pp. 1–8, 2009.

[7] B. Bogdanski et al., “Achieving Predictable High Perfor-
mance in Imbalanced Fat Trees,” in Proceedings of the 16th
International Conference on Parallel and Distributed Systems
(ICPADS’10) - to appear, 2010.

[8] G. F. Pfister and A. Norton, “”Hot Spot” Contention and
Combining in Multistage Interconnection Networks,” IEEE
Transactions on Computers, vol. C-34, no. 10, pp. 943–948,
1985.

[9] InfiniBand architecture specification, 1st ed., InfiniBand
Trade Association, November 2007.

[10] G. Pfister et al., “Solving Hot Spot Contention Using
InfiniBand Architecture Congestion Control,” Jul. 2005.
[Online]. Available: http://www.cercs.gatech.edu/hpidc2005/
presentations/GregPfister.pdf

[11] E. G. Gran et al., “First Experiences with Congestion Control
in InfiniBand Hardware,” in Proceeding of the 24th IEEE
International Parallel & Distributed Processing Symposium,
2010.

[12] W. J. Dally and C. L. Seitz, “Deadlock-free message routing
in multiprocessor interconnection networks,” IEEE Transac-
tions on Computers, vol. 36, no. 5, pp. 547–553, May 1987.

[13] W. J. Dally, “Virtual-Channel Flow Control,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 3, pp. 194–
205, Mar. 1992.

[14] G. Rodriguez et al., “Exploring pattern-aware routing in
generalized fat tree networks,” in Proceedings of the
23rd international conference on Supercomputing. New
York: ACM, 2009, pp. 276–285. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1542275.1542316

[15] A. Vishnu et al., “Topology agnostic hot-spot avoidance with
InfiniBand,” Concurrency and Computation: Practice and
Experience, vol. 21, no. 3, pp. 301–319, 2009.

[16] J. Escudero-Sahuquillo et al., “An Efficient Strategy for Re-
ducing Head-of-Line Blocking in Fat-Trees,” in Lecture Notes
in Computer Science, D’Ambra, Pasqua And Guarracino,
Mario And Talia, Domenico, Ed., vol. 6272. Springer Berlin
/ Heidelberg, 2010, pp. 413–427.

[17] S.-A. Reinemo et al., “An overview of QoS capabilities in
InfiniBand, Advanced Switching Interconnect, and Ethernet,”
IEEE Communication Magazine, vol. 44, Jul. 2006.

[18] C. E. Leiserson, “Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transactions on
Computers, vol. C-34, pp. 892–901, 1985.

[19] X.-Y. Lin et al., “A multiple lid routing scheme for fat-tree-
based infiniband networks,” Parallel and Distributed Process-
ing Symposium, International, vol. 1, p. 11a, 2004.

[20] F. Petrini et al., “K-ary N-trees: High Performance Networks
for Massively Parallel Architectures,” Dipartimento di Infor-
matica, Universita di of Pisa, Tech. Rep., 1995.

[21] K. J. Barker et al., “Entering the petaflop era: the architecture
and performance of Roadrunner,” SC Conference, vol. 0, pp.
1–11, 2008.

[22] “HPC Fabric Analysis - Designed for Reduced Costs and
Improved Performance,” QLogic Corporation, 2010.

[23] “PerfTest - Performance Tests suite that bundle with OFED,”
Sep. 2009.

[24] “Sun Datacenter InfiniBand Switch 648,” Oracle Cor-
poration, http://www.oracle.com/us/products/servers-storage/
networking/infiniband/034537.htm.

[25] “Voltaire QDR InfiniBand Grid Director 4700,” Voltaire Inc.,
http://www.voltaire.com/Products/InfiniBand/Grid Director
Switches/Voltaire Grid Director 4700.

[26] “IS5600 - 648-port InfiniBand Chassis Switch,” Mel-
lanox Technologies, http://www.mellanox.com/related-docs/
prod ib switch systems/IS5600.pdf.

[27] “HPC Challenge Benchmark,” http://icl.cs.utk.edu/hpcc/.

[28] W. J. Dally and B. Towles, Principles and practices of
interconnection networks. Morgan Kaufmann, 2004, ch.
15.4.1, pp. 294–295.

208208208208208

Paper III

sFtree: A Fully Connected and

Deadlock-Free Switch-to-Switch

Routing Algorithm for Fat-Trees

Bartosz Bogdański, Sven-Arne Reinemo, Frank Olaf
Sem-Jacobsen, Ernst Gunnar Gran

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55

sFtree: A Fully Connected and Deadlock-Free Switch-to-Switch
Routing Algorithm for Fat-Trees

BARTOSZ BOGDANSKI, SVEN-ARNE REINEMO, FRANK OLAF SEM-JACOBSEN,
and ERNST GUNNAR GRAN, Simula Research Laboratory

Existing fat-tree routing algorithms fully exploit the path diversity of a fat-tree topology in the context of
compute node traffic, but they lack support for deadlock-free and fully connected switch-to-switch commu-
nication. Such support is crucial for efficient system management, for example, in InfiniBand (IB) systems.
With the general increase in system management capabilities found in modern InfiniBand switches, the
lack of deadlock-free switch-to-switch communication is a problem for fat-tree-based IB installations be-
cause management traffic might cause routing deadlocks that bring the whole system down. This lack of
deadlock-free communication affects all system management and diagnostic tools using LID routing.

In this paper, we propose the sFtree routing algorithm that guarantees deadlock-free and fully connected
switch-to-switch communication in fat-trees while maintaining the properties of the current fat-tree algo-
rithm. We prove that the algorithm is deadlock free and we implement it in OpenSM for evaluation. We
evaluate the performance of the sFtree algorithm experimentally on a small cluster and we do a large-scale
evaluation through simulations. The results confirm that the sFtree routing algorithm is deadlock-free and
show that the impact of switch-to-switch management traffic on the end-node traffic is negligible.

Categories and Subject Descriptors: C.2.2 [Computer Communications Network]: Network Protocol—
Routing protocols

General Terms: Algorithms

Additional Key Words and Phrases: Routing, fat-trees, interconnection networks, InfiniBand, switches, dead-
lock

ACM Reference Format:
Bogdanski, B., Reinemo, S.-A., Sem-Jacobsen, F. O., and Gran, E. G. 2012. sFtree: A fully connected and
deadlock-free switch-to-switch routing algorithm for fat-trees. ACM Trans. Architec. Code Optim. 8, 4,
Article 55 (January 2012), 20 pages.
DOI = 10.1145/2086696.2086734 http://doi.acm.org/10.1145/2086696.2086734

1. INTRODUCTION

The fat-tree topology is one of the most common topologies for high performance com-
puting (HPC) clusters today, and for clusters based on InfiniBand (IB) technology, the
fat-tree is the dominating topology. This includes large installations such as the Road-
runner, Ranger, and JuRoPa [Top 500 2011]. There are three properties that make fat-
trees the topology of choice for high performance interconnects: (a) deadlock freedom,
the use of a tree structure makes it possible to route fat-trees without using virtual
lanes for deadlock avoidance; (b) inherent fault-tolerance, the existence of multiple
paths between individual source destination pairs makes it easier to handle network
faults; (c) full bisection bandwidth, the network can sustain full speed communication
between the two halves of the network.

Author’s address: B. Bogdanski, Simula Research Laboratory, Norway; email: bartoszb@simula.no.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART55 $10.00

DOI 10.1145/2086696.2086734 http://doi.acm.org/10.1145/2086696.2086734

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:2 B. Bogdanski et al.

For fat-trees, as with most other topologies, the routing algorithm is crucial for
efficient use of the network resources. The popularity of fat-trees in the last decade led
to many efforts trying to improve the routing performance. This includes the current
approach that the OpenFabrics Enterprise Distribution (OFED) [OpenFabrics Alliance
2011], the de facto standard for IB system software, is based on. That approach is
presented in works by Gómez et al. [2007], Lin et al. [2004] and Zahavi et al. [2009].
Additionally, there exist several performance optimizations to this approach [Rodriguez
et al. 2009; Bogdanski et al. 2010; Guay et al. 2011].

All the previous work, however, has one severe limitation when it comes to switch-to-
switch communication. None of them support deadlock-free and fully connected switch-
to-switch communication which is a requirement for efficient system management
where all switches in the fabric can communicate with every other switch in a deadlock
free manner. This is crucial because current IB switches support advanced capabilities
for fabric management that rely on IP over IB (IPoIB). IPoIB relies on deadlock-free
and fully connected IB routing tables. Without such support, features like the Simple
Network Management Protocol (SNMP) for management and monitoring, Secure SHell
(SSH) for arbitrary switch access, or any other type of IP traffic or applications using
LID routing between the switches, will not work properly. The routing tables will only
be fully connected and deadlock free from the point-of-view of the leaf switches.

There are algorithms that manage to obtain full connectivity on fat-tree topologies,
but using them means sacrificing either performance or deadlock freedom. First of
all, there is minhop that simply does shortest-path routing between all the nodes. As
the default fallback algorithm implemented in the OpenSM subnet manager, it is not
optimized for fat-tree topologies and, furthermore, it is not deadlock free. The alter-
natives include using a different routing algorithm, like layered shortest-path routing
(LASH) [Skeie et al. 2002] or Up*/Down* [Schroeder et al. 1991]. LASH uses virtual
lanes (VL) for deadlock avoidance and ensures full connectivity between every pair of
nodes, but, like minhop, it is not optimized for fat-trees, which leads to suboptimal
performance and longer route calculation times. Up*/Down* does not use VLs, but oth-
erwise has the same drawbacks as LASH. Finally, there is a deadlock-free single-source
shortest-path (DFSSSP) routing algorithm based on Dijkstra’s algorithm [Domke et al.
2011]. However, it assumes that switch traffic will not cause a deadlock and uses VLs
for deadlock avoidance for end-node traffic only.

In this paper we present, to the best of our knowledge, the first fat-tree routing
algorithm that supports deadlock-free and fully connected switch-to-switch routing.
Our approach retains all the performance characteristics of the algorithm presented
by Zahavi [2009], and it is evaluated on a working prototype tested on commercially
available IB technology. Our sFtree algorithm fully supports all types of single and
multi-core fat-trees commonly encountered in commercial systems.

The rest of this paper is organized as follows. We introduce the InfiniBand Archi-
tecture in Section 2, followed by a description of fat-tree topologies and routing in
Section 3. A description of the sFtree algorithm is given in Section 4 and in Section 5
we prove that it is deadlock free. Then we describe the setup of our experiments in
Section 6, followed by a performance analysis of the result from the experiments and
simulations in Section 7. Finally, we conclude in Section 8.

2. THE INFINIBAND ARCHITECTURE

InfiniBand is a lossless serial point-to-point full-duplex interconnect network technol-
ogy that was first standardized in October 2000 [IBTA 2007]. The current trend is
that IB is replacing proprietary or low-performance solutions in the high-performance
computing domain [Top 500 2011], where high bandwidth and low latency are the key
requirements.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:3

The de facto system software for IB is OFED developed by dedicated professionals
and maintained by the OpenFabrics Alliance [OpenFabrics Alliance 2011]. The sFtree
algorithm that we propose in this paper was implemented and evaluated in a devel-
opment version of OpenSM, which is the subnet manager distributed together with
OFED.

2.1. Subnet Management

InfiniBand networks are referred to as subnets, where a subnet consists of a set of hosts
interconnected using switches and point-to-point links. An IB fabric constitutes one or
more subnets, which can be interconnected using routers. Hosts and switches within
a subnet are addressed using local identifiers (LIDs) and a single subnet is limited to
49151 LIDs.

An IB subnet requires at least one subnet manager (SM), which is responsible for
initializing and bringing up the network, including the configuration of all the IB ports
residing on switches, routers, and host channel adapters (HCAs) in the subnet. At the
time of initialization the SM starts in the discovering state where it does a sweep of
the network in order to discover all switches and hosts. During this phase it will also
discover any other SMs present and negotiate who should be the master SM. When this
phase is complete the SM enters the master state. In this state, it proceeds with LID
assignment, switch configuration, routing table calculations and deployment, and port
configuration. When this is done, the subnet is up and ready for use. After the subnet
has been configured, the SM is responsible for monitoring the network for changes.

A major part of the SM’s responsibility is to calculate routing tables that maintain
full connectivity, deadlock freedom, and proper load balancing between all source and
destination pairs. Routing tables must be calculated at network initialization time and
this process must be repeated whenever the topology changes in order to update the
routing tables and ensure optimal performance.

During normal operation the SM performs periodic light sweeps of the network to
check for topology changes (e.g., a link goes down, a device is added, or a link is
removed). If a change is discovered during a light sweep or if a message (trap) signaling
a network change is received by the SM, it will reconfigure the network according
to the changes discovered. This reconfiguration also includes the steps used during
initialization.

IB is a lossless networking technology where flow-control is performed per virtual
lane (VL) [Dally 1992]. VLs are logical channels on the same physical link, but with
separate buffering, flow-control, and congestion management resources. The concept
of VLs makes it possible to build virtual networks on top of a physical topology. These
virtual networks, or layers, can be used for various purposes such as efficient routing,
deadlock avoidance, fault-tolerance and service differentiation.

Our contribution in this paper will not make use of the service differentiation features
in IB, but we will use VLs to show how switch-to-switch traffic influences end-node
traffic when both traffic types are sharing one VL and when they are separated into
different VLs. For more details about service differentiation mechanisms refer to IBTA
[2007] and Reinemo et al. [2006].

3. FAT-TREE ROUTING

The fat-tree topology was introduced by Leiserson [1985] and has since become a
common topology in HPC. The fat-tree is a layered network topology with equal link
capacity at every tier (applies for balanced fat-trees) and is commonly implemented
by building a tree with multiple roots, often following the m-port n-tree definition [Lin
et al. 2004] or the k-ary n-tree definition [Petrini and Vanneschi 1995]. An XGFT
notation is also used to describe fat-trees and was presented by Öhring [1995].

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:4 B. Bogdanski et al.

Fig. 1. A multi-core tree showing the sn switch and its neighbor (sibling).

To construct larger topologies, the industry has found it to be more convenient to con-
nect several fat-trees together rather than building a single large fat-tree. Such a fat-
tree built from several single fat-trees is called a multi-core fat-tree. An example illus-
trating the concept is presented in Figure 1. Multi-core fat-trees may be interconnected
through the leaf switches using horizontal links [Jülich Supercomputing Centre 2011]
or by using an additional layer of switches at the bottom of the fat-tree and every such
switch is connected to all the fat-trees composing the multi-core fat-tree [TACC 2011].

For fat-trees, as for most other network topologies, the routing algorithm is essential
in order to exploit the available network resources. In fat-trees, the routing consists
of two distinct phases: the upward phase in which the packet is forwarded from the
source in the direction of one of the root switches and the downward phase when the
packet is forwarded downwards to the destination. The transition between these two
phases occurs at the lowest common ancestor, which is a switch that can reach both
the source and the destination through its downward ports. Such an implementation
ensures deadlock freedom, and the implementation presented in Zahavi et al. [2009]
also ensures that every path towards the same destination converges at the same root
(top) switch such that all packets toward that destination follow a single dedicated path
in the downward direction. By having a dedicated downward path for every destination,
contention in the downward phase is effectively removed (moved to the upward stage)
so that packets for different destinations have to contend for output ports in only half
of the switches on their path. In oversubscribed fat-trees, the downward path is not
dedicated and is shared by several destinations.

3.1. Switch-to-Switch Routing

The fat-tree routing described in the previous section does not include switch-to-switch
communication. In fact, the switch-to-switch communication has been ignored for a
long time because the switches themselves lacked the necessary intelligence to be
able to support advanced system management techniques, and originated very little
traffic. In other words, IB switches were considered to be transparent devices that
could be safely ignored from the point of view of the routing algorithm. Even today,
switch-to-switch paths are treated as secondary paths (not balanced across ports),
and are routed in the same manner as compute node paths. It means that to find a
path between any two switches, the lowest common ancestor must be found, and the
traffic is always forwarded through the first available port. Moreover, such a routing

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:5

scheme does not provide connectivity between those switches which do not have a
lowest common ancestor. These are usually the root switches in any fat-tree topology,
but the problem can also manifest itself for all non-leaf switches in multi-core fat-trees
or in an ordinary fat-tree with a rank (the number of stages in a tree) greater than two
depending on the cabling as discussed in Section 4.1.

Today, full connectivity between all the nodes—both the end-nodes and the
switches—is a requirement. IB diagnostic tools rely on LID routing and need full
connectivity for basic fabric management and monitoring. More advanced tools like
perftest used for benchmarking employ IPoIB. Moreover, IPoIB is also required by non-
InfiniBand-aware management and monitoring protocols and applications like SNMP
or SSH. Being an encapsulation method that allows running TCP/IP traffic over an
IB network, IPoIB relies on the underlying LID routing. In the past, there was no
requirement for connectivity between the switches because they lacked the capability
to run many of the above mentioned tools and protocols. Today, however, switches are
able to generate arbitrary traffic, can be accessed like any other end-node, and often
contain an embedded SM. Therefore, the requirement for full connectivity between all
the switches in a fabric is essential.

From the system-wide perspective of an interconnection network, deadlock freedom
is a crucial requirement. Deadlocks occur because network resources such as buffers
or channels are shared and because IB is a lossless network technology, i.e., packet
drops are usually not allowed. The necessary condition for a deadlock to happen is the
creation of a cyclic credit dependency. This does not mean that when a cyclic credit
dependency is present, there will always be a deadlock, but it makes the deadlock
occurrence possible. In this paper we demonstrate that when a deadlock occurs in an
interconnection network, it prevents a part of the network from communicating at all.
Therefore, the solution that provides full connectivity between all the nodes has to be
deadlock free.

An example of a deadlock occurring in a fat-tree is presented on Figure 2(a). This is a
simple 3-stage fat-tree topology that was routed without any consideration for deadlock
freedom. We show that only four communication pairs are required to create a deadlock.
The first pair, 0 → 3, is marked with red arrows, and the second pair, 3 → 6, is marked
with black arrows. These two pairs are the switch-to-switch communication patterns.
Two node-to-node pairs are also present and marked with blue arrows: B → D and
D → A. The deadlock that occurs with these four pairs is further illustrated using
channel dependency subgraphs (see Definition 5.5 and Definition 5.6) that are shown
on Figure 2(b) through Figure 2(e). A channel dependency graph is constructed by
representing links in the network topology by vertices in the graph. Two vertices are
connected by an edge if a packet in the network can hold one link while requesting the
next one. On the figures, the number in each circle is the link between the two devices,
for example, 04 is the link between the switch marked as 0 and the switch marked
as 4 in Figure 2(a). Looking at these four channel dependency graphs, we are able
to see that they in fact contain a cycle, which is shown on Figure 2(f). This example
also shows that any 3-stage fat-tree can deadlock with node-to-node and switch-to-
switch traffic present, if minhop is run on it. This is because minhop is unable to
route a ring of 5 nodes or bigger in a deadlock-free manner [Guay et al. 2010], and
almost any (apart from a single-root tree) 3-stage fat-tree will contain a 6-node ring. By
having shown this deadlock example, we have demonstrated the need for an algorithm
that will provide deadlock-free routing in fat-tree topologies when switch-to-switch
communication between all switches is present.

Currently, the only deadlock-free routing algorithm for IB that complies with full
connectivity requirement is LASH. It uses VLs to break the credit cycles in channel
dependency graphs and provides full connectivity between all the nodes in the fabric.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:6 B. Bogdanski et al.

(a) A 3-stage fat-tree with cycles

(b) Communication pattern 0 → 3

(c) Communication pattern B → D

(d) Communication pattern D → A

(e) Communication pattern 3 → 6

(f) Deadlock dependency graph

Fig. 2. An example of a deadlock occurring in a fat-tree.

However, for fat-tree topologies, LASH is a suboptimal choice because it does not exploit
the properties of the fat-trees when assigning the paths, and thus gives worse network
performance than ordinary fat-tree routing as shown in the performance evaluation
section and also shown by Domke et al. [2011]. Additionally, route calculation with
LASH is time consuming and due to the shortest-path requirement, it unnecessarily
uses VL resources to provide deadlock freedom for a fat-tree topology. Another routing
protocol that could theoretically support all-to-all switch-to-switch communication in a
deadlock-free manner in fat-trees is DFSSSP. However, it has the same limitations as
LASH when it comes to performance and route calculation time, and it does not break
credit loops when they occur between non-HCA nodes, which means that switch-to-
switch communication is not deadlock free.

Deadlocks can be avoided by using VLs that segment the available physical resources
as LASH or DFSSSP do. We show, however, that for fat-trees, using VLs for deadlock
avoidance is inefficient because the whole fabric can be routed in a deadlock-free
manner by only using a single VL. The additional VLs can be used for other purposes
like QoS.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:7

Fig. 3. A 3-stage fat-tree with a sample subtree converging to sn.

4. THE SFTREE ALGORITHM

Our proposed design is based on the fat-tree routing algorithm presented by Zahavi
[2009] and can be treated as a modular extension, which for every switch source takes
all switch destinations and, if such a destination is marked as unreachable by the
default fat-tree routing tables (meaning that it has no up → down path), it finds a
deadlock-free path.

4.1. Design of the Algorithm

The current fat-tree routing algorithm proposed by Zahavi et al. [2009] is already
capable of assigning switch-to-switch paths, but only those that follow the up/down turn
model on which the fat-tree routing is based. For example, in Figure 3, the switches A1
and A2 would have connectivity by going up through switch X1 or X2. However, switches
A1 and B1 do not have a lowest common ancestor, so one possibility for them to achieve
connectivity is to go through one of the common descendants (shortest-path method).
The alternative method (suboptimal path or non-shortest-path) for them would be to
go through any leaf switch in the topology, not necessarily located directly below them.
This would require first going up, then down, until reaching a switch that has a path
to both of the communicating switches, and then up again and down again until the
destination. In this paper, we use the second approach, because it can be implemented
without the need for additional VLs. The shortest-path method is only used for a specific
set of switches (an example of such a set is marked in red on Figure 3). To guarantee
deadlock freedom, the key to our approach is that all the switches in the topology
collectively choose the same leaf switch for communication.

To achieve deadlock-free full connectivity between the switches, we propose using an
upsidedown subtree whose root is one of the leaf switches (formally defined in Defini-
tion 5.7) and illustrated in Figure 3. The subtree concept allows us to localize all the
down/up turns in a fabric to a single, deadlock-free tree. As we demonstrate in Section 5,
accommodating all the prohibited turns in a subtree is deadlock free, and it permits full
connectivity if a subtree root (sn) is chosen properly. To illustrate the routing through a
subtree concept, we can observe that the switches X1 and Y1 will communicate through
a subtree root sn whereas X1 and X2 will go through switch A1. Combining the descrip-
tion of the subtree with the discussion in the previous paragraphs, we can observe that
switches external to the subtree must communicate through it to reach other switches
previously marked as unreachable, which leads to usage of suboptimal (non-shortest)
paths. In other words, any switch in the fabric that cannot reach any other switch
using the traditional upward to downward scheme, must first send the packets to the
subtree and the packets are passed down in the subtree until they reach a switch that

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:8 B. Bogdanski et al.

has a path to the destination switch. In this switch the packets make a U-turn, i.e.,
a down-to-up turn and follow a traditional up-to-down path towards the destination.
The deadlock freedom of this approach relies on the fact that all the U-turns take place
only within the subtree and that any up-to-down turn will leave the subtree. Traffic
leaving the subtree will not be able to circulate back into it because, by design, there
are no U-turns outside of the subtree. This will be further explained in the proof in
Section 5. It is also important to note that this communication scheme does not change
the existing upward to downward paths between the switches that can reach each other
using the traditional fat-tree routing.

ALGORITHM 1: Select a subtree root function
Require: Routing table has been generated.
Ensure: A subtree root (swroot) is selected.
1: f ound = false
2: for swleaf = 0 to max leaf sw do
3: if f ound == true then
4: break
5: end if
6: swroot = swleaf
7: f ound = true
8: for dst = 1 to max dst addr do
9: if swroot.routing table[dst] == no path then
10: f ound = false
11: break
12: end if
13: end for
14: end for
15: if f ound = false then
16: swroot = get leaf (0)
17: end if

In detail, the algorithm first finds a subtree by finding a subtree root. The pseudocode
for this step is presented in Algorithm 1. The algorithm traverses all the leaf switches
in the topology and, for each leaf switch, checks whether any of the switch destination
addresses are marked as unreachable in its routing table. If all the switch destinations
in the routing table are marked as reachable, the first encountered leaf switch is
selected as a subtree root switch. There may be as many potential subtrees in a fat-
tree as there are leaf switches having full connectivity, however, only one of those leaf
switches will be selected as the subtree root and there will be only one subtree with a
root in this particular leaf switch. Algorithm 2 is only called for those switch pairs that
do not have a path established using the traditional fat-tree routing.

When the switch-to-switch routing function is called, the first step is to determine
whether the routing table of the subtree root (swroot) contains a path to the destination
switch (swdst) as shown in Algorithm 2 line 1. If it does, then the path to the destination
switch is inserted into the routing table of the source switch (swsrc), and the output
port for the destination switch is the same as the output port for the path to the
subtree root (lines 2-5). Because the switch-to-switch routing function is called for
every switch, in the end, all the paths to each unreachable destination switch will
converge to the subtree. In other words, the selected subtree root is the new target for
all the unreachable destination switches. The down/up turn will take place at the first
switch located in the subtree that has an upward path both to the source switch and
the destination switch.

In a single-core fat-tree there will always be a path from the source switch to the
subtree root, and the subtree root will have a path to every destination switch. However,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:9

ALGORITHM 2: Switch-to-switch routing function
Require: Subtree root (swroot)
Ensure: Each swsrc reaches each swdst at worst by swroot.
1: if f ound or swroot.routing table[dst] �= no path then
2: swsrc.routing table[dst] = swsrc.routing table[swroot.addr]
3: get path length(swsrc, null, dst, swroot, hops)
4: set hops(swsrc, hops)
5: return true
6: else if (swsib = get sibling sw(swroot)) �= null then
7: if swsrc.routing table[swsib.addr] �= no path then
8: if swsib.routing table[dst] �= no path then
9: swroot.routing table[dst] = get port to sibling(swsib)
10: hops = get hops(swsib, dst)
11: set hops(swroot, hops + 1)
12: hops = 0
13: swsrc.routing table[dst] = swsrc.routing table[swsib.addr]
14: get path length(swsrc, null, dst, swroot, hops)
15: set hops(swsrc, hops)
16: return true
17: end if
18: end if
19: end if
20: print ’SW2SW failed for swsrc and swdst.’
21: return false

for complex multi-core or irregular fat-trees this may not always be the case, and
the second part of the pseudocode presented in Algorithm 2 deals with cases where
the best-effort approach is needed and the subtree root does not have paths to all the
destinations. For best effort, it is necessary to check whether the subtree root has a
direct neighbor (to which they are connected through horizontal links as shown in
Figure 1). Next, a check is done to verify whether that neighbor, also called a sibling,
has a path to the destination switch. This is done in lines 7 and 8 of the presented
pseudocode. If the sibling exists and it has a path to the destination switch, a path is
set both on the subtree root and the originating source switch to the destination switch
through the sibling switch (lines 9-16). In other words, the target for the unreachable
destination switch will still be the subtree root, but in this case, it will forward the
packets to the destination switch to its sibling which in turn will forward them to the
destination switch.

If both previous steps do not return from the function with a true value, the algorithm
has failed to find a path between two switches. This occurs only for such topologies
on which it is not recommended to run the fat-tree routing at all due to multiple link
failures or very irregular connections between the nodes. An example of such a topology
would be two fat-trees of different sizes connected to each other in an asymmetrical
manner, for example, from a few middle-stage switches on the larger tree to roots on
the smaller one. Using various command-line parameters, fat-tree routing in OpenSM
can be forced to run on such a topology, however, it will give suboptimal routing not
only when it comes to performance, but also when we consider connectivity.

4.2. OpenSM Implementation

OpenSM requires that every path be marked with a hop count to the destination.
The older versions of the fat-tree routing algorithm (pre-3.2.5, current ones are 3.3.x)
calculated the number of hops using the switch rankings in the tree. In the newer

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:10 B. Bogdanski et al.

versions, the counting is done using a simple counter in the main routing function.
Because the switch-to-switch routing we perform is totally independent of the main
routing done by the fat-tree algorithm, we could not use the counters stored there,
and because of the possible zig-zag paths (i.e., paths not following the shortest hop
path), counting using the switch ranks is unreliable. Therefore, we devised a simple
recurrence function for hop calculation, called get path length only to be used during the
switch-to-switch routing (it is called in line 14 of the pseudocode shown in Algorithm 2).
This function iterates over the series of the switches that constitute the path, and when
it reaches the one having a proper hop count towards the destination, by backtracking
it writes the correct hop count into the routing tables of the switches on the whole path.

Moreover, one of the enhancements that we made is to choose the subtree root in such
a way that the subnet manager node (the end-node on which the subnet manager is
running) is not connected to the switch marked as the subtree root. This will draw the
switch-to-switch traffic away from the subnet manager, thus, not creating a bottleneck
in a critical location.

5. DEADLOCK FREEDOM PROOF

In this section we prove that the sFtree algorithm is deadlock free. The first part of the
proof contains the definitions of the terms used later in the text.

Definition 5.1. By switch sn we mean a switch with a rank n. Root switches have
rank n = 0.

Definition 5.2. By a downward channel we mean a link between sn−1 and sn where
the traffic is flowing from sn−1 to sn. By an upward channel we mean a link between sn
and sn−1 where the traffic is flowing from sn to sn−1.

Definition 5.3. A path is defined as a series of switches connected by channels. It
begins with a source switch and ends with a destination switch.

Definition 5.4. A U-turn is a turn where a downward channel is followed by an
upward channel.

Definition 5.5. A channel dependency between channel ci and channel c j occurs
when a packet holding channel ci requests the use of channel c j .

Definition 5.6. A channel dependency graph G = (V, E) is a directed graph where
the vertices V are the channels of the network N, and the edges E are the pairs of
channels (ci, c j) such that there exists a (channel) dependency from ci to c j .

Definition 5.7. By a subtree we mean a logical upside down tree structure within a
fat-tree that converges to a single leaf switch sn, which is the single root of the subtree.
A subtree expands from its root and its leaves are all the top-level switches in the
fat-tree. Any upward to downward turn will leave the subtree structure.

The following theorem states the sufficient condition for deadlock freedom of a rout-
ing function [Duato et al. 2003].

THEOREM 5.1. A deterministic routing function R for network N is deadlock free if
and only if there are no cycles in the channel dependency graph G.

Next, we prove the necessary lemmas followed by the deadlock freedom theorem of
the sFtree algorithm.

LEMMA 5.8. There exists at least one subtree within a fat-tree that allows full switch-
to-switch connectivity using only U-turns within that subtree.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:11

PROOF. In a fat-tree, from any leaf we can reach any other node (including all the
switches) in the fabric using an up/down path or a horizontal sibling path. This is
because every end-node can communicate with every other end-node. Because end-
nodes are directly connected to the leaf switches, it follows that leaf switches are able
to reach any other node in the topology. Consequently, if it contains no link faults, any
leaf switch can act as the root of the subtree.

LEMMA 5.9. There can be an unlimited number of U-turns within a single subtree
without introducing a deadlock.

PROOF. A subtree is a logical tree structure and two types of turns can take place
within it: U-turns, i.e., downward-to-upward turns, and ordinary upward-to-downward
turns. The U-turns cannot take place at the top switches in a subtree (and fat-tree)
because these switches have no output upward ports. Any upward to downward turn
will leave the subtree according to Definition 5.7.

Because a subtree is a connected graph without any cycles, it is deadlock free by
itself. Any deadlock must involve U-turns external to the subtree since a U-turn is
followed by an upward to downward turn leaving the subtree, which is also shown on
Figure 2(a). All the traffic going through an up/down turn originating in the subtree
will leave the subtree when the turn is made and follow only the downward channels
to the destination. Such a dependency can never enter the subtree again and can never
reach any other U-turn, and so, cannot form any cycle.

THEOREM 5.2. The sFtree algorithm using the subtree method is deadlock free.

PROOF. Following Lemma 5.8 and Lemma 5.9, we observe that a deadlock in a fat-
tree can only occur if there are U-turns outside the subtree. Such a situation cannot
happen due to the design of the sFtree algorithm where all U-turns take place within
a subtree. The traffic leaving a subtree will not circle back to it because once it leaves
the subtree, it is forwarded to the destination through downward channels only, and it
is consumed, thus, no cyclic credit dependencies will occur in the topology.

6. EXPERIMENT SETUP

To evaluate our proposal, we have used a combination of simulations and measure-
ments on an IB cluster. In the following sections, we present the hardware and software
configurations used in our experiments.

6.1. Experimental Test Bed

Our test bed consisted of eight nodes and six switches. Each node is a Sun Fire X2200
M2 server [Oracle Corporation 2006] that has a dual port Mellanox ConnectX DDR
HCA with an 8x PCIe 1.1 interface, one dual core AMD Opteron 2210 CPU, and 2GB
of RAM. The switches were: two 36-port Sun Datacenter InfiniBand Switch 36 [Oracle
Corporation 2011a] QDR switches which acted as the fat-tree roots; two 36-port
Mellanox Infiniscale-IV QDR switches [Mellanox Technologies 2009], and two 24-port
SilverStorm 9024 DDR switches [Qlogic 2007], all of which acted as leaves with the
nodes connected to them. The port speed between the QDR switches was configured to
be 4x DDR, so the requirement for the constant bisectional bandwidth in the fat-tree
was assured. The cluster was running the Rocks Cluster Distribution 5.3 with kernel
version 2.6.18-164.6.1.el5-x86 64, and the IB subnet was managed using a modified
version of OpenSM 3.2.5 with our sFtree implementation. The topology on which we
performed the measurements is shown in Figure 4(a). Switches A1 and A2 are the Sun
devices, which are able to produce and consume traffic. These two switches were used
as follows. We established a connection between the switches, and used the sFtree

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:12 B. Bogdanski et al.

(a) The experimental cluster. (b) Deadlock scenario topology.

Fig. 4. The clusters used during the experiments.

routing algorithm to forward traffic in a deadlock-free manner between the devices
through the chosen subtree root sn.

The Sun switches are the only managed switches in the topology, and they are able
to generate and consume arbitrary traffic. The firmware installed on the switches is
1.1.3-2, and the BIOS revision is NOW1R112. Those switches have an enhanced port 0
which is connected to the IB switching fabric using a 1x SDR link (signaling rate is
2.5 Gb/s, and the effective speed is 2 Gb/s). That port 0 is also connected to the internal
host using a 1x PCI Express 1.1. The IPoIB interfaces on both switches were configured
with an MTU size of 2044 octets, which is the maximum supported size in the IPoIB
Datagram Mode (IPoIB-UD) [Chu and Kashyap 2006] (in most implementations). The
MTU size on the switches cannot be increased because there is no support for the
optional IPoIB Connected Mode (IPoIB-CM) [Kashyap 2006]. The link MTU provides
a limit to the size of the payload that may be used. The 2044 octet MTU is in fact a
2048 octet MTU minus the 4-octet encapsulation overhead, which is done to reduce
problems with fragmentation and path-MTU discovery.

Furthermore, we constructed a separate topology to show the effects of a deadlock in
a small fat-tree when a suboptimal routing engine is chosen. The topology is shown in
Figure 4(b). That fat-tree can be unfolded into a ring which, when routed improperly,
will deadlock. Because the 1x SDR generators built into the Sun Datacenter InfiniBand
Switches injected packets too slow to create a deadlock, we created an artificial scenario
in which we connected ordinary end-nodes, namely, gen 1 and gen 2 to the root switches,
and routed the topology with sFtree and minhop algorithms. We used the same settings
for the hardware as in the previous scenario.

6.2. Simulation Test Bed

To perform large-scale evaluations and verify the scalability of our proposal, we use an
InfiniBand model for the OMNeT++ simulator [Gran and Reinemo 2011]. The model
contains an implementation of HCAs and switches with support for routing tables
and virtual lanes. The network topology and the routing tables were generated using
OpenSM and converted into OMNeT++ readable format in order to simulate real-world
systems. The simulations were performed on a 648-port fat-tree topology, illustrated in
Figure 5. This topology is the largest 2-stage fat-tree topology that can be constructed
using 36-port switch elements. When fully populated, this topology consists of 18
root switches and 36 leaf switches. We chose the 648-port fabric because it is a
common configuration used by switch vendors in their own 648-port systems [Oracle

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:13

Fig. 5. A 648-port fat-tree topology.

Corporation 2011b; Voltaire 2011; Mellanox Technologies 2011]. Additionally, such
switches are often connected together to form larger installations like the JuRoPa
supercomputer [Jülich Supercomputing Centre 2011].

For the simulations we used a few different traffic patterns, but because of space
limitations we are only presenting the results for the uniform traffic. All other simula-
tions using nonuniform traffic exhibited the same trends. The uniform traffic pattern
had a random destination distribution and the end-nodes were sending only to other
end-nodes and switches only to other switches. Each simulation run was repeated eight
times with different seeds and the average of all simulation runs was taken. The mes-
sage size was 2 kB for every simulation, and the packet generators and sinks at the
switches were configured to match those from the hardware test. These simulations
were performed to verify whether the switch traffic influences the end-node traffic, and
if so, to what degree for large-scale scenarios. We also performed simulations for the
different network topologies listed in Table IV, and the results show the same trends
as the results for the 648-port switch.

7. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements on the experimental fat-tree
cluster and simulations of large-scale topologies. Before running the performance
evaluation, we confirmed that the sFtree algorithm works as expected by using the
command-line tool ibtracert and, after setting up IPoIB, ping and route. For measure-
ments on the cluster, we use the results from the HPCC benchmark [HPCC 2011]
run under MVAPICH2-1.4.1 [MVAPICH2 2011] to show how the sFtree algorithm
impacts application traffic. In the HPCC benchmark the number of ring patterns was
increased from 30 to 50000 to provide a better average when comparing the results.
For the deadlock scenario, we used perftest to initiate communication between the
nodes. For the simulations, we use the achieved average throughput per end node or
per switch as the metric for measuring the impact of switch traffic on the simulated
648-port network topology.

7.1. Experimental Results

In the HPCC experiments we were simultaneously running the HPCC benchmark
on the compute nodes and generating the switch-to-switch traffic that consisted of
sequential reads and writes of random blocks of data from the internal hard drive. The
data was sent using the TCP connection between the IB interfaces on the switches.
The average data throughput between the switches was 25 MB/s both ways. There
are several reasons why the switches are not able to send with the full capacity of
their SDR link. First, the only available transport service is the IPoIB-UD, which

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:14 B. Bogdanski et al.

Table I. Results from the HPC Challenge Benchmark with All Communication in VL0

Network latency and throughput a) SW2SW off b) SW2SW on c) Difference
Min Ping Pong Lat. (ms) 0.001997 0.001997 0.0%
Avg Ping Pong Lat. (ms) 0.002267 0.002266 −0.044%
Max Ping Pong Lat. (ms) 0.002369 0.002369 0.0%
Naturally Ordered Ring Lat. (ms) 0.002193 0.002193 0.0%
Randomly Ordered Ring Lat. (ms) 0.002157 0.002165 0.371%
Min Ping Pong BW (MB/s) 1587.248 1586.048 −0.076%
Avg Ping Pong BW (MB/s) 1588.806 1588.379 −0.027%
Max Ping Pong BW (MB/s) 1590.559 1591.162 0.038%
Naturally Ordered Ring BW (MB/s) 1488.926 1495.895 0.468%
Randomly Ordered Ring BW (MB/s) 1226.432 1226.347 0.007%

Table II. Results from the HPC Challenge Benchmark with Node Communication in VL1 and
Switch Communication in VL0

Network latency and throughput a) SW2SW off b) SW2SW on c) Difference
Min Ping Pong Lat. (ms) 0.001997 0.001997 0.0%
Avg Ping Pong Lat. (ms) 0.002300 0.002291 −0.391%
Max Ping Pong Lat. (ms) 0.002429 0.002429 0.0%
Naturally Ordered Ring Lat. (ms) 0.002289 0.002313 1.048%
Randomly Ordered Ring Lat. (ms) 0.002197 0.002214 0.773%
Min Ping Pong BW (MB/s) 1586.048 1586.048 0.0%
Avg Ping Pong BW (MB/s) 1588.650 1588.486 −0.01%
Max Ping Pong BW (MB/s) 1591.766 1591.011 −0.047%
Naturally Ordered Ring BW (MB/s) 1505.4256 1487.8035 −1.171%
Randomly Ordered Ring BW (MB/s) 1228.2845 1228.3750 0.007%

has a limited MTU size. No direct application access to the IB interface is possible
because there is no user space access for establishing a Queue Pair (QP), so all the
user data has to be encapsulated within IP and then forwarded through IB. Second,
the packet-processing seems to be limited by the CPU whose utilization was constantly
above 90%. In addition, there is no support for RDMA Read and Write requests, which
further increases the CPU usage.

During the tests, we used a few different network performance tools (qperf, netperf,
NetPIPE). These tools also support UDP traffic benchmarking, but after saturating the
internal link with UDP traffic, the responsiveness of the switches was severely limited
due to the high CPU utilization. Furthermore, we were not able to see any difference
in the experimental results, and for that reason, we decided to use TCP traffic.

The experiment was repeated twice: In the first scenario, we mapped both the switch
and the application traffic (HPCC) to VL0 and, in the second scenario, the application
traffic was running on VL1 and switch traffic on VL0. To establish a base reference, for
each scenario, we also disabled the switch traffic and measured the application traffic
only. The reference results are presented in the second column of Tables I and II.

7.1.1. First scenario. Table I shows the results for the first scenario. The most interest-
ing observation is that the influence of the switch traffic on the application traffic is
negligible. There are variations between the reference results and the scenario results,
but they are very small as seen in the last column of Table I. The influence of the switch
traffic on the end-node traffic is negligible because there are more nodes than switches
in the fabric and the nodes are able to inject traffic 8 times faster using all the links in
the fabric. In comparison, the switches are unable to send at their full capacity because
of the technical limitations described in the previous paragraphs and they only use a
single path to communicate.

7.1.2. Second scenario. The results for the second scenario are presented in Table II.
The key observation here, as seen in the last column of Table II is that for small data

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:15

streams, which emulate the management traffic between the switches, there is almost
no influence of switch traffic on the end-node traffic when compared with the reference
results presented in the second column of Table II. However, the latencies for both
the natural and random rings are higher when switch-to-switch traffic is present. The
difference is only 1%, but this pattern also corresponds well with the simulation results
where using an additional VL for traffic separation decreases the overall throughput
(see Section 7.2.2).

To conclude, the results from both scenarios clearly illustrate that there is little or
no performance overhead when using the sFtree algorithm. However, we can suspect
that if the volume of the traffic generated by the switches was larger, we would observe
a drop in performance when assigning different VLs to different types of traffic (as in
the second scenario). Because our solution is deadlock free, there is no need to use ad-
ditional VLs for deadlock-avoidance. Still, one of the limitations of the hardware tests
is the fact that only two switches out of six were able to send and receive traffic. The
other limitation was the topology size and the fact that a large part of the node-to-node
communication was taking part in the crossbar switches. Therefore, in Section 7.2
we will show through simulations that the same trends hold for a larger number of
switches.

7.1.3. Deadlock scenario. We also created an artificial deadlock scenario. For the topol-
ogy shown on Figure 4(b), we run the perftest to measure the sent bandwidth over time.
As mentioned in Section 6, the built in generators in the currently available switches
are not able to create a deadlock due to their low bandwidth. Therefore, we substituted
those generators with fully capable end-node generators and configured the routing to
emulate the paths assigned by the sFtree and minhop routing algorithms. However, the
implementation of minhop available in OpenSM will not deadlock on such a topology, so
by modifying the routing table on the fly we managed to obtain the desired effect. The
reason why minhop will not deadlock on a ring constructed out of four nodes is the fact
that its implementation in OpenSM assigns symmetric paths for source-destination
and destination-source pairs, thus, it breaks the credit loop necessary for a deadlock
to occur. However, it is a well known fact that minhop deadlocks on at least a 5-node
ring [Guay et al. 2010], and any 3-stage fat-tree that has more than one root contains
such a ring. Therefore, almost any 3-stage or larger fat-tree routed with minhop will
potentially deadlock, thus, it makes our experiment valid and practical.

In this experiment all the communication streams were launched during the first five
seconds. By analyzing Figure 6, we observe that minhop routing deadlocks immediately
after the last stream that closes the credit loop is added, and then that the average per
node bandwidth drops to 0 MB/s. For the sFtree routing algorithm, we observe that the
average per node network bandwidth stabilizes after the last stream is added because
all the U-turns take place on one leaf switch, and no credit loop is created.

This experiment shows the effect that a deadlock has on a fat-tree topology which is
routed improperly. The sFtree routing algorithm, however, is safe to use and will not
deadlock on a fat-tree topology as proven in Section 5.

7.2. Simulation Results

An important question is how well the sFtree algorithm scales. Specifically, the purpose
of the simulations was to show that the same trends that were observed in the experi-
ments exist when the number of switches generating the traffic will be much larger and
the network topology corresponds to real systems. Like the hardware measurements,
we performed two different tests. In the first scenario, we mapped the switch-to-switch
and node-to-node traffic both to VL0, and, for the second scenario, we separated the
node-to-node traffic by mapping it to VL1. Furthermore, for every measurement the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:16 B. Bogdanski et al.

Time (s)

A
ve

ra
ge

 p
er

 n
od

e
ba

nd
w

id
th

 (
M

B
/s

)

0 5 10 15 20 25 30 35 40

0
10

00
30

00
50

00
70

00
90

00
11

00
0 minhop routing algorithm

sFtree routing algorithm

Fig. 6. Average per node network bandwidth comparison for minhop and sFtree.

nodes were communicating at their full capacity, and the load of the switch traffic was
gradually increased from 0% to 100%. It has to be noted that the scale on the Y-axis of
the graphs presented in Figure 7 corresponds to the node-to-node sending and receiv-
ing capacity which is 4x DDR (20 Gb/s), and not to the 1x SDR (2.5 Gb/s) capacity of
the switches. This means that all the results are normalized to 20 Gb/s and 12.5% of
throughput achieved by the switches is in fact their full sending/receiving capability
(1x SDR is 12.5% of 4x DDR). On all graphs, the throughput is presented as an average
throughput per node. The second important detail is the shaded rectangles in Figure 7
that correspond to the hardware-obtainable results, i.e., the range of the results within
those boxes can also be obtained with the available switches. The results beyond those
boxes could not be obtained using the hardware due to limitations of the enhanced
ports in real IB switches. With these two experiments we show the effect of using the
same VL for both node-to-node traffic and switch-to-switch traffic and the effects of
assigning these two types of traffic to different VLs.

7.2.1. First scenario. We observe that when both the node and switch traffic is mapped
to the same VL, then the switch traffic does not influence the node traffic as shown in
Figure 7(a), and the average achieved throughput per node decreases only by 1% when
the switches send at their full capacity. There are two reasons why this happens. First,
there are many more end-nodes in the network than there are switches (648 nodes
and only 54 switches). The nodes are injecting more traffic into the fabric and the
switch traffic suffers from contention (and possible congestion). Second, the switches
have a limited number of paths they can choose from and the switch traffic is not
balanced, always taking the first possible output port towards the destination, which
leads to some congestion on switch-to-switch paths. Also, the subtree root is a potential
bottleneck as a large part of the switch traffic is sent through it.

7.2.2. Second scenario. The situation changes when we separate the node traffic and
map it to VL1 as shown in Figure 7(b). In this case, for higher loads of switch-to-
switch traffic, the node traffic decreases to 64% of the capacity for the highest switch

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:17

Load (% of capacity)

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Average node−to−node throughput − VL0
Average switch−to−switch throughput − VL0

(a) Simulation results for a 648-port fat-tree with end-node traffic in VL0.

Load (% of capacity)

T
hr

ou
gh

pu
t (

%
 o

f c
ap

ac
ity

)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Average node−to−node throughput − VL1
Average switch−to−switch throughput − VL0

(b) Simulation results for a 648-port fat-tree with end-node traffic in VL1.

Fig. 7. Simulation results for a 648-port switch built as fat-tree topology.

load. This happens because the traffic in the two VLs are given an equal share of the
link bandwidth, artificially increasing the impact of the comparatively light switch-to-
switch traffic. Clearly, care must be taken when separating management traffic in a
separate VL to manage the VL arbitration weights for a minimal system impact.

7.2.3. Routing algorithm comparison. In Table III we compare various routing algorithms
(sFtree, minhop, Up*/Down*, DFSSSP, LASH) at 100% load both for switch and node
traffic on two different commercially available fabrics. The settings were the same as
for other experiments and matched the hardware configuration. All the node-to-switch

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:18 B. Bogdanski et al.

Table III. Routing Algorithm Performance as Percentage of Throughput Per Node

Topology sFtree minhop Up*/Down* DFSSSP LASH
648-port fat-tree switch (2-stage) 91.94% 66.98% 66.98% 85.49% 5.257%
648-port fat-tree with rack switches (3-stage) 92.93% 54.01% 54.01% 84.20% 0.8103%

and switch-to-switch links were 4x DDR and the switch generators were set to 1x SDR.
We chose a 648-port fat-tree switch, which was also used for other simulations pre-
sented in this paper, and a 648-port fat-tree switch with an additional layer of rack
switches attached at the bottom of it. In this case the rack switches are also intercon-
nected horizontally to create two-switch units [Oracle Corporation 2010]. The results
presented in Table III illustrate that only the sFtree algorithm is able to achieve high
performance, and while DFSSSP may still be considered a viable choice, both minhop
and Up*/Down* are not suitable for any of those two fat-tree topologies. Moreover, we
observe that if the topology becomes more complex, the performance of all algorithms
apart from sFtree deteriorates even more. It is worth noting that LASH is unsuitable
for routing any type of fat-tree topology. The performance results are shown in Table III,
being 5.257% and 0.8103% of average throughput per node for the 2-stage and 3-stage
fat-trees, respectively. Such a low routing performance is explained by the fact that
LASH does not balance the paths (like DFSSSP does) and selects the first possible
shortest path towards the destination. Therefore, in the 648-port 2-stage fat-tree, out
of 18 possible root switches, only one switch is used for forwarding the data packets
from all 36 leaf switches and no traffic passes through the other 17 root switches. The
same situations happens in the 3-stage fat-tree, but due to differences in cabling, the
performance is even lower. In other words, when used for routing a fat-tree topology,
LASH constructs a logical tree within the physical fat-tree fabric, which dramatically
decreases the number of available links that could be used for forwarding the packets
and leads to congestion. When it comes to VL usage, LASH only uses one VL for the 648-
port fat-tree in Figure 5, but for a 3456-port fat-tree (3-stage fabric) LASH requires 6
VLs, and for the JuRoPa fat-tree it needs 8 VLs to ensure deadlock freedom. This means
that using LASH not only leads to a decrease in routing performance, but also to a waste
of valuable VL resources that could be used differently in fat-trees [Guay et al. 2011].

To summarize, the simulations confirmed what we observed in the hardware mea-
surements. For the small loads (<10% of capacity) which are obtainable on the hard-
ware, we see no influence of switch traffic on the end-node traffic. The simulations
also confirmed that our solution is scalable and can be applied to larger topologies
without negative impact on the end-node network performance. Apart from the 648-
port topology presented in this paper, we simulated other topologies like a 3456-port
switch (3456 nodes, 720 switches) and a JuRoPa-like supercomputer (5184 nodes,
864 switches) and the results obtained during these simulations exhibit the same
trends as the results for the 648-port topology. Furthermore, for small loads, there is
little difference when it comes to separating the node-to-node and switch-to-switch traf-
fic. We also show that LASH despite having the desired properties of deadlock freedom
and all-to-all communication, is not suitable for routing fat-tree topologies.

7.3. Execution Time

The execution time of the sFtree algorithm depends only on the number of switches
in the network. For the largest single-core fat-tree shown in Table IV the execution
overhead is around 0.5 seconds. For more complex topologies, like JuRoPa-like (864
switches) or Ranger-like (1440 switches) supercomputers, the overhead is 2.4 and
6.1 seconds respectively. For comparison, we also added the execution time results
from LASH. Due to the fact that LASH does cycle search between all the possible
pairs, routing takes much longer on all fabrics apart from the smallest ones. This is

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

sFtree: A Deadlock-Free Switch-to-Switch Routing Algorithm for Fat-Trees 55:19

Table IV. Execution Time of the OpenSM Routing in Seconds

Topology no SW2SW SW2SW LASH
648-port fat-tree switch (s) 0.047 0.047 0.04
648-port fat-tree with rack switches (s) 0.104 0.112 0.27
3456-port fat-tree switch (s) 2.29 2.796 400.99
JuRoPA-like supercomputer (s) 6.43 8.858 –
Ranger-like supercomputer (s) 21.73 27.8 –

another reason why LASH should not be used for routing fat-trees because a possible
rerouting takes a very long time. It is visible for a 3456-port fat-tree where LASH
execution took almost 401 seconds. Unfortunately, we were not able to run LASH on
topologies larger than the 3456-port fat-tree in a reasonable time.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed and demonstrated the sFtree routing algorithm which
provides full connectivity and deadlock-free switch-to-switch routing for fat-trees. The
algorithm enables full connectivity between any of the switches in a fat-tree when using
IPoIB, which is crucial for fabric management features such as the Simple Network
Management Protocol (SNMP) for management and monitoring, Secure SHell (SSH)
for arbitrary switch access, or generic web interface access.

We have implemented the sFtree algorithm in OpenSM for evaluation on a small IB
cluster and studied the scalability of our algorithm through simulations. Through the
evaluation we verified the correctness of the algorithm and showed that the overhead
of the switch-to-switch communication had a negligible impact on the end-node traffic.
Moreover, we were able to demonstrate that the algorithm is scalable and works well
even with the largest fat-trees. Furthermore, we compared the sFtree algorithm to
several topology agnostic algorithms and showed that sFtree was by far the most
optimal solution for switch-to-switch connectivity in fat-trees.

REFERENCES

BOGDANSKI, B., SEM-JACOBSEN, F. O., REINEMO, S.-A., SKEIE, T., HOLEN, L., AND HUSE, L. P. 2010. Achieving
predictable high performance in imbalanced fat trees. In Proceedings of the 16th IEEE International
Conference on Parallel and Distributed Systems. X. Huang, Ed. IEEE Computer Society, 381–388.

CHU, J. AND KASHYAP, V. 2006. RFC 1633 transmission of IP over InfiniBand (IPoIB). IETF.
DALLY, W. J. 1992. Virtual-channel flow control. IEEE Trans. Parall. Distrib. Syst. 3, 2, 194–205.
DOMKE, J., HOEFLER, T., AND NAGEL, W. 2011. Deadlock-free oblivious routing for arbitrary topologies. In

Proceedings of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS).
IEEE Computer Society, 613–624.

DUATO, J., YALAMANCHILI, S., AND NI, L. 2003. Interconnection Networks An Engineering Approach. Morgan
Kaufmann.

GÓMEZ, C., GILABERT, F., GÓMEZ, M. E., LÓPEZ, P., AND DUATO, J. 2007. Deterministic versus adaptive routing in
fat-trees. In Proceedings of the IEEE Symposium on Parallel and Distributed Processing.

GRAN, E. G. AND REINEMO, S.-A. 2011. Infiniband congestion control, modelling and validation. In Proceed-
ings of the 4th International ICST Conference on Simulation Tools and Techniques (SIMUTools2011).
(OMNeT++ 2011 Workshop).

GRAN, E. G., ZAHAVI, E., REINEMO, S.-A., SKEIE, T., SHAINER, G., AND LYSNE, O. 2011. On the relation between
congestion control, switch arbitration and fairness. In Proceedings of the 11th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGrid 2011).

GUAY, W. L., BOGDANSKI, B., REINEMO, S.-A., LYSNE, O., AND SKEIE, T. 2011. vFtree - A Fat-tree routing algorithm
using virtual lanes to alleviate congestion. In Proceedings of the 25th IEEE International Parallel &
Distributed Processing Symposium.

GUAY, W. L., REINEMO, S.-A., LYSNE, O., SKEIE, T., JOHNSEN, B. D., AND HOLEN, L. 2010. Host side dynamic recon-
figuration with InfiniBand. In Proceedings of the IEEE International Conference on Cluster Computing.
X. Gu and X. Ma, Eds. IEEE Computer Society, 126–135.

HPCC. 2011. HPC challenge benchmark. http://icl.cs.utk.edu/hpcc/.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

TACO0804-55 ACM-TRANSACTION January 14, 2012 16:45

55:20 B. Bogdanski et al.

IBTA. 2007. Infiniband architecture specification 1.2.1 Ed.
JÜLICH SUPERCOMPUTING CENTRE. 2011. FZJ-JSC JuRoPA. http://www.fz-juelich.de/jsc/juropa/configuration/.
KASHYAP, V. 2006. IP over InfiniBand: Connected mode. IETF.
LEISERSON, C. E. 1985. Fat-Trees: Universal networks for hardware-efficient supercomputing. IEEE Trans.

Computers.
LIN, X.-Y., CHUNG, Y.-C., AND HUANG, T.-Y. 2004. A multiple LID routing scheme for fat-tree-based Infiniband

networks. In Proceedings of the IEEE International Parallel and Distributed Processing Symposiums.
MELLANOX TECHNOLOGIES. 2009. MTS3600 36-port 20 Gb/s and 40Gb/s InfiniBand switch system. Product

brief. http://www.mellanox.com/related-docs/prod ib switch systems/PB MTS3600.pdf.
MELLANOX TECHNOLOGIES. 2011. IS5600—648-port InfiniBand chassis switch. http://www.mellanox.com/

related-docs/prod ib switch systems/IS5600.pdf.
MVAPICH2. 2011. MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE. http://mvapich.cse.ohio-

state.edu/overview/mvapich2/.
ÖHRING, S., IBEL, M., DAS, S., AND KUMAR, M. 1995. On generalized fat trees. In Proceedings of the 9th

International Parallel Processing Symposium. 37–44.
OPENFABRICS ALLIANCE. 2011. The OpenFabrics Alliance. http://openfabrics.org/.
ORACLE CORPORATION. 2006. Sun Fire X2200 M2 server. http://www.sun.com/servers/x64/x2200/.
ORACLE CORPORATION. 2010. Sun Blade 6048 InfiniBand QDR switched NEM. http://www.oracle.com/us/

products/servers-storage/servers/blades/031095.htm.
ORACLE CORPORATION. 2011a. Sun datacenter InfiniBand switch 36. http://www.oracle.com/us/

products/servers-storage/networking/infiniband/036206.htm.
ORACLE CORPORATION. 2011b. Sun datacenter InfiniBand switch 648. http://www.oracle.com/us/

products/servers-storage/networking/infiniband/034537.htm.
PETRINI, F. AND VANNESCHI, M. 1995. K-ary n-trees: High performance networks for massively parallel archi-

tectures. Tech. rep., Dipartimento di Informatica, Universita di Pisa.
QLOGIC. 2007. SilverStorm 9024 switch. http://www.qlogic.com/Resources/Documents/DataSheets/Switches/

Edge Fabric Switches datasheet.pdf.
REINEMO, S.-A., SKEIE, T., SØDRING, T., LYSNE, O., AND TØRUDBAKKEN, O. 2006. An overview of qos capabilities in

infiniband, advanced switching interconnect, and ethernet. IEEE Comm. Mag. 44, 7, 32–38.
RODRIGUEZ, G., MINKENBERG, C., BEIVIDE, R., AND LUIJTEN, R. P. 2009. Oblivious routing schemes in extended

generalized fat tree networks. In Proceedings of the IEEE International Conference on Cluster Computing
and Workshops.

SCHROEDER, M. D., BIRRELL, A. D., BURROWS, M., MURRAY, H., NEEDHAM, R. M., AND RODEHEFFER, T. L. 1991.
Autonet: a high-speed, self-configuring local area network using point-to-point links. IEEE J. Select.
Areas Comm. 9, 8.

SKEIE, T., LYSNE, O., AND THEISS, I. 2002. Layered shortest path (lash) routing in irregular system area
networks. In Proceedings of the Communication Architecture for Clusters Conference.

TACC. 2011. Texas Advanced Computing Center. http://www.tacc.utexas.edu/.
TOP 500. 2011. Top 500 supercomputer sites. http://top500.org/.
VOLTAIRE. 2011. Voltaire QDR InfiniBand grid director 4700. http://www.voltaire.com/Products/InfiniBand/

Grid Director Switches/Voltaire Grid Director 4700.
ZAHAVI, E., JOHNSON, G., KERBYSON, D. J., AND LANG, M. 2009. Optimized Infiniband fat-tree routing for shift

all-to-all communication patterns. Concurrency Computat. Pract. Exper.

Received July 2011; revised October 2011, December 2011; accepted December 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 55, Publication date: January 2012.

Paper IV

Discovery and Routing of Degraded

Fat-Trees

Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo,
Frank Olaf Sem-Jacobsen

Discovery and Routing of Degraded Fat-Trees

Bartosz Bogdański, Bjørn Dag Johnsen
Oracle Corporation

Oslo, Norway
bartosz.bogdanski@oracle.com
bjorn-dag.johnsen@oracle.com

Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen
Simula Research Laboratory

Lysaker, Norway
svenar@simula.no

frankose@simula.no

Abstract—The fat-tree topology has become a popular choice
for InfiniBand enterprise systems due to its deadlock freedom,
fault-tolerance and full bisection bandwidth. In the HPC
domain, InfiniBand fabric is used in almost 42% of the systems
on the latest Top 500 list, and many of those systems are
based on the fat-tree topology. Despite the popularity of the
fat-tree topology, little research has been done to compare the
behavior of InfiniBand routing algorithms on degraded fat-tree
topologies.

In this paper, we identify the weaknesses of the current
fat-tree routing and propose enhancements that liberalize the
restrictions imposed on the routed fabric. Furthermore, we
present a thorough analysis of non-proprietary routing algo-
rithms that are implemented in the InfiniBand Open Subnet
Manager. Our results show that even though the performance
of a fat-tree routed network deteriorates predictably with the
number of failed links, fat-tree routing algorithm is still the
best choice for severely degraded fat-tree fabrics.

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today, and for
clusters based on InfiniBand (IB) technology the fat-tree is
the dominating topology. This includes large installations
such as Nebulae/Dawning, TGCC Curie and SuperMUC [1].
There are three properties that make fat-trees the topology
of choice for high performance interconnects: deadlock
freedom, the use of a tree structure makes it possible to
route fat-trees without special considerations for deadlock
avoidance; inherent fault-tolerance, the existence of multiple
paths between individual source destination pairs makes it
easier to handle network faults; full bisection bandwidth, the
network can sustain full speed communication between the
two halves of the network.

For fat-trees, as with most other topologies, the routing
algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts to improve their routing performance. These
proposals, however, have several limitations when it comes
to flexibility and scalability. This also includes the current
approach that the OpenFabrics Enterprise Distribution [2],
the de facto standard for InfiniBand system software, is
based on [3], [4]. One problem is the static routing used
by IB technology that limits the exploitation of the path
diversity in fat-trees as pointed out by Hoefler et al. in [5].
Another problem with the current routing is its shortcom-
ings when routing oversubscribed fat-trees as addressed by
Rodriguez et al. in [6]. A third problem, and the one that
we are analyzing in this paper, is that any irregularity in a
fat-tree fabric makes the subnet manager select a suboptimal
fallback routing algorithm.

In this paper, we analyze the performance of four major
routing algorithms implemented in InfiniBand Open Subnet

Manager (OpenSM) running on fat-trees with a number
of random faults. These algorithms are: optimized fat-tree
routing devised by Zahavi et al. [4], Layered-Shortest Path
Routing (LASH) [7], Deadlock-Free Single-Source-Shortest-
Path routing [8] and the default fallback algorithm for
OpenSM - MinHop [9]. Through simulations, we show how
susceptible is each of these algorithms to random link and
switch failures. Moreover, we demonstrate that even though
the fat-tree routing is the most susceptible algorithm, it still
delivers the highest performance even in extreme cases for
non-trivial traffic patterns. Furthermore, we extend the fat-
tree algorithm to remove the most common factors leading to
lower performance on degraded fat-trees which are the over-
restrictive topology discovery and flipping switch anomaly.
The major contributions of our work are:

• We present a thorough analysis of non-proprietary
routing algorithms implemented in the InfiniBand Open
Subnet Manager (OpenSM) running on degraded fat-
trees.

• We present enhancements that liberalize the restrictions
imposed on the fat-tree discovery and routing of de-
graded fabrics.

The rest of this paper is organized as follows: we discuss
related work in Section II and continue with introducing
the InfiniBand Architecture in Section III. We follow with
a description of OpenSM routing algorithms in Section
IV and discuss our enhancements in Section V. Next, we
describe the experimental setup in Section VI followed
by the experimental analysis in Section VII. Finally, we
conclude in Section VIII.

II. RELATED WORK

There was much research done in the general topic of
routing algorithms and fat-tree routing for interconnection
networks. First, a thorough survey of interconnection routing
algorithms was published by Flich et al. [10], but the authors
did not discuss the fat-tree algorithm and focused only on
algorithms for routing meshes and tori.

Second, Sem-Jacobsen et al. proposed various methods
to improve fault-tolerance in fat-trees [11], [12], [13], [14],
however, that work did not compare fat-tree routing to other
algorithms available in OpenSM.

There was further work by Bermudez [15], [16], [17] and
Vishnu [18] on performance of subnet management for fat-
tree topologies (including the discovery process), but the
authors dealt strictly with fabric management and did not
discuss performance of the routing algorithms themselves.

The popularity of fat-trees in the last decade also led to
many efforts trying to improve their routing performance:
exploitation of path diversity [5], routing oversubscribed

2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4879-1/12 $26.00 © 2012 IEEE
DOI 10.1109/PDCAT.2012.67

689

2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4879-1/12 $26.00 © 2012 IEEE
DOI 10.1109/PDCAT.2012.67

693

2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4879-1/12 $26.00 © 2012 IEEE
DOI 10.1109/PDCAT.2012.67

697

fat-trees [6] or utilizing virtual lanes to increase network
performance [19].

Unlike previous research on IB routing algorithms, we
focus on multiple routing algorithms running on the same
fabric. Our work is partially based on [20] where we
also analyzed degraded fat-trees, however, only with failing
nodes. In this work we widen the scope and, first, consider
also failing links and, second, evaluate multiple routing
algorithms.

III. THE INFINIBAND ARCHITECTURE

InfiniBand networks are referred to as subnets, where
a subnet consists of a set of hosts interconnected using
switches and point-to-point links. An IB fabric constitutes
one or more subnets, which can be interconnected using
routers. Hosts and switches within a subnet are addressed
using local identifiers (LIDs) and a single subnet is limited
to 49151 LIDs.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initializing and bringing up the
network, including the configuration of all the IB ports
residing on switches, routers, and host channel adapters
(HCAs) in the subnet. At the time of initialization the SM
starts in the discovering state where it does a sweep of
the network in order to discover all switches and hosts.
During this phase it will also discover any other SMs
present and negotiate who should be the master SM. When
this phase is complete the elected SM enters the master
state. In this state, it proceeds with LID assignment, switch
configuration, routing table calculations and deployment,
and port configuration. When this is done, the subnet is up
and ready for use. After the subnet has been configured, the
SM is responsible for monitoring the network for changes.

A major part of the SM’s responsibility is to calcu-
late routing tables that maintain full connectivity, deadlock
freedom, and proper load balancing between all source
and destination pairs. Routing tables must be calculated at
network initialization time and this process must be repeated
whenever the topology changes in order to update the routing
tables and ensure optimal performance.

During normal operation the SM performs periodic light
sweeps of the network to check for topology changes e.g. a
link goes down, a device is added, or a link is removed). If
a change is discovered during a light sweep or if a message
(trap) signaling a network change is received by the SM,
it will reconfigure the network according to the changes
discovered. This reconfiguration also includes the steps used
during initialization. Moreover, for each device a subnet
management agent (SMA) residing on it generates responses
to control packets (subnet management packets (SMPs)), and
configures local components for subnet management.

IB is a lossless networking technology, where flow-
control is performed per virtual lane (VL) [21]. VLs are
logical channels on the same physical link, but with sep-
arate buffering, flow-control, and congestion management
resources. The concept of VLs makes it possible to build
virtual networks on top of a physical topology. These virtual
networks, or layers, can be used for various purposes such
as efficient routing, deadlock avoidance, fault-tolerance, and
service differentiation. Some routing algorithms, like LASH
or DFSSSP, use VLs to break credit dependency cycles and
avoid deadlock.

IV. ROUTING IN INFINIBAND

In this paper, we focus on fat-tree topologies where the
default routing algorithm is the fat-tree routing because it
is optimal for fault-free fat-trees. However, if any failure in
the fabric occurs or if the fabric does not comply with the
strict rules that define a proper fat-tree, the subnet manager
fails over to another routing algorithm. In the following
subsections, we will describe the algorithms analyzed in
this paper. In Section VII, we will analyze and compare
the performance of those routing algorithms under different
conditions and for different traffic patterns.

A. Fat-Tree Routing Algorithm
The fat-tree topology was introduced by Leiserson in [22],

and has since become a common topology in HPC. The fat-
tree is a layered network topology with equal link capacity at
every tier (applies for balanced fat-trees), and is commonly
implemented by building a tree with multiple roots, often
following the m-port n-tree definition [23] or the k-ary n-tree
definition [24]. An XGFT notation is also used to describe
fat-trees and was presented by Öhring [25]. More recently,
Zahavi also proposed PGFT and RLFT notations to describe
real-life fat-trees [26].

To construct larger topologies, the industry has found it
more convenient to connect several fat-trees together rather
than building a single large fat-tree. Such a fat-tree built
from several single fat-trees is called a multi-core fat-tree.
Multi-core fat-trees may be interconnected through the leaf
switches using horizontal links [27] or by using an additional
layer of switches at the bottom of the fat-tree where every
such switch is connected to all the fat-trees composing the
multi-core fat-tree [28].

Regardless of how a fat-tree is constructed, the routing
function always works in a similar manner. The fat-tree rout-
ing is divided into two distinct phases: the upward phase in
which a packet is forwarded from the source in the direction
of one of the root (top) switches, and the downward phase
when a packet is forwarded downwards to the destination.
The transition between these two phases occurs at the lowest
common ancestor, which is a switch that can reach both
the source and the destination through its downward ports.
Such an implementation ensures deadlock freedom, and the
implementation presented in [4] also ensures that every path
towards the same destination converges at the same root
switch such that all packets toward that destination follow a
single dedicated path in the downward direction. By having
a dedicated downward path for every destination, contention
in the downward phase is effectively removed (moved to the
upward stage), so that packets for different destinations have
to contend for output ports in only half of the switches on
their path. In oversubscribed fat-trees, the downward path
is not dedicated and is shared by several destinations. The
fabric discovery complexity for optimized fat-tree routing
algorithm is given by O(m+ n) where m is the number of
edges (links) and n is the number of vertices (nodes). The
routing complexity is O(k · n), where k is the number of
end-nodes and n is the number of switches.

B. Layered-Shortest Path routing
Layered-Shortest Path (LASH) is a deterministic shortest

path routing algorithm for irregular networks. All packets are
routed using the minimal path, and the algorithm achieves

690694698

deadlock freedom by finding and breaking cycles through
virtual lanes.

However, LASH does not balance the traffic in any
manner, which is especially evident in fat-tree fabrics. The
algorithm aims at using the lowest number of VLs and,
therefore, routes all possible deadlock-free pairs on the same
layer, i.e. using the same links. The computing complexity
for LASH is O(n3) where n is the number of nodes.

C. Deadlock-Free Single-Source-Shortest-Path routing
Deadlock-Free Single-Source-Shortest-Path routing (DF-

SSSP) [8] is an efficient oblivious routing for arbitrary
topologies developed by Domke et al. [8]. It uses virtual
lanes to guarantee deadlock freedom and, in comparison to
LASH, aims at not limiting the number of possible paths
during the routing process. It also uses improved heuristics
to reduce the number of used virtual lanes in comparison to
LASH.

The problem with DFSSSP is that for switch-to-switch
traffic it assumes deadlock freedom, and does not break
any cycles that may occur for switch-to-node and switch-
to-switch pairs. The computing complexity for the offline
DFSSSP is O(n2 · log(n)) where n is the number of
nodes [8].

D. MinHop routing
MinHop is the default fallback routing algorithm for the

OpenSM. It finds minimal paths among all endpoints and
tries to balance the number of routes per link at the local
switch. However, using MinHop routing usually leads to
credit loops, which may deadlock the fabric. The complexity
of MinHop is given by O(n2) where n is the number of
nodes.

V. DEGRADED FAT-TREE DISCOVERY

The main weakness of the current implementation in
OpenSM of the fat-tree routing is its inability to route by
default any non-pure fat-tree fabrics that do not pass the
rigorous topology validation. Currently, topology validation
fails if the number of up and down links on any two switches
on the same level is not equal (e.g. if one link in the whole
fabric fails, fat-tree routing falls back to MinHop routing).
There are also other scenarios where fat-tree routing fails,
but we will not consider those in this paper due to limited
space.

Our proposal is to provide three simple enhancements to
the routing algorithm to deal properly with any fat-tree fab-
ric. The first enhancement is to liberalize the restrictions on
the topology validation and disable link count inconsistency
check. This way, fat-tree routing will not fail by default on
any incomplete fat-tree.

The second enhancement is to fix the flipped switches
issue. This problem occurs when there exists a leaf switch
that has no nodes connected. When this happens, such a
switch is not classified as a leaf switch by the fat-tree
algorithm but as a switch located at level leaf level + 2.
In general, fat-tree routing is runnable on such a fabric, but
this counter-intuitive behavior makes troubleshooting more
difficult due to incorrect ranks assigned to the switches. The
situation is illustrated on Figure 1 and a fix is proposed in
Algorithm 1. The problem with providing a fix is that when
a ranking conflict occurs in the fabric, the SM can only act

Figure 1: Flipping switch in a simple 3-stage fat-tree.

reactively, i.e. it has to first detect the conflict and then re-
rank the fabric. This is cumbersome and it may happen that
the conflict will not be detected due to high complexity of
the fabric. Therefore, the fix for this problem is built using
the last enhancement we propose.

The third and last enhancement is an implementation of
switch roles mechanism for explicitly defining switch roles
that can be later detected by the SM. For this, we use vendor
SMP attributes that can be queried via vendor specific SMPs.
Basically, each switch in the IB fabric can be assigned a
hostname, an IP address and a node description. By using
vendor attributes, we are able to make any specific infor-
mation available to the SM without having a dependency
on SM config input or any other out-of-band interfaces for
providing config information in a dynamic manner.

We are aware that providing RootGUIDs to the routing
algorithm yields the same effect, but currently it requires
non-trivial effort to maintain a correct list following (multi-
ple) component replacement operations. On the other hand,
switch roles can be saved and restored as part of normal
switch configuration maintenance following component re-
placements since it is not tied to the actual hardware instance
like hardware GUIDs.

The switch roles mechanism that we implemented will
provide each switch with a simple role that it should adhere
to. In our first simple implementation, we will physically tag
each switch in the fabric with its respective role, i.e. root
switches (placed at the top of the fabric with no uplinks)
will have the role ”root” and the leaf switches will have the
role ”leaf”.

This not only shortens the fabric discovery time (con-
sistency checks are not required), but almost completely
removes the need to discover the fabric from the routing
algorithm, which means that the probability of making a
mistake during routing table generation will be much lower.
In other words, we are decoupling the complex problem of
fabric discovery from the routing problem.

Using the switch roles mechanism, we can redefine the
osm ftree rank fabric(p tree) OpenSM function in

a very simple manner to always construct a proper fat-tree
as shown in Algorithm 1.

Algorithm 1 osm ftree rank fabric(p tree)function

Require: Firmware vendor specific switch roles.

Ensure: Each sw in the fabric is placed at correct rank.

1: if switch has no CNs then
2: if smpquery(switch, role) == leaf then
3: switch.rank = tree rank
4: end if
5: end if

691695699

VI. EXPERIMENT SETUP

To evaluate the differences between various routing algo-
rithms, we performed a number of simulations. The subse-
quent sections will describe the simulation model that we
used and examine the topology that we selected.

A. Simulation model
To perform large-scale evaluations of the routing algo-

rithms, we use an InfiniBand model for the OMNEST
simulator [29] (OMNEST is a commercial version of the
OMNeT++ simulator). The IB model consists of a set of
simple and compound modules to simulate an IB network
with support for the IB flow control scheme, arbitration over
multiple virtual lanes, congestion control, and routing using
linear routing tables. The model supports instances of HCAs,
switches and routers with routing tables.

The network topology and the routing tables were gener-
ated using OpenSM and converted into OMNEST readable
format in order to simulate real-world systems. As for our
simulations, we measured average throughput per node as a
function of the number of failed links and switches under
different traffic patterns.

For the uniform traffic pattern, we used a link speed of
20 Gbit/s (4x DDR), a default MTU size of 2kB, a variable
packet size (from 84B up to 2kB) and a constant message
size of 2kB. The destination was chosen randomly and the
network load was set constant at 100%. Each simulation run
was repeated 16 times with a different seed and an average
was taken.

For HPCC simulations, we implemented a ping-pong
traffic pattern that was used to run the HPC Challenge
Benchmark tests in the simulator. For the bandwidth tests
we used a message size of 1954KB. The MTU size was
2KB and the network load was set constant at 100%. The
bandwidth tests were performed on the default 31 ring
patterns: one natural-ordered ring and 30 random-ordered
rings from which the minimum, maximum and average
results were taken. For this measurement, each node sends
a message to its left neighbor in the ring and receives a
message from its right neighbor. Next, it sends a message
back to its right neighbor and receives a return message from
its left neighbor.

B. Topology
As a base for our topology we selected a 3-stage 648-port

fat-tree where each two leaf switches are interconnected with
each other with 12 links and form a single switching unit.
For each subsequent simulation run, we randomly failed one
link in the fabric (both in the up and down direction), until 85
of all non-horizontal links in the fabric were disconnected.
In a 648-node 3-stage fabric, there are 1296 non-horizontal
links (as there are 36 36-port middle-stage switches), so
the number 85 represents approximately 6.5% of all links.
Furthermore, we added three measurements where the num-
ber of failed links is 10% (130 failed links), 15% (194
failed links) and 20% (259 failed links) to accommodate for
extreme situations. The links were not failed incrementally,
but randomly, that is, the set of failed links from one
scenario can and will usually differ from the set of failed
links from a subsequent scenario. This was done to show
the location of a failed link in the fabric also influences
the network performance. Furthermore, for comparison, we
added simulations where we did not fail links but whole

switches. The number of failed links when a single switch
fails is 36, so the measurements are less granular.

We chose a 3-stage 648-port fat-tree as the base fabric
because it is a common configuration used by switch vendors
in their own 648-port systems [30], [31], [32]. Additionally,
such switches are often connected together to form larger
installations like the JuRoPa supercomputer [27].

VII. PERFORMANCE EVALUATION

A. Uniform Traffic
Figure 2 shows the results for uniform traffic scenario.

The first observation is the fact that the fat-tree routing
algorithm is very susceptible to link failure (reducing the
performance by 35% for 80 failed links). Other algorithms
are also negatively influenced by link failure, but not to
such an extent, and LASH delivers constant, while very low,
throughput. Secondly, we observe that if the number of failed
links reaches 34 (approximately 2.6%), the DFSSSP routing
algorithm outperforms the fat-tree routing algorithm. This
cut-off point may be used to define whether a particular
fabric is still a fat-tree topology or has become a hybrid
topology.

Lastly, we observe that the plot for each routing algorithm
apart from LASH is not a strictly monotonically decreas-
ing function as one would expect (i.e. less links is lower
throughput). This means - due to random link failure - that
the location of a failed link also influences the network
performance. We checked in detail which links have failed
in each case, and we learned that if a link connecting a
leaf switch with a middle-stage switch fails, the performance
drop is much lower than if a link fails between a middle-
stage switch and a root switch. This is because, in this
particular topology, each leaf switch is connected with 3
links with each of its four upward neighbors. A failure of a
single link does not limit connectivity, but only changes the
number of paths per port in the port group that connects to
the upward switch (failure is localized). On the other hand,
the root switches are connected with only a single link with
each downward neighbor, which means that a link failure at
this stage leads to a complete lack of connectivity between
the two switches and the need to distribute the paths across
the whole network (failure with global influence).

On Figure 3 we see the same scenario, but instead of
single links, we failed whole 36-port switches (up to 7
switches which gives 252 failed links). We see that fat-tree
routing is slightly more susceptible (in terms of delivered
network performance) to link failure than to switch failure.
It is because fat-tree routing unknowingly chooses switches
with a large number of failed links (but still aims to divide
the destinations equally among all switches), which leads to
much higher traffic congestion on those switches that have
limited bandwidth (more failed links). If a whole switch
fails, then the rest of the traffic is evenly distributed among
all other devices, so bandwidth is higher than in case of
single-link failures.

MinHop, however, deals better with link failure than with
switch failure, which is surprisingly explained by inefficient
upward balancing that MinHop does. Due to multiple links
connecting middle-stage switches with leaf switches, Min-
Hop balancing is broken even for a fully populated fabric. In
our case, for middle-stage switches, the odd ones (counting
from the left) have 16 upward paths per each port 1, 2, 3,
zero paths per ports 4, 5, 6, and again 16 paths per each

692696700

0 10 20 30 40 50 60 70 80 90 130 194 259

0
10

20
30

40
50

60
70

80
90

10
0 FTREE routing

DFSSSP routing
MinHop routing
LASH routing

Number of failed linksA
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

Figure 2: Comparing the algorithms for uniform traffic and failing links

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60
70

80
90

10
0 FTREE routing

DFSSSP routing
MinHop routing
LASH routing

Number of failed switchesA
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

Figure 3: Comparing the algorithms for uniform traffic and failing switches

port 7, 8, 9 and so on. The even switches have a reverse
path assignment, i.e. ports 1, 2, 3 have 0 paths and ports 4,
5, 6 have 16 paths per port and so on. For root switches, for
odd ones (again counting from the left), even ports have 0
paths and for even root switches odd ports have 0 paths. This
means that there are 324 links that have 0 paths and if such
a link failure happens at an unused port (25% probability),
it will not influence the network performance. The further
explanation for the positive spike seen for a failing switches
scenario is given in the next subsection where this behavior
is more evident as balancing plays a more important role
there.

To summarize, the results indicate that fat-tree routing
delivers high performance only until a certain threshold
of failures is reached. However, as shown in the next
subsection, we will demonstrate that this threshold shifts if
a different traffic pattern is used.

B. HPC Challenge Benchmark
Figure 4 and Figure 5 show the results for the HPC

Challenge Benchmark simulations where the average from
the 30 random rings was taken. We do not present the results
for the maximum, minimum and natural rings because they
do not provide any additional insight. For this kind of traffic,
if we fail single links, all the algorithms deliver lower perfor-
mance with each subsequent failed link. However, DFSSSP
outperforms fat-tree routing only at 20% of failed links
(not at 2.6% like for uniform traffic). Furthermore, as seen
on Figure 5, which also confirms the previous observation

0 10 20 30 40 50 60 70 80 90 130 194 259

0
5

10
15

20
25

30
35

40
45

50
55

60 FTREE routing
DFSSSP routing
MinHop routing
LASH routing

Number of failed linksA
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

Figure 4: Random Ring - Average results for failing links scenario

0 1 2 3 4 5 6 7

0
5

10
15

20
25

30
35

40
45

50
55

60 FTREE routing
DFSSSP routing
MinHop routing
LASH routing

Number of failed switchesA
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

Figure 5: Random Ring - Average results for failing switches scenario

for uniform traffic, fat-tree routing is less susceptible to
switch failures than link failures and is not outperformed
by DFSSSP even if close to 20% of links fail.

An interesting anomaly occurs with MinHop for failing
switches scenario, where failing a switch in a fabric does
not necessarily mean that there will be a performance drop.
This also confirms the observations for uniform traffic where
the plot is similar but these spikes are less pronounced. The
explanation is that for a fully populated fabric, MinHop does
not balance the paths correctly as described and explained
in the previous subsection. However, the visible spikes on
Figure 5 are a result of MinHop not being able to properly
balance a regular fabric, but being able to balance the
paths for an irregular fabric. In detail, for zero switch
failures and for a single switch failure, MinHop does not
properly balance the paths by leaving 25% of all ports
unused. The performance spike for the scenario with 2 and
3 failed switches is explained by proper path balancing.
Similarly, the drop for the scenario with 4 and 5 switches
is explained by the lack of proper balancing. The last two
scenarios again have proper balancing, but only for middle-
stage switches while the downward paths from the root
switches remain imbalanced (there are unused ports). This
counter-intuitive behavior is a bug in the sorting function
for MinHop and is caused by two factors: the topology with
port groups (i.e. multiple links connecting the same devices)
and a corresponding bug in the sorting function during the
balancing phase of the MinHop routing, which, if middle-
stage switches have an even number of upward ports but an

693697701

odd number of ports in a port group, does not deliver the
expected results. If the number of upward ports is odd, then
the balancing is proper. The question remains unanswered
whether the MinHop anomaly regarding balancing is a
simple bug or a more complex implication of the algorithm.

To summarize, the results for HPC Challenge Bench-
mark clearly demonstrate that even though fat-tree routing
is susceptible to link failures, it still delivers the highest
performance of all analyzed routing algorithms for non-
trivial traffic pattern on degraded fat-trees.

VIII. CONCLUSIONS

In this paper, we identified flaws in the existing fat-tree
routing algorithm for InfiniBand networks, and we proposed
three extensions that alleviate problems encountered when
discovering and routing degraded fabrics. First, we liber-
alized topology validation to make fat-tree routing more
versatile. Second, we proposed a switch tagging through
vendor SMP attributes that can be queried via vendor
specific SMPs and are used to configure the switches with
specific fabric roles, which decouples topology discovery
from actual routing. Lastly, we proposed solving the flipping
switches problem through using the SMP attributes. With
this insight, we compared four non-proprietary routing al-
gorithms running on degraded fat-trees. The results indicate
that the fat-tree routing is still the preferred algorithm even
if the number of failures is very large.

In the future, we plan to work on native IB-IB routing.
The current work will be expanded to cover hybrid fabrics
with multiple IB subnets and concurrently running multiple
routing protocols.

REFERENCES

[1] “Top 500 supercomputer sites,” http://top500.org/, November
2010.

[2] “The OpenFabrics Alliance,” http://openfabrics.org/.
[3] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Du-

ato, “Deterministic versus Adaptive Routing in Fat-Trees,”
in Workshop on Communication Architecture on Clusters,
IPDPS, 2007.

[4] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Opti-
mized Infiniband fat-tree routing for shift all-to-all communi-
cation patterns,” in Concurrency and Computation: Practice
and Experience, 2009.

[5] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage
switches are not crossbars: Effects of static routing in high-
performance networks,” in Cluster Computing, 2008 IEEE
International Conference on, 29 2008-Oct. 1 2008, pp. 116–
125.

[6] G. Rodriguez, C. Minkenberg, R. Beivide, and R. P. Luijten,
“Oblivious Routing Schemes in Extended Generalized Fat
Tree Networks,” IEEE International Conference on Cluster
Computing and Workshops, 2009.

[7] T. Skeie, O. Lysne, and I. Theiss, “Layered shortest path (lash)
routing in irregular system area networks,” in Proceedings of
Communication Architecture for Clusters, 2002.

[8] J. Domke, T. Hoefler, and W. Nagel, “Deadlock-Free Oblivi-
ous Routing for Arbitrary Topologies,” in Proceedings of the
25th IEEE International Parallel and Distributed Processing
Symposium. IEEE Computer Society, May 2011, pp. 613–
624.

[9] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Net-
works An Engineering Approach. Morgan Kaufmann, 2003.

[10] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. López, A. Robles,
J. Duato, M. Koibuchi, T. Rokicki, and J. Sancho, “A survey
and evaluation of topology agnostic routing algorithms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23,
no. 3, pp. 405–425, March 2012.

[11] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato,
“Dynamic fault tolerance in fat-trees,” IEEE Transactions on
Computers, vol. 60, no. 4, pp. 508–525, April 2011.

[12] F. O. Sem-Jacobsen and O. Lysne, “Fault tolerance with short-
est paths in regular and irregular networks,” in 22nd IEEE
International Parallel & Distributed Processing Symposium,
Y. Robert, Ed., IEEE. Unknown, April 2008.

[13] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato,
“Dynamic fault tolerance with misrouting in fat trees,” in
Proceedings of the International Conference on Parallel Pro-
cessing (ICPP), W. chi Feng, Ed. IEEE Computer Society,
August 2006, pp. 33–45.

[14] F. O. Sem-Jacobsen, T. Skeie, and O. Lysne, “A dynamic
fault-torlerant routing algorithm for fat-trees,” in Interna-
tional Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, June
27-30, H. R. Arabnia, Ed. CSREA Press, 2005, pp. 318–324.

[15] A. Bermudez, R. Casado, F. Quiles, T. Pinkston, and J. Duato,
“On the infiniband subnet discovery process,” Proceedings of
International Conference on Cluster Computing, pp. 512–517,
1-4 Dec. 2003.

[16] A. Bermudez, R. Casado, F. Quiles, and J. Duato, “Fast
routing computation on infiniband networks,” Transactions on
Parallel and Distributed Systems, vol. 17, no. 3, pp. 215–226,
March 2006.

[17] A. Bermudez, R. Casado, F. Quiles, T. Pinkston, and J. Duato,
“Evaluation of a subnet management mechanism for infini-
band networks,” Proceedings of International Conference on
Parallel Processing, pp. 117–124, 6-9 Oct. 2003.

[18] A. Vishnu, A. Mamidala, H.-W. Jin, and D. Panda, “Perfor-
mance modeling of subnet management on fat tree infiniband
networks using opensm,” Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pp.
8 pp.–, 4-8 April 2005.

[19] W. L. Guay, B. Bogdanski, S.-A. Reinemo, O. Lysne, and
T. Skeie, “vFtree - A Fat-tree Routing Algorithm using
Virtual Lanes to Alleviate Congestion,” in Proceedings of the
25th IEEE International Parallel & Distributed Processing
Symposium, 2011.

[20] B. Bogdanski, F. O. Sem-Jacobsen, S.-A. Reinemo, T. Skeie,
L. Holen, and L. P. Huse, “Achieving predictable high per-
formance in imbalanced fat trees,” in Proceedings of the 16th
IEEE International Conference on Parallel and Distributed
Systems, X. Huang, Ed. IEEE Computer Society, 2010, pp.
381–388.

[21] W. J. Dally, “Virtual-channel flow control,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 3, no. 2, pp.
194–205, March 1992.

[22] C. E. Leiserson, “Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transactions on
Computers, 1985.

[23] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A Multiple LID
Routing Scheme for Fat-Tree-Based Infiniband Networks,”
Proceedings of IEEE International Parallel and Distributed
Processing Symposiums, 2004.

[24] F. Petrini and M. Vanneschi, “K-ary n-trees: High perfor-
mance networks for massively parallel architectures,” Diparti-
mento di Informatica, Universita di of Pisa, Tech. Rep., 1995.

[25] S. Öhring, M. Ibel, S. Das, and M. Kumar, “On General-
ized Fat Trees,” in Proceedings of 9th International Parallel
Processing Symposium, 1995, pp. 37–44.

[26] E. Zahavi, “D-Mod-K Routing Providing Non-Blocking Traf-
fic for Shift Permutations on Real Life Fat Trees,” http:
//www.technion.ac.il/∼ezahavi/, September 2010.

[27] “Julich Supercomputing Centre,” http://www.fz-juelich.de/
jsc/juropa/configuration/.

[28] “Texas Advanced Computing Center,” http://www.tacc.
utexas.edu/.

[29] E. G. Gran and S.-A. Reinemo, “Infiniband congestion con-
trol, modelling and validation,” in 4th International ICST
Conference on Simulation Tools and Techniques (SIMU-
Tools2011, OMNeT++ 2011 Workshop), 2011.

[30] “Sun Datacenter InfiniBand Switch 648,” Oracle Cor-
poration, http://www.oracle.com/us/products/servers-storage/
networking/infiniband/034537.htm.

[31] “Voltaire QDR InfiniBand Grid Director 4700,”
http://www.voltaire.com/Products/InfiniBand/Grid Director
Switches/Voltaire Grid Director 4700.

[32] “IS5600 - 648-port InfiniBand Chassis Switch,” Mel-
lanox Technologies, http://www.mellanox.com/related-docs/
prod ib switch systems/IS5600.pdf.

694698702

Paper V

Making the Network Scalable:

Inter-subnet Routing in InfiniBand

Bartosz Bogdański, Bjørn Dag Johnsen, Sven-Arne Reinemo, José
Flich

Making the Network Scalable:

Inter-subnet Routing in InfiniBand

Bartosz Bogdański1, Bjørn Dag Johnsen1,
Sven-Arne Reinemo2, and José Flich3

1 Oracle Corporation, Oslo, Norway
{bartosz.bogdanski,bjorn-dag.johnsen}@oracle.com

2 Simula Research Laboratory, Lysaker, Norway
svenar@simula.no

3 Universidad Politécnica de Valencia, Valencia, Spain
jflich@disca.upv.es

Abstract. As InfiniBand clusters grow in size and complexity, the need
arises to segment the network into manageable sections. Up until now,
InfiniBand routers have not been used extensively and little research has
been done to accommodate them. However, the limits imposed on local
addressing space, inability to logically segment fabrics, long reconfigu-
ration times for large fabrics in case of faults, and, finally, performance
issues when interconnecting large clusters, have rekindled the industry’s
interest into IB-IB routers. In this paper, we examine the routing prob-
lems that exist in the current implementation of OpenSM and we intro-
duce two new routing algorithms for inter-subnet IB routing. We evaluate
the performance of our routing algorithms against the current solution
and we show an improvement of up to 100 times that of OpenSM.

1 Introduction

Until recently, the need for routers in InfiniBand (IB) networks was not evident
and all the essential routing and forwarding functions were performed by layer-
2 switches. However, with the increased complexity of the clusters, the need for
routers becomes more obvious, and leads to more discussion about native IB rout-
ing [1,2,3]. Obsidian Research was the first company to see the need for routing
between multiple subnets, and provided the first hardware to do that in 2006 [4].

There are several reasons for using routing between IB subnets with the two
main being address space scalability and fabric management containment. Ad-
dress space scalability is an issue for large installations whose size is limited by
the number of available local identifiers (LIDs). Hosts and switches within a
subnet are addressed using LIDs and a single subnet is limited to 49151 unicast
LIDs. If more end-ports are required, then the only option is to combine multi-
ple subnets by using one or more IB routers. Because LID addresses have local
visibility, they can be reused in the subnets connected by routers, which theo-
retically yields an unlimited addressing space. It is worth observing that there
are multiple suggestions to expand the address space of IB without introducing

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 685–698, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

686 B. Bogdański et al.

routers. One of the more mature proposals aims at extending the LID addressing
space to 32 bits [5], however, it would not be backward compatible with older
hardware, which limits its usability.

Fabric management containment has three major benefits: 1) fault isolation,
2) increased security, and 3) intra-subnet routing flexibility. First, by dividing a
large subnet into several smaller ones, faults or topology changes are contained
to a single subnet and the subnet reconfiguration will not pass through a router
to other subnets. This shortens the reconfiguration time and limits the impact of
a fault. Second, from a security point of view, segmenting a large fabric into sub-
nets using routers means that the scope of most attacks is limited to the attacked
subnet [6]. Third, from a routing point of view, fabric management containment
leads to more flexible routing schemes. This is particularly advantageous in case
of a hybrid fabric that consists of two or more regular topologies. For example,
a network may consist of a fat-tree part interconnected with a mesh or a torus
part (or any other regular topology). The problem with managing this in a single
subnet is that it is not straightforward to route each part of the subnet sepa-
rately because intra-subnet routing algorithms have a subnet scope. Moreover,
there are no general purpose agnostic routing algorithms for IB that will pro-
vide optimal performance for a hybrid topology. However, if a hybrid topology is
divided into smaller regular subnets then each subnet can be routed using a dif-
ferent routing algorithm that is optimized for a particular subnet. For example, a
fat-tree routing algorithm could route the fat-tree part and the dimension-order
routing could route the mesh part of the topology. This is because each subnet
can run its own subnet manager (SM) that configures only the ports on the local
subnet and routers are non-transparent to the subnet manager.

In this paper, we present two inter-subnet routing algorithms for IB. The first
one, inter-subnet source routing (ISSR), is an agnostic algorithm for intercon-
necting any type of topology. The second one is fat-tree specific and only inter-
connects two or more fat-trees. With these algorithms we solve two problems:
how to optimally choose a local router port for a remote destination and how to
best route from the router to the destination. We compare the algorithms against
the solution that is implemented in OpenSM. Inter-subnet routing in OpenSM
is at the time of writing very limited, the configuration is tedious and the per-
formance is only usable for achieving connectivity - not for high performance
communication between multiple sources and destinations [2]. It is, however, the
only available inter-subnet routing method for IB.

The rest of this paper is organized as follows: we discuss related work in
Sect. 2, and we introduce the IB Architecture in Sect. 3. We follow with a
description of our proposed layer-3 routing for IB in Sect. 4. Next, we continue
with a presentation and discussion of our results in Sect. 5. Finally, we conclude
in Sect. 6.

2 Related Work

Obsidian Strategics was the first company to demonstrate a device marketed as
an IB-IB router (the Longbow XR) in 2006 [4]. That system highlighted the need

Making the Network Scalable: Inter-subnet Routing in InfiniBand 687

for subnet isolation through native IB-IB routing. The Longbow XR featured a
content-addressable memory for fast address resolution and supported up to 64k
routes. The drawbacks of the router included a single 4x SDR link, and its pri-
mary application was disaster recovery - it was aimed at interconnecting IB sub-
nets spanning large distances as a range extender. Furthermore, the Longbow XR
appears to the subnet manager as a transparent switch, so the interconnected sub-
nets are merged together into one large subnet. When releasing the router, Ob-
sidian argued that while the IB specification 1.0.a defines the router hardware
well, the details of subnet management interaction (like routing) are not fully ad-
dressed. This argument is still valid for the current release of the specification [7].
In 2007, Prescott and Taylor verified how range extension in IB works for campus
area and wide area networks [8]. They demonstrated that it is possible to achieve
high performance when using routers to build IB wide area networks. However,
they did not mention the deadlock issues that can occur when merging subnets,
and they only focused on remote traffic even though local traffic can be negatively
affected by suboptimal routing in such a hybrid fabric. In 2008, Southwell pre-
sented how native IB-IB routers could be used in System Area Networks [1]. He
argued that IB could evolve from being an HPC-oriented technology into a strong
candidate for future distributed data center applications or campus area grids.
While the need for native IB-IB routing was well-demonstrated, Southwell did not
address the routing, addressing and deadlock issues. In 2011, Richling et al. [9] ad-
dressed the operational andmanagement issues when interconnecting two clusters
over a distance of 28 kilometers. They described the setup of hardware and net-
working components, and the encountered integration problems. However, they
focus on IB-IB routing in the context of range extension and not on inter-subnet
routing between local subnets.

When reviewing the literature, we noticed that the studies of native IB-IB rout-
ing is focused on disaster recovery and interconnection of wide area IB networks.
Our work explores the foundations of native IB-IB routing in the context of perfor-
mance and features in inter-subnet routing between local subnets. Furthermore,
we assume full compliance with the IB specification and we deal with issues pre-
viously not mentioned including the deadlock problem and path distribution.

3 The InfiniBand Architecture

InfiniBand is a serial point-to-point full-duplex interconnection network tech-
nology, and was first standardized in October 2000 [7]. The current trend is
that IB is replacing proprietary or low-performance solutions in the high perfor-
mance computing domain [10], where high bandwidth and low latency are the
key requirements. The de facto system software for IB is OFED developed by
dedicated professionals and maintained by the OpenFabrics Alliance [5].

Every IB subnet requires at least one subnet manager (SM), which is respon-
sible for initializing and bringing up the network, including the configuration of
all the IB ports residing on switches, routers, and host channel adapters (HCAs)
in the subnet. At the time of initialization the SM starts in the discovering state

688 B. Bogdański et al.

where it does a sweep of the network in order to discover all switches and hosts.
During this phase it will also discover any other SMs present and negotiate who
should be the master SM. When this phase is completed the SM enters the mas-
ter state. In this state, it proceeds with LID assignment, switch configuration,
routing table calculations and deployment, and port configuration. At this point
the subnet is up and ready for use. After the subnet has been configured, the
SM is responsible for monitoring the network for changes.

A major part of the SM’s responsibility is routing table calculations. Routing
of the network aims at obtaining full connectivity, deadlock freedom, and proper
load balancing between all source and destination pairs in the local subnet.
Routing tables must be calculated at network initialization time and this process
must be repeated whenever the topology changes in order to update the routing
tables and ensure optimal performance. Despite being specific about intra-subnet
routing, the IB specification does not say much about inter-subnet routing and
leaves the details of the implementation to the vendors.

IB is a lossless networking technology, and under certain conditions it may be
prone to deadlocks [11,12]. Deadlocks occur because network resources such as
buffers or channels are shared and because packet drops are usually not allowed in
lossless networks. The IB specification explicitly forbids IB-IB routers to cause
a deadlock in the fabric irrespective of the congestion policy associated with
the inter-subnet routing function. Designing a generalized deadlock-free inter-
subnet routing algorithm where the local subnets are arbitrary topologies is
challenging. In this paper we limit our scope to fat-tree topologies and by making
sure our routing functions use only the standard up/down routing mechanism,
we eliminate the deadlock problem.

3.1 Native InfiniBand Routers

The InfiniBand Architecture (IBA) supports a two-layer topological division. At
the lower layer, IB networks are referred to as subnets, where a subnet consists
of a set of hosts interconnected using switches and point-to-point links. At the
higher level, an IB fabric constitutes one or more subnets, which are intercon-
nected using routers. Hosts and switches within a subnet are addressed using
LIDs and a single subnet is limited to 49151 LIDs. LIDs are local addresses valid
only within a subnet, but each IB device also has a 64-bit global unique identifier
(GUID) burned into its non-volatile memory. A GUID is used to form a GID
- an IB layer-3 address. A GID is created by concatenating a 64-bit subnet ID
with the 64-bit GUID to form an IPv6-like 128-bit address. In this paper, we
when using the term GUID we mean a port GUIDs, i.e. the GUIDs assigned to
every port in the IB fabric.

IB-IB routers operate at the layer-3 of IB addressing hierarchy and their
function is to interconnect layer-2 subnets as shown in Fig. 1(a). A thorough de-
scription of the inter-subnet routing scheme is currently out of scope of the IBA
specification and much freedom is given to the router vendors when implement-
ing inter-subnet routing. The inter-subnet routing process defined in the IBA
specification is similar to the routing in TCP/IP networks. First, if an end-node

Making the Network Scalable: Inter-subnet Routing in InfiniBand 689

want to send a packet to another subnet, the address resolution makes the local
router visible to that end-node. The end-node puts the local router’s LID address
in the local routing header (LRH) and the final destination address (GID) in the
global routing header fields. When the packet reaches a router, the packet fields
are replaced (the source LID is replaced with the LID of the router’s egress port,
the destination LID is replaced with the LID of the next-hop port, and CRCs are
recomputed) and the packet is forwarded to the next hop. The pseudo code for
the rest of the packet relay model is described in [7] on page 1082. In this paper,
we will only consider topologies similar to that presented in Fig. 1(a), i.e. cases
where one or more subnets are directly connected using routers. Furthermore,
each subnet must be a fat-tree topology and it must be directly attached to the
other subnets without any transit subnets in between.

4 Layer-3 Routing in InfiniBand

Up until now, IB-IB routers were considered to be superfluous. Even the concept
of routing, which in IP networks strictly refers to layer-3 routers, in IB was infor-
mally applied to forwarding done by layer-2 switches that process packets based
only on their LID addresses. With the increasing size and complexity of subnets
the need for routers has become more evident. There are two major problems
with inter-subnet routing: which router should be chosen for a particular des-
tination (first routing phase) and which path should be chosen by the router
to reach the destination (second routing phase). Solving these problems in an
optimal manner is not possible if adhering to the current IB specification: the
routers are non-transparent subnet boundaries (local SM cannot see beyond),
so full topology visibility condition is not met. However, in this paper, by using
regularity features provided by the fat-tree topology, we propose a solution for
these problems. Nevertheless, for more irregular networks where the final des-
tination is located behind another subnet (at least two router hops required)
there may be a need for a super subnet manager that coordinates between the
local subnet managers and establishes the path through the transit subnet. We
consider such scenarios to be future work. In this section we present two new
routing algorithms: Inter-Subnet Source Routing (ISSR) and Inter-Subnet Fat-
Tree Routing (ISFR). ISFR is an algorithm designed to work best on fat-trees
while ISSR is a more generic algorithm that works well on other topologies also.
However, in this paper we only focus on fat-trees and fat-tree subnets as the
deadlock problem becomes more complex when dealing with irregular networks.
Nevertheless, we plan to address deadlock free inter-subnet IB routing in a more
general manner in subsequent publications.

4.1 Inter-subnet Source Routing

We designed ISSR to be a general purpose routing algorithm for routing hybrid
subnets. It needs to be implemented both in the SM and the router firmware.
It is a deterministic oblivious routing algorithm that always uses the same path

690 B. Bogdański et al.

for the same pair of nodes. In general, it offers routing performance comparable
to ISFR algorithm provided a few conditions explained in Sect. 5 are met.

The routing itself consists of two phases. First, for the local phase (choosing an
ingress router port for a particular destination) this algorithm uses a mapping
file. Whereas the find router() function which chooses the local router looks
almost exactly the same (it just matches the whole GID) for ISSR algorithm as
for the OpenSM routing algorithm, the main difference lies in the setup of the
mapping file. In our case, we provide full granularity meaning that instead of only
a subnet prefix as for the OpenSM inter-subnet routing, the file now contains a
fully qualified port GID. This means that we can map every destination end-port
to a different router port while OpenSM routing can only match a whole subnet
to a single router port. In the case of ISSR, an equal number of destinations is
mapped to a number of ports in a round robin manner. In our example, dst gid1
and dst gid3 are routed through port 1 and port 2 on router A, and dst gid2
and dst gid4 are routed through the same ports on router B. Backup and default
routes can also be specified.

Code 1. A high-level example of a mapping file for ISSR and ISFR algorithms

1: dst gid1 router A port 1 guid
2: dst gid2 router B port 1 guid
3: dst gid3 router A port 2 guid
4: dst gid4 router B port 2 guid
5: #default route
6: ∗ router A port 1 guid
7: ∗ router B port 1 guid

Second difference is the implementation of the additional code in the router
firmware. A router receiving a packet destined to another subnet will source
route that packet. The routing decision is based both on the source LID (of the
original source or the egress port of the previous-hop router in a transit subnet
scenario) and the destination LID (final destination LID or the LID of the next-
hop ingress router port). The router knows both these values because it sees the
subnets attached to it. To obtain the destination LID, a function mapping the
destination GID to a destination LID or returning the next-hop LID based on
the subnet prefix located in the GID is required. In our case, this function is
named get next LID (line 2 of the pseudo code in Algorithm 1).

The algorithm calculates a random number based on the source and destina-
tion LIDs. This is done in a deterministic manner so that a given src-dst pair
always generates the same number, which prevents out of order delivery when
routing between subnets and, unlike round-robin, makes sure that each src-dst
always uses the same path through the network. This number is used to select
a single egress port from a set of possible ports. There is a set of possible ports
because a router may be attached to more than two subnets and therefore a two-
step port verification is necessary: first choose the ports attached to the subnet

Making the Network Scalable: Inter-subnet Routing in InfiniBand 691

Algorithm 1. choose egress port() function in ISSR

Require: Receive an inter-subnet packet
Ensure: Forward the packet in a deterministic oblivious manner
1: if received intersubnet packet() then
2: dstLID = get next LID(dGID)
3: srand(srcLID + dstLID)
4: port set = choose possible out ports()
5: e port = port set[(rand()%port set.size)]
6: end if

(or in the direction of the subnet) in which the destination is located, and then,
by using a simple hash based on a modulo function, choose the egress port.

4.2 Inter-subnet Fat-Tree Routing

As mentioned previously, a problem that needs to be solved is the communi-
cation between SMs that are in different subnets and are connected through
non-transparent routers. Our solution is based on the fact that the IBA speci-
fication does not give the exact implementation for inter-subnet routing, so our
proposal provides an interface in the routers through which the SMs will com-
municate. In other words, we implement handshaking between two SMs located
in neighboring subnets. The algorithm uses the previously defined file format
containing the GID-to-router port mappings in Code 1. The ISFR algorithm is
presented in Algorithm 2. Like the ISSR algorithm, it is also implemented in the
router device. ISFR works only on fat-trees and with fat-tree routing running
locally in every subnet. It will fall back to ISSR if those conditions are not met.

Algorithm 2. query down for egress port() function in ISFR

Require: Local fat-tree routing is finished
Require: Received the mapping file
Ensure: Fat-tree like routing tables throughout the fabric
1: if received mapping files then
2: for all port in down ports do
3: down switch = get node(port)
4: lid = get LID by GID(GID)
5: if down switch.routing table[lid] == primary path then
6: e port = port
7: end if
8: end for
9: end if

Every single router in a subnet receives the port mappings from its local SM
and is thereby able to learn which of its ports are used for which GIDs. Next, for
each attached subnet, the router queries the switches in the destination subnets

692 B. Bogdański et al.

to learn which of the switches has the primary path to that subnet’s HCAs. If
we assume a proper fat-tree (full bisection bandwidth) with routers on the top
of the tree, then after such a query is performed, each router will have one path
per port in the downward direction for each destination located in a particular
subnet. In other words, if we substituted the top routers with switches, the
routing tables for the pure fat-tree and the fat-tree with routers on top would
be the same.

5 Simulations

To perform large-scale evaluations and verify the scalability of our proposal,
we use an InfiniBand model for the OMNEST/OMNeT++ simulator [13]. The
IB model consists of a set of simple and compound modules to simulate an IB
network with support for the IB flow control scheme, arbitration over multiple
virtual lanes, congestion control, and routing using linear routing tables. In each
of the simulations, we used a link speed of 20 Gbit/s (4x DDR) and Maximum
Transfer Unit (MTU) equal to 2048 bytes. Furthermore, we use uniform, non-
uniform and HPCC traffic patterns. We used synthetic traffic patterns to show
baseline performance as these patterns have a predictable and easily understand-
able behavior, and are general rather than specific to a given application. We do
not provide the baseline results for the same topologies implemented as a single
subnet because ISFR routing provides exactly the same performance.

The simulations were performed on three different topologies shown in Fig. 1.
Each of the topologies can be classified as a 3-stage (i.e. having three rout-
ing/switching stages and one node stage) fat-tree with routers placed on top of
the tree (instead of normally placing root switches there). Even though there is a
dedicated fat-tree routing algorithm delivering high performance on almost any
fat-tree, we still decided to subnet a fat-tree fabric. The reason for that is that
we consider the fat-tree topology to be a very good proof-of-concept topology
for inter-subnet routing testing.

The fat-tree topology is scalable and by changing the number of ports we are
able to vary the size of the topologies and show how our algorithms scale with
regards to the number of nodes and subnets that are interconnected. All our sub-
nets are 2-stage fat-trees that are branches in a larger 3-stage fat-tree so we can
use routers and our routing algorithms to demonstrate how to seamlessly inter-
connect smaller fat-tree installations without using oversubscription. We chose a
3-stage 648-port fat-tree as the base fabric because it is a common configuration
used by switch vendors in their own 648-port systems [14,15,16]. Additionally,
such switches are often connected together to form larger installations like the
JuRoPA supercomputer [17].

5.1 Routing Algorithm Comparison

We perform three sets of simulations: with uniform traffic, with non-uniform
traffic and we run the HPCC benchmark. For non-uniform traffic we vary packet

Making the Network Scalable: Inter-subnet Routing in InfiniBand 693

(a) 2-subnet fabric (b) 3-subnet fabric (c) 6-subnet fabric

Fig. 1. Topologies used for the experiments

length from 84 bytes to 2 kB, keep the message length constant at 2 kB. We also
introduce some randomly preselected hot spots (different for every random seed,
not varying in time): one hot spot per subnet, with a probability of ISP ∗ 0.05
for remote traffic and the same hot spot with a probability of (1 − ISP) ∗ 0.05
for local traffic. The ISP (Inter-Subnet Percentage) value is the probability that
a message will be sent to the local or the remote subnet. It varies from 0%
(where all messages remain local) to 100% (where all messages are sent to remote
subnets). The non-hot spot destined part of the traffic selects their destination
randomly from all other available nodes. This means that there could be some
other random hot spots that vary in time, and some nodes could also contribute
unknowingly to the preselected hot spots. We express the measured throughput
as the percentage of the available bandwidth for all the scenarios. The parameters
for that traffic pattern were chosen to best illustrate the impact of congestion
on the routing performance, which is a good baseline for algorithm comparison.

Uniform Traffic. The results for this scenario are shown in Fig. 2. When it
comes to uniform traffic, we can establish that the performance of the OpenSM
inter-subnet routing deteriorates in the presence of even a very small amount of
inter-subnet traffic. At ISP equal to 20%, throughput is reduced to 17.5% for
the 2-subnet scenario in Fig. 2(a), 23.46% for the 3-subnet scenario in Fig. 2(c),
and 37.5% for the 6-subnet scenario in Fig. 2(e). The increase in performance for
a larger number of subnets is explained by the fact that traffic is spread across
more routers, i.e. each subnet in the topology uses a different ingress port locally.
ISFR algorithm provides almost constant high performance under uniform traffic
conditions whereas the performance of ISSR algorithm deteriorates slightly for
very high ISP values as shown in Fig. 2(a) and Fig. 2(c). This is caused by the
fact that egress ports from the routers may not be unique as they are chosen
randomly. However, the deterioration is smaller when the number of subnets
increases (12% decrease for the 3-subnet scenario compared to 5% decrease for
the 6-subnet scenario at ISP=100%) as shown in Fig. 2(e). This occurs because
the more subnets we have in the fabric and the higher is the ISP value, the
more inter-subnet traffic pairs are created, so the hash function has a higher
probability to utilize more links from the defined subnet-port-set as there are
more random numbers generated.

694 B. Bogdański et al.

ISP(%)A
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

�������	�
���
���
���

	��
����������	
��
����������	
��

(a) 2-subnet scenario uniform traffic

ISP(%)A
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0 �������	�
���
���
���

	��

����������	
��
����������	
��

(b) 2-subnet scenario non-uniform traffic

ISP(%)A
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

�������	�
���
���
���

	��
����������	
��
����������	
��

(c) 3-subnet scenario uniform traffic

ISP(%)A
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0 �������	�
���
���
���

	��

����������	
��
����������	
��

(d) 3-subnet scenario non-uniform traffic

ISP(%)A
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

�������	�
���
���
���

	��
����������	
��
����������	
��

(e) 6-subnet scenario uniform traffic

ISP(%)A
ve

ra
ge

 p
er

 e
nd

-n
od

e
th

ro
ug

hp
ut

 (%
 o

f c
ap

ac
it

y)

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0 �������	�
���
���
���

	��

����������	
��
����������	
��

(f) 6-subnet scenario non-uniform traffic

Fig. 2. Throughput as a function of ISP with uniform and non-uniform traffic

Non-uniform Traffic. Whereas under uniform traffic our algorithms gave al-
most optimal performance, the situation worsens if some non-uniformity is added
as seen in Fig. 2.

What is first noticeable is the fact that ISFR algorithm is clearly outperformed
by the ISSR algorithm for the middle range of the ISP values (20% to 70%), as

Making the Network Scalable: Inter-subnet Routing in InfiniBand 695

best seen in Fig. 2(d). Second, we observe that ISSR algorithm deteriorates for
ISP values greater than 40%, which is best seen in Fig. 2(f). ISFR, on the other
hand, becomes stable at ISP values close to 40%. This behavior is explained
by the addition of the hot spots to our traffic pattern, the occurrence of head-
of-line (HOL) blocking, and the migration of the root and the branches of the
congestion trees. For lower ISP values (≤50%) local traffic is dominant and in
every subnet 5% of such traffic is destined to the local hot spot. In such a case
the branches of the congestion tree will mostly influence the local traffic, but
they will also grow through the single dedicated downward link (a thick branch)
to influence the victim nodes in other subnets if the ISFR algorithm is used.
For ISSR, the same will happen, but there is no dedicated downward link and
the branches growing through multiple downward links will be much thinner,
therefore, influencing the local traffic in other subnets to a lesser extent. This
happens because ISSR spreads the traffic destined towards the hot spot across
multiple downward links. This is the reason why ISFR algorithm is outperformed
by ISSR in such a hot spot scenario for almost all ISP values.

For ISFR algorithm, for higher ISP values (≥50%), the root of the congestion
tree will move from the last link towards the destination to the first downward ded-
icated link towards the destination (i.e. a router port), and the congestion tree will
influence mostly the inter-subnet traffic as there will be little or no local traffic,
which is why ISFR algorithm reaches stability at around 50% ISP. For ISSR, for
higher ISP values, the root of the congestion tree will not move and the branches
will grow much thicker (as there is more incoming remote traffic). This will not
only slightly influence the local traffic (that is low for high ISP values) in the con-
tributor’s subnets, but also it will cause HOL blocking for the downward traffic
that uses the same links that the hot spot traffic uses to reach other destinations.
It happens because ISSR does not use dedicated paths for downward destinations.
Such a deterioration can be best observed in Fig. 2(d) or Fig. 2(f).

Another vital observation is the fact that by increasing the number of subnets,
we increase the performance of all the routing algorithms. This is best visible
when comparing Fig. 2(d) and Fig. 2(f). The explanation for that is the seg-
mentation of the hot spot contributors. In other words, the more hot spots there
are, the weaker is the influence of the head-of-line blocking (the congestion tree
branches are thinner).

We also see that OpenSM routing still yields undesirable performance for
every scenario. However, an important observation here is that the congestion
does not originate from the hot spots, but from the utilization of a single ingress
link to transmit the traffic to the other subnet.

HPC Challenge Benchmark. We implemented a ping-pong traffic pattern
that was used to run the HPC Challenge Benchmark [18] tests in the simulator.
We used a message size of 1954KB and kept the load constant at 100%. The tests
were performed on 500 ring patterns: one natural-ordered ring (NOR) and 499
random-ordered rings (ROR) from which the minimum, maximum and average
results were taken. In this test each node sends a message to its left neighbor in
the ring and receives a message from its right neighbor. Next, it sends a message

696 B. Bogdański et al.

Table 1. The HPC Challenge Benchmark results (in MB/s)

Measurement OpenSM ISSR ISFR

NOR BW 1572.49 1572.49 1572.49

ROR BW min/max/avg

2 subnets 528/878/703 847/1166/1001 1064/1314/1187

3 subnets 345/611/482 753/993/867 946/1165/1069

6 subnets 202/343/270 709/875/775 841/1018/933

back to its right neighbor and receives a return message from its left neighbor.
We treated the whole fabric as a continuous ring and we disregarded the subnet
boundaries.

Table 1 presents the HPCC Benchmark results. For any fat-tree the NOR
bandwidth results give the maximum throughput as there is no contention in
the upward or the downward direction. However, when we compare the results
for the ROR, we observe differences between the routing algorithms. For the 2-
subnet scenario, we observe an increase in throughput of 536 MB/s (102%) when
comparing the minimum throughput for the OpenSM and the ISFR algorithms.
Furthermore, we observe that the average throughput for the ISFR algorithm is
higher than the maximum throughput for the ISSR algorithm in all cases. For
the average throughput we observe an increase of 484 MB/s (69%) compared
to OpenSM routing. For the 3-subnet scenario the trend is the same as for the
previous scenario, but we observe that the throughput is lower than for the 2-
subnet scenario. This happens because the larger the topology, the higher the
probability that the destination is chosen from a set of non-directly connected
nodes. For a 144-node fabric, each source can address 143 end-nodes and 23 out
of those end-nodes (15.7%) are reachable through a non-blocking path (11 at the
local switch, 12 at the neighbor switch). For a 216-node fabric, the same number
of nodes is reachable through a non-blocking path, but the overall number of
nodes is larger, which gives only 10.6% of nodes reachable through a non-blocking
path. This means that a ROR pattern in a larger fabric has a lower probability
for reaching a randomly chosen node in a non-blocking manner. Furthermore,
in larger topologies more nodes are non-local, which means that the routing
algorithm uses the longest hop path to reach them (traversing all stages in a
fat-tree), which further decreases the performance. For the 6-subnet scenario,
we observe a similar situation as for the 3-subnet scenario: that there is an
overall decrease in performance. The explanation is the same as for the 3-subnet
scenario: more nodes are used to construct a ROR, but the number of nodes
accessible in a non-blocking manner stays the same, so the generated ROR pairs
have an even lower probability to use a non-blocking path.

The general observation is that for the HPCC benchmark, the ISFR algorithm
delivers the best performance. It is because this traffic pattern does not create
any destination hot spots and the congestion occurs only on the upward links
towards the routers, while the dedicated downward paths are congestion-free.
Despite using the same upward path as the ISFR algorithm, ISSR algorithm may

Making the Network Scalable: Inter-subnet Routing in InfiniBand 697

not provide a dedicated downward path, which is why there is a performance
difference between these two algorithms.

6 Conclusions and Future Work

Native IB-IB routers will make the network scalable, and designing efficient
routing algorithms is the first step towards that goal. In this paper, we laid
the groundwork for layer-3 routing in IB and we presented two new routing
algorithms for inter-subnet routing: the inter-subnet source routing and the inter-
subnet fat-tree routing. We showed that they dramatically improve the network
performance compared to the current OpenSM inter-subnet routing.

In future, we plan to generalize our solution to be able to support many dif-
ferent regular fabrics in a deadlock-free manner. Another candidate for research
will be evaluating the hardware design alternatives. Looking further ahead, we
will also propose a deadlock-free all-to-all switch-to-switch routing algorithm.

References

1. Obsidian Strategics: Native InfiniBand Routing (2008),
http://www.nsc.liu.se/nsc08/pres/southwell.pdf

2. Southwell, D.: Next Generation Subnet Manager - BGFC. In: Proceedings of HPC
Advisory Council Switzerland Conference 2012 (2012)

3. InfiniBand Trade Association: Introduction to InfiniBand for End Users (2010)
4. Obsidian Strategics: Native InfiniBand Routing (2006),

http://www.obsidianresearch.com/archives/2006/Mellanox Obsidian SC06

handout 0.2.pdf

5. The OpenFabrics Alliance: Issues for Exascale, Scalability, and Resilience (2010)
6. Yousif, M.: Security Enhancement in InfiniBand Architecture. In: 19th IEEE In-

ternational Parallel and Distributed Processing Symposium, pp. 105a. IEEE (April
2005)

7. InfiniBand Trade Association: Infiniband Architecture Specification, 1.2.1 edn.
(November 2007)

8. Prescott, C., Taylor, C.: Comparative Performance Analysis of Obsidian Longbow
InfiniBand Range-Extension Technology (2007)

9. Richling, S., Kredel, H., Hau, S., Kruse, H.G.: A long-distance InfiniBand intercon-
nection between two clusters in production use. In: State of the Practice Reports
on - SC 2011. ACM Press, New York (2011)

10. Top 500 Supercomputer Sites (November 2012), http://top500.org/
11. Dally, W.J., Towles, B.: Principles and practices of interconnection networks. Mor-

gan Kaufmann (2004)
12. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks an Engineering Ap-

proach. Morgan Kaufmann (2003)
13. Gran, E.G., Reinemo, S.A.: Infiniband congestion control, modelling and valida-

tion. In: 4th International ICST Conference on Simulation Tools and Techniques
(SIMUTools 2011, OMNeT++ 2011 Workshop) (2011)

14. Oracle Corporation: Sun Datacenter InfiniBand Switch 648, http://www.oracle.
com/us/products/servers-storage/networking/infiniband/046267.pdf

698 B. Bogdański et al.

15. Mellanox Technologies: Voltaire Grid Director 4700, http://www.voltaire.com/
assets/files/Datasheets3/Grid-Director-4700-DS-WEB-020711.pdf

16. Mellanox Technologies: IS5600 - 648-port InfiniBand Chassis Switch,
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5600.pdf

17. Forschungszentrum Jülich: JuRoPA - Jülich Research on Petaflop Architectures
18. Luszczek, P., Dongarra, J.J., Koester, D., Rabenseifner, R., Lucas, B., Kepner,

J., McCalpin, J., Bailey, D., Takahashi, D.: Introduction to the HPC Challenge
Benchmark Suite (April 2005)

Paper VI

Multi-homed Fat-Tree Routing with

InfiniBand

Bartosz Bogdański, Sven-Arne Reinemo, Bjørn Dag Johnsen

Multi-homed fat-tree routing with InfiniBand

Bartosz Bogdański, Bjørn Dag Johnsen
Oracle Corporation

Oslo, Norway
bartosz.bogdanski@oracle.com
bjorn-dag.johnsen@oracle.com

Sven-Arne Reinemo
Simula Research Laboratory

Lysaker, Norway
svenar@simula.no

Abstract—For clusters where the topology consists of a fat-
tree or more than one fat-tree combined into one subnet, there
are several properties that the routing algorithms should sup-
port, beyond what exists today. One of the missing properties is
that current fat-tree routing algorithm does not guarantee that
each port on a multi-homed node is routed through redundant
spines, even if these ports are connected to redundant leaves. As
a consequence, in case of a spine failure, there is a small window
where the node is unreachable until the subnet manager has
rerouted to another spine.

In this paper, we discuss the need for independent routes for
multi-homed nodes in fat-trees by providing real-life examples
when a single point of failure leads to complete outage of
a multi-port node. We present and implement methods that
may be used to alleviate this problem and perform simulations
that demonstrate improvements in performance, scalability,
availability and predictability of InfiniBand fat-tree topologies.
We show that our methods not only increase the performance
by up to 52.6%, but also, and more importantly, that there is
no downtime associated with spine switch failure.

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today where,
for example, it is used in the currently fastest supercomputer
in world - MilkyWay-2 [1]. Moreover, for clusters based
on InfiniBand (IB) technology the fat-tree is the dominating
topology. Fat-tree IB systems include large installations such
as Stampede, TGCC Curie and SuperMUC [2]. There are
three properties that make fat-trees the topology of choice for
high performance interconnects: deadlock freedom, the use
of a tree structure makes it possible to route fat-trees with-
out special considerations for deadlock avoidance; inherent
fault-tolerance, the existence of multiple paths between
individual source destination pairs makes it easier to handle
network faults; full bisection bandwidth, the network can
sustain full speed communication between the two halves
of the network.

For fat-trees, as with most other topologies, the routing
algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts to improve their routing performance. These
proposals, however, have several limitations when it comes
to flexibility and scalability. This also includes the cur-
rent approach that the OpenFabrics Enterprise Distribution
(OFED) [3], the de facto standard for InfiniBand system
software, is based on [4], [5]. One problem is the static

routing used by IB technology that limits the exploitation
of the path diversity in fat-trees as pointed out by Hoefler
et al. in [6]. Another problem with the current routing is
its shortcomings when routing oversubscribed fat-trees as
addressed by Rodriguez et al. in [7]. A third problem, and
the one that we are analysing in this paper, is that for hosts
with two or more host-channel adapter ports connected to
the same fat-tree-based subnet, the routing algorithm does
not guarantee that independent (relative to single points of
failure) root switches are chosen for the corresponding down
paths.

In this paper, we discuss the need for independent routes
for multi-homed nodes in fat-trees by providing real-life
examples when a single point of failure led to fatal con-
sequences. We present and implement a modified fat-tree
routing algorithm that may be used to alleviate this problem
and perform experiments and simulations that demonstrate
the usefulness of our approach. We decided to name our
routing algorithm mFtree for multi-homed fat-tree routing.
There are two key aspects that the routing algorithm ad-
dresses:

• It identifies the paths that need to be routed in a
mutually redundant way.

• It ensures that the paths are in fact redundant.

The rest of this paper is organized as follows: we discuss
related work in Section II and follow with introducing the
InfiniBand Architecture and fat-tree routing in Section III.
We continue with a discussion of our enhancements in
Section IV. Next, we describe the experimental setup in Sec-
tion V followed by the experimental analysis in Section VI.
Finally, we conclude in Section VII.

II. RELATED WORK

There was much research done in the topics of fat-tree
routing, multipathing, dynamic reconfiguration and fault-
tolerance. First of all, there are proposals [4] and proprietary
implementations of adaptive routing algorithms available [8]
that extend IB’s destination routing capabilities such that
traffic directed to a given endpoint can traverse different
paths through the network. However, the presented adaptive
routing is reactive (loss of throughput during the adaptation
phase), not deterministic, is only available for new switch
units (if some switches do not support adaptive routing, it
leads to overall slowdown of the adaptive routing manager)

and is not yet widely available. Additionally, it does not
give any guarantee that the chosen paths will be mutually
independent and some transport layers like IB Reliable
Connected (RC) cannot be routed in an adaptive way due to
the possibility of out of-order packet delivery [9].

Next, there were proposals to use other routing algo-
rithms [10]–[13] to achieve multipathing. However, when
these algorithms are applied to regular topologies like fat-
trees, they may not take all the properties of a regular topol-
ogy into account and cannot deliver optimal performance,
and, again, there is no guarantee that a multi-homed host
can be reached using independent paths.

Furthermore, there were proposals to add LID Mask
Control (LMC) support to fat-tree routing [14], however,
these attempts failed because the Open Subnet Manager
(OpenSM) still does not support LMC for fat-tree routing.
Moreover, LMC is not a solution in a multi-homed environ-
ment and it does not guarantee that the chosen path will use
independent switches.

Later, there was research done on multipath routing for
Extended Generalized Fat-Trees (XGFTs) [15]. However,
it was shown that XGFTs cannot be used to represent
many real-life topologies [9] and the aim of that work is
purely theoretical as the authors failed to consider how real
enterprise systems are built.

Lastly, there were several proposals to use oblivious
routing in fat-tree systems [5], [7], [16], [17]. The most
successful one is [5], which is the default fat-tree routing
for OpenSM. These routing algorithms assume that there are
enough links in a fat-tree to reconfigure the routing without
much performance loss in case of failures. However, all of
these algorithms work on the port level, that is, they treat
each port as an independent node and do not consider the
extra fault-tolerance possibilities that are provided by the
additional ports at the same node. We will show that using
such an oblivious routing algorithm may lead to a total lack
of connectivity even in cases where a node is multi-homed.

Unlike previous research on IB routing algorithms, we
discuss and analyse various enterprise fat-trees where nodes
are multi-homed, i.e. a single node is connected to two
or more parts of the fat-tree through multiple ports. We
focus on real-life enterprise systems where fault-tolerance,
reachability and performance are of the utmost importance.
Our work is partially based on [18], [19] where we also
analysed fat-trees, however, we did not focus on the multi-
homing aspect. In this work we widen the scope and, first,
consider the enterprise fat-trees with multi-homed nodes
and, second, propose and evaluate a fault-tolerant routing
algorithm.

III. TECHNICAL BACKGROUND

The InfiniBand Architecture (IBA) supports a two-layer
topological division. At the lower layer, IB networks are
referred to as subnets, where a subnet consists of a set of
hosts interconnected using switches and point-to-point links.
At the higher level, an IB fabric constitutes one or more

subnets, which are interconnected using routers. Hosts and
switches within a subnet are addressed using LIDs and a
single subnet is limited to 49151 LIDs. Whereas LIDs are
the local addresses valid only within a subnet, each IB device
also has a 64-bit Global Unique IDentifier (GUID) burned
into its non-volatile memory. A GUID is used to form a GID
- an IB layer-3 address. A GID is created by concatenating a
64-bit subnet ID with the 64-bit GUID to form an IPv6-like
128-bit address. In this paper, we will focus on port GUIDs,
i.e. the GUIDs assigned to every port connected to the IB
fabric.

A. Subnet Management

Every IB subnet requires at least one subnet manager
(SM), which is responsible for initializing and bringing up
the network, including the configuration of all the IB ports
residing on switches, routers, and host channel adapters
(HCAs) in the subnet. At the time of initialization the SM
starts in the discovering state where it does a sweep of the
network in order to discover all switches and hosts. During
this phase it will also find other SMs and negotiate who
should be the master SM. When this phase is completed the
SM enters the master state. In this state, it proceeds with LID
assignment, switch configuration, routing table calculations
and deployment, and port configuration. At this point the
subnet is up and ready for use. After the subnet has been
configured, the SM is responsible for monitoring the network
for changes.

B. Fat-Tree Routing

A major part of the SM’s responsibility is routing table
calculations. Routing of the network aims at obtaining full
connectivity, deadlock freedom, and proper load balancing
between all source and destination pairs in the local subnet.
Routing tables must be calculated at network initialization
time and this process must be repeated whenever the topol-
ogy changes in order to update the routing tables and ensure
optimal performance.

In case of the fat-tree routing algorithm, the routing
function iterates over an array of all leaf switches. When
a leaf switch is selected, for each end-node port connected
to that switch (in port numbering sequence), the routing
function routes towards that node. All of that is performed by
route to cns function, for which a pseudocode is presented
in Algo. 1. When routing the particular LIDs, the function
goes up one level to route the downgoing paths, and next, on
each switch port, it goes down to route the upgoing paths.
This process is repeated until the root switch level is reached.
After that the paths towards all nodes are routed and inserted
into the linear forwarding tables (LFTs) of all switches in
the fabric. The function route downgoing by going up() is
a recurrence function whose main task is to balance the paths
and call the route upgoing by going down function, which
routes the upward paths in the fat-tree towards destination
through the switch from which it was invoked.

Algorithm 1 route to cns()

Require: Addressing is completed

Ensure: All hca ports are routed

1: for swleaf = 0 to max leaf sw do
2: for swleaf .port = 0 to max ports do
3: hca lid = swleaf .port− > remote lid
4: swleaf .routing table[hca lid] = swleaf .port
5: route downgoing by going up()
6: end for
7: end for

Figure 1: H1 and H2 are routed through a non-redundant path

There are several problems with the design of
route to cns() function. First, it is oblivious and routes the
end-ports without any consideration as to which node they
belong. Second, it depends on the physical port number for
routing. This is a major problem, and a possible consequence
is presented on Fig. 1 which depicts a scenario with four
two-port nodes connected to a small fat-tree. In this case,
ports H1, H2, H5 and H6 are connected to port 1 on each
switch while the rest of the ports (H3, H4, H7 and H8) are
connected to port 2 on each switch. The downward routes are
presented for each root switch. Because the current fat-tree
routing routes on leaf switch basis, after routing 4 end-ports
(traversing through the second leaf switch in this case), it
will wrap around and start assigning the paths again from
the leftmost root switch. Therefore, each pair of end-ports
(H1 and H2, H3 and H4, H5 and H6, and H7 and H8)
will be routed through the same root switch. This is a very
popular scenario that provides the user with counter-intuitive
behaviour: a node that has built-in physical fault-tolerance (2
end-ports connected to different switches) has a single point
of failure that is one of the root switches. There are many
variations of this problem and, depending on the physical
cabling, the single point of failure may be located on any
switch in a fat-tree.

C. Subnet Reconfiguration

During normal operation the SM performs periodic light
sweeps of the network to check for topology changes. If a
change is discovered during a light sweep or if a message
(trap) signalling a network change is received by the SM, it

will reconfigure the network according to the changes dis-
covered. The reconfiguration includes the steps used during
initialization. Whenever the network changes (e.g. a link
goes down, a device is added, or a link is removed) the SM
must reconfigure the network accordingly. Reconfigurations
have a local scope, i.e. they are limited to the subnets in
which the changes occurred, which means that segmenting
a large fabric with routers limits the reconfiguration scope.

IB is a lossless networking technology, and under certain
conditions it may be prone to deadlocks [20], [21]. Dead-
locks occur because network resources such as buffers or
channels are shared and because IB is a lossless network
technology, i.e. packet drops are usually not allowed. The
necessary condition for a deadlock to happen is the creation
of a cyclic credit dependency. This does not mean that when
a cyclic credit dependency is present, there will always be
a deadlock, but it makes the deadlock occurrence possible.

IV. MOTIVATION AND DESIGN

A. Motivation
There are three main reasons that motivated us to create a

multi-homed fat-tree routing and all come from real-world
experience that we gained when designing and working with
enterprise IB fabrics.

First, as it was mentioned before, the current fat-tree
routing is oblivious whether ports belong to the same node or
not. This makes the routing depend on the cabling and may
be very misleading to the fabric administrator, especially
when recabling is not possible due to a fixed cable length
as often happens in enterprise IB systems. Furthermore, this
requires the fabric designers to connect the end-nodes in
such a way that will make the fat-tree routing algorithm
route them through independent paths. Whereas this is a
simple task for very small fabrics, when a fabric grows, it
quickly becomes infeasible. Additionally, the scheme will
break in case of any failure as usually the first thing that
the maintenance does when a cable or a port does not work,
is to reconnect the cable to another port, which changes the
routing.

Second, due to the bandwidth limitations of the 8x PCI
Express 2.0, it does not make sense to utilize both HCA
ports on the same node with QDR speeds. This means
that one of the ports is the active port and the second one
is a passive port. The passive port will start sending and
receiving traffic only if the original active port fails. Only
with the advent of 8x PCI Express 3.0, where the bandwidth
is doubled compared to 8x PCI Express 2.0, two QDR ports
may be used simultaneously on the same card, which allows
all ports connected to the fabric to be in an active state.
These hardware limitations (active-passive case) mean that
for today’s routing only the active ports are important when
routing and balancing the traffic because the passive ports do
not generate anything (apart from management packets). The
classic fat-tree routing algorithm deals with such a situation
in an oblivious manner. The assumption here is that every
port connected to the fabric is independent and has the same

priority when being routed and what matters is the switch
number and switch port number to which the node port
is connected. Multi-homed fat-tree routing algorithm is not
oblivious in such a case and first routes the active port on
each node, therefore making sure that the path for that port
will be optimal.

Third, because of doubled bandwidth of PCI Express 3.0,
all ports at all nodes need to be considered with equal
weights when doing routing. Classic fat-tree routing is able
to do that, since it is the original assumption, however, it
does not provide for any fault-tolerance that comes from
the fact that each node has two or more ports. It means
that even though the node ports are connected to different
leaves, their paths may meet higher in the fabric and a single
point of failure may exist. Therefore, to obtain optimal fault-
tolerance, it is necessary to remove the single point of failure
by making sure that ports belonging to the same node take
mutually independent paths, which is what mFtree routing
does. What needs to be taken into account is to distinguish
between a single point of failure that is always fatal for an
end-port (local link, local leaf switch) and a single point of
failure that can eventually be recovered from by rerouting.
In other words, we wanted to ensure that no single point of
failure will impact both redundant paths even for a very short
time before the SM has been able to reroute and reconfigure.

B. Design

As mentioned earlier, to obtain multi-homed routing in
fat-tree topologies, one must abandon the fat-tree routing
algorithm that is optimized for shift all-to-all communication
patterns. In other words, a new routing logic is needed to
make the routing algorithm less oblivious than the classic
fat-tree routing and keep the same level of determinism.

The sample pseudocode for the auxiliary function
route multihomed cns() is presented in Algo. 2
and Algo. 3 presents the code for the main function
route hcas. There were also changes done in
route downgoing by going up() that are presented
in Algo.4. The code for auxiliary functions is presented, so
that the exact flow of the algorithm can be analysed.

Algorithm 2 route multihomed cns()

Require: Addressing is completed

Ensure: All hca ports are routed through independent

spines

1: for swleaf = 0 to leaf sw num do
2: for swleaf .port = 0 to max ports do
3: hca node = swleaf .port− > remote node
4: if hca node.routed == true then
5: continue
6: end if
7: route hcas(hca node)
8: end for
9: end for

As seen on Algo. 2, there are many similarities when
compared to the classic fat-tree routing. An iteration is done
over all leaf switches and then over all leaf switch ports, so
the routing can be deterministic. However, the first major
difference is that mFtree routing does not simply take the
LID of the remote port connected to the leaf switch, but uses
the whole node as a parameter to the main routing, which
is presented on Algo. 3.

Algorithm 3 route hcas(hca)

Require: Node that is to be routed

Ensure: All hca ports belonging to the node with hca lid

are routed

1: for hca node.port = 0 to port num do
2: hca lid = hca node.port− > lid
3: swleaf = hca node.port− > remote node
4: swleaf .port = hca node.port− >

remote port number
5: swleaf .routing table[hca lid] = swleaf .port
6: route downgoing by going up()
7: end for
8: hca node.routed = true
9: clear redundant flag()

Having the end-node, we iterate over all its ports,
and route each port in a usual way using the
route downgoing by going up() function. When all
ports on the node are routed, we mark the node as routed,
so that when that node is encountered on another leaf
switch, it is not routed. For 2-port nodes, this saves half of
the loop iterations.

A major change was done to the algorithm
that selects the next-hop upward switch in
route downgoing by going up() function. Normally,
the port group with lowest downward counters is selected,
but in the case of mFtree algorithm, redundancy is
considered to be the decisive factor. Upward node can
only be chosen as the next-hop if it does not route any
other ports belonging to that end-node (in other words,
the redundant flag is true). The redundant flag is cleared
before the next end-node is routed. If there are no nodes
that are redundant as may happen in heavily oversubscribed
fabrics or in case of link failures, mFtree falls back to
normal fat-tree routing.

We may observe the similarity of this routing function to
the routing function presented in Algo. 1.

V. EXPERIMENT SETUP

To evaluate our proposal we have used a combination of
simulations and measurements on a small IB cluster. In the
following subsections, we present the hardware and software
configuration used in our experiments.

A. Hardware Setup
Our test bed consisted of four two-port nodes and six

switches. Each node is a Sun Fire X2200 M2 server [22]

Algorithm 4 route downgoing by going up())

Require: Current hop switch

Ensure: Best effort is done to find an upward redundant

switch

Ensure: Switches on the path are marked with a redundant

flag

1: groupmin = 0
2: redundant group = 0
3: for port group = 0 to port group num do
4: if groupmin == 0 then
5: if groupmin− > remote node.redundant then
6: groupmin = port group
7: end if
8: else if port group.cntdown < groupmin.cntdown

then
9: groupmin = port group

10: if groupmin− > remote node.redundant then
11: min redundant group = groupmin

12: end if
13: end if
14: end for
15: if groupmin == 0 then
16: fallback normal routing(hca lid)
17: else if groupmin− > remote node.redundant then
18: groupmin = min redundant group
19: groupmin− > remote node.redundant = false
20: end if

that has a dual port Mellanox ConnectX DDR HCA with
an 8x PCIe 1.1 interface, one dual core AMD Opteron
2210 CPU, and 2GB of RAM. The switches were: two
36-port Sun Datacenter InfiniBand Switch 36 [23] QDR
switches which acted as the fat-tree roots; two 36-port
Mellanox Infiniscale-IV QDR switches [24], and two 24-
port SilverStorm 9024 DDR switches [25], all of which
acted as leaves with the nodes connected to them. The
port speed between the QDR switches was configured to
be 4x DDR, so the requirement for the constant bisectional
bandwidth in the fat-tree was assured. The cluster was
running the Rocks Cluster Distribution 5.3 with kernel
version 2.6.18-164.6.1.el5-x86 64, and the IB subnet was
managed using a modified version of OpenSM 3.2.6 (with
and without our mFtree implementation). The topology on
which we performed the measurements is shown in Fig. 2.
We used perftest, a tool provided with OFED, to measure the
downtime that occurred when one of the spine switches went
down. Perftest was modified to support regular bandwidth
reporting and continuous sending of traffic at full link
capacity.

B. Simulation Setup
To perform large-scale evaluations and verify the scala-

bility of our proposal, we use an InfiniBand model for the
OMNEST simulator [26] (OMNEST is a commercial version

Figure 2: Experimental cluster

of the OMNeT++ simulator). The IB model consists of a set
of simple and compound modules to simulate an IB network
with support for the IB flow control scheme, arbitration over
multiple virtual lanes, congestion control, and routing using
linear routing tables. The model supports instances of HCAs,
switches and routers with linear routing tables. The network
topology and the local routing tables were generated using
OpenSM coupled with two InfiniBand simulators: ibsim and
IBMgtSim, and converted into OMNEST readable format in
order to simulate real-world systems.

In each of the simulations, we used a link speed of
20 Gbit/s (4x DDR) and Maximum Transfer Unit (MTU)
equal to 2048 bytes. Furthermore, we use uniform and non-
uniform (shift and recursive-doubling) traffic patterns. For
the uniform traffic pattern, each source randomly chooses a
destination from the list of available destinations. This may
lead to a situation, where more than one source chooses the
same destination at the same time, which may cause slight
congestion. The probability of this happening is inversely
proportional to the number of end-ports, and in large fabrics
is quite low. For all simulations, the end-nodes are injecting
variable length packets to the network using the full capacity
of the link.

The non-uniform traffic patterns can represent collective
communications and are named shift and recursive-doubling.
The patterns were simulated by translating their algorithm
into sequences of destinations specific for each end-port and
their implementation was described in a paper by Zahavi [9].
A random node-ordering of the MPI node-number to clus-
ter end-ports was used in the translation and during the
simulation, the end-ports progress through their destinations
sequence independently when the previous message has been
sent to the wire, which is one of the features of the IB model
implemented in OMNEST simulator.

C. Topologies

We simulated five topologies of varying size. There were
two 648-port fat-trees: a 2-stage one built with 18 spines
and 36 leaves, and a 3-stage one built with 18 spines, 36
middle-stage switches and 27 2-switch modules (54 separate
leaf switches). Each switch in a 2-switch module has 36
ports: 12 ports connected to end-nodes, 12 horizontal links
connected to the neighbouring switch in the module and 12
uplinks to the middle-stage switches. Next, the 3-stage 432-
port and 216-port topologies are variations of the 3-stage

Figure 3: Results from the hardware cluster

648-port fabric. The 432-port and 216-port fabrics are 2/3
and 1/3 of size the original 3-stage 648-port fabric, respec-
tively. Last, the 384-port fabric is 2-stage oversubscribed
fat-tree that consists of 8 spines and 16 leaf switches. The
oversubscription ratio is 1.33:1.

VI. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements
on an experimental cluster and simulations of large-scale
topologies. For the cluster measurements we use the average
per node throughput and time as our main metrics. However,
we are not comparing the network performance here, but the
network downtime is of main interest. For the simulations
we use the achieved average throughput per end node as the
metric for measuring the performance of the mFtree algo-
rithm on the simulated topologies. In both the experimental
cluster and in the simulations, all traffic flows are started at
the same time and they are based on transport layer of the
IB stack.

A. Experimental results
The main aim of the experiment was to show that appli-

cations experience less downtime with mFtree than with the
classic fat-tree routing algorithm [5]. In this experiment we
rebooted the switch S2 and measured how much time it took
before the application started sending the traffic through the
backup path. The whole experiment was conducted with two
flows present in the network: port H4 was sending traffic to
port H2 and H3 was sending traffic to port H1. For classic
fat-tree routing, both flows: H4 → H1 and H3 → H2 were
routed through S1 whereas for mFtree the flow H4 → H1
was routed through S1 and flow H3 → H2 was routed
through S2. In each case, we failed (rebooted) switch S1 and
measured how much time passed before normal operation
was resumed.

The results are presented on Fig. 3. We observe that for
mFtree routing, only half of the throughput (from 3795 MB/s
down to 1897 MB/s) is lost as only one flow needs to be

ftree routing algorithm mFtree routing algorithm

2-stage 648-port 3-stage 648-port 3-stage 432-port 3-stage 216-port 2-stage 384-port

50
0

10
00

15
00

20
00

Topology

Av
er

ag
e

pe
r

no
de

 b
an

dw
id

th
 (M

B/
s)

0

1
8
9
5

1
8
9
6

1
8
6
4

1
8
6
4

1
8
7
7

1
8
7
8

1
9
1
0

1
9
1
0

6
8
7

6
8
8

Figure 4: Test results for uniform traffic

f tre ouingatl hme Ftre ouingatl hme Ftre ouigFf tl hme Ftre ouif 2ntl hme f tre ouiFagtl hme

-s
s

2s
ss

2-
ss

fs
ss

6hl h4ho8

p3
um

 o
ui

lu
mi

1h
5u

i0
 1

5T
y5

eA
ivd

bw
r(

s

2
a
a
s

2
M
B
a

2
a
-
f

2
a
a
n

2
a
n
-

2
a
a
g

2
B
2
2

2
B
f
a

n
a
-

n
a
n

/emuuimh) ey1oi 4ohmyeA9 9 7emuuimh) ey1oi 4ohmyeA9

Figure 5: Test results shift traffic pattern

rerouted. For classic fat-tree routing, we observe that both
flows must be rerouted, which means that even though a
node receiving the traffic has two independent ports, a failure
of a single switch makes the whole node unreachable.

The observation that needs to be highlighted is the fact
that there is no downtime for connectivity between any pair
of nodes with multiple ports operating in active-active mode
when using the mFtree routing algorithm. The classic fat-
tree routing engine that routes both traffic pairs through the
same spine switch experiences a complete loss of service
despite of the fact that the destination node has multiple
ports. This means that the classic fat-tree routing algorithm
is unable to use multiple ports on a node to provide for
additional fault-tolerance.

B. Simulation results

The simulations were to show that using our routing al-
gorithm does not deliver worse performance than the classic

f tre ouingatl hme Ftre ouingatl hme Ftre ouigFf tl hme Ftre ouif 2ntl hme f tre ouiFagtl hme

-s
s

2s
ss

2-
ss

fs
ss

6hl h4ho8

p3
um

 o
ui

lu
mi

1h
5u

i0
 1

5T
y5

eA
ivd

bw
r(

s

2
2
n
f

2
g
n
s

2
n
s
-

2
n
F
a

2
f
a
g

2
F
M
n

2
-
f
a

2
n
-
g

g
F
B

n
M
s

/emuuimh) ey1oi 4ohmyeA9 9 7emuuimh) ey1oi 4ohmyeA9

Figure 6: Test results for recursive traffic pattern

fat-tree routing algorithm when the tree size increases. We
performed the simulations in an active-active mode, which
means that no port was unused (passive).

The uniform traffic, for which the results are presented
on Fig. 4, is considered to be very synthetic and not
demanding on the routing algorithm. However, we used it
to show the baseline performance as this traffic pattern has
a predictable and easily understandable behaviour, and is
general rather than specific to a given application. Under
uniform traffic conditions, where each source chooses the
destination from all other possible destinations (apart from
the ports located on the same end-node), the performance
of both the routing algorithms is equal. This means that
mFtree routing algorithm does not create any additional
overhead when routing and we do not sacrifice performance
for redundancy.

The results for the shift traffic pattern shown on Fig. 5
start to exhibit slight differences between the two algorithms.
The classic fat-tree routing [5], which was specifically
designed for the shift traffic pattern delivers slightly better
performance (on average 82 MB/s or 4.5% higher per node)
only on a 2-stage 648-port fat-tree. However, for any 3-
stage fabric, it is the mFtree routing algorithm that delivers
slightly better performance (ranging from 0.8% to 1.8% on
average per node). For the oversubscribed 384-port fabric
the performance delivered by mFtree and classic fat-tree
is equal. The slight performance increase that is observed
for mFtree is caused by better traffic distribution while
traversing middle-stage switches in the upward direction.
The 3-stage fabrics are built in such a way that each
pair of interconnected leaf switches share four middle-stage
switches. The end-nodes are connected to the fabric in such
a way that end-port:A is connected to the first leaf switch
and the end-port:B is connected to the second leaf switch.
What happens is that for the classic fat-tree routing, when
routing in the upward direction, the traffic to end-port:A

Table I: Execution time comparison for different algorithms in seconds.

Topology minhop DFSSSP ftree mFtree
2-stage 384-port 5.12 5.04 0.02 0.02

2-stage 648-port 10.96 10.86 0.14 0.12

3-stage 216-port 5.38 5.14 0.08 0.02

3-stage 432-port 11.04 11.72 0.18 0.16

3-stage 648-port 16.5 19.38 0.38 0.36

3-stage 3456-port 105.86 286.38 11.66 10.58

4-stage 4608-port 401.1 1671.54 59.96 81.04

and end-port:B may traverse the same switch and even use
the same link, which leads to slight congestion. For mFtree
routing this does not happen as the traffic for end-port:A
and end-port:B is separated from each other from the very
beginning, which means that the traffic distribution is better.
However, the influence of this phenomenon is minor because
such a traffic overlap does not occur often for the shift traffic
pattern we generated.

The doubling recursive pattern, for which the results are
shown on Fig. 6, is the most demanding one from the
patterns we tested, and the differences in performance here
are significant. What is first noticeable is that the overall
performance is lower for both algorithms. However, when
we directly compare classic fat-tree routing and mFtree,
we will observe that mFtree delivers better performance in
each case. The differences are especially visible for 2-stage
fabrics: for the 648-port fabric, the performance delivered by
mFtree routing is 25.6% higher than for the classic fat-tree
routing and for the 384-port fabric, the performance is 52.6%
higher. For the 3-stage fabrics, the performance differences
are 2%, 7.1%, 8.2% for the 648-port, 432-port and 216-
port fabrics, respectively. Such performance differences are
explained by the fact that the doubling recursive pattern is
constructed in such a way that end-port:A at every end-
node only sends to end-ports:A on other nodes. Furthermore,
both Node1 : portA when sending to Node2 : portA
(due to regularity of the classic fat-tree routing) uses second
left-most spine as does Node1 : portB when sending to
Node2 : portB. For mFtree routing, the spines chosen
will be always different. This is especially important in the
oversubscribed fabric where the congestion not only occurs
on the upward links, but also on some of the downward
links.

C. Execution time

Another important metric of a routing algorithm is its ex-
ecution time, which is directly related to the reconfiguration
time of the fabric in case of topology changes. For com-
parison, we added two more routing algorithms: minimum-
hop (minhop) and deadlock-free single-source shortest-path
routing (DFSSSP) [13], and added two large topologies to
observe how does the execution time scale with regard to the
node number: a 3-stage 3456-port fat-tree and a 4-stage dual-

core 4608-port fat-tree. The results are presented in Table I.
As we may observe, the fat-tree routing [5] (abbreviated ftree
in in Table I) and mFtree routing are comparable when it
comes to the execution time. For a smaller number of ports
(up to 4608), mFtree is in fact slightly faster than classic
fat-tree. This happens because the ratio of ports to switches
is low (i.e. there are many more ports than switches).
However, the problem encountered when routing a 4608-
port topology is that it contains 1440 24-port switches. What
is not optimized is clearing the switch redundancy flag in
function clear redundant flag() from Algorithm 3. The
loop in that function iterates over all the switches regardless
whether a particular switch was on the path or not. This
could be optimized by creating a list of switches that are on
the path and making sure only those switches are iterated
upon.

When it comes to other routing algorithms, we observe
that they have extremely long execution times for fat-tree
topologies. This is especially true to DFSSSP whose execu-
tion time explodes 1671.5 seconds, which means almost 28
minutes of downtime in case of a failure.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the new mFtree routing
algorithm. We showed that it improves the network per-
formance compared to the current OpenSM fat-tree routing
by up to 52.6%. Most importantly, however, mFtree routing
algorithm gives much better redundancy than classic fat-tree
routing, which means that multi-homed nodes will suffer no
downtime in case of switch failures.

In future we plan to optimize the routing algorithm, so
its execution time is shorter on larger fabrics. Furthermore,
we will be working with other enhancements to the fat-tree
routing.

REFERENCES

[1] J. Dongarra, “Visit to the National University for Defense
Technology Changsha, China,” Report, June 2013,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/
tianhe-2-dongarra-report.pdf.

[2] “Top 500 supercomputer sites,” http://top500.org/, June 2013.
[3] “The OpenFabrics Alliance,” http://openfabrics.org/.
[4] C. Gómez, F. Gilabert, M. E. Gómez, P. López, and

J. Duato, “Deterministic versus Adaptive Routing in
Fat-Trees.” [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.96.5710

[5] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Opti-
mized Infiniband fat-tree routing for shift all-to-all communi-
cation patterns,” in Concurrency and Computation: Practice
and Experience, 2009.

[6] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage
switches are not crossbars: Effects of static routing in high-
performance networks,” in Cluster Computing, 2008 IEEE
International Conference on, 29 2008-Oct. 1 2008, pp. 116–
125.

[7] G. Rodriguez, C. Minkenberg, R. Beivide, and R. P. Luijten,
“Oblivious Routing Schemes in Extended Generalized Fat
Tree Networks,” IEEE International Conference on Cluster
Computing and Workshops, 2009.

[8] “InfiniBand in the Enterprise Data Center,” White paper,
Mellanox Technologies, April 2006, http://www.mellanox.
com/pdf/whitepapers/InfiniBand EDS.pdf.

[9] E. Zahavi, “Fat-trees routing and node ordering providing
contention free traffic for mpi global collectives,” in Paral-
lel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, may
2011, pp. 761 –770.

[10] P. Lopez, J. Flich, and J. Duato, “Deadlock-free routing in
infiniband/sup tm/ through destination renaming,” Parallel
Processing, International Conference on, 2001., pp. 427–434,
3-7 Sept. 2001.

[11] J. Sancho, A.Robles, J. Flich, P.Lopez, and J. Duato, “Ef-
fective methodology for deadlock-free minimal routing in in-
finiband networks,” in Proceedings of the 2002 International
Conference on Parallel Processing. IEEE Computer Society,
August 2002, pp. 409–418.

[12] J. C. Sancho, A. Robles, and J. Duato, “Effective strategy to
compute forwarding tables for infiniband networks,” in ICPP,
L. M. Ni and M. Valero, Eds. IEEE Computer Society, 2001,
pp. 48–60.

[13] J. Domke, T. Hoefler, and W. Nagel, “Deadlock-Free Oblivi-
ous Routing for Arbitrary Topologies,” in Proceedings of the
25th IEEE International Parallel and Distributed Processing
Symposium. IEEE Computer Society, May 2011, pp. 613–
624.

[14] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A Multiple LID
Routing Scheme for Fat-Tree-Based Infiniband Networks,”
Proceedings of IEEE International Parallel and Distributed
Processing Symposiums, 2004.

[15] S. Mahapatra, X. Yuan, and W. Nienaber, “Limited
multi-path routing on extended generalized fat-trees,” in
Proceedings of the 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops & PhD
Forum, ser. IPDPSW ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 938–945. [Online]. Available:
http://dx.doi.org/10.1109/IPDPSW.2012.115

[16] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious
routing for fat-tree based system area networks with
uncertain traffic demands,” in Proceedings of the 2007 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, ser. SIGMETRICS ’07.
New York, NY, USA: ACM, 2007, pp. 337–348. [Online].
Available: http://doi.acm.org/10.1145/1254882.1254922

[17] S. Öhring, M. Ibel, S. Das, and M. Kumar, “On General-
ized Fat Trees,” in Proceedings of 9th International Parallel
Processing Symposium, 1995, pp. 37–44.

[18] B. Bogdanski, F. O. Sem-Jacobsen, S.-A. Reinemo, T. Skeie,
L. Holen, and L. P. Huse, “Achieving predictable high per-
formance in imbalanced fat trees,” in Proceedings of the 16th
IEEE International Conference on Parallel and Distributed
Systems, X. Huang, Ed. IEEE Computer Society, 2010, pp.
381–388.

[19] B. Bogdanski, B. D. Johnsen, S.-A. Reinemo, and F. O. Sem-
Jacobsen, “Discovery and routing of degraded fat-trees,” in
2012 13th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, H. Shen,
Y. Sang, Y. Li, D. Qian, and A. Y. Zomaya, Eds. Los
Alamitos: IEEE Computer Society, December 2012, pp. 689–
694.

[20] W. J. Dally and B. Towles, Principles and practices of
interconnection networks. Morgan Kaufmann, 2004.

[21] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Net-
works An Engineering Approach. Morgan Kaufmann, 2003.

[22] “Sun Fire X2200 M2 server,” Oracle Corporation, November
2006, http://www.sun.com/servers/x64/x2200/.

[23] “Sun Datacenter InfiniBand Switch 36,” Oracle Corporation,
http://www.sun.com/products/networking/datacenter/ds36/.

[24] “MTS3600 36-port 20 Gb/s and 40Gb/s InfiniBand Switch
System,” Product brief, Mellanox Technologies, 2009,
http://www.mellanox.com/related-docs/prod ib switch
systems/PB MTS3600.pdf.

[25] “SilverStorm 9024 Switch,” Qlogic, http://www.qlogic.com/
Resources/Documents/DataSheets/Switches/Edge Fabric
Switches datasheet.pdf.

[26] E. G. Gran and S.-A. Reinemo, “Infiniband congestion con-
trol, modelling and validation,” in 4th International ICST
Conference on Simulation Tools and Techniques (SIMU-
Tools2011, OMNeT++ 2011 Workshop), 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

